US20180172018A1 - Rotor assembly - Google Patents
Rotor assembly Download PDFInfo
- Publication number
- US20180172018A1 US20180172018A1 US15/895,309 US201815895309A US2018172018A1 US 20180172018 A1 US20180172018 A1 US 20180172018A1 US 201815895309 A US201815895309 A US 201815895309A US 2018172018 A1 US2018172018 A1 US 2018172018A1
- Authority
- US
- United States
- Prior art keywords
- shaft
- impeller
- bore
- rotor core
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/263—Rotors specially for elastic fluids mounting fan or blower rotors on shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/266—Rotors specially for elastic fluids mounting compressor rotors on shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/62—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
- F04D29/622—Adjusting the clearances between rotary and stationary parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/62—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
- F04D29/624—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/62—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
- F04D29/624—Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
- F04D29/626—Mounting or removal of fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D1/00—Couplings for rigidly connecting two coaxial shafts or other movable machine elements
- F16D1/06—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
- F16D1/064—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable
- F16D1/068—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable involving gluing, welding or the like
Definitions
- the present invention relates to a rotor assembly for a compressor.
- FIG. 1 illustrates an example of a rotor assembly 1 in which an impeller 2 has been press fit onto a shaft 3 .
- the bore 4 into which the shaft 3 has been press fit is misaligned.
- the misalignment of the bore 4 which has been exaggerated for the purposes of illustration, adversely affects the performance of the compressor.
- the impeller 2 and shaft 3 are typically manufactured using high-precision processes that achieve tight tolerances.
- high-precision manufacturing is expensive and precludes the use of certain materials and processes that are otherwise not capable of achieving the necessary tolerances.
- the present invention provides a rotor assembly comprising a shaft and an impeller, the shaft being secured within a bore of the impeller by an adhesive such that the tolerance in the concentricity of the shaft relative to a centerline of the impeller is smaller than the concentricity of the bore relative to the centerline.
- a rotor assembly having tighter tolerances in concentricity may be achieved without the need for high-precision manufacturing.
- the rotor assembly may therefore be manufactured more cheaply.
- the components of the rotor assembly may be manufactured using materials and processes that would otherwise be precluded form use owing to their associated tolerances.
- the ratio of the concentricities of the shaft and the bore is no greater than 0.9. This then corresponds to an improvement in concentricity of 10%.
- the concentricity of the shaft is no greater than 0.07 mm.
- the radius of the shaft may have a first tolerance
- the radius of the bore may have a second tolerance
- the concentricity of the bore may have a third tolerance.
- the nominal radius of the bore is then ideally greater than the nominal radius of the shaft by at least the sum of the first, second and third tolerances. Accordingly, the bore is of sufficient radius that the shaft may be secured within the bore such that it has a tighter concentric tolerance than that of the bore.
- the rotor assembly comprises an impeller and a rotor core, and the shaft is secured within a bore in each of the impeller and the rotor core by adhesive.
- the tolerances in the concentricity of the shaft relative to the impeller and the rotor core are then smaller than the tolerances in the concentricity of the bores in the impeller and rotor core respectively. This then has the advantage that balancing of the rotor assembly is made easier since the impeller and rotor core, which each provide a significant moment of inertia, have tighter concentricities with the shaft and with each other.
- the rotor assembly comprises a bearing cartridge located between the impeller and the rotor core.
- the bearing cartridge which ideally comprises a pair of spaced bearings surrounded by a sleeve, provides a single fastening of relatively large surface area over which the rotor assembly may be secured to a frame, housing or the like.
- radial loading of each of the bearings may be more evenly balanced, thereby prolonging the life of the bearing cartridge.
- the impeller may be formed of plastic, thereby providing a cheap, lightweight impeller for which a relatively tight concentricity may nevertheless be achieved.
- the rotor core may be formed of a rare-earth magnetic material. This then has the advantage of providing excellent magnetic properties. Since the concentricity of the shaft relative to the rotor core is improved, balancing of the rotor assembly is made easier. This is particularly useful when the rotor core is formed of a rare-earth magnetic material, since mass cannot easily be removed from the rotor core owing to the brittle nature of the material.
- the present invention provides a rotor assembly comprising a shaft, an impeller, a rotor core and a bearing assembly, wherein the impeller and the rotor core are secured to the shaft at opposite ends of the shaft and the bearing cartridge is secured to the shaft between the impeller and the rotor core, and the shaft is secured within a bore of at least one of the impeller and the rotor core by an adhesive such that the concentricity of the shaft is smaller than that of the bore.
- the present invention provides a method of manufacturing a rotor assembly comprising: providing a shaft; providing at least one of an impeller and a rotor core; and adhering the shaft within a bore in the at least one impeller and rotor core such that the tolerance in the concentricity of the shaft relative to the at least one impeller and rotor core is smaller than that of the bore, wherein adhering the shaft to the bore comprises applying an adhesive to the shaft and inserting the shaft into the bore while rotating the shaft relative to the impeller or rotor core.
- the method has the advantage of providing good adhesive coverage between the shaft and the impeller or rotor core, thereby ensuring a good join.
- the method may comprise mounting each of the shaft and the impeller or rotor core in one half of a jig, the two halves of the jig being aligned.
- the method would then further comprise bringing the two halves of the jig together while rotating one half of the jig relative to the other half of the jig. By rotating one half of the jig relative to the other half, as the two halves are brought together, good adhesive coverage between the shaft and impeller or rotor core is provided.
- the radius of the shaft may have a first tolerance
- the radius of the bore may have a second tolerance
- the concentricity of the bore may have a third tolerance.
- the step of providing at least one of the impeller and rotor core would then preferably comprise providing at least one of the impeller and rotor core with a bore of nominal radius greater than the nominal radius of the shaft by at least the sum of the first, second and third tolerances.
- a bore is then provided of sufficient radius that the shaft may be secured within the bore such that it has a tighter concentric tolerance than that of the bore.
- the method includes providing the impeller or rotor core with a bore of nominal radius that is greater than the nominal radius of the shaft by at least the sum of the first, second and third tolerances and a nominal radial gap. Accordingly, at the worst tolerance condition, a radial gap exists between the shaft and the bore that encourages wicking of the adhesive.
- FIG. 1 is a sectional view of a rotor assembly having a misaligned impeller
- FIG. 2 is a sectional view of a rotor assembly in accordance with the present invention.
- FIG. 3 illustrates certain stages in the manufacture of the rotor assembly of FIG. 2 in which (a) adhesive is applied to a shaft, (b) the shaft is partially inserted into a rotor core, and (c) the shaft is fully inserted into the rotor core.
- the rotor assembly 10 of FIG. 2 comprises a shaft 11 , an impeller 12 , a rotor core 13 and a bearing cartridge 14 .
- the impeller 12 and rotor core 13 are secured to the shaft 11 at opposite ends of the shaft 11 .
- the bearing cartridge 14 is secured to the shaft 11 between the impeller 12 and the rotor core 13 .
- the impeller 12 includes a bore 15 into which the shaft 11 is secured by means of an adhesive 17 .
- the bore 15 has a tolerance in concentricity relative to a centerline of the impeller 12 .
- the shaft 11 similarly has a tolerance in concentricity relative to a centerline of the impeller 12 .
- the shaft 11 is secured within the bore 15 such that the tolerance in the concentricity of the shaft 11 is smaller than that of the bore 15 .
- the impeller 12 illustrated in FIG. 2 is a centrifugal impeller. However, other types of impeller might equally be employed according to the intended application of the rotor assembly 10 .
- the rotor core 13 comprises a cylindrical body formed of a hard or soft magnetic material.
- the rotor core 13 includes a bore 16 into which the shaft 11 is secured by means of an adhesive 17 .
- the bore 16 has a tolerance in concentricity relative to a centerline of the rotor core 13 .
- the shaft 11 similarly has a tolerance in concentricity relative to a centerline of the rotor core 13 .
- the shaft 11 is secured within the bore 16 such that the tolerance in the concentricity of the shaft 11 is smaller than that of the bore 16 .
- the rotor core 13 illustrated in FIG. 2 comprises a single cylindrical body
- the rotor core 13 might equally be formed of a plurality of stacked rings, each ring comprising a bore into which the shaft 11 is secured by an adhesive 17 .
- the bearing cartridge 14 comprises a pair of spaced bearings 18 , 19 , a spring 20 , and a sleeve 21 .
- the spring 20 surrounds the shaft 11 and applies a preload to each of the bearings 18 , 19 .
- the sleeve 21 surrounds the bearings 18 , 19 and the spring 20 , and provides a surface over which the rotor assembly 10 may be secured to a frame, housing or the like of a compressor.
- the bearing cartridge 14 provides effective support for the rotor assembly 10 . By locating the impeller 12 and rotor core 13 on opposite sides of the bearing cartridge 14 , radial loading of each of the bearings 18 , 19 is more evenly balanced, thereby prolonging the life of the bearings 18 , 19 .
- a method of manufacturing the rotor assembly 10 will now be described with reference to FIG. 3 .
- the bearing cartridge 14 is first secured to the shaft 11 .
- the manner in which the bearing cartridge 14 is secured to the shaft 11 is not pertinent to the present invention.
- the bearings 18 , 19 may be press fit onto the shaft 2 and the sleeve 22 may then be press fit or adhered over the bearings 18 , 19 .
- the bearing cartridge 14 is manufactured to tight tolerances. Consequently, when secured to the shaft 11 , the tolerance in the concentricity of the shaft 11 relative to the bearing cartridge 14 is relatively small.
- the rotor core 13 is then secured to one end of the shaft 11 .
- This is achieved by mounting the shaft 11 in one half of a jig, and mounting the rotor core 13 in the other half of the jig.
- the two halves of the jig are aligned such that the shaft 11 and rotor core 13 are concentric.
- a spot of adhesive 17 is applied to the shaft 11 at a short distance from the free end of the shaft 11 , FIG. 3( a ) .
- the two halves of the jig are brought together such that the shaft 11 is inserted into the bore 16 of the rotor core 13 .
- the shaft 11 is inserted up to a point at which the rotor core 13 contacts the spot of adhesive 17 .
- the adhesive 17 may begin to cure, which in turn increases the viscosity and reduces the wicking of the adhesive 17 . Since insufficient coverage may result in subsequent failure of the adhesive 17 , the speed of insertion of the shaft 11 is ideally controlled so as to achieve good adhesive coverage.
- the impeller 12 is then secured to the free end of the shaft 11 .
- the manner in which the impeller 12 is secured to the shaft 11 is almost identical to that of the rotor core 13 .
- the bearing cartridge 14 rather than the shaft 11 , is directly held by the jig.
- the impeller 12 is otherwise secured to the shaft 11 in the same manner as that described above for the rotor core 13 .
- a spot of adhesive 17 is applied to the shaft 11 , one half of the jig is rotated relative to the other half, and the two halves of the jig are brought together such that the shaft 11 is inserted into the bore 15 of the impeller 12 .
- the speed of translation and rotation of one half of the jig relative to the other half is controlled so as to achieve good coverage of adhesive 17 between the shaft 11 and the impeller 12 .
- relative movement of the two halves of the jig is halted and the adhesive 17 is cured.
- the bearing cartridge 14 When securing the impeller 12 to the shaft 11 , the bearing cartridge 14 is directly held by the jig. Alternatively, the rotor core 13 might be directly held by the jig. However, the outer diameter of the bearing cartridge 14 typically has a tighter tolerance than that of the rotor core 13 ; this is particularly true when the rotor core 13 is formed of a sintered or bonded magnetic material for which relatively tight tolerances are difficult to achieve. It is for this reason that the bearing cartridge 14 , rather than the rotor core 13 , is ideally held when securing the impeller 12 to the shaft 11 . Nevertheless, when holding the bearing cartridge 14 , the jig also holds or otherwise applies a frictional force to the rotor core 13 . This then ensures that the shaft 11 rotates relative to the impeller 11 , rather than the bearing cartridge 14 , as the two halves of the jig are brought together.
- rotor assembly 10 For the particular design of rotor assembly 10 illustrated in FIG. 2 , it is not possible to hold the shaft 11 directly in the jig when securing the impeller 12 . Nevertheless, for alternative designs of rotor assembly, it may be possible to hold the shaft 11 directly.
- the shaft 11 of the rotor assembly 10 of FIG. 2 might be lengthened so as to protrude beyond the end of the rotor core 13 .
- the bearing cartridge 14 may be spaced from the rotor core 13 so as to expose a portion of the shaft 11 that can then be held by the jig.
- the rotor core 13 is initially secured to the shaft 11 , subsequently followed by the impeller 12 , the order by which the impeller 12 and rotor core 13 are secured to the shaft 11 is not essential.
- the impeller 12 might equally be secured to the shaft 11 before the rotor core 13 .
- assembly is typically easier if the smaller item is secured first to the shaft 11 .
- the speeds of translation and rotation are ideally chosen so as to achieve a good coverage of adhesive 17 between the shaft 11 and the impeller 12 or rotor core 13 .
- the speeds of translation and rotation will therefore depend upon several factors, particularly the viscosity of the adhesive 17 , the curing rate of the adhesive 17 , the radius of the shaft 11 , and the radial gap between the shaft 11 and the bore 15 , 16 .
- the gap between the shaft 11 and the bore 15 , 16 is ideally no bigger than that necessary to achieve good wicking and thus good adhesive coverage.
- the bores 15 , 16 of the impeller 12 and rotor core 13 are sized so to permit concentric insertion of the shaft 11 into the bores 15 , 16 . Accordingly, the radius of each bore 15 , 16 is greater than that of the shaft 11 by an amount that accounts for the tolerance stack. The size of the radial gap between the shaft 11 and each bore 15 , 16 will therefore be influenced by the size of the tolerance stack.
- each of the shaft 2 and the bores 15 , 16 has a tolerance. Additionally, there is a tolerance associated with the concentricity of each bore 15 , 16 .
- the nominal radius of each bore 15 , 16 is greater than the nominal radius of the shaft 11 by at least an amount that accounts for the radial and concentric tolerances.
- the nominal radius of the bore, r may be represented as: r ⁇ s+ ⁇ s+ ⁇ b+ ⁇ c.
- the impeller 12 and rotor core 13 are likely to be manufactured to different tolerances. Consequently, the radii of the bores 15 , 16 in the impeller 12 and rotor core 13 are likely to be different.
- the shaft 11 may contact the wall of a bore 15 , 16 .
- no adhesive will be present between the shaft and bore 15 , 16 .
- a minimal radial gap, g might therefore be introduced in order to ensure that adhesive is provided around the full circumference and length of the shaft 11 .
- the nominal radius of the bore 15 , 16 would then be increased to take into account the minimal radial gap, i.e. r ⁇ s+ ⁇ s+ ⁇ b+ ⁇ c+g
- the two halves of the jig are concentrically aligned. Nevertheless, there are geometric tolerances associated with the alignment of the jig. Consequently, when the two halves of the jig are brought together, there is a tolerance in the concentricity of the shaft 11 relative to the centerlines of the impeller 12 and the rotor core 13 . Nevertheless, the tolerance in the concentricity of the shaft 12 is smaller than that of each of the bores 15 , 16 in the impeller 12 and the rotor core 13 .
- the shaft 11 has an outer diameter of 3.0025 ⁇ 0.0025 mm.
- the bore 15 in the impeller 12 has a diameter of 3.25 ⁇ 0.10 mm and a tolerance in concentricity of 0.09 mm.
- the bore 16 in the rotor core 13 has a diameter of 3.22 ⁇ 0.075 mm and a tolerance in concentricity of 0.08 mm.
- the shaft 11 is secured within the bore 15 of the impeller 12 such that it has a tolerance in concentricity of 0.07 mm, which is smaller than that of the bore 15 .
- the shaft 11 is secured within the bore 16 of the rotor core 13 such that it has a tolerance in concentricity of 0.07 mm, which is again smaller than that of the bore 16 .
- the ratio of the tolerances in the concentricity of the shaft 11 and the bore 15 in the impeller 12 is 0.78, representing an improvement in concentricity of 22%.
- the ratio of the tolerances in the concentricity of the shaft 11 and the bore 16 in the rotor core 13 is 0.875, representing an improvement in concentricity of 12.5%. Consequently, with the method of manufacture described above, it is possible to achieve an improvement in concentricity of at least 10%, which equates to a ratio in the concentric tolerances of the shaft and bore of no more than 0.9. Moreover, it is possible to achieve tolerances in the concentricity of the shaft of 0.7 mm or smaller.
- the rotor assembly 10 of the present invention achieves improved concentricity without the need for high-precision manufacturing. Consequently, the rotor assembly 10 may be manufactured more cheaply. Moreover, the rotor assembly 10 may be manufactured using materials and processes that would otherwise be precluded form use owing to their associated tolerances.
- the impeller 12 may be formed of a plastic, which is typically cheaper and lighter than a metal equivalent.
- the rotor core 13 may be formed of a rare-earth magnetic material.
- Rare-earth magnets exhibit excellent magnetic properties. However, the magnets are generally brittle and cannot be easily press fit onto a shaft.
- the present invention provides a method of manufacturing a rotor assembly 10 in which rare-earth magnets can be secured to the shaft 11 in a manner that ensures relatively tight concentricity. This then simplifies balancing of the rotor assembly 10 , which is of importance when using rare-earth magnets since material cannot easily be removed from the magnets owing to the brittle nature.
- the rotor assembly 10 of FIG. 2 is particularly compact in design. This is achieved by securing a bearing cartridge 14 between the impeller 12 and the rotor core 13 , which are secured to the shaft 11 at opposite ends.
- the rotor assembly 10 may be dynamically balanced as a complete unit prior to inclusion within a compressor. This in contrast to other rotor assemblies in which the rotor must be assembled within the compressor.
- balancing of the rotor assembly 10 is made easier.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Supercharger (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 13/203,155, filed Oct. 5, 2011, which is a national stage application under 35 USC 371 of International Application No. PCT/GB2010/050213, filed Feb. 10, 2010, which claims the priority of United Kingdom Application No. 0903054.5, filed Feb. 24, 2009, the entire contents of each of which are incorporated herein by reference.
- The present invention relates to a rotor assembly for a compressor.
-
FIG. 1 illustrates an example of a rotor assembly 1 in which animpeller 2 has been press fit onto ashaft 3. Owing to tolerances associated with the manufacture of theimpeller 2, thebore 4 into which theshaft 3 has been press fit is misaligned. The misalignment of thebore 4, which has been exaggerated for the purposes of illustration, adversely affects the performance of the compressor. In order to minimize possible misalignment, theimpeller 2 andshaft 3 are typically manufactured using high-precision processes that achieve tight tolerances. However, high-precision manufacturing is expensive and precludes the use of certain materials and processes that are otherwise not capable of achieving the necessary tolerances. - In a first aspect, the present invention provides a rotor assembly comprising a shaft and an impeller, the shaft being secured within a bore of the impeller by an adhesive such that the tolerance in the concentricity of the shaft relative to a centerline of the impeller is smaller than the concentricity of the bore relative to the centerline.
- By using adhesive to secure the shaft with the bore of the impeller, a rotor assembly having tighter tolerances in concentricity may be achieved without the need for high-precision manufacturing. The rotor assembly may therefore be manufactured more cheaply. Moreover, the components of the rotor assembly may be manufactured using materials and processes that would otherwise be precluded form use owing to their associated tolerances.
- Preferably, the ratio of the concentricities of the shaft and the bore is no greater than 0.9. This then corresponds to an improvement in concentricity of 10%. Advantageously, the concentricity of the shaft is no greater than 0.07 mm.
- The radius of the shaft may have a first tolerance, the radius of the bore may have a second tolerance, and the concentricity of the bore may have a third tolerance. The nominal radius of the bore is then ideally greater than the nominal radius of the shaft by at least the sum of the first, second and third tolerances. Accordingly, the bore is of sufficient radius that the shaft may be secured within the bore such that it has a tighter concentric tolerance than that of the bore.
- Preferably, the rotor assembly comprises an impeller and a rotor core, and the shaft is secured within a bore in each of the impeller and the rotor core by adhesive. The tolerances in the concentricity of the shaft relative to the impeller and the rotor core are then smaller than the tolerances in the concentricity of the bores in the impeller and rotor core respectively. This then has the advantage that balancing of the rotor assembly is made easier since the impeller and rotor core, which each provide a significant moment of inertia, have tighter concentricities with the shaft and with each other.
- Advantageously, the rotor assembly comprises a bearing cartridge located between the impeller and the rotor core. This then provides a compact design of rotor assembly that may be dynamically balanced as a complete unit. The bearing cartridge, which ideally comprises a pair of spaced bearings surrounded by a sleeve, provides a single fastening of relatively large surface area over which the rotor assembly may be secured to a frame, housing or the like. In having the impeller and rotor core located on opposite sides of the bearing cartridge, radial loading of each of the bearings may be more evenly balanced, thereby prolonging the life of the bearing cartridge.
- The impeller may be formed of plastic, thereby providing a cheap, lightweight impeller for which a relatively tight concentricity may nevertheless be achieved.
- The rotor core may be formed of a rare-earth magnetic material. This then has the advantage of providing excellent magnetic properties. Since the concentricity of the shaft relative to the rotor core is improved, balancing of the rotor assembly is made easier. This is particularly useful when the rotor core is formed of a rare-earth magnetic material, since mass cannot easily be removed from the rotor core owing to the brittle nature of the material.
- In a second aspect, the present invention provides a rotor assembly comprising a shaft, an impeller, a rotor core and a bearing assembly, wherein the impeller and the rotor core are secured to the shaft at opposite ends of the shaft and the bearing cartridge is secured to the shaft between the impeller and the rotor core, and the shaft is secured within a bore of at least one of the impeller and the rotor core by an adhesive such that the concentricity of the shaft is smaller than that of the bore.
- In a further aspect, the present invention provides a method of manufacturing a rotor assembly comprising: providing a shaft; providing at least one of an impeller and a rotor core; and adhering the shaft within a bore in the at least one impeller and rotor core such that the tolerance in the concentricity of the shaft relative to the at least one impeller and rotor core is smaller than that of the bore, wherein adhering the shaft to the bore comprises applying an adhesive to the shaft and inserting the shaft into the bore while rotating the shaft relative to the impeller or rotor core.
- The method has the advantage of providing good adhesive coverage between the shaft and the impeller or rotor core, thereby ensuring a good join.
- The method may comprise mounting each of the shaft and the impeller or rotor core in one half of a jig, the two halves of the jig being aligned. The method would then further comprise bringing the two halves of the jig together while rotating one half of the jig relative to the other half of the jig. By rotating one half of the jig relative to the other half, as the two halves are brought together, good adhesive coverage between the shaft and impeller or rotor core is provided.
- The radius of the shaft may have a first tolerance, the radius of the bore may have a second tolerance, and the concentricity of the bore may have a third tolerance. The step of providing at least one of the impeller and rotor core would then preferably comprise providing at least one of the impeller and rotor core with a bore of nominal radius greater than the nominal radius of the shaft by at least the sum of the first, second and third tolerances. A bore is then provided of sufficient radius that the shaft may be secured within the bore such that it has a tighter concentric tolerance than that of the bore. More preferably, the method includes providing the impeller or rotor core with a bore of nominal radius that is greater than the nominal radius of the shaft by at least the sum of the first, second and third tolerances and a nominal radial gap. Accordingly, at the worst tolerance condition, a radial gap exists between the shaft and the bore that encourages wicking of the adhesive.
- In order that the present invention may be more readily understood, an embodiment of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:
-
FIG. 1 is a sectional view of a rotor assembly having a misaligned impeller; -
FIG. 2 is a sectional view of a rotor assembly in accordance with the present invention; and -
FIG. 3 illustrates certain stages in the manufacture of the rotor assembly ofFIG. 2 in which (a) adhesive is applied to a shaft, (b) the shaft is partially inserted into a rotor core, and (c) the shaft is fully inserted into the rotor core. - The
rotor assembly 10 ofFIG. 2 comprises ashaft 11, animpeller 12, arotor core 13 and abearing cartridge 14. Theimpeller 12 androtor core 13 are secured to theshaft 11 at opposite ends of theshaft 11. Thebearing cartridge 14 is secured to theshaft 11 between theimpeller 12 and therotor core 13. - The
impeller 12 includes abore 15 into which theshaft 11 is secured by means of an adhesive 17. Owing to tolerances in the manufacture of theimpeller 12, thebore 15 has a tolerance in concentricity relative to a centerline of theimpeller 12. Theshaft 11 similarly has a tolerance in concentricity relative to a centerline of theimpeller 12. However, theshaft 11 is secured within thebore 15 such that the tolerance in the concentricity of theshaft 11 is smaller than that of thebore 15. - The
impeller 12 illustrated inFIG. 2 is a centrifugal impeller. However, other types of impeller might equally be employed according to the intended application of therotor assembly 10. - The
rotor core 13 comprises a cylindrical body formed of a hard or soft magnetic material. As with theimpeller 12, therotor core 13 includes abore 16 into which theshaft 11 is secured by means of an adhesive 17. Again, owing to tolerances in the manufacture of therotor core 13, thebore 16 has a tolerance in concentricity relative to a centerline of therotor core 13. Theshaft 11 similarly has a tolerance in concentricity relative to a centerline of therotor core 13. However, theshaft 11 is secured within thebore 16 such that the tolerance in the concentricity of theshaft 11 is smaller than that of thebore 16. - Although the
rotor core 13 illustrated inFIG. 2 comprises a single cylindrical body, therotor core 13 might equally be formed of a plurality of stacked rings, each ring comprising a bore into which theshaft 11 is secured by an adhesive 17. - The bearing
cartridge 14 comprises a pair of spacedbearings spring 20, and asleeve 21. Thespring 20 surrounds theshaft 11 and applies a preload to each of thebearings sleeve 21 surrounds thebearings spring 20, and provides a surface over which therotor assembly 10 may be secured to a frame, housing or the like of a compressor. In having two spacedbearings cartridge 14 provides effective support for therotor assembly 10. By locating theimpeller 12 androtor core 13 on opposite sides of the bearingcartridge 14, radial loading of each of thebearings bearings - A method of manufacturing the
rotor assembly 10 will now be described with reference toFIG. 3 . - The bearing
cartridge 14 is first secured to theshaft 11. The manner in which the bearingcartridge 14 is secured to theshaft 11 is not pertinent to the present invention. By way of example only, thebearings shaft 2 and the sleeve 22 may then be press fit or adhered over thebearings impeller 12 androtor core 13, the bearingcartridge 14 is manufactured to tight tolerances. Consequently, when secured to theshaft 11, the tolerance in the concentricity of theshaft 11 relative to the bearingcartridge 14 is relatively small. - The
rotor core 13 is then secured to one end of theshaft 11. This is achieved by mounting theshaft 11 in one half of a jig, and mounting therotor core 13 in the other half of the jig. The two halves of the jig are aligned such that theshaft 11 androtor core 13 are concentric. Referring now toFIG. 3 , a spot of adhesive 17 is applied to theshaft 11 at a short distance from the free end of theshaft 11,FIG. 3(a) . The two halves of the jig are brought together such that theshaft 11 is inserted into thebore 16 of therotor core 13. Theshaft 11 is inserted up to a point at which therotor core 13 contacts the spot ofadhesive 17. On contacting the adhesive 17, capillary action causes the adhesive 17 to be drawn into thebore 16 between therotor core 13 and theshaft 11,FIG. 3(b) . At this stage, further insertion of theshaft 11 into thebore 16 may be halted for a time to allow for sufficient adhesive 17 to be drawn into thebore 16. Insertion of theshaft 11 into thebore 16 then continues at a speed that achieves good coverage of adhesive 17 between theshaft 11 and therotor core 13. If the speed at which theshaft 11 is inserted is too fast, air may become trapped by the adhesive 17 as it wicks around thebore 16 at different points along the length of thebore 16. On the other hand, if the speed at which theshaft 11 is inserted is too slow, the adhesive 17 may begin to cure, which in turn increases the viscosity and reduces the wicking of the adhesive 17. Since insufficient coverage may result in subsequent failure of the adhesive 17, the speed of insertion of theshaft 11 is ideally controlled so as to achieve good adhesive coverage. - As the two halves of the jig are brought together and the
shaft 11 is inserted into thebore 16, one half of the jig is rotated relative to the other half. This then causes theshaft 11 to rotate relative to therotor core 13, thereby encouraging a more even distribution of adhesive 17 between theshaft 11 and therotor core 13. Finally, after theshaft 11 has been fully inserted into thebore 16 of therotor core 13,FIG. 3(c) , relative movement of the two halves of the jig is halted and the adhesive 17 is cured (e.g. by UV light). - The
impeller 12 is then secured to the free end of theshaft 11. The manner in which theimpeller 12 is secured to theshaft 11 is almost identical to that of therotor core 13. However, owing to the particular design ofrotor assembly 10 illustrated inFIG. 2 , it is not possible to directly hold theshaft 11 when mounting theshaft 11 in one half of the jig; this is because the only free part ofshaft 11 is the end to which theimpeller 12 is to be secured. Accordingly, when mounting theshaft 11 in the jig, the bearingcartridge 14, rather than theshaft 11, is directly held by the jig. Theimpeller 12 is otherwise secured to theshaft 11 in the same manner as that described above for therotor core 13. In particular, a spot of adhesive 17 is applied to theshaft 11, one half of the jig is rotated relative to the other half, and the two halves of the jig are brought together such that theshaft 11 is inserted into thebore 15 of theimpeller 12. Again, the speed of translation and rotation of one half of the jig relative to the other half is controlled so as to achieve good coverage of adhesive 17 between theshaft 11 and theimpeller 12. After theshaft 11 has been fully inserted into thebore 15 of theimpeller 12, relative movement of the two halves of the jig is halted and the adhesive 17 is cured. - When securing the
impeller 12 to theshaft 11, the bearingcartridge 14 is directly held by the jig. Alternatively, therotor core 13 might be directly held by the jig. However, the outer diameter of the bearingcartridge 14 typically has a tighter tolerance than that of therotor core 13; this is particularly true when therotor core 13 is formed of a sintered or bonded magnetic material for which relatively tight tolerances are difficult to achieve. It is for this reason that the bearingcartridge 14, rather than therotor core 13, is ideally held when securing theimpeller 12 to theshaft 11. Nevertheless, when holding the bearingcartridge 14, the jig also holds or otherwise applies a frictional force to therotor core 13. This then ensures that theshaft 11 rotates relative to theimpeller 11, rather than the bearingcartridge 14, as the two halves of the jig are brought together. - For the particular design of
rotor assembly 10 illustrated inFIG. 2 , it is not possible to hold theshaft 11 directly in the jig when securing theimpeller 12. Nevertheless, for alternative designs of rotor assembly, it may be possible to hold theshaft 11 directly. For example, theshaft 11 of therotor assembly 10 ofFIG. 2 might be lengthened so as to protrude beyond the end of therotor core 13. As a further example, the bearingcartridge 14 may be spaced from therotor core 13 so as to expose a portion of theshaft 11 that can then be held by the jig. - Although the
rotor core 13 is initially secured to theshaft 11, subsequently followed by theimpeller 12, the order by which theimpeller 12 androtor core 13 are secured to theshaft 11 is not essential. Theimpeller 12 might equally be secured to theshaft 11 before therotor core 13. However, since theimpeller 12 is generally larger than therotor core 13, assembly is typically easier if the smaller item is secured first to theshaft 11. - Reference has been made above to the speeds of translation and rotation of the
shaft 11 relative to thebores impeller 12 androtor core 13. The speeds of translation and rotation are ideally chosen so as to achieve a good coverage of adhesive 17 between theshaft 11 and theimpeller 12 orrotor core 13. The speeds of translation and rotation will therefore depend upon several factors, particularly the viscosity of the adhesive 17, the curing rate of the adhesive 17, the radius of theshaft 11, and the radial gap between theshaft 11 and thebore spindle 2 at 20 rpm, 25° C.), speeds of between 0.6-0.7 m/s for translation and 10-20 rpm for rotation have been found to provide good adhesive coverage. - As the radial gap between the
shaft 11 and bore 15,16 increases, the volume of air needed to be driven out by the adhesive 17 increases. Consequently, the speed at which theshaft 11 is inserted into thebore shaft 11 and thebore bores impeller 12 androtor core 13 are sized so to permit concentric insertion of theshaft 11 into thebores shaft 11 by an amount that accounts for the tolerance stack. The size of the radial gap between theshaft 11 and each bore 15,16 will therefore be influenced by the size of the tolerance stack. - The radius of each of the
shaft 2 and thebores shaft 11 can be inserted into each bore 15,8 such that theshaft 11 is concentric with theimpeller 12 and therotor core 13, the nominal radius of each bore 15,16 is greater than the nominal radius of theshaft 11 by at least an amount that accounts for the radial and concentric tolerances. Consequently, if theshaft 11 has a nominal radius of s and a tolerance of ±Δs, thebore bore - The
impeller 12 androtor core 13 are likely to be manufactured to different tolerances. Consequently, the radii of thebores impeller 12 androtor core 13 are likely to be different. - In a worst case tolerance condition, the
shaft 11 may contact the wall of abore shaft 11. The nominal radius of thebore - When assembling the
rotor assembly 10, the two halves of the jig are concentrically aligned. Nevertheless, there are geometric tolerances associated with the alignment of the jig. Consequently, when the two halves of the jig are brought together, there is a tolerance in the concentricity of theshaft 11 relative to the centerlines of theimpeller 12 and therotor core 13. Nevertheless, the tolerance in the concentricity of theshaft 12 is smaller than that of each of thebores impeller 12 and therotor core 13. - For the
rotor assembly 10 described above, theshaft 11 has an outer diameter of 3.0025±0.0025 mm. Thebore 15 in theimpeller 12 has a diameter of 3.25±0.10 mm and a tolerance in concentricity of 0.09 mm. Thebore 16 in therotor core 13 has a diameter of 3.22±0.075 mm and a tolerance in concentricity of 0.08 mm. Theshaft 11 is secured within thebore 15 of theimpeller 12 such that it has a tolerance in concentricity of 0.07 mm, which is smaller than that of thebore 15. Additionally, theshaft 11 is secured within thebore 16 of therotor core 13 such that it has a tolerance in concentricity of 0.07 mm, which is again smaller than that of thebore 16. - The ratio of the tolerances in the concentricity of the
shaft 11 and thebore 15 in theimpeller 12 is 0.78, representing an improvement in concentricity of 22%. The ratio of the tolerances in the concentricity of theshaft 11 and thebore 16 in therotor core 13 is 0.875, representing an improvement in concentricity of 12.5%. Consequently, with the method of manufacture described above, it is possible to achieve an improvement in concentricity of at least 10%, which equates to a ratio in the concentric tolerances of the shaft and bore of no more than 0.9. Moreover, it is possible to achieve tolerances in the concentricity of the shaft of 0.7 mm or smaller. - By providing an oversized bore into which a shaft is adhered, the
rotor assembly 10 of the present invention achieves improved concentricity without the need for high-precision manufacturing. Consequently, therotor assembly 10 may be manufactured more cheaply. Moreover, therotor assembly 10 may be manufactured using materials and processes that would otherwise be precluded form use owing to their associated tolerances. In particular, theimpeller 12 may be formed of a plastic, which is typically cheaper and lighter than a metal equivalent. - The
rotor core 13 may be formed of a rare-earth magnetic material. Rare-earth magnets exhibit excellent magnetic properties. However, the magnets are generally brittle and cannot be easily press fit onto a shaft. The present invention provides a method of manufacturing arotor assembly 10 in which rare-earth magnets can be secured to theshaft 11 in a manner that ensures relatively tight concentricity. This then simplifies balancing of therotor assembly 10, which is of importance when using rare-earth magnets since material cannot easily be removed from the magnets owing to the brittle nature. - The
rotor assembly 10 ofFIG. 2 is particularly compact in design. This is achieved by securing a bearingcartridge 14 between theimpeller 12 and therotor core 13, which are secured to theshaft 11 at opposite ends. In addition to being compact in design, therotor assembly 10 may be dynamically balanced as a complete unit prior to inclusion within a compressor. This in contrast to other rotor assemblies in which the rotor must be assembled within the compressor. Moreover, by providing arotor assembly 10 in which tighter concentricities are achieved between theshaft 11,impeller 12 androtor core 13, balancing of therotor assembly 10 is made easier.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/895,309 US20180172018A1 (en) | 2009-02-24 | 2018-02-13 | Rotor assembly |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0903054A GB2467967B (en) | 2009-02-24 | 2009-02-24 | Rotor assembly |
GB0903054.5 | 2009-02-24 | ||
PCT/GB2010/050213 WO2010097610A1 (en) | 2009-02-24 | 2010-02-10 | Rotor assembly |
US201113203155A | 2011-10-05 | 2011-10-05 | |
US15/895,309 US20180172018A1 (en) | 2009-02-24 | 2018-02-13 | Rotor assembly |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2010/050213 Continuation WO2010097610A1 (en) | 2009-02-24 | 2010-02-10 | Rotor assembly |
US13/203,155 Continuation US9926940B2 (en) | 2009-02-24 | 2010-02-10 | Rotor assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180172018A1 true US20180172018A1 (en) | 2018-06-21 |
Family
ID=40565582
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/203,155 Active 2034-02-27 US9926940B2 (en) | 2009-02-24 | 2010-02-10 | Rotor assembly |
US15/895,309 Abandoned US20180172018A1 (en) | 2009-02-24 | 2018-02-13 | Rotor assembly |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/203,155 Active 2034-02-27 US9926940B2 (en) | 2009-02-24 | 2010-02-10 | Rotor assembly |
Country Status (5)
Country | Link |
---|---|
US (2) | US9926940B2 (en) |
EP (2) | EP2827002A3 (en) |
JP (2) | JP5680560B2 (en) |
GB (1) | GB2467967B (en) |
WO (1) | WO2010097610A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0659809B2 (en) * | 1987-08-12 | 1994-08-10 | 日本電装株式会社 | Flashing device for vehicle |
GB2467967B (en) | 2009-02-24 | 2015-04-22 | Dyson Technology Ltd | Rotor assembly |
GB2487921B (en) | 2011-02-08 | 2013-06-12 | Dyson Technology Ltd | Rotor for a turbomachine |
GB2504415B (en) | 2011-08-26 | 2014-08-13 | Dyson Technology Ltd | Turbomachine |
GB2493972B (en) | 2011-08-26 | 2014-12-03 | Dyson Technology Ltd | Rotor assembly for a turbomachine |
GB2493975B (en) | 2011-08-26 | 2015-02-11 | Dyson Technology Ltd | Turbomachine |
GB2493973B (en) | 2011-08-26 | 2015-04-15 | Dyson Technology Ltd | Rotor assembly for a turbomachine |
JP6180190B2 (en) * | 2013-05-28 | 2017-08-16 | 株式会社日本クライメイトシステムズ | Blower fan |
KR20160132876A (en) * | 2014-03-11 | 2016-11-21 | 보르그워너 인코퍼레이티드 | Compressor wheel-shaft assembly |
JP6396083B2 (en) * | 2014-06-09 | 2018-09-26 | 日立アプライアンス株式会社 | Electric blower and vacuum cleaner |
US20150369337A1 (en) * | 2014-06-23 | 2015-12-24 | Samsung Techwin Co., Ltd. | High-speed rotating machine |
DE102014215817A1 (en) | 2014-08-08 | 2016-02-11 | Ziehl-Abegg Se | Arrangement of an impeller on an electric motor and method for producing the arrangement |
JP6401075B2 (en) * | 2015-02-20 | 2018-10-03 | 日立アプライアンス株式会社 | Electric blower and vacuum cleaner |
KR101904871B1 (en) | 2017-01-18 | 2018-10-08 | 엘지전자 주식회사 | Electric motor with bearing catridge |
JP2018194004A (en) * | 2018-08-29 | 2018-12-06 | 日立アプライアンス株式会社 | Electric air blower and vacuum cleaner |
JP6653363B2 (en) * | 2018-09-06 | 2020-02-26 | 日立グローバルライフソリューションズ株式会社 | Electric blower |
US20240245190A1 (en) | 2023-01-19 | 2024-07-25 | Sharkninja Operating Llc | Identification of hair care appliance attachments |
WO2024155914A1 (en) | 2023-01-19 | 2024-07-25 | Sharkninja Operating Llc | Hair care appliance with powered attachment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2433589A (en) * | 1939-05-25 | 1947-12-30 | Nash Engineering Co | Pump |
US2857849A (en) * | 1953-11-13 | 1958-10-28 | Joseph R Smylie | Motor driven pumping units |
US3801226A (en) * | 1970-08-28 | 1974-04-02 | Goulds Pumps | Pump impeller |
US4427911A (en) * | 1982-01-04 | 1984-01-24 | Imc Magnetics Corp. | Rotor for a stepper motor having a sheet metal support for the magnet |
US5769618A (en) * | 1995-09-25 | 1998-06-23 | Heishin Sobi Kabushiki Kaisha | Uniaxial eccentric screw pump having a flexible plastic shaft |
US5923111A (en) * | 1997-11-10 | 1999-07-13 | Goulds Pumps, Incoporated | Modular permanent-magnet electric motor |
US6039536A (en) * | 1997-09-30 | 2000-03-21 | Pierburg Ag | Connection between a rotor hub and a shaft of an electric motor of an electrically driven air pump |
US20120076639A1 (en) * | 2010-09-27 | 2012-03-29 | Nicolas Vazeille | Shaft and Turbine Wheel Assembly |
US20120201682A1 (en) * | 2011-02-08 | 2012-08-09 | Dyson Technology Limited | Rotor for a turbomachine |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB775807A (en) * | 1954-06-24 | 1957-05-29 | Philips Electrical Ind Ltd | Improvements in securing means |
US3565553A (en) * | 1969-04-18 | 1971-02-23 | Gen Electric | Hermetic compressor unit |
US3709633A (en) * | 1971-10-07 | 1973-01-09 | Brookside Corp | Reinforced plastic fan hub |
US3884595A (en) | 1974-05-15 | 1975-05-20 | Dresser Ind | Impeller and shaft assembly |
US4483660A (en) * | 1982-05-14 | 1984-11-20 | Hughes Tool Company | Submersible pump impeller locking method |
JPS61190580A (en) * | 1985-02-19 | 1986-08-25 | Matsushita Electric Ind Co Ltd | Aligning bonding jig |
JP2767114B2 (en) * | 1988-01-16 | 1998-06-18 | 富士電気化学株式会社 | Permanent magnet rotor |
JPH02184236A (en) | 1988-12-29 | 1990-07-18 | Canon Inc | Hermetic dynamic pressure fluid bearing motor |
WO1990010816A1 (en) | 1989-03-16 | 1990-09-20 | Shell Oil Company | Tubular coupling and method of forming same |
DE4029435A1 (en) * | 1990-09-17 | 1992-03-19 | Freudenberg Carl Fa | BEARING PIN FOR THE BLADE WHEEL OF A COOLANT PUMP |
GB9208069D0 (en) | 1992-04-03 | 1992-05-27 | Turboflex Ltd | Coupling |
JPH0759294A (en) * | 1993-08-18 | 1995-03-03 | Shibaura Eng Works Co Ltd | Rotor |
JP3333856B2 (en) | 1995-05-26 | 2002-10-15 | 富士電機株式会社 | Electric fan and method of assembling the same |
US5632685A (en) * | 1995-12-04 | 1997-05-27 | Dana Corporation | End fitting for drive shaft assembly and method of manufacturing same |
JP2001178078A (en) | 1999-12-17 | 2001-06-29 | Sankyo Seiki Mfg Co Ltd | Motor |
JP4590714B2 (en) | 2000-10-23 | 2010-12-01 | パナソニック株式会社 | Brushless motor and manufacturing method thereof |
US6910483B2 (en) * | 2001-12-10 | 2005-06-28 | Resmed Limited | Double-ended blower and volutes therefor |
JP4110825B2 (en) * | 2002-05-08 | 2008-07-02 | 松下電器産業株式会社 | Electric blower and electric vacuum cleaner using the same |
US20050239558A1 (en) * | 2004-04-26 | 2005-10-27 | Brandt David D | Self-forming sleeve for shaft coupling |
DE102004031852A1 (en) | 2004-06-30 | 2006-01-19 | Robert Bosch Gmbh | Device for transmitting a torque and method for producing a device for transmitting a torque |
DE102005030424A1 (en) * | 2005-06-30 | 2007-01-04 | Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt | Arrangement and method for arranging a pump bearing in / on coolant pump housings made of plastic |
DE102005031589A1 (en) * | 2005-07-06 | 2007-01-11 | Schaeffler Kg | Wasserpumpenflügelrad |
US7559745B2 (en) | 2006-03-21 | 2009-07-14 | United Technologies Corporation | Tip clearance centrifugal compressor impeller |
JP5055886B2 (en) | 2006-08-04 | 2012-10-24 | 日本電産株式会社 | Brushless motor and disk drive device |
JP2006353100A (en) * | 2006-09-07 | 2006-12-28 | Hitachi Ltd | Air conditioner |
JP2008160959A (en) * | 2006-12-22 | 2008-07-10 | Jtekt Corp | Assembling the rotor |
JP2009011019A (en) * | 2007-06-26 | 2009-01-15 | Minebea Co Ltd | Rotor structure |
JP2010165421A (en) | 2009-01-16 | 2010-07-29 | Nippon Densan Corp | Spindle motor, disk driving device using the same, and method for manufacturing spindle motor |
WO2010097609A1 (en) | 2009-02-24 | 2010-09-02 | Dyson Technology Limited | Bearing support |
GB2467966B (en) | 2009-02-24 | 2013-04-03 | Dyson Technology Ltd | Rotor assembly |
GB2467967B (en) | 2009-02-24 | 2015-04-22 | Dyson Technology Ltd | Rotor assembly |
GB2467964B (en) | 2009-02-24 | 2015-03-25 | Dyson Technology Ltd | Shroud-Diffuser assembly |
GB2467969B (en) | 2009-02-24 | 2013-06-12 | Dyson Technology Ltd | Bearing support |
DE102009035629A1 (en) * | 2009-07-31 | 2011-02-17 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Charging device, in particular exhaust gas turbocharger for a motor vehicle |
JP5457787B2 (en) | 2009-10-20 | 2014-04-02 | 日本電産サンキョー株式会社 | Motor rotor and motor |
GB201014074D0 (en) | 2010-08-24 | 2010-10-06 | Dyson Technology Ltd | Rotor for an electrical machine |
JP5704387B2 (en) | 2010-10-19 | 2015-04-22 | 日本電産株式会社 | Spindle motor, disk drive device, and spindle motor manufacturing method |
JP5838734B2 (en) | 2010-12-27 | 2016-01-06 | 日本電産株式会社 | Spindle motor, disk drive device, and spindle motor manufacturing method |
JP2012145157A (en) | 2011-01-11 | 2012-08-02 | Alphana Technology Co Ltd | Rotating device and method for manufacturing the rotating device |
GB2493972B (en) | 2011-08-26 | 2014-12-03 | Dyson Technology Ltd | Rotor assembly for a turbomachine |
GB2493974B (en) | 2011-08-26 | 2014-01-15 | Dyson Technology Ltd | Bearing assembly |
-
2009
- 2009-02-24 GB GB0903054A patent/GB2467967B/en active Active
-
2010
- 2010-02-10 EP EP14177341.6A patent/EP2827002A3/en not_active Withdrawn
- 2010-02-10 US US13/203,155 patent/US9926940B2/en active Active
- 2010-02-10 WO PCT/GB2010/050213 patent/WO2010097610A1/en active Application Filing
- 2010-02-10 JP JP2011551526A patent/JP5680560B2/en active Active
- 2010-02-10 EP EP10704964.5A patent/EP2401508B1/en active Active
-
2014
- 2014-08-28 JP JP2014173721A patent/JP2014240657A/en not_active Abandoned
-
2018
- 2018-02-13 US US15/895,309 patent/US20180172018A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2433589A (en) * | 1939-05-25 | 1947-12-30 | Nash Engineering Co | Pump |
US2857849A (en) * | 1953-11-13 | 1958-10-28 | Joseph R Smylie | Motor driven pumping units |
US3801226A (en) * | 1970-08-28 | 1974-04-02 | Goulds Pumps | Pump impeller |
US4427911A (en) * | 1982-01-04 | 1984-01-24 | Imc Magnetics Corp. | Rotor for a stepper motor having a sheet metal support for the magnet |
US5769618A (en) * | 1995-09-25 | 1998-06-23 | Heishin Sobi Kabushiki Kaisha | Uniaxial eccentric screw pump having a flexible plastic shaft |
US6039536A (en) * | 1997-09-30 | 2000-03-21 | Pierburg Ag | Connection between a rotor hub and a shaft of an electric motor of an electrically driven air pump |
US5923111A (en) * | 1997-11-10 | 1999-07-13 | Goulds Pumps, Incoporated | Modular permanent-magnet electric motor |
US20120076639A1 (en) * | 2010-09-27 | 2012-03-29 | Nicolas Vazeille | Shaft and Turbine Wheel Assembly |
US20120201682A1 (en) * | 2011-02-08 | 2012-08-09 | Dyson Technology Limited | Rotor for a turbomachine |
Also Published As
Publication number | Publication date |
---|---|
EP2827002A3 (en) | 2016-04-27 |
GB2467967A (en) | 2010-08-25 |
EP2401508A1 (en) | 2012-01-04 |
GB0903054D0 (en) | 2009-04-08 |
EP2827002A2 (en) | 2015-01-21 |
JP2014240657A (en) | 2014-12-25 |
US20120014806A1 (en) | 2012-01-19 |
JP2012518751A (en) | 2012-08-16 |
WO2010097610A1 (en) | 2010-09-02 |
US9926940B2 (en) | 2018-03-27 |
GB2467967B (en) | 2015-04-22 |
EP2401508B1 (en) | 2014-08-27 |
JP5680560B2 (en) | 2015-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180172018A1 (en) | Rotor assembly | |
JP7097302B2 (en) | Rotors for electric machines and electric machines | |
US7825557B2 (en) | Spindle motor having a fluid dynamic bearing system and a stationary shaft | |
US20070222314A1 (en) | Spindle motor having a fluid dynamic bearing system | |
KR100421103B1 (en) | Spindle motor having disc mounting portion | |
US8304946B2 (en) | Spindle motor | |
US9621000B2 (en) | Rotor assembly with permanent magnets and method of manufacture | |
GB2493972A (en) | Rotor assembly having a component secured to a bore by two adhesives | |
US20100018031A1 (en) | Motor manufacturing method | |
US9476449B2 (en) | Fluid dynamic bearing device and motor with same | |
US6502990B2 (en) | Hydrodynamic bearing device | |
JP2012087867A (en) | Rotating apparatus and method of manufacturing rotating apparatus | |
WO2010098046A1 (en) | Rotor, motor utilizing the same, electric blower, and electric vacuum cleaner | |
EP2923433B1 (en) | Rotor axle of a high speed permanent magnet machine | |
JP2012089200A (en) | Rotating device and method for manufacturing rotating device | |
US20100156218A1 (en) | Spindle motor | |
US20060031864A1 (en) | Spindle motor, disc driving apparatus having the same, and production method thereof | |
US5969452A (en) | Magnetic bearing construction | |
WO2004102017A3 (en) | Magnetic bearing isolator | |
US20050140226A1 (en) | Spindle motor | |
US20230421014A1 (en) | Ball bearing holding structure and fan motor | |
JPH0571532A (en) | Bearing device | |
GB2626582A (en) | A rotor assembly | |
GB2626579A (en) | A rotor assembly | |
JP2009008110A (en) | Fluid bearing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DYSON TECHNOLOGY LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOCKRIDGE, RICHARD IAIN;REEL/FRAME:046299/0770 Effective date: 20180510 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |