US20180139974A1 - Hand-held Smoke Generation Device - Google Patents
Hand-held Smoke Generation Device Download PDFInfo
- Publication number
- US20180139974A1 US20180139974A1 US15/820,343 US201715820343A US2018139974A1 US 20180139974 A1 US20180139974 A1 US 20180139974A1 US 201715820343 A US201715820343 A US 201715820343A US 2018139974 A1 US2018139974 A1 US 2018139974A1
- Authority
- US
- United States
- Prior art keywords
- smoke
- smoke generation
- hand
- held
- pod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B4/00—Preservation of meat, sausages, fish or fish products
- A23B4/044—Smoking; Smoking devices
- A23B4/052—Smoke generators ; Smoking apparatus
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B4/00—Preservation of meat, sausages, fish or fish products
- A23B4/044—Smoking; Smoking devices
- A23B4/052—Smoke generators ; Smoking apparatus
- A23B4/0523—Smoke generators using wood-pyrolysis or wood-friction
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/20—Synthetic spices, flavouring agents or condiments
- A23L27/27—Smoke flavours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/10—Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12G—WINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
- C12G3/00—Preparation of other alcoholic beverages
- C12G3/04—Preparation of other alcoholic beverages by mixing, e.g. for preparation of liqueurs
- C12G3/06—Preparation of other alcoholic beverages by mixing, e.g. for preparation of liqueurs with flavouring ingredients
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7027—Aromatic hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0275—Other waste gases from food processing plants or kitchens
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/90—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
Definitions
- This invention relates to the field of flavoring and more particularly to a system for generating smoke for flavoring of a food item such as liquor.
- cooking food over an open fire infuses some of the aromas from the smoke of the fire into the food, enhancing the flavor of the food. This is often performed using aromatic woods such as mesquite.
- Another example is smoke provided as a liquid for adding to foods while cooking.
- Still another example is a small, hand-held machine that is filled with wood pieces that smolders and produces smoke.
- the latter is typically used to add smoke to liquor such as bourbon.
- the liquor cannot be placed over an open fire and it is not acceptable to add a liquid such as adding smoke provided as a liquid. It is desirable to infuse smoke into the liquor or onto a glass that will eventually hold the liquor.
- Devices currently in the market accept a quantity of wood fragments, then the wood fragments are ignited to smolder for coating a glass with smoke, but this device has many drawbacks. These devices have no control of the incineration and an unknowing individual may use a material that is too flammable. These devices have no control as to the size and density of the material being smoldered and it is up to the user to use correct wood fragment sizes. These devices have no receptacles for supporting a glass during smoke generation.
- These devices have no control as to the amount of smoke generated. These devices have no filtering to prevent certain materials from traveling to the destination (glass), especially carcinogens. Further, the user of these devices must load the device with wood fragments/particles and later clean the devices of ashes.
- What is needed is a system that will generate smoke in a controlled way while providing repeatable control to the generation of such smoke.
- a smoke generation system including a control circuit, a base unit, and a removable smoke generation pod.
- the control unit within the base unit, controls the operation of the smoke generation system to generate smoke from a material provided within the smoke generation pod.
- Each smoke generation pod has there within a material such as wood that is heated or ignited, under control of the control circuit, to produce the smoke.
- the smoke is routed to an object such as a glass (with or without a liquid there within) for infusing the smoke into the liquid or onto the object (e.g. foodstuff).
- a smoke generation pod including a housing that has an input vent, an output vent, and an internal chamber.
- a material e.g. wood particles
- An electrical igniter is also within the internal chamber and in contact with the material.
- a plurality of electrical contacts is on an outside surface of the housing, each of the plurality of electrical contacts is electrically connected to the igniter.
- a method of generating smoke including inserting a smoke generation pod into a machine, the smoke generation pod has a housing with an input vent, an output vent, and an internal chamber.
- the internal chamber has there within a material (e.g. wood fragments).
- the machine provides an electrical potential to contacts on an outside surface of the housing that are electrically interfaced to an electrical igniter that is within the internal chamber and the electrical igniter is in contact with the material. Responsive to the electrical potential, the igniter heats the material and the material emits smoke.
- the machine inserts air into the input vent causing smoke to emanate from the output vent.
- a smoke generation pod including a hermetically sealed housing that has an input vent, an output vent having a filter, and an internal chamber.
- the internal chamber contains a material such as wood particles.
- An electrical igniter is mounted within the internal chamber and is in contact with the material. Electrical contacts on an outside surface of the housing are electrically connected to the igniter such that upon application of an electric potential across the plurality of electrical contacts, the material emits smoke and the smoke emanates from the output vent as air replaces the smoke into the input vent.
- a hand-held smoke generation device including a hand-held housing that has a receptacle for removably receiving a smoke generation pod.
- the receptacle has a first plurality of electrical contacts for mating with a second plurality of contacts on the smoke generation pod.
- a source of electrical power is contained within the hand-held housing and a device for selectively providing electrical power from the source of electrical power to the second plurality of contacts is interfaced to the hand-held housing. Operation of the device for selectively providing electrical power causes a material within the smoke generation pod to generate smoke.
- Another device within the hand-held housing pulls the smoke from the smoke generation pod and routes the smoke out of the hand-held housing.
- a method of generating smoke including inserting a smoke generation pod into a receptacle of a hand-held housing of a hand-held smoke generation device.
- a first plurality of electrical contacts in the receptacle makes contact with a second plurality of contacts on the smoke generation pod.
- the hand-held smoke generation device provides an electrical potential to first plurality of contacts and, therefore to the second plurality of contacts.
- the second plurality of contacts are electrically interfaced to an electrical igniter that is interfaced to an internal chamber of the smoke generation pod and the electrical igniter being in contact with a material that is located within the internal chamber. Responsive to the electrical potential, the igniter heats the material and responsive to the igniter heating, the material emits smoke.
- the hand-held smoke generation device then routes the smoke to emanate from an orifice of the hand-held smoke generation device.
- a hand-held smoke generation device including a hand-held housing with a receptacle for removably receiving a smoke generation pod.
- the receptacle has a first plurality of electrical contacts for mating with a second plurality of contacts on the smoke generation pod.
- the smoke generation pod has an input vent, an output vent, and an internal chamber with a material and an electrical igniter within the internal chamber.
- the electrical igniter is in contact with the material and the second plurality of electrical contacts is electrically connected to the igniter.
- a source of electrical power contained within the hand-held housing and a switch selectively provides electrical power from the source of electrical power to the second plurality of contacts, thereby causing the material within the smoke generation pod to generate smoke.
- a fan pulls the smoke from the output vent of the smoke generation pod and routes the smoke out of the hand-held housing.
- FIG. 1 illustrates a schematic view of a processor-based control system of the smoke generator.
- FIG. 2 illustrates a block diagram of the smoke generator.
- FIGS. 3A and 3B illustrate block diagrams of the smoke generation pod of the smoke generator.
- FIGS. 4A and 4B illustrate perspective views of an exemplary housing for the smoke generator.
- FIGS. 5A and 5B illustrate perspective views of an exemplary embodiment of the smoke generation pod of the smoke generator.
- FIGS. 6 and 7 illustrate cross-sectional views of exemplary smoke generation pod of the smoke generator.
- FIGS. 8, 9, and 10 illustrate perspective views of an exemplary hand-held housing for the smoke generator.
- FIG. 10A illustrates a cross-sectional view of the exemplary hand-held housing for the smoke generator.
- FIGS. 11, 12, and 13 illustrate perspective views of an exemplary housing for the smoke generator that includes a drink mixer.
- FIG. 1 a schematic view of a processor-based control system of the smoke generation system 10 is shown.
- the smoke generation system 10 is described using a processor-based controller for providing operational and safety control.
- a processor-based control system is shown in FIG. 1 , it is known to implement similar functionality in logic and electronics and any such control system is fully anticipated.
- the processor-based controller represents a typical control system for monitoring and controlling the operation and smoke generation in the smoke generation system 10 .
- This processor-based controller is shown in its simplest form. Different architectures are known that accomplish similar results in a similar fashion and the present invention is not limited in any way to any particular system architecture or implementation.
- a processor 70 executes or runs programs in a random access memory 75 .
- the programs are generally stored within a persistent memory 74 and loaded into the random-access memory 75 when needed.
- the processor 70 is any processor, typically a processor designed for embedded operation such as a micro-controller.
- the persistent memory 74 and random-access memory 75 are connected to the processor by, for example, a memory bus 72 .
- the random access memory 75 is any memory suitable for connection and operation with the selected processor 70 , such as SRAM, DRAM, SDRAM, RDRAM, DDR, DDR-2, etc.
- the persistent memory 74 is any type, configuration, capacity of memory suitable for persistently storing data, for example, flash memory, read only memory, battery-backed memory, etc.
- the persistent memory 74 is removable, in the form of a memory card of appropriate format such as SD (secure digital) cards, micro SD cards, compact flash, etc.
- a system bus 82 for connecting to peripheral subsystems such as a graphics adapter 84 and keypad inputs 91 and/or a touch screen interface 92 .
- the graphics adapter 84 receives commands from the processor 70 and controls what is depicted on the display 86 .
- the keypad inputs 91 and/or touch screen interface 92 provide navigation and selection features.
- some portion of the persistent memory 74 is used to store programs, executable code, and data, etc.
- other data is stored in the persistent memory 74 such as audio files, video files, text messages, etc.
- the processor-based control system includes input/output ports 95 for sensing and controlling various devices within the smoke generation system 10 .
- the input/output ports 95 monitor and control operation of valves/pumps 31 / 31 A through an input 56 , monitor and control operation of the ignition device driver 55 , and read sensors 60 to monitor the position/operation of various components.
- the processor-based control system reads a sensor interface 60 to the smoke pod door 14 (see FIG. 4A ) to make sure that the smoke pod door 14 is closed.
- the processor 70 controls the voltage and/or current provided to the ignition device 59 by the ignition device driver 55 , thereby controlling the duration and temperature of the ignition device 59 and, therefore, the amount and density of the smoke generated.
- peripherals shown are examples and other devices are anticipated as known in the industry such as speakers, microphones, USB interfaces, cameras, microphones, a Bluetooth transceiver 94 , a Wi-Fi transceiver 96 , etc., the details of which are not shown for brevity and clarity reasons.
- the processor-based controller includes a Bluetooth transceiver 94 , a Wi-Fi transceiver 96 , or both. Having data communications between the smoke generation system 10 and other devices such as a cellular phone (not shown) or personal computer (not shown) enable control and status from a connected device. For example, an application running on a cellular phone communicates over the Bluetooth radio 94 and/or the Wi-Fi radio 96 , providing a richer user interface.
- a controller 50 e.g., processor-based controller or discrete component such as logic-array based
- the controller 50 presents information on the display 86 such as instructions, warnings, status, progress, etc.
- the keypad 91 accepts user inputs to initiate generation of smoke, to stop generation of smoke, etc.
- the keypad 91 is replaced by a touch screen 92 overlaid on the display 86 .
- the controller 50 electrically controls internal pumps and valve operation through a valve/pump driving circuit 56 . Likewise, the controller electrically controls the igniter 59 (see FIG. 3 ) through an ignition device driver 55 .
- Various sensors e.g. identification sensor reader 61 —see FIG. 3 , and lid-closed sensor, not shown) are read through a sensor interface 60 .
- the smoke generation pod 30 contains a material 38 that is heated/ignited until the material smolders and/or burns, thereby producing the smoke 99 .
- the material 38 is any material 38 that produces the desired smoke such as wood (e.g. oak, mesquite, and hickory), herbs (e.g. mint, cardamom, basil, cilantro, and garlic), and plant matter (e.g. hemp, tree bark, and roots).
- the material 38 is held and contained within an enclosure 132 of the smoke generation pod 30 .
- the smoke 99 is extracted from the smoke generation pod 30 through an output vent 29 that, in some embodiments, includes a mesh filter 33 .
- the mesh filter 33 prevents ashes from escaping during smoke generation and after the process is complete.
- a second filter 32 also filters out smaller ash particles (e.g. the second filter 32 is made of cellulose acetate fiber material), but in some embodiments, the second filter 32 also removes some carcinogens that form from the combustion of the material 38 .
- the combustion of wood produces polycyclic aromatic hydrocarbons (PAHs) which are known carcinogens.
- the second filter 32 includes or is made of silica-alumina (zeolite) to remove some or a majority of the polycyclic aromatic hydrocarbons (PAHs), thereby reducing carcinogens in the smoke 99 .
- the location of the mesh filter 33 and the second filter 32 be in any suitable location in the path of the smoke 99 .
- the mesh filter 33 is integrated into the smoke generation pod 30 and the second filter 32 is integrated into the pod cavity 39 of a smoke generating device, though it is equally anticipated that the second filter 32 is integrated into the smoke generation pod 30 .
- the smoke 99 is urged out of the smoke generation pod 30 using a pump 31 that is controlled by the valve/pump driving circuit 56 .
- the pump either extracts the smoke 99 from the output vent 29 , in which case air enters the input vent 41 , or the pump forces air into the input vent 41 , which in turn forces the smoke 99 out of the output vent 29 .
- the smoke 99 is routed to a glass 101 or other object such as foodstuff, either empty glass 101 or a glass 101 containing a liquid.
- the material 38 is heated/ignited by an igniter 59 (as in FIG. 3A ) such as a resistive heating element, a spark generator, or an electric arc 131 (as in FIG. 3B ), though any electrically operated igniter is anticipated.
- an igniter such as a resistive heating element, a spark generator, or an electric arc 131 (as in FIG. 3B ), though any electrically operated igniter is anticipated.
- an igniter 59 such as a resistive heating element that heats the material 38 to a high temperature when electric current flows through a filament.
- a spark generator that uses a short pulse of high voltage electricity that generates a spark over a gap between two electrodes. In such, it is anticipated that the spark is near a flammable material such as wood chips or other.
- the material 38 includes another material that is easier to ignite.
- such high voltage pulses are delivered either from a pulse transformer (e.g. as used with a Xenon flash tube) or through excitation of a piezo material (e.g. as commonly used in outdoor grills).
- a pulse transformer e.g. as used with a Xenon flash tube
- a piezo material e.g. as commonly used in outdoor grills.
- Another example of an igniter is an electric arc 131 , in which sufficient electric voltage potential is delivered between two electrodes 133 / 135 , causing an electric arc to form across the electrodes.
- the electric arc 131 is sufficient to initiate ignition/smoldering
- the material 38 includes another material that is easier to ignite to aid in the ignition/smoldering.
- the igniter 59 requires either significant electrical current (resistive heating element) or significant electrical voltage (electric arc), it is anticipated that, in some embodiments, a high current and/or high voltage ignition device driver 55 provides such electrical current and electrical voltage.
- the smoke generation pod 30 includes an identification device 34 or an encoded value (e.g. a barcode or QR code) that is read by an identification sensor reader 61 . Data from the identification device 34 that is sensed/read by the identification sensor reader 61 is sent to the control system through the sensor interface 60 .
- the identification device 34 is a radio frequency identification device (RFID).
- the identification device 34 is writable, allowing the smoke generation system 10 to write and/or overwrite data stored within the identification device 34 .
- the identification device 34 is a writable radio frequency identification device (RFID). Having writable memory in the identification device 34 enables a usage count that is associated with each smoke generation pod 30 . For example, by writing an initial value in the writable memory of the identification device 34 , then each time the corresponding smoke generation pod 30 is used, the usage count is decremented, then once the usage count reaches zero, the corresponding smoke generation pod 30 is disabled and will no longer be usable.
- RFID radio frequency identification device
- the writable memory of the identification device is write-once memory (e.g. the memory can only be changed from a zero to a one or vice versa. In this way, it is more difficult for a counterfeiter to reuse smoke generation pods.
- data from the identification device 34 includes the type of material 38 present in the smoke generation pod 30 (e.g. an encoding for hickory, a different encoding for mesquite, etc.). This provides for displaying the type of material 38 contained in the smoke generation pod 30 on the display 86 for user confirmation, etc. Further, upon reading the type of material 38 within the smoke generation pod 30 , the processor 70 makes adjustments to the power provided to the igniter 59 / 131 to compensate for different types if the materials 38 and/or controls air flow through the smoke generation pod 30 . For example, more power is provided for a denser type of the material 38 such as oak and less power is provided for a less dense type of the material 38 such as mint leaves. More air flow is provided for a slower burning type of the material 38 such as oak and less airflow is provided to a faster burning type of the material 38 such as herbal leaves.
- a denser type of the material 38 such as oak
- less power is provided for a less dense type of the material 38 such as mint leaves.
- data from the identification device 34 includes parameters for generation of smoke from the material 38 present in the smoke generation pod 30 (e.g. suggested temperature, pump flow rate, etc.). This provides for optimum control of the igniter 59 or electric arc 131 depending upon the material 38 within the smoke generation pod 30 .
- data from the identification device 34 includes a serial number or identification of the smoke generation pod 30 . This provides verification that the smoke generation pod 30 is an authentic product and not a duplicate that may pose a safety risk.
- writable data in the identification device 34 includes a usage register. After using the smoke generation pod 30 , the controller initiates writing (or overwriting) of data within the identification device 34 . This provides a way to assure that the smoke generation pod 30 is not used multiple times. In such, it is preferred that the usage register is a write-once memory location so that it cannot be overwritten to indicate that the smoke generation pod 30 has not been used.
- FIGS. 4A and 4B perspective views of an exemplary stationary housing 11 for the smoke generation system 10 are shown.
- the example stationary housing 11 shown is one possible housing for the smoke generation system 10 and, in no way, limits the present invention to any particular physical embodiment (as will be further exemplified).
- the front of the stationary housing 11 of the smoke generation system 10 includes the display 86 and keypad 91 (e.g. individual buttons).
- the smoke pod door 14 opens/closes to allow removal/insertion of the smoke generation pod 30 into/out of the pod cavity 19 .
- a sensor (not shown) detects when the smoke pod door 14 is open to prevent operation of the igniter 59 / 131 while the smoke pod door 14 is open.
- the smoke pod door 14 also provides for capturing of the smoke 99 and routing the smoke to an object (e.g. a glass 101 ) resting on a tray 16 .
- the upper portion of the exemplary stationary housing 11 of the smoke generation system 10 connects to the lower portion with the tray 16 by a riser section 12 .
- the smoke 99 is routed into a container having there within foodstuff for smoking the foodstuff.
- the container has there within meat that is to be smoked using the smoke 99 .
- the smoke pod door 14 includes a smoke donut 15 . After smoke generation is complete, remaining smoke beneath the closed smoke pod door 14 (within the smoke reservoir 18 ) is pumped out in one or more pulses through the smoke donut 15 , creating smoke rings to inform the user that the process is complete. In some embodiments, the smoke donut 15 is illuminated (e.g. with LEDs) to accentuate the smoke ring(s).
- FIG. 4B the back surface has been removed to show the pump 31 .
- an exhaust 17 is provided to exhaust internal heat and gases.
- a replaceable filter 13 is provided to remove particulate matter from the gases (smoke 99 ) that are exhausted.
- Power is provided as known in the industry, for example using household current, a primary power source (e.g. batteries), or using rechargeable batteries, etc.
- a primary power source e.g. batteries
- rechargeable batteries etc.
- FIGS. 5A, 5B, 6 and 7 views of an exemplary smoke generation pod 30 of the smoke generation system 10 are shown.
- the anode 133 and cathode 135 are housed within a cage 140 within the smoke generation pod 30 (though any ignition system is anticipated).
- the anode 133 is electrically interfaced to a first contact 35 and the cathode 135 is electrically interfaced to a second contact 37 on surfaces of the smoke generation pod 30 .
- contact is made to provide electrical power to the contacts 35 / 37 and, hence, a voltage potential between the anode 133 and cathode 135 form an electric arc 131 within the smoke generation pod 30 .
- the electric arc 131 is in the vicinity of the material 38 , the electric arc 131 causes the material to smolder, creating the smoke 99 .
- the cage 140 within the smoke generation pod 30 is made of metal to preclude melting as the material 38 smolders and generates heat.
- the outer shell 132 is made of a plastic material that is easy to mold into the desired shape and retains that shape after molding.
- the mesh filter 33 retains the material 38 and some or all of ashes that are produced during the generation of smoke 99 within the smoke generation pod 30 .
- a second filter 32 further filters out smaller ash particles (e.g., the second filter 32 is a cellulose acetate fiber material) and, in some embodiments, the second filter 32 also filters out some carcinogens that form from the combustion of the material 38 .
- the combustion of wood produces polycyclic aromatic hydrocarbons (PAHs) which are known carcinogens.
- the second filter 32 includes or is made of silica-alumina (zeolite) to remove some or a majority of the polycyclic aromatic hydrocarbons (PAHs), thereby reducing carcinogens in the smoke 99 .
- the smoke generation pod 30 includes an output vent 29 through which the smoke 99 is extracted/escapes from the smoke generation pod 30 .
- the output vent 29 includes a mesh filter 33 to prevent at least some of the materials and ash from escaping from the smoke generation pod 30 . It is anticipated that in some embodiments, the smoke 99 is pulled out of the output vent 29 (and optional mesh filter 33 ) as air is drawn into the input vent 41 while in other embodiments air is forced into the input vent 41 and the smoke 99 therefore exits through the output vent 29 (and optional mesh filter 33 ).
- the smoke generation pod 30 includes an registration tab 43 that aligns the smoke generation pod within the pod cavity 39 .
- FIGS. 6 and 7 cross-sectional views of an exemplary smoke generation pod 30 of the smoke generation system 10 are shown.
- the outer structure is shown having there contained the cage 140 .
- the outer structure of the smoke generation pod 30 has an outer wall 132 that is separated from cage 140 by an air gap 134 .
- This air gap 134 helps keep the smoke generation pod 30 cool to the touch.
- another pump 31 A (see FIG. 4B ) is used to move air through the air gap 134 to provide additional cooling.
- a temperature sensor within the pod cavity 19 is read to monitor the temperature of the smoke generation pod 30 and interlocks are provided (not shown) to prevent removal of the smoke generation pod 30 until a safe temperature is reached.
- the cage 140 includes the material 38 that is used to generate the smoke 99 , enclosed by an inner smoke generation container 142 . It is anticipated that the inner smoke generation container 142 be made of a fire-retardant material to completely contain the smoldering or burning of the material 38 after ignition. Examples of the fire-retardant material include, but are not limited to, steel, aluminum, certain plastics, etc.
- the smoke generation pod 30 is delivered in an airtight container or removable seals cover the output vent 29 and the input vent 41 to keep the material 38 fresh.
- the smoke generation system 10 was embodied in a stationary system. Two other smoke generation systems 10 are described below including a hand-held housing 100 and a mixer housing 200 .
- FIGS. 8, 9, 10, and 10A views of an exemplary hand-held housing 100 for the smoke generation system 10 are shown.
- the hand-held smoke generation device shown in FIGS. 8, 9, and 10 are perspective views of the exemplary hand-held housing 100 and shone in FIG. 10A is a cross-sectional view of the exemplary hand-held housing 100 .
- the hand-held housing 100 is another example/embodiment of the smoke generation system 10 that provides a more portable smoke generation device that still accepts the above described smoke generation pod 30 .
- three embodiments of smoke generation systems 10 are disclosed, there are no limitations as to the types, sizes, or shapes of such smoke generation systems 10 , as there are many embodiments of smoke generation systems 10 anticipated that accept the smoke generation pod 30 .
- the muzzle end 120 of the hand-held housing 100 has an orifice through which the smoke 99 will emanate.
- the muzzle end 120 includes a camera (not shown).
- the smoke generation pod 30 fits within and is held within a pod holder 108 that is similarly mounted as a round holder of a handgun.
- the pod holder 180 swivels outward from the hand-held housing 100 to insert/remove the smoke generation pod 30 , then swivels back into the hand-held housing 100 for generation of the smoke 99 .
- a battery pack is positioned in the grip portion 106 of the hand-held housing 100 .
- the battery pack is rechargeable through a connector 102 on the back surface of the hand-held housing 100 (or any other surface), for instances a micro-USB power connector.
- the chamber section 104 of the hand-held housing 100 houses some or all of the electronics required to control the pump/fan 31 and to generate the proper power voltage and current to operate the igniter 59 or arc 151 .
- a trigger 107 controls the electronics to initiate generation of the smoke 99 . Pressing the trigger 107 initiates flow of electricity to the pump/fan 31 and to the igniter 59 or arc 151 . In this way, it is anticipated that a single smoke generation pod 30 remain within the hand-held housing 100 while the trigger 107 is operated several times to generate several streams of the smoke 99 .
- the second filter 32 is housed in the hand-held housing 100 behind a cover 111 that is held to the hand-held housing 100 by latches 110 .
- FIGS. 11, 12, and 13 perspective views of an exemplary mixer housing 200 for the smoke generation system 10 that includes a drink mixer are shown.
- the mixer housing 200 is another example/embodiment of the smoke generation system 10 that provides a different smoke generation device that still accepts the above described smoke generation pod 30 .
- three embodiments of smoke generation systems 10 are disclosed, there are no limitations as to the types, sizes, or shapes of such smoke generation systems 10 , as there are many embodiments of smoke generation systems 10 anticipated that accept the smoke generation pod 30 .
- the mixer housing 200 resembles a drink mixer often used for mixing drinks, often alcohol-based drinks.
- the mixer housing 200 of the smoke generation system 10 includes a receptacle 209 that accepts a smoke generation pod 30 and the mixer housing 200 of the smoke generation system 10 includes control electronics and passages to route the smoke 99 into a liquid/solid that is located within the canister 204 of the mixer housing 200 . In this way, the mixer housing 200 mixes drinks while infusing the smoke 99 into the drinks.
- the mixer housing 200 has a receptacle 209 , typically located at the top of the canister 204 , which removably accepts a smoke generation pod 30 .
- a cover 208 having vents 203 covers the receptacle 209 (and smoke generation pod 30 when present), the vents 203 allowing outside air to enter the input vent 41 of the smoke generation pod 30 .
- a base portion 202 of the mixer housing 200 contains the electronics and a motor 220 for mixing the drinks by way of a blade 222 that is coupled to the motor 220 .
- the motor 220 is a multi-speed motor as known in the industry.
- Smoke exiting the output vent 29 travels from the smoke generation pod 30 from the receptacle 209 through the cover 206 , through ports 201 in the cover that interface with a passageway 207 .
- the smoke then travels through the passageway 207 between an inner wall 205 and an outer wall of the canister 204 of the canister 204 .
- the passageway 207 moves the smoke 99 to a lower portion of the canister 204 (e.g.
- the filter or mesh 224 includes a one-way valve, so that the smoke, under pressure from the pump/fan 31 will enter into the liquid or solid within the canister 204 , but any liquid or fine particles of solids will not travel in the reverse direction into the passageway 207 .
- the passageway 207 there are no limits on the location and size of the passageway 207 .
- the passageway completely encircles the canister 204 , while in some embodiments, the passageway 207 is only located on a small portion of a side of the canister 204 , or the passageway 207 is a small tube that runs external or internal to the canister 204 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Nutrition Science (AREA)
- Catching Or Destruction (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
Abstract
A hand-held smoke generation device includes a hand-held housing that has a receptacle for removably receiving a smoke generation pod. The receptacle has a first plurality of electrical contacts for mating with a second plurality of contacts on the smoke generation pod. A source of electrical power is contained within the hand-held housing and a switch selectively provides electrical power from the source of electrical power to the second plurality of contacts. Operation of the switch provides the electrical power and causes a material within the smoke generation pod to generate smoke. Another device within the hand-held housing pulls the smoke from the smoke generation pod and routes the smoke out of the hand-held housing (e.g. out of a tube or muzzle for directing into a container such as a glass).
Description
- This application claims the benefit of U.S. provisional application No. 62/425,093 filed Nov. 22, 2016, the disclosure of which is incorporated by reference.
- This invention relates to the field of flavoring and more particularly to a system for generating smoke for flavoring of a food item such as liquor.
- Many people appreciate tastes and smells that are provided by smoke. The smell of a fire burning, incense, meat cooked over charcoal all provide tastes and smells that please many people and enhance the flavor of what they eat.
- There are several prior methods of providing such flavors. For example, cooking food over an open fire infuses some of the aromas from the smoke of the fire into the food, enhancing the flavor of the food. This is often performed using aromatic woods such as mesquite.
- Another example is smoke provided as a liquid for adding to foods while cooking.
- Still another example is a small, hand-held machine that is filled with wood pieces that smolders and produces smoke. The latter, is typically used to add smoke to liquor such as bourbon.
- For adding a smoke flavor to a liquor, the liquor cannot be placed over an open fire and it is not acceptable to add a liquid such as adding smoke provided as a liquid. It is desirable to infuse smoke into the liquor or onto a glass that will eventually hold the liquor. Devices currently in the market accept a quantity of wood fragments, then the wood fragments are ignited to smolder for coating a glass with smoke, but this device has many drawbacks. These devices have no control of the incineration and an unknowing individual may use a material that is too flammable. These devices have no control as to the size and density of the material being smoldered and it is up to the user to use correct wood fragment sizes. These devices have no receptacles for supporting a glass during smoke generation. These devices have no control as to the amount of smoke generated. These devices have no filtering to prevent certain materials from traveling to the destination (glass), especially carcinogens. Further, the user of these devices must load the device with wood fragments/particles and later clean the devices of ashes.
- What is needed is a system that will generate smoke in a controlled way while providing repeatable control to the generation of such smoke.
- In one embodiment, a smoke generation system is disclosed including a control circuit, a base unit, and a removable smoke generation pod. The control unit, within the base unit, controls the operation of the smoke generation system to generate smoke from a material provided within the smoke generation pod. Each smoke generation pod has there within a material such as wood that is heated or ignited, under control of the control circuit, to produce the smoke. The smoke is routed to an object such as a glass (with or without a liquid there within) for infusing the smoke into the liquid or onto the object (e.g. foodstuff).
- In another embodiment, a smoke generation pod is disclosed including a housing that has an input vent, an output vent, and an internal chamber. A material (e.g. wood particles) is in the internal chamber. An electrical igniter is also within the internal chamber and in contact with the material. A plurality of electrical contacts is on an outside surface of the housing, each of the plurality of electrical contacts is electrically connected to the igniter. Upon application of an electric potential across the plurality of electrical contacts, the material emits smoke and the smoke emanates from the output vent as air replaces the smoke into the input vent.
- In another embodiment, a method of generating smoke is disclosed including inserting a smoke generation pod into a machine, the smoke generation pod has a housing with an input vent, an output vent, and an internal chamber. The internal chamber has there within a material (e.g. wood fragments). The machine the provides an electrical potential to contacts on an outside surface of the housing that are electrically interfaced to an electrical igniter that is within the internal chamber and the electrical igniter is in contact with the material. Responsive to the electrical potential, the igniter heats the material and the material emits smoke. The machine inserts air into the input vent causing smoke to emanate from the output vent.
- In another embodiment, a smoke generation pod is disclosed including a hermetically sealed housing that has an input vent, an output vent having a filter, and an internal chamber. The internal chamber contains a material such as wood particles. An electrical igniter is mounted within the internal chamber and is in contact with the material. Electrical contacts on an outside surface of the housing are electrically connected to the igniter such that upon application of an electric potential across the plurality of electrical contacts, the material emits smoke and the smoke emanates from the output vent as air replaces the smoke into the input vent.
- In another embodiment, a hand-held smoke generation device is disclosed including a hand-held housing that has a receptacle for removably receiving a smoke generation pod. The receptacle has a first plurality of electrical contacts for mating with a second plurality of contacts on the smoke generation pod. A source of electrical power is contained within the hand-held housing and a device for selectively providing electrical power from the source of electrical power to the second plurality of contacts is interfaced to the hand-held housing. Operation of the device for selectively providing electrical power causes a material within the smoke generation pod to generate smoke. Another device within the hand-held housing pulls the smoke from the smoke generation pod and routes the smoke out of the hand-held housing.
- In another embodiment, a method of generating smoke is disclosed including inserting a smoke generation pod into a receptacle of a hand-held housing of a hand-held smoke generation device. A first plurality of electrical contacts in the receptacle makes contact with a second plurality of contacts on the smoke generation pod. The hand-held smoke generation device provides an electrical potential to first plurality of contacts and, therefore to the second plurality of contacts. The second plurality of contacts are electrically interfaced to an electrical igniter that is interfaced to an internal chamber of the smoke generation pod and the electrical igniter being in contact with a material that is located within the internal chamber. Responsive to the electrical potential, the igniter heats the material and responsive to the igniter heating, the material emits smoke. The hand-held smoke generation device then routes the smoke to emanate from an orifice of the hand-held smoke generation device.
- In another embodiment, a hand-held smoke generation device is disclosed including a hand-held housing with a receptacle for removably receiving a smoke generation pod. The receptacle has a first plurality of electrical contacts for mating with a second plurality of contacts on the smoke generation pod. The smoke generation pod has an input vent, an output vent, and an internal chamber with a material and an electrical igniter within the internal chamber. The electrical igniter is in contact with the material and the second plurality of electrical contacts is electrically connected to the igniter. A source of electrical power contained within the hand-held housing and a switch selectively provides electrical power from the source of electrical power to the second plurality of contacts, thereby causing the material within the smoke generation pod to generate smoke. A fan pulls the smoke from the output vent of the smoke generation pod and routes the smoke out of the hand-held housing.
- The invention can be best understood by those having ordinary skill in the art by reference to the following detailed description when considered in conjunction with the accompanying drawings in which:
-
FIG. 1 illustrates a schematic view of a processor-based control system of the smoke generator. -
FIG. 2 illustrates a block diagram of the smoke generator. -
FIGS. 3A and 3B illustrate block diagrams of the smoke generation pod of the smoke generator. -
FIGS. 4A and 4B illustrate perspective views of an exemplary housing for the smoke generator. -
FIGS. 5A and 5B illustrate perspective views of an exemplary embodiment of the smoke generation pod of the smoke generator. -
FIGS. 6 and 7 illustrate cross-sectional views of exemplary smoke generation pod of the smoke generator. -
FIGS. 8, 9, and 10 illustrate perspective views of an exemplary hand-held housing for the smoke generator. -
FIG. 10A illustrates a cross-sectional view of the exemplary hand-held housing for the smoke generator. -
FIGS. 11, 12, and 13 illustrate perspective views of an exemplary housing for the smoke generator that includes a drink mixer. - Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Throughout the following detailed description, the same reference numerals refer to the same elements in all figures.
- Referring to
FIG. 1 , a schematic view of a processor-based control system of thesmoke generation system 10 is shown. In such, thesmoke generation system 10 is described using a processor-based controller for providing operational and safety control. Although a processor-based control system is shown inFIG. 1 , it is known to implement similar functionality in logic and electronics and any such control system is fully anticipated. - The processor-based controller represents a typical control system for monitoring and controlling the operation and smoke generation in the
smoke generation system 10. This processor-based controller is shown in its simplest form. Different architectures are known that accomplish similar results in a similar fashion and the present invention is not limited in any way to any particular system architecture or implementation. In this exemplary processor-based control system, aprocessor 70 executes or runs programs in arandom access memory 75. The programs are generally stored within apersistent memory 74 and loaded into the random-access memory 75 when needed. Theprocessor 70 is any processor, typically a processor designed for embedded operation such as a micro-controller. Thepersistent memory 74 and random-access memory 75 are connected to the processor by, for example, amemory bus 72. Therandom access memory 75 is any memory suitable for connection and operation with the selectedprocessor 70, such as SRAM, DRAM, SDRAM, RDRAM, DDR, DDR-2, etc. Thepersistent memory 74 is any type, configuration, capacity of memory suitable for persistently storing data, for example, flash memory, read only memory, battery-backed memory, etc. In some embodiments, thepersistent memory 74 is removable, in the form of a memory card of appropriate format such as SD (secure digital) cards, micro SD cards, compact flash, etc. - Also connected to the
processor 70 is asystem bus 82 for connecting to peripheral subsystems such as agraphics adapter 84 andkeypad inputs 91 and/or atouch screen interface 92. Thegraphics adapter 84 receives commands from theprocessor 70 and controls what is depicted on thedisplay 86. Thekeypad inputs 91 and/ortouch screen interface 92 provide navigation and selection features. - In general, some portion of the
persistent memory 74 is used to store programs, executable code, and data, etc. In some embodiments, other data is stored in thepersistent memory 74 such as audio files, video files, text messages, etc. - The processor-based control system includes input/
output ports 95 for sensing and controlling various devices within thesmoke generation system 10. For example, the input/output ports 95 monitor and control operation of valves/pumps 31/31A through aninput 56, monitor and control operation of theignition device driver 55, and readsensors 60 to monitor the position/operation of various components. For example, before initiating operation of theignition device driver 55, the processor-based control system reads asensor interface 60 to the smoke pod door 14 (seeFIG. 4A ) to make sure that thesmoke pod door 14 is closed. - The
processor 70 controls the voltage and/or current provided to theignition device 59 by theignition device driver 55, thereby controlling the duration and temperature of theignition device 59 and, therefore, the amount and density of the smoke generated. - The peripherals shown are examples and other devices are anticipated as known in the industry such as speakers, microphones, USB interfaces, cameras, microphones, a
Bluetooth transceiver 94, a Wi-Fi transceiver 96, etc., the details of which are not shown for brevity and clarity reasons. - In some embodiments, the processor-based controller includes a
Bluetooth transceiver 94, a Wi-Fi transceiver 96, or both. Having data communications between thesmoke generation system 10 and other devices such as a cellular phone (not shown) or personal computer (not shown) enable control and status from a connected device. For example, an application running on a cellular phone communicates over theBluetooth radio 94 and/or the Wi-Fi radio 96, providing a richer user interface. - Referring to
FIG. 2 , a block diagram of thesmoke generation system 10 is shown. In this, a controller 50 (e.g., processor-based controller or discrete component such as logic-array based) is interfaced to adisplay 86 and akeypad 91. Thecontroller 50 presents information on thedisplay 86 such as instructions, warnings, status, progress, etc. Thekeypad 91 accepts user inputs to initiate generation of smoke, to stop generation of smoke, etc. In some embodiments, thekeypad 91 is replaced by atouch screen 92 overlaid on thedisplay 86. - The
controller 50 electrically controls internal pumps and valve operation through a valve/pump driving circuit 56. Likewise, the controller electrically controls the igniter 59 (seeFIG. 3 ) through anignition device driver 55. - Various sensors (e.g.
identification sensor reader 61—seeFIG. 3 , and lid-closed sensor, not shown) are read through asensor interface 60. - Referring to
FIGS. 3A and 3B , block diagrams of thesmoke generation pod 30 of thesmoke generation system 10 are shown in operation. Thesmoke generation pod 30 contains amaterial 38 that is heated/ignited until the material smolders and/or burns, thereby producing thesmoke 99. Thematerial 38 is any material 38 that produces the desired smoke such as wood (e.g. oak, mesquite, and hickory), herbs (e.g. mint, cardamom, basil, cilantro, and garlic), and plant matter (e.g. hemp, tree bark, and roots). - The
material 38 is held and contained within anenclosure 132 of thesmoke generation pod 30. Thesmoke 99 is extracted from thesmoke generation pod 30 through anoutput vent 29 that, in some embodiments, includes amesh filter 33. Themesh filter 33 prevents ashes from escaping during smoke generation and after the process is complete. In some embodiments, asecond filter 32 also filters out smaller ash particles (e.g. thesecond filter 32 is made of cellulose acetate fiber material), but in some embodiments, thesecond filter 32 also removes some carcinogens that form from the combustion of thematerial 38. For example, the combustion of wood produces polycyclic aromatic hydrocarbons (PAHs) which are known carcinogens. Is one such embodiment, thesecond filter 32 includes or is made of silica-alumina (zeolite) to remove some or a majority of the polycyclic aromatic hydrocarbons (PAHs), thereby reducing carcinogens in thesmoke 99. - It is fully anticipated that the location of the
mesh filter 33 and thesecond filter 32 be in any suitable location in the path of thesmoke 99. In the embodiments shown, themesh filter 33 is integrated into thesmoke generation pod 30 and thesecond filter 32 is integrated into the pod cavity 39 of a smoke generating device, though it is equally anticipated that thesecond filter 32 is integrated into thesmoke generation pod 30. - In some embodiments, the
smoke 99 is urged out of thesmoke generation pod 30 using apump 31 that is controlled by the valve/pump driving circuit 56. The pump either extracts thesmoke 99 from theoutput vent 29, in which case air enters theinput vent 41, or the pump forces air into theinput vent 41, which in turn forces thesmoke 99 out of theoutput vent 29. Thesmoke 99 is routed to aglass 101 or other object such as foodstuff, eitherempty glass 101 or aglass 101 containing a liquid. - The
material 38 is heated/ignited by an igniter 59 (as inFIG. 3A ) such as a resistive heating element, a spark generator, or an electric arc 131 (as inFIG. 3B ), though any electrically operated igniter is anticipated. For example, one anticipated igniter is a resistive heating element that heats the material 38 to a high temperature when electric current flows through a filament. Another example is a spark generator that uses a short pulse of high voltage electricity that generates a spark over a gap between two electrodes. In such, it is anticipated that the spark is near a flammable material such as wood chips or other. As certain types of thematerials 38 are difficult to ignite/smolder from periodic sparks, in some embodiments, thematerial 38 includes another material that is easier to ignite. In some embodiments, such high voltage pulses are delivered either from a pulse transformer (e.g. as used with a Xenon flash tube) or through excitation of a piezo material (e.g. as commonly used in outdoor grills). Another example of an igniter is anelectric arc 131, in which sufficient electric voltage potential is delivered between twoelectrodes 133/135, causing an electric arc to form across the electrodes. In such, theelectric arc 131 is sufficient to initiate ignition/smoldering, thematerial 38 includes another material that is easier to ignite to aid in the ignition/smoldering. - Being that the
igniter 59 requires either significant electrical current (resistive heating element) or significant electrical voltage (electric arc), it is anticipated that, in some embodiments, a high current and/or high voltageignition device driver 55 provides such electrical current and electrical voltage. - For verification and other uses, in some embodiment, the
smoke generation pod 30 includes anidentification device 34 or an encoded value (e.g. a barcode or QR code) that is read by anidentification sensor reader 61. Data from theidentification device 34 that is sensed/read by theidentification sensor reader 61 is sent to the control system through thesensor interface 60. In some such embodiments, theidentification device 34 is a radio frequency identification device (RFID). - In some embodiments, the
identification device 34 is writable, allowing thesmoke generation system 10 to write and/or overwrite data stored within theidentification device 34. In some such embodiments, theidentification device 34 is a writable radio frequency identification device (RFID). Having writable memory in theidentification device 34 enables a usage count that is associated with eachsmoke generation pod 30. For example, by writing an initial value in the writable memory of theidentification device 34, then each time the correspondingsmoke generation pod 30 is used, the usage count is decremented, then once the usage count reaches zero, the correspondingsmoke generation pod 30 is disabled and will no longer be usable. In such embodiments having a usage counter, it is preferred that the writable memory of the identification device is write-once memory (e.g. the memory can only be changed from a zero to a one or vice versa. In this way, it is more difficult for a counterfeiter to reuse smoke generation pods. - In some embodiments, data from the
identification device 34 includes the type ofmaterial 38 present in the smoke generation pod 30 (e.g. an encoding for hickory, a different encoding for mesquite, etc.). This provides for displaying the type ofmaterial 38 contained in thesmoke generation pod 30 on thedisplay 86 for user confirmation, etc. Further, upon reading the type ofmaterial 38 within thesmoke generation pod 30, theprocessor 70 makes adjustments to the power provided to theigniter 59/131 to compensate for different types if thematerials 38 and/or controls air flow through thesmoke generation pod 30. For example, more power is provided for a denser type of the material 38 such as oak and less power is provided for a less dense type of the material 38 such as mint leaves. More air flow is provided for a slower burning type of the material 38 such as oak and less airflow is provided to a faster burning type of the material 38 such as herbal leaves. - In some embodiments, data from the
identification device 34 includes parameters for generation of smoke from the material 38 present in the smoke generation pod 30 (e.g. suggested temperature, pump flow rate, etc.). This provides for optimum control of theigniter 59 orelectric arc 131 depending upon thematerial 38 within thesmoke generation pod 30. - In some embodiments, data from the
identification device 34 includes a serial number or identification of thesmoke generation pod 30. This provides verification that thesmoke generation pod 30 is an authentic product and not a duplicate that may pose a safety risk. - In some embodiments, writable data in the
identification device 34 includes a usage register. After using thesmoke generation pod 30, the controller initiates writing (or overwriting) of data within theidentification device 34. This provides a way to assure that thesmoke generation pod 30 is not used multiple times. In such, it is preferred that the usage register is a write-once memory location so that it cannot be overwritten to indicate that thesmoke generation pod 30 has not been used. - Referring to
FIGS. 4A and 4B , perspective views of an exemplarystationary housing 11 for thesmoke generation system 10 are shown. The examplestationary housing 11 shown is one possible housing for thesmoke generation system 10 and, in no way, limits the present invention to any particular physical embodiment (as will be further exemplified). The front of thestationary housing 11 of thesmoke generation system 10 includes thedisplay 86 and keypad 91 (e.g. individual buttons). Thesmoke pod door 14 opens/closes to allow removal/insertion of thesmoke generation pod 30 into/out of thepod cavity 19. A sensor (not shown) detects when thesmoke pod door 14 is open to prevent operation of theigniter 59/131 while thesmoke pod door 14 is open. Thesmoke pod door 14 also provides for capturing of thesmoke 99 and routing the smoke to an object (e.g. a glass 101) resting on atray 16. The upper portion of the exemplarystationary housing 11 of thesmoke generation system 10 connects to the lower portion with thetray 16 by ariser section 12. - In some embodiments, the
smoke 99 is routed into a container having there within foodstuff for smoking the foodstuff. For example, the container has there within meat that is to be smoked using thesmoke 99. - In some embodiments, the
smoke pod door 14 includes asmoke donut 15. After smoke generation is complete, remaining smoke beneath the closed smoke pod door 14 (within the smoke reservoir 18) is pumped out in one or more pulses through thesmoke donut 15, creating smoke rings to inform the user that the process is complete. In some embodiments, thesmoke donut 15 is illuminated (e.g. with LEDs) to accentuate the smoke ring(s). - In
FIG. 4B , the back surface has been removed to show thepump 31. In some embodiments, anexhaust 17 is provided to exhaust internal heat and gases. In such, it is anticipated that areplaceable filter 13 is provided to remove particulate matter from the gases (smoke 99) that are exhausted. - Power is provided as known in the industry, for example using household current, a primary power source (e.g. batteries), or using rechargeable batteries, etc.
- Referring to
FIGS. 5A, 5B, 6 and 7 , views of an exemplarysmoke generation pod 30 of thesmoke generation system 10 are shown. - In this example, the
anode 133 andcathode 135 are housed within acage 140 within the smoke generation pod 30 (though any ignition system is anticipated). In this embodiment, theanode 133 is electrically interfaced to afirst contact 35 and thecathode 135 is electrically interfaced to asecond contact 37 on surfaces of thesmoke generation pod 30. When thesmoke generation pod 30 is inserted into the pod cavity 39, contact is made to provide electrical power to thecontacts 35/37 and, hence, a voltage potential between theanode 133 andcathode 135 form anelectric arc 131 within thesmoke generation pod 30. Being that theelectric arc 131 is in the vicinity of thematerial 38, theelectric arc 131 causes the material to smolder, creating thesmoke 99. - In some embodiments, the
cage 140 within thesmoke generation pod 30 is made of metal to preclude melting as thematerial 38 smolders and generates heat. In such, there is anouter shell 132 that supports thecage 140 within a pod cavity 39 of a smoke generating device. In some embodiments, theouter shell 132 is made of a plastic material that is easy to mold into the desired shape and retains that shape after molding. In a preferred embodiment, there is generally anair gap 134 between thecage 140 and theouter shell 132 to provide thermal and/or electrical insulation from thecage 140 to theouter shell 132, thereby helping to keep theouter shell 132 cooler to the touch as it is anticipated that a user will remove thesmoke generation pod 30 from a pod cavity 39 shortly after smoke is generated and thematerial 38 has heated thecage 140. As mentioned previously, in some embodiments, themesh filter 33 retains thematerial 38 and some or all of ashes that are produced during the generation ofsmoke 99 within thesmoke generation pod 30. In some embodiments, asecond filter 32 further filters out smaller ash particles (e.g., thesecond filter 32 is a cellulose acetate fiber material) and, in some embodiments, thesecond filter 32 also filters out some carcinogens that form from the combustion of thematerial 38. For example, the combustion of wood produces polycyclic aromatic hydrocarbons (PAHs) which are known carcinogens. Is one such embodiment, thesecond filter 32 includes or is made of silica-alumina (zeolite) to remove some or a majority of the polycyclic aromatic hydrocarbons (PAHs), thereby reducing carcinogens in thesmoke 99. - The
smoke generation pod 30 includes anoutput vent 29 through which thesmoke 99 is extracted/escapes from thesmoke generation pod 30. In some embodiments, theoutput vent 29 includes amesh filter 33 to prevent at least some of the materials and ash from escaping from thesmoke generation pod 30. It is anticipated that in some embodiments, thesmoke 99 is pulled out of the output vent 29 (and optional mesh filter 33) as air is drawn into theinput vent 41 while in other embodiments air is forced into theinput vent 41 and thesmoke 99 therefore exits through the output vent 29 (and optional mesh filter 33). - In some embodiments, the
smoke generation pod 30 includes anregistration tab 43 that aligns the smoke generation pod within the pod cavity 39. - Referring to
FIGS. 6 and 7 , cross-sectional views of an exemplarysmoke generation pod 30 of thesmoke generation system 10 are shown. InFIG. 6 , the outer structure is shown having there contained thecage 140. The outer structure of thesmoke generation pod 30 has anouter wall 132 that is separated fromcage 140 by anair gap 134. Thisair gap 134 helps keep thesmoke generation pod 30 cool to the touch. In some such embodiments, anotherpump 31A (seeFIG. 4B ) is used to move air through theair gap 134 to provide additional cooling. Alternately, a temperature sensor within thepod cavity 19 is read to monitor the temperature of thesmoke generation pod 30 and interlocks are provided (not shown) to prevent removal of thesmoke generation pod 30 until a safe temperature is reached. - The
cage 140 includes the material 38 that is used to generate thesmoke 99, enclosed by an innersmoke generation container 142. It is anticipated that the innersmoke generation container 142 be made of a fire-retardant material to completely contain the smoldering or burning of the material 38 after ignition. Examples of the fire-retardant material include, but are not limited to, steel, aluminum, certain plastics, etc. - In some embodiments, the
smoke generation pod 30 is delivered in an airtight container or removable seals cover theoutput vent 29 and theinput vent 41 to keep the material 38 fresh. - In the prior example, the
smoke generation system 10 was embodied in a stationary system. Two othersmoke generation systems 10 are described below including a hand-heldhousing 100 and amixer housing 200. - Referring to
FIGS. 8, 9, 10, and 10A , views of an exemplary hand-heldhousing 100 for thesmoke generation system 10 are shown. The hand-held smoke generation device shown inFIGS. 8, 9, and 10 are perspective views of the exemplary hand-heldhousing 100 and shone inFIG. 10A is a cross-sectional view of the exemplary hand-heldhousing 100. The hand-heldhousing 100 is another example/embodiment of thesmoke generation system 10 that provides a more portable smoke generation device that still accepts the above describedsmoke generation pod 30. Although three embodiments ofsmoke generation systems 10 are disclosed, there are no limitations as to the types, sizes, or shapes of suchsmoke generation systems 10, as there are many embodiments ofsmoke generation systems 10 anticipated that accept thesmoke generation pod 30. - In the hand-held
housing 100 of thesmoke generation system 10, a housing that simulates a handgun is presented. Themuzzle end 120 of the hand-heldhousing 100 has an orifice through which thesmoke 99 will emanate. In some embodiments, themuzzle end 120 includes a camera (not shown). Thesmoke generation pod 30 fits within and is held within apod holder 108 that is similarly mounted as a round holder of a handgun. The pod holder 180 swivels outward from the hand-heldhousing 100 to insert/remove thesmoke generation pod 30, then swivels back into the hand-heldhousing 100 for generation of thesmoke 99. - As power is needed to ignite or cause the material to smolder, a battery pack is positioned in the
grip portion 106 of the hand-heldhousing 100. In one embodiments, the battery pack is rechargeable through aconnector 102 on the back surface of the hand-held housing 100 (or any other surface), for instances a micro-USB power connector. - The
chamber section 104 of the hand-heldhousing 100 houses some or all of the electronics required to control the pump/fan 31 and to generate the proper power voltage and current to operate theigniter 59 or arc 151. - A
trigger 107 controls the electronics to initiate generation of thesmoke 99. Pressing thetrigger 107 initiates flow of electricity to the pump/fan 31 and to theigniter 59 or arc 151. In this way, it is anticipated that a singlesmoke generation pod 30 remain within the hand-heldhousing 100 while thetrigger 107 is operated several times to generate several streams of thesmoke 99. - In some embodiments, the
second filter 32 is housed in the hand-heldhousing 100 behind acover 111 that is held to the hand-heldhousing 100 bylatches 110. - Referring to
FIGS. 11, 12, and 13 , perspective views of anexemplary mixer housing 200 for thesmoke generation system 10 that includes a drink mixer are shown. Again, themixer housing 200 is another example/embodiment of thesmoke generation system 10 that provides a different smoke generation device that still accepts the above describedsmoke generation pod 30. Although three embodiments ofsmoke generation systems 10 are disclosed, there are no limitations as to the types, sizes, or shapes of suchsmoke generation systems 10, as there are many embodiments ofsmoke generation systems 10 anticipated that accept thesmoke generation pod 30. - The
mixer housing 200 resembles a drink mixer often used for mixing drinks, often alcohol-based drinks. The difference being is that themixer housing 200 of thesmoke generation system 10 includes areceptacle 209 that accepts asmoke generation pod 30 and themixer housing 200 of thesmoke generation system 10 includes control electronics and passages to route thesmoke 99 into a liquid/solid that is located within thecanister 204 of themixer housing 200. In this way, themixer housing 200 mixes drinks while infusing thesmoke 99 into the drinks. - The
mixer housing 200 has areceptacle 209, typically located at the top of thecanister 204, which removably accepts asmoke generation pod 30. In some embodiments, acover 208 having vents 203 covers the receptacle 209 (andsmoke generation pod 30 when present), the vents 203 allowing outside air to enter theinput vent 41 of thesmoke generation pod 30. - A
base portion 202 of themixer housing 200 contains the electronics and amotor 220 for mixing the drinks by way of ablade 222 that is coupled to themotor 220. In some embodiments, themotor 220 is a multi-speed motor as known in the industry. - Smoke exiting the output vent 29 (and optional mesh filter 33) travels from the
smoke generation pod 30 from thereceptacle 209 through thecover 206, throughports 201 in the cover that interface with apassageway 207. The smoke then travels through thepassageway 207 between aninner wall 205 and an outer wall of thecanister 204 of thecanister 204. Thepassageway 207 moves thesmoke 99 to a lower portion of the canister 204 (e.g. at a lower level of the liquid or solid that is within thecanister 204, so that thesmoke 99 enters into the liquid though a filter or mesh 224 that has large enough pores to allow thesmoke 99 to raise up into the liquid or solid within thecanister 204, yet the pores are small enough so that molecules of the liquid cannot pass and wind up in thepassageway 207. In alternate embodiments, the filter or mesh 224 includes a one-way valve, so that the smoke, under pressure from the pump/fan 31 will enter into the liquid or solid within thecanister 204, but any liquid or fine particles of solids will not travel in the reverse direction into thepassageway 207. - There are no limits on the location and size of the
passageway 207. In one embodiment, the passageway completely encircles thecanister 204, while in some embodiments, thepassageway 207 is only located on a small portion of a side of thecanister 204, or thepassageway 207 is a small tube that runs external or internal to thecanister 204. - Equivalent elements can be substituted for the ones set forth above such that they perform in substantially the same manner in substantially the same way for achieving substantially the same result.
- It is believed that the system and method as described and many of its attendant advantages will be understood by the foregoing description. It is also believed that it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely exemplary and explanatory embodiment thereof. It is the intention of the following claims to encompass and include such changes.
Claims (20)
1. A hand-held smoke generation device comprising:
a hand-held housing comprising a receptacle for removably receiving a smoke generation pod, the receptacle having a first plurality of electrical contacts for mating with a second plurality of contacts on the smoke generation pod;
a source of electrical power contained within the hand-held housing;
means for selectively providing electrical power from the source of electrical power to the second plurality of contacts, thereby causing a material within the smoke generation pod to generate smoke; and
means for pulling the smoke from the smoke generation pod and routing the smoke out of the hand-held housing.
2. The hand-held smoke generation device of claim 1 , wherein the smoke generation pod comprises:
a pod housing having an input vent, an output vent, and an internal chamber;
the material being within the internal chamber;
an electrical igniter within the internal chamber and in contact with the material; and
the second plurality of electrical contacts being on an outside surface of the pod housing, each of the second plurality of electrical contacts are electrically connected to the igniter.
3. The hand-held smoke generation device of claim 2 , further comprising a filter on the output vent, the filter retaining within the internal chamber the material and at least some of ashes formed when the material emits smoke.
4. The hand-held smoke generation device of claim 3 , wherein the filter comprises silica-alumina for the reduction of carcinogens.
5. The hand-held smoke generation device of claim 2 , wherein the material comprises wood particles.
6. The hand-held smoke generation device of claim 1 , wherein the means for selectively providing electrical power from the source of electrical power to the second plurality of contacts is a trigger switch.
7. The hand-held smoke generation device of claim 1 , wherein the means for pulling the smoke from the smoke generation pod and routing the smoke out of the hand-held housing comprises a fan, the fan interfaced to pull the smoke from an output vent of the smoke generation pod and push the smoke out of an orifice that extends out of the hand-held housing.
8. The hand-held smoke generation device of claim 2 , further comprising an identification device reader interfaced to the receptacle, the identification device reader for reading an identification device within or attached to the pod housing.
9. The hand-held smoke generation device of claim 8 , wherein the identification device reader comprises a radio frequency identification device reader.
10. A method of generating smoke comprising:
inserting a smoke generation pod into a receptacle of a hand-held housing of a hand-held smoke generation device, a first plurality of electrical contacts in the receptacle mating with a second plurality of contacts on the smoke generation pod;
the hand-held smoke generation device providing an electrical potential to first plurality of contacts and, therefore to the second plurality of contacts, the second plurality of contacts being electrically interfaced to an electrical igniter that is interfaced to an internal chamber of the smoke generation pod, the electrical igniter being in contact with a material that is located within the internal chamber;
responsive to the electrical potential, the igniter heating the material;
responsive to the igniter heating, the material emitting smoke; and
the hand-held smoke generation device routing the smoke to emanate from an orifice of the hand-held smoke generation device.
11. The method of claim 10 , further comprising a step of filtering the smoke, thereby keeping at least some of ashes formed when the material is emitting smoke within the internal chamber.
12. The method of claim 11 , further comprising a step of filtering the output smoke with a filter comprising silica-alumina, keeping at least some of ashes formed within the internal chamber when the material is emitting smoke and reducing carcinogens from the smoke.
13. The method of claim 10 , further comprising a step of reading data from an identification device within or attached to the smoke generation pod before the step of the hand-held smoke generation device providing the electrical potential and only performing the step of the hand-held smoke generation device providing the electrical potential if the data indicates a valid identification code.
14. The method of claim 10 , further comprising a step of reading a usage count from a write-once, read-many usage count register of an identification within or attached to the smoke generation pod before the step of the hand-held smoke generation device providing the electrical potential, if the usage count is zero, the hand-held smoke generation device does not perform the step of the hand-held smoke generation device providing the electrical potential, otherwise the hand-held smoke generation device decrements the usage count and performs the step of the hand-held smoke generation device providing the electrical potential.
15. The method of claim 10 , further comprising a step of reading data from an identification device within or attached to the smoke generation pod by the hand-held smoke generation device before the step of the hand-held smoke generation device providing the electrical potential, the data comprising an identification of a type of the material, and the hand-held smoke generation device adjusting the electrical potential during the step of the hand-held smoke generation device providing the electrical potential based upon the type of material.
16. A hand-held smoke generation device comprising:
a hand-held housing comprising a receptacle for removably receiving a smoke generation pod, the receptacle having a first plurality of electrical contacts for mating with a second plurality of contacts on the smoke generation pod;
the smoke generation pod having an input vent, an output vent, and an internal chamber with a material within the internal chamber and an electrical igniter within the internal chamber that is in contact with the material, the second plurality of electrical contacts are electrically connected to the igniter a source of electrical power contained within the hand-held housing;
a switch for selectively providing electrical power from the source of electrical power to the second plurality of contacts, thereby causing the material within the smoke generation pod to generate smoke; and
a fan for pulling the smoke from the output vent of the smoke generation pod and routing the smoke out of the hand-held housing.
17. The hand-held smoke generation device of claim 16 , further comprising a filter on the output vent, the filter retaining within the internal chamber the material and at least some of ashes formed when the material emits smoke.
18. The hand-held smoke generation device of claim 17 , wherein the filter comprises silica-alumina for the reduction of carcinogens.
19. The hand-held smoke generation device of claim 16 , wherein the material comprises wood particles.
20. The hand-held smoke generation device of claim 16 , further comprising an identification device reader interfaced to the receptacle, the identification device reader for reading an identification device within or attached to the smoke generation pod.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/820,343 US20180139974A1 (en) | 2016-11-22 | 2017-11-21 | Hand-held Smoke Generation Device |
PCT/US2018/059129 WO2019103824A1 (en) | 2016-11-22 | 2018-11-05 | Hand-held smoke generation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662425093P | 2016-11-22 | 2016-11-22 | |
US15/820,343 US20180139974A1 (en) | 2016-11-22 | 2017-11-21 | Hand-held Smoke Generation Device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180139974A1 true US20180139974A1 (en) | 2018-05-24 |
Family
ID=62143962
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/820,336 Expired - Fee Related US10638768B2 (en) | 2016-11-22 | 2017-11-21 | Smoke generation pod |
US15/820,343 Abandoned US20180139974A1 (en) | 2016-11-22 | 2017-11-21 | Hand-held Smoke Generation Device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/820,336 Expired - Fee Related US10638768B2 (en) | 2016-11-22 | 2017-11-21 | Smoke generation pod |
Country Status (5)
Country | Link |
---|---|
US (2) | US10638768B2 (en) |
EP (1) | EP3545069A4 (en) |
CN (1) | CN109983112A (en) |
CA (1) | CA3039671A1 (en) |
WO (2) | WO2018098200A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210137129A1 (en) * | 2019-11-12 | 2021-05-13 | Fabrice Marcy Andre-Bartley | Food smoking skewer |
EP3869148A1 (en) * | 2020-02-19 | 2021-08-25 | UR Fog S.r.l. | Apparatus for the controlled generation of non-pyrothecnic smoke and cartridge made of material for generating non-pyrothecnic smoke |
EP3928623A1 (en) * | 2020-06-26 | 2021-12-29 | SWPS Uniwersytet Humanistycznospoleczny | A device for generating smoke for smoking food or drink products |
US20230009151A1 (en) * | 2021-07-11 | 2023-01-12 | Haishan Deng | Compact Smoke Infuser Apparatus |
USD1048805S1 (en) | 2022-04-19 | 2024-10-29 | George Griffin | Beverage smoker device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3319056B1 (en) | 2016-11-04 | 2020-01-29 | Verisure Sàrl | Smoke generator with deflector |
AU2019209228B2 (en) * | 2018-01-19 | 2023-09-07 | Ventus Medical Limited | Methods, inhalation device, and computer program |
US11592458B2 (en) * | 2019-03-01 | 2023-02-28 | Cirrus Outdoors, Llc | Wind direction indicator |
CN110089594A (en) * | 2019-05-09 | 2019-08-06 | 文彦然 | A kind of preparation method of the milk tea with rose fragrance |
US11732895B1 (en) * | 2022-05-16 | 2023-08-22 | Sharkninja Operating Llc | Methods and systems for open-loop ignition of a smoke generator fuel source |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US524156A (en) * | 1894-08-07 | Thermo-electric volatilizing obtunder | ||
US1514682A (en) * | 1923-05-03 | 1924-11-11 | Wilson Harold | Electric vaporizer |
US3258578A (en) * | 1963-06-14 | 1966-06-28 | Edwin W Ferris | Portable steaming device |
US3745306A (en) * | 1971-04-07 | 1973-07-10 | Shigeru Kawayama | Steam generating instrument for hairdressing |
US3947659A (en) * | 1973-02-14 | 1976-03-30 | Takashi Tumura | Hair dryer with a vapor ejection means |
US4078525A (en) * | 1976-10-06 | 1978-03-14 | Ikeda Bussan Kaisah, Ltd. | Steam generating device |
US4166473A (en) * | 1974-06-10 | 1979-09-04 | L'oreal | Method and apparatus for setting hair |
US4690045A (en) * | 1985-07-11 | 1987-09-01 | Badger Robert J T | Utility game bag system |
US4764660A (en) * | 1985-10-22 | 1988-08-16 | The United States Of America As Represented By The Secretary Of The Navy | Electric smoke generator |
US5107698A (en) * | 1991-04-05 | 1992-04-28 | Leslie Gilliam | Smoke generating apparatus and method for in situ vacuum leak detection |
US5220637A (en) * | 1992-06-26 | 1993-06-15 | Aai Corporation | Method and apparatus for controllably generating smoke |
US5472001A (en) * | 1994-03-30 | 1995-12-05 | Nicholson; Darrin J. | Smokeless cigarette filter device |
US5529078A (en) * | 1994-05-09 | 1996-06-25 | Truce, Inc. | Smoker's box |
US5642570A (en) * | 1996-04-09 | 1997-07-01 | Lee; Tzung Sheng | Structure of hair drier |
US5937141A (en) * | 1998-02-13 | 1999-08-10 | Swiatosz; Edmund | Smoke generator method and apparatus |
US6039042A (en) * | 1998-02-23 | 2000-03-21 | Thayer Medical Corporation | Portable chamber for metered dose inhaler dispensers |
US6158530A (en) * | 1996-05-02 | 2000-12-12 | 1149235 Ontario Inc. | Hand-held smoker's device for sidestream smoke control |
US20020071664A1 (en) * | 2000-12-07 | 2002-06-13 | Alan Aronie | Smoke generator and toy smoke-ring gun using same |
US6481344B1 (en) * | 2001-08-30 | 2002-11-19 | Margaret Jane Green | Flameless flavor enhancing smoke generator |
US6705213B1 (en) * | 2003-04-28 | 2004-03-16 | Thomas A. Thomas | Smoke generator for food processing |
US20050016550A1 (en) * | 2003-07-17 | 2005-01-27 | Makoto Katase | Electronic cigarette |
US6865341B1 (en) * | 2003-06-17 | 2005-03-08 | Lyndon J. Hurley | Smoke producing system |
US6971305B1 (en) * | 2004-02-27 | 2005-12-06 | Thomas Thomas A | Smoke generator cartridge for food processing |
US7212734B2 (en) * | 2002-10-10 | 2007-05-01 | No Climb Products Limited | Portable carbon monoxide generation apparatus for testing CO sensors, detectors and alarms |
US7826726B2 (en) * | 2004-06-07 | 2010-11-02 | Mccoy Mark S | Intra-convertible thermal vapor extraction and delivery system |
US20110005534A1 (en) * | 2007-09-28 | 2011-01-13 | Vector Tobacco, Inc. | Reduced risk tobacco products and use thereof |
US8422869B2 (en) * | 2009-12-16 | 2013-04-16 | Disney Enterprises, Inc. | Handheld low-voltage fog effects system |
US20140041658A1 (en) * | 2011-03-09 | 2014-02-13 | Jack Goodman | Medicant Delivery System |
US20140270730A1 (en) * | 2013-03-14 | 2014-09-18 | R.J. Reynolds Tobacco Company | Atomizer for an aerosol delivery device formed from a continuously extending wire and related input, cartridge, and method |
US20140270729A1 (en) * | 2013-03-15 | 2014-09-18 | R.J. Reynolds Tobacco Company | Heating elements formed from a sheet of a material and inputs and methods for the production of atomizers |
US20140334804A1 (en) * | 2012-03-26 | 2014-11-13 | Enbright Co., Ltd. | Atomization control unit and a portable atomizing apparatus having the same |
US9198443B2 (en) * | 2010-04-10 | 2015-12-01 | George Michael Davis | Food smoker apparatus |
US20160018100A1 (en) * | 2007-03-05 | 2016-01-21 | Micropyretics Heaters International, Inc. | Compact steamer |
US9399079B2 (en) * | 2013-07-02 | 2016-07-26 | Home & Garden Party, Ltd. | Modular multifunction fragrance emitter |
US20160271347A1 (en) * | 2015-03-19 | 2016-09-22 | Yossef Raichman | Vaporizer for vaporizing an active ingredient |
US20160331913A1 (en) * | 2014-01-31 | 2016-11-17 | Cannakorp, Inc. | Methods and apparatus for producing herbal vapor |
US20190000144A1 (en) * | 2017-06-30 | 2019-01-03 | Rai Strategic Holdings, Inc. | Smoking article for identifying an attribute of an aerosol-generating element for adaptive power output and an associated method |
US20190271347A1 (en) * | 2016-07-25 | 2019-09-05 | Ovvotech Innovations Limited | Connector assembly |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4934272A (en) * | 1987-10-05 | 1990-06-19 | Keystone Materials Partnership Limited | Smoke generating cartridge for ovens and barbecues and means for holding same |
US6142066A (en) * | 1998-02-24 | 2000-11-07 | Tyson Foods, Inc. | Smoked food apparatus |
TWI415574B (en) | 2006-06-07 | 2013-11-21 | Ajinomoto Kk | Method and device for improving flavor of smoke and process and device for producing smoked food |
US8574648B2 (en) | 2009-06-11 | 2013-11-05 | Conagra Foods Lamb Weston, Inc. | Method and apparatus for smoking food products |
US20110308521A1 (en) | 2010-06-22 | 2011-12-22 | Mark Kofford | Vaporizer |
CN202311122U (en) * | 2011-11-24 | 2012-07-11 | 王朝晖 | Low-temperature smoke generator |
US9364622B2 (en) | 2012-04-20 | 2016-06-14 | Fsc Laboratories, Inc. | Inhalation devices and systems and methods including the same |
US20160235079A1 (en) * | 2014-02-22 | 2016-08-18 | Melvin Ray Singleterry | Disposable Wood Smoker and Moisturizer for Residential Outdoor Cooking Grills |
CN203801738U (en) * | 2014-05-08 | 2014-09-03 | 梁艳明 | Arc ignition atomizer and electronic cigarette |
CN104406194B (en) * | 2014-12-12 | 2016-09-07 | 王兴 | A kind of split type safe electronic cigar lighter |
CN204653573U (en) | 2015-06-02 | 2015-09-23 | 胡藤钟 | For processing the system of smoked foods |
CN105942584B (en) * | 2016-07-07 | 2019-02-05 | 深圳科劳德莱科技有限公司 | A kind of burning type electronic cigarette |
-
2017
- 2017-11-21 WO PCT/US2017/062893 patent/WO2018098200A1/en unknown
- 2017-11-21 US US15/820,336 patent/US10638768B2/en not_active Expired - Fee Related
- 2017-11-21 CN CN201780072120.4A patent/CN109983112A/en active Pending
- 2017-11-21 US US15/820,343 patent/US20180139974A1/en not_active Abandoned
- 2017-11-21 CA CA3039671A patent/CA3039671A1/en not_active Abandoned
- 2017-11-21 EP EP17873000.8A patent/EP3545069A4/en not_active Withdrawn
-
2018
- 2018-11-05 WO PCT/US2018/059129 patent/WO2019103824A1/en active Application Filing
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US524156A (en) * | 1894-08-07 | Thermo-electric volatilizing obtunder | ||
US1514682A (en) * | 1923-05-03 | 1924-11-11 | Wilson Harold | Electric vaporizer |
US3258578A (en) * | 1963-06-14 | 1966-06-28 | Edwin W Ferris | Portable steaming device |
US3745306A (en) * | 1971-04-07 | 1973-07-10 | Shigeru Kawayama | Steam generating instrument for hairdressing |
US3947659A (en) * | 1973-02-14 | 1976-03-30 | Takashi Tumura | Hair dryer with a vapor ejection means |
US4166473A (en) * | 1974-06-10 | 1979-09-04 | L'oreal | Method and apparatus for setting hair |
US4078525A (en) * | 1976-10-06 | 1978-03-14 | Ikeda Bussan Kaisah, Ltd. | Steam generating device |
US4690045A (en) * | 1985-07-11 | 1987-09-01 | Badger Robert J T | Utility game bag system |
US4764660A (en) * | 1985-10-22 | 1988-08-16 | The United States Of America As Represented By The Secretary Of The Navy | Electric smoke generator |
US5107698A (en) * | 1991-04-05 | 1992-04-28 | Leslie Gilliam | Smoke generating apparatus and method for in situ vacuum leak detection |
US5220637A (en) * | 1992-06-26 | 1993-06-15 | Aai Corporation | Method and apparatus for controllably generating smoke |
US5472001A (en) * | 1994-03-30 | 1995-12-05 | Nicholson; Darrin J. | Smokeless cigarette filter device |
US5529078A (en) * | 1994-05-09 | 1996-06-25 | Truce, Inc. | Smoker's box |
US5642570A (en) * | 1996-04-09 | 1997-07-01 | Lee; Tzung Sheng | Structure of hair drier |
US6158530A (en) * | 1996-05-02 | 2000-12-12 | 1149235 Ontario Inc. | Hand-held smoker's device for sidestream smoke control |
US5937141A (en) * | 1998-02-13 | 1999-08-10 | Swiatosz; Edmund | Smoke generator method and apparatus |
US6039042A (en) * | 1998-02-23 | 2000-03-21 | Thayer Medical Corporation | Portable chamber for metered dose inhaler dispensers |
US20020071664A1 (en) * | 2000-12-07 | 2002-06-13 | Alan Aronie | Smoke generator and toy smoke-ring gun using same |
US6481344B1 (en) * | 2001-08-30 | 2002-11-19 | Margaret Jane Green | Flameless flavor enhancing smoke generator |
US7212734B2 (en) * | 2002-10-10 | 2007-05-01 | No Climb Products Limited | Portable carbon monoxide generation apparatus for testing CO sensors, detectors and alarms |
US6705213B1 (en) * | 2003-04-28 | 2004-03-16 | Thomas A. Thomas | Smoke generator for food processing |
US6865341B1 (en) * | 2003-06-17 | 2005-03-08 | Lyndon J. Hurley | Smoke producing system |
US20050016550A1 (en) * | 2003-07-17 | 2005-01-27 | Makoto Katase | Electronic cigarette |
US6971305B1 (en) * | 2004-02-27 | 2005-12-06 | Thomas Thomas A | Smoke generator cartridge for food processing |
US7826726B2 (en) * | 2004-06-07 | 2010-11-02 | Mccoy Mark S | Intra-convertible thermal vapor extraction and delivery system |
US20160018100A1 (en) * | 2007-03-05 | 2016-01-21 | Micropyretics Heaters International, Inc. | Compact steamer |
US20110005534A1 (en) * | 2007-09-28 | 2011-01-13 | Vector Tobacco, Inc. | Reduced risk tobacco products and use thereof |
US8422869B2 (en) * | 2009-12-16 | 2013-04-16 | Disney Enterprises, Inc. | Handheld low-voltage fog effects system |
US9198443B2 (en) * | 2010-04-10 | 2015-12-01 | George Michael Davis | Food smoker apparatus |
US20140041658A1 (en) * | 2011-03-09 | 2014-02-13 | Jack Goodman | Medicant Delivery System |
US20140334804A1 (en) * | 2012-03-26 | 2014-11-13 | Enbright Co., Ltd. | Atomization control unit and a portable atomizing apparatus having the same |
US20140270730A1 (en) * | 2013-03-14 | 2014-09-18 | R.J. Reynolds Tobacco Company | Atomizer for an aerosol delivery device formed from a continuously extending wire and related input, cartridge, and method |
US20140270729A1 (en) * | 2013-03-15 | 2014-09-18 | R.J. Reynolds Tobacco Company | Heating elements formed from a sheet of a material and inputs and methods for the production of atomizers |
US9399079B2 (en) * | 2013-07-02 | 2016-07-26 | Home & Garden Party, Ltd. | Modular multifunction fragrance emitter |
US20160331913A1 (en) * | 2014-01-31 | 2016-11-17 | Cannakorp, Inc. | Methods and apparatus for producing herbal vapor |
US20160271347A1 (en) * | 2015-03-19 | 2016-09-22 | Yossef Raichman | Vaporizer for vaporizing an active ingredient |
US20190271347A1 (en) * | 2016-07-25 | 2019-09-05 | Ovvotech Innovations Limited | Connector assembly |
US20190000144A1 (en) * | 2017-06-30 | 2019-01-03 | Rai Strategic Holdings, Inc. | Smoking article for identifying an attribute of an aerosol-generating element for adaptive power output and an associated method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210137129A1 (en) * | 2019-11-12 | 2021-05-13 | Fabrice Marcy Andre-Bartley | Food smoking skewer |
US11659843B2 (en) * | 2019-11-12 | 2023-05-30 | Fabrice Marcy Andre-Bartley | Food smoking skewer |
EP3869148A1 (en) * | 2020-02-19 | 2021-08-25 | UR Fog S.r.l. | Apparatus for the controlled generation of non-pyrothecnic smoke and cartridge made of material for generating non-pyrothecnic smoke |
EP3928623A1 (en) * | 2020-06-26 | 2021-12-29 | SWPS Uniwersytet Humanistycznospoleczny | A device for generating smoke for smoking food or drink products |
US20230009151A1 (en) * | 2021-07-11 | 2023-01-12 | Haishan Deng | Compact Smoke Infuser Apparatus |
USD1048805S1 (en) | 2022-04-19 | 2024-10-29 | George Griffin | Beverage smoker device |
Also Published As
Publication number | Publication date |
---|---|
EP3545069A4 (en) | 2020-06-24 |
CN109983112A (en) | 2019-07-05 |
US10638768B2 (en) | 2020-05-05 |
WO2019103824A1 (en) | 2019-05-31 |
WO2018098200A1 (en) | 2018-05-31 |
EP3545069A1 (en) | 2019-10-02 |
CA3039671A1 (en) | 2018-05-31 |
US20180139973A1 (en) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10638768B2 (en) | Smoke generation pod | |
US20200221718A1 (en) | Smoke Generation Pod | |
US12220003B2 (en) | Aerosol-generating article and electrically operated system incorporating a taggant | |
US20240245108A1 (en) | Water Pipe | |
KR102314152B1 (en) | Aerosol generating apparatus | |
KR102601832B1 (en) | Tobacco sachet for use in a tobacco vaporiser | |
CA3099501C (en) | An aerosol provision device configured to receive a plurality of aerosolisable materials | |
CN110494054B (en) | Aerosol generating device with movable heater | |
CN110612034A (en) | Aerosol generating device and method with cigarette insertion detection function | |
US20160150828A1 (en) | Vaporizing reservoir | |
JP2022110092A (en) | Apparatus, system and method for generating inhalable medium | |
CN110520004A (en) | The aerosol just preheated is carried out to heater and generates system | |
CN100366165C (en) | Improved Food Processing Equipment | |
CN107404947B (en) | Apparatus and method for extracting a compound from a substance | |
JP2023520337A (en) | METHOD, APPARATUS, AND SYSTEM FOR DEVICE START-UP BEFORE DEVICE ACTIVATION | |
US12232504B2 (en) | Smoking article and method | |
JP2023502107A (en) | security tag | |
EP3759901A1 (en) | Mobile devices, systems, methods and computer readable media associated with a smoking substitute device | |
CN209732609U (en) | heating non-combustion electronic cigarette capable of being added with atomizing agent | |
KR200472607Y1 (en) | Inhaling apparatus, electricity supplying member case for the inhaling apparatus, evaporating member case for the inhaling apparatus and inhaling material accommodating member case for the inhaling apparatus | |
CN200992374Y (en) | Adjustable perfume type multifunction cigarette box | |
KR101871419B1 (en) | Method and Apparatus for Deodorization of Meat for Roasting | |
EP3698661A1 (en) | A smoking substitute device | |
JP7673214B2 (en) | Non-flammable aerosol delivery device | |
TW202434135A (en) | Aerosol provision device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |