US20180337408A1 - Electrode including electrode current collector with three-dimensional network structure - Google Patents
Electrode including electrode current collector with three-dimensional network structure Download PDFInfo
- Publication number
- US20180337408A1 US20180337408A1 US15/774,192 US201715774192A US2018337408A1 US 20180337408 A1 US20180337408 A1 US 20180337408A1 US 201715774192 A US201715774192 A US 201715774192A US 2018337408 A1 US2018337408 A1 US 2018337408A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- current collector
- unit
- dimensional network
- network structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 claims abstract description 96
- 239000011148 porous material Substances 0.000 claims abstract description 43
- 239000007772 electrode material Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 46
- 230000008569 process Effects 0.000 claims description 36
- 239000011267 electrode slurry Substances 0.000 claims description 31
- 239000011230 binding agent Substances 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 14
- 239000003792 electrolyte Substances 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 238000010030 laminating Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000008151 electrolyte solution Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 32
- -1 LiV3O8 Chemical compound 0.000 description 20
- 229910052744 lithium Inorganic materials 0.000 description 16
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000006258 conductive agent Substances 0.000 description 9
- 239000011149 active material Substances 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 239000000945 filler Substances 0.000 description 7
- 239000007774 positive electrode material Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 6
- 159000000002 lithium salts Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011255 nonaqueous electrolyte Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910001290 LiPF6 Inorganic materials 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910012488 LiNi0.55Mn0.30Co0.15O2 Inorganic materials 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical class C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000011356 non-aqueous organic solvent Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical compound FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical class COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 229910001558 CF3SO3Li Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910017010 Fe2 (MoO4)3 Inorganic materials 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910007969 Li-Co-Ni Inorganic materials 0.000 description 1
- 229910006570 Li1+xMn2-xO4 Inorganic materials 0.000 description 1
- 229910006628 Li1+xMn2−xO4 Inorganic materials 0.000 description 1
- 229910010228 Li2Mn3MO8 Inorganic materials 0.000 description 1
- 229910007558 Li2SiS3 Inorganic materials 0.000 description 1
- 229910012722 Li3N-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012716 Li3N-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012734 Li3N—LiI—LiOH Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012047 Li4SiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012075 Li4SiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012057 Li4SiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910003253 LiB10Cl10 Inorganic materials 0.000 description 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 description 1
- 229910010521 LiFe3O4 Inorganic materials 0.000 description 1
- 229910014172 LiMn2-xMxO2 Inorganic materials 0.000 description 1
- 229910014774 LiMn2O3 Inorganic materials 0.000 description 1
- 229910014437 LiMn2−XMXO2 Inorganic materials 0.000 description 1
- 229910002993 LiMnO2 Inorganic materials 0.000 description 1
- 229910014713 LiMnO3 Inorganic materials 0.000 description 1
- 229910013406 LiN(SO2CF3)2 Inorganic materials 0.000 description 1
- 229910014114 LiNi1-xMxO2 Inorganic materials 0.000 description 1
- 229910014907 LiNi1−xMxO2 Inorganic materials 0.000 description 1
- 229910013649 LiNixMn2-xO4 Inorganic materials 0.000 description 1
- 229910013663 LiNixMn2—xO4 Inorganic materials 0.000 description 1
- 229910012346 LiSiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012345 LiSiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012348 LiSiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910012970 LiV3O8 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 229910016622 LixFe2O3 Inorganic materials 0.000 description 1
- 229910015103 LixWO2 Inorganic materials 0.000 description 1
- 229910006555 Li—Co—Ni Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000914 Metallic fiber Polymers 0.000 description 1
- ZHGDJTMNXSOQDT-UHFFFAOYSA-N NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O Chemical compound NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O ZHGDJTMNXSOQDT-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910006145 SO3Li Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- QDDVNKWVBSLTMB-UHFFFAOYSA-N [Cu]=O.[Li] Chemical compound [Cu]=O.[Li] QDDVNKWVBSLTMB-UHFFFAOYSA-N 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical compound [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical class Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Inorganic materials O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 1
- 229910000411 antimony tetroxide Inorganic materials 0.000 description 1
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910000417 bismuth pentoxide Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N germanium monoxide Inorganic materials [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 150000002461 imidazolidines Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052909 inorganic silicate Inorganic materials 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- YADSGOSSYOOKMP-UHFFFAOYSA-N lead dioxide Inorganic materials O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- XMFOQHDPRMAJNU-UHFFFAOYSA-N lead(II,IV) oxide Inorganic materials O1[Pb]O[Pb]11O[Pb]O1 XMFOQHDPRMAJNU-UHFFFAOYSA-N 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910021445 lithium manganese complex oxide Inorganic materials 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- HSFDLPWPRRSVSM-UHFFFAOYSA-M lithium;2,2,2-trifluoroacetate Chemical compound [Li+].[O-]C(=O)C(F)(F)F HSFDLPWPRRSVSM-UHFFFAOYSA-M 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 229910021396 non-graphitizing carbon Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
- H01M4/806—Nonwoven fibrous fabric containing only fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present disclosure relates to an electrode including a current collector with a three-dimensional network structure.
- lithium secondary batteries which have high energy density, high operating voltage, a long cycle lifespan, and a low self-discharge rate, have been commercially available and widely used.
- a conventional electrode is prepared by applying a slurry in which an electrode active material, a binder and a conductive material are appropriately mixed, on positive and negative electrode current collectors, followed by a heat treatment process. That is, the conventional electrode has a structure in which an electrode mixture layer containing the binder and the conductive material is formed on the positive and negative electrode current collectors.
- the binder contained in the electrode mixture layer is relatively light, the binder may not be uniformly dispersed in the electrode mixture layer, and thus the binder may be separated from a surface of the electrode mixture layer.
- the thicker the electrode mixture layer the greater a separation of the binder from the electrode material mixture layer, so that it is impossible to avoid deterioration of cycle characteristics and the lifespan of the battery due to a separation of the active material and the current collector, wherein the separation is caused by a volume change that occurs during a charging and discharging process of the battery.
- the present disclosure is provided to solve the above-described problems of the related art and technical problems which have been identified in the past.
- the inventors of the present application have conducted intense research and various experiments and have confirmed that, as will be described below, when an electrode for a secondary battery consisting of unit electrodes having a structure in which an electrode mixture containing an electrode active material is introduced into pores of a unit current collector with a three-dimensional network structure is used, resistance inside the electrode is small even when a loading amount of the electrode mixture is increased, and separation of an electrode mixture layer may be prevented, thereby completing the present disclosure.
- the present disclosure provides an electrode for a secondary battery in which two or more unit electrodes are laminated in a state of being in close contact with each other, and mutually adjacent unit electrodes are electrically connected through an electrode mixture, wherein in each of the unit electrodes, the electrode mixture containing an electrode active material is introduced into pores of a unit current collector with a three-dimensional network structure.
- the electrode may have a structure in which 2 to 10 unit electrodes are laminated.
- the unit current collector with a three-dimensional network structure may be conductive metal felt.
- an average thickness of the unit current collector with a three-dimensional network structure may be in a range of 30 ⁇ m to 400 ⁇ m.
- an average diameter of pores in the unit current collector with a three-dimensional network structure may be in a range of 1 ⁇ m to 100 ⁇ m.
- a unit current collector with a three-dimensional network structure and an electrode mixture may be mixed in the unit electrodes.
- a thickness of an electrode mixture layer applied on an outer surface of one side of the unit current collector may be in a range of 10 ⁇ m to 100 ⁇ m.
- a thickness of the electrode may be in a range of 50 ⁇ m to 500 ⁇ m.
- the unit electrodes may be mutually bonded by a binder in an electrode mixture.
- a general current collector may be additionally interposed between the unit electrodes.
- the present disclosure provides a battery cell consisting of the electrode for a secondary battery.
- the electrode for a secondary battery may be prepared by a method including: (a) a process of preparing a unit current collector with a three-dimensional network structure and an electrode slurry; (b) a process of coating the unit current collector with the electrode slurry; (c) a process of drying the electrode slurry to form an electrode mixture layer; (d) a process of rolling unit electrodes; and (e) a process of laminating the unit electrodes.
- the electrode for a secondary battery may be prepared by a method including: (a) a process of preparing a unit current collector with a three-dimensional network structure and an electrode slurry; (b) a process of coating the unit current collector with the electrode slurry; (c) a process of drying the electrode slurry to form an electrode mixture layer; (d) a process of laminating unit electrodes; and (e) a process of rolling the laminated unit electrodes.
- an electrode for a secondary battery has a structure in which unit electrodes having a structure in which an electrode mixture is impregnated and applied on a unit current collector with a three-dimensional network structure are laminated, and the unit electrodes are connected to each other through an electrode mixture.
- a structure in which the electrode mixture containing an electrode active material is moved into pores formed in the unit current collector to fill the inside of the unit current collector can alleviate an increase in an overall thickness of an electrode and shorten a physical distance between the current collector and the electrode active material.
- the distance between the current collector and the electrode active material is short, which enables the achievement of a battery having both a high output and high capacity.
- the inside of the current collector is filled with the electrode mixture containing the electrode active material, and finally, the binder is evenly dispersed in the electrode, and thus separation of the electrode active material can be prevented, resulting in improved performance and an extended lifespan of the electrode.
- the electrode of a secondary battery according to the present disclosure has an advantage of being suitable for use in a flexible battery due to the flexibility of the metal felt itself.
- FIG. 1 is a perspective view schematically showing a unit current collector according to an embodiment of the present disclosure.
- FIG. 2 is a perspective view schematically showing an electrode in which the unit current collectors of FIG. 1 are laminated.
- FIG. 3 is an enlarged view of a part of FIG. 2 and is a perspective view showing that an electrode mixture is introduced into pores of the unit current collector.
- FIG. 4 is a perspective view schematically showing a state in which the unit current collector of FIG. 1 is coated with the electrode mixture.
- FIG. 5 is a vertical section taken along line A-A′ of FIG. 4 .
- FIG. 6 is a vertical section of an electrode in which the unit current collectors of FIG. 4 are laminated.
- the present disclosure relates to an electrode for a secondary battery in which two or more unit electrodes are laminated in a state of being in close contact with each other, and mutually adjacent unit electrodes are electrically connected through an electrode mixture, wherein in each of the unit electrodes, the electrode mixture containing an electrode active material is introduced into pores of a unit current collector with a three-dimensional network structure.
- FIG. 1 is a perspective view schematically showing a unit current collector according to an embodiment of the present disclosure
- FIG. 2 is a perspective view schematically showing an electrode in which the unit current collectors of FIG. 1 are laminated.
- a unit electrode 10 includes a unit current collector 11 with a three-dimensional network structure having pores 13 , the pores 13 are formed as open pores passing through an outer surface and the inside of the unit current collector, and an electrode mixture containing an electrode active material is permeated between the pores.
- an electrode for a secondary battery of the present disclosure has a structure in which open pores are formed in a unit current collector itself, and thus when an electrode mixture is applied on the unit current collector, the electrode mixture containing an electrode active material flows into the open pores. That is, the electrode mixture containing the electrode active material is not only applied on the unit current collector but also fills the pores in a current collector. Accordingly, even when the same amount of the electrode mixture is loaded, it is possible to prevent an increase in total thickness of the electrode compared with an electrode in which a coating layer is formed only on a current collector. In addition, it is possible to prevent the internal resistance from increasing since the distance between the outermost portion of an electrode mixture layer and the surface of the current collector is not increased.
- the electrode mixture layer containing the electrode active material permeates into the unit current collector so that adhesion between the current collector and the electrode active material is increased, and the inside of the current collector is filled with the electrode mixture containing the electrode active material so that a binder is uniformly dispersed in the electrode.
- An electrode for a secondary battery according to the present disclosure has a structure in which unit electrodes are electrically connected to adjacent unit electrodes through an electrode mixture in a state in which the unit electrodes are laminated. Further, in the electrode for a secondary battery according to the present disclosure, since an increase in a thickness of the electrode is small even when the electrode mixture is applied, in order to provide a secondary battery with a high capacity, the electrode may have a structure in which 2 to 10 unit electrodes are laminated, and preferably, may have a structure in which 4 to 10 unit electrodes are laminated.
- an electrode 100 of the present disclosure is formed by laminating the plurality of unit electrodes 10 , and thus when 2 to 10 unit current collectors having an average thickness of 30 ⁇ m to 400 ⁇ m are laminated, the total thickness of the electrodes is formed to be 50 ⁇ m to 500 ⁇ m.
- an average thickness of the unit current collectors may be in a range of 30 ⁇ m to 400 ⁇ m, preferably, in a range of 30 ⁇ m to 350 ⁇ m, and more preferably, in a range of 40 ⁇ m to 300 ⁇ m.
- the average thickness of the unit current collectors is less than 30 ⁇ m, the strength of the current collector is significantly lowered, which is not preferable.
- the average thickness of the unit current collector is greater than 400 ⁇ m, it is difficult for the electrode mixture layer to penetrate into the current collector, which is also not preferable.
- the unit current collector is preferably made of a material having high electrical conductivity, for example, conductive metal felt with a three-dimensional network structure. Since the electrode of the present disclosure uses conductive metal felt as a current collector, there is an advantage of being suitable for use in a flexible battery due to the flexibility of the metal felt itself.
- the material having high electrical conductivity while not being particularly limited as long as the material does not have a chemical effect by reacting with an electrode mixture, may be, for example, at least one selected from the group consisting of aluminum (Al), magnesium (Mg), iron (Fe), nickel (Ni), chromium (Cr), copper (Cu), stainless steel, or an alloy thereof, and specifically, may be varied depending on a potential of an electrode and constituent components of an electrode mixture.
- An aspect ratio of metal fibers constituting the conductive metal felt may be in a range of 10 to 1,000, preferably, in a range of 10 to 500, and more preferably, in a range of 30 to 150.
- an average diameter of the pores 13 may be in a range of 1 ⁇ m to 100 ⁇ m, preferably, in a range of 10 ⁇ m to 90 ⁇ m, and more preferably, in a range of 20 ⁇ m to 80 ⁇ m, in consideration of particle diameters of an electrode active material, a conductive agent, and a binder contained in the electrode mixture.
- the average diameter of the open pores is less than 1 ⁇ m, it is difficult for the electrode mixture having a particle size greater than 1 ⁇ m to move into the pores, and thus a particle diameter range of an applicable electrode active material may be limited, which is not preferable.
- the average diameter of the open pores is greater than 100 ⁇ m, the strength of the current collector may be weakened, which is also not preferable.
- the open pores may have a structure in which an electrode mixture containing an electrode active material is introduced into at least a part of the open pores, and thus a process of rolling the electrode slurry after coating the unit current collector with the electrode slurry may be included to induce the electrode mixture to be introduced into the pores.
- a viscosity of the electrode mixture falls within a certain range in order for the electrode mixture to be moved and introduced into the pores of the unit current collector, for example, the viscosity of the electrode mixture may be selected within a range of 2,000 cP or more to 12,000 cP or less in consideration of a size of the open pores formed in the current collector and a coating method.
- an electrode mixture having a high viscosity when a coating method that includes a method of applying pressure is used, an electrode mixture having a high viscosity may be used, but when a coating method that does not include a process of applying pressure is used, an electrode mixture having a low viscosity is preferably used.
- an excessive electrode mixture which is not introduced into the open pores formed in the current collector may form a coating layer while being applied on one surface or both surfaces of the unit current collector.
- FIG. 4 is a perspective view schematically showing a state in which the unit current collector of FIG. 1 is coated with the electrode mixture
- FIG. 5 is a vertical section taken along line A-A′ of FIG. 4 .
- the viscosity of the electrode mixture may be selected within a range of 2,000 cP to 12,000 cP according to the coating method, and the electrode mixture 202 is introduced into at least a part of pores 203 . Further, when a coating amount of the electrode mixture is greater than an amount that can be introduced into the open pores formed in the current collector, the excessive electrode mixture which is not introduced into the pores forms an electrode mixture layer 204 on the outer surface of the current collector. When the unit electrodes formed with an outer surface of one side of the unit current collector coated with the electrode mixture layer are rolled, the electrode mixture layer may be uniformly formed with a thickness d.
- a thickness of the electrode mixture layer applied on the outer surface of one side of the unit current collector may be in a range of 10 ⁇ m to 100 ⁇ m, and preferably, in a range of ⁇ m to 80 ⁇ m.
- the thickness of the electrode mixture layer applied on the outer surface of one side of the unit current collector is less than 10 ⁇ m, a bonding force between adjacent unit electrodes may be weakened, which is not preferable.
- the electrode mixture layer is thicker than 100 ⁇ m, a problem that an impregnation rate of an electrolyte is lowered or the mobility of lithium ions is lowered may occur, which is also not preferable.
- a thickness of the electrode may be freely set to have a desired capacity in consideration of the thickness of the electrode current collector or the thickness of the electrode mixture layer applied on the outer surface of the current collector, and may be in a range of 50 ⁇ m to 500 ⁇ m, preferably, in a range of 100 ⁇ m to 500 ⁇ m, and more preferably, in a range of 200 ⁇ m to 450 ⁇ m.
- the thickness of the electrode is less than 50 ⁇ m, it is difficult to achieve the purpose of providing a high capacity battery, which is not preferable.
- the thickness of the electrode is greater than 500 ⁇ m, as the number of laminated unit electrodes increases, the electrode may be tilted or pushed to one side at the time of rolling after laminating or using a secondary battery, which is also not preferable.
- the electrode 300 is formed by laminating five unit electrodes 310 , 320 , 330 , 340 , and 350 in a state of being in close contact with each other, and the unit electrodes adjacent to each other in a laminated state are electrically connected through the electrode mixture.
- the unit electrodes may be bonded to each other by a binder in the electrode mixture in order to prevent a phenomenon in which the unit electrodes push against each other in the laminated state, and a bonding force between the electrode mixture and the unit current collector may be increased due to the presence of the binder.
- a general current collector having no porous structure may be interposed between laminated unit electrodes in various shapes.
- at least one of the general current collectors may be interposed in one electrode, for the general current collector, for example, an aluminum current collector may be used for as a positive electrode, and a copper foil current collector may be used as a negative electrode.
- the unit electrode may be rolled to reduce a thickness of the unit electrode by introducing the electrode mixture into the pores in the current collector, and in this case, a method in which an individual unit electrode is rolled and then laminated may be used, or the unit electrodes may be rolled in a state in which the unit electrode is laminated without individually rolling the unit electrode.
- the present disclosure provides a battery cell having a structure in which at least one of positive and negative electrodes made of the above-described electrode for a secondary battery and an electrolyte are assembled in a cell case, and since the electrolyte may be introduced into open pores of an unit current collector in the electrode for a secondary battery, an electrode mixture introduced into the open pores of the unit current collector may be impregnated into the electrolyte, thereby preventing a capacity from being reduced.
- the present disclosure also provides a method of preparing an electrode for a secondary battery, including:
- the electrode slurry moves into the pores in the unit current collector and thus the inside of the unit current collector may be filled with the electrode slurry. Since the electrode slurry is dried and the unit electrodes are rolled in a state in which the unit current collector is filled with the electrode slurry as described above, the unit electrodes may be formed with a uniform thickness.
- the present disclosure also provides a method of preparing an electrode for a secondary battery, including:
- the electrode slurry moves into the pores in the unit current collector and thus the inside of the unit current collector may be filled with the electrode slurry.
- the electrode slurry is dried in a state in which the unit current collector is filled with the electrode slurry, and the unit electrodes in which the electrode mixture layer is formed are laminated, then the laminated unit electrodes are rolled.
- the present disclosure also provides a lithium secondary battery including the electrode.
- the lithium secondary battery may consist of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt, and be prepared by inserting a porous separator between the positive electrode and the negative electrode and introducing the electrolyte, which is a conventional method known in the art.
- the electrode according to the present disclosure may be at least one selected from the positive electrode and the negative electrode. That is, both the positive electrode and the negative electrode may have a structure of the electrode according to the present disclosure, or only one of the positive electrode and the negative electrode may have the structure of the electrode according to the present disclosure, and the present disclosure is not particularly limited thereto and may be appropriately selected as necessary.
- the positive electrode for example, may be prepared by coating a unit current collector with a three-dimensional network structure of the present disclosure with a mixture slurry of a positive electrode active material, a conductive material and a binder, and then drying the mixture, a filler may be further added to the mixture as necessary.
- the conductive agent is generally added so that the conductive agent has 1 to 30 wt % based on the total weight of the slurry including the positive electrode active material.
- the conductive agent is not particularly restricted so long as the conductive agent exhibits high conductivity while the conductive agent does not induce any chemical change in a battery to which the conductive agent is applied.
- graphite such as natural graphite or artificial graphite
- carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black
- conductive fiber such as carbon fiber or metallic fiber
- metallic powder such as carbon fluoride powder, aluminum powder, or nickel powder
- conductive whisker such as zinc oxide or potassium titanate
- conductive metal oxide such as titanium oxide
- polyphenylene derivatives may be used as the conductive agent.
- the binder is a component assisting in binding between the active material and conductive agent and in binding with the current collector.
- the binder is generally added in an amount of 1 to 30 wt % based on the total weight of the mixture including the positive electrode active material.
- the binder there may be used polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinyl pyrollidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, and various copolymers.
- the filler is an optional component used to inhibit expansion of the positive electrode.
- the filler there is no particular limit to the filler so long as the filler does not cause chemical changes in a battery to which the filler is applied, and is made of a fibrous material.
- the filler there may be used olefin polymers, such as polyethylene and polypropylene; and fibrous materials, such as glass fiber and carbon fiber.
- the negative electrode for example, may be prepared by coating a unit current collector with a three-dimensional network structure of the present disclosure with a mixture slurry of a negative electrode active material, a conductive material and a binder, and then drying the mixture, a filler may be further added to the mixture, as necessary.
- the negative electrode active material for example, there may be used carbon, such as non-graphitizing carbon or a graphite-based carbon; a metal composite oxide, such as Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me′ y O z (Me: Mn, Fe, Pb, Ge; Me′: Al, B, P, Si, Group 1, 2 and 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloy; tin-based alloy; a metal oxide, such as SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , or Bi 2 O 5 ; conductive polymer, such as poly
- the positive electrode When the electrode according to the present disclosure is a positive electrode and contains a lithium transition metal oxide generally used as a positive electrode active material, the positive electrode may have a loading amount up to 700 mg/25 cm 2 or more.
- the electrode according to the present disclosure is a negative electrode and contains a carbon material generally used as a negative electrode active material, the negative electrode may have a loading amount up to 300 mg/25 cm 2 or more.
- the separator is disposed between the positive electrode and the negative electrode.
- the separator for example, an insulative thin film exhibiting high ion permeability and high mechanical strength may be used.
- the separator generally has a pore diameter of 0.01 to 10 ⁇ m and a thickness of 5 to 300 ⁇ m.
- a sheet or non-woven fabric made of olefin polymer, such as polypropylene, which exhibits chemical resistance and hydrophobicity, glass fiber, or polyethylene is used.
- a solid electrolyte such as polymer
- the solid electrolyte may function as the separator.
- the non-aqueous electrolyte containing a lithium salt may be composed of a non-aqueous electrolyte and a lithium salt.
- a non-aqueous organic solvent an organic solid electrolyte or an inorganic solid electrolyte may be used, but not limited thereto.
- non-protic organic solvents such as N-methyl-2-pyrollidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyro lactone, 1,2-dimethoxy ethane, tetrahydroxy Franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxy methane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, methyl propionate, and ethyl propionate
- non-protic organic solvents such as N-methyl-2-pyr
- organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohols, polyvinylidene fluoride, and polymers containing ionic dissociation groups.
- lithium Li
- Li lithium
- LiI LisNI 2
- Li 3 N—LiI—LiOH LiSiO 4
- LiSiO 4 —LiI—LiOH Li 2 SiS 3
- Li 4 SiO 4 Li 4 SiO 4 —LiI—LiOH
- Li 3 PO 4 Li 2 S—SiS 2 .
- the lithium salt is a material that is readily soluble in the above-mentioned non-aqueous electrolyte, and may include, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate, and imide.
- pyridine triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric triamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salts, pyrrole, 2-methoxy ethanol, aluminum trichloride, or the like may be added to the electrolytic solution.
- the non-aqueous electrolytic solution may further include halogen-containing solvents, such as carbon tetrachloride and ethylene trifluoride.
- the non-aqueous electrolytic solution may further include carbon dioxide gas, and may further include fluoro-ethylene carbonate (FEC), propene sultone (PRS), etc.
- a lithium salt such as LiPF 6 , LiClO 4 , LiBF 4 , or LiN(SO 2 CF 3 ) 2 is added to a mixed solvent of a cyclic carbonate such as ethylene carbonate (EC) or propylene carbonate (PC) which is a high-dielectric solvent and a linear carbonate such as diethyl carbonate (DEC), dimethyl carbonate (DMC) or ethylmethyl carbonate (EMC) which is a low-viscosity solvent to prepare a non-aqueous electrolyte containing a lithium salt.
- a cyclic carbonate such as ethylene carbonate (EC) or propylene carbonate (PC) which is a high-dielectric solvent
- a linear carbonate such as diethyl carbonate (DEC), dimethyl carbonate (DMC) or ethylmethyl carbonate (EMC) which is a low-viscosity solvent to prepare a non-aqueous electrolyte containing a lithium
- the present disclosure also provides a secondary battery in which an electrode assembly made of the electrode for a secondary battery is sealed inside a battery case together with an electrolyte.
- the secondary battery may be used for a battery cell which is being used as a power source of a small device.
- the secondary battery may also preferably be used as a unit cell in a battery pack, which include a plurality of battery cells, used as a power source of a middle- or large-sized device in which high temperature stability, long cycle characteristics, high rate characteristics, and the like are required and in a device including the battery pack as a power source.
- the device may be any one selected from a mobile electronics, a power tool powered by battery-based motors; an electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), etc.; an electric motorcycle including an electric bike (E-bike) and electric scooter (E-scooter); an electric golf cart; power storage systems, but is not limited thereto.
- a mobile electronics a power tool powered by battery-based motors
- an electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), etc.
- an electric motorcycle including an electric bike (E-bike) and electric scooter (E-scooter)
- E-scooter electric golf cart
- power storage systems but is not limited thereto.
- LiNi 0.55 Mn 0.30 Co 0.15 O 2 as a positive electrode active material, Denka black as a conductive material, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 96:2:2, and N-methyl pyrrolidone (NMP) was added to the mixture to prepare a slurry.
- NMP N-methyl pyrrolidone
- the slurry was applied on aluminum felt having an average pore diameter of 20 ⁇ m, an aspect ratio of 100, and a thickness of 40 ⁇ m to obtain a unit positive electrode.
- the unit positive electrode was dried in a vacuum oven at 120° C., and then two dried unit positive electrodes were laminated and rolled to prepare a positive electrode.
- a thickness of an electrode including a current collector was 75 m.
- Lithium metal 40 m was attached to a copper (Cu) foil as a counter electrode and used, and a polyolefin separator was interposed between the positive electrode and the counter electrode, and then an electrolyte in which 1M lithium hexafluorophosphate (LiPF 6 ) was dissolved in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (DEC) were mixed at a volume ratio of 50:50 was injected to prepare a pouch type half-cell.
- LiPF 6 lithium hexafluorophosphate
- EC ethylene carbonate
- DEC ethyl methyl carbonate
- a lithium secondary battery was prepared in the same manner as in Example 1, except that an average diameter of the pores of the current collector was changed as shown in Table 1.
- a lithium secondary battery was prepared in the same manner as in Example 1, except that a thickness of the aluminum felt was changed to 55 ⁇ m, and a thickness of the electrode including the current collector was adjusted to 102 ⁇ m.
- a lithium secondary battery was prepared in the same manner as in Example 5, except that an average diameter of the pores of the current collector was changed as shown in Table 1.
- LiNi 0.55 Mn 0.30 Co 0.15 O 2 as a positive electrode active material, Denka black as a conductive material, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 96:2:2, and N-methyl pyrrolidone (NMP) was added to the mixture to prepare a slurry.
- NMP N-methyl pyrrolidone
- the positive electrode slurry was applied in three layers between two pieces of aluminum and on outer surfaces thereof, followed by drying in a vacuum oven at 120° C. to prepare a positive electrode.
- a thickness of the electrode including the thickness of the current collector was 75 ⁇ m
- a thickness of the current collector was 12 ⁇ m.
- Lithium metal 40 ⁇ m was attached to a copper (Cu) foil as a counter electrode and used, and a polyolefin separator was interposed between the positive electrode and the counter electrode, and then an electrolyte in which 1M lithium hexafluorophosphate (LiPF 6 ) was dissolved in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (DEC) were mixed at a volume ratio of 50:50 was injected to prepare a pouch type half-cell.
- LiPF 6 lithium hexafluorophosphate
- EC ethylene carbonate
- DEC ethyl methyl carbonate
- a lithium secondary battery was prepared in the same manner as in Comparative Example 1, except that a thickness of the electrode including the current collector was changed as shown in Table 1.
- the experiment was carried out under the condition of 1 ⁇ 3 C ⁇ 1 ⁇ 3 C (one charge/discharge) between 4.2 V to 2.5 V for the batteries prepared in Examples and Comparative Examples.
- the lifespan characteristics were evaluated from a discharge capacity retention rate, and the discharge capacity retention rate was expressed as a percentage ratio of a capacity after repeating charging and discharging 200 times to an initial capacity. The result is shown in Table 1.
- the electrodes are high loading electrodes having the same electrode thickness.
- the lifespan characteristics in Examples 5 to 8 were better than those of Comparative Example 2 while the lifespan characteristics of the electrode were significantly lowered in Comparative Example 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
- The present disclosure relates to an electrode including a current collector with a three-dimensional network structure.
- As the technical development of and the demand for mobile devices have increased, the demand for secondary batteries as an energy source has rapidly increased. Among the secondary batteries, lithium secondary batteries, which have high energy density, high operating voltage, a long cycle lifespan, and a low self-discharge rate, have been commercially available and widely used.
- Further, in line with growing concerns about environmental issues, research into electric vehicles (EVs), hybrid electric vehicles (HEVs), which are able to replace vehicles using a fossil fuel such as gasoline vehicles, diesel vehicles, and the like, has been actively conducted. The fossil fuel is one of the major causes of air pollution. As a power source for the EVs and the HEVs, interest in research using lithium secondary batteries, which have high energy density and discharge voltage, and practical application thereof is increasing.
- Further, according to development trends of multifunctional miniaturized wearable devices and portable devices, a need for miniaturization and thinning of a secondary battery itself is increasing. In addition, in order to enable the wearable devices and portable devices to be used for a long time, efforts to increase a capacity of the secondary battery have been made in various ways.
- A conventional electrode is prepared by applying a slurry in which an electrode active material, a binder and a conductive material are appropriately mixed, on positive and negative electrode current collectors, followed by a heat treatment process. That is, the conventional electrode has a structure in which an electrode mixture layer containing the binder and the conductive material is formed on the positive and negative electrode current collectors.
- In this structure, when a thickness of the electrode mixture layer is increased to increase a capacity of a battery, electrons generated in an upper portion of an active material do not rapidly move to a current collector as a distance between the current collector and the upper portion of the active material is increased, and also, a movement speed of lithium ions generated in an electrode is limited as moving paths thereof become longer, and thus resistance in an entire electrode is greatly increased. In addition, since an increase in the thickness of the electrode mixture layer may reduce an impregnation rate of an electrolyte with respect to an active material layer, a problem in which the resistance of the electrode is increased may become bigger.
- In addition, since the binder contained in the electrode mixture layer is relatively light, the binder may not be uniformly dispersed in the electrode mixture layer, and thus the binder may be separated from a surface of the electrode mixture layer. In particular, the thicker the electrode mixture layer, the greater a separation of the binder from the electrode material mixture layer, so that it is impossible to avoid deterioration of cycle characteristics and the lifespan of the battery due to a separation of the active material and the current collector, wherein the separation is caused by a volume change that occurs during a charging and discharging process of the battery.
- In order to solve these problems, conventionally, a technique in which an electrode mixture layer prepared by varying porosity, a type of an electrode active material, or the like is applied in multiple layers has been developed. However, even in this structure, an amount of loading is limited, desired electronic conductivity and ion conductivity cannot be obtained, there is a functional problem in which electrode strength is decreased due to an increase in a thickness of an electrode mixture layer, and limitations on miniaturization and thinning of a battery which are required in the future cannot be overcome.
- Therefore, in order to prepare a high loading electrode having an improved energy density, there is a high need for a technique for an electrode having a novel structure capable of solving the above problems.
- The present disclosure is provided to solve the above-described problems of the related art and technical problems which have been identified in the past.
- The inventors of the present application have conducted intense research and various experiments and have confirmed that, as will be described below, when an electrode for a secondary battery consisting of unit electrodes having a structure in which an electrode mixture containing an electrode active material is introduced into pores of a unit current collector with a three-dimensional network structure is used, resistance inside the electrode is small even when a loading amount of the electrode mixture is increased, and separation of an electrode mixture layer may be prevented, thereby completing the present disclosure.
- The present disclosure provides an electrode for a secondary battery in which two or more unit electrodes are laminated in a state of being in close contact with each other, and mutually adjacent unit electrodes are electrically connected through an electrode mixture, wherein in each of the unit electrodes, the electrode mixture containing an electrode active material is introduced into pores of a unit current collector with a three-dimensional network structure.
- According to an exemplary embodiment of the present disclosure, the electrode may have a structure in which 2 to 10 unit electrodes are laminated.
- According to an exemplary embodiment of the present disclosure, the unit current collector with a three-dimensional network structure may be conductive metal felt.
- According to an exemplary embodiment of the present disclosure, an average thickness of the unit current collector with a three-dimensional network structure may be in a range of 30 μm to 400 μm.
- According to an exemplary embodiment of the present disclosure, an average diameter of pores in the unit current collector with a three-dimensional network structure may be in a range of 1 μm to 100 μm.
- According to an exemplary embodiment of the present disclosure, a unit current collector with a three-dimensional network structure and an electrode mixture may be mixed in the unit electrodes.
- According to an exemplary embodiment of the present disclosure, a thickness of an electrode mixture layer applied on an outer surface of one side of the unit current collector may be in a range of 10 μm to 100 μm.
- According to an exemplary embodiment of the present disclosure, a thickness of the electrode may be in a range of 50 μm to 500 μm.
- According to one exemplary embodiment of the present disclosure, the unit electrodes may be mutually bonded by a binder in an electrode mixture.
- According to an exemplary embodiment of the present disclosure, a general current collector may be additionally interposed between the unit electrodes.
- The present disclosure provides a battery cell consisting of the electrode for a secondary battery.
- According to an exemplary embodiment of the present disclosure, the electrode for a secondary battery may be prepared by a method including: (a) a process of preparing a unit current collector with a three-dimensional network structure and an electrode slurry; (b) a process of coating the unit current collector with the electrode slurry; (c) a process of drying the electrode slurry to form an electrode mixture layer; (d) a process of rolling unit electrodes; and (e) a process of laminating the unit electrodes.
- According to another exemplary embodiment of the present disclosure, the electrode for a secondary battery may be prepared by a method including: (a) a process of preparing a unit current collector with a three-dimensional network structure and an electrode slurry; (b) a process of coating the unit current collector with the electrode slurry; (c) a process of drying the electrode slurry to form an electrode mixture layer; (d) a process of laminating unit electrodes; and (e) a process of rolling the laminated unit electrodes.
- As described above, an electrode for a secondary battery according to the present disclosure has a structure in which unit electrodes having a structure in which an electrode mixture is impregnated and applied on a unit current collector with a three-dimensional network structure are laminated, and the unit electrodes are connected to each other through an electrode mixture. A structure in which the electrode mixture containing an electrode active material is moved into pores formed in the unit current collector to fill the inside of the unit current collector can alleviate an increase in an overall thickness of an electrode and shorten a physical distance between the current collector and the electrode active material. Accordingly, internal resistance due to a long moving path of lithium ions can be prevented from increasing even when a loading amount of the electrode mixture is increased, and thus a high capacity battery as compared with a case in which a general current collector having the same thickness is used can be provided.
- Further, even when the loading amount of the electrode mixture is increased, the distance between the current collector and the electrode active material is short, which enables the achievement of a battery having both a high output and high capacity.
- In addition, the inside of the current collector is filled with the electrode mixture containing the electrode active material, and finally, the binder is evenly dispersed in the electrode, and thus separation of the electrode active material can be prevented, resulting in improved performance and an extended lifespan of the electrode.
- In addition, since conductive metal felt is used as a current collector, the electrode of a secondary battery according to the present disclosure has an advantage of being suitable for use in a flexible battery due to the flexibility of the metal felt itself.
-
FIG. 1 is a perspective view schematically showing a unit current collector according to an embodiment of the present disclosure. -
FIG. 2 is a perspective view schematically showing an electrode in which the unit current collectors ofFIG. 1 are laminated. -
FIG. 3 is an enlarged view of a part ofFIG. 2 and is a perspective view showing that an electrode mixture is introduced into pores of the unit current collector. -
FIG. 4 is a perspective view schematically showing a state in which the unit current collector ofFIG. 1 is coated with the electrode mixture. -
FIG. 5 is a vertical section taken along line A-A′ ofFIG. 4 . -
FIG. 6 is a vertical section of an electrode in which the unit current collectors ofFIG. 4 are laminated. - The present disclosure relates to an electrode for a secondary battery in which two or more unit electrodes are laminated in a state of being in close contact with each other, and mutually adjacent unit electrodes are electrically connected through an electrode mixture, wherein in each of the unit electrodes, the electrode mixture containing an electrode active material is introduced into pores of a unit current collector with a three-dimensional network structure.
-
FIG. 1 is a perspective view schematically showing a unit current collector according to an embodiment of the present disclosure, andFIG. 2 is a perspective view schematically showing an electrode in which the unit current collectors ofFIG. 1 are laminated. - Referring to
FIGS. 1, 2, and 3 , aunit electrode 10 includes a unitcurrent collector 11 with a three-dimensional networkstructure having pores 13, thepores 13 are formed as open pores passing through an outer surface and the inside of the unit current collector, and an electrode mixture containing an electrode active material is permeated between the pores. - As described above, an electrode for a secondary battery of the present disclosure has a structure in which open pores are formed in a unit current collector itself, and thus when an electrode mixture is applied on the unit current collector, the electrode mixture containing an electrode active material flows into the open pores. That is, the electrode mixture containing the electrode active material is not only applied on the unit current collector but also fills the pores in a current collector. Accordingly, even when the same amount of the electrode mixture is loaded, it is possible to prevent an increase in total thickness of the electrode compared with an electrode in which a coating layer is formed only on a current collector. In addition, it is possible to prevent the internal resistance from increasing since the distance between the outermost portion of an electrode mixture layer and the surface of the current collector is not increased.
- Further, the electrode mixture layer containing the electrode active material permeates into the unit current collector so that adhesion between the current collector and the electrode active material is increased, and the inside of the current collector is filled with the electrode mixture containing the electrode active material so that a binder is uniformly dispersed in the electrode. Thus, it is possible to prevent the electrode active material from being separated during repetitive charging and discharging, thereby improving the performance of the electrode, extending the lifespan thereof, and preventing an impregnation rate of an electrolyte from being reduced because a thick mixture layer is formed.
- An electrode for a secondary battery according to the present disclosure has a structure in which unit electrodes are electrically connected to adjacent unit electrodes through an electrode mixture in a state in which the unit electrodes are laminated. Further, in the electrode for a secondary battery according to the present disclosure, since an increase in a thickness of the electrode is small even when the electrode mixture is applied, in order to provide a secondary battery with a high capacity, the electrode may have a structure in which 2 to 10 unit electrodes are laminated, and preferably, may have a structure in which 4 to 10 unit electrodes are laminated.
- Referring to
FIG. 2 , anelectrode 100 of the present disclosure is formed by laminating the plurality ofunit electrodes 10, and thus when 2 to 10 unit current collectors having an average thickness of 30 μm to 400 μm are laminated, the total thickness of the electrodes is formed to be 50 μm to 500 μm. - In one specific example, when considering that the unit current collector has a structure in which open pores are formed, strength may be weakened, and thus the unit current collector may be formed thicker than a general current collector. For example, an average thickness of the unit current collectors may be in a range of 30 μm to 400 μm, preferably, in a range of 30 μm to 350 μm, and more preferably, in a range of 40 μm to 300 μm.
- When the average thickness of the unit current collectors is less than 30 μm, the strength of the current collector is significantly lowered, which is not preferable. When the average thickness of the unit current collector is greater than 400 μm, it is difficult for the electrode mixture layer to penetrate into the current collector, which is also not preferable.
- The unit current collector is preferably made of a material having high electrical conductivity, for example, conductive metal felt with a three-dimensional network structure. Since the electrode of the present disclosure uses conductive metal felt as a current collector, there is an advantage of being suitable for use in a flexible battery due to the flexibility of the metal felt itself.
- The material having high electrical conductivity, while not being particularly limited as long as the material does not have a chemical effect by reacting with an electrode mixture, may be, for example, at least one selected from the group consisting of aluminum (Al), magnesium (Mg), iron (Fe), nickel (Ni), chromium (Cr), copper (Cu), stainless steel, or an alloy thereof, and specifically, may be varied depending on a potential of an electrode and constituent components of an electrode mixture.
- An aspect ratio of metal fibers constituting the conductive metal felt may be in a range of 10 to 1,000, preferably, in a range of 10 to 500, and more preferably, in a range of 30 to 150.
- Although the
pores 13 may be formed in various sizes in the unitcurrent collector 11, an average diameter of thepores 13 may be in a range of 1 μm to 100 μm, preferably, in a range of 10 μm to 90 μm, and more preferably, in a range of 20 μm to 80 μm, in consideration of particle diameters of an electrode active material, a conductive agent, and a binder contained in the electrode mixture. - When the average diameter of the open pores is less than 1 μm, it is difficult for the electrode mixture having a particle size greater than 1 μm to move into the pores, and thus a particle diameter range of an applicable electrode active material may be limited, which is not preferable. When the average diameter of the open pores is greater than 100 μm, the strength of the current collector may be weakened, which is also not preferable.
- Further, the open pores may have a structure in which an electrode mixture containing an electrode active material is introduced into at least a part of the open pores, and thus a process of rolling the electrode slurry after coating the unit current collector with the electrode slurry may be included to induce the electrode mixture to be introduced into the pores.
- In a case in which the unit current collector with a three-dimensional network structure is coated with the electrode mixture, it is preferable that a viscosity of the electrode mixture falls within a certain range in order for the electrode mixture to be moved and introduced into the pores of the unit current collector, for example, the viscosity of the electrode mixture may be selected within a range of 2,000 cP or more to 12,000 cP or less in consideration of a size of the open pores formed in the current collector and a coating method.
- Specifically, when a coating method that includes a method of applying pressure is used, an electrode mixture having a high viscosity may be used, but when a coating method that does not include a process of applying pressure is used, an electrode mixture having a low viscosity is preferably used.
- Meanwhile, when the unit current collector is coated with the electrode mixture, an excessive electrode mixture which is not introduced into the open pores formed in the current collector may form a coating layer while being applied on one surface or both surfaces of the unit current collector.
-
FIG. 4 is a perspective view schematically showing a state in which the unit current collector ofFIG. 1 is coated with the electrode mixture, andFIG. 5 is a vertical section taken along line A-A′ ofFIG. 4 . - Referring to
FIGS. 4 and 5 , since a unitcurrent collector 201 is coated with anelectrode mixture 202, the viscosity of the electrode mixture may be selected within a range of 2,000 cP to 12,000 cP according to the coating method, and theelectrode mixture 202 is introduced into at least a part ofpores 203. Further, when a coating amount of the electrode mixture is greater than an amount that can be introduced into the open pores formed in the current collector, the excessive electrode mixture which is not introduced into the pores forms anelectrode mixture layer 204 on the outer surface of the current collector. When the unit electrodes formed with an outer surface of one side of the unit current collector coated with the electrode mixture layer are rolled, the electrode mixture layer may be uniformly formed with a thickness d. - A thickness of the electrode mixture layer applied on the outer surface of one side of the unit current collector may be in a range of 10 μm to 100 μm, and preferably, in a range of μm to 80 μm. When the thickness of the electrode mixture layer applied on the outer surface of one side of the unit current collector is less than 10 μm, a bonding force between adjacent unit electrodes may be weakened, which is not preferable. When the electrode mixture layer is thicker than 100 μm, a problem that an impregnation rate of an electrolyte is lowered or the mobility of lithium ions is lowered may occur, which is also not preferable.
- As described above, a plurality of unit electrodes formed by applying the electrode mixture on the electrode current collector in which the open pores are formed are laminated to form an electrode. Here, a thickness of the electrode may be freely set to have a desired capacity in consideration of the thickness of the electrode current collector or the thickness of the electrode mixture layer applied on the outer surface of the current collector, and may be in a range of 50 μm to 500 μm, preferably, in a range of 100 μm to 500 μm, and more preferably, in a range of 200 μm to 450 μm.
- When the thickness of the electrode is less than 50 μm, it is difficult to achieve the purpose of providing a high capacity battery, which is not preferable. When the thickness of the electrode is greater than 500 μm, as the number of laminated unit electrodes increases, the electrode may be tilted or pushed to one side at the time of rolling after laminating or using a secondary battery, which is also not preferable.
- Referring to
FIG. 6 , theelectrode 300 is formed by laminating fiveunit electrodes - The unit electrodes may be bonded to each other by a binder in the electrode mixture in order to prevent a phenomenon in which the unit electrodes push against each other in the laminated state, and a bonding force between the electrode mixture and the unit current collector may be increased due to the presence of the binder.
- In order to prevent a phenomenon in which electrical conductivity is lowered in a state in which individually prepared unit electrodes are laminated, a general current collector having no porous structure may be interposed between laminated unit electrodes in various shapes. Here, at least one of the general current collectors may be interposed in one electrode, for the general current collector, for example, an aluminum current collector may be used for as a positive electrode, and a copper foil current collector may be used as a negative electrode.
- In the
electrode 300 according to the present disclosure, the unit electrode may be rolled to reduce a thickness of the unit electrode by introducing the electrode mixture into the pores in the current collector, and in this case, a method in which an individual unit electrode is rolled and then laminated may be used, or the unit electrodes may be rolled in a state in which the unit electrode is laminated without individually rolling the unit electrode. - The present disclosure provides a battery cell having a structure in which at least one of positive and negative electrodes made of the above-described electrode for a secondary battery and an electrolyte are assembled in a cell case, and since the electrolyte may be introduced into open pores of an unit current collector in the electrode for a secondary battery, an electrode mixture introduced into the open pores of the unit current collector may be impregnated into the electrolyte, thereby preventing a capacity from being reduced.
- The present disclosure also provides a method of preparing an electrode for a secondary battery, including:
- (a) a process of preparing a unit current collector with a three-dimensional network structure and an electrode slurry;
- (b) a process of coating the unit current collector with the electrode slurry;
- (c) a process of drying the electrode slurry to form an electrode mixture layer;
- (d) a process of rolling unit electrodes; and
- (e) a process of laminating the unit electrodes.
- As described above, in the electrode for a secondary battery, since the unit current collector having a porous structure is coated with the electrode slurry, the electrode slurry moves into the pores in the unit current collector and thus the inside of the unit current collector may be filled with the electrode slurry. Since the electrode slurry is dried and the unit electrodes are rolled in a state in which the unit current collector is filled with the electrode slurry as described above, the unit electrodes may be formed with a uniform thickness.
- The present disclosure also provides a method of preparing an electrode for a secondary battery, including:
- (a) a process of preparing a unit current collector with a three-dimensional network structure and an electrode slurry;
- (b) a process of coating the unit current collector with the electrode slurry;
- (c) a process of drying the electrode slurry to form an electrode mixture layer;
- (d) a process of laminating unit electrodes; and
- (e) a process of rolling the laminated unit electrodes.
- As described above, in the electrode for a secondary battery, since the unit current collector having a porous structure is coated with the electrode slurry, the electrode slurry moves into the pores in the unit current collector and thus the inside of the unit current collector may be filled with the electrode slurry. The electrode slurry is dried in a state in which the unit current collector is filled with the electrode slurry, and the unit electrodes in which the electrode mixture layer is formed are laminated, then the laminated unit electrodes are rolled.
- In this way, a process of rolling individual unit electrodes is omitted, and rolling is performed on the laminated unit electrodes, and thus the efficiency of a preparing process may be improved.
- The present disclosure also provides a lithium secondary battery including the electrode.
- The lithium secondary battery may consist of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt, and be prepared by inserting a porous separator between the positive electrode and the negative electrode and introducing the electrolyte, which is a conventional method known in the art.
- The electrode according to the present disclosure may be at least one selected from the positive electrode and the negative electrode. That is, both the positive electrode and the negative electrode may have a structure of the electrode according to the present disclosure, or only one of the positive electrode and the negative electrode may have the structure of the electrode according to the present disclosure, and the present disclosure is not particularly limited thereto and may be appropriately selected as necessary.
- Specifically, the positive electrode, for example, may be prepared by coating a unit current collector with a three-dimensional network structure of the present disclosure with a mixture slurry of a positive electrode active material, a conductive material and a binder, and then drying the mixture, a filler may be further added to the mixture as necessary.
- Examples of the positive electrode active material may include, for example, a layered compound of lithium cobalt oxide (LiCoO2), lithium nickel oxide (LiNiO2), etc. or a substituted compound with one or more transition metals; lithium manganese oxide such as Li1+xMn2-xO4 (in which x is 0 to 0.33), LiMnO3, LiMn2O3, LiMnO2, etc.; lithium copper oxide (Li2CuO2); vanadium oxide such as LiV3O8, LiFe3O4, V2O5, CuZV2O7, etc.; Ni site-type lithium nickel oxide represented by Chemical Formula of LiNi1-xMxO2 (in which, M=Co, Mn, Al, Cu, Fe, Mg, B or Ga, x=0.01 to 0.3); lithium manganese complex oxide represented by Chemical Formula LiMn2-xMxO2 (in which M=Co, Ni, Fe, Cr, Zn or Ta, and x=0.01 to 0.1) or Li2Mn3MO8 (in which, M=Fe, Co, Ni, Cu or Zn); spinel-structured lithium manganese composite oxide represented by LiNixMn2-xO4; LiMn2O4 in which a portion of Li is substituted with alkaline earth metal ions; a disulfide compound; Fe2 (MoO4)3, and the like. However, the present disclosure may not be limited thereof.
- The conductive agent is generally added so that the conductive agent has 1 to 30 wt % based on the total weight of the slurry including the positive electrode active material. The conductive agent is not particularly restricted so long as the conductive agent exhibits high conductivity while the conductive agent does not induce any chemical change in a battery to which the conductive agent is applied. For example, graphite, such as natural graphite or artificial graphite; carbon black, such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black; conductive fiber, such as carbon fiber or metallic fiber; metallic powder, such as carbon fluoride powder, aluminum powder, or nickel powder; conductive whisker, such as zinc oxide or potassium titanate; conductive metal oxide, such as titanium oxide; or polyphenylene derivatives may be used as the conductive agent.
- The binder is a component assisting in binding between the active material and conductive agent and in binding with the current collector. The binder is generally added in an amount of 1 to 30 wt % based on the total weight of the mixture including the positive electrode active material. As examples of the binder, there may be used polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinyl pyrollidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, and various copolymers.
- The filler is an optional component used to inhibit expansion of the positive electrode. There is no particular limit to the filler so long as the filler does not cause chemical changes in a battery to which the filler is applied, and is made of a fibrous material. As examples of the filler, there may be used olefin polymers, such as polyethylene and polypropylene; and fibrous materials, such as glass fiber and carbon fiber.
- Specifically, the negative electrode, for example, may be prepared by coating a unit current collector with a three-dimensional network structure of the present disclosure with a mixture slurry of a negative electrode active material, a conductive material and a binder, and then drying the mixture, a filler may be further added to the mixture, as necessary.
- As the negative electrode active material, for example, there may be used carbon, such as non-graphitizing carbon or a graphite-based carbon; a metal composite oxide, such as LixFe2O3(0≤x≤1), LixWO2 (0≤x≤1), SnxMe1-xMe′yOz (Me: Mn, Fe, Pb, Ge; Me′: Al, B, P, Si, Group 1, 2 and 3 elements of the periodic table, halogen; 0≤x≤1; 1≤y≤3; 1≤z≤8); lithium metal; lithium alloy; silicon-based alloy; tin-based alloy; a metal oxide, such as SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, or Bi2O5; conductive polymer, such as polyacetylene; or a Li—Co—Ni based material; titanium oxide; lithium titanium oxide, etc.
- When the electrode according to the present disclosure is a positive electrode and contains a lithium transition metal oxide generally used as a positive electrode active material, the positive electrode may have a loading amount up to 700 mg/25 cm2 or more. When the electrode according to the present disclosure is a negative electrode and contains a carbon material generally used as a negative electrode active material, the negative electrode may have a loading amount up to 300 mg/25 cm2 or more.
- Other components of the secondary battery according to the present disclosure will be described below.
- The separator is disposed between the positive electrode and the negative electrode. As the separator, for example, an insulative thin film exhibiting high ion permeability and high mechanical strength may be used. The separator generally has a pore diameter of 0.01 to 10 μm and a thickness of 5 to 300 μm. As the material for the separator, for example, a sheet or non-woven fabric made of olefin polymer, such as polypropylene, which exhibits chemical resistance and hydrophobicity, glass fiber, or polyethylene is used. In a case in which a solid electrolyte, such as polymer, is used as an electrolyte, the solid electrolyte may function as the separator.
- The non-aqueous electrolyte containing a lithium salt may be composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous organic solvent, an organic solid electrolyte or an inorganic solid electrolyte may be used, but not limited thereto.
- As examples of the non-aqueous organic solvent, mention may be made of non-protic organic solvents, such as N-methyl-2-pyrollidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyro lactone, 1,2-dimethoxy ethane, tetrahydroxy Franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxy methane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, methyl propionate, and ethyl propionate.
- As examples of the organic solid electrolyte, mention may be made of polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohols, polyvinylidene fluoride, and polymers containing ionic dissociation groups.
- As examples of the inorganic solid electrolyte, mention may be made of nitrides, halides, and sulphates of lithium (Li), such as Li3N, LiI, LisNI2, Li3N—LiI—LiOH, LiSiO4, LiSiO4—LiI—LiOH, Li2SiS3, Li4SiO4, Li4SiO4—LiI—LiOH, and Li3PO4—Li2S—SiS2.
- The lithium salt is a material that is readily soluble in the above-mentioned non-aqueous electrolyte, and may include, for example, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate, and imide.
- In addition, in order to improve charge and discharge characteristics and flame retardancy, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric triamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salts, pyrrole, 2-methoxy ethanol, aluminum trichloride, or the like may be added to the electrolytic solution. According to circumstances, in order to impart incombustibility, the non-aqueous electrolytic solution may further include halogen-containing solvents, such as carbon tetrachloride and ethylene trifluoride. Furthermore, in order to improve high-temperature storage characteristics, the non-aqueous electrolytic solution may further include carbon dioxide gas, and may further include fluoro-ethylene carbonate (FEC), propene sultone (PRS), etc.
- In one specific example, a lithium salt such as LiPF6, LiClO4, LiBF4, or LiN(SO2CF3)2 is added to a mixed solvent of a cyclic carbonate such as ethylene carbonate (EC) or propylene carbonate (PC) which is a high-dielectric solvent and a linear carbonate such as diethyl carbonate (DEC), dimethyl carbonate (DMC) or ethylmethyl carbonate (EMC) which is a low-viscosity solvent to prepare a non-aqueous electrolyte containing a lithium salt.
- The present disclosure also provides a secondary battery in which an electrode assembly made of the electrode for a secondary battery is sealed inside a battery case together with an electrolyte. Here, the secondary battery may be used for a battery cell which is being used as a power source of a small device. The secondary battery may also preferably be used as a unit cell in a battery pack, which include a plurality of battery cells, used as a power source of a middle- or large-sized device in which high temperature stability, long cycle characteristics, high rate characteristics, and the like are required and in a device including the battery pack as a power source.
- The device may be any one selected from a mobile electronics, a power tool powered by battery-based motors; an electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), etc.; an electric motorcycle including an electric bike (E-bike) and electric scooter (E-scooter); an electric golf cart; power storage systems, but is not limited thereto.
- Since the above-described devices or apparatus are well known in the art, a detailed description thereof will be omitted herein.
- Hereinafter, the present disclosure will be described with reference to Examples, but the following Examples are intended to illustrate the present disclosure and the scope of the present disclosure is not limited thereto.
- Preparation of Positive Electrode
- LiNi0.55Mn0.30Co0.15O2 as a positive electrode active material, Denka black as a conductive material, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 96:2:2, and N-methyl pyrrolidone (NMP) was added to the mixture to prepare a slurry.
- The slurry was applied on aluminum felt having an average pore diameter of 20 μm, an aspect ratio of 100, and a thickness of 40 μm to obtain a unit positive electrode. The unit positive electrode was dried in a vacuum oven at 120° C., and then two dried unit positive electrodes were laminated and rolled to prepare a positive electrode. Here, a thickness of an electrode including a current collector was 75 m.
- Preparation of Lithium Secondary Battery
- Lithium metal (40 m) was attached to a copper (Cu) foil as a counter electrode and used, and a polyolefin separator was interposed between the positive electrode and the counter electrode, and then an electrolyte in which 1M lithium hexafluorophosphate (LiPF6) was dissolved in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (DEC) were mixed at a volume ratio of 50:50 was injected to prepare a pouch type half-cell.
- A lithium secondary battery was prepared in the same manner as in Example 1, except that an average diameter of the pores of the current collector was changed as shown in Table 1.
- A lithium secondary battery was prepared in the same manner as in Example 1, except that a thickness of the aluminum felt was changed to 55 μm, and a thickness of the electrode including the current collector was adjusted to 102 μm.
- A lithium secondary battery was prepared in the same manner as in Example 5, except that an average diameter of the pores of the current collector was changed as shown in Table 1.
- Preparation of Positive Electrode
- LiNi0.55Mn0.30Co0.15O2 as a positive electrode active material, Denka black as a conductive material, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 96:2:2, and N-methyl pyrrolidone (NMP) was added to the mixture to prepare a slurry. The positive electrode slurry was applied in three layers between two pieces of aluminum and on outer surfaces thereof, followed by drying in a vacuum oven at 120° C. to prepare a positive electrode. Here, a thickness of the electrode including the thickness of the current collector was 75 μm, and a thickness of the current collector was 12 μm.
- Preparation of Lithium Secondary Battery
- Lithium metal (40 μm) was attached to a copper (Cu) foil as a counter electrode and used, and a polyolefin separator was interposed between the positive electrode and the counter electrode, and then an electrolyte in which 1M lithium hexafluorophosphate (LiPF6) was dissolved in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (DEC) were mixed at a volume ratio of 50:50 was injected to prepare a pouch type half-cell.
- A lithium secondary battery was prepared in the same manner as in Comparative Example 1, except that a thickness of the electrode including the current collector was changed as shown in Table 1.
- In order to evaluate lifespan characteristics of the electrode according to the present disclosure, the following experiment was carried out.
- The experiment was carried out under the condition of ⅓ C↔⅓ C (one charge/discharge) between 4.2 V to 2.5 V for the batteries prepared in Examples and Comparative Examples. The lifespan characteristics were evaluated from a discharge capacity retention rate, and the discharge capacity retention rate was expressed as a percentage ratio of a capacity after repeating charging and discharging 200 times to an initial capacity. The result is shown in Table 1.
-
TABLE 1 Thickness of Lifespan Characteristics Average Electrode Discharge Diameter of including Initial Capacity Pores of Current Discharge Capacity After Retention Rate Current Collector Capacity 200 cycles at 200 Times Collector (μm) (μm) (mAh/cm2) (mAh/cm2) (%) Example 1 20 75 3.431 3.163 92.2 Example 2 30 75 3.864 3.578 92.6 Example 3 50 75 3.715 3.444 92.7 Example 4 80 75 3.449 3.197 92.7 Example 5 20 102 3.313 2.932 88.5 Example 6 30 102 3.753 3.318 88.4 Example 7 50 102 3.623 3.224 89.0 Example 8 80 102 3.330 2.957 88.8 Comparative — 75 3.643 3.356 92.1 Example 1 Comparative — 102 3.446 2.939 85.3 Example 2 - Referring to Table 1, it can be confirmed that the batteries of Examples 1 to 4 have similar or better lifespan characteristics than the battery of Comparative Example 1, even though the thickness of the electrode was the same in Examples 1 to 4 and Comparative Example 1.
- In addition, the phenomenon that makes such a difference becomes clearer in high loading. In Examples 5 to 8 and Comparative Example 2, the electrodes are high loading electrodes having the same electrode thickness. Here, it was confirmed that the lifespan characteristics in Examples 5 to 8 were better than those of Comparative Example 2 while the lifespan characteristics of the electrode were significantly lowered in Comparative Example 2.
- This is because not only because a physical distance between the electrode current collector and the active material of the electrode of the present disclosure is decreased as compared with the electrode of Comparative Example, a reaction distance is shortened, thereby decreasing resistance in the electrode, but also a three-dimensional network structure serves as a support for supporting the active material layer, thereby reducing the possibility of separation of the active material layer and the current collector in the electrode.
- It should be understood by those skilled in the art that various changes may be made without departing from the spirit and scope of the present disclosure.
Claims (14)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160116187 | 2016-09-09 | ||
KR10-2016-0116187 | 2016-09-09 | ||
KR1020170112505A KR102098154B1 (en) | 2016-09-09 | 2017-09-04 | Electrode Comprising Current Collector Having a 3Dimension Network Structure |
KR10-2017-0112505 | 2017-09-04 | ||
PCT/KR2017/009672 WO2018048166A1 (en) | 2016-09-09 | 2017-09-05 | Electrode comprising electrode current collector of three-dimensional network structure |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180337408A1 true US20180337408A1 (en) | 2018-11-22 |
Family
ID=61910935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/774,192 Pending US20180337408A1 (en) | 2016-09-09 | 2017-09-05 | Electrode including electrode current collector with three-dimensional network structure |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180337408A1 (en) |
EP (1) | EP3370281B1 (en) |
JP (1) | JP6723370B2 (en) |
KR (1) | KR102098154B1 (en) |
CN (1) | CN108292736B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7426039B2 (en) * | 2019-08-20 | 2024-02-01 | 国立研究開発法人産業技術総合研究所 | Current collector for use in electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and electrodes for non-aqueous electrolyte secondary batteries |
KR102176482B1 (en) | 2020-08-28 | 2020-11-09 | 한국자동차연구원 | Manufacturing method of three dimensional current collector for lithium secondary battery of cathode and cathode using the same |
KR102397790B1 (en) | 2020-10-13 | 2022-05-13 | 한국자동차연구원 | Manufacturing method of three dimensional current collector for lithium secondary battery of cathode and cathode using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030068554A1 (en) * | 2001-09-28 | 2003-04-10 | Yasushi Kitazawa | Alkaline storage battery and process for producing the same |
US20150017550A1 (en) * | 2012-03-22 | 2015-01-15 | Sumitomo Electric Industries, Ltd. | Metal three-dimensional network porous body for collectors, electrode, and non-aqueous electrolyte secondary battery |
US20160133939A1 (en) * | 2014-11-06 | 2016-05-12 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3738864B2 (en) * | 1996-11-29 | 2006-01-25 | 株式会社ユアサコーポレーション | Nickel electrode for alkaline storage battery |
JP2001155739A (en) * | 1999-11-24 | 2001-06-08 | Nissha Printing Co Ltd | Positive electrode for secondary cell, and secondary cell |
FR2935545B1 (en) * | 2008-08-29 | 2011-06-03 | Saft Groupe Sa | LITHIUM OXIDE FOR POSITIVE ELECTRODE OF ALKALINE BATTERY |
KR101276336B1 (en) * | 2010-05-24 | 2013-06-18 | 주식회사 아모텍 | Lithium Ion Capacitor Electrode Using Fibrous Current Collector Comprising Carbon Nano Fiber, Method of Manufacturing the Same, and Lithium Ion Capacitor Using the Same |
KR101088073B1 (en) * | 2010-10-16 | 2011-12-01 | 주식회사 샤인 | Battery having an electrode structure including metal long fibers and method for manufacturing same |
JP2012160320A (en) * | 2011-01-31 | 2012-08-23 | Nissan Motor Co Ltd | Electrode, electric device, and method for manufacturing electrode |
JP2012186142A (en) * | 2011-02-18 | 2012-09-27 | Sumitomo Electric Ind Ltd | Electrode for electrochemical device and method for manufacturing the same |
KR101809066B1 (en) * | 2011-02-18 | 2018-01-18 | 스미토모덴키고교가부시키가이샤 | Three-dimensional porous aluminum mesh, electrode using same, nonaqueous-electrolyte battery using said electrode, and capacitor and lithium-ion capacitor using nonaqueous liquid electrolyte |
KR20120111508A (en) * | 2011-04-01 | 2012-10-10 | 주식회사 엘지화학 | Electrode current collector for secondary battery and lithium secondary battery comprising the same |
KR101806547B1 (en) * | 2011-04-06 | 2018-01-10 | 주식회사 제낙스 | Battery having electrode structure with metallic fibers and method of fabricating the electrode structure |
KR101375158B1 (en) * | 2011-11-17 | 2014-03-17 | 주식회사 샤인 | Electrode assembly, manufacturing the samem, and method of charging and discharging a battery |
JPWO2013140942A1 (en) * | 2012-03-22 | 2015-08-03 | 住友電気工業株式会社 | All-solid lithium secondary battery |
KR101746876B1 (en) * | 2012-05-08 | 2017-06-13 | 삼성에스디아이 주식회사 | Electrode plate, secondary battery having the same, and manufacturing for the electrode plate |
KR101582376B1 (en) * | 2013-06-07 | 2016-01-04 | 주식회사 제낙스 | Electrode, method of fabricating the same and battery using the same |
KR20140147475A (en) * | 2013-06-20 | 2014-12-30 | 에스케이이노베이션 주식회사 | Sodium Secondary Battery having Graphite Felt as a Current Collector |
WO2015020338A1 (en) * | 2013-08-05 | 2015-02-12 | 주식회사 아모그린텍 | Flexible current collector, method for manufacturing same, and secondary battery using same |
KR20150062617A (en) * | 2013-11-29 | 2015-06-08 | 포스코강판 주식회사 | Work roll manufacturing apparatus and surface treatment apparatus using the same |
KR101717220B1 (en) * | 2014-05-09 | 2017-03-16 | 주식회사 엘지화학 | Electrode for Secondary Battery Having Current Collector |
-
2017
- 2017-09-04 KR KR1020170112505A patent/KR102098154B1/en active Active
- 2017-09-05 JP JP2018547249A patent/JP6723370B2/en active Active
- 2017-09-05 EP EP17849050.4A patent/EP3370281B1/en active Active
- 2017-09-05 US US15/774,192 patent/US20180337408A1/en active Pending
- 2017-09-05 CN CN201780004251.9A patent/CN108292736B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030068554A1 (en) * | 2001-09-28 | 2003-04-10 | Yasushi Kitazawa | Alkaline storage battery and process for producing the same |
US20150017550A1 (en) * | 2012-03-22 | 2015-01-15 | Sumitomo Electric Industries, Ltd. | Metal three-dimensional network porous body for collectors, electrode, and non-aqueous electrolyte secondary battery |
US20160133939A1 (en) * | 2014-11-06 | 2016-05-12 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
Also Published As
Publication number | Publication date |
---|---|
JP6723370B2 (en) | 2020-07-15 |
JP2018535535A (en) | 2018-11-29 |
KR102098154B1 (en) | 2020-04-08 |
EP3370281A4 (en) | 2018-09-05 |
CN108292736A (en) | 2018-07-17 |
CN108292736B (en) | 2021-02-26 |
EP3370281B1 (en) | 2025-04-16 |
KR20180028930A (en) | 2018-03-19 |
EP3370281A1 (en) | 2018-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180006291A1 (en) | Multilayer electrode and lithium secondary battery including the same | |
US10122011B2 (en) | Multi layered electrode and method of manufacturing the same | |
US20160149220A1 (en) | Electrode including coating layer for preventing reaction with electrolyte solution | |
US9673444B2 (en) | Method of manufacturing electrode for lithium secondary battery and electrode manufactured using the same | |
US20150004487A1 (en) | Electrode and secondary battery including the same | |
US9318777B2 (en) | Secondary battery having improved safety | |
KR101717220B1 (en) | Electrode for Secondary Battery Having Current Collector | |
KR20130116028A (en) | The method for preparing electrodes and the electrodes prepared by using the same | |
KR20130117711A (en) | Lithium battery having higher performance | |
KR102082467B1 (en) | Electrode Assembly Comprising Electrode Having High Loading Amount of Active Material at Middle of Current Collector | |
KR102011679B1 (en) | Electrode Assembly Comprising Electrode Plate Having Different Loading Amounts of Active Material on both Sides | |
US20130302668A1 (en) | Electrolyte for secondary battery and the secondary battery comprising the same | |
EP2816655A1 (en) | Electrode assembly and lithium secondary battery including same | |
EP3370281B1 (en) | Electrode including electrode current collector with three-dimensional network structure | |
KR102026292B1 (en) | Electrode Assembly Comprising Electrode Having Gradient in Loading Amount of Active Material | |
KR101744120B1 (en) | Pouch-typed Secondary Battery of Improved Safety of Nail Penetration Test | |
KR20130116806A (en) | Anode for secondary battery | |
US20140363714A1 (en) | Lithium secondary battery with excellent performance | |
US9831493B2 (en) | Cathode active material and lithium secondary battery comprising the same | |
KR102261649B1 (en) | Electrode Assembly Comprising Electrode Having Different Porosity Depending on Position of Unit-cell | |
US20210336253A1 (en) | Anode Active Material And The Secondary Battery Comprising The Same | |
US20130273427A1 (en) | Secondary battery having improved safety | |
KR20130116027A (en) | The method for preparing electrodes and the electrodes prepared by using the same | |
US10468726B2 (en) | Negative electrode for preventing deposition of manganese and battery cell including the same | |
KR101666413B1 (en) | - Hybrid Stack Folding Typed Electrode Assembly and Secondary Battery Comprising the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOK, EUN KYUNG;YOU, MIN KYU;UHM, IN SUNG;REEL/FRAME:045739/0538 Effective date: 20180410 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
AS | Assignment |
Owner name: LG ENERGY SOLUTION, LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LG CHEM, LTD.;REEL/FRAME:058295/0068 Effective date: 20211027 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |