+

US20180112128A1 - Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus - Google Patents

Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus Download PDF

Info

Publication number
US20180112128A1
US20180112128A1 US15/786,980 US201715786980A US2018112128A1 US 20180112128 A1 US20180112128 A1 US 20180112128A1 US 201715786980 A US201715786980 A US 201715786980A US 2018112128 A1 US2018112128 A1 US 2018112128A1
Authority
US
United States
Prior art keywords
light
wavelength conversion
light source
particles
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/786,980
Inventor
Kenta WATANABE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WATANABE, Kenta
Publication of US20180112128A1 publication Critical patent/US20180112128A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • F21V9/16
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • F21S8/026Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters intended to be recessed in a ceiling or like overhead structure, e.g. suspended ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/02Arrangement of electric circuit elements in or on lighting devices the elements being transformers, impedances or power supply units, e.g. a transformer with a rectifier
    • F21V23/023Power supplies in a casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source

Definitions

  • the present disclosure relates to a wavelength conversion device which emits light when illuminated with excitation light, and a light source device, a lighting apparatus, and a projection image display apparatus which include the wavelength conversion device.
  • Japanese Unexamined Patent Application Publication No. 2013-254839 discloses a manufacturing method which uniformly disperses phosphor particles in a wavelength conversion component used in such a light source device.
  • a luminescent color (a hue of white light) of the wavelength conversion device varies to a great degree depending on a thickness of the phosphor layer that is formed. In other words, it is difficult to keep the luminescent color of the wavelength conversion device within a predetermined range.
  • the present disclosure provides a wavelength conversion device with which it is easy to keep a luminescent color within a predetermined range.
  • a wavelength conversion device includes: a substrate; and a phosphor layer on the substrate.
  • the phosphor layer includes: a base material; phosphor particles which emit fluorescent light when excited by excitation light; and light transmissive particles each having a grain size that is within ⁇ 30% of a grain size of each of the phosphor particles, and a refractive index that is within ⁇ 7% of a refractive index of the base material.
  • a light source device includes the wavelength conversion device; and an excitation light source which emits the excitation light.
  • the light source device emits white light including the excitation light and the fluorescent light emitted by the phosphor particles.
  • a lighting apparatus includes the light source device and an optical component which collects or diffuses the white light emitted by the light source device.
  • a projection image display apparatus includes: the light source device; an imaging element which modulates the white light emitted by the light source device, and outputs the modulated white light as an image; and a projection lens which projects the image output by the imaging element.
  • FIG. 1 is an external perspective view of the wavelength conversion device according to Embodiment 1;
  • FIG. 2 is a plan view of the wavelength conversion device according to Embodiment 1;
  • FIG. 3 is a schematic cross-sectional view taken along the line III-III of FIG. 2 ;
  • FIG. 4 is a schematic cress-sectional view of the wavelength conversion device according to a comparison example
  • FIG. 5 is an external perspective view of the lighting apparatus according to Embodiment 2;
  • FIG. 6 is a schematic cross-sectional view illustrating a use mode of the lighting apparatus according to Embodiment 2;
  • FIG. 7 is an external perspective view of the projection image display apparatus according to Embodiment 3.
  • FIG. 8 is a diagram which illustrates an optical system of the projection image display apparatus according to Embodiment 3.
  • each of the diagrams is a schematic diagram and thus is not necessarily strictly illustrated.
  • substantially the same structural components are assigned with the same reference signs, and there are instances where redundant descriptions are omitted or simplified.
  • the z-axis direction of the coordinate axes is a vertical direction, for example, and the positive side of the Z-axis is indicated as an upper side (upward) and the minus side of the Z-axis is indicated as an lower side (downward).
  • the Z-axis direction is, stated differently, a direction perpendicular to a substrate included in the wavelength conversion device.
  • the X-axis direction and the Y-axis direction are orthogonal to each other on a plane (horizontal plane) perpendicular to the Z-axis direction.
  • the X-Y plane is a plane parallel to a main surface of the substrate included in the wavelength conversion device.
  • the term “in a plan view” indicates to view in the Z-axis direction.
  • FIG. 1 is an external perspective view of the wavelength conversion device according to Embodiment 1.
  • FIG. 2 is a plan view of the wavelength conversion device according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view taken along the line III-III of FIG. 2 . It should be noted that, in FIG. 3 , there are instances where a magnitude correlation of the thickness between structural components, for example, is not accurately described.
  • wavelength conversion device 10 includes substrate 11 and phosphor layer 12 ,
  • Wavelength conversion device 10 is a device which emits fluorescent light when excited by excitation light. More specifically, wavelength conversion device 10 includes substrate 11 and phosphor layer 12 , and phosphor particles 12 b contained in phosphor layer 12 are excited by excitation light to emit fluorescent light. Wavelength conversion device 10 is, stated differently, a light transmissive phosphor plate which converts a wavelength of a portion of blue laser light (excitation light) emitted by a laser light source, into a wavelength of yellow fluorescent light, and emits the yellow fluorescent light. Wavelength conversion device 10 emits white light including blue laser light which passes through phosphor layer 12 and the yellow fluorescent light emitted by phosphor particles 12 b . It should be noted that wavelength conversion device 10 may be a reflective phosphor plate, or may be a phosphor wheel used in a projection image display apparatus.
  • Substrate 11 is a light transmissive substrate. More specifically, substrate 11 includes substrate body 11 a and dichroic mirror layer 11 b.
  • Substrate body 11 a is a plate component having a rectangular shape in a plan view.
  • Dichroic mirror layer 11 b is disposed on a first main surface of substrate body 11 a on the positive side of the Z-axis.
  • Substrate body 11 a has a second main surface on the negative side of the Z-axis which is an incident surface of excitation light.
  • Substrate body 11 a is, specifically, a sapphire substrate.
  • Substrate body 11 a may be any other light transmissive substrate, such as a light transmissive ceramic substrate formed using polycrystal alumina or aluminum nitride, a transparent glass substrate, a quartz substrate, or a transparent resin substrate.
  • substrate body 11 a may be a substrate which is not light transmissive.
  • substrate body 11 a may have any other shape in a plan view, such as a circular shape.
  • Dichroic mirror layer 11 b is a thin film having a property which transmits light of a blue wavelength region, and reflects light of a yellow wavelength region. More specifically, dichroic mirror layer 11 b has a property that transmits excitation light emitted by the laser light source, and reflects fluorescent light emitted by phosphor layer 12 . With dichroic mirror layer 11 b , it is possible to increase light emitting efficiency of wavelength conversion device 10 .
  • Phosphor layer 12 is disposed on substrate 11 (i.e., on dichroic mirror layer 11 b ). Although phosphor layer 12 has a circular shape in a plan view (a shape viewed in the direction perpendicular to the Z-axis), phosphor layer 12 may have any other shape such as a rectangular shape or an annular shape. Phosphor layer 12 includes base material 12 a , phosphor particles 12 b , and light transmissive particles 12 c . Phosphor layer 12 is formed by printing, on substrate 11 , a paste formed using base material 12 a including phosphor particles 12 b and light transmissive particles 12 c , for example. Phosphor layer 12 has a thickness that is, for example, at least 60 pm and at most 100 ⁇ m.
  • Base material 12 a is formed using an inorganic material such as glass, or using an organic-inorganic hybrid material. As described above, since base material 12 a includes an inorganic material, it is possible to increase a heat dissipation performance of wavelength conversion device 10 .
  • An optical refractive index (hereinafter simply described as a refractive index) of base material 12 a is, for example, at least 1.4 and at most 1.5. The refractive index of base material 12 a is lower than a refractive index of phosphor particles 12 b.
  • Phosphor particles 12 b are dispersedly disposed in phosphor layer 12 (base material 12 a ), and emits light when excited by blue laser light emitted by the laser light source. In other words, phosphor particles 12 b emit fluorescent light when excited by excitation light. Phosphor particles 12 b are, specifically, yttrium-aluminum-garnet (VAG) yellow phosphor particles which emit yellow fluorescent, light. It should be noted that phosphor layer 12 may include, as phosphor particles 12 h, green phosphor particles such as Lu 3 Al 5 O 12 :Ce 3+ phosphor, instead of the yellow phosphor particles or in addition to the yellow phosphor particles.
  • VAG yttrium-aluminum-garnet
  • phosphor layer 12 may include, as phosphor particles 12 b , red phosphor particles such as CaAlSiN 3 :Eu 2+ phosphor or (Sr, Ca)AlSiN 3 :Eu 2 + phosphor, in addition to the yellow phosphor particles.
  • red phosphor particles such as CaAlSiN 3 :Eu 2+ phosphor or (Sr, Ca)AlSiN 3 :Eu 2 + phosphor, in addition to the yellow phosphor particles.
  • phosphor particles 12 b included in phosphor layer 12 are not specifically limited.
  • Phosphor particles 12 b each have a grain size that is, for example, at least 5 ⁇ m and at most 20 ⁇ m.
  • the grain size is, more specifically, a median size (d50) or a mean diameter. The same applies hereafter.
  • phosphor particles 12 b each have an optical refractive index that is, for example, at least 1.7 and at most 1.9.
  • Light transmissive particles 12 c are transparent particles or particles that are light transmissive, and dispersedly disposed in phosphor layer 12 (base material 12 a ). In other words, light transmissive particles 12 c transmits excitation light emitted by the laser light source. In addition, unlike phosphor particles 12 b , light transmissive particles 12 c are not excited by excitation light. This means that light transmissive particles 12 c do not emit fluorescent light.
  • Light transmissive particles 12 c each have a grain size substantially equivalent to the grain size of each of phosphor particles 12 b .
  • the grain size is, more specifically, a median size (d50) or a mean diameter. The same applies hereafter.
  • the grain size of each of light transmissive particles 12 c is, for example, within ⁇ 30% of the grain size of each of phosphor particles 12 b ; that is, at least 70% and at most 130% of the grain size of each of phosphor particles 12 b .
  • the grain size of each of light transmissive particles 12 c is, for example, at least 5 ⁇ m and at most 20 ⁇ m.
  • each of light transmissive particles 12 c has a refractive index substantially equivalent to the refractive index of base material 12 a .
  • the refractive index of each of light transmissive particles 12 c is, for example, within ⁇ 7% of the refractive index of base material 12 a ; that is, at least 93% and at most 107% of the refractive index of base material 12 a .
  • the refractive index of each of light transmissive particles 12 c is lower than the refractive index of each of phosphor particles 12 b .
  • Light transmissive particles 12 c are each, specifically, silica or zinc oxide. However, these are non-limiting examples.
  • Light transmissive particles 12 c may be formed using the same material as base material 12 a , or may be formed using a material different from the material of base material 12 a.
  • FIG. 4 is a schematic cross-sectional view of the wavelength conversion device according to a comparison example.
  • phosphor layer 112 included in wavelength conversion device 110 does not include light transmissive particles 12 c , and includes phosphor particles 12 b which are densely arranged. Most of phosphor particles 12 b included in phosphor layer 12 are directly in contact with other phosphor particles 12 b .
  • phosphor particles 12 b are densely arranged in order to increase heat dissipation performance of phosphor particles 12 b , and one phosphor particle 121 ) conducts heat to substrate 11 via other phosphor particles 12 b in contact with the one phosphor particle 12 b.
  • the luminescent color (a hue of white light) of wavelength conversion device 110 varies to a great degree in the case where the thickness of phosphor layer 112 varies when forming phosphor layer 112 or substrate 11 . Accordingly, in manufacturing wavelength conversion device 110 , it is necessary to severely control the thickness of phosphor layer 112 in order to keep the luminescent color of wavelength conversion device 110 in a predetermined range. This means that there is a problem that phosphor layer 112 is not easily manufactured.
  • the thickness of phosphor layer 112 is approximately 4 ⁇ m, for example.
  • phosphor layer 12 included in wavelength conversion: device 10 includes light transmissive particles 12 c . Since phosphor layer 12 includes light transmissive particles 12 c , the amount of phosphor particles 12 b per unit volume included in phosphor layer 12 is less than the amount of phosphor particles 12 b per unit volume included in phosphor layer 112 .
  • phosphor layer 12 may contain light transmissive particles 12 c in a volume of at, least 20% relative to phosphor particles 12 b . With this configuration, it is possible to sufficiently suppress variation in the luminescent color of wavelength conversion device 10 , which occurs due to variation in the thickness of phosphor layer 12 .
  • phosphor layer 12 includes light transmissive particles 12 c which partially replace phosphor particles 12 b included in phosphor layer 112 . Accordingly, most of phosphor particles 12 b included in phosphor layer 12 are directly in contact with other phosphor particles 12 b or light transmissive particles 12 c . As described above, since the densely-arranged state of particles (phosphor particles 12 b and light transmissive particles 12 c ) is maintained in wavelength conversion device 10 , deterioration in the heat dissipation performance is suppressed.
  • phosphor layer 12 may contain phosphor particles 12 b and light transmissive particles 12 c in a total volume of at least 45% relative to base material 12 a . This makes it easy to densely arrange the particles in phosphor layer 12 .
  • phosphor layer 12 includes light transmissive particles 12 c which partially replace phosphor particles 12 b included in phosphor layer 112 , there is an advantageous effect that the method of manufacturing phosphor layer 112 can be applied substantially as it is to the method of manufacturing phosphor layer 12 .
  • phosphor layer 12 has less contained amount of phosphor particles 12 b than phosphor layer 112 . For that reason, when white light of the same color is emitted by each of wavelength conversion device 10 and wavelength conversion device 110 , the thickness of phosphor layer 12 is larger than the thickness of phosphor layer 112 .
  • phosphor layer 12 has a thickness that is, for example, at least 60 ⁇ m and at most 100 ⁇ m.
  • an organic material such as a silicone resin is generally used as base material 12 a in a wavelength conversion device which uses light emitting diode (LED) light as excitation light
  • an inorganic material such as glass or an organic-inorganic hybrid material is used as base material 12 a in wavelength conversion device 10 which uses laser light as excitation light.
  • the heat dissipation performance of phosphor particles 12 b is enhanced.
  • the inorganic material such as glass has a refractive index higher than a refractive index of the organic material such as a silicone resin. For that reason, a light extraction efficiency of wavelength conversion device 10 is lower than a light extraction efficiency of a wavelength conversion device which uses LED light as excitation light.
  • wavelength conversion device 10 includes, in place of phosphor particles 12 b , light transmissive particles 12 c each having a refractive index lower than a refractive index of each of phosphor particles 12 b . For that reason, the light extraction efficiency of wavelength conversion device 10 is enhanced compared to the light extraction efficiency of wavelength conversion device 110 .
  • wavelength conversion device 10 includes substrate 11 and phosphor layer 12 disposed on substrate 11 .
  • Phosphor layer 12 includes base material 12 a , phosphor particles 12 b which emit fluorescent light when excited by excitation light, and light transmissive particles 12 c each having a grain size that is within ⁇ 30% of a grain size of each of phosphor particles 12 b and having a refractive index within ⁇ 7% of a refractive index of base material 12 a.
  • the amount of phosphor particles 12 b per unit volume in phosphor layer 12 is decreased, and thus variation in the luminescent color due to variation in the thickness of phosphor layer is suppressed. Accordingly, with wavelength conversion device 10 , the luminescent color is easily kept within a predetermined range.
  • Phosphor layer 12 may contain phosphor particles 12 b and light transmissive particles 12 c in a volume of at least 45% relative to the base material.
  • phosphor layer 12 may contain light transmissive particles 12 c in a volume of at least 20% relative to phosphor particles 12 b.
  • each of phosphor particles 12 b and the grain size of each of light transmissive particles 12 c may be each at least 5 ⁇ m and at most 20 ⁇ m.
  • each of light transmissive particles 12 c is within a range assumable as the grain size of each of phosphor particles 12 b , it is possible to apply the method of manufacturing wavelength conversion device 110 which does not include light, transmissive particles 12 c substantially as it is, to wavelength conversion device 10 .
  • FIG. 5 is an external perspective diagram of the lighting apparatus according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view illustrating a use mode of the lighting apparatus according to Embodiment 2. It should be noted that, in FIG. 6 , only the illustration of power supply device 40 shows a side surface instead of a cross-section surface.
  • lighting apparatus 100 is a downlight attached to ceiling 50 of a building.
  • Lighting apparatus 100 includes light source device 20 , lighting device 30 , and power supply device 40 .
  • Light source device 20 and lighting device 30 are optically connected via optical fiber 23 .
  • Light source device 20 and power supply device 40 are electrically connected via power supply cable 24 .
  • Lighting apparatus 100 is mounted on ceiling 50 in a state in which lighting device 30 is inserted into opening 51 of ceiling 50 .
  • lighting apparatus 100 is disposed on a back surface of the ceiling except a portion of lighting device 30 .
  • Light source device 20 includes laser light source 21 which emits blue laser light and wavelength conversion device 10 .
  • Light source device 20 emits white light with the combination of laser light source 21 and wavelength conversion device 10 . More specifically, source device 20 emits white light including excitation light (blue laser light) and fluorescent light emitted by phosphor particles 12 b .
  • Light source device 20 includes laser light source 21 , heat sink 22 , optical fiber 23 , power supply cable 24 , and wavelength conversion device 10 .
  • Laser light source 21 is an example of an excitation light source which emits excitation light.
  • Laser light source 21 is, for example, a semiconductor laser which emits blue laser light.
  • the center emission wavelength of laser light source 21 is, for example, at least 440 nm and at most 470 nm.
  • Laser light source 21 may emit blue-violet light or ultraviolet light.
  • Laser light source 21 is specifically a CAN package element. However, laser light source 21 may be a chip type element.
  • Heat sink 22 is a structure used for dissipating heat of laser light source 21 that is currently emitting light.
  • Heat sink 22 houses laser light source 21 therein, and also functions as an outer casing of light source device 20 .
  • Heat sink 22 is capable of dissipating heat generated in laser light source 21 .
  • Heat sink 22 is formed using, for example, metal that is relatively high in thermal conductivity, such as aluminum or copper.
  • Optical fiber 23 guides laser light emitted by laser light source 21 to the outside of heat sink 22 .
  • Optical fiber 23 includes an entrance located inside heat sink 22 .
  • the laser light emitted by laser light source 21 enters the entrance of optical fiber 23 .
  • Optical fiber 23 includes an exit located inside lighting device 30 .
  • the laser light that exits through the exit is emitted to wavelength conversion device 10 located inside lighting device 30 .
  • Power supply cable 24 is a cable for supplying, to light source device 20 , power supplied from power supply device 40 .
  • Power supply cable 24 has one end connected to a power supply circuit in power supply device 40 , and the other end connected to laser light source 21 through an opening defined in heat sink 22 .
  • Lighting device 30 is fitted to Opening 51 , and converts a wavelength of laser light guided by optical fiber 23 to emit light of a predetermined color.
  • Lighting device 30 includes casing 31 , holder 32 , and lens 33 .
  • Casing 31 is a cylindrical component having an open end on the positive side of the Z-axis and a closed-end on the opposite side, and houses holder 32 , wavelength conversion device 10 , and lens 33 .
  • the outer diameter of casing 31 is slightly smaller than the diameter of opening 51 , and casing 31 is fitted to opening 51 .
  • Casing 31 is, more specifically, fixed to opening 51 using an attachment spring (not illustrated).
  • Casing 31 is, for example, formed using metal that is relatively high in thermal conductivity, such as aluminum or copper.
  • Holder 32 is a cylindrical component which holds optical fiber 23 , and includes a portion that is housed in casing 31 .
  • Holder 32 is disposed on an upper portion of casing 31 .
  • Optical fiber 23 is held in a state in which optical fiber 23 is passed through a through hole along the center axis of holder 32 .
  • Holder 32 holds optical fiber 23 in such a manner that the exit of optical fiber 23 faces the positive side of the Z-axis (the side on which wavelength conversion device 10 is present).
  • Holder 32 is formed using, for example, aluminum, copper, or the like. However, holder 32 may be formed using resin.
  • Lens 33 is an optical component which is disposed on an exit of casing 31 , and controls distribution of light emitted by wavelength conversion device 10 .
  • Lens 33 is an example of the optical component which collects or diffuses white light emitted by light source device 20 (wavelength conversion device 10 ).
  • Lens 33 has a surface which faces wavelength conversion device 10 , and has a shape that enables taking light emitted by wavelength conversion device 10 into lens 33 without leakage as much as possible.
  • Power supply device 40 is a device which supplies power to light source device 20 (laser light source 21 ).
  • Power supply device 40 houses a power supply circuit therein.
  • the power supply circuit generates power for causing light source device 20 to emit light, and supplies the generated power to lighting device 30 via power supply cable 24 .
  • the power supply circuit is, specifically, an AC/DC converter circuit which converts AC power supplied from a power system to DC power, and outputs the DC power. Accordingly, DC current is supplied to laser light source 21 .
  • light source device 20 includes wavelength conversion device 10 and laser light source 21 which emits excitation light.
  • Light source device 20 emits white light including excitation light and fluorescent light emitted by phosphor particles 12 b .
  • Laser light source 21 is an example of an excitation light source.
  • the luminescent color is easily kept within a predetermined range.
  • Lighting apparatus 100 includes light source device 20 and lens 33 which collects or diffuses white light emitted by light source device 20 .
  • Lens 33 is an example of the optical component.
  • the luminescent color is easily kept within a predetermined range.
  • FIG. 7 is an external perspective view of the projection image display apparatus according to Embodiment 3.
  • FIG. 8 is a diagram which illustrates an optical system of the projection image display apparatus according to Embodiment 3.
  • projection image display apparatus 200 is a single plate projector.
  • Projection image display apparatus 200 includes light source device 60 , collimate lens 71 , integrator lens 72 , polarized beam splitter 73 , condenser lens 74 , and collimate lens 75 .
  • projection image display apparatus 200 includes entrance-side polarization element 76 , imaging element 80 , exit-side polarization element 77 , and projection lens 90 .
  • Light source device 10 emits white light including excitation light (blue laser light) and fluorescent light emitted by phosphor particles 12 b .
  • Light source device 60 includes, specifically, laser light source 21 and wavelength conversion device 10 .
  • White light emitted by light source device 60 is collimated by collimate lens 71 , and integrator lens 72 homogenizes an intensity distribution.
  • the light whose intensity distribution is homogenized is converted to linearly polarized light, by polarized beam splitter 73 .
  • the light whose intensity distribution is homogenized is, for example, converted to light of P polarization.
  • the light converted to the light of P polarization is incident on condenser lens 74 , further collimated by collimate lens 75 , and incident on. entrance-side polarization element 76 .
  • Entrance-side polarization element 76 is a polarization plate (polarization control element) which polarizes incident light toward imaging element 80 .
  • Exit-side polarization element 77 is a polarization plate which polarizes light that exits imaging element 80 .
  • Imaging element 80 is disposed between entrance-side polarization element 76 and exit-side polarization element 77 .
  • Imaging element 80 is a substantially planar element which spatially modulates white light emitted by light source device 60 , and outputs the spatially modulated white light as an image. Imaging element 80 , stated. differently, generates light for an image. Imaging element 80 is, specifically, a transmissive liquid crystal panel.
  • a polarization control region of entrance-side polarization element 76 transmits light of P polarization
  • light incident on entrance-side polarization element 76 enters imaging element 80 , is modulated by imaging element 80 , and exits imaging element 80 .
  • exit-side polarization element 77 transmits only light of S polarization. Accordingly, only components of the light of S polarization. included in the modulated light pass the polarization control region of exit-side polarization element 77 , and are incident on projection lens 90 .
  • Projection lens 90 projects an image output by imaging element 80 . As a result, an image is projected on a screen or the like.
  • projection image display apparatus 200 includes light source device 60 , imaging element 80 which modulates white light emitted by light source device 60 and outputs the modulated white light as an image, and projection lens 90 which projects the image output by imaging element 80 .
  • luminescent color is easily kept within a predetermined range.
  • Imaging element 80 may be a reflective imaging element such as a digital micromirror device (DMD) or a reflective liquid crystal panel.
  • DMD digital micromirror device
  • a three-plate optical system may be used in projection image display apparatus 200 ,
  • the laser light source may be a laser other than the semiconductor laser.
  • the laser light source may be, for example, solid-state laser such as YAG laser, liquid laser such as pigment laser, or gas laser such as Ar ion laser, He—Cd laser, nitrogen laser, or excimer laser.
  • the light source device may include a plurality of laser light sources.
  • the light source device may include a solid-state light emitting element other than the semiconductor laser, such as an LED light source, an organic electro luminescence (EL) element, or an inorganic EL element, as the excitation light source.
  • EL organic electro luminescence

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Multimedia (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Projection Apparatus (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

A wavelength conversion device includes: a substrate; and a phosphor layer on the substrate. The phosphor layer includes: a base material; phosphor particles which emit fluorescent light when excited by excitation light; and light transmissive particles each having a grain size that is within ±30% of a grain size of each of the phosphor particles, and a refractive index that is within ±7% of a refractive index of the base material.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of priority of Japanese Patent Application Number 2016-208900 filed on Oct. 25, 2016, the entire content of which is hereby incorporated by reference.
  • BACKGROUND 1. Technical Field
  • The present disclosure relates to a wavelength conversion device which emits light when illuminated with excitation light, and a light source device, a lighting apparatus, and a projection image display apparatus which include the wavelength conversion device.
  • 2. Description of the Related Art
  • In recent years, a light source device in which a solid-state light emitting element which emits laser light and a wavelength conversion component including phosphor particles are combined has been proposed. Japanese Unexamined Patent Application Publication No. 2013-254839 discloses a manufacturing method which uniformly disperses phosphor particles in a wavelength conversion component used in such a light source device.
  • SUMMARY
  • In the meantime, when a phosphor layer contains a large amount of phosphor particles in a wavelength conversion device, a luminescent color (a hue of white light) of the wavelength conversion device varies to a great degree depending on a thickness of the phosphor layer that is formed. In other words, it is difficult to keep the luminescent color of the wavelength conversion device within a predetermined range.
  • The present disclosure provides a wavelength conversion device with which it is easy to keep a luminescent color within a predetermined range.
  • A wavelength conversion device according to an aspect of the present disclosure includes: a substrate; and a phosphor layer on the substrate. In the wavelength conversion device, the phosphor layer includes: a base material; phosphor particles which emit fluorescent light when excited by excitation light; and light transmissive particles each having a grain size that is within ±30% of a grain size of each of the phosphor particles, and a refractive index that is within ±7% of a refractive index of the base material.
  • A light source device according to an aspect of the present, disclosure includes the wavelength conversion device; and an excitation light source which emits the excitation light. The light source device emits white light including the excitation light and the fluorescent light emitted by the phosphor particles.
  • A lighting apparatus according to an aspect of the present disclosure includes the light source device and an optical component which collects or diffuses the white light emitted by the light source device.
  • A projection image display apparatus according to an aspect of the present disclosure includes: the light source device; an imaging element which modulates the white light emitted by the light source device, and outputs the modulated white light as an image; and a projection lens which projects the image output by the imaging element.
  • According to the present disclosure, it is possible to implement a wavelength conversion device with which it is easy to keep a luminescent color within a predetermined range.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The figures depict one or more implementations in accordance with the present teaching, by way of examples only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements.
  • FIG. 1 is an external perspective view of the wavelength conversion device according to Embodiment 1;
  • FIG. 2 is a plan view of the wavelength conversion device according to Embodiment 1;
  • FIG. 3 is a schematic cross-sectional view taken along the line III-III of FIG. 2;
  • FIG. 4 is a schematic cress-sectional view of the wavelength conversion device according to a comparison example;
  • FIG. 5 is an external perspective view of the lighting apparatus according to Embodiment 2;
  • FIG. 6 is a schematic cross-sectional view illustrating a use mode of the lighting apparatus according to Embodiment 2;
  • FIG. 7 is an external perspective view of the projection image display apparatus according to Embodiment 3; and
  • FIG. 8 is a diagram which illustrates an optical system of the projection image display apparatus according to Embodiment 3.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Hereinafter, embodiments of the present disclosure are described with reference to the Drawings. It should be noted that the embodiment described below shows a general or specific example. The numerical values, shapes, materials, structural components, and the disposition and connection of the structural components, etc. described in the following embodiment are mere examples, and do not intend to limit the present disclosure. Furthermore, among the structural elements in the following exemplary embodiments, structural elements not recited in any one of the independent claims are described as arbitrary structural elements.
  • In addition, each of the diagrams is a schematic diagram and thus is not necessarily strictly illustrated. In each of the diagrams, substantially the same structural components are assigned with the same reference signs, and there are instances where redundant descriptions are omitted or simplified.
  • In addition, there are instances where coordinate axes are indicated in the diagrams used in describing the following embodiments. The z-axis direction of the coordinate axes is a vertical direction, for example, and the positive side of the Z-axis is indicated as an upper side (upward) and the minus side of the Z-axis is indicated as an lower side (downward). The Z-axis direction is, stated differently, a direction perpendicular to a substrate included in the wavelength conversion device. Furthermore, the X-axis direction and the Y-axis direction are orthogonal to each other on a plane (horizontal plane) perpendicular to the Z-axis direction. The X-Y plane is a plane parallel to a main surface of the substrate included in the wavelength conversion device. For example, in the following embodiments, the term “in a plan view” indicates to view in the Z-axis direction.
  • Embodiment 1
  • (Configuration of Wavelength Conversion Device)
  • First, a configuration of the wavelength conversion device according to Embodiment 1 shall be described with reference to the drawings. FIG. 1 is an external perspective view of the wavelength conversion device according to Embodiment 1. FIG. 2 is a plan view of the wavelength conversion device according to Embodiment 1. FIG. 3 is a schematic cross-sectional view taken along the line III-III of FIG. 2. It should be noted that, in FIG. 3, there are instances where a magnitude correlation of the thickness between structural components, for example, is not accurately described.
  • As illustrated in FIG. 1 to FIG. 3, wavelength conversion device 10 according to Embodiment 1 includes substrate 11 and phosphor layer 12,
  • Wavelength conversion device 10 is a device which emits fluorescent light when excited by excitation light. More specifically, wavelength conversion device 10 includes substrate 11 and phosphor layer 12, and phosphor particles 12 b contained in phosphor layer 12 are excited by excitation light to emit fluorescent light. Wavelength conversion device 10 is, stated differently, a light transmissive phosphor plate which converts a wavelength of a portion of blue laser light (excitation light) emitted by a laser light source, into a wavelength of yellow fluorescent light, and emits the yellow fluorescent light. Wavelength conversion device 10 emits white light including blue laser light which passes through phosphor layer 12 and the yellow fluorescent light emitted by phosphor particles 12 b. It should be noted that wavelength conversion device 10 may be a reflective phosphor plate, or may be a phosphor wheel used in a projection image display apparatus.
  • Substrate 11 is a light transmissive substrate. More specifically, substrate 11 includes substrate body 11 a and dichroic mirror layer 11 b.
  • Substrate body 11 a is a plate component having a rectangular shape in a plan view. Dichroic mirror layer 11 b is disposed on a first main surface of substrate body 11 a on the positive side of the Z-axis. Substrate body 11 a has a second main surface on the negative side of the Z-axis which is an incident surface of excitation light. Substrate body 11 a is, specifically, a sapphire substrate. Substrate body 11 a may be any other light transmissive substrate, such as a light transmissive ceramic substrate formed using polycrystal alumina or aluminum nitride, a transparent glass substrate, a quartz substrate, or a transparent resin substrate. In the case where wavelength conversion device 10 is a reflective phosphor plate, for example, substrate body 11 a may be a substrate which is not light transmissive. In addition, substrate body 11 a may have any other shape in a plan view, such as a circular shape.
  • Dichroic mirror layer 11 b is a thin film having a property which transmits light of a blue wavelength region, and reflects light of a yellow wavelength region. More specifically, dichroic mirror layer 11 b has a property that transmits excitation light emitted by the laser light source, and reflects fluorescent light emitted by phosphor layer 12. With dichroic mirror layer 11 b, it is possible to increase light emitting efficiency of wavelength conversion device 10.
  • Phosphor layer 12 is disposed on substrate 11 (i.e., on dichroic mirror layer 11 b). Although phosphor layer 12 has a circular shape in a plan view (a shape viewed in the direction perpendicular to the Z-axis), phosphor layer 12 may have any other shape such as a rectangular shape or an annular shape. Phosphor layer 12 includes base material 12 a, phosphor particles 12 b, and light transmissive particles 12 c. Phosphor layer 12 is formed by printing, on substrate 11, a paste formed using base material 12 a including phosphor particles 12 b and light transmissive particles 12 c, for example. Phosphor layer 12 has a thickness that is, for example, at least 60 pm and at most 100 μm.
  • Base material 12 a is formed using an inorganic material such as glass, or using an organic-inorganic hybrid material. As described above, since base material 12 a includes an inorganic material, it is possible to increase a heat dissipation performance of wavelength conversion device 10. An optical refractive index (hereinafter simply described as a refractive index) of base material 12 a is, for example, at least 1.4 and at most 1.5. The refractive index of base material 12 a is lower than a refractive index of phosphor particles 12 b.
  • Phosphor particles 12 b are dispersedly disposed in phosphor layer 12 (base material 12 a), and emits light when excited by blue laser light emitted by the laser light source. In other words, phosphor particles 12 b emit fluorescent light when excited by excitation light. Phosphor particles 12 b are, specifically, yttrium-aluminum-garnet (VAG) yellow phosphor particles which emit yellow fluorescent, light. It should be noted that phosphor layer 12 may include, as phosphor particles 12h, green phosphor particles such as Lu3Al5O12:Ce3+ phosphor, instead of the yellow phosphor particles or in addition to the yellow phosphor particles. Furthermore, phosphor layer 12 may include, as phosphor particles 12 b, red phosphor particles such as CaAlSiN3:Eu2+ phosphor or (Sr, Ca)AlSiN3:Eu2+ phosphor, in addition to the yellow phosphor particles. As described above, phosphor particles 12 b included in phosphor layer 12 are not specifically limited.
  • Phosphor particles 12 b each have a grain size that is, for example, at least 5μm and at most 20μm. The grain size is, more specifically, a median size (d50) or a mean diameter. The same applies hereafter. In addition, phosphor particles 12 b each have an optical refractive index that is, for example, at least 1.7 and at most 1.9.
  • (Light Transmissive Particle)
  • Light transmissive particles 12 c are transparent particles or particles that are light transmissive, and dispersedly disposed in phosphor layer 12 (base material 12 a). In other words, light transmissive particles 12 c transmits excitation light emitted by the laser light source. In addition, unlike phosphor particles 12 b, light transmissive particles 12 c are not excited by excitation light. This means that light transmissive particles 12 c do not emit fluorescent light.
  • Light transmissive particles 12 c each have a grain size substantially equivalent to the grain size of each of phosphor particles 12 b. The grain size is, more specifically, a median size (d50) or a mean diameter. The same applies hereafter. The grain size of each of light transmissive particles 12 c is, for example, within ±30% of the grain size of each of phosphor particles 12 b; that is, at least 70% and at most 130% of the grain size of each of phosphor particles 12 b. The grain size of each of light transmissive particles 12 c is, for example, at least 5 μm and at most 20 μm.
  • In addition, each of light transmissive particles 12 c has a refractive index substantially equivalent to the refractive index of base material 12 a. The refractive index of each of light transmissive particles 12 c is, for example, within ±7% of the refractive index of base material 12 a; that is, at least 93% and at most 107% of the refractive index of base material 12 a. The refractive index of each of light transmissive particles 12 c is lower than the refractive index of each of phosphor particles 12 b. Light transmissive particles 12 c are each, specifically, silica or zinc oxide. However, these are non-limiting examples. Light transmissive particles 12 c may be formed using the same material as base material 12 a, or may be formed using a material different from the material of base material 12 a.
  • The following describes advantageous effects obtained by light transmissive particles 12 c with reference to a wavelength conversion device according to a comparison example. FIG. 4 is a schematic cross-sectional view of the wavelength conversion device according to a comparison example.
  • As illustrated in FIG. 4, phosphor layer 112 included in wavelength conversion device 110 according to the comparison example does not include light transmissive particles 12 c, and includes phosphor particles 12 b which are densely arranged. Most of phosphor particles 12 b included in phosphor layer 12 are directly in contact with other phosphor particles 12 b. In particular, in wavelength conversion device 110 which emits light using laser light (blue laser light) as excitation light, phosphor particles 12 b are densely arranged in order to increase heat dissipation performance of phosphor particles 12 b, and one phosphor particle 121) conducts heat to substrate 11 via other phosphor particles 12 b in contact with the one phosphor particle 12 b.
  • Since the amount of phosphor particles 12 b included per unit volume is large in phosphor layer 12, the luminescent color (a hue of white light) of wavelength conversion device 110 varies to a great degree in the case where the thickness of phosphor layer 112 varies when forming phosphor layer 112 or substrate 11. Accordingly, in manufacturing wavelength conversion device 110, it is necessary to severely control the thickness of phosphor layer 112 in order to keep the luminescent color of wavelength conversion device 110 in a predetermined range. This means that there is a problem that phosphor layer 112 is not easily manufactured. The thickness of phosphor layer 112 is approximately 4 μm, for example.
  • To address such a problem, a method of decreasing the density of phosphor particles 12 b in phosphor layer 112 is conceivable. However, with such a method, a gap is generated between phosphor particles 12 b, and thus the above-described thermal conductivity to substrate 11; that is, the heat dissipation performance of phosphor particles 12 b is deteriorated.
  • Accordingly, phosphor layer 12 included in wavelength conversion: device 10 includes light transmissive particles 12 c. Since phosphor layer 12 includes light transmissive particles 12 c, the amount of phosphor particles 12 b per unit volume included in phosphor layer 12 is less than the amount of phosphor particles 12 b per unit volume included in phosphor layer 112.
  • Accordingly, even when the thickness of phosphor layer 12 varies among a plurality of wavelength conversion devices 10 in the manufacturing process, it is possible to suppress variation in the luminescent color among the plurality of wavelength conversion devices 10. For that reason, it is possible to more easily keep the luminescent color within a predetermined range in manufacturing wavelength conversion device 10, compared to manufacturing of wavelength conversion device 110.
  • It should be noted that, according to a result of earnest investigation by the inventors, phosphor layer 12 may contain light transmissive particles 12 c in a volume of at, least 20% relative to phosphor particles 12 b. With this configuration, it is possible to sufficiently suppress variation in the luminescent color of wavelength conversion device 10, which occurs due to variation in the thickness of phosphor layer 12.
  • In addition, phosphor layer 12 includes light transmissive particles 12 c which partially replace phosphor particles 12 b included in phosphor layer 112. Accordingly, most of phosphor particles 12 b included in phosphor layer 12 are directly in contact with other phosphor particles 12 b or light transmissive particles 12 c. As described above, since the densely-arranged state of particles (phosphor particles 12 b and light transmissive particles 12 c) is maintained in wavelength conversion device 10, deterioration in the heat dissipation performance is suppressed.
  • It should be noted that, according to a result of earnest investigation by the inventors, phosphor layer 12 may contain phosphor particles 12 b and light transmissive particles 12 c in a total volume of at least 45% relative to base material 12 a. This makes it easy to densely arrange the particles in phosphor layer 12.
  • In addition, since phosphor layer 12 includes light transmissive particles 12 c which partially replace phosphor particles 12 b included in phosphor layer 112, there is an advantageous effect that the method of manufacturing phosphor layer 112 can be applied substantially as it is to the method of manufacturing phosphor layer 12. It should be noted that phosphor layer 12 has less contained amount of phosphor particles 12 b than phosphor layer 112. For that reason, when white light of the same color is emitted by each of wavelength conversion device 10 and wavelength conversion device 110, the thickness of phosphor layer 12 is larger than the thickness of phosphor layer 112. As described, above, phosphor layer 12 has a thickness that is, for example, at least 60 μm and at most 100 μm.
  • In the meantime, although an organic material such as a silicone resin is generally used as base material 12 a in a wavelength conversion device which uses light emitting diode (LED) light as excitation light, an inorganic material such as glass or an organic-inorganic hybrid material is used as base material 12 a in wavelength conversion device 10 which uses laser light as excitation light.
  • With this configuration, the heat dissipation performance of phosphor particles 12 b is enhanced. Meanwhile, the inorganic material such as glass has a refractive index higher than a refractive index of the organic material such as a silicone resin. For that reason, a light extraction efficiency of wavelength conversion device 10 is lower than a light extraction efficiency of a wavelength conversion device which uses LED light as excitation light.
  • Here, wavelength conversion device 10 includes, in place of phosphor particles 12 b, light transmissive particles 12 c each having a refractive index lower than a refractive index of each of phosphor particles 12 b. For that reason, the light extraction efficiency of wavelength conversion device 10 is enhanced compared to the light extraction efficiency of wavelength conversion device 110.
  • (Advantageous Effects, etc.)
  • As described above, wavelength conversion device 10 includes substrate 11 and phosphor layer 12 disposed on substrate 11. Phosphor layer 12 includes base material 12 a, phosphor particles 12 b which emit fluorescent light when excited by excitation light, and light transmissive particles 12 c each having a grain size that is within ±30% of a grain size of each of phosphor particles 12 b and having a refractive index within ±7% of a refractive index of base material 12 a.
  • With this configuration, the amount of phosphor particles 12 b per unit volume in phosphor layer 12 is decreased, and thus variation in the luminescent color due to variation in the thickness of phosphor layer is suppressed. Accordingly, with wavelength conversion device 10, the luminescent color is easily kept within a predetermined range.
  • Phosphor layer 12 may contain phosphor particles 12 b and light transmissive particles 12 c in a volume of at least 45% relative to the base material.
  • This makes it easy to densely arrange the particles in phosphor layer 12.
  • In addition, phosphor layer 12 may contain light transmissive particles 12 c in a volume of at least 20% relative to phosphor particles 12 b.
  • With this configuration, it is possible to sufficiently suppress variation in the luminescent color of wavelength conversion device 10, which occurs due to variation in the thickness of phosphor layer 12.
  • In addition, the grain size of each of phosphor particles 12 b and the grain size of each of light transmissive particles 12 c may be each at least 5 μm and at most 20 μm.
  • As described above, when the grain size of each of light transmissive particles 12 c is within a range assumable as the grain size of each of phosphor particles 12 b, it is possible to apply the method of manufacturing wavelength conversion device 110 which does not include light, transmissive particles 12 c substantially as it is, to wavelength conversion device 10.
  • Embodiment 2
  • (Overall Configuration)
  • In Embodiment 2, a light source device including wavelength conversion device 10, and a lighting apparatus including the light source device will be described. FIG. 5 is an external perspective diagram of the lighting apparatus according to Embodiment 2. FIG. 6 is a schematic cross-sectional view illustrating a use mode of the lighting apparatus according to Embodiment 2. It should be noted that, in FIG. 6, only the illustration of power supply device 40 shows a side surface instead of a cross-section surface.
  • As illustrated in FIG. 5 and FIG. 6, lighting apparatus 100 is a downlight attached to ceiling 50 of a building. Lighting apparatus 100 includes light source device 20, lighting device 30, and power supply device 40. Light source device 20 and lighting device 30 are optically connected via optical fiber 23. Light source device 20 and power supply device 40 are electrically connected via power supply cable 24.
  • Lighting apparatus 100 is mounted on ceiling 50 in a state in which lighting device 30 is inserted into opening 51 of ceiling 50. In other words, lighting apparatus 100 is disposed on a back surface of the ceiling except a portion of lighting device 30.
  • (Light Source Device)
  • Next, light source device 20 will be described in detail. Light source device 20 includes laser light source 21 which emits blue laser light and wavelength conversion device 10. Light source device 20 emits white light with the combination of laser light source 21 and wavelength conversion device 10. More specifically, source device 20 emits white light including excitation light (blue laser light) and fluorescent light emitted by phosphor particles 12 b. Light source device 20 includes laser light source 21, heat sink 22, optical fiber 23, power supply cable 24, and wavelength conversion device 10.
  • Laser light source 21 is an example of an excitation light source which emits excitation light. Laser light source 21 is, for example, a semiconductor laser which emits blue laser light. The center emission wavelength of laser light source 21 is, for example, at least 440 nm and at most 470 nm. Laser light source 21 may emit blue-violet light or ultraviolet light. Laser light source 21 is specifically a CAN package element. However, laser light source 21 may be a chip type element.
  • Heat sink 22 is a structure used for dissipating heat of laser light source 21 that is currently emitting light. Heat sink 22 houses laser light source 21 therein, and also functions as an outer casing of light source device 20. Heat sink 22 is capable of dissipating heat generated in laser light source 21. Heat sink 22 is formed using, for example, metal that is relatively high in thermal conductivity, such as aluminum or copper.
  • Optical fiber 23 guides laser light emitted by laser light source 21 to the outside of heat sink 22. Optical fiber 23 includes an entrance located inside heat sink 22. The laser light emitted by laser light source 21 enters the entrance of optical fiber 23. Optical fiber 23 includes an exit located inside lighting device 30. The laser light that exits through the exit is emitted to wavelength conversion device 10 located inside lighting device 30.
  • Power supply cable 24 is a cable for supplying, to light source device 20, power supplied from power supply device 40. Power supply cable 24 has one end connected to a power supply circuit in power supply device 40, and the other end connected to laser light source 21 through an opening defined in heat sink 22.
  • (Lighting Device)
  • The following describes lighting device 30. Lighting device 30 is fitted to Opening 51, and converts a wavelength of laser light guided by optical fiber 23 to emit light of a predetermined color. Lighting device 30 includes casing 31, holder 32, and lens 33.
  • Casing 31 is a cylindrical component having an open end on the positive side of the Z-axis and a closed-end on the opposite side, and houses holder 32, wavelength conversion device 10, and lens 33. The outer diameter of casing 31 is slightly smaller than the diameter of opening 51, and casing 31 is fitted to opening 51. Casing 31 is, more specifically, fixed to opening 51 using an attachment spring (not illustrated). Casing 31 is, for example, formed using metal that is relatively high in thermal conductivity, such as aluminum or copper.
  • Holder 32 is a cylindrical component which holds optical fiber 23, and includes a portion that is housed in casing 31. Holder 32 is disposed on an upper portion of casing 31. Optical fiber 23 is held in a state in which optical fiber 23 is passed through a through hole along the center axis of holder 32. Holder 32 holds optical fiber 23 in such a manner that the exit of optical fiber 23 faces the positive side of the Z-axis (the side on which wavelength conversion device 10 is present). Holder 32 is formed using, for example, aluminum, copper, or the like. However, holder 32 may be formed using resin.
  • Lens 33 is an optical component which is disposed on an exit of casing 31, and controls distribution of light emitted by wavelength conversion device 10. Lens 33 is an example of the optical component which collects or diffuses white light emitted by light source device 20 (wavelength conversion device 10). Lens 33 has a surface which faces wavelength conversion device 10, and has a shape that enables taking light emitted by wavelength conversion device 10 into lens 33 without leakage as much as possible.
  • (Power Supply Device)
  • Next, power supply device 40 will be described. Power supply device 40 is a device which supplies power to light source device 20 (laser light source 21). Power supply device 40 houses a power supply circuit therein. The power supply circuit generates power for causing light source device 20 to emit light, and supplies the generated power to lighting device 30 via power supply cable 24. The power supply circuit is, specifically, an AC/DC converter circuit which converts AC power supplied from a power system to DC power, and outputs the DC power. Accordingly, DC current is supplied to laser light source 21.
  • Advantageous effects etc of Embodiment 2
  • As described above, light source device 20 includes wavelength conversion device 10 and laser light source 21 which emits excitation light. Light source device 20 emits white light including excitation light and fluorescent light emitted by phosphor particles 12 b. Laser light source 21 is an example of an excitation light source.
  • With light source device 20 described above, the luminescent color is easily kept within a predetermined range.
  • Lighting apparatus 100 includes light source device 20 and lens 33 which collects or diffuses white light emitted by light source device 20. Lens 33 is an example of the optical component.
  • With lighting apparatus 100 described above, the luminescent color is easily kept within a predetermined range.
  • Embodiment 3
  • In Embodiment 3, a light source device including wavelength conversion device 10, and a projection image display apparatus including the light source device will be described. FIG. 7 is an external perspective view of the projection image display apparatus according to Embodiment 3. FIG. 8 is a diagram which illustrates an optical system of the projection image display apparatus according to Embodiment 3.
  • As illustrated in FIG. 7 and FIG. 8, projection image display apparatus 200 is a single plate projector. Projection image display apparatus 200 includes light source device 60, collimate lens 71, integrator lens 72, polarized beam splitter 73, condenser lens 74, and collimate lens 75. In addition, projection image display apparatus 200 includes entrance-side polarization element 76, imaging element 80, exit-side polarization element 77, and projection lens 90.
  • Light source device 10 emits white light including excitation light (blue laser light) and fluorescent light emitted by phosphor particles 12 b. Light source device 60 includes, specifically, laser light source 21 and wavelength conversion device 10.
  • White light emitted by light source device 60 is collimated by collimate lens 71, and integrator lens 72 homogenizes an intensity distribution. The light whose intensity distribution is homogenized is converted to linearly polarized light, by polarized beam splitter 73. Here, the light whose intensity distribution is homogenized is, for example, converted to light of P polarization.
  • The light converted to the light of P polarization is incident on condenser lens 74, further collimated by collimate lens 75, and incident on. entrance-side polarization element 76.
  • Entrance-side polarization element 76 is a polarization plate (polarization control element) which polarizes incident light toward imaging element 80. Exit-side polarization element 77 is a polarization plate which polarizes light that exits imaging element 80. Imaging element 80 is disposed between entrance-side polarization element 76 and exit-side polarization element 77.
  • Imaging element 80 is a substantially planar element which spatially modulates white light emitted by light source device 60, and outputs the spatially modulated white light as an image. Imaging element 80, stated. differently, generates light for an image. Imaging element 80 is, specifically, a transmissive liquid crystal panel.
  • Since a polarization control region of entrance-side polarization element 76 transmits light of P polarization, light incident on entrance-side polarization element 76 enters imaging element 80, is modulated by imaging element 80, and exits imaging element 80. In addition, unlike entrance-side polarization element 76, exit-side polarization element 77 transmits only light of S polarization. Accordingly, only components of the light of S polarization. included in the modulated light pass the polarization control region of exit-side polarization element 77, and are incident on projection lens 90.
  • Projection lens 90 projects an image output by imaging element 80. As a result, an image is projected on a screen or the like.
  • Advantageous Effects, etc., of Embodiment 3
  • As described above, projection image display apparatus 200 includes light source device 60, imaging element 80 which modulates white light emitted by light source device 60 and outputs the modulated white light as an image, and projection lens 90 which projects the image output by imaging element 80.
  • With lighting apparatus 200 described above, luminescent color is easily kept within a predetermined range.
  • It should be noted that the optical system of projection image display apparatus 200 described in Embodiment 3 is an example. Imaging element 80, for example, may be a reflective imaging element such as a digital micromirror device (DMD) or a reflective liquid crystal panel. In addition, a three-plate optical system may be used in projection image display apparatus 200,
  • Other Embodiments
  • Although Embodiments 1 to 3 have been described thus far, the present disclosure is not limited to the above-described embodiments.
  • For example, although the laser light source has been described as a semiconductor laser in the above-described embodiments, the laser light source may be a laser other than the semiconductor laser. The laser light source may be, for example, solid-state laser such as YAG laser, liquid laser such as pigment laser, or gas laser such as Ar ion laser, He—Cd laser, nitrogen laser, or excimer laser. In addition, the light source device may include a plurality of laser light sources. Furthermore, the light source device may include a solid-state light emitting element other than the semiconductor laser, such as an LED light source, an organic electro luminescence (EL) element, or an inorganic EL element, as the excitation light source.
  • It should be noted that the present disclosure also includes other forms in winch various modifications apparent to those skilled in the art are applied to the embodiments or forms in which structural elements and functions in the embodiments, modifications, and examples are arbitrarily combined within the scope of the present disclosure.
  • While the foregoing has described one or more embodiments and/or other examples, it is understood that various modifications may be made therein arid that the subject matter disclosed herein may be implemented in various forms and examples, and that they may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all modifications and variations that fall. within the true scope of the present teachings.

Claims (7)

What is claimed is:
1. A wavelength conversion device, comprising:
a substrate; and
a phosphor layer on the substrate,
wherein the phosphor layer includes;
a base material;
phosphor particles which emit fluorescent light when excited by excitation light; and
light transmissive particles each having a grain size that is within ±30% of a grain size of each of the phosphor particles, and a refractive index that is within ±7% of a refractive index of the base material.
2. The wavelength conversion device according to claim 1,
wherein the phosphor layer contains the phosphor particles and the light transmissive particles in a volume of at least 45% relative to the base material.
3. The wavelength conversion device according to claim 1,
wherein the phosphor layer contains the light transmissive particles in a volume of at least 20% relative to the phosphor particles.
4. The wavelength conversion device according to claim 1,
wherein the grain size of each of the phosphor particles and the grain size of each of the light transmissive particles are each at least 5 μm and at most 20 μm.
5. A light source device, comprising:
the wavelength conversion device according to claim 1; and
an excitation light source which emits the excitation light,
wherein the light source device emits white light including the excitation light and the fluorescent light emitted by the phosphor particles.
6. A lighting apparatus, comprising:
the light source device according to claim 5; and
an optical component which collects or diffuses the white light emitted by the light source device.
7. A projection image display apparatus, comprising:
the light source device according to claim 5;
an imaging element which modulates the white light emitted by the light source device, and outputs the modulated white light as an image; and
a projection lens which projects the image output by the imaging element.
US15/786,980 2016-10-25 2017-10-18 Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus Abandoned US20180112128A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016208900A JP6868842B2 (en) 2016-10-25 2016-10-25 Wavelength conversion device, light source device, lighting device, and projection type image display device
JP2016-208900 2016-10-25

Publications (1)

Publication Number Publication Date
US20180112128A1 true US20180112128A1 (en) 2018-04-26

Family

ID=61866504

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/786,980 Abandoned US20180112128A1 (en) 2016-10-25 2017-10-18 Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus

Country Status (3)

Country Link
US (1) US20180112128A1 (en)
JP (1) JP6868842B2 (en)
DE (1) DE102017124432A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10574950B2 (en) 2017-04-14 2020-02-25 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11402625B2 (en) * 2017-06-29 2022-08-02 Materion Precision Optics (Shanghai) Limited Phosphor wheel having a balancing piece
DE102021117858A1 (en) 2021-07-09 2023-01-12 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung OPTOELECTRONIC LIGHTING DEVICE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110063584A1 (en) * 2009-09-11 2011-03-17 Ushio Deniki Kabushiki Kaisha High pressure discharge lamp lighting apparatus and projector
US20120106126A1 (en) * 2010-11-01 2012-05-03 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
US20130176540A1 (en) * 2012-01-11 2013-07-11 Coretronic Corporation Light source module and projection apparatus
US20140003074A1 (en) * 2011-03-16 2014-01-02 Katsuhiko Kishimoto Wavelength conversion member and method for manufacturing the same, and light-emitting device, illuminating device, and headlight
US20150280080A1 (en) * 2014-03-28 2015-10-01 Toyoda Gosei Co., Ltd. Light emitting device
US20160043285A1 (en) * 2013-04-08 2016-02-11 Koninklijke Philips N.V. Led with high thermal conductivity particles in phosphor conversion layer
US20160233389A1 (en) * 2015-02-10 2016-08-11 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for forming phosphor layer
US20170241619A1 (en) * 2014-05-05 2017-08-24 CRYTUR, spol.s.r.o. Light source

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923408B2 (en) * 2005-01-26 2012-04-25 パナソニック株式会社 Method for manufacturing light emitting device
US8203161B2 (en) * 2009-11-23 2012-06-19 Koninklijke Philips Electronics N.V. Wavelength converted semiconductor light emitting device
JP2012185402A (en) * 2011-03-07 2012-09-27 Seiko Epson Corp Light emitting element and method for producing the same, light source device, and projector
JP2012189938A (en) * 2011-03-14 2012-10-04 Seiko Epson Corp Light source device and projector
JP2012193283A (en) * 2011-03-16 2012-10-11 Sharp Corp Light-emitting body, illuminating device, and headlight
JP2014229503A (en) * 2013-05-23 2014-12-08 パナソニック株式会社 Light-emitting device, method for manufacturing the same, and projector
JP6136617B2 (en) * 2013-06-18 2017-05-31 日亜化学工業株式会社 Light source device and projector
JP2015090887A (en) * 2013-11-05 2015-05-11 株式会社日本セラテック Light-emitting element and light-emitting device
JP2016062804A (en) * 2014-09-19 2016-04-25 凸版印刷株式会社 Luminaire and display device using wavelength conversion sheet
JP6805505B2 (en) * 2015-03-05 2020-12-23 日亜化学工業株式会社 Light emitting device
JP6544677B2 (en) * 2015-03-13 2019-07-17 パナソニックIpマネジメント株式会社 Phosphor wheel, light source device using the same, and projection type display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110063584A1 (en) * 2009-09-11 2011-03-17 Ushio Deniki Kabushiki Kaisha High pressure discharge lamp lighting apparatus and projector
US20120106126A1 (en) * 2010-11-01 2012-05-03 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
US20140003074A1 (en) * 2011-03-16 2014-01-02 Katsuhiko Kishimoto Wavelength conversion member and method for manufacturing the same, and light-emitting device, illuminating device, and headlight
US20130176540A1 (en) * 2012-01-11 2013-07-11 Coretronic Corporation Light source module and projection apparatus
US20160043285A1 (en) * 2013-04-08 2016-02-11 Koninklijke Philips N.V. Led with high thermal conductivity particles in phosphor conversion layer
US20150280080A1 (en) * 2014-03-28 2015-10-01 Toyoda Gosei Co., Ltd. Light emitting device
US20170241619A1 (en) * 2014-05-05 2017-08-24 CRYTUR, spol.s.r.o. Light source
US20160233389A1 (en) * 2015-02-10 2016-08-11 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for forming phosphor layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10574950B2 (en) 2017-04-14 2020-02-25 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus

Also Published As

Publication number Publication date
JP2018072442A (en) 2018-05-10
DE102017124432A1 (en) 2018-04-26
JP6868842B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
US10698307B2 (en) Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus
US20160147136A1 (en) Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
US9459520B2 (en) Light source unit and optical engine
JP5445379B2 (en) projector
US9124816B2 (en) Illumination unit, projection type display unit, and direct view type display unit
US9285096B2 (en) Illumination unit, projection display unit, and direct-view display unit
JPWO2014024218A1 (en) Phosphor optical element, manufacturing method thereof, and light source device
US10914453B2 (en) Wavelength conversion device, illumination device, and projector
US10574950B2 (en) Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus
JP6777077B2 (en) Light source device and projection type display device
US20180112128A1 (en) Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus
WO2015155917A1 (en) Light source device and image display device
US10705416B2 (en) Wavelength conversion element, light source apparatus, and projector
JP6394076B2 (en) Light source device and projector
CN109791348B (en) Wavelength conversion device, light source device, and projector
US20190146317A1 (en) Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus
US11906888B2 (en) Light source apparatus and projector
US20230168571A1 (en) Light source apparatus and projector
JP2017003882A (en) Light source device and image display device
JP6759714B2 (en) Light source device and projector

Legal Events

Date Code Title Description
AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WATANABE, KENTA;REEL/FRAME:044624/0326

Effective date: 20170928

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载