US20180338805A1 - Roll-Pitch-Roll Surgical Tool - Google Patents
Roll-Pitch-Roll Surgical Tool Download PDFInfo
- Publication number
- US20180338805A1 US20180338805A1 US16/055,299 US201816055299A US2018338805A1 US 20180338805 A1 US20180338805 A1 US 20180338805A1 US 201816055299 A US201816055299 A US 201816055299A US 2018338805 A1 US2018338805 A1 US 2018338805A1
- Authority
- US
- United States
- Prior art keywords
- pitch
- axis
- wrist
- pulley
- end effector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000000707 wrist Anatomy 0.000 claims abstract description 135
- 239000012636 effector Substances 0.000 claims abstract description 95
- 238000002324 minimally invasive surgery Methods 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 abstract description 55
- 230000001537 neural effect Effects 0.000 abstract description 3
- 238000001356 surgical procedure Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000004913 activation Effects 0.000 description 6
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000001839 endoscopy Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000000245 forearm Anatomy 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 238000002357 laparoscopic surgery Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002574 cystoscopy Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011846 endoscopic investigation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000002432 robotic surgery Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/062—Needle manipulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/71—Manipulators operated by drive cable mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
- A61B2090/506—Supports for surgical instruments, e.g. articulated arms using a parallelogram linkage, e.g. panthograph
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20207—Multiple controlling elements for single controlled element
- Y10T74/20305—Robotic arm
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20207—Multiple controlling elements for single controlled element
- Y10T74/20305—Robotic arm
- Y10T74/20329—Joint between elements
- Y10T74/20335—Wrist
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20207—Multiple controlling elements for single controlled element
- Y10T74/20341—Power elements as controlling elements
- Y10T74/2036—Pair of power elements
Definitions
- Minimally invasive medical techniques are aimed at reducing the amount of extraneous tissue that is damaged during diagnostic or surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects.
- the average length of a hospital stay for a standard surgery may also be shortened significantly using minimally invasive surgical techniques.
- an increased adoption of minimally invasive techniques could save millions of hospital days, and millions of dollars annually in hospital residency costs alone.
- Patient recovery times, patient discomfort, surgical side effects, and time away from work may also be reduced with minimally invasive surgery.
- the most common form of minimally invasive surgery may be endoscopy.
- laparoscopy which is minimally invasive inspection and surgery inside the abdominal cavity.
- laparoscopic surgical instruments In standard laparoscopic surgery, a patient's abdomen is insufflated with gas, and cannula sleeves are passed through small (approximately 1 ⁇ 2 inch) incisions to provide entry ports for laparoscopic surgical instruments.
- the laparoscopic surgical instruments generally include a laparoscope (for viewing the surgical field) and working tools.
- the working tools are similar to those used in conventional (open) surgery, except that the working end or end effector of each tool is separated from its handle by an extension tube.
- end effector means the actual working part of the surgical instrument and can include clamps, graspers, scissors, staplers, and needle holders, for example.
- the surgeon passes these working tools or instruments through the cannula sleeves to an internal surgical site and manipulates them from outside the abdomen.
- the surgeon monitors the procedure by means of a monitor that displays an image of the surgical site taken from the laparoscope.
- Similar endoscopic techniques are employed in, e.g., arthroscopy, retroperitoneoscopy, pelviscopy, nephroscopy, cystoscopy, cisternoscopy, sinoscopy, hysteroscopy, urethroscopy and the like.
- MIS minimally invasive surgical
- Minimally invasive telesurgical robotic systems are being developed to increase a surgeon's dexterity when working within an internal surgical site, as well as to allow a surgeon to operate on a patient from a remote location.
- the surgeon is often provided with an image of the surgical site at a computer workstation. While viewing a three-dimensional image of the surgical site on a suitable viewer or display, the surgeon performs the surgical procedures on the patient by manipulating master input or control devices of the workstation. The master controls the motion of a servomechanically operated surgical instrument.
- the telesurgical system can provide mechanical actuation and control of a variety of surgical instruments or tools having end effectors such as, e.g., tissue graspers, needle drivers, or the like, that perform various functions for the surgeon, e.g., holding or driving a needle, grasping a blood vessel, or dissecting tissue, or the like, in response to manipulation of the master control devices.
- end effectors such as, e.g., tissue graspers, needle drivers, or the like, that perform various functions for the surgeon, e.g., holding or driving a needle, grasping a blood vessel, or dissecting tissue, or the like, in response to manipulation of the master control devices.
- Some surgical tools employ a roll-pitch-yaw mechanism for providing three degrees of rotational movement to an end effector around three perpendicular axes. At about 90° pitch, the yaw and roll rotational movements overlap, resulting in the loss of one degree of rotational movement.
- the present invention is generally directed to robotic surgery methods, devices, and systems.
- the invention provides a minimally invasive surgical tool which operates with three degrees of rotational movement at about 90° pitch.
- the surgical tool employs a roll-pitch-roll configuration in which an elongate shaft is rotatable in proximal roll, a wrist member is pivotally mounted on the working end of the elongate shaft to rotate in pitch, and an end effector is pivotally mounted on the wrist member to rotate in distal roll around the wrist axis of the wrist member.
- the wrist axis is generally perpendicular to the shaft axis of the elongate shaft.
- the proximal roll around the shaft axis and the distal roll around the wrist axis do not overlap.
- a pulley and cable mechanism is used to rotate and actuate the end effector.
- the end effector can be bent back beyond 90° pitch.
- the mechanism coupling the end effector to the working end of the elongate shaft allows the wrist member and end effector to bend back by an angle ⁇ of more than about 90 from the forward position, desirably by more than about 120°, and more desirably by more than about 135°.
- the ability to operate the end effector at about 90 pitch and to bend back the end effector renders the wrist mechanism more versatile and adaptable to accessing hard to reach locations, particularly with small entry points such as those involving spinal, neural, or rectal surgical sites.
- a pair of linking arms are pivotally connected between the working end and the wrist member to facilitate bend back pitching while maintaining the size of the tool to a sufficiently small size for minimally invasive surgical applications.
- a minimally invasive surgical instrument comprises an elongate shaft having a working end and a shaft axis, and at least one linking arm having a proximal end and a distal end.
- the proximal end is pivotally mounted on the working end of the shaft to rotate around a first pitch axis which is nonparallel to the shaft axis.
- a wrist member has a proximal portion pivotally connected to the distal end of the linking arm to rotate around a second pitch axis which is nonparallel to the shaft axis.
- An end effector is pivotally mounted on a distal portion of the wrist member to rotate around a wrist axis of the wrist member.
- the wrist axis extends between the proximal portion and the distal portion of the wrist member.
- the elongate shaft is rotatable around the shaft axis.
- the first pitch axis and the second pitch axis are parallel, and are perpendicular to the shaft axis.
- a pair of linking arms are connected between the working end and the wrist member.
- the end effector includes an end effector support pivotally mounted on the distal portion of the wrist member to rotate around the wrist axis.
- the end effector includes at least one end effector link pivotally mounted on the end effector support to rotate around a pivot axis which is nonparallel to the wrist axis.
- the pivot axis may be perpendicular to the wrist axis.
- the end effector may include a pair of end effector links.
- the end effector links may be rotatable around the pivot axis to move toward and away from one another.
- the end effector links may be rotatable around the pivot axis to move together in the same direction.
- One of the end effector links may be fixed relative to the end effector support.
- a minimally invasive surgical instrument comprises an elongate shaft having a working end and a proximal end.
- the elongate shaft has a shaft axis between the proximal end and the working end.
- a wrist member includes a wrist axis between a proximal portion and a distal portion.
- An end effector is pivotally mounted on the distal portion of the wrist member to rotate around the wrist axis.
- At least one linking member is rotatably coupled between the working end and the wrist member to permit rotation of the wrist member relative to the working end, from a forward position in which the wrist axis is oriented with the end effector at the distal portion pointing generally away from the proximal end of the elongate shaft, to a backward position in which the wrist axis is oriented with the end effector at the distal portion pointing generally toward the proximal end of the elongate shaft.
- a method of performing minimally invasive surgery in a body cavity of a patient comprises introducing an elongate shaft having a working end into the cavity.
- the elongate shaft has a proximal end and a shaft axis between the working end and the proximal end.
- a wrist member which is pivotally coupled with the working end is rotated relative to the working end.
- the wrist member having a wrist axis.
- the method further comprises rotating at least one of the elongate shaft around the shaft axis and an end effector pivotally mounted on the wrist member around the wrist axis to position the end effector at a desired location inside the cavity.
- the wrist member is rotated around a pitch axis which is perpendicular to at least one of the shaft axis and the wrist axis to change an angle between the wrist axis and the shaft axis.
- the wrist member is rotated relative to the working end until the wrist axis is approximately perpendicular to the shaft axis.
- the wrist member may be rotated relative to the working end from a forward position in which the wrist axis is oriented with the end effector pointing generally away from the proximal end of the elongate shaft, to a backward position in which the wrist axis is oriented with the end effector pointing generally toward the proximal end of the elongate shaft.
- FIG. 1 is a side view of a robotic arm and surgical instrument assembly according to a preferred embodiment of the invention
- FIG. 2 is a perspective view of the robotic arm and surgical instrument assembly of FIG. 1 ;
- FIG. 3 is a perspective view of a surgical instrument according to a preferred embodiment of the invention.
- FIG. 4 is a schematic kinematic diagram corresponding to the side view of the robotic arm shown in FIG. 1 , and indicates the arm having been displaced from one position into another position;
- FIG. 5 is a perspective view of a roll-pitch-yaw wrist mechanism
- FIG. 6 is a front view of the wrist mechanism of FIG. 5 along arrow VI;
- FIG. 7 is a side view of the wrist mechanism of FIG. 5 along arrow VII;
- FIG. 8 is a perspective view of the wrist mechanism of FIG. 5 schematically illustrating the singularity at the 90° pitch position
- FIG. 9 is a perspective view of a roll-pitch-roll wrist mechanism according to a preferred embodiment of the present invention.
- FIG. 10 is a front view of the wrist mechanism of FIG. 9 along arrow X;
- FIG. 11 is a side view of the wrist mechanism of FIG. 9 along arrow XI;
- FIG. 12 is a perspective view of the wrist mechanism of FIG. 9 at the 90° pitch position
- FIG. 13 is a perspective view of a roll-pitch-roll wrist mechanism according to another preferred embodiment of the present invention.
- FIG. 14 is a sectional view of the wrist mechanism of FIG. 13 along XIV-XIV;
- FIG. 15 is another perspective view of the wrist mechanism of FIG. 13 ;
- FIG. 16 is another perspective view of the wrist mechanism of FIG. 13 ;
- FIG. 17 is a perspective view of the wrist mechanism of FIG. 13 schematically illustrating the bend back feature of the end effector.
- FIGS. 1 and 2 illustrate a robotic arm and surgical instrument assembly 10 .
- the assembly 10 includes a robotic arm 12 and a surgical instrument 14 .
- FIG. 3 indicates the general appearance of the surgical instrument 14 .
- the surgical instrument 14 includes an elongate shaft 14 . 1 .
- a wrist-like mechanism 50 is located at a working end of the shaft 14 . 1 .
- a housing 53 arranged releasably to couple the instrument 14 to the robotic arm 12 is located at an opposed end of the shaft 14 . 1 .
- the shaft 14 . 1 extends along an axis indicated at 14 . 2 .
- the instrument 14 is typically releasably mounted on a carriage 11 which is driven to translate along a linear guide formation 24 in the direction of arrows P.
- the surgical instrument 14 is described in greater detail herein below.
- the robotic arm 12 is typically mounted on a base (not shown) by a bracket or mounting plate 16 .
- the base is typically in the form of a mobile cart or trolley (not shown) which is retained in a stationary position during a surgical procedure.
- the robotic arm 12 includes a cradle 18 , an upper arm portion 20 , a forearm portion 22 , and the guide formation 24 .
- the cradle 18 is pivotally mounted on the plate 16 in a gimbaled fashion to permit rocking movement of the cradle in the direction of arrows 26 about a pivot axis 28 , as shown in FIG. 2 .
- the upper arm portion 20 includes link members 30 , 32 and the forearm portion 22 includes link members 34 , 36 .
- the link members 30 , 32 are pivotally mounted on the cradle 18 and are pivotally connected to the link members 34 , 36 .
- the link members 34 , 36 are pivotally connected to the guide formation 24 .
- the pivotal connections between the link members 30 , 32 , 34 , 36 , the cradle 18 , and the guide formation 24 are arranged to enable the robotic arm to move in a specific manner.
- the movements of the robotic arm 12 is illustrated schematically in FIG. 4 .
- the solid lines schematically indicate one position of the robotic arm and the dashed lines indicate another possible position into which the arm can be displaced from the position indicated in solid lines.
- the axis 14 . 2 along which the shaft 14 . 1 of the instrument 14 extends when mounted on the robotic arm 12 pivots about a pivot center or fulcrum 49 .
- the pivot center 49 normally remains in substantially the same position relative to the stationary cart 300 on which the arm 12 is mounted.
- the pivot center 49 is typically positioned at a port of entry into a patient's body during an endoscopic procedure when an internal surgical procedure is to be performed. It will be appreciated that the shaft 14 . 1 extends through such a port of entry, the wrist-like mechanism 50 then being positioned inside the patient's body.
- the general position of the mechanism 50 relative to the surgical site in a patient's body can be changed by movement of the arm 12 . Since the pivot center 49 is coincident with the port of entry, such movement of the arm does not excessively effect the surrounding tissue at the port of entry. It is to be appreciated that the field of application of the invention is not limited to surgical procedures at internal surgical sites only, but can be used on open surgical sites as well.
- the robotic arm 12 provides three degrees of freedom of movement to the surgical instrument 14 when mounted thereon. These degrees of freedom of movement are firstly the gimbaled motion indicated by arrows 26 , pivoting or pitching movement as indicated by arrows 27 , and the linear displacement in the direction of arrows P. Movement of the arm as indicated by arrows 26 , 27 and P is controlled by appropriately positioned actuators, e.g., electrical motors or the like, which respond to inputs from its associated master control to drive the arm 12 to a desired position as dictated by movement of the master control.
- actuators e.g., electrical motors or the like
- FIGS. 5, 6 and 7 show a roll-pitch-yaw wrist-like mechanism 50 .
- the wrist-like mechanism 50 includes a rigid wrist member 52 .
- One end portion of the wrist member 52 is pivotally mounted in a clevis 17 on the end 14 . 3 of the shaft 14 . 1 by means of a pivotal connection 54 .
- the wrist member 52 can pitch in the direction of arrows 56 about the pivotal connection 54 .
- This rotation around the pivotal connection 54 in the direction 56 is referred to as the pivot or pitch of the wrist member 52 .
- the end 14 . 3 is rotatable with the shaft 14 . 1 around the axis 14 . 2 in the direction H, as shown in FIGS. 3 and 5 .
- This rotation around the axis 14 . 2 in the direction H is referred to as the roll of the working end 14 . 3 .
- An end effector is pivotally mounted on an opposed end of the wrist member 52 .
- the end effector 58 is in the form of forceps or graspers for grasping tissue or the like during a surgical procedure. Accordingly, the end effector 58 has two parts 58 . 1 , 58 . 2 together defining a jaw-like arrangement.
- the end effector 58 is pivotally mounted in a clevis 19 on an opposed end of the wrist member 52 , by means of a pivotal connection 60 . Free ends 11 , 13 of the parts 58 . 1 , 58 . 2 are angularly displaceable about the pivotal connection 60 toward and away from each other as indicated by arrows 62 , 63 in FIG. 6 .
- each part 58 . 1 , 58 . 2 is angularly displaceable about the pivotal connection 60 independently of the other, so that the end effector 58 is, as a whole, angularly displaceable about the pivotal connection 60 in the direction 61 , as indicated in dashed lines in FIG. 6 .
- This rotation around the pivotal connection 60 in the direction 61 is referred to the yaw of the end effector 58 .
- the wrist mechanism 50 as illustrated in FIGS. 5-7 is referred to as a roll-pitch-yaw mechanism having roll in the direction H, pitch in the direction 56 , and yaw in the direction 61 .
- the parts 58 . 1 , 58 . 2 each include an elongate finger portion or end effector element 58 . 3 and an end effector mounting formation in the form of, e.g., a pulley portion 58 . 5 .
- the finger portion 58 . 3 is integrally formed with the pulley portion 58 . 5 .
- the pulley portion 58 . 5 defines a circumferentially extending channel 58 . 6 in which an elongate element in the form of, e.g., an activation cable, is carried.
- a generally circumferentially directed hole 58 . 8 extends through a nape region of the finger portion 58 .
- the hole 58 . 8 has a first portion 58 . 9 and a second portion 58 . 10 having a diameter greater than the first portion 58 . 9 .
- the activation cable has a thickened portion along its length which seats in the hole portion 58 . 10 , the rest of the activation cable then extending along the channel 58 . 6 in opposed directions. The thickened portion is crimped in its seated position in the hole portion 58 . 10 so as to anchor the cable in the hole 58 . 8 .
- the wrist member 52 is flanked by two sets of pulleys 64 , 66 which are coaxially positioned on the pivotal connection 54 and in the clevis 17 at the end 14 . 3 of the shaft 14 . 1 .
- Two further sets of pulleys 68 , 70 are rotatably mounted on opposed sides of the wrist member 52 .
- Each pulley of the set of pulleys 68 on the one side of the wrist member 52 is generally co-planar with an associated pulley of the pulley set 66 .
- each of the pulleys 68 is positioned such that its circumference is in close proximity to the circumference of its associated pulley of the pulley set 66 .
- each pulley of the pulley set 70 on the other side of the wrist member and its associated pulley of the pulley set 64 .
- the circumferentially extending channel formation of each pulley of the pulley sets 68 , 70 and their associated pulleys of the pulley sets 64 , 66 define between each of them a space 72 through which an activation cable can snugly pass.
- a plurality of elongate elements are used to effect movement of the wrist mechanism 50 and end effector 58 .
- two cables C 1 , C 2 are anchored on the parts 58 . 1 , 58 . 2 , respectively, to effect movement of the parts 58 . 1 , 58 . 2 independently in directions 62 , 63 or as a whole ( FIG. 6 ).
- Cable C 1 rides over an outer pulley of the pulley set 64 , an outer pulley of the pulley set 70 , over part of circumferential channel 58 . 6 of the pulley portion 58 . 5 of the part 58 . 2 of the end effector 58 , through the hole 58 . 8 , again along part of the circumferential channel 58 . 6 of the pulley portion 58 . 5 , over an outer pulley of the pulley set 68 and over an outer pulley of the pulley set 66 .
- cable C 2 rides over an inner pulley of the pulley set 64 , over an inner pulley of the pulley set 70 , along the circumferential channel 58 .
- the cables C 1 , C 2 pass from the wrist mechanism 50 through appropriately positioned holes 47 in the base region of the clevis 17 ( FIG. 5 ), and internally along the shaft, toward the housing 53 ( FIG. 3 ).
- the housing 53 includes driving members, e.g., in the form of spool assemblies for manipulating the cables.
- FIG. 8 shows the position of the end effector 58 after rotation in pitch in the direction 56 of the wrist member 52 around the pivotal connection 54 by about 90°.
- the yaw in the direction 61 around the pivotal connection 60 overlaps with the roll H of the working end 14 . 3 .
- the overlap or redundancy results in the loss of one degree of freedom of movement of the end effector 58 at or near this position of singularity.
- the end effector 58 may be used primarily at this position of about 90° pitch. It is desirable to provide a wrist mechanism that does not operate at a singularity in this position.
- FIGS. 9-11 show a roll-pitch-roll wrist-like mechanism 500 .
- the working end of the tool shaft is indicated at 502 , and includes a pair of extensions 506 .
- the wrist-like mechanism 500 includes a rigid wrist member 504 .
- One end portion of the wrist member 504 forms a clevis 508 in which the extensions 506 of the working end 502 of the tool shaft is pivotally mounted by means of a pivotal connection 510 .
- the wrist member 504 can pitch in the direction of arrows 512 about the pivotal connection 510 .
- This rotation around the pivotal connection 510 in the direction 512 is referred to as the pivot or pitch of the wrist member 504 .
- the end 502 is rotatable with the tool shaft around the shaft axis in the direction 516 . This rotation around the shaft axis in the direction 516 is referred to as the roll of the working end 502 .
- An end effector is supported on an end effector support base 518 which is pivotally mounted on an opposed end of the wrist member 504 to rotate around its axis in the direction 520 as shown in FIG. 9 .
- the axis of the base 518 coincides with the axis of the wrist member 504 .
- the rotation in the direction 520 is referred to the distal roll of the end effector 514 .
- This distal roll of the end effector 514 in the direction 520 is differentiated from the proximal roll of the working end 502 in the direction 516 .
- the distal roll 520 of the end effector 514 overlaps with the proximal roll 516 of the working end 502 . Because the rotation of the wrist member 504 around the pivotal connection 510 provides pitch 512 of the end effector 514 , the distal roll 520 generally will not coincide with the proximal roll 516 .
- the wrist mechanism 500 as illustrated in FIGS. 9-11 is referred to as a roll-pitch-roll mechanism.
- the end effector 514 is in the form of forceps or graspers for grasping tissue or the like during a surgical procedure. Accordingly, the end effector 514 has two parts 522 . 1 , 522 . 2 together defining a jaw-like arrangement.
- the two parts 522 . 1 , 522 . 2 are pivotally mounted in a clevis 524 on the base 518 , by means of a pivotal connection 526 .
- Free ends 528 . 1 , 528 . 2 of the parts 522 . 1 , 522 . 2 are angularly displaceable about the pivotal connection 526 toward and away from each other as indicated by arrows 530 , 532 in FIG. 10 .
- each part 522 . 1 , 522 . 2 is angularly displaceable about the pivotal connection 526 independently of the other, so that the end effector 514 is, as a whole, angularly displaceable about the pivotal connection 526 in the direction 534 , as shown in FIG. 10 .
- This rotation around the pivotal connection 526 is referred to the yaw of the end effector 514 .
- the wrist mechanism 500 as illustrated in FIGS. 9-11 may be referred to as a roll-pitch-roll-yaw mechanism.
- the parts 522 . 1 , 522 . 2 each include an elongate finger portion or end effector element 536 and an end effector mounting formation in the form of, e.g., a pulley portion 538 .
- the finger portion 536 may be integrally formed with the pulley portion 538 .
- the pulley portion 538 defines a circumferentially extending channel for receiving an activation cable in a manner similar to the pulley portion 58 . 5 in the end effector 58 of FIGS. 5-7 .
- Two elongate members such as cables C 1 , C 2 are used to effect movement of the parts 522 . 1 , 522 . 2 in yaw 534 and grip 530 , 532 .
- the cables C 1 , C 2 pass from the wrist mechanism 500 internally through the shaft toward the housing 53 ( FIG. 3 ). For simplicity, details of the pulley portion 538 in the end effector 514 of FIGS. 9-11 are omitted.
- the configuration and operation of the parts 522 . 1 , 522 . 2 are similar to those of the parts 58 . 1 , 58 . 2 in FIGS. 5-7 .
- the end effector 514 does not include the additional degree of freedom in yaw 534 but is still configured to perform the grip function.
- the parts 522 . 1 , 522 . 2 perform gripping and does not move as a whole in yaw.
- one part 522 . 1 may be substantially fixed with respect to the support base 518 , while the other part 522 . 2 is rotatable relative to the pivotal connection 526 to move away from and toward the fixed part 522 . 1 in grip 530 , 532 .
- only one cable C 2 is needed to manipulate the part 522 . 2 to effect the grip movement thereof (C 1 is no longer needed).
- This alternate roll-pitch-roll mechanism with grip capability is simpler in structure and operation than the roll-pitch-roll-yaw mechanism with grip.
- the pair of working end extensions 506 are flanked by two pulleys 540 , 542 which are coaxially positioned on the pivotal connection 510 and in the clevis 508 at the proximal end of the wrist member 504 .
- a tangent pulley 544 which is associated with the pulley 540 is attached to the bottom of the end effector support base 518 .
- Another tangent pulley 546 which is associated with the pulley 542 is also attached to the bottom of the base 518 .
- the tangent pulleys 544 , 546 in the specific embodiment shown are generally perpendicular to the pair of pulleys 540 , 542 , and move together with the base 518 .
- each tangent pulley 544 or 546 is in close proximity to the circumference of its associated pulley 540 or 542 .
- the tangent pulleys are integrally formed with the bottom of the base 518 .
- Two elongate elements such as cables C 3 , C 4 are used to effect movement of the end effector 514 and support base 518 in distal roll 520 .
- two cables C 3 , C 4 are anchored on the tangent pulleys 544 , 546 , respectively, to effect distal roll 520 of the base 518 attached to the tangent pulleys 544 , 546 .
- Cable C 3 wraps around a portion of the tangent pulley 544 , rides over the pulley 540 and extends through the shaft 14 .
- cables C 3 , C 4 are connected in the housing 53 and form a single cable.
- the single cable substantially does not change in length during distal roll 520 so that no tensioning spring or similar member is needed.
- Another pulley 550 is disposed adjacent the pulley 540 and is coaxially positioned with the pulleys 540 , 542 on the pivotal connection 510 and in the clevis 508 at the proximal end of the wrist member 504 .
- An elongate element such as cable C 5 is used to effect movement of the wrist member 504 in pitch 512 .
- cable C 5 is anchored on the pulley 550 , rides over the pulley 540 , and extends through the shaft 14 . 1 to the housing 53 ( FIG. 3 ).
- another pulley is coaxially positioned adjacent the pulley 542 opposite from the pulley 550 on the other side of the pair of working end extensions 506 , and the opposite end of cable C 5 is anchored on that pulley.
- cable C 5 substantially does not change in length during pitch 512 of the wrist member 504 so that no tensioning spring or similar member is needed.
- FIG. 12 shows the position of the end effector 514 after rotation in pitch 512 of the wrist member 504 around the pivotal connection 510 by about 90°.
- this position there is no overlap among the proximal roll 516 , pitch 512 , and distal roll 520 , which are oriented around axes that are generally perpendicular to each other, making the wrist mechanism 500 more suitable to operate in the 90° pitch position than the wrist mechanism 50 of FIGS. 5-8 .
- the two parts 522 . 1 , 522 . 2 of the end effector 514 are movable in yaw 524 and in grip 530 , 532 in the specific embodiment shown. In the forward position of the end effector 514 as shown in FIGS.
- the distal roll 520 coincides with the proximal roll 516 , which presents a singularity.
- the addition of the yaw 524 of the end effector 514 in conjunction with the distal roll 520 in a preferred embodiment essentially eliminates the singularity by providing roll 516 , pitch 512 , and yaw 534 oriented around axes that are nonparallel and may be generally perpendicular to each other.
- FIGS. 13-17 show a roll-pitch-roll wrist-like mechanism 560 including a bend back feature in the pitch direction to increase the versatility of the mechanism 560 .
- the working end of the tool shaft is indicated at 562 .
- the end 562 is rotatable with the tool shaft around the shaft axis in the proximal roll 563 .
- the wrist-like mechanism 560 includes a rigid wrist member 564 .
- the working end 562 forms a working end clevis 566
- one end portion of the wrist member 564 forms a wrist member clevis 568 facing the clevis 566 .
- the working end 562 includes a central extension 570 .
- a first pair of pitch or knee pulleys 572 , 574 Disposed in the working end clevis 566 are a first pair of pitch or knee pulleys 572 , 574 on opposite sides of the central extension 570 .
- the pulleys 572 , 574 are coaxially positioned on a pivotal connection 575 .
- a central extension 576 is located in the wrist member clevis 568 .
- a second pair of pitch or knee pulleys 578 , 580 on opposite sides of the central extension 576 .
- the pulleys 578 , 580 are coaxially positioned on a pivotal connection 581 .
- the second pair of pitch pulleys 578 , 580 in the wrist member clevis 568 are coplanar with the first pair of pitch pulleys 572 , 574 in the working end clevis 566 , respectively.
- a first pair of distal roll pulleys 584 , 586 are disposed in the working end clevis 566 on opposite sides of the central extension 570 .
- the pulleys 584 , 586 are coaxially positioned on the pivotal connection 575 .
- a second pair of distal roll pulleys 588 , 590 are disposed in the wrist member clevis 568 on opposite sides of the central extension 576 .
- the pulleys 588 , 590 are coaxially positioned on the pivotal connection 581 .
- the second pair of distal roll pulleys 588 , 590 in the wrist member clevis 568 are coplanar with the first pair of distal roll pulleys 584 , 586 in the working end clevis 566 , respectively.
- a pair of bend back pulley arms or lining arms 592 , 594 extend between the working end clevis 566 and the wrist member clevis 568 , and are disposed on opposite sides of the central extensions 570 , 576 .
- Each pulley arm 592 , 594 has an end coaxially positioned on the pivotal connection 575 of the working end 562 and another end coaxially positioned on the pivotal connection 581 of the wrist member 564 .
- Rotation of the bend back pulley arms 592 , 594 relative to the working end 562 around the pivotal connection 575 in the direction 596 provides proximal pitch
- rotation of the wrist member 564 relative to the bend back pulley arms 592 , 594 around the pivotal connection 581 in the direction 598 provides distal pitch.
- the proximal pitch 596 and distal pitch 598 allow the wrist member 564 to be bent back in pitch by more than 90° as discussed in more detail below.
- the central extension 576 in the wrist member clevis 568 is connected to a support base 602 for an end effector, generally indicated by reference numeral 600 .
- the central extension 576 may be integrally formed with the base 602 .
- the support base 602 is pivotally mounted on an opposed end of the wrist member 564 to rotate around its axis in the direction 604 , as shown in FIG. 13 .
- the axis of the base 602 coincides with the wrist axis of the wrist member 564 .
- the rotation in the direction 604 is referred to the distal roll of the end effector 600 . This distal roll of the end effector 600 in the direction 604 is differentiated from the proximal roll of the working end 562 in the direction 563 .
- the distal roll 604 of the end effector 600 coincides with the proximal roll 563 of the working end 562 . Because the rotation of the wrist member 564 around the pivotal connections 575 , 581 provides compound pitch 596 , 598 of the end effector 600 , the distal roll 604 generally will not coincide with the proximal roll 563 .
- the wrist mechanism 560 as illustrated in FIGS. 13-17 is referred to as a bend back roll-pitch-roll mechanism.
- the end effector 600 is in the form of forceps or graspers for grasping tissue or the like during a surgical procedure. Accordingly, the end effector 600 has two parts 608 . 1 , 608 . 2 together defining a jaw-like arrangement.
- the two parts 608 . 1 , 608 . 2 are pivotally mounted in a clevis 610 on the base 602 , by means of a pivotal connection 612 .
- free ends 614 . 1 , 614 . 2 of the parts 608 . 1 , 608 . 2 may be angularly displaceable about the pivotal connection 612 toward and away from each other in some embodiments, the specific embodiment shown in FIGS. 13-17 permits rotation of only the part 608 .
- the other part 608 . 1 is fixed relative to the base 602 .
- the movable part 608 . 2 is movable toward and away from the fixed part 608 . 1 as indicated by arrows 616 , 618 in FIG. 16 . This movement is referred to as the grip of the end effector 600 .
- the movable part 608 . 2 includes a mounting formation in the form of, e.g., a pulley portion 620 .
- the pulley portion 620 defines a circumferentially extending channel for receiving an elongate member such as an activation cable C 1 which is anchored to the pulley portion 620 , as best seen in FIGS. 13 and 14 .
- the cable C 1 pass through the central extensions 576 , 570 and the shaft toward the housing 53 ( FIG. 3 ).
- the cable C 1 forms a continuous loop between the pulley portion 620 and the housing 53 and does not change in length during grip 616 , 618 of the end effector 600 , so that no tensioning spring is needed.
- Two elongate elements such as cables C 3 , C 4 are used to effect movement of the end effector 600 and support base 602 in distal roll 604 .
- two cables C 3 , C 4 are anchored on the tangent surface 624 of the central extension 576 of the base 602 to effect distal roll 604 of the base 602 ( FIG. 13 ).
- Cable C 3 wraps around a portion of the tangent surface 624
- cable C 4 wraps around another portion of the tangent surface 624 .
- Cable C 3 rides over the roll pulleys 588 , 584 and extends through the shaft 14 .
- cables C 3 , C 4 are connected in the housing 53 and form a single cable.
- the single cable substantially does not change in length during distal roll 604 so that no tensioning spring or similar member is needed.
- cables C 3 , C 4 are not shown in FIGS. 13 and 15-17 .
- the tangent surface 624 may include a pair of circumferential channels for receiving the cables C 3 , C 4 such as those for the tangent pulleys 544 , 546 shown in FIG. 11 for the wrist mechanism 500 .
- two cables C 5 , C 6 are provided for activating roll 596 , 598 of the wrist member 564 .
- Cable C 5 is anchored on the pulley 578 , rides over the pulleys 578 , 572 , and extends through the shaft 14 . 1 to the housing 53 ( FIG. 3 ).
- Cable C 6 is anchored on the pulley 580 , rides over the pulleys 580 , 574 , and extends through the shaft 14 . 1 to the housing 53 .
- the two cables C 5 , C 6 are connected to form a single cable that substantially does not change in length during pitch 596 , 598 of the wrist member 564 so that no tensioning spring is needed.
- FIG. 17 illustrates the bend back feature of the wrist mechanism 560 .
- the compound pitch 596 , 598 around pivotal connections 575 , 581 allows the wrist member 564 and end effector 600 to bend back by an angle ⁇ of more than about 90° from the forward position of FIGS. 13-16 , desirably by more than about 120°, and more desirably by more than about 135°.
- the angle between the shaft axis and the wrist axis is about 180° when the end effector 600 is in the forward position, and is less than 90° in the bent back position, and may be down to less than about 60° or less than about 45°.
- the ability to bend back the end effector 600 renders the wrist mechanism 560 more versatile and adaptable to accessing hard to reach locations, particularly with small entry points such as those involving spinal, neural, or rectal surgical sites.
- the use of the linking arms 592 , 594 provides this capability while maintaining the size of the tool 560 to a sufficiently small size for minimally invasive surgical applications.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Robotics (AREA)
- Surgical Instruments (AREA)
- Manipulator (AREA)
Abstract
A robotic surgical tool includes an elongate shaft having a working end and a shaft axis, and a pair of linking arms each having a proximal end and a distal end. The proximal end is pivotally mounted on the working end of the shaft to rotate around a first pitch axis to produce rotation in first pitch. A wrist member has a proximal portion pivotally connected to the distal end of the linking arm to rotate around a second pitch axis to produce rotation in second pitch. An end effector is pivotally mounted on a distal portion of the wrist member to rotate around a wrist axis of the wrist member to produce rotation in distal roll. The wrist axis extends between the proximal portion and the distal portion of the wrist member. The elongate shaft is rotatable around the shaft axis to produce rotation in proximal roll. At about 90° pitch, the wrist axis is generally perpendicular to the shaft axis. The proximal roll around the shaft axis and the distal roll around the wrist axis do not overlap. The use of the linking arms allows the end effector to be bent back beyond 90° pitch. The ability to operate the end effector at about 90° pitch and to bend back the end effector renders the wrist mechanism more versatile and adaptable to accessing hard to reach locations, particularly with small entry points such as those involving spinal, neural, or rectal surgical sites.
Description
- This application is a continuation of U.S. patent application Ser. No. 14/874,614, filed Oct. 5, 2015; which is a continuation of U.S. patent application Ser. No. 13/967,656, filed Aug. 15, 2013, now U.S. Pat. No. 9,173,643; which is a continuation of U.S. patent application Ser. No. 13/039,431, filed Mar. 3, 2011, now U.S. Pat. No. 8,528,440; which is a division of U.S. patent application Ser. No. 11/968,813, filed Jan. 3, 2008, now U.S. Pat. No. 7,914,522; which is a division of U.S. patent application Ser. No. 11/101,375, filed Apr. 6, 2005; now U.S. Pat. No. 7,398,707; which is a continuation of U.S. patent application Ser. No. 10/752,934, filed Jan. 6, 2004, now U.S. Pat. No. 6,902,560; which is a division of U.S. patent application Ser. No. 10/340,129 filed Jan. 10, 2003, now U.S. Pat. No. 6,685,698; which is a division of Ser. No. 09/626,527, filed Jul. 27, 2000, now U.S. Pat. No. 6,746,443; the full disclosure of which is hereby incorporated by reference for all purposes.
- This application is related to the following patents and patent applications, the full disclosures of which are incorporated herein by reference: PCT International Application No. PCT/US98/19508, entitled “Robotic Apparatus”, filed on Sep. 18, 1998, U.S. application Ser. No. 09/418,726, entitled “Surgical Robotic Tools, Data Architecture, and Use”, filed on Oct. 15, 1999; U.S. Application Ser. No. 60/111,711, entitled “Image Shifting for a Telerobotic System”, filed on Dec. 8, 1998; U.S. application Ser. No. 09/378,173, entitled “Stereo Imaging System for Use in Telerobotic System”, filed on Aug. 20, 1999; U.S. application Ser. No. 09/398,507, entitled “Master Having Redundant Degrees of Freedom”, filed on Sep. 17, 1999, U.S. application Ser. No. 09/399,457, entitled “Cooperative Minimally Invasive Telesurgery System”, filed on Sep. 17, 1999; U.S. application Ser. No. 09/373,678, entitled “Camera Referenced Control in a Minimally Invasive Surgical Apparatus”, filed on Aug. 13, 1999; U.S. Provisional application Ser. No. 09/398,958, entitled “Surgical Tools for Use in Minimally Invasive Telesurgical Applications”, filed on Sep. 17, 1999; and U.S. Pat. No. 5,808,665, entitled “Endoscopic Surgical Instrument and Method for Use”, issued on Sep. 15, 1998.
- Advances in minimally invasive surgical technology could dramatically increase the number of surgeries performed in a minimally invasive manner. Minimally invasive medical techniques are aimed at reducing the amount of extraneous tissue that is damaged during diagnostic or surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects. The average length of a hospital stay for a standard surgery may also be shortened significantly using minimally invasive surgical techniques. Thus, an increased adoption of minimally invasive techniques could save millions of hospital days, and millions of dollars annually in hospital residency costs alone. Patient recovery times, patient discomfort, surgical side effects, and time away from work may also be reduced with minimally invasive surgery.
- The most common form of minimally invasive surgery may be endoscopy. Probably the most common form of endoscopy is laparoscopy, which is minimally invasive inspection and surgery inside the abdominal cavity. In standard laparoscopic surgery, a patient's abdomen is insufflated with gas, and cannula sleeves are passed through small (approximately ½ inch) incisions to provide entry ports for laparoscopic surgical instruments. The laparoscopic surgical instruments generally include a laparoscope (for viewing the surgical field) and working tools. The working tools are similar to those used in conventional (open) surgery, except that the working end or end effector of each tool is separated from its handle by an extension tube. As used herein, the term “end effector” means the actual working part of the surgical instrument and can include clamps, graspers, scissors, staplers, and needle holders, for example. To perform surgical procedures, the surgeon passes these working tools or instruments through the cannula sleeves to an internal surgical site and manipulates them from outside the abdomen. The surgeon monitors the procedure by means of a monitor that displays an image of the surgical site taken from the laparoscope. Similar endoscopic techniques are employed in, e.g., arthroscopy, retroperitoneoscopy, pelviscopy, nephroscopy, cystoscopy, cisternoscopy, sinoscopy, hysteroscopy, urethroscopy and the like.
- There are many disadvantages relating to current minimally invasive surgical (MIS) technology. For example, existing MIS instruments deny the surgeon the flexibility of tool placement found in open surgery. Most current laparoscopic tools have rigid shafts, so that it can be difficult to approach the worksite through the small incision. Additionally, the length and construction of many endoscopic instruments reduces the surgeon's ability to feel forces exerted by tissues and organs on the end effector of the associated tool. The lack of dexterity and sensitivity of endoscopic tools is a major impediment to the expansion of minimally invasive surgery.
- Minimally invasive telesurgical robotic systems are being developed to increase a surgeon's dexterity when working within an internal surgical site, as well as to allow a surgeon to operate on a patient from a remote location. In a telesurgery system, the surgeon is often provided with an image of the surgical site at a computer workstation. While viewing a three-dimensional image of the surgical site on a suitable viewer or display, the surgeon performs the surgical procedures on the patient by manipulating master input or control devices of the workstation. The master controls the motion of a servomechanically operated surgical instrument. During the surgical procedure, the telesurgical system can provide mechanical actuation and control of a variety of surgical instruments or tools having end effectors such as, e.g., tissue graspers, needle drivers, or the like, that perform various functions for the surgeon, e.g., holding or driving a needle, grasping a blood vessel, or dissecting tissue, or the like, in response to manipulation of the master control devices.
- Some surgical tools employ a roll-pitch-yaw mechanism for providing three degrees of rotational movement to an end effector around three perpendicular axes. At about 90° pitch, the yaw and roll rotational movements overlap, resulting in the loss of one degree of rotational movement.
- The present invention is generally directed to robotic surgery methods, devices, and systems. The invention provides a minimally invasive surgical tool which operates with three degrees of rotational movement at about 90° pitch. In particular, the surgical tool employs a roll-pitch-roll configuration in which an elongate shaft is rotatable in proximal roll, a wrist member is pivotally mounted on the working end of the elongate shaft to rotate in pitch, and an end effector is pivotally mounted on the wrist member to rotate in distal roll around the wrist axis of the wrist member. At about 90° pitch, the wrist axis is generally perpendicular to the shaft axis of the elongate shaft. The proximal roll around the shaft axis and the distal roll around the wrist axis do not overlap. In some embodiments, a pulley and cable mechanism is used to rotate and actuate the end effector.
- In some embodiments, the end effector can be bent back beyond 90° pitch. The mechanism coupling the end effector to the working end of the elongate shaft allows the wrist member and end effector to bend back by an angle θ of more than about 90 from the forward position, desirably by more than about 120°, and more desirably by more than about 135°. The ability to operate the end effector at about 90 pitch and to bend back the end effector renders the wrist mechanism more versatile and adaptable to accessing hard to reach locations, particularly with small entry points such as those involving spinal, neural, or rectal surgical sites. In specific embodiments, a pair of linking arms are pivotally connected between the working end and the wrist member to facilitate bend back pitching while maintaining the size of the tool to a sufficiently small size for minimally invasive surgical applications.
- In accordance to an aspect of the present invention, a minimally invasive surgical instrument comprises an elongate shaft having a working end and a shaft axis, and at least one linking arm having a proximal end and a distal end. The proximal end is pivotally mounted on the working end of the shaft to rotate around a first pitch axis which is nonparallel to the shaft axis. A wrist member has a proximal portion pivotally connected to the distal end of the linking arm to rotate around a second pitch axis which is nonparallel to the shaft axis. An end effector is pivotally mounted on a distal portion of the wrist member to rotate around a wrist axis of the wrist member. The wrist axis extends between the proximal portion and the distal portion of the wrist member. The elongate shaft is rotatable around the shaft axis.
- In some embodiments, the first pitch axis and the second pitch axis are parallel, and are perpendicular to the shaft axis. A pair of linking arms are connected between the working end and the wrist member. The end effector includes an end effector support pivotally mounted on the distal portion of the wrist member to rotate around the wrist axis. The end effector includes at least one end effector link pivotally mounted on the end effector support to rotate around a pivot axis which is nonparallel to the wrist axis. The pivot axis may be perpendicular to the wrist axis. The end effector may include a pair of end effector links. The end effector links may be rotatable around the pivot axis to move toward and away from one another. The end effector links may be rotatable around the pivot axis to move together in the same direction. One of the end effector links may be fixed relative to the end effector support.
- In accordance with another aspect of the invention, a minimally invasive surgical instrument comprises an elongate shaft having a working end and a proximal end. The elongate shaft has a shaft axis between the proximal end and the working end. A wrist member includes a wrist axis between a proximal portion and a distal portion. An end effector is pivotally mounted on the distal portion of the wrist member to rotate around the wrist axis. At least one linking member is rotatably coupled between the working end and the wrist member to permit rotation of the wrist member relative to the working end, from a forward position in which the wrist axis is oriented with the end effector at the distal portion pointing generally away from the proximal end of the elongate shaft, to a backward position in which the wrist axis is oriented with the end effector at the distal portion pointing generally toward the proximal end of the elongate shaft.
- In accordance with another aspect of the present invention, a method of performing minimally invasive surgery in a body cavity of a patient comprises introducing an elongate shaft having a working end into the cavity. The elongate shaft has a proximal end and a shaft axis between the working end and the proximal end. A wrist member which is pivotally coupled with the working end is rotated relative to the working end. The wrist member having a wrist axis. The method further comprises rotating at least one of the elongate shaft around the shaft axis and an end effector pivotally mounted on the wrist member around the wrist axis to position the end effector at a desired location inside the cavity.
- In some embodiments, the wrist member is rotated around a pitch axis which is perpendicular to at least one of the shaft axis and the wrist axis to change an angle between the wrist axis and the shaft axis. The wrist member is rotated relative to the working end until the wrist axis is approximately perpendicular to the shaft axis. The wrist member may be rotated relative to the working end from a forward position in which the wrist axis is oriented with the end effector pointing generally away from the proximal end of the elongate shaft, to a backward position in which the wrist axis is oriented with the end effector pointing generally toward the proximal end of the elongate shaft.
-
FIG. 1 is a side view of a robotic arm and surgical instrument assembly according to a preferred embodiment of the invention; -
FIG. 2 is a perspective view of the robotic arm and surgical instrument assembly ofFIG. 1 ; -
FIG. 3 is a perspective view of a surgical instrument according to a preferred embodiment of the invention; -
FIG. 4 is a schematic kinematic diagram corresponding to the side view of the robotic arm shown inFIG. 1 , and indicates the arm having been displaced from one position into another position; -
FIG. 5 is a perspective view of a roll-pitch-yaw wrist mechanism; -
FIG. 6 is a front view of the wrist mechanism ofFIG. 5 along arrow VI; -
FIG. 7 is a side view of the wrist mechanism ofFIG. 5 along arrow VII; -
FIG. 8 is a perspective view of the wrist mechanism ofFIG. 5 schematically illustrating the singularity at the 90° pitch position; -
FIG. 9 is a perspective view of a roll-pitch-roll wrist mechanism according to a preferred embodiment of the present invention; -
FIG. 10 is a front view of the wrist mechanism ofFIG. 9 along arrow X; -
FIG. 11 is a side view of the wrist mechanism ofFIG. 9 along arrow XI; -
FIG. 12 is a perspective view of the wrist mechanism ofFIG. 9 at the 90° pitch position; -
FIG. 13 is a perspective view of a roll-pitch-roll wrist mechanism according to another preferred embodiment of the present invention; -
FIG. 14 is a sectional view of the wrist mechanism ofFIG. 13 along XIV-XIV; -
FIG. 15 is another perspective view of the wrist mechanism ofFIG. 13 ; -
FIG. 16 is another perspective view of the wrist mechanism ofFIG. 13 ; and -
FIG. 17 is a perspective view of the wrist mechanism ofFIG. 13 schematically illustrating the bend back feature of the end effector. -
FIGS. 1 and 2 illustrate a robotic arm andsurgical instrument assembly 10. Theassembly 10 includes arobotic arm 12 and asurgical instrument 14.FIG. 3 indicates the general appearance of thesurgical instrument 14. - The
surgical instrument 14 includes an elongate shaft 14.1. A wrist-like mechanism 50 is located at a working end of the shaft 14.1. Ahousing 53 arranged releasably to couple theinstrument 14 to therobotic arm 12 is located at an opposed end of the shaft 14.1. InFIG. 1 , and when theinstrument 14 is coupled or mounted on therobotic arm 12, the shaft 14.1 extends along an axis indicated at 14.2. Theinstrument 14 is typically releasably mounted on acarriage 11 which is driven to translate along alinear guide formation 24 in the direction of arrows P. Thesurgical instrument 14 is described in greater detail herein below. - The
robotic arm 12 is typically mounted on a base (not shown) by a bracket or mountingplate 16. The base is typically in the form of a mobile cart or trolley (not shown) which is retained in a stationary position during a surgical procedure. - The
robotic arm 12 includes acradle 18, anupper arm portion 20, aforearm portion 22, and theguide formation 24. Thecradle 18 is pivotally mounted on theplate 16 in a gimbaled fashion to permit rocking movement of the cradle in the direction ofarrows 26 about apivot axis 28, as shown inFIG. 2 . Theupper arm portion 20 includeslink members forearm portion 22 includeslink members link members cradle 18 and are pivotally connected to thelink members link members guide formation 24. The pivotal connections between thelink members cradle 18, and theguide formation 24 are arranged to enable the robotic arm to move in a specific manner. - The movements of the
robotic arm 12 is illustrated schematically inFIG. 4 . The solid lines schematically indicate one position of the robotic arm and the dashed lines indicate another possible position into which the arm can be displaced from the position indicated in solid lines. - It will be understood that in a preferred embodiment, the axis 14.2 along which the shaft 14.1 of the
instrument 14 extends when mounted on therobotic arm 12 pivots about a pivot center orfulcrum 49. Thus, irrespective of the movement of therobotic arm 12, thepivot center 49 normally remains in substantially the same position relative to the stationary cart 300 on which thearm 12 is mounted. In use, thepivot center 49 is typically positioned at a port of entry into a patient's body during an endoscopic procedure when an internal surgical procedure is to be performed. It will be appreciated that the shaft 14.1 extends through such a port of entry, the wrist-like mechanism 50 then being positioned inside the patient's body. Thus, the general position of themechanism 50 relative to the surgical site in a patient's body can be changed by movement of thearm 12. Since thepivot center 49 is coincident with the port of entry, such movement of the arm does not excessively effect the surrounding tissue at the port of entry. It is to be appreciated that the field of application of the invention is not limited to surgical procedures at internal surgical sites only, but can be used on open surgical sites as well. - As can best be seen in
FIG. 4 , therobotic arm 12 provides three degrees of freedom of movement to thesurgical instrument 14 when mounted thereon. These degrees of freedom of movement are firstly the gimbaled motion indicated byarrows 26, pivoting or pitching movement as indicated byarrows 27, and the linear displacement in the direction of arrows P. Movement of the arm as indicated byarrows arm 12 to a desired position as dictated by movement of the master control. - Roll-Pitch-Yaw Mechanism
-
FIGS. 5, 6 and 7 show a roll-pitch-yaw wrist-like mechanism 50. InFIG. 5 , the working end of the shaft 14.1 is indicated at 14.3. The wrist-like mechanism 50 includes arigid wrist member 52. One end portion of thewrist member 52 is pivotally mounted in aclevis 17 on the end 14.3 of the shaft 14.1 by means of apivotal connection 54. As best seen inFIG. 7 , thewrist member 52 can pitch in the direction ofarrows 56 about thepivotal connection 54. This rotation around thepivotal connection 54 in thedirection 56 is referred to as the pivot or pitch of thewrist member 52. The end 14.3 is rotatable with the shaft 14.1 around the axis 14.2 in the direction H, as shown inFIGS. 3 and 5 . This rotation around the axis 14.2 in the direction H is referred to as the roll of the working end 14.3. - An end effector, generally indicated by
reference numeral 58, is pivotally mounted on an opposed end of thewrist member 52. Theend effector 58 is in the form of forceps or graspers for grasping tissue or the like during a surgical procedure. Accordingly, theend effector 58 has two parts 58.1, 58.2 together defining a jaw-like arrangement. Theend effector 58 is pivotally mounted in aclevis 19 on an opposed end of thewrist member 52, by means of apivotal connection 60. Free ends 11, 13 of the parts 58.1, 58.2 are angularly displaceable about thepivotal connection 60 toward and away from each other as indicated byarrows FIG. 6 . This movement of the parts 58.1, 58.2 is referred to as the grip of theend effector 58. The members 58.1, 58.2 can be displaced angularly about thepivotal connection 60 to change the orientation of theend effector 58 as a whole, relative to thewrist member 52. Thus, each part 58.1, 58.2 is angularly displaceable about thepivotal connection 60 independently of the other, so that theend effector 58 is, as a whole, angularly displaceable about thepivotal connection 60 in thedirection 61, as indicated in dashed lines inFIG. 6 . This rotation around thepivotal connection 60 in thedirection 61 is referred to the yaw of theend effector 58. Thewrist mechanism 50 as illustrated inFIGS. 5-7 is referred to as a roll-pitch-yaw mechanism having roll in the direction H, pitch in thedirection 56, and yaw in thedirection 61. - The parts 58.1, 58.2 each include an elongate finger portion or end effector element 58.3 and an end effector mounting formation in the form of, e.g., a pulley portion 58.5. In a preferred embodiment, the finger portion 58.3 is integrally formed with the pulley portion 58.5. The pulley portion 58.5 defines a circumferentially extending channel 58.6 in which an elongate element in the form of, e.g., an activation cable, is carried. A generally circumferentially directed hole 58.8 extends through a nape region of the finger portion 58.3 and generally in register with the circumferentially extending channel 58.6. The hole 58.8 has a first portion 58.9 and a second portion 58.10 having a diameter greater than the first portion 58.9. In use, the activation cable has a thickened portion along its length which seats in the hole portion 58.10, the rest of the activation cable then extending along the channel 58.6 in opposed directions. The thickened portion is crimped in its seated position in the hole portion 58.10 so as to anchor the cable in the hole 58.8. It will be appreciated that a greater force is necessary to clamp the free ends together when gripping an object therebetween, than that which is required to open the free ends 11, 13. Thus, the thickened portion of the cable is urged against an annular stepped surface between the hole portion 58.9 and the hole portion 58.10, when the free ends 11, 13 are urged into a closed condition.
- As best seen in
FIG. 6 , thewrist member 52 is flanked by two sets ofpulleys 64, 66 which are coaxially positioned on thepivotal connection 54 and in theclevis 17 at the end 14.3 of the shaft 14.1. Two further sets ofpulleys wrist member 52. Each pulley of the set ofpulleys 68 on the one side of thewrist member 52 is generally co-planar with an associated pulley of the pulley set 66. Furthermore, each of thepulleys 68 is positioned such that its circumference is in close proximity to the circumference of its associated pulley of the pulley set 66. A similar arrangement exists for each pulley of the pulley set 70 on the other side of the wrist member and its associated pulley of the pulley set 64. Thus, the circumferentially extending channel formation of each pulley of the pulley sets 68, 70 and their associated pulleys of the pulley sets 64, 66 define between each of them aspace 72 through which an activation cable can snugly pass. - A plurality of elongate elements, e.g., cables, are used to effect movement of the
wrist mechanism 50 andend effector 58. As seen inFIG. 7 , two cables C1, C2 are anchored on the parts 58.1, 58.2, respectively, to effect movement of the parts 58.1, 58.2 independently indirections FIG. 6 ). - Cable C1 rides over an outer pulley of the pulley set 64, an outer pulley of the pulley set 70, over part of circumferential channel 58.6 of the pulley portion 58.5 of the part 58.2 of the
end effector 58, through the hole 58.8, again along part of the circumferential channel 58.6 of the pulley portion 58.5, over an outer pulley of the pulley set 68 and over an outer pulley of the pulley set 66. Similarly, cable C2 rides over an inner pulley of the pulley set 64, over an inner pulley of the pulley set 70, along the circumferential channel 58.6 of the part 58.1 of theend effector 58, through the hole 58.8 of the part 58.1, again along the circumferential channel 58.6 of the pulley portion 58.5, over an inner pulley of the pulley set 68 and over an inner pulley of the pulley set 66. The cables C1, C2 pass from thewrist mechanism 50 through appropriately positionedholes 47 in the base region of the clevis 17 (FIG. 5 ), and internally along the shaft, toward the housing 53 (FIG. 3 ). Thehousing 53 includes driving members, e.g., in the form of spool assemblies for manipulating the cables. Additional details of the spool assemblies and the grip mechanism for manipulating the finger portions 58.1, 58.2 to achieve gripping as well as description of various surgical tools can be found in U.S. application Ser. No. 09/398,958, entitled “Surgical Tools for Use in Minimally Invasive Telesurgical Applications”, filed on Sep. 17, 1999. - When the
end effector 58 is oriented forward, the roll, pitch, and yaw provide rotational movements relative to three generally perpendicular axes.FIG. 8 shows the position of theend effector 58 after rotation in pitch in thedirection 56 of thewrist member 52 around thepivotal connection 54 by about 90°. In this position, the yaw in thedirection 61 around thepivotal connection 60 overlaps with the roll H of the working end 14.3. The overlap or redundancy results in the loss of one degree of freedom of movement of theend effector 58 at or near this position of singularity. In some applications, theend effector 58 may be used primarily at this position of about 90° pitch. It is desirable to provide a wrist mechanism that does not operate at a singularity in this position. - Roll-Pitch-Roll Mechanism
-
FIGS. 9-11 show a roll-pitch-roll wrist-like mechanism 500. InFIG. 9 , the working end of the tool shaft is indicated at 502, and includes a pair ofextensions 506. The wrist-like mechanism 500 includes arigid wrist member 504. One end portion of thewrist member 504 forms aclevis 508 in which theextensions 506 of the workingend 502 of the tool shaft is pivotally mounted by means of apivotal connection 510. As best seen inFIG. 10 , thewrist member 504 can pitch in the direction ofarrows 512 about thepivotal connection 510. This rotation around thepivotal connection 510 in thedirection 512 is referred to as the pivot or pitch of thewrist member 504. Theend 502 is rotatable with the tool shaft around the shaft axis in thedirection 516. This rotation around the shaft axis in thedirection 516 is referred to as the roll of the workingend 502. - An end effector, generally indicated by
reference numeral 514, is supported on an endeffector support base 518 which is pivotally mounted on an opposed end of thewrist member 504 to rotate around its axis in thedirection 520 as shown inFIG. 9 . In the embodiment shown, the axis of thebase 518 coincides with the axis of thewrist member 504. The rotation in thedirection 520 is referred to the distal roll of theend effector 514. This distal roll of theend effector 514 in thedirection 520 is differentiated from the proximal roll of the workingend 502 in thedirection 516. In the position of thewrist mechanism 500 as shown inFIGS. 9-11 , thedistal roll 520 of theend effector 514 overlaps with theproximal roll 516 of the workingend 502. Because the rotation of thewrist member 504 around thepivotal connection 510 providespitch 512 of theend effector 514, thedistal roll 520 generally will not coincide with theproximal roll 516. Thewrist mechanism 500 as illustrated inFIGS. 9-11 is referred to as a roll-pitch-roll mechanism. - The
end effector 514 is in the form of forceps or graspers for grasping tissue or the like during a surgical procedure. Accordingly, theend effector 514 has two parts 522.1, 522.2 together defining a jaw-like arrangement. The two parts 522.1, 522.2 are pivotally mounted in aclevis 524 on thebase 518, by means of apivotal connection 526. Free ends 528.1, 528.2 of the parts 522.1, 522.2 are angularly displaceable about thepivotal connection 526 toward and away from each other as indicated byarrows FIG. 10 . This movement is referred to as the grip of theend effector 514. The members 522.1, 522.2 can be displaced angularly about thepivotal connection 526 to change the orientation of theend effector 514 as a whole, relative to thewrist member 504. Thus, each part 522.1, 522.2 is angularly displaceable about thepivotal connection 526 independently of the other, so that theend effector 514 is, as a whole, angularly displaceable about thepivotal connection 526 in thedirection 534, as shown inFIG. 10 . This rotation around thepivotal connection 526 is referred to the yaw of theend effector 514. In the position of thewrist mechanism 500 as shown inFIGS. 9-11 , theyaw 534 of theend effector 514 overlaps with thepitch 512 of thewrist member 504. Because the rotation of thebase 518 providesdistal roll 520 of theend effector 514, theyaw 534 generally will not coincide with thepitch 512. With the additional degree of freedom in yaw in the specific embodiment shown, thewrist mechanism 500 as illustrated inFIGS. 9-11 may be referred to as a roll-pitch-roll-yaw mechanism. - The parts 522.1, 522.2 each include an elongate finger portion or
end effector element 536 and an end effector mounting formation in the form of, e.g., apulley portion 538. Thefinger portion 536 may be integrally formed with thepulley portion 538. Thepulley portion 538 defines a circumferentially extending channel for receiving an activation cable in a manner similar to the pulley portion 58.5 in theend effector 58 ofFIGS. 5-7 . Two elongate members such as cables C1, C2 are used to effect movement of the parts 522.1, 522.2 inyaw 534 andgrip wrist mechanism 500 internally through the shaft toward the housing 53 (FIG. 3 ). For simplicity, details of thepulley portion 538 in theend effector 514 ofFIGS. 9-11 are omitted. The configuration and operation of the parts 522.1, 522.2 are similar to those of the parts 58.1, 58.2 inFIGS. 5-7 . - In an alternate embodiment, the
end effector 514 does not include the additional degree of freedom inyaw 534 but is still configured to perform the grip function. The parts 522.1, 522.2 perform gripping and does not move as a whole in yaw. For example, one part 522.1 may be substantially fixed with respect to thesupport base 518, while the other part 522.2 is rotatable relative to thepivotal connection 526 to move away from and toward the fixed part 522.1 ingrip - As best seen in
FIG. 11 , the pair of workingend extensions 506 are flanked by twopulleys pivotal connection 510 and in theclevis 508 at the proximal end of thewrist member 504. Atangent pulley 544 which is associated with thepulley 540 is attached to the bottom of the endeffector support base 518. Anothertangent pulley 546 which is associated with thepulley 542 is also attached to the bottom of thebase 518. The tangent pulleys 544, 546 in the specific embodiment shown are generally perpendicular to the pair ofpulleys base 518. The circumference of eachtangent pulley pulley base 518. - Two elongate elements such as cables C3, C4 are used to effect movement of the
end effector 514 andsupport base 518 indistal roll 520. As best seen inFIG. 11 , two cables C3, C4 are anchored on thetangent pulleys distal roll 520 of the base 518 attached to thetangent pulleys tangent pulley 544, rides over thepulley 540 and extends through the shaft 14.1 to thehousing 53, while cable C4 wraps around a portion of thetangent pulley 546, rides over thepulley 542 and extends through the shaft 14.1 to the housing 53 (FIG. 3 ). The circumference of eachtangent pulley pulley housing 53 and form a single cable. The single cable substantially does not change in length duringdistal roll 520 so that no tensioning spring or similar member is needed. - Another
pulley 550 is disposed adjacent thepulley 540 and is coaxially positioned with thepulleys pivotal connection 510 and in theclevis 508 at the proximal end of thewrist member 504. An elongate element such as cable C5 is used to effect movement of thewrist member 504 inpitch 512. As seen inFIGS. 9-11 , cable C5 is anchored on thepulley 550, rides over thepulley 540, and extends through the shaft 14.1 to the housing 53 (FIG. 3 ). In an alternate embodiment, another pulley is coaxially positioned adjacent thepulley 542 opposite from thepulley 550 on the other side of the pair of workingend extensions 506, and the opposite end of cable C5 is anchored on that pulley. In the alternate embodiment, cable C5 substantially does not change in length duringpitch 512 of thewrist member 504 so that no tensioning spring or similar member is needed. -
FIG. 12 shows the position of theend effector 514 after rotation inpitch 512 of thewrist member 504 around thepivotal connection 510 by about 90°. In this position, there is no overlap among theproximal roll 516,pitch 512, anddistal roll 520, which are oriented around axes that are generally perpendicular to each other, making thewrist mechanism 500 more suitable to operate in the 90° pitch position than thewrist mechanism 50 ofFIGS. 5-8 . In addition, the two parts 522.1, 522.2 of theend effector 514 are movable inyaw 524 and ingrip end effector 514 as shown inFIGS. 9-11 , thedistal roll 520 coincides with theproximal roll 516, which presents a singularity. The addition of theyaw 524 of theend effector 514 in conjunction with thedistal roll 520 in a preferred embodiment essentially eliminates the singularity by providingroll 516,pitch 512, andyaw 534 oriented around axes that are nonparallel and may be generally perpendicular to each other. - Bend Back Roll-Pitch-Roll Mechanism
-
FIGS. 13-17 show a roll-pitch-roll wrist-like mechanism 560 including a bend back feature in the pitch direction to increase the versatility of themechanism 560. InFIG. 13 , the working end of the tool shaft is indicated at 562. Theend 562 is rotatable with the tool shaft around the shaft axis in theproximal roll 563. The wrist-like mechanism 560 includes arigid wrist member 564. The workingend 562 forms a workingend clevis 566, and one end portion of thewrist member 564 forms a wrist member clevis 568 facing theclevis 566. The workingend 562 includes acentral extension 570. Disposed in the workingend clevis 566 are a first pair of pitch or knee pulleys 572, 574 on opposite sides of thecentral extension 570. Thepulleys pivotal connection 575. Acentral extension 576 is located in thewrist member clevis 568. Disposed in thewrist member clevis 568 are a second pair of pitch or knee pulleys 578, 580 on opposite sides of thecentral extension 576. Thepulleys pivotal connection 581. The second pair of pitch pulleys 578, 580 in thewrist member clevis 568 are coplanar with the first pair of pitch pulleys 572, 574 in the workingend clevis 566, respectively. - As best seen in
FIGS. 13 and 14 , a first pair of distal roll pulleys 584, 586 are disposed in the workingend clevis 566 on opposite sides of thecentral extension 570. Thepulleys pivotal connection 575. A second pair of distal roll pulleys 588, 590 are disposed in the wrist member clevis 568 on opposite sides of thecentral extension 576. Thepulleys pivotal connection 581. The second pair of distal roll pulleys 588, 590 in thewrist member clevis 568 are coplanar with the first pair of distal roll pulleys 584, 586 in the workingend clevis 566, respectively. - A pair of bend back pulley arms or lining
arms end clevis 566 and thewrist member clevis 568, and are disposed on opposite sides of thecentral extensions pulley arm pivotal connection 575 of the workingend 562 and another end coaxially positioned on thepivotal connection 581 of thewrist member 564. Rotation of the bend backpulley arms end 562 around thepivotal connection 575 in thedirection 596 provides proximal pitch, while rotation of thewrist member 564 relative to the bend backpulley arms pivotal connection 581 in thedirection 598 provides distal pitch. Theproximal pitch 596 anddistal pitch 598 allow thewrist member 564 to be bent back in pitch by more than 90° as discussed in more detail below. - The
central extension 576 in thewrist member clevis 568 is connected to asupport base 602 for an end effector, generally indicated byreference numeral 600. Thecentral extension 576 may be integrally formed with thebase 602. Thesupport base 602 is pivotally mounted on an opposed end of thewrist member 564 to rotate around its axis in thedirection 604, as shown inFIG. 13 . In the embodiment shown, the axis of thebase 602 coincides with the wrist axis of thewrist member 564. The rotation in thedirection 604 is referred to the distal roll of theend effector 600. This distal roll of theend effector 600 in thedirection 604 is differentiated from the proximal roll of the workingend 562 in thedirection 563. In the position of thewrist mechanism 560 as shown inFIGS. 13-16 , thedistal roll 604 of theend effector 600 coincides with theproximal roll 563 of the workingend 562. Because the rotation of thewrist member 564 around thepivotal connections compound pitch end effector 600, thedistal roll 604 generally will not coincide with theproximal roll 563. Thewrist mechanism 560 as illustrated inFIGS. 13-17 is referred to as a bend back roll-pitch-roll mechanism. - The
end effector 600 is in the form of forceps or graspers for grasping tissue or the like during a surgical procedure. Accordingly, theend effector 600 has two parts 608.1, 608.2 together defining a jaw-like arrangement. The two parts 608.1, 608.2 are pivotally mounted in aclevis 610 on thebase 602, by means of apivotal connection 612. Although free ends 614.1, 614.2 of the parts 608.1, 608.2 may be angularly displaceable about thepivotal connection 612 toward and away from each other in some embodiments, the specific embodiment shown inFIGS. 13-17 permits rotation of only the part 608.2 relative to thepivotal connection 612. The other part 608.1 is fixed relative to thebase 602. The movable part 608.2 is movable toward and away from the fixed part 608.1 as indicated byarrows FIG. 16 . This movement is referred to as the grip of theend effector 600. - The movable part 608.2 includes a mounting formation in the form of, e.g., a
pulley portion 620. Thepulley portion 620 defines a circumferentially extending channel for receiving an elongate member such as an activation cable C1 which is anchored to thepulley portion 620, as best seen inFIGS. 13 and 14 . The cable C1 pass through thecentral extensions FIG. 3 ). In a preferred embodiment, the cable C1 forms a continuous loop between thepulley portion 620 and thehousing 53 and does not change in length duringgrip end effector 600, so that no tensioning spring is needed. - Two elongate elements such as cables C3, C4 are used to effect movement of the
end effector 600 andsupport base 602 indistal roll 604. As best seen inFIG. 14 , two cables C3, C4 are anchored on thetangent surface 624 of thecentral extension 576 of the base 602 to effectdistal roll 604 of the base 602 (FIG. 13 ). Cable C3 wraps around a portion of thetangent surface 624, while cable C4 wraps around another portion of thetangent surface 624. Cable C3 rides over the roll pulleys 588, 584 and extends through the shaft 14.1 to thehousing 53, while cable C4 rides over the roll pulleys 590, 586 and extends through the shaft 14.1 to the housing 53 (FIG. 3 ). The circumference of thetangent surface 624 is in sufficiently close proximity to the circumferences of the tworoll pulleys tangent surface 624. In a preferred embodiment, cables C3, C4 are connected in thehousing 53 and form a single cable. The single cable substantially does not change in length duringdistal roll 604 so that no tensioning spring or similar member is needed. For clarity, cables C3, C4 are not shown inFIGS. 13 and 15-17 . In an alternate embodiment, thetangent surface 624 may include a pair of circumferential channels for receiving the cables C3, C4 such as those for thetangent pulleys FIG. 11 for thewrist mechanism 500. - As best seen in
FIG. 14 , two cables C5, C6 are provided for activatingroll wrist member 564. Cable C5 is anchored on thepulley 578, rides over thepulleys FIG. 3 ). Cable C6 is anchored on thepulley 580, rides over thepulleys housing 53. In a preferred embodiment, the two cables C5, C6 are connected to form a single cable that substantially does not change in length duringpitch wrist member 564 so that no tensioning spring is needed. -
FIG. 17 illustrates the bend back feature of thewrist mechanism 560. Thecompound pitch pivotal connections wrist member 564 andend effector 600 to bend back by an angle θ of more than about 90° from the forward position ofFIGS. 13-16 , desirably by more than about 120°, and more desirably by more than about 135°. Thus, the angle between the shaft axis and the wrist axis is about 180° when theend effector 600 is in the forward position, and is less than 90° in the bent back position, and may be down to less than about 60° or less than about 45°. The ability to bend back theend effector 600 renders thewrist mechanism 560 more versatile and adaptable to accessing hard to reach locations, particularly with small entry points such as those involving spinal, neural, or rectal surgical sites. The use of the linkingarms tool 560 to a sufficiently small size for minimally invasive surgical applications. - The above-described arrangements of apparatus and methods are merely illustrative of applications of the principles of this invention and many other embodiments and modifications may be made without departing from the spirit and scope of the invention as defined in the claims. For instance, the linking arms may have other configurations. Different actuation mechanisms other than activating cables may be used to manipulate the wrist member and end effector. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Claims (11)
1. An articulated surgical instrument for minimally invasive surgery comprising:
a tool shaft having a shaft axis, a proximal end, and a working end, the tool shaft rotatable around the shaft axis;
a wrist member having a proximal end and a distal end, the proximal end of the wrist member coupled to the working end of the tool shaft by a pivotal connection defining a pitch axis;
an end effector, and
a base coupled to the distal end of the wrist member, the base supporting the end effector, the base rotatable about a distal roll axis perpendicular to the pitch axis.
2. The instrument of claim 1 , the end effector further comprising first and second parts pivotally mounted on the base by a pivotal connection defining a yaw axis.
3. The instrument of claim 2 , the first and second parts each comprising a pulley portion mounted coaxially on the pivotal connection defining the yaw axis, the instrument further comprising first and second elongate elements coupled with the pulley portions of the first and second parts, respectively, the first and second elongate elements running through the wrist member through the tool shaft.
4. The instrument of claim 1 , further comprising:
first and second pulleys coaxially positioned on the pitch axis;
first and second tangent surfaces attached to the bottom of the base, the first and second tangent surfaces each rotatable about a distal roll axis perpendicular to and intersecting the pitch axis.
5. The instrument of claim 4 , further comprising:
a first elongate element engaging the first tangent surface and the first pulley, the first elongate element running through the tool shaft;
a second elongate element engaging the second tangent surface and the second pulley, the second elongate element running through the tool shaft; and
the instrument further comprising a pitch pulley coaxially positioned on the pitch axis, and a pitch elongate element engaging the pitch pulley, the pitch elongate element running through the wrist member through the tool shaft.
6. The instrument of claim 5 , the first and second elongate elements running through the tool shaft and coupled to first and second actuators, respectively, the actuators disposed adjacent the proximal end of the tool shaft.
7. The instrument of claim 1 , the first, second, and pitch elongate elements running through the tool shaft and coupled to first, second, and pitch actuators, respectively, the actuators disposed adjacent the proximal end of the tool shaft.
8. The instrument of claim 1 , the first and second tangent surfaces being portions of a single tangent pulley.
9. The instrument of claim 1 , the first tangent surface being a first tangent pulley, and the second tangent surface being a second tangent pulley.
10. The instrument of claim 1 , the proximal portion of the wrist member comprising a clevis, the working end of the tool shaft comprising an extension, the pivotal connection contacting the clevis and the extension.
11. The instrument of claim 1 , further comprising a link member coupling the wrist member to the working end of the tool shaft, the wrist member pivotable relative to the link member about the pitch axis, the link member pivotable relative to the working end of the tool shaft about a compound pitch axis parallel to the pitch axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/055,299 US20180338805A1 (en) | 2000-07-27 | 2018-08-06 | Roll-Pitch-Roll Surgical Tool |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/626,527 US6746443B1 (en) | 2000-07-27 | 2000-07-27 | Roll-pitch-roll surgical tool |
US10/340,129 US6685698B2 (en) | 2000-07-27 | 2003-01-10 | Roll-pitch-roll surgical tool |
US10/752,934 US6902560B1 (en) | 2000-07-27 | 2004-01-06 | Roll-pitch-roll surgical tool |
US11/101,375 US7398707B2 (en) | 2000-07-27 | 2005-04-06 | Roll-pitch-roll surgical tool |
US11/968,813 US7914522B2 (en) | 2000-07-27 | 2008-01-03 | Roll-pitch-roll surgical tool |
US13/039,431 US8528440B2 (en) | 2000-07-27 | 2011-03-03 | Method for minimally invasive surgery |
US13/967,656 US9173643B2 (en) | 2000-07-27 | 2013-08-15 | Pitch-roll-yaw surgical tool |
US14/874,614 US10052155B2 (en) | 2000-07-27 | 2015-10-05 | Roll-pitch-roll surgical tool |
US16/055,299 US20180338805A1 (en) | 2000-07-27 | 2018-08-06 | Roll-Pitch-Roll Surgical Tool |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/874,614 Continuation US10052155B2 (en) | 2000-07-27 | 2015-10-05 | Roll-pitch-roll surgical tool |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180338805A1 true US20180338805A1 (en) | 2018-11-29 |
Family
ID=34622563
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/752,934 Expired - Lifetime US6902560B1 (en) | 2000-07-27 | 2004-01-06 | Roll-pitch-roll surgical tool |
US11/101,375 Expired - Lifetime US7398707B2 (en) | 2000-07-27 | 2005-04-06 | Roll-pitch-roll surgical tool |
US11/968,813 Expired - Fee Related US7914522B2 (en) | 2000-07-27 | 2008-01-03 | Roll-pitch-roll surgical tool |
US13/039,431 Expired - Fee Related US8528440B2 (en) | 2000-07-27 | 2011-03-03 | Method for minimally invasive surgery |
US13/967,656 Expired - Fee Related US9173643B2 (en) | 2000-07-27 | 2013-08-15 | Pitch-roll-yaw surgical tool |
US14/874,614 Expired - Fee Related US10052155B2 (en) | 2000-07-27 | 2015-10-05 | Roll-pitch-roll surgical tool |
US16/055,299 Abandoned US20180338805A1 (en) | 2000-07-27 | 2018-08-06 | Roll-Pitch-Roll Surgical Tool |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/752,934 Expired - Lifetime US6902560B1 (en) | 2000-07-27 | 2004-01-06 | Roll-pitch-roll surgical tool |
US11/101,375 Expired - Lifetime US7398707B2 (en) | 2000-07-27 | 2005-04-06 | Roll-pitch-roll surgical tool |
US11/968,813 Expired - Fee Related US7914522B2 (en) | 2000-07-27 | 2008-01-03 | Roll-pitch-roll surgical tool |
US13/039,431 Expired - Fee Related US8528440B2 (en) | 2000-07-27 | 2011-03-03 | Method for minimally invasive surgery |
US13/967,656 Expired - Fee Related US9173643B2 (en) | 2000-07-27 | 2013-08-15 | Pitch-roll-yaw surgical tool |
US14/874,614 Expired - Fee Related US10052155B2 (en) | 2000-07-27 | 2015-10-05 | Roll-pitch-roll surgical tool |
Country Status (1)
Country | Link |
---|---|
US (7) | US6902560B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10390894B2 (en) * | 2012-06-01 | 2019-08-27 | Intuitive Surgical Operations, Inc. | Surgical instrument manipulator aspects |
US10470830B2 (en) | 2017-12-11 | 2019-11-12 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
US11628028B2 (en) | 2018-12-31 | 2023-04-18 | Asensus Surgical Us, Inc. | Articulating surgical instrument |
Families Citing this family (799)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8768516B2 (en) | 2009-06-30 | 2014-07-01 | Intuitive Surgical Operations, Inc. | Control of medical robotic system manipulator about kinematic singularities |
AU2001280635B2 (en) * | 2000-07-20 | 2006-09-21 | Kinetic Surgical Llc | Hand-actuated articulating surgical tool |
US6902560B1 (en) | 2000-07-27 | 2005-06-07 | Intuitive Surgical, Inc. | Roll-pitch-roll surgical tool |
NL1020396C2 (en) * | 2002-04-16 | 2003-10-17 | Amc Amsterdam | Manipulator for an instrument for minimally invasive surgery, as well as such an instrument. |
EP1531749A2 (en) | 2002-08-13 | 2005-05-25 | Microbotics Corporation | Microsurgical robot system |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US8182417B2 (en) * | 2004-11-24 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Articulating mechanism components and system for easy assembly and disassembly |
US8562640B2 (en) * | 2007-04-16 | 2013-10-22 | Intuitive Surgical Operations, Inc. | Tool with multi-state ratcheted end effector |
US7410483B2 (en) * | 2003-05-23 | 2008-08-12 | Novare Surgical Systems, Inc. | Hand-actuated device for remote manipulation of a grasping tool |
US8100824B2 (en) | 2003-05-23 | 2012-01-24 | Intuitive Surgical Operations, Inc. | Tool with articulation lock |
US7090637B2 (en) * | 2003-05-23 | 2006-08-15 | Novare Surgical Systems, Inc. | Articulating mechanism for remote manipulation of a surgical or diagnostic tool |
US7042184B2 (en) | 2003-07-08 | 2006-05-09 | Board Of Regents Of The University Of Nebraska | Microrobot for surgical applications |
US7960935B2 (en) | 2003-07-08 | 2011-06-14 | The Board Of Regents Of The University Of Nebraska | Robotic devices with agent delivery components and related methods |
US7828808B2 (en) | 2004-06-07 | 2010-11-09 | Novare Surgical Systems, Inc. | Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools |
US7678117B2 (en) | 2004-06-07 | 2010-03-16 | Novare Surgical Systems, Inc. | Articulating mechanism with flex-hinged links |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US11890012B2 (en) | 2004-07-28 | 2024-02-06 | Cilag Gmbh International | Staple cartridge comprising cartridge body and attached support |
US7785252B2 (en) | 2004-11-23 | 2010-08-31 | Novare Surgical Systems, Inc. | Articulating sheath for flexible instruments |
US9700334B2 (en) | 2004-11-23 | 2017-07-11 | Intuitive Surgical Operations, Inc. | Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools |
US7752920B2 (en) * | 2005-12-30 | 2010-07-13 | Intuitive Surgical Operations, Inc. | Modular force sensor |
US8496647B2 (en) | 2007-12-18 | 2013-07-30 | Intuitive Surgical Operations, Inc. | Ribbed force sensor |
US8375808B2 (en) | 2005-12-30 | 2013-02-19 | Intuitive Surgical Operations, Inc. | Force sensing for surgical instruments |
US8465474B2 (en) | 2009-05-19 | 2013-06-18 | Intuitive Surgical Operations, Inc. | Cleaning of a surgical instrument force sensor |
US8463439B2 (en) | 2009-03-31 | 2013-06-11 | Intuitive Surgical Operations, Inc. | Optic fiber connection for a force sensing instrument |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US8628518B2 (en) | 2005-12-30 | 2014-01-14 | Intuitive Surgical Operations, Inc. | Wireless force sensor on a distal portion of a surgical instrument and method |
US7930065B2 (en) * | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
WO2007120329A2 (en) | 2005-12-30 | 2007-10-25 | Intuitive Surgical, Inc. | Modular force sensor |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US20110290856A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument with force-feedback capabilities |
US8219178B2 (en) | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US10653497B2 (en) | 2006-02-16 | 2020-05-19 | Globus Medical, Inc. | Surgical tool systems and methods |
US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8597182B2 (en) | 2006-04-28 | 2013-12-03 | Intuitive Surgical Operations, Inc. | Robotic endoscopic retractor for use in minimally invasive surgery |
US7862554B2 (en) | 2007-04-16 | 2011-01-04 | Intuitive Surgical Operations, Inc. | Articulating tool with improved tension member system |
US8409244B2 (en) * | 2007-04-16 | 2013-04-02 | Intuitive Surgical Operations, Inc. | Tool with end effector force limiter |
CN104688282A (en) | 2006-06-13 | 2015-06-10 | 直观外科手术操作公司 | Minimally invasive surgical system |
US9561045B2 (en) * | 2006-06-13 | 2017-02-07 | Intuitive Surgical Operations, Inc. | Tool with rotation lock |
KR20090051029A (en) * | 2006-06-14 | 2009-05-20 | 맥도널드 디트윌러 앤드 어소시에이츠 인코포레이티드 | Surgical manipulator with right-angle pulley drive mechanisms |
US9579088B2 (en) | 2007-02-20 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices for surgical visualization and device manipulation |
CA3068216C (en) | 2006-06-22 | 2023-03-07 | Board Of Regents Of The University Of Nebraska | Magnetically coupleable robotic devices and related methods |
US8679096B2 (en) | 2007-06-21 | 2014-03-25 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US8348131B2 (en) | 2006-09-29 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with mechanical indicator to show levels of tissue compression |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
KR100778387B1 (en) | 2006-12-26 | 2007-11-28 | 한국과학기술원 | Laparoscopic Surgery Robot with Multiple Degrees of Freedom and Its Force Measuring Method |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US7434717B2 (en) | 2007-01-11 | 2008-10-14 | Ethicon Endo-Surgery, Inc. | Apparatus for closing a curved anvil of a surgical stapling device |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US7628093B2 (en) * | 2007-03-07 | 2009-12-08 | Disney Enterprises, Inc. | Three-axis robotic joint with human-based form factors |
US20090005809A1 (en) | 2007-03-15 | 2009-01-01 | Hess Christopher J | Surgical staple having a slidable crown |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US11672531B2 (en) | 2007-06-04 | 2023-06-13 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US8444631B2 (en) | 2007-06-14 | 2013-05-21 | Macdonald Dettwiler & Associates Inc | Surgical manipulator |
US20080314181A1 (en) * | 2007-06-19 | 2008-12-25 | Bruce Schena | Robotic Manipulator with Remote Center of Motion and Compact Drive |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
JP5591696B2 (en) | 2007-07-12 | 2014-09-17 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Biopsy elements, arm devices, and medical devices |
WO2009023851A1 (en) | 2007-08-15 | 2009-02-19 | Board Of Regents Of The University Of Nebraska | Modular and cooperative medical devices and related systems and methods |
CA2695615A1 (en) | 2007-08-15 | 2009-02-19 | Board Of Regents Of The University Of Nebraska | Medical inflation, attachment, and delivery devices and related methods |
US8561473B2 (en) | 2007-12-18 | 2013-10-22 | Intuitive Surgical Operations, Inc. | Force sensor temperature compensation |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
RU2493788C2 (en) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Surgical cutting and fixing instrument, which has radio-frequency electrodes |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US9770245B2 (en) | 2008-02-15 | 2017-09-26 | Ethicon Llc | Layer arrangements for surgical staple cartridges |
US9895813B2 (en) | 2008-03-31 | 2018-02-20 | Intuitive Surgical Operations, Inc. | Force and torque sensing in a surgical robot setup arm |
CA2721216C (en) | 2008-04-11 | 2016-06-14 | The Regents Of The University Of Michigan | Minimal access tool |
US9629689B2 (en) | 2008-04-11 | 2017-04-25 | Flexdex, Inc. | Attachment apparatus for remote access tools |
US9869339B2 (en) | 2008-04-11 | 2018-01-16 | Flexdex, Inc. | End-effector jaw closure transmission systems for remote access tools |
US10405936B2 (en) | 2008-04-11 | 2019-09-10 | The Regents Of The University Of Michigan | Parallel kinematic mechanisms with decoupled rotational motions |
KR101016102B1 (en) * | 2008-05-30 | 2011-02-17 | 정창욱 | Minimally invasive surgical instruments |
KR101056204B1 (en) | 2008-06-27 | 2011-08-11 | 정창욱 | Minimally invasive surgical instruments |
US8540748B2 (en) * | 2008-07-07 | 2013-09-24 | Intuitive Surgical Operations, Inc. | Surgical instrument wrist |
KR100997140B1 (en) * | 2008-07-16 | 2010-11-30 | 삼성전자주식회사 | Humanoid robot |
US8465475B2 (en) | 2008-08-18 | 2013-06-18 | Intuitive Surgical Operations, Inc. | Instrument with multiple articulation locks |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US20100126293A1 (en) * | 2008-11-21 | 2010-05-27 | Comau Inc. | Robotic radial tool positioning system |
US8245594B2 (en) * | 2008-12-23 | 2012-08-21 | Intuitive Surgical Operations, Inc. | Roll joint and method for a surgical apparatus |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
CN102341048A (en) | 2009-02-06 | 2012-02-01 | 伊西康内外科公司 | Driven surgical stapler improvements |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
FR2943906B1 (en) | 2009-04-03 | 2013-03-22 | Univ Pierre Et Marie Curie Paris 6 | SURGICAL INSTRUMENT. |
FR2943907B1 (en) | 2009-04-03 | 2012-08-03 | Univ Pierre Et Marie Curie Paris 6 | SURGICAL INSTRUMENT. |
US20110022078A1 (en) | 2009-07-23 | 2011-01-27 | Cameron Dale Hinman | Articulating mechanism |
KR20110026935A (en) * | 2009-09-09 | 2011-03-16 | 삼성전자주식회사 | Robot joint drive and robot comprising the same |
US8498741B2 (en) * | 2009-09-22 | 2013-07-30 | Gm Global Technology Operations | Dexterous humanoid robotic wrist |
EP2512754A4 (en) | 2009-12-17 | 2016-11-30 | Univ Nebraska | MODULAR MEDICAL DEVICES USED IN INTERACTION AND SYSTEMS AND METHODS RELATING THERETO |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
EP2528518B1 (en) | 2010-01-26 | 2017-12-13 | Artack Medical (2013) Ltd. | Articulating medical instrument |
WO2011115311A1 (en) * | 2010-03-15 | 2011-09-22 | 주식회사 아덴 | Surgical tool |
KR101190228B1 (en) * | 2010-05-06 | 2012-10-12 | 한국과학기술연구원 | Weight compensation mechanism and method using bevel gear and robot arm using the same |
US9033998B1 (en) | 2010-05-13 | 2015-05-19 | Titan Medical Inc. | Independent roll wrist mechanism |
US20110282357A1 (en) | 2010-05-14 | 2011-11-17 | Intuitive Surgical Operations, Inc. | Surgical system architecture |
US8336420B2 (en) | 2010-06-02 | 2012-12-25 | Disney Enterprises, Inc. | Three-axis robotic joint using four-bar linkages to drive differential side gears |
WO2011155957A1 (en) * | 2010-06-10 | 2011-12-15 | Carefusion 2200, Inc. | Flexible wrist-type element |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
CA2804176A1 (en) | 2010-08-06 | 2013-02-05 | Board Of Regents Of The University Of Nebraska | Methods and systems for handling or delivering materials for natural orifice surgery |
JP5835906B2 (en) * | 2010-09-30 | 2015-12-24 | オリンパス株式会社 | Bending joint mechanism, surgical instrument having the bending joint mechanism, and manipulator having the bending joint mechanism |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US12213666B2 (en) | 2010-09-30 | 2025-02-04 | Cilag Gmbh International | Tissue thickness compensator comprising layers |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US8740038B2 (en) | 2010-09-30 | 2014-06-03 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising a releasable portion |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9272406B2 (en) | 2010-09-30 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
EP2627278B1 (en) | 2010-10-11 | 2015-03-25 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Mechanical manipulator for surgical instruments |
US8828046B2 (en) | 2010-10-14 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Laparoscopic device with distal handle |
US9486189B2 (en) | 2010-12-02 | 2016-11-08 | Hitachi Aloka Medical, Ltd. | Assembly for use with surgery system |
US9186220B2 (en) | 2010-12-17 | 2015-11-17 | Ethicon Endo-Surgery, Inc. | Surgical system and methods for mimicked motion |
US9119655B2 (en) | 2012-08-03 | 2015-09-01 | Stryker Corporation | Surgical manipulator capable of controlling a surgical instrument in multiple modes |
US9921712B2 (en) | 2010-12-29 | 2018-03-20 | Mako Surgical Corp. | System and method for providing substantially stable control of a surgical tool |
DE102011011497A1 (en) * | 2011-02-17 | 2012-08-23 | Kuka Roboter Gmbh | Surgical instrument |
IT1404528B1 (en) * | 2011-02-24 | 2013-11-22 | Comau Spa | ARTICULATED ROBOT WRIST. |
IT1404527B1 (en) * | 2011-02-24 | 2013-11-22 | Comau Spa | ARTICULATED ROBOT WRIST. |
KR101301783B1 (en) * | 2011-03-03 | 2013-08-29 | 정창욱 | Tool for Minimally Invasive Surgery |
KR101259701B1 (en) * | 2011-03-24 | 2013-05-06 | 정창욱 | Instrument for Minimally Invasive Surgery Having Curved Shaft |
WO2012131660A1 (en) | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Robotic system for spinal and other surgeries |
CA2834649C (en) | 2011-04-29 | 2021-02-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9161771B2 (en) | 2011-05-13 | 2015-10-20 | Intuitive Surgical Operations Inc. | Medical instrument with snake wrist structure |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
JP6174017B2 (en) | 2011-06-10 | 2017-08-02 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | In vivo vascular seal end effector and in vivo robotic device |
US9089353B2 (en) | 2011-07-11 | 2015-07-28 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
EP2736680B1 (en) | 2011-07-27 | 2015-09-16 | Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO | Mechanical teleoperated device for remote manipulation |
JP5859650B2 (en) | 2011-08-25 | 2016-02-10 | アンドコントロルEndocontrol | Surgical instrument with disengageable handle |
US9241770B2 (en) | 2011-09-30 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Methods and devices for remotely controlling movement of surgical tools |
EP2882330B1 (en) | 2011-10-03 | 2020-05-13 | Board of Regents of the University of Nebraska | Robotic surgical devices and systems |
US9452276B2 (en) | 2011-10-14 | 2016-09-27 | Intuitive Surgical Operations, Inc. | Catheter with removable vision probe |
US9387048B2 (en) | 2011-10-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Catheter sensor systems |
US10238837B2 (en) | 2011-10-14 | 2019-03-26 | Intuitive Surgical Operations, Inc. | Catheters with control modes for interchangeable probes |
US20130303944A1 (en) | 2012-05-14 | 2013-11-14 | Intuitive Surgical Operations, Inc. | Off-axis electromagnetic sensor |
KR101912716B1 (en) | 2011-11-01 | 2018-10-30 | 삼성전자주식회사 | Robot arm including force sensing apparatus |
JP6475987B2 (en) | 2011-11-23 | 2019-02-27 | リブスメド インコーポレーテッド | Surgical instrument |
US9131987B2 (en) | 2011-12-02 | 2015-09-15 | Ethicon Endo-Surgery, Inc. | Elbow assembly for surgical devices |
US9179927B2 (en) | 2011-12-02 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Surgical methods using a surgical device having a fixed angular orientation |
US9211159B2 (en) | 2011-12-02 | 2015-12-15 | Ethicon Endo-Surgery, Inc. | Surgical devices with intracorporeal elbow joint |
US8617203B2 (en) | 2011-12-02 | 2013-12-31 | Ethicon Endo-Surgery, Inc. | Jaw assembly for surgical devices |
US20140058205A1 (en) | 2012-01-10 | 2014-02-27 | Board Of Regents Of The University Of Nebraska | Methods, Systems, and Devices for Surgical Access and Insertion |
US9956042B2 (en) | 2012-01-13 | 2018-05-01 | Vanderbilt University | Systems and methods for robot-assisted transurethral exploration and intervention |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
BR112014024098B1 (en) | 2012-03-28 | 2021-05-25 | Ethicon Endo-Surgery, Inc. | staple cartridge |
JP6224070B2 (en) | 2012-03-28 | 2017-11-01 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Retainer assembly including tissue thickness compensator |
RU2014143258A (en) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS |
WO2013158974A1 (en) | 2012-04-20 | 2013-10-24 | Vanderbilt University | Dexterous wrists for surgical intervention |
US9539726B2 (en) | 2012-04-20 | 2017-01-10 | Vanderbilt University | Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots |
WO2013158983A1 (en) | 2012-04-20 | 2013-10-24 | Vanderbilt University | Robotic device for establishing access channel |
US9498292B2 (en) | 2012-05-01 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | Single site robotic device and related systems and methods |
US9333650B2 (en) | 2012-05-11 | 2016-05-10 | Vanderbilt University | Method and system for contact detection and contact localization along continuum robots |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US12262954B2 (en) | 2012-06-21 | 2025-04-01 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US20150032164A1 (en) | 2012-06-21 | 2015-01-29 | Globus Medical, Inc. | Methods for Performing Invasive Medical Procedures Using a Surgical Robot |
US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
US12220120B2 (en) | 2012-06-21 | 2025-02-11 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
WO2013192598A1 (en) | 2012-06-21 | 2013-12-27 | Excelsius Surgical, L.L.C. | Surgical robot platform |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US10350013B2 (en) | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
CA2876846C (en) | 2012-06-22 | 2021-04-06 | Board Of Regents Of The University Of Nebraska | Local control robotic surgical devices and related methods |
EP2866686A1 (en) | 2012-06-28 | 2015-05-06 | Ethicon Endo-Surgery, Inc. | Empty clip cartridge lockout |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US9364230B2 (en) | 2012-06-28 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with rotary joint assemblies |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US20140005718A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Multi-functional powered surgical device with external dissection features |
KR101689452B1 (en) | 2012-07-03 | 2016-12-23 | 쿠카 레보라토리즈 게엠베하 | Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument |
FR2993333B1 (en) | 2012-07-11 | 2014-08-22 | Commissariat Energie Atomique | EPICYCLOIDAL REDUCER MOTION TRANSMISSION DEVICE, EPICYCLOIDAL REDUCER, AND MANIPULATION ARM |
JP6042652B2 (en) * | 2012-07-30 | 2016-12-14 | オリンパス株式会社 | Surgical tools and medical manipulators |
CN104736092B (en) | 2012-08-03 | 2017-07-21 | 史赛克公司 | Systems and methods for robotic surgery |
US9226796B2 (en) | 2012-08-03 | 2016-01-05 | Stryker Corporation | Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path |
US9820818B2 (en) | 2012-08-03 | 2017-11-21 | Stryker Corporation | System and method for controlling a surgical manipulator based on implant parameters |
WO2014025399A1 (en) | 2012-08-08 | 2014-02-13 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US20140117689A1 (en) * | 2012-10-26 | 2014-05-01 | Phd, Inc. | Gripper with remote cable drive |
KR101455510B1 (en) | 2013-02-08 | 2014-10-27 | 정창욱 | Instrument for Minimally Invasive Surgery Having Link-type Articulation Unit |
JP6345707B2 (en) | 2013-03-01 | 2018-06-20 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Surgical instrument with soft stop |
RU2672520C2 (en) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Hingedly turnable surgical instruments with conducting ways for signal transfer |
WO2014165060A2 (en) | 2013-03-13 | 2014-10-09 | Stryker Corporation | Systems and methods for establishing virtual constraint boundaries |
CN108175503B (en) | 2013-03-13 | 2022-03-18 | 史赛克公司 | System for arranging objects in an operating room in preparation for a surgical procedure |
JP6114583B2 (en) * | 2013-03-14 | 2017-04-12 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Medical manipulator |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US10086509B2 (en) | 2013-03-14 | 2018-10-02 | Elytra Technologies Llc | Device and method for controlled motion of a tool |
US9888966B2 (en) | 2013-03-14 | 2018-02-13 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
US9743987B2 (en) | 2013-03-14 | 2017-08-29 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to robotic surgical devices, end effectors, and controllers |
US9687230B2 (en) | 2013-03-14 | 2017-06-27 | Ethicon Llc | Articulatable surgical instrument comprising a firing drive |
US10667883B2 (en) | 2013-03-15 | 2020-06-02 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US10136887B2 (en) | 2013-04-16 | 2018-11-27 | Ethicon Llc | Drive system decoupling arrangement for a surgical instrument |
US10206747B2 (en) * | 2013-05-15 | 2019-02-19 | Intuitive Surgical Operations, Inc. | Guide apparatus for delivery of a flexible instrument and methods of use |
JP6479790B2 (en) | 2013-07-17 | 2019-03-06 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Robotic surgical device, system and related methods |
JP6116429B2 (en) * | 2013-07-26 | 2017-04-19 | オリンパス株式会社 | Therapeutic manipulator and manipulator system |
MX369362B (en) | 2013-08-23 | 2019-11-06 | Ethicon Endo Surgery Llc | Firing member retraction devices for powered surgical instruments. |
US9808249B2 (en) | 2013-08-23 | 2017-11-07 | Ethicon Llc | Attachment portions for surgical instrument assemblies |
US9283048B2 (en) | 2013-10-04 | 2016-03-15 | KB Medical SA | Apparatus and systems for precise guidance of surgical tools |
US9295522B2 (en) | 2013-11-08 | 2016-03-29 | Covidien Lp | Medical device adapter with wrist mechanism |
CN110074844B (en) | 2013-12-11 | 2023-02-17 | 柯惠Lp公司 | Wrist assembly and jaw assembly for robotic surgical system |
CN104757930B (en) * | 2014-01-02 | 2016-05-11 | 中国科学院沈阳自动化研究所 | A kind of manipulation device that digests endoscope handle |
EP3094272B1 (en) | 2014-01-15 | 2021-04-21 | KB Medical SA | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
JP6230430B2 (en) * | 2014-01-23 | 2017-11-15 | オリンパス株式会社 | Surgical instrument and medical manipulator system |
EP3102139B1 (en) | 2014-02-03 | 2018-06-13 | DistalMotion SA | Mechanical teleoperated device comprising an interchangeable distal instrument |
WO2015121311A1 (en) | 2014-02-11 | 2015-08-20 | KB Medical SA | Sterile handle for controlling a robotic surgical system from a sterile field |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
CN106232029B (en) | 2014-02-24 | 2019-04-12 | 伊西康内外科有限责任公司 | Fastening system including firing member locking piece |
DE102014205159A1 (en) | 2014-03-19 | 2015-09-24 | Richard Wolf Gmbh | robot system |
US10028761B2 (en) | 2014-03-26 | 2018-07-24 | Ethicon Llc | Feedback algorithms for manual bailout systems for surgical instruments |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
US12232723B2 (en) | 2014-03-26 | 2025-02-25 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
CN106456176B (en) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | Fastener cartridge including the extension with various configuration |
US20150297223A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
JP6612256B2 (en) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | Fastener cartridge with non-uniform fastener |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
US10206677B2 (en) | 2014-09-26 | 2019-02-19 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
CN106456159B (en) | 2014-04-16 | 2019-03-08 | 伊西康内外科有限责任公司 | Fastener cartridge assembly and nail retainer lid arragement construction |
CN106659537B (en) | 2014-04-24 | 2019-06-11 | Kb医疗公司 | The surgical instrument holder used in conjunction with robotic surgical system |
KR101584766B1 (en) | 2014-04-24 | 2016-01-12 | 주식회사 리브스메드 | Surgical instrument |
EP4295801A3 (en) | 2014-05-05 | 2024-03-20 | Vicarious Surgical Inc. | Virtual reality surgical device |
US10357257B2 (en) | 2014-07-14 | 2019-07-23 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
JP6734259B2 (en) | 2014-08-13 | 2020-08-05 | コヴィディエン リミテッド パートナーシップ | Robot control for grasping mechanical profit |
CA2957832A1 (en) | 2014-08-13 | 2016-02-18 | Covidien Lp | Robotically controlling mechanical advantage gripping |
WO2016030767A1 (en) | 2014-08-27 | 2016-03-03 | Distalmotion Sa | Surgical system for microsurgical techniques |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US9724094B2 (en) | 2014-09-05 | 2017-08-08 | Ethicon Llc | Adjunct with integrated sensors to quantify tissue compression |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
CA2961213A1 (en) | 2014-09-12 | 2016-03-17 | Board Of Regents Of The University Of Nebraska | Quick-release end effectors and related systems and methods |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
CN107427300B (en) | 2014-09-26 | 2020-12-04 | 伊西康有限责任公司 | Surgical suture buttresses and auxiliary materials |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
JP6847831B2 (en) | 2014-10-02 | 2021-03-24 | リブスメド インコーポレーテッド | Surgical instrument |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
JP6608928B2 (en) | 2014-11-11 | 2019-11-20 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Robotic device with miniature joint design and related systems and methods |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9968355B2 (en) | 2014-12-18 | 2018-05-15 | Ethicon Llc | Surgical instruments with articulatable end effectors and improved firing beam support arrangements |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
BR112017012996B1 (en) | 2014-12-18 | 2022-11-08 | Ethicon Llc | SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE |
US10864049B2 (en) | 2014-12-19 | 2020-12-15 | Distalmotion Sa | Docking system for mechanical telemanipulator |
EP3232952B1 (en) | 2014-12-19 | 2020-02-19 | DistalMotion SA | Reusable surgical instrument for minimally invasive procedures |
EP3232973B1 (en) | 2014-12-19 | 2020-04-01 | DistalMotion SA | Sterile interface for articulated surgical instruments |
EP3232974B1 (en) | 2014-12-19 | 2018-10-24 | DistalMotion SA | Articulated handle for mechanical telemanipulator |
ES2968221T3 (en) | 2014-12-19 | 2024-05-08 | Distalmotion Sa | Surgical instrument with articulated end effector |
US10013808B2 (en) | 2015-02-03 | 2018-07-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
US11896336B2 (en) | 2015-02-17 | 2024-02-13 | Livsmed Inc. | Instrument for surgery |
KR102153407B1 (en) | 2015-02-17 | 2020-09-08 | 주식회사 리브스메드 | Surgical instrument |
US11344381B2 (en) | 2015-02-17 | 2022-05-31 | Livsmed Inc. | Instrument for surgery |
WO2016131903A1 (en) | 2015-02-18 | 2016-08-25 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
CN114052918A (en) | 2015-02-19 | 2022-02-18 | 柯惠Lp公司 | Repositioning method for input device of robotic surgical system |
US20160249910A1 (en) | 2015-02-27 | 2016-09-01 | Ethicon Endo-Surgery, Llc | Surgical charging system that charges and/or conditions one or more batteries |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
CN107405172B (en) | 2015-03-10 | 2021-04-13 | 柯惠Lp公司 | Measuring health of connector components of a robotic surgical system |
WO2016148463A1 (en) * | 2015-03-17 | 2016-09-22 | 한국기술교육대학교 산학협력단 | Robot arm |
US10390825B2 (en) | 2015-03-31 | 2019-08-27 | Ethicon Llc | Surgical instrument with progressive rotary drive systems |
WO2016161449A1 (en) | 2015-04-03 | 2016-10-06 | The Regents Of The University Of Michigan | Tension management apparatus for cable-driven transmission |
EP3280343B1 (en) | 2015-04-09 | 2024-08-21 | DistalMotion SA | Mechanical teleoperated device for remote manipulation |
US10363055B2 (en) | 2015-04-09 | 2019-07-30 | Distalmotion Sa | Articulated hand-held instrument |
EP3851062A1 (en) | 2015-05-11 | 2021-07-21 | Covidien LP | Coupling instrument drive unit and robotic surgical instrument |
JP6714618B2 (en) | 2015-06-03 | 2020-06-24 | コヴィディエン リミテッド パートナーシップ | Offset instrument drive |
JP6761822B2 (en) | 2015-06-16 | 2020-09-30 | コヴィディエン リミテッド パートナーシップ | Robot Surgical System Torque Conversion Detection |
EP3310288A4 (en) | 2015-06-19 | 2019-03-06 | Covidien LP | Controlling robotic surgical instruments with bidirectional coupling |
CA2987652A1 (en) | 2015-06-23 | 2016-12-29 | Covidien Lp | A surgical instrument and instrument drive connector for use with robotic surgical systems |
AU2016282591B2 (en) | 2015-06-23 | 2020-04-23 | Covidien Lp | Surgical end effectors with mechanical advantage |
US10646298B2 (en) | 2015-07-31 | 2020-05-12 | Globus Medical, Inc. | Robot arm and methods of use |
US10058394B2 (en) | 2015-07-31 | 2018-08-28 | Globus Medical, Inc. | Robot arm and methods of use |
CN114027986B (en) | 2015-08-03 | 2024-06-14 | 内布拉斯加大学董事会 | Robotic surgical device system and related methods |
US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
ES2996084T3 (en) | 2015-08-28 | 2025-02-12 | Distalmotion Sa | Surgical instrument with increased actuation force |
US10687905B2 (en) | 2015-08-31 | 2020-06-23 | KB Medical SA | Robotic surgical systems and methods |
US10034716B2 (en) | 2015-09-14 | 2018-07-31 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
US10292777B1 (en) | 2015-09-18 | 2019-05-21 | Elytra Technologies, Llc | Device and method for controlled motion of a tool |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
AU2016326371B2 (en) | 2015-09-25 | 2020-07-23 | Covidien Lp | Robotic surgical assemblies and instrument drive connectors thereof |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10307160B2 (en) | 2015-09-30 | 2019-06-04 | Ethicon Llc | Compressible adjunct assemblies with attachment layers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US20170086829A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Compressible adjunct with intermediate supporting structures |
JP6887997B2 (en) | 2015-10-02 | 2021-06-16 | フレックスデックス, インク.Flexdex, Inc. | Handle mechanism that grants unlimited rolls |
CN108472025A (en) | 2015-10-05 | 2018-08-31 | 弗莱克斯德克斯公司 | Medical device with smoothly articulating multi-tuft joint |
US11896255B2 (en) | 2015-10-05 | 2024-02-13 | Flexdex, Inc. | End-effector jaw closure transmission systems for remote access tools |
US9771092B2 (en) | 2015-10-13 | 2017-09-26 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
CN105250032B (en) * | 2015-10-15 | 2017-09-29 | 天津大学 | Mis instruments axially turn round module |
ITUB20154977A1 (en) | 2015-10-16 | 2017-04-16 | Medical Microinstruments S R L | Medical instrument and method of manufacture of said medical instrument |
EP3364907B1 (en) | 2015-10-23 | 2021-06-02 | Covidien LP | Surgical system for detecting gradual changes in perfusion |
CN108348297B (en) | 2015-11-19 | 2021-08-31 | 柯惠Lp公司 | Optical force sensors for robotic surgical systems |
GB201521812D0 (en) * | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Driving a surgical instrument articulation |
GB201521804D0 (en) * | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Pulley arrangement for articulating a surgical instrument |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
EP3397188B1 (en) | 2015-12-31 | 2020-09-09 | Stryker Corporation | System and methods for preparing surgery on a patient at a target site defined by a virtual object |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
JP6911054B2 (en) | 2016-02-09 | 2021-07-28 | エシコン エルエルシーEthicon LLC | Surgical instruments with asymmetric joint composition |
US10470764B2 (en) | 2016-02-09 | 2019-11-12 | Ethicon Llc | Surgical instruments with closure stroke reduction arrangements |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
ES2933123T3 (en) | 2016-03-10 | 2023-02-01 | Human Extensions Ltd | Control unit for a medical device |
US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
US10350016B2 (en) * | 2016-03-17 | 2019-07-16 | Intuitive Surgical Operations, Inc. | Stapler with cable-driven advanceable clamping element and dual distal pulleys |
US11064997B2 (en) | 2016-04-01 | 2021-07-20 | Cilag Gmbh International | Surgical stapling instrument |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
WO2017175331A1 (en) | 2016-04-06 | 2017-10-12 | オリンパス株式会社 | Rotation mechanism for medical manipulator |
US11576562B2 (en) | 2016-04-07 | 2023-02-14 | Titan Medical Inc. | Camera positioning method and apparatus for capturing images during a medical procedure |
EP3241518B1 (en) | 2016-04-11 | 2024-10-23 | Globus Medical, Inc | Surgical tool systems |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10433840B2 (en) | 2016-04-18 | 2019-10-08 | Ethicon Llc | Surgical instrument comprising a replaceable cartridge jaw |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
JP7176757B2 (en) | 2016-05-18 | 2022-11-22 | バーチャル インシジョン コーポレイション | ROBOTIC SURGICAL DEVICES, SYSTEMS AND RELATED METHODS |
WO2017205576A1 (en) | 2016-05-26 | 2017-11-30 | Covidien Lp | Instrument drive units |
CN109219414B (en) | 2016-05-26 | 2021-11-19 | 柯惠Lp公司 | Robotic surgical assembly |
CN109275333B (en) | 2016-06-03 | 2022-05-17 | 柯惠Lp公司 | System, method and computer readable program product for controlling a robotic delivery manipulator |
CN113180835A (en) | 2016-06-03 | 2021-07-30 | 柯惠Lp公司 | Control arm for robotic surgical system |
EP3463163A4 (en) | 2016-06-03 | 2020-02-12 | Covidien LP | Robotic surgical system with an embedded imager |
EP3463149B1 (en) | 2016-06-03 | 2025-02-19 | Covidien LP | Passive axis system for robotic surgical systems |
US10548673B2 (en) | 2016-08-16 | 2020-02-04 | Ethicon Llc | Surgical tool with a display |
WO2018039606A1 (en) | 2016-08-25 | 2018-03-01 | Virtual Incision Corporation | Quick-release tool coupler and related systems and methods |
JP7090615B2 (en) | 2016-08-30 | 2022-06-24 | ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ | Robot device |
US10088019B2 (en) * | 2016-09-28 | 2018-10-02 | Kuwait University | Belt drive assembly |
GB2554915B (en) * | 2016-10-14 | 2022-03-02 | Cmr Surgical Ltd | Driving arrangement for articulating a surgical instrument |
EP3528736A4 (en) * | 2016-10-18 | 2020-06-17 | Intuitive Surgical Operations Inc. | Computer-assisted teleoperated surgery systems and methods |
CN108066010B (en) * | 2016-11-10 | 2024-04-30 | 香港大学深圳研究院 | Surgical robot with flexibility and multiple degrees of freedom |
WO2018098319A1 (en) | 2016-11-22 | 2018-05-31 | Board Of Regents Of The University Of Nebraska | Improved gross positioning device and related systems and methods |
CN110462259B (en) | 2016-11-29 | 2022-10-28 | 虚拟切割有限公司 | User controller with user presence detection and related systems and methods |
EP3576596A4 (en) | 2016-12-02 | 2021-01-06 | Vanderbilt University | STEERABLE ENDOSCOPE WITH CONTINUOUS MANIPULATOR |
US10722319B2 (en) | 2016-12-14 | 2020-07-28 | Virtual Incision Corporation | Releasable attachment device for coupling to medical devices and related systems and methods |
US11202682B2 (en) | 2016-12-16 | 2021-12-21 | Mako Surgical Corp. | Techniques for modifying tool operation in a surgical robotic system based on comparing actual and commanded states of the tool relative to a surgical site |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US11571210B2 (en) | 2016-12-21 | 2023-02-07 | Cilag Gmbh International | Firing assembly comprising a multiple failed-state fuse |
US20180168608A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical instrument system comprising an end effector lockout and a firing assembly lockout |
JP7086963B2 (en) | 2016-12-21 | 2022-06-20 | エシコン エルエルシー | Surgical instrument system with end effector lockout and launch assembly lockout |
US10898186B2 (en) | 2016-12-21 | 2021-01-26 | Ethicon Llc | Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10835246B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US10813638B2 (en) | 2016-12-21 | 2020-10-27 | Ethicon Llc | Surgical end effectors with expandable tissue stop arrangements |
JP7010957B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | Shaft assembly with lockout |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
JP2020501779A (en) | 2016-12-21 | 2020-01-23 | エシコン エルエルシーEthicon LLC | Surgical stapling system |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
MX2019007310A (en) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Surgical stapling systems. |
JP7233841B2 (en) | 2017-01-18 | 2023-03-07 | ケービー メディカル エスアー | Robotic Navigation for Robotic Surgical Systems |
CA3051258A1 (en) | 2017-02-09 | 2018-08-16 | Vicarious Surgical Inc. | Virtual reality surgical tools system |
JP2020507377A (en) | 2017-02-15 | 2020-03-12 | コヴィディエン リミテッド パートナーシップ | Systems and equipment for crush prevention in medical robot applications |
US11071594B2 (en) | 2017-03-16 | 2021-07-27 | KB Medical SA | Robotic navigation of robotic surgical systems |
JP6894752B2 (en) | 2017-05-01 | 2021-06-30 | 株式会社メディカロイド | Medical treatment tools and surgical systems |
US11058503B2 (en) | 2017-05-11 | 2021-07-13 | Distalmotion Sa | Translational instrument interface for surgical robot and surgical robot systems comprising the same |
CN110650705B (en) | 2017-05-24 | 2023-04-28 | 柯惠Lp公司 | Presence detection of electrosurgical tools in robotic systems |
CN110177518B (en) | 2017-05-25 | 2023-01-31 | 柯惠Lp公司 | System and method for detecting objects within a field of view of an image capture device |
EP3629980A4 (en) | 2017-05-25 | 2021-03-10 | Covidien LP | Robotic surgical system with automated guidance |
US11510747B2 (en) | 2017-05-25 | 2022-11-29 | Covidien Lp | Robotic surgical systems and drapes for covering components of robotic surgical systems |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
CA3067459A1 (en) | 2017-06-26 | 2019-01-03 | The Hospital For Sick Children | Dexterous 4-dof surgical tool for compact articulation |
US20180368844A1 (en) | 2017-06-27 | 2018-12-27 | Ethicon Llc | Staple forming pocket arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
EP4070740B1 (en) | 2017-06-28 | 2025-03-26 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10758232B2 (en) | 2017-06-28 | 2020-09-01 | Ethicon Llc | Surgical instrument with positive jaw opening features |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US11389161B2 (en) | 2017-06-28 | 2022-07-19 | Cilag Gmbh International | Surgical instrument comprising selectively actuatable rotatable couplers |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10675094B2 (en) | 2017-07-21 | 2020-06-09 | Globus Medical Inc. | Robot surgical platform |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11406441B2 (en) | 2017-08-16 | 2022-08-09 | Covidien Lp | End effector including wrist assembly and monopolar tool for robotic surgical systems |
CN110177516B (en) | 2017-09-05 | 2023-10-24 | 柯惠Lp公司 | Collision handling algorithm for robotic surgical systems |
US11583358B2 (en) | 2017-09-06 | 2023-02-21 | Covidien Lp | Boundary scaling of surgical robots |
CN111093550B (en) | 2017-09-08 | 2023-12-12 | 柯惠Lp公司 | Energy disconnection for robotic surgical assembly |
WO2019055701A1 (en) | 2017-09-13 | 2019-03-21 | Vanderbilt University | Continuum robots with multi-scale motion through equilibrium modulation |
CA3075692A1 (en) | 2017-09-14 | 2019-03-21 | Vicarious Surgical Inc. | Virtual reality surgical camera system |
CN111417333B (en) | 2017-09-27 | 2023-08-29 | 虚拟切割有限公司 | Robotic surgical device with tracking camera technology and related systems and methods |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
JP6778242B2 (en) | 2017-11-09 | 2020-10-28 | グローバス メディカル インコーポレイティッド | Surgical robot systems for bending surgical rods, and related methods and equipment |
US11382666B2 (en) | 2017-11-09 | 2022-07-12 | Globus Medical Inc. | Methods providing bend plans for surgical rods and related controllers and computer program products |
US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
KR102191482B1 (en) | 2017-11-14 | 2020-12-15 | 주식회사 리브스메드 | Roll Joint Member for Surgical instrument |
CN115574994A (en) | 2017-11-14 | 2023-01-06 | 直观外科手术操作公司 | Separated bridge circuit force sensor |
US12029523B2 (en) | 2017-12-01 | 2024-07-09 | Covidien Lp | Drape management assembly for robotic surgical systems |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US11576668B2 (en) | 2017-12-21 | 2023-02-14 | Cilag Gmbh International | Staple instrument comprising a firing path display |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
AU2019205201B2 (en) | 2018-01-04 | 2020-11-05 | Covidien Lp | Systems and assemblies for mounting a surgical accessory to robotic surgical systems, and providing access therethrough |
WO2019136041A1 (en) | 2018-01-04 | 2019-07-11 | Covidien Lp | Robotic surgical instrument including high articulation wrist assembly with torque transmission and mechanical manipulation |
CA3087672A1 (en) | 2018-01-05 | 2019-07-11 | Board Of Regents Of The University Of Nebraska | Single-arm robotic device with compact joint design and related systems and methods |
WO2019139949A1 (en) | 2018-01-10 | 2019-07-18 | Covidien Lp | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
US12102403B2 (en) | 2018-02-02 | 2024-10-01 | Coviden Lp | Robotic surgical systems with user engagement monitoring |
CN108143496B (en) * | 2018-02-05 | 2019-02-19 | 珠海中信大有科技有限公司 | A kind of surgical instrument mounting assembly and operating robot |
WO2019155383A1 (en) | 2018-02-07 | 2019-08-15 | Distalmotion Sa | Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy |
US20190254753A1 (en) | 2018-02-19 | 2019-08-22 | Globus Medical, Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
US11189379B2 (en) | 2018-03-06 | 2021-11-30 | Digital Surgery Limited | Methods and systems for using multiple data structures to process surgical data |
US12082900B2 (en) | 2018-03-07 | 2024-09-10 | Intuitive Surgical Operations, Inc. | Low-friction, small profile medical tools having easy-to-assemble components |
CN111787880A (en) | 2018-03-08 | 2020-10-16 | 柯惠Lp公司 | Surgical robot system |
US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
CN111989065A (en) | 2018-04-20 | 2020-11-24 | 柯惠Lp公司 | Compensation of observer movement in a robotic surgical system with a stereoscopic display |
EP3781367B1 (en) | 2018-04-20 | 2025-03-05 | Covidien LP | Methods for surgical robotic cart placement |
USD884892S1 (en) | 2018-04-20 | 2020-05-19 | Intuitive Surgical Operations, Inc. | Surgical instrument backend housing |
KR102191483B1 (en) * | 2018-06-08 | 2020-12-15 | 주식회사 리브스메드 | Surgical instruments |
US11576739B2 (en) | 2018-07-03 | 2023-02-14 | Covidien Lp | Systems, methods, and computer-readable media for detecting image degradation during surgical procedures |
CN112566584A (en) | 2018-08-15 | 2021-03-26 | 奥瑞斯健康公司 | Medical instrument for tissue cauterization |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US20200054321A1 (en) | 2018-08-20 | 2020-02-20 | Ethicon Llc | Surgical instruments with progressive jaw closure arrangements |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
WO2020055707A1 (en) | 2018-09-14 | 2020-03-19 | Covidien Lp | Surgical robotic systems and methods of tracking usage of surgical instruments thereof |
CN112702969A (en) | 2018-09-17 | 2021-04-23 | 柯惠Lp公司 | Surgical robot system |
EP3852667A4 (en) | 2018-09-17 | 2022-06-15 | Covidien LP | Surgical robotic systems |
US11109746B2 (en) | 2018-10-10 | 2021-09-07 | Titan Medical Inc. | Instrument insertion system, method, and apparatus for performing medical procedures |
US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11586106B2 (en) | 2018-12-28 | 2023-02-21 | Titan Medical Inc. | Imaging apparatus having configurable stereoscopic perspective |
WO2020146348A1 (en) | 2019-01-07 | 2020-07-16 | Virtual Incision Corporation | Robotically assisted surgical system and related devices and methods |
US11504200B2 (en) * | 2019-01-24 | 2022-11-22 | Verb Surgical Inc. | Wearable user interface device |
US11717355B2 (en) | 2019-01-29 | 2023-08-08 | Covidien Lp | Drive mechanisms for surgical instruments such as for use in robotic surgical systems |
US11576733B2 (en) | 2019-02-06 | 2023-02-14 | Covidien Lp | Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies |
US11484372B2 (en) | 2019-02-15 | 2022-11-01 | Covidien Lp | Articulation mechanisms for surgical instruments such as for use in robotic surgical systems |
US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US20200297357A1 (en) | 2019-03-22 | 2020-09-24 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11172929B2 (en) * | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
EP3998968A2 (en) | 2019-07-15 | 2022-05-25 | Stryker Corporation | Robotic hand-held surgical instrument systems and methods |
CN112438779A (en) * | 2019-08-30 | 2021-03-05 | 新加坡国立大学 | control device |
US12223629B2 (en) | 2019-09-11 | 2025-02-11 | Covidien Lp | Systems and methods for smoke-reduction in images |
US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
CN110584787A (en) * | 2019-10-14 | 2019-12-20 | 山东建筑大学 | Four-degree-of-freedom minimally invasive surgical instrument |
US12133772B2 (en) | 2019-12-10 | 2024-11-05 | Globus Medical, Inc. | Augmented reality headset for navigated robotic surgery |
US12220176B2 (en) | 2019-12-10 | 2025-02-11 | Globus Medical, Inc. | Extended reality instrument interaction zone for navigated robotic |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US12256890B2 (en) | 2019-12-23 | 2025-03-25 | Covidien Lp | Systems and methods for guiding surgical procedures |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
WO2021173315A1 (en) | 2020-02-26 | 2021-09-02 | Covidien Lp | Robotic surgical instrument including linear encoders for measuring cable displacement |
US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US12262863B2 (en) | 2020-05-12 | 2025-04-01 | Covidien Lp | Systems and methods for image mapping and fusion during surgical procedures |
US12030195B2 (en) | 2020-05-27 | 2024-07-09 | Covidien Lp | Tensioning mechanisms and methods for articulating surgical instruments such as for use in robotic surgical systems |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
WO2021247719A1 (en) | 2020-06-02 | 2021-12-09 | Flexdex, Inc. | Surgical tool and assembly |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
EP4175576A4 (en) | 2020-07-06 | 2024-08-07 | Virtual Incision Corporation | Surgical robot positioning system and related devices and methods |
USD963851S1 (en) | 2020-07-10 | 2022-09-13 | Covidien Lp | Port apparatus |
US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
US11871925B2 (en) | 2020-07-28 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with dual spherical articulation joint arrangements |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
US12161309B2 (en) | 2020-09-24 | 2024-12-10 | Covidien Lp | Articulating mechanism for the laparoscopic ablation device for blunt dissection |
US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
CN112842526B (en) * | 2020-12-31 | 2022-06-03 | 杭州康基医疗器械有限公司 | Be applied to difference compensation mechanism of manipulator |
US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US12150728B2 (en) | 2021-04-14 | 2024-11-26 | Globus Medical, Inc. | End effector for a surgical robot |
US12178523B2 (en) | 2021-04-19 | 2024-12-31 | Globus Medical, Inc. | Computer assisted surgical navigation system for spine procedures |
US11998201B2 (en) | 2021-05-28 | 2024-06-04 | Cilag CmbH International | Stapling instrument comprising a firing lockout |
US11948226B2 (en) | 2021-05-28 | 2024-04-02 | Covidien Lp | Systems and methods for clinical workspace simulation |
US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
EP4401666A1 (en) | 2021-09-13 | 2024-07-24 | DistalMotion SA | Instruments for surgical robotic system and interfaces for the same |
US12201375B2 (en) | 2021-09-16 | 2025-01-21 | Globus Medical Inc. | Extended reality systems for visualizing and controlling operating room equipment |
US12238087B2 (en) | 2021-10-04 | 2025-02-25 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
US12184636B2 (en) | 2021-10-04 | 2024-12-31 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US12239317B2 (en) | 2021-10-18 | 2025-03-04 | Cilag Gmbh International | Anvil comprising an arrangement of forming pockets proximal to tissue stop |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
TWI838986B (en) | 2021-11-30 | 2024-04-11 | 美商安督奎斯特機器人公司 | Patient console, robotic surgical system having the same, and method for performing the same |
WO2023101948A1 (en) | 2021-11-30 | 2023-06-08 | Endoquest, Inc. | Master control systems for robotic surgical systems |
TWI835436B (en) | 2021-11-30 | 2024-03-11 | 美商安督奎斯特機器人公司 | Steerable overtube assemblies for robotic surgical systems, control assemblies and method thereof |
JP2024543776A (en) | 2021-11-30 | 2024-11-26 | エンドクエスト ロボティクス インコーポレイテッド | Disposable End Effectors |
JP2024546079A (en) | 2021-11-30 | 2024-12-17 | エンドクエスト ロボティクス インコーポレイテッド | Force transmission system for robotically controlled medical devices |
US20230165639A1 (en) | 2021-12-01 | 2023-06-01 | Globus Medical, Inc. | Extended reality systems with three-dimensional visualizations of medical image scan slices |
US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
US12161427B2 (en) | 2022-06-08 | 2024-12-10 | Globus Medical, Inc. | Surgical navigation system with flat panel registration fixture |
US12226169B2 (en) | 2022-07-15 | 2025-02-18 | Globus Medical, Inc. | Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images |
US20240225683A9 (en) * | 2022-10-20 | 2024-07-11 | Covidien Lp | Articulating ultrasonic surgical instruments having distally positioned transducers |
USD1066378S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066404S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066380S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066379S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066382S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066383S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066405S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
USD1066381S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
US11844585B1 (en) | 2023-02-10 | 2023-12-19 | Distalmotion Sa | Surgical robotics systems and devices having a sterile restart, and methods thereof |
WO2024215716A1 (en) | 2023-04-11 | 2024-10-17 | Intuitive Surgical Operations, Inc. | Surgical stapling instruments and control systems for such instruments |
WO2024249977A1 (en) | 2023-06-02 | 2024-12-05 | Intuitive Surgical Operations, Inc. | Surgical clips for sealing and/or closing tissue and vessels |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4913617A (en) * | 1988-07-20 | 1990-04-03 | Martin Marietta Energy Systems, Inc. | Remote tong/tool latch and storage bracket for an advanced servo-manipulator |
US5207114A (en) * | 1988-04-21 | 1993-05-04 | Massachusetts Institute Of Technology | Compact cable transmission with cable differential |
US6786896B1 (en) * | 1997-09-19 | 2004-09-07 | Massachusetts Institute Of Technology | Robotic apparatus |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1394029A (en) * | 1963-11-15 | 1965-04-02 | Commissariat Energie Atomique | Master-slave remote manipulator with articulated arms |
GB1372327A (en) * | 1971-10-11 | 1974-10-30 | Commissariat Energie Atomique | Articulated manipulator |
US4068156A (en) | 1977-03-01 | 1978-01-10 | Martin Marietta Corporation | Rate control system for manipulator arms |
FR2461556A1 (en) | 1979-07-18 | 1981-02-06 | Bretagne Atel Chantiers | REMOTE HANDLING ARM |
US4921293A (en) * | 1982-04-02 | 1990-05-01 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Multi-fingered robotic hand |
JPS5973297A (en) | 1982-10-20 | 1984-04-25 | フアナツク株式会社 | Wrist mechanism of industrial robot |
US4606695A (en) | 1984-05-18 | 1986-08-19 | Kurt Manufacturing Company, Inc. | Multiple axis robot arm |
US4685349A (en) * | 1985-12-20 | 1987-08-11 | Agency Of Industrial Science And Technology | Flexibly foldable arm |
US5078140A (en) | 1986-05-08 | 1992-01-07 | Kwoh Yik S | Imaging device - aided robotic stereotaxis system |
US4762455A (en) | 1987-06-01 | 1988-08-09 | Remote Technology Corporation | Remote manipulator |
DE3751227D1 (en) * | 1987-11-30 | 1995-05-11 | Mark E Rosheim | WRIST ROBOT. |
US4911033A (en) | 1989-01-03 | 1990-03-27 | Ross-Hime Designs, Incorporated | Robotic manipulator |
IT1241622B (en) | 1990-10-04 | 1994-01-25 | Comau Spa | ROBOT WRIST |
US5305653A (en) | 1991-09-30 | 1994-04-26 | Tokico Ltd. | Robot wrist mechanism |
WO1993013916A1 (en) | 1992-01-21 | 1993-07-22 | Sri International | Teleoperator system and method with telepresence |
US5754741A (en) | 1992-08-10 | 1998-05-19 | Computer Motion, Inc. | Automated endoscope for optimal positioning |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
DE69417229T2 (en) | 1993-05-14 | 1999-07-08 | Sri International, Menlo Park, Calif. | SURGERY DEVICE |
ATE209875T1 (en) | 1993-07-21 | 2001-12-15 | Charles H Klieman | SURGICAL INSTRUMENT FOR ENDOSCOPIC AND GENERAL OPERATIONS |
WO1995016396A1 (en) | 1993-12-15 | 1995-06-22 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5814038A (en) | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5710870A (en) * | 1995-09-07 | 1998-01-20 | California Institute Of Technology | Decoupled six degree-of-freedom robot manipulator |
US5647723A (en) * | 1995-11-13 | 1997-07-15 | Rush; Joe A. | Memory wire robotic hand |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
JP3329430B2 (en) * | 1996-04-09 | 2002-09-30 | 株式会社安川電機 | Industrial robot wrist mechanism |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5697256A (en) * | 1996-06-28 | 1997-12-16 | Matteo; Joseph C. | Hybrid differential transmission |
US5810716A (en) | 1996-11-15 | 1998-09-22 | The United States Of America As Represented By The Secretary Of The Navy | Articulated manipulator for minimally invasive surgery (AMMIS) |
US6132441A (en) | 1996-11-22 | 2000-10-17 | Computer Motion, Inc. | Rigidly-linked articulating wrist with decoupled motion transmission |
US6554844B2 (en) * | 1998-02-24 | 2003-04-29 | Endovia Medical, Inc. | Surgical instrument |
US6197017B1 (en) | 1998-02-24 | 2001-03-06 | Brock Rogers Surgical, Inc. | Articulated apparatus for telemanipulator system |
EP1273398A4 (en) * | 2000-02-25 | 2003-07-30 | Bandai Co | ELEMENT ASSEMBLY FOR A ROBOT |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
US6902560B1 (en) | 2000-07-27 | 2005-06-07 | Intuitive Surgical, Inc. | Roll-pitch-roll surgical tool |
US7762156B2 (en) * | 2003-07-08 | 2010-07-27 | Korea Advanced Institute Of Science And Technology | Cable-driven wrist mechanism for robot arms |
EP2067581B1 (en) * | 2007-12-05 | 2011-01-12 | Korea Atomic Energy Research Institute | Cable-driven manipulator with a cable compensation device |
-
2004
- 2004-01-06 US US10/752,934 patent/US6902560B1/en not_active Expired - Lifetime
-
2005
- 2005-04-06 US US11/101,375 patent/US7398707B2/en not_active Expired - Lifetime
-
2008
- 2008-01-03 US US11/968,813 patent/US7914522B2/en not_active Expired - Fee Related
-
2011
- 2011-03-03 US US13/039,431 patent/US8528440B2/en not_active Expired - Fee Related
-
2013
- 2013-08-15 US US13/967,656 patent/US9173643B2/en not_active Expired - Fee Related
-
2015
- 2015-10-05 US US14/874,614 patent/US10052155B2/en not_active Expired - Fee Related
-
2018
- 2018-08-06 US US16/055,299 patent/US20180338805A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5207114A (en) * | 1988-04-21 | 1993-05-04 | Massachusetts Institute Of Technology | Compact cable transmission with cable differential |
US4913617A (en) * | 1988-07-20 | 1990-04-03 | Martin Marietta Energy Systems, Inc. | Remote tong/tool latch and storage bracket for an advanced servo-manipulator |
US6786896B1 (en) * | 1997-09-19 | 2004-09-07 | Massachusetts Institute Of Technology | Robotic apparatus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10390894B2 (en) * | 2012-06-01 | 2019-08-27 | Intuitive Surgical Operations, Inc. | Surgical instrument manipulator aspects |
US11737834B2 (en) | 2012-06-01 | 2023-08-29 | Intuitive Surgical Operations, Inc. | Surgical instrument manipulator aspects |
US10470830B2 (en) | 2017-12-11 | 2019-11-12 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
US10779898B2 (en) | 2017-12-11 | 2020-09-22 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
US11839439B2 (en) | 2017-12-11 | 2023-12-12 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
US11628028B2 (en) | 2018-12-31 | 2023-04-18 | Asensus Surgical Us, Inc. | Articulating surgical instrument |
Also Published As
Publication number | Publication date |
---|---|
US10052155B2 (en) | 2018-08-21 |
US7914522B2 (en) | 2011-03-29 |
US20080103492A1 (en) | 2008-05-01 |
US20160022366A1 (en) | 2016-01-28 |
US8528440B2 (en) | 2013-09-10 |
US9173643B2 (en) | 2015-11-03 |
US6902560B1 (en) | 2005-06-07 |
US20110213346A1 (en) | 2011-09-01 |
US7398707B2 (en) | 2008-07-15 |
US20140052156A1 (en) | 2014-02-20 |
US20050204851A1 (en) | 2005-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10052155B2 (en) | Roll-pitch-roll surgical tool | |
US6685698B2 (en) | Roll-pitch-roll surgical tool | |
US6676684B1 (en) | Roll-pitch-roll-yaw surgical tool | |
US11717290B2 (en) | End effector with redundant closing mechanisms | |
US6206903B1 (en) | Surgical tool with mechanical advantage | |
US10105128B2 (en) | Apparatus for pitch and yaw rotation | |
US6991627B2 (en) | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity | |
US7691098B2 (en) | Platform link wrist mechanism | |
US5797900A (en) | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity | |
AU2002322374A1 (en) | Platform link wrist mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |