US20180105633A1 - Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents - Google Patents
Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents Download PDFInfo
- Publication number
- US20180105633A1 US20180105633A1 US15/843,684 US201715843684A US2018105633A1 US 20180105633 A1 US20180105633 A1 US 20180105633A1 US 201715843684 A US201715843684 A US 201715843684A US 2018105633 A1 US2018105633 A1 US 2018105633A1
- Authority
- US
- United States
- Prior art keywords
- blowing agent
- composition
- amine catalyst
- polyol premix
- amine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920005862 polyol Polymers 0.000 title claims abstract description 73
- 150000003077 polyols Chemical class 0.000 title claims abstract description 73
- 239000003054 catalyst Substances 0.000 title claims abstract description 64
- 239000004604 Blowing Agent Substances 0.000 title claims abstract description 52
- 229920005830 Polyurethane Foam Polymers 0.000 title description 3
- 239000011496 polyurethane foam Substances 0.000 title description 3
- 150000001336 alkenes Chemical class 0.000 title 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title 1
- 239000006260 foam Substances 0.000 claims abstract description 100
- 239000000203 mixture Substances 0.000 claims abstract description 93
- 150000001412 amines Chemical class 0.000 claims abstract description 36
- 239000004094 surface-active agent Substances 0.000 claims abstract description 27
- -1 carboxylate salt Chemical class 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 11
- LDTMPQQAWUMPKS-OWOJBTEDSA-N (e)-1-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)\C=C\Cl LDTMPQQAWUMPKS-OWOJBTEDSA-N 0.000 claims description 10
- CDOOAUSHHFGWSA-OWOJBTEDSA-N (e)-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C\C(F)(F)F CDOOAUSHHFGWSA-OWOJBTEDSA-N 0.000 claims description 8
- 150000002902 organometallic compounds Chemical class 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 7
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 6
- MUMVIYLVHVCYGI-UHFFFAOYSA-N n,n,n',n',n",n"-hexamethylmethanetriamine Chemical compound CN(C)C(N(C)C)N(C)C MUMVIYLVHVCYGI-UHFFFAOYSA-N 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 5
- GSCCALZHGUWNJW-UHFFFAOYSA-N N-Cyclohexyl-N-methylcyclohexanamine Chemical compound C1CCCCC1N(C)C1CCCCC1 GSCCALZHGUWNJW-UHFFFAOYSA-N 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 150000001299 aldehydes Chemical class 0.000 claims description 5
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- 150000002576 ketones Chemical class 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 150000007524 organic acids Chemical class 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 150000008282 halocarbons Chemical class 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- IFNXAMCERSVZCV-UHFFFAOYSA-L zinc;2-ethylhexanoate Chemical compound [Zn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O IFNXAMCERSVZCV-UHFFFAOYSA-L 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- FMWLFMKQSJBUKA-UHFFFAOYSA-N 1,1,1-trifluoro-n-(1,1,1-trifluoropropan-2-yl)propan-2-amine Chemical compound FC(F)(F)C(C)NC(C)C(F)(F)F FMWLFMKQSJBUKA-UHFFFAOYSA-N 0.000 claims description 2
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 claims description 2
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 claims description 2
- NXLACVVNHYIYJN-UHFFFAOYSA-N 1-phenyl-n-(1-phenylethyl)ethanamine Chemical compound C=1C=CC=CC=1C(C)NC(C)C1=CC=CC=C1 NXLACVVNHYIYJN-UHFFFAOYSA-N 0.000 claims description 2
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 claims description 2
- MELCWEWUZODSIS-UHFFFAOYSA-N 2-[2-(diethylamino)ethoxy]-n,n-diethylethanamine Chemical compound CCN(CC)CCOCCN(CC)CC MELCWEWUZODSIS-UHFFFAOYSA-N 0.000 claims description 2
- GTEXIOINCJRBIO-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]-n,n-dimethylethanamine Chemical compound CN(C)CCOCCN(C)C GTEXIOINCJRBIO-UHFFFAOYSA-N 0.000 claims description 2
- ZWXQPERWRDHCMZ-UHFFFAOYSA-N 2-methyl-n-propan-2-ylpropan-2-amine Chemical compound CC(C)NC(C)(C)C ZWXQPERWRDHCMZ-UHFFFAOYSA-N 0.000 claims description 2
- NGRYSBPZIYVTHZ-UHFFFAOYSA-N 3-[3-(dimethylamino)propoxy]-n,n-dimethylpropan-1-amine Chemical compound CN(C)CCCOCCCN(C)C NGRYSBPZIYVTHZ-UHFFFAOYSA-N 0.000 claims description 2
- JLEIRAYWBMNMKU-UHFFFAOYSA-N 3-ethylpentan-3-amine Chemical compound CCC(N)(CC)CC JLEIRAYWBMNMKU-UHFFFAOYSA-N 0.000 claims description 2
- ZMSQJSMSLXVTKN-UHFFFAOYSA-N 4-[2-(2-morpholin-4-ylethoxy)ethyl]morpholine Chemical compound C1COCCN1CCOCCN1CCOCC1 ZMSQJSMSLXVTKN-UHFFFAOYSA-N 0.000 claims description 2
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 claims description 2
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 claims description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 claims description 2
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 claims description 2
- QEFIMESGOXVXFU-UHFFFAOYSA-N n,n-diethyl-1-phenylethanamine Chemical compound CCN(CC)C(C)C1=CC=CC=C1 QEFIMESGOXVXFU-UHFFFAOYSA-N 0.000 claims description 2
- VMOWKUTXPNPTEN-UHFFFAOYSA-N n,n-dimethylpropan-2-amine Chemical compound CC(C)N(C)C VMOWKUTXPNPTEN-UHFFFAOYSA-N 0.000 claims description 2
- ASKYIFBXGFWCBG-UHFFFAOYSA-N n-benzyl-n-methylcyclopentanamine Chemical compound C1CCCC1N(C)CC1=CC=CC=C1 ASKYIFBXGFWCBG-UHFFFAOYSA-N 0.000 claims description 2
- WFMUJLWWGDJDBF-UHFFFAOYSA-N n-benzyl-n-methylpropan-2-amine Chemical compound CC(C)N(C)CC1=CC=CC=C1 WFMUJLWWGDJDBF-UHFFFAOYSA-N 0.000 claims description 2
- OBYVIBDTOCAXSN-UHFFFAOYSA-N n-butan-2-ylbutan-2-amine Chemical compound CCC(C)NC(C)CC OBYVIBDTOCAXSN-UHFFFAOYSA-N 0.000 claims description 2
- FUUUBHCENZGYJA-UHFFFAOYSA-N n-cyclopentylcyclopentanamine Chemical compound C1CCCC1NC1CCCC1 FUUUBHCENZGYJA-UHFFFAOYSA-N 0.000 claims description 2
- BBPKSHICVYBPRR-UHFFFAOYSA-N n-propan-2-yl-n-(2,2,2-trifluoroethyl)butan-2-amine Chemical compound CCC(C)N(C(C)C)CC(F)(F)F BBPKSHICVYBPRR-UHFFFAOYSA-N 0.000 claims description 2
- CATWEXRJGNBIJD-UHFFFAOYSA-N n-tert-butyl-2-methylpropan-2-amine Chemical compound CC(C)(C)NC(C)(C)C CATWEXRJGNBIJD-UHFFFAOYSA-N 0.000 claims description 2
- MTEWAFVECQBILW-UHFFFAOYSA-N n-tert-butylcyclohexanamine Chemical compound CC(C)(C)NC1CCCCC1 MTEWAFVECQBILW-UHFFFAOYSA-N 0.000 claims description 2
- BZVJOYBTLHNRDW-UHFFFAOYSA-N triphenylmethanamine Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(N)C1=CC=CC=C1 BZVJOYBTLHNRDW-UHFFFAOYSA-N 0.000 claims description 2
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 abstract description 22
- 239000004814 polyurethane Substances 0.000 abstract description 22
- 239000011495 polyisocyanurate Substances 0.000 abstract description 21
- 229920000582 polyisocyanurate Polymers 0.000 abstract description 21
- 229920001296 polysiloxane Polymers 0.000 abstract description 21
- 238000000034 method Methods 0.000 abstract description 10
- 238000002360 preparation method Methods 0.000 abstract description 10
- 239000005056 polyisocyanate Substances 0.000 description 24
- 229920001228 polyisocyanate Polymers 0.000 description 24
- 239000012948 isocyanate Substances 0.000 description 19
- 150000002513 isocyanates Chemical class 0.000 description 18
- 238000009472 formulation Methods 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 8
- 230000009257 reactivity Effects 0.000 description 8
- 239000003063 flame retardant Substances 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000004383 yellowing Methods 0.000 description 5
- NDMMKOCNFSTXRU-UHFFFAOYSA-N 1,1,2,3,3-pentafluoroprop-1-ene Chemical class FC(F)C(F)=C(F)F NDMMKOCNFSTXRU-UHFFFAOYSA-N 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 4
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229920000538 Poly[(phenyl isocyanate)-co-formaldehyde] Polymers 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical class [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 4
- DMUPYMORYHFFCT-UPHRSURJSA-N (z)-1,2,3,3,3-pentafluoroprop-1-ene Chemical compound F\C=C(/F)C(F)(F)F DMUPYMORYHFFCT-UPHRSURJSA-N 0.000 description 3
- YFMFNYKEUDLDTL-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoropropane Chemical compound FC(F)(F)C(F)C(F)(F)F YFMFNYKEUDLDTL-UHFFFAOYSA-N 0.000 description 3
- NSGXIBWMJZWTPY-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropane Chemical class FC(F)(F)CC(F)(F)F NSGXIBWMJZWTPY-UHFFFAOYSA-N 0.000 description 3
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000003863 metallic catalyst Substances 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical class FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 3
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 3
- 238000005829 trimerization reaction Methods 0.000 description 3
- FYIRUPZTYPILDH-UHFFFAOYSA-N 1,1,1,2,3,3-hexafluoropropane Chemical compound FC(F)C(F)C(F)(F)F FYIRUPZTYPILDH-UHFFFAOYSA-N 0.000 description 2
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 2
- NLOLSXYRJFEOTA-UHFFFAOYSA-N 1,1,1,4,4,4-hexafluorobut-2-ene Chemical compound FC(F)(F)C=CC(F)(F)F NLOLSXYRJFEOTA-UHFFFAOYSA-N 0.000 description 2
- WXGNWUVNYMJENI-UHFFFAOYSA-N 1,1,2,2-tetrafluoroethane Chemical compound FC(F)C(F)F WXGNWUVNYMJENI-UHFFFAOYSA-N 0.000 description 2
- SXKNYNUXUHCUHX-UHFFFAOYSA-N 1,1,2,3,3,4-hexafluorobut-1-ene Chemical class FCC(F)(F)C(F)=C(F)F SXKNYNUXUHCUHX-UHFFFAOYSA-N 0.000 description 2
- QAERDLQYXMEHEB-UHFFFAOYSA-N 1,1,3,3,3-pentafluoroprop-1-ene Chemical compound FC(F)=CC(F)(F)F QAERDLQYXMEHEB-UHFFFAOYSA-N 0.000 description 2
- FRCHKSNAZZFGCA-UHFFFAOYSA-N 1,1-dichloro-1-fluoroethane Chemical compound CC(F)(Cl)Cl FRCHKSNAZZFGCA-UHFFFAOYSA-N 0.000 description 2
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 2
- BHNZEZWIUMJCGF-UHFFFAOYSA-N 1-chloro-1,1-difluoroethane Chemical compound CC(F)(F)Cl BHNZEZWIUMJCGF-UHFFFAOYSA-N 0.000 description 2
- BOUGCJDAQLKBQH-UHFFFAOYSA-N 1-chloro-1,2,2,2-tetrafluoroethane Chemical compound FC(Cl)C(F)(F)F BOUGCJDAQLKBQH-UHFFFAOYSA-N 0.000 description 2
- FDMFUZHCIRHGRG-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-ene Chemical class FC(F)(F)C=C FDMFUZHCIRHGRG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- PQYJRMFWJJONBO-UHFFFAOYSA-N Tris(2,3-dibromopropyl) phosphate Chemical compound BrCC(Br)COP(=O)(OCC(Br)CBr)OCC(Br)CBr PQYJRMFWJJONBO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 2
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 150000002332 glycine derivatives Chemical class 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- VXGABWCSZZWXPC-UHFFFAOYSA-N methyl 2-(methylamino)acetate Chemical compound CNCC(=O)OC VXGABWCSZZWXPC-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical class COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical class [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- UKODFQOELJFMII-UHFFFAOYSA-N pentamethyldiethylenetriamine Chemical compound CN(C)CCN(C)CCN(C)C UKODFQOELJFMII-UHFFFAOYSA-N 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- ZUFQCVZBBNZMKD-UHFFFAOYSA-M potassium 2-ethylhexanoate Chemical class [K+].CCCCC(CC)C([O-])=O ZUFQCVZBBNZMKD-UHFFFAOYSA-M 0.000 description 2
- 235000011056 potassium acetate Nutrition 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 241000894007 species Species 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- DHNUXDYAOVSGII-UHFFFAOYSA-N tris(1,3-dichloropropyl) phosphate Chemical compound ClCCC(Cl)OP(=O)(OC(Cl)CCCl)OC(Cl)CCCl DHNUXDYAOVSGII-UHFFFAOYSA-N 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- HOVAGTYPODGVJG-UVSYOFPXSA-N (3s,5r)-2-(hydroxymethyl)-6-methoxyoxane-3,4,5-triol Chemical compound COC1OC(CO)[C@@H](O)C(O)[C@H]1O HOVAGTYPODGVJG-UVSYOFPXSA-N 0.000 description 1
- NVSXSBBVEDNGPY-UHFFFAOYSA-N 1,1,1,2,2-pentafluorobutane Chemical class CCC(F)(F)C(F)(F)F NVSXSBBVEDNGPY-UHFFFAOYSA-N 0.000 description 1
- WZLFPVPRZGTCKP-UHFFFAOYSA-N 1,1,1,3,3-pentafluorobutane Chemical class CC(F)(F)CC(F)(F)F WZLFPVPRZGTCKP-UHFFFAOYSA-N 0.000 description 1
- PGJHURKAWUJHLJ-UHFFFAOYSA-N 1,1,2,3-tetrafluoroprop-1-ene Chemical compound FCC(F)=C(F)F PGJHURKAWUJHLJ-UHFFFAOYSA-N 0.000 description 1
- BNYODXFAOQCIIO-UHFFFAOYSA-N 1,1,3,3-tetrafluoroprop-1-ene Chemical compound FC(F)C=C(F)F BNYODXFAOQCIIO-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 description 1
- IKYNWXNXXHWHLL-UHFFFAOYSA-N 1,3-diisocyanatopropane Chemical compound O=C=NCCCN=C=O IKYNWXNXXHWHLL-UHFFFAOYSA-N 0.000 description 1
- 125000001989 1,3-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- OSNILPMOSNGHLC-UHFFFAOYSA-N 1-[4-methoxy-3-(piperidin-1-ylmethyl)phenyl]ethanone Chemical compound COC1=CC=C(C(C)=O)C=C1CN1CCCCC1 OSNILPMOSNGHLC-UHFFFAOYSA-N 0.000 description 1
- LDTMPQQAWUMPKS-UHFFFAOYSA-N 1-chloro-3,3,3-trifluoroprop-1-ene Chemical class FC(F)(F)C=CCl LDTMPQQAWUMPKS-UHFFFAOYSA-N 0.000 description 1
- JIABEENURMZTTI-UHFFFAOYSA-N 1-isocyanato-2-[(2-isocyanatophenyl)methyl]benzene Chemical class O=C=NC1=CC=CC=C1CC1=CC=CC=C1N=C=O JIABEENURMZTTI-UHFFFAOYSA-N 0.000 description 1
- DTZHXCBUWSTOPO-UHFFFAOYSA-N 1-isocyanato-4-[(4-isocyanato-3-methylphenyl)methyl]-2-methylbenzene Chemical compound C1=C(N=C=O)C(C)=CC(CC=2C=C(C)C(N=C=O)=CC=2)=C1 DTZHXCBUWSTOPO-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- CJWBPEYRTPGWPF-UHFFFAOYSA-N 2-[bis(2-chloroethoxy)phosphoryloxy]ethyl bis(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCOP(=O)(OCCCl)OCCCl CJWBPEYRTPGWPF-UHFFFAOYSA-N 0.000 description 1
- CCJKFLLIJCGHMO-UHFFFAOYSA-N 2-[diethoxyphosphorylmethyl(2-hydroxyethyl)amino]ethanol Chemical compound CCOP(=O)(OCC)CN(CCO)CCO CCJKFLLIJCGHMO-UHFFFAOYSA-N 0.000 description 1
- SBICOSJPCBAFED-UHFFFAOYSA-N 2-chloro-1,1-difluoroprop-1-ene Chemical class CC(Cl)=C(F)F SBICOSJPCBAFED-UHFFFAOYSA-N 0.000 description 1
- HLFNUPJVFUAPLD-UHFFFAOYSA-M 2-ethylhexanoate;2-hydroxypropyl(trimethyl)azanium Chemical compound CC(O)C[N+](C)(C)C.CCCCC(CC)C([O-])=O HLFNUPJVFUAPLD-UHFFFAOYSA-M 0.000 description 1
- BOZRCGLDOHDZBP-UHFFFAOYSA-N 2-ethylhexanoic acid;tin Chemical compound [Sn].CCCCC(CC)C(O)=O BOZRCGLDOHDZBP-UHFFFAOYSA-N 0.000 description 1
- OTOLFQXGRCJFQN-UHFFFAOYSA-M 2-hydroxypropyl(trimethyl)azanium;formate Chemical compound [O-]C=O.CC(O)C[N+](C)(C)C OTOLFQXGRCJFQN-UHFFFAOYSA-M 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- QZWKEPYTBWZJJA-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine-4,4'-diisocyanate Chemical compound C1=C(N=C=O)C(OC)=CC(C=2C=C(OC)C(N=C=O)=CC=2)=C1 QZWKEPYTBWZJJA-UHFFFAOYSA-N 0.000 description 1
- HXNJCCYKKHPFIO-UHFFFAOYSA-N 3-chloro-1,1,2,3-tetrafluoroprop-1-ene Chemical class FC(Cl)C(F)=C(F)F HXNJCCYKKHPFIO-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- KMFMBVVSSUECBW-UHFFFAOYSA-N 4-isocyanato-1-[(4-isocyanato-2-methylphenyl)methyl]-2-methylbenzene Chemical compound CC1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1C KMFMBVVSSUECBW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 239000005696 Diammonium phosphate Substances 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- KEJFAGMNOBNFJR-QMTHXVAHSA-N Isophorene Natural products S=C(NC[C@]1(C)C[C@H](NC(=S)NC)CC(C)(C)C1)NC KEJFAGMNOBNFJR-QMTHXVAHSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Chemical class 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- IXQBIOPGDNZYNA-UHFFFAOYSA-N N=C=O.N=C=O.CC1=CC=CC=C1C1=CC=CC=C1C Chemical compound N=C=O.N=C=O.CC1=CC=CC=C1C1=CC=CC=C1C IXQBIOPGDNZYNA-UHFFFAOYSA-N 0.000 description 1
- SPTUBPSDCZNVSI-UHFFFAOYSA-N N=C=O.N=C=O.COC1=CC=CC=C1C1=CC=CC=C1OC Chemical compound N=C=O.N=C=O.COC1=CC=CC=C1C1=CC=CC=C1OC SPTUBPSDCZNVSI-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- WYOFTXWVYIGTCT-UHFFFAOYSA-K [OH-].[Sb+3].OCC([O-])=O.OCC([O-])=O Chemical compound [OH-].[Sb+3].OCC([O-])=O.OCC([O-])=O WYOFTXWVYIGTCT-UHFFFAOYSA-K 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- RREGISFBPQOLTM-UHFFFAOYSA-N alumane;trihydrate Chemical class O.O.O.[AlH3] RREGISFBPQOLTM-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- DAMJCWMGELCIMI-UHFFFAOYSA-N benzyl n-(2-oxopyrrolidin-3-yl)carbamate Chemical compound C=1C=CC=CC=1COC(=O)NC1CCNC1=O DAMJCWMGELCIMI-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- ZLFVRXUOSPRRKQ-UHFFFAOYSA-N chembl2138372 Chemical compound [O-][N+](=O)C1=CC(C)=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 ZLFVRXUOSPRRKQ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- HEYYNPBHZQPMJJ-UHFFFAOYSA-L dibenzoyloxylead Chemical compound C=1C=CC=CC=1C(=O)O[Pb]OC(=O)C1=CC=CC=C1 HEYYNPBHZQPMJJ-UHFFFAOYSA-L 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- UMNKXPULIDJLSU-UHFFFAOYSA-N dichlorofluoromethane Chemical compound FC(Cl)Cl UMNKXPULIDJLSU-UHFFFAOYSA-N 0.000 description 1
- 229940099364 dichlorofluoromethane Drugs 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical class COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- VONWDASPFIQPDY-UHFFFAOYSA-N dimethyl methylphosphonate Chemical compound COP(C)(=O)OC VONWDASPFIQPDY-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000013012 foaming technology Methods 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- UKACHOXRXFQJFN-UHFFFAOYSA-N heptafluoropropane Chemical class FC(F)C(F)(F)C(F)(F)F UKACHOXRXFQJFN-UHFFFAOYSA-N 0.000 description 1
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- MOUPNEIJQCETIW-UHFFFAOYSA-N lead chromate Chemical compound [Pb+2].[O-][Cr]([O-])(=O)=O MOUPNEIJQCETIW-UHFFFAOYSA-N 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000004620 low density foam Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical class NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- HOVAGTYPODGVJG-UHFFFAOYSA-N methyl beta-galactoside Natural products COC1OC(CO)C(O)C(O)C1O HOVAGTYPODGVJG-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005903 polyol mixture Polymers 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Chemical class 0.000 description 1
- 239000004800 polyvinyl chloride Chemical class 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical class CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Substances CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- KFUSEUYYWQURPO-OWOJBTEDSA-N trans-1,2-dichloroethene Chemical class Cl\C=C\Cl KFUSEUYYWQURPO-OWOJBTEDSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- KVMPUXDNESXNOH-UHFFFAOYSA-N tris(1-chloropropan-2-yl) phosphate Chemical compound ClCC(C)OP(=O)(OC(C)CCl)OC(C)CCl KVMPUXDNESXNOH-UHFFFAOYSA-N 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- GTRSAMFYSUBAGN-UHFFFAOYSA-N tris(2-chloropropyl) phosphate Chemical compound CC(Cl)COP(=O)(OCC(C)Cl)OCC(C)Cl GTRSAMFYSUBAGN-UHFFFAOYSA-N 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1875—Catalysts containing secondary or tertiary amines or salts thereof containing ammonium salts or mixtures of secondary of tertiary amines and acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/227—Catalysts containing metal compounds of antimony, bismuth or arsenic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/128—Mixtures of organometallic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/161—Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
- C08G18/163—Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1816—Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/222—Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/225—Catalysts containing metal compounds of alkali or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
- C08J9/146—Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/149—Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
- C08K5/053—Polyhydroxylic alcohols
-
- C08G2101/0025—
-
- C08G2105/02—
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0016—Foam properties semi-rigid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0025—Foam properties rigid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2115/00—Oligomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2115/00—Oligomerisation
- C08G2115/02—Oligomerisation to isocyanurate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/16—Unsaturated hydrocarbons
- C08J2203/162—Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/02—Halogenated hydrocarbons
Definitions
- the present invention pertains to polyurethane and polyisocyanurate foams and methods for the preparation thereof.
- Low density, rigid to semi-rigid polyurethane or polyisocyanurate foams have utility in a wide variety of insulation applications including roofing systems, building panels, building envelope insulation, spray applied foams, one and two component froth foams, insulation for refrigerators and freezers, and so called integral skin for application such as steering wheels and other automotive or aerospace cabin parts, shoe soles, and amusement park restraints.
- Critical to the large-scale commercial acceptance of rigid polyurethane foams is their ability to provide a good balance of properties.
- rigid polyurethane and polyisocyanurate foams are known to provide outstanding thermal insulation, excellent fire resistance properties, and superior structural properties at reasonably low densities.
- Integral skin foams are known to produce a tough durable outer skin and a cellular, cushioning core.
- Blowing agents include hydrocarbons, fluorocarbons, chlorocarbons, chlorofluorocarbons, hydrochlorofluorocarbons, halogenated hydrocarbons, ethers, esters, aldehydes, alcohols, ketones, organic acid or gas, most often CO 2 , generating materials.
- Heat is generated when the polyisocyanate reacts with the polyol, and volatilizes the blowing agent contained in the liquid mixture, thereby forming bubbles therein.
- gaseous species are generated by thermal decomposition or reaction with one or more of the ingredients used to produce the polyurethane or polyisocyanurate foam.
- the liquid mixture becomes a cellular solid, entrapping the blowing agent in the foam's cells. If a surfactant is not used in the foaming composition, the bubbles simply pass through the liquid mixture without forming a foam or forming a foam with large, irregular cells rendering it not useful.
- the foam industry has historically used liquid fluorocarbon blowing agents because of their ease of use and ability to produce foams with superior mechanical and thermal insulation properties. Fluorocarbons not only act as blowing agents by virtue of their volatility, but also are encapsulated or entrained in the closed cell structure of the rigid foam and are the major contributor to the low thermal conductivity properties of the rigid urethane foams. Fluorocarbon-based blowing agents also produce a foam having a favorable k-factor.
- the k-factor is the rate of transfer of heat energy by conduction through one square foot of one-inch thick homogenous material in one hour where there is a difference of one degree Fahrenheit perpendicularly across the two surfaces of the material. Since the utility of closed-cell polyurethane-type foams is based, in part, on their thermal insulation properties, it would be advantageous to identify materials that produce lower k-factor foams.
- Preferred blowing agents also have low global warming potential.
- hydrohaloolefins including hydrofluoroolefins of which trans-1,3,3,3-tetrafluoropropene (1234ze(E)) and 1,1,1,4,4,4hexafluorobut-2-ene (1336mzzm(Z)) are of particular interest and hydrochlorofluoroolefins of which trans-1-chloro-3,3,3-trifluoropropene (1233zd(E)) is of particular interest.
- Processes for the manufacture of trans-1,3,3,3-tetrafluoropropene are disclosed in U.S. Pat. Nos. 7,230,146 and 7,189,884.
- Processes for the manufacture of trans-1-chloro-3,3,3-trifluoropropene are disclosed in U.S. Pat. Nos. 6,844,475 and 6,403,847.
- the foam formulation is pre-blended into two components.
- the polyisocyanate and optionally isocyanate compatible raw materials including but not limited to certain blowing agents and non-reactive surfactants, comprise the first component, commonly referred to as the “A” component.
- a polyol or mixture of polyols, one or more surfactant, one or more catalyst, one or more blowing agent, and other optional components including but not limited to flame retardants, colorants, compatibilizers, and solubilizers comprise the second component, commonly referred to as the “B” component.
- polyurethane or polyisocyanurate foams are readily prepared by bringing together the A and B side components either by hand mix for small preparations and, preferably, machine mix techniques to form blocks, slabs, laminates, pour-in-place panels and other items, spray applied foams, froths, and the like.
- other ingredients such as fire retardants, colorants, auxiliary blowing agents, and other polyols can be added to the mixing head or reaction site. Most conveniently, however, they are all incorporated into one B component.
- a shortcoming of two-component systems, especially those using certain hydrohaloolefins, including 1234ze(E), 1336(Z), and 1233zd(E), is the shelf-life of the B-side composition. Normally when a foam is produced by bringing together the A and B side components, a good foam is obtained. However, if the polyol premix composition is aged, prior to treatment with the polyisocyanate, the foams are of lower quality and may even collapse during the formation of the foam.
- blowing agent for example by adding the blowing agent, amine catalyst, or surfactant to the polyisocyanate, (“A” component) or by introducing the blowing agent, amine catalyst, or surfactant using a separate stream from the “A” or “B” component
- a preferred solution is one that does not require a change in the way the foams are made.
- inorgano-metallic catalysts, organo-metallic catalysts and/or quaternary ammonium carboxylate catalysts, either alone or in combination with amine catalysts, can extend the shelf life of polyol premixes containing hydrohaloolefins, such as, but not limited to 1234ze(E), 1233zd(E), and/or 1336mzzm(Z), such that good quality foams can be produced even if the polyol blend has been aged several weeks or months.
- hydrohaloolefins such as, but not limited to 1234ze(E), 1233zd(E), and/or 1336mzzm(Z
- this invention relates to rigid to semi-rigid, polyurethane and polyisocyanurate foams and methods for their preparation, which foams are characterized by a fine uniform cell structure and little or no foam collapse.
- the foams are produced with an organic polyisocyanate and a polyol premix composition which comprises a combination of a blowing agent, which is preferably a hydrohaloolefin, a polyol, a silicone surfactant, and a catalyst in which catalyst comprises one or more non-amine catalyst, preferably an inorgano- or organo-metallic compound or a quaternary ammonium carboxylate catalyst, and also may include one or more amine catalysts.
- the invention provides polyol premix composition which comprises a combination of a blowing agent, one or more polyols, one or more silicone surfactants, and a catalyst in which catalyst is a non-amine catalyst, such as an inorgano- or organo-metallic compound or quaternary ammonium carboxylate material used either alone or in combination with amine catalysts, wherein the blowing agent comprises one or more hydrohaloolefins, and optionally a hydrocarbon, fluorocarbon, chlorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, halogenated hydrocarbon, ether, ester, alcohol, aldehyde, ketone, organic acid, gas generating material, water or combinations thereof.
- a blowing agent comprises one or more hydrohaloolefins, and optionally a hydrocarbon, fluorocarbon, chlorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, halogenated hydrocarbon, ether, ester, alcohol, aldehyde, ketone,
- the invention also provides a method of preparing a polyurethane or polyisocyanurate foam comprising reacting an organic polyisocyanate with the polyol premix composition.
- the blowing agent component comprises a hydrohaloolefin, preferably comprising at least one or a combination of 1234ze(E), 1233zd(E), and/or 1336mzzm(Z), and optionally a hydrocarbon, fluorocarbon, chlorocarbon, fluorochlorocarbon, halogenated hydrocarbon, ether, fluorinated ether, ester, alcohol, aldehyde, ketone, organic acid, gas generating material, water or combinations thereof.
- a hydrohaloolefin preferably comprising at least one or a combination of 1234ze(E), 1233zd(E), and/or 1336mzzm(Z)
- the hydrohaloolefin preferably comprises at least one halooalkene such as a fluoroalkene or chlorofluoroalkene containing from 3 to 4 carbon atoms and at least one carbon-carbon double bond.
- Preferred hydrohaloolefins non-exclusively include trifluoropropenes, tetrafluoropropenes such as (1234), pentafluoropropenes such as (1225), chlorotrifloropropenes such as (1233), chlorodifluoropropenes, chlorotrifluoropropenes, chlorotetrafluoropropenes, hexafluorobutenes (1336) and combinations of these.
- the compounds of the present invention are the tetrafluoropropene, pentafluoropropene, and chlorotrifloropropene compounds in which the unsaturated terminal carbon has not more than one F or Cl substituent. Included are 1,3,3,3-tetrafluoropropene (1234ze); 1,1,3,3-tetrafluoropropene; 1,2,3,3,3-pentafluoropropene (1225ye), 1,1,1-trifluoropropene; 1,2,3,3,3-pentafluoropropene, 1,1,1,3,3-pentafluoropropene (1225zc) and 1,1,2,3,3-pentafluoropropene (1225yc); (Z)-1,1,1,2,3-pentafluoropropene (1225yez); 1-chloro-3,3,3-trifluoropropene (1233zd), 1,1,1,4,4,4-hexafluorobut-2-ene (1336mzz
- Preferred hydrohaloolefins have a Global Warming Potential (GWP) of not greater than 150, more preferably not greater than 100 and even more preferably not greater than 75.
- GWP Global Warming Potential
- “GWP” is measured relative to that of carbon dioxide and over a 100-year time horizon, as defined in “The Scientific Assessment of Ozone Depletion, 2002, a report of the World Meteorological Association's Global Ozone Research and Monitoring Project,” which is incorporated herein by reference.
- Preferred hydrohaloolefins also preferably have an Ozone Depletion Potential (ODP) of not greater than 0.05, more preferably not greater than 0.02 and even more preferably about zero.
- ODP Ozone Depletion Potential
- ODP Ozone Depletion Potential
- Preferred optional co-blowing agents non-exclusively include water, organic acids that produce CO 2 and/or CO, hydrocarbons; ethers, halogenated ethers; esters, alcohols, aldehydes, ketones, pentafluorobutane; pentafluoropropane; hexafluoropropane; heptafluoropropane; trans-1,2 dichloroethylene; methylal, methyl formate; 1-chloro-1,2,2,2-tetrafluoroethane (124); 1,1-dichloro-1-fluoroethane (141b); 1,1,1,2-tetrafluoroethane (134a); 1,1,2,2-tetrafluoroethane (134); 1-chloro 1,1-difluoroethane (142b); 1,1,1,3,3-pentafluorobutane (365mfc); 1,1,1,2,3,3,3-heptafluoropropane (227ea); t
- the co-blowing agent(s) include one or a combination of water and/or normal pentane, isopentane or cyclopentane, which may be provided with one or a combination of the hydrohaloolefin blowing agents discussed herein.
- the blowing agent component is usually present in the polyol premix composition in an amount of from about 1 wt. % to about 30 wt. %, preferably from about 3 wt. % to about 25 wt. %, and more preferably from about 5 wt. % to about 25 wt. %, by weight of the polyol premix composition.
- the hydrohaloolefin component is usually present in the blowing agent component in an amount of from about 5 wt. % to about 90 wt. %, preferably from about 7 wt. % to about 80 wt. %, and more preferably from about 10 wt. % to about 70 wt. %, by weight of the blowing agent component; and the optional blowing agent is usually present in the blowing agent component in an amount of from about 95 wt. % to about 10 wt. %, preferably from about 93 wt. % to about 20 wt. %, and more preferably from about 90 wt. % to about 30 wt. %, by weight of the blowing agent component.
- the polyol component which includes mixtures of polyols, can be any polyol which reacts in a known fashion with an isocyanate in preparing a polyurethane or polyisocyanurate foam.
- Useful polyols comprise one or more of a sucrose containing polyol; phenol, a phenol formaldehyde containing polyol; a glucose containing polyol; a sorbitol containing polyol; a methylglucoside containing polyol; an aromatic polyester polyol; glycerol; ethylene glycol; diethylene glycol; propylene glycol; graft copolymers of polyether polyols with a vinyl polymer; a copolymer of a polyether polyol with a polyurea; one or more of (a) condensed with one or more of (b), wherein (a) is selected from glycerine, ethylene glycol, diethylene glycol, trimethylolpropane, ethylene diamine
- the polyol component is usually present in the polyol premix composition in an amount of from about 60 wt. % to about 95 wt.%, preferably from about 65 wt. % to about 95 wt. %, and more preferably from about 70 wt. % to about 90 wt. %, by weight of the polyol premix composition.
- the polyol premix composition next contains a silicone surfactant.
- the silicone surfactant is used to form a foam from the mixture, as well as to control the size of the bubbles of the foam so that a foam of a desired cell structure is obtained.
- a foam with small bubbles or cells therein of uniform size is desired since it has the most desirable physical properties such as compressive strength and thermal conductivity. Also, it is critical to have a foam with stable cells which do not collapse prior to forming or during foam rise.
- Silicone surfactants for use in the preparation of polyurethane or polyisocyanurate foams are available under a number of trade names known to those skilled in this art. Such materials have been found to be applicable over a wide range of formulations allowing uniform cell formation and maximum gas entrapment to achieve very low density foam structures.
- the preferred silicone surfactant comprises a polysiloxane polyoxyalkylene block co-polymer.
- silicone surfactants useful for this invention are Momentive's L-5130, L-5180, L-5340, L-5440, L-6100, L-6900, L-6980 and L-6988; Air Products DC-193, DC-197, DC-5582, and DC-5598; and B-8404, B-8407, B-8409 and B-8462 from Evonik Industries AG of Essen, Germany Others are disclosed in U.S. Pat. Nos. 2,834,748; 2,917,480; 2,846,458 and 4,147,847.
- the silicone surfactant component is usually present in the polyol premix composition in an amount of from about 0.5 wt. % to about 5.0 wt. %, preferably from about 1.0 wt. % to about 4.0 wt. %, and more preferably from about 1.5 wt. % to about 3.0 wt. %, by weight of the polyol premix composition.
- the polyol premix composition may optionally contain a non-silicone surfactant, such as a non-silicone, non-ionic surfactant.
- a non-silicone surfactant such as a non-silicone, non-ionic surfactant.
- a non-silicone surfactant such as a non-silicone, non-ionic surfactant.
- Such may include oxyethylated alkylphenols, oxyethylated fatty alcohols, paraffin oils, castor oil esters, ricinoleic acid esters, turkey red oil, groundnut oil, paraffins, and fatty alcohols.
- a preferred non-silicone non-ionic surfactant is LK-443 which is commercially available from Air Products Corporation.
- a non-silicone, non-ionic surfactant used it is usually present in the polyol premix composition in an amount of from about 0.25 wt. % to about 3.0 wt. %,
- the inventive polyol premix composition next contains a catalyst or catalysts at least one of which is a non-amine catalyst.
- the non-amine catalysts are inorgano- or organo-metallic compounds.
- Useful inorgano- or organo-metallic compounds include, but are not limited to, organic salts, Lewis acid halides, or the like, of any metal, including, but not limited to, transition metals, post-transition (poor) metals, rare earth metals (e.g. lanthanides), metalloids, alkali metals, alkaline earth metals, or the like.
- Such metals may include, but are not limited to, bismuth, lead, tin, zinc, chromium, cobalt, copper, iron, manganese, magnesium, potassium, sodium, titanium, mercury, zinc, antimony, uranium, cadmium, thorium, aluminum, nickel, cerium, molybdenum, vanadium, zirconium, or combinations thereof.
- Non-exclusive examples of such inorgano- or organo-metallic catalysts include, but are not limited to, bismuth nitrate, lead 2-ethylhexoate, lead benzoate, lead naphthanate, ferric chloride, antimony trichloride, antimony glycolate, tin salts of carboxylic acids, dialkyl tin salts of carboxylic acids, potassium acetate, potassium octoate, potassium 2-ethylhexoate, potassium salts of carboxylic acids, zinc salts of carboxylic acids, zinc 2-ethylhexanoate, glycine salts, alkali metal carboxylic acid salts, sodium N-(2-hydroxy-5-nonylphenol)methyl-N-methylglycinate, tin (II) 2-ethylhexanoate, dibutyltin dilaurate, or combinations thereof.
- These catalysts are usually present in the polyol premix composition in an amount of from about 0.25 wt. % to about 3.0 wt. %, preferably from about 0.3 wt. % to about 2.5 wt. %, and more preferably from about 0.35 wt. % to about 2.0 wt. %, by weight of the polyol premix composition. While these are usual amounts, the quantity amount of the foregoing catalyst can vary widely, and the appropriate amount can be easily be determined by those skilled in the art.
- the non-amine catalyst is a quaternary ammonium carboxylate.
- Useful quaternary ammonium carboxylates include, but are not limited to: (2-hydroxypropyl)trimethylammonium 2-ethylhexanoate (TMR® sold by Air Products and Chemicals) and (2-hydroxypropyl)trimethylammonium formate (TMR-2® sold by Air Products and Chemicals).
- TMR® (2-hydroxypropyl)trimethylammonium 2-ethylhexanoate
- TMR-2® (2-hydroxypropyl)trimethylammonium formate
- These quaternary ammonium carboxylate catalysts are usually present in the polyol premix composition in an amount of from about 0.25 wt. % to about 3.0 wt. %, preferably from about 0.3 wt. % to about 2.5 wt. %, and more preferably from about 0.35 wt. % to about 2.0 wt. %, by weight of the polyo
- the non-amine catalyst is used in combination with an amine catalyst.
- amine catalysts may include any compound containing an amino group and exhibiting the catalytic activity provided herein.
- Such compounds may be straight chain or cyclic non-aromatic or aromatic in nature.
- Useful, non-limiting, amines include primary amines, secondary amines or tertiary amines
- Useful tertiary amine catalysts non-exclusively include N,N,N′,N′′,N′′-pentamethyldiethyltriamine, N,N-dicyclohexylmethylamine; N,N-ethyldiisopropylamine; N,N-dimethylcyclohexylamine; N,N-dimethylisopropylamine; N-methyl-N-isopropylbenzylamine; N-methyl-N-cyclopentylbenzylamine; N-isopropyl-N-sec-butyl-trifluoroethylamine; N,N-diethyl-( ⁇ -phenylethyl)amine, N,N,N-tri-n-propylamine, or combinations thereof.
- Useful secondary amine catalysts non-exclusively include dicyclohexylamine; t-butylisopropylamine; di-t-butylamine; cyclohexyl-t-butylamine; di-sec-butylamine, dicyclopentylamine; di-( ⁇ -trifluoromethylethyl)amine; di-( ⁇ -phenylethyl)amine; or combinations thereof.
- Useful primary amine catalysts non-exclusively include: triphenylmethylamine and 1,1-diethyl-n-propylamine
- Suitable amines includes morpholines, imidazoles, ether containing compounds, and the like. These include:
- the catalyst may be provided in any amount to achieve the function of the instant invention without affecting the foam forming or storage stability of the composition, as characterized herein.
- the amine catalyst may be provided in amounts less than or greater than the non-amine catalyst.
- polyurethane or polyisocyanurate foams using the compositions described herein may follow any of the methods well known in the art can be employed, see Saunders and Frisch, Volumes I and II Polyurethanes Chemistry and technology, 1962, John Wiley and Sons, New York, N.Y. or Gum, Reese, Ulrich, Reaction Polymers, 1992, Oxford University Press, New York, N.Y. or Klempner and Sendijarevic, Polymeric Foams and Foam Technology, 2004, Hanser Gardner Publications, Cincinnati, Ohio.
- polyurethane or polyisocyanurate foams are prepared by combining an isocyanate, the polyol premix composition, and other materials such as optional flame retardants, colorants, or other additives.
- These foams can be rigid, flexible, or semi-rigid, and can have a closed cell structure, an open cell structure or a mixture of open and closed cells.
- the foam formulation is pre-blended into two components.
- the isocyanate and optionally other isocyanate compatible raw materials including but not limited to blowing agents and certain silicone surfactants, comprise the first component, commonly referred to as the “A” component.
- the polyol mixture composition, including surfactant, catalysts, blowing agents, and optional other ingredients comprise the second component, commonly referred to as the “B” component.
- the “B” component may not contain all the above listed components, for example some formulations omit the flame retardant if flame retardancy is not a required foam property.
- polyurethane or polyisocyanurate foams are readily prepared by bringing together the A and B side components either by hand mix for small preparations and, preferably, machine mix techniques to form blocks, slabs, laminates, pour-in-place panels and other items, spray applied foams, froths, and the like.
- other ingredients such as fire retardants, colorants, auxiliary blowing agents, water, and even other polyols can be added as a stream to the mix head or reaction site. Most conveniently, however, they are all incorporated into one B component as described above.
- a foamable composition suitable for forming a polyurethane or polyisocyanurate foam may be formed by reacting an organic polyisocyanate and the polyol premix composition described above.
- Any organic polyisocyanate can be employed in polyurethane or polyisocyanurate foam synthesis inclusive of aliphatic and aromatic polyisocyanates.
- Suitable organic polyisocyanates include aliphatic, cycloaliphatic, araliphatic, aromatic, and heterocyclic isocyanates which are well known in the field of polyurethane chemistry. These are described in, for example, U.S. Pat. Nos.
- Preferred as a class are the aromatic polyisocyanates.
- organic polyisocyanates correspond to the formula:
- R is a polyvalent organic radical which is either aliphatic, aralkyl, aromatic or mixtures thereof, and z is an integer which corresponds to the valence of R and is at least two.
- organic polyisocyanates contemplated herein includes, for example, the aromatic diisocyanates such as 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, mixtures of 2,4- and 2,6-toluene diisocyanate, crude toluene diisocyanate, methylene diphenyl diisocyanate, crude methylene diphenyl diisocyanate and the like; the aromatic triisocyanates such as 4,4′,4′′-triphenylmethane triisocyanate, 2,4,6-toluene triisocyanates; the aromatic tetraisocyanates such as 4,4′-dimethyldiphenylmethane-2,2′5,5-'tetraisocyan
- organic polyisocyanates include polymethylene polyphenylisocyanate, hydrogenated methylene diphenylisocyanate, m-phenylene diisocyanate, naphthylene-1,5-diisocyanate, 1-methoxyphenylene-2,4-diisocyanate, 4,4′-biphenylene diisocyanate, 3,3′-dimethoxy-4,4′-biphenyl diisocyanate, 3,3′-dimethyl-4,4′-biphenyl diisocyanate, and 3,3′-dimethyldiphenylmethane-4,4′-diisocyanate;
- Typical aliphatic polyisocyanates are alkylene diisocyanates such as trimethylene diisocyanate, tetramethylene diisocyanate, and hexamethylene diisocyanate, isophorene diisocyanate, 4, 4′-methylenebis(cyclohexyl isocyanate),
- Preferred polyisocyanates are the polymethylene polyphenyl isocyanates, Particularly the mixtures containing from about 30 to about 85 percent by weight of methylenebis(phenyl isocyanate) with the remainder of the mixture comprising the polymethylene polyphenyl polyisocyanates of functionality higher than 2.
- These polyisocyanates are prepared by conventional methods known in the art.
- the polyisocyanate and the polyol are employed in amounts which will yield an NCO/OH stoichiometric ratio in a range of from about 0.9 to about 5.0.
- the NCO/OH equivalent ratio is, preferably, about 1.0 or more and about 3.0 or less, with the ideal range being from about 1.1 to about 2.5.
- Especially suitable organic polyisocyanate include polymethylene polyphenyl isocyanate, methylenebis(phenyl isocyanate), toluene diisocyanates, or combinations thereof.
- trimerization catalysts are used for the purpose of converting the blends in conjunction with excess A component to polyisocyanurate-polyurethane foams.
- the trimerization catalysts employed can be any catalyst known to one skilled in the art, including, but not limited to, glycine salts, tertiary amine trimerization catalysts, quaternary ammonium carboxylates, and alkali metal carboxylic acid salts and mixtures of the various types of catalysts.
- Preferred species within the classes are potassium acetate, potassium octoate, and sodium N-(2-hydroxy-5-nonylphenol)methyl-N-methylglycinate.
- Optional flame retardants can also be incorporated, preferably in amount of not more than about 20 percent by weight of the reactants.
- Optional flame retardants include tris(2-chloroethyl)phosphate, tris(2-chloropropyl)phosphate, tris(2,3-dibromopropyl)phosphate, tris(1,3-dichloropropyl)phosphate, tri(2-chloroisopropyl)phosphate, tricresyl phosphate, tri(2,2-dichloroisopropyl)phosphate, diethyl N,N-bis(2-hydroxyethyl) aminomethylphosphonate, dimethyl methylphosphonate, tri(2,3-dibromopropyl)phosphate, tri(1,3-dichloropropyl)phosphate, and tetra-kis-(2-chloroethyl)ethylene diphosphate, triethylphosphate, diammonium phosphate, various halogenated aromatic compounds
- Other optional ingredients can include from 0 to about 7 percent water, which chemically reacts with the isocyanate to produce carbon dioxide. This carbon dioxide acts as an auxiliary blowing agent. Formic acid is also used to produce carbon dioxide by reacting with the isocyanate and is optionally added to the “B” component.
- Dispersing agents and cell stabilizers can be incorporated into the present blends.
- Conventional fillers for use herein include, for example, aluminum silicate, calcium silicate, magnesium silicate, calcium carbonate, barium sulfate, calcium sulfate, glass fibers, carbon black and silica.
- the filler, if used, is normally present in an amount by weight ranging from about 5 parts to 100 parts per 100 parts of polyol.
- a pigment which can be used herein can be any conventional pigment such as titanium dioxide, zinc oxide, iron oxide, antimony oxide, chrome green, chrome yellow, iron blue siennas, molybdate oranges and organic pigments such as para reds, benzidine yellow, toluidine red, toners and phthalocyanines.
- the polyurethane or polyisocyanurate foams produced can vary in density from about 0.5 pounds per cubic foot to about 60 pounds per cubic foot, preferably from about 1.0 to 20.0 pounds per cubic foot, and most preferably from about 1.5 to 6.0 pounds per cubic foot.
- the density obtained is a function of how much of the blowing agent or blowing agent mixture disclosed in this invention plus the amount of auxiliary blowing agent, such as water or other co-blowing agents is present in the A and/or B components, or alternatively added at the time the foam is prepared.
- These foams can be rigid, flexible, or semi-rigid foams, and can have a closed cell structure, an open cell structure or a mixture of open and closed cells. These foams are used in a variety of well known applications, including but not limited to thermal insulation, cushioning, flotation, packaging, adhesives, void filling, crafts and decorative, and shock absorption.
- a polyol (B Component) formulation was made up of 100 parts by weight of a polyol blend, 1.5 parts by weight Niax L6900 silicone surfactant, 1.5 parts by weight water, 1.2 parts by weight pentamethyldiethylenetriamine (sold as Polycat 5 by Air Products and Chemicals) catalyst, and 8 parts by weight trans-1,3,3,3-tetrafluoropropene blowing agent.
- the total B component composition when freshly prepared and combined with 120.0 parts by weight of Lupranate M20S polymeric isocyanate yielded a good quality foam with a fine and regular cell structure. Foam reactivity was typical for a pour in place foam.
- the total B-side composition (112.2 parts) was then aged at 130° F. for 62 hours, and then combined with 120.0 parts of M20S polymeric isocyanate to make a foam. The foam was very poor in appearance with significant cell collapse. Significant yellowing of the polyol premix was noted during aging.
- a polyol (B Component) formulation was made up of 100 parts by weight of a polyol blend, 1.5 parts by weight Niax L6900 silicone surfactant, 1.5 parts by weight water, 1.2 parts by weight pentamethyldiethylenetriamine (sold as Polycat 5 by Air Products and Chemicals) catalyst and 8 parts by weight blowing agent trans-1-chloro-3,3,3-trifluoropropene.
- the total B component composition when freshly prepared and combined with 120.0 parts by weight of Lupranate M20S polymeric isocyanate yielded a good quality foam with a fine and regular cell structure. Foam reactivity was typical for a pour in place foam.
- the total B-side composition (112.2 parts) was then aged at 130° F. for 168 hours, and then combined with 120.0 parts of M20S polymeric isocyanate to make a foam. The foam was very poor in appearance with significant cell collapse. Significant yellowing of the polyol premix was noted during aging.
- a polyol (B Component) formulation was made up of 100 parts by weight of a polyol blend, 1.5 parts by weight Niax L6900 silicone surfactant, 1.5 parts by weight water, 2.0 parts by weight N,N-dicyclohexylmethylamine (sold as Polycat 12 by Air Products and Chemicals) catalyst (a different amine was used such that both this foam and the comparative example had the same initial reactivity), 1.75 parts by weight a bismuth based catalyst (sold as Dabco MB-20 by Air Products and Chemicals) and 8 parts by weight trans-1,3,3,3-tetrafluoropropene blowing agent.
- the total B component composition when freshly prepared and combined with 120.0 parts by weight of Lupranate M20S polymeric isocyanate yielded a good quality foam with a fine and regular cell structure. Foam reactivity was typical for a pour in place foam.
- the total B-side composition (114.75 parts) was then aged at 130° F. for 336 hours, and then combined with 120.0 parts of M20S polymeric isocyanate to make a foam. The foam was excellent in appearance with no evidence of cell collapse. There was no yellowing of the polyol premix noted during aging.
- a polyol (B Component) formulation was made up of 100 parts by weight of a polyol blend, 1.5 parts by weight Niax L6900 silicone surfactant, 0.5 parts by weight water, 2.0 parts by weight N,N-dicyclohexylmethylamine (sold as Polycat 12 by Air Products and Chemicals) catalyst (a different amine was used such that both this foam and the comparative example had the same initial reactivity), 1.75 parts by weight of zinc 2-ethylhexanoate (sold as 30-3038 by Strem Chemicals) and 8 parts by weight trans-1-chloro-3,3,3-trifluoropropene blowing agent.
- the total B component composition when freshly prepared and combined with 103.0 parts by weight of Lupranate M20S polymeric isocyanate yielded a good quality foam with a fine and regular cell structure. Foam reactivity was typical for a pour in place foam.
- the total B-side composition (113.75 parts) was then aged at 130° F. for 336 hours, and then combined with 103.0 parts of M20S polymeric isocyanate to make a foam. The foam was excellent in appearance with no evidence of cell collapse. There was no yellowing of the polyol premix noted during aging
- a polyol (B Component) formulation was made up of 100 parts by weight of a polyol blend, 1.5 parts by weight Niax L6900 silicone surfactant, 1.0 parts by weight water, 2.0 parts by weight N,N-dicyclohexylmethylamine (sold as Polycat 12 by Air Products and Chemicals) catalyst (a different amine was used such that both this foam and the comparative example had the same initial reactivity), 1.75 parts by weight a Potassium based catalyst (sold as Dabco K15 by Air Products and Chemicals) and 8 parts by weight trans-1-chloro-3,3,3-trifluoropropene blowing agent.
- the total B component composition when freshly prepared and combined with 112.0 parts by weight of Lupranate M20S polymeric isocyanate yielded a good quality foam with a fine and regular cell structure. Foam reactivity was typical for a pour in place foam.
- the total B-side composition (114.75 parts) was then aged at 130° F. for 504 hours, and then combined with 112.0 parts of M20S polymeric isocyanate to make a foam. The foam was good in appearance with only slight evidence of cell collapse. There was very slight yellowing of the polyol premix noted during aging.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
The invention provides polyurethane and polyisocyanurate foams and methods for the preparation thereof. More particularly, the invention relates to closed-celled, polyurethane and polyisocyanurate foams and methods for their preparation. The foams are characterized by a fine uniform cell structure and little or no foam collapse. The foams are produced with a polyol premix composition which comprises a combination of a hydrohaloolefin blowing agent, a polyol, a silicone surfactant, and a non-amine catalyst used alone or in combination with an amine catalyst.
Description
- This application is related to and claims the priority benefit as a continuation of U.S. application Ser. No. 12/967,345, filed Dec. 14, 2010 (now pending), which in turn claims the priority benefit of U.S. provisional application No. 61/287,603 filed Dec. 17, 2009, the contents of which are incorporated herein by reference. This application is also a continuation in part of Ser. No. 14/710,104, filed May 12, 2015, currently pending, which in turn is a division of Ser. No. 11/861,803, filed Sep. 26, 2007 (now U.S. Pat. No. 9,029,430, issued May 12, 2015), which is a division of Ser. No. 11/474,887, filed Jun. 26, 2006 (now U.S. Pat. No. 9,796,848, issued Oct. 24, 2017), which claims the priority benefit of U.S. provisional application Nos. 60/784,731, filed Mar. 21, 2006 and 60/693,853, filed Jun. 24, 2005 (both now expired).
- The present invention pertains to polyurethane and polyisocyanurate foams and methods for the preparation thereof.
- Low density, rigid to semi-rigid polyurethane or polyisocyanurate foams have utility in a wide variety of insulation applications including roofing systems, building panels, building envelope insulation, spray applied foams, one and two component froth foams, insulation for refrigerators and freezers, and so called integral skin for application such as steering wheels and other automotive or aerospace cabin parts, shoe soles, and amusement park restraints. Critical to the large-scale commercial acceptance of rigid polyurethane foams is their ability to provide a good balance of properties. For example, rigid polyurethane and polyisocyanurate foams are known to provide outstanding thermal insulation, excellent fire resistance properties, and superior structural properties at reasonably low densities. Integral skin foams are known to produce a tough durable outer skin and a cellular, cushioning core.
- It is known in the art to produce rigid or semi-rigid polyurethane and polyisocyanurate foams by reacting a polyisocyanate with one or more polyols in the presence of one or more blowing agents, one or more catalysts, one or more surfactants and optionally other ingredients. Blowing agents include hydrocarbons, fluorocarbons, chlorocarbons, chlorofluorocarbons, hydrochlorofluorocarbons, halogenated hydrocarbons, ethers, esters, aldehydes, alcohols, ketones, organic acid or gas, most often CO2, generating materials. Heat is generated when the polyisocyanate reacts with the polyol, and volatilizes the blowing agent contained in the liquid mixture, thereby forming bubbles therein. In the case of gas generating materials, gaseous species are generated by thermal decomposition or reaction with one or more of the ingredients used to produce the polyurethane or polyisocyanurate foam. As the polymerization reaction proceeds, the liquid mixture becomes a cellular solid, entrapping the blowing agent in the foam's cells. If a surfactant is not used in the foaming composition, the bubbles simply pass through the liquid mixture without forming a foam or forming a foam with large, irregular cells rendering it not useful.
- The foam industry has historically used liquid fluorocarbon blowing agents because of their ease of use and ability to produce foams with superior mechanical and thermal insulation properties. Fluorocarbons not only act as blowing agents by virtue of their volatility, but also are encapsulated or entrained in the closed cell structure of the rigid foam and are the major contributor to the low thermal conductivity properties of the rigid urethane foams. Fluorocarbon-based blowing agents also produce a foam having a favorable k-factor. The k-factor is the rate of transfer of heat energy by conduction through one square foot of one-inch thick homogenous material in one hour where there is a difference of one degree Fahrenheit perpendicularly across the two surfaces of the material. Since the utility of closed-cell polyurethane-type foams is based, in part, on their thermal insulation properties, it would be advantageous to identify materials that produce lower k-factor foams.
- Preferred blowing agents also have low global warming potential. Among these are hydrohaloolefins including hydrofluoroolefins of which trans-1,3,3,3-tetrafluoropropene (1234ze(E)) and 1,1,1,4,4,4hexafluorobut-2-ene (1336mzzm(Z)) are of particular interest and hydrochlorofluoroolefins of which trans-1-chloro-3,3,3-trifluoropropene (1233zd(E)) is of particular interest. Processes for the manufacture of trans-1,3,3,3-tetrafluoropropene are disclosed in U.S. Pat. Nos. 7,230,146 and 7,189,884. Processes for the manufacture of trans-1-chloro-3,3,3-trifluoropropene are disclosed in U.S. Pat. Nos. 6,844,475 and 6,403,847.
- It is convenient in many applications to provide the components for polyurethane or polyisocyanurate foams in pre-blended formulations. Most typically, the foam formulation is pre-blended into two components. The polyisocyanate and optionally isocyanate compatible raw materials, including but not limited to certain blowing agents and non-reactive surfactants, comprise the first component, commonly referred to as the “A” component. A polyol or mixture of polyols, one or more surfactant, one or more catalyst, one or more blowing agent, and other optional components including but not limited to flame retardants, colorants, compatibilizers, and solubilizers comprise the second component, commonly referred to as the “B” component. Accordingly, polyurethane or polyisocyanurate foams are readily prepared by bringing together the A and B side components either by hand mix for small preparations and, preferably, machine mix techniques to form blocks, slabs, laminates, pour-in-place panels and other items, spray applied foams, froths, and the like. Optionally, other ingredients such as fire retardants, colorants, auxiliary blowing agents, and other polyols can be added to the mixing head or reaction site. Most conveniently, however, they are all incorporated into one B component.
- A shortcoming of two-component systems, especially those using certain hydrohaloolefins, including 1234ze(E), 1336(Z), and 1233zd(E), is the shelf-life of the B-side composition. Normally when a foam is produced by bringing together the A and B side components, a good foam is obtained. However, if the polyol premix composition is aged, prior to treatment with the polyisocyanate, the foams are of lower quality and may even collapse during the formation of the foam.
- It has now been found that the origin of the problem is the reaction of certain amine catalysts with certain hydrohaloolefins including 1234ze, 1233zd, 1336mzzm, and/or combinations thereof. It has been found that, subsequent to the decomposition of the blowing agent, the molecular weight of the polymeric silicone surfactants, if present, is detrimentally altered.
- While it is possible to solve the problem by separating the blowing agent, surfactant, and catalyst, for example by adding the blowing agent, amine catalyst, or surfactant to the polyisocyanate, (“A” component) or by introducing the blowing agent, amine catalyst, or surfactant using a separate stream from the “A” or “B” component, a preferred solution is one that does not require a change in the way the foams are made. It has now been found that non-amine catalysts, e.g. inorgano-metallic catalysts, organo-metallic catalysts and/or quaternary ammonium carboxylate catalysts, either alone or in combination with amine catalysts, can extend the shelf life of polyol premixes containing hydrohaloolefins, such as, but not limited to 1234ze(E), 1233zd(E), and/or 1336mzzm(Z), such that good quality foams can be produced even if the polyol blend has been aged several weeks or months.
- Accordingly, this invention relates to rigid to semi-rigid, polyurethane and polyisocyanurate foams and methods for their preparation, which foams are characterized by a fine uniform cell structure and little or no foam collapse. The foams are produced with an organic polyisocyanate and a polyol premix composition which comprises a combination of a blowing agent, which is preferably a hydrohaloolefin, a polyol, a silicone surfactant, and a catalyst in which catalyst comprises one or more non-amine catalyst, preferably an inorgano- or organo-metallic compound or a quaternary ammonium carboxylate catalyst, and also may include one or more amine catalysts.
- The invention provides polyol premix composition which comprises a combination of a blowing agent, one or more polyols, one or more silicone surfactants, and a catalyst in which catalyst is a non-amine catalyst, such as an inorgano- or organo-metallic compound or quaternary ammonium carboxylate material used either alone or in combination with amine catalysts, wherein the blowing agent comprises one or more hydrohaloolefins, and optionally a hydrocarbon, fluorocarbon, chlorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, halogenated hydrocarbon, ether, ester, alcohol, aldehyde, ketone, organic acid, gas generating material, water or combinations thereof.
- The invention also provides a method of preparing a polyurethane or polyisocyanurate foam comprising reacting an organic polyisocyanate with the polyol premix composition.
- The blowing agent component comprises a hydrohaloolefin, preferably comprising at least one or a combination of 1234ze(E), 1233zd(E), and/or 1336mzzm(Z), and optionally a hydrocarbon, fluorocarbon, chlorocarbon, fluorochlorocarbon, halogenated hydrocarbon, ether, fluorinated ether, ester, alcohol, aldehyde, ketone, organic acid, gas generating material, water or combinations thereof.
- The hydrohaloolefin preferably comprises at least one halooalkene such as a fluoroalkene or chlorofluoroalkene containing from 3 to 4 carbon atoms and at least one carbon-carbon double bond. Preferred hydrohaloolefins non-exclusively include trifluoropropenes, tetrafluoropropenes such as (1234), pentafluoropropenes such as (1225), chlorotrifloropropenes such as (1233), chlorodifluoropropenes, chlorotrifluoropropenes, chlorotetrafluoropropenes, hexafluorobutenes (1336) and combinations of these. More preferred that the compounds of the present invention are the tetrafluoropropene, pentafluoropropene, and chlorotrifloropropene compounds in which the unsaturated terminal carbon has not more than one F or Cl substituent. Included are 1,3,3,3-tetrafluoropropene (1234ze); 1,1,3,3-tetrafluoropropene; 1,2,3,3,3-pentafluoropropene (1225ye), 1,1,1-trifluoropropene; 1,2,3,3,3-pentafluoropropene, 1,1,1,3,3-pentafluoropropene (1225zc) and 1,1,2,3,3-pentafluoropropene (1225yc); (Z)-1,1,1,2,3-pentafluoropropene (1225yez); 1-chloro-3,3,3-trifluoropropene (1233zd), 1,1,1,4,4,4-hexafluorobut-2-ene (1336mzzm) or combinations thereof, and any and all stereoisomers of each of these.
- Preferred hydrohaloolefins have a Global Warming Potential (GWP) of not greater than 150, more preferably not greater than 100 and even more preferably not greater than 75. As used herein, “GWP” is measured relative to that of carbon dioxide and over a 100-year time horizon, as defined in “The Scientific Assessment of Ozone Depletion, 2002, a report of the World Meteorological Association's Global Ozone Research and Monitoring Project,” which is incorporated herein by reference. Preferred hydrohaloolefins also preferably have an Ozone Depletion Potential (ODP) of not greater than 0.05, more preferably not greater than 0.02 and even more preferably about zero. As used herein, “ODP” is as defined in “The Scientific Assessment of Ozone Depletion, 2002, A report of the World Meteorological Association's Global Ozone Research and Monitoring Project,” which is incorporated herein by reference.
- Preferred optional co-blowing agents non-exclusively include water, organic acids that produce CO2 and/or CO, hydrocarbons; ethers, halogenated ethers; esters, alcohols, aldehydes, ketones, pentafluorobutane; pentafluoropropane; hexafluoropropane; heptafluoropropane; trans-1,2 dichloroethylene; methylal, methyl formate; 1-chloro-1,2,2,2-tetrafluoroethane (124); 1,1-dichloro-1-fluoroethane (141b); 1,1,1,2-tetrafluoroethane (134a); 1,1,2,2-tetrafluoroethane (134); 1-chloro 1,1-difluoroethane (142b); 1,1,1,3,3-pentafluorobutane (365mfc); 1,1,1,2,3,3,3-heptafluoropropane (227ea); trichlorofluoromethane (11); dichlorodifluoromethane (12); dichlorofluoromethane (22); 1,1,1,3,3,3-hexafluoropropane (236fa); 1,1,1,2,3,3-hexafluoropropane (236ea); 1,1,1,2,3,3,3-heptafluoropropane (227ea), difluoromethane (32); 1,1-difluoroethane (152a); 1,1,1,3,3-pentafluoropropane (245fa); butane; isobutane; normal pentane; isopentane; cyclopentane, or combinations thereof. In certain embodiments the co-blowing agent(s) include one or a combination of water and/or normal pentane, isopentane or cyclopentane, which may be provided with one or a combination of the hydrohaloolefin blowing agents discussed herein. The blowing agent component is usually present in the polyol premix composition in an amount of from about 1 wt. % to about 30 wt. %, preferably from about 3 wt. % to about 25 wt. %, and more preferably from about 5 wt. % to about 25 wt. %, by weight of the polyol premix composition. When both a hydrohaloolefin and an optional blowing agent are present, the hydrohaloolefin component is usually present in the blowing agent component in an amount of from about 5 wt. % to about 90 wt. %, preferably from about 7 wt. % to about 80 wt. %, and more preferably from about 10 wt. % to about 70 wt. %, by weight of the blowing agent component; and the optional blowing agent is usually present in the blowing agent component in an amount of from about 95 wt. % to about 10 wt. %, preferably from about 93 wt. % to about 20 wt. %, and more preferably from about 90 wt. % to about 30 wt. %, by weight of the blowing agent component.
- The polyol component, which includes mixtures of polyols, can be any polyol which reacts in a known fashion with an isocyanate in preparing a polyurethane or polyisocyanurate foam. Useful polyols comprise one or more of a sucrose containing polyol; phenol, a phenol formaldehyde containing polyol; a glucose containing polyol; a sorbitol containing polyol; a methylglucoside containing polyol; an aromatic polyester polyol; glycerol; ethylene glycol; diethylene glycol; propylene glycol; graft copolymers of polyether polyols with a vinyl polymer; a copolymer of a polyether polyol with a polyurea; one or more of (a) condensed with one or more of (b), wherein (a) is selected from glycerine, ethylene glycol, diethylene glycol, trimethylolpropane, ethylene diamine, pentaerythritol, soy oil, lecithin, tall oil, palm oil, and castor oil; and (b) is selected from ethylene oxide, propylene oxide, a mixture of ethylene oxide and propylene oxide; and combinations thereof. The polyol component is usually present in the polyol premix composition in an amount of from about 60 wt. % to about 95 wt.%, preferably from about 65 wt. % to about 95 wt. %, and more preferably from about 70 wt. % to about 90 wt. %, by weight of the polyol premix composition.
- The polyol premix composition next contains a silicone surfactant. The silicone surfactant is used to form a foam from the mixture, as well as to control the size of the bubbles of the foam so that a foam of a desired cell structure is obtained. Preferably, a foam with small bubbles or cells therein of uniform size is desired since it has the most desirable physical properties such as compressive strength and thermal conductivity. Also, it is critical to have a foam with stable cells which do not collapse prior to forming or during foam rise.
- Silicone surfactants for use in the preparation of polyurethane or polyisocyanurate foams are available under a number of trade names known to those skilled in this art. Such materials have been found to be applicable over a wide range of formulations allowing uniform cell formation and maximum gas entrapment to achieve very low density foam structures. The preferred silicone surfactant comprises a polysiloxane polyoxyalkylene block co-polymer. Some representative silicone surfactants useful for this invention are Momentive's L-5130, L-5180, L-5340, L-5440, L-6100, L-6900, L-6980 and L-6988; Air Products DC-193, DC-197, DC-5582, and DC-5598; and B-8404, B-8407, B-8409 and B-8462 from Evonik Industries AG of Essen, Germany Others are disclosed in U.S. Pat. Nos. 2,834,748; 2,917,480; 2,846,458 and 4,147,847. The silicone surfactant component is usually present in the polyol premix composition in an amount of from about 0.5 wt. % to about 5.0 wt. %, preferably from about 1.0 wt. % to about 4.0 wt. %, and more preferably from about 1.5 wt. % to about 3.0 wt. %, by weight of the polyol premix composition.
- The polyol premix composition may optionally contain a non-silicone surfactant, such as a non-silicone, non-ionic surfactant. Such may include oxyethylated alkylphenols, oxyethylated fatty alcohols, paraffin oils, castor oil esters, ricinoleic acid esters, turkey red oil, groundnut oil, paraffins, and fatty alcohols. A preferred non-silicone non-ionic surfactant is LK-443 which is commercially available from Air Products Corporation. When a non-silicone, non-ionic surfactant used, it is usually present in the polyol premix composition in an amount of from about 0.25 wt. % to about 3.0 wt. %, preferably from about 0.5 wt. % to about 2.5 wt. %, and more preferably from about 0.75 wt. % to about 2.0 wt. %, by weight of the polyol premix composition.
- The inventive polyol premix composition next contains a catalyst or catalysts at least one of which is a non-amine catalyst. In one embodiment, the non-amine catalysts are inorgano- or organo-metallic compounds. Useful inorgano- or organo-metallic compounds include, but are not limited to, organic salts, Lewis acid halides, or the like, of any metal, including, but not limited to, transition metals, post-transition (poor) metals, rare earth metals (e.g. lanthanides), metalloids, alkali metals, alkaline earth metals, or the like. Examples of such metals may include, but are not limited to, bismuth, lead, tin, zinc, chromium, cobalt, copper, iron, manganese, magnesium, potassium, sodium, titanium, mercury, zinc, antimony, uranium, cadmium, thorium, aluminum, nickel, cerium, molybdenum, vanadium, zirconium, or combinations thereof. Non-exclusive examples of such inorgano- or organo-metallic catalysts include, but are not limited to, bismuth nitrate, lead 2-ethylhexoate, lead benzoate, lead naphthanate, ferric chloride, antimony trichloride, antimony glycolate, tin salts of carboxylic acids, dialkyl tin salts of carboxylic acids, potassium acetate, potassium octoate, potassium 2-ethylhexoate, potassium salts of carboxylic acids, zinc salts of carboxylic acids, zinc 2-ethylhexanoate, glycine salts, alkali metal carboxylic acid salts, sodium N-(2-hydroxy-5-nonylphenol)methyl-N-methylglycinate, tin (II) 2-ethylhexanoate, dibutyltin dilaurate, or combinations thereof. These catalysts are usually present in the polyol premix composition in an amount of from about 0.25 wt. % to about 3.0 wt. %, preferably from about 0.3 wt. % to about 2.5 wt. %, and more preferably from about 0.35 wt. % to about 2.0 wt. %, by weight of the polyol premix composition. While these are usual amounts, the quantity amount of the foregoing catalyst can vary widely, and the appropriate amount can be easily be determined by those skilled in the art.
- In another embodiment of the invention, the non-amine catalyst is a quaternary ammonium carboxylate. Useful quaternary ammonium carboxylates include, but are not limited to: (2-hydroxypropyl)trimethylammonium 2-ethylhexanoate (TMR® sold by Air Products and Chemicals) and (2-hydroxypropyl)trimethylammonium formate (TMR-2® sold by Air Products and Chemicals). These quaternary ammonium carboxylate catalysts are usually present in the polyol premix composition in an amount of from about 0.25 wt. % to about 3.0 wt. %, preferably from about 0.3 wt. % to about 2.5 wt. %, and more preferably from about 0.35 wt. % to about 2.0 wt. %, by weight of the polyol premix composition. While these are usual amounts, the quantity amount of catalyst can vary widely, and the appropriate amount can be easily be determined by those skilled in the art.
- In another embodiment, the non-amine catalyst is used in combination with an amine catalyst. Such amine catalysts may include any compound containing an amino group and exhibiting the catalytic activity provided herein. Such compounds may be straight chain or cyclic non-aromatic or aromatic in nature. Useful, non-limiting, amines include primary amines, secondary amines or tertiary amines Useful tertiary amine catalysts non-exclusively include N,N,N′,N″,N″-pentamethyldiethyltriamine, N,N-dicyclohexylmethylamine; N,N-ethyldiisopropylamine; N,N-dimethylcyclohexylamine; N,N-dimethylisopropylamine; N-methyl-N-isopropylbenzylamine; N-methyl-N-cyclopentylbenzylamine; N-isopropyl-N-sec-butyl-trifluoroethylamine; N,N-diethyl-(α-phenylethyl)amine, N,N,N-tri-n-propylamine, or combinations thereof. Useful secondary amine catalysts non-exclusively include dicyclohexylamine; t-butylisopropylamine; di-t-butylamine; cyclohexyl-t-butylamine; di-sec-butylamine, dicyclopentylamine; di-(α-trifluoromethylethyl)amine; di-(α-phenylethyl)amine; or combinations thereof. Useful primary amine catalysts non-exclusively include: triphenylmethylamine and 1,1-diethyl-n-propylamine
- Other useful amines includes morpholines, imidazoles, ether containing compounds, and the like. These include:
- dimorpholinodiethylether
- N-ethylmorpholine
- N-methylmorpholine
- bis(dimethylaminoethyl) ether
- imidizole
- n-methylimidazole
- 1,2-dimethylimidazole
- dimorpholinodimethylether
- N,N,N′,N′,N″,N″-pentamethyldiethylenetriamine
- N,N,N′,N′,N″,N″-pentaethyldiethylenetriamine
- N,N,N′,N′,N″,N″-pentamethyldipropylenetriamine
- bis(diethylaminoethyl) ether
- bis(dimethylaminopropyl) ether.
- In embodiments where an amine catalyst is provided, the catalyst may be provided in any amount to achieve the function of the instant invention without affecting the foam forming or storage stability of the composition, as characterized herein. To this end, the amine catalyst may be provided in amounts less than or greater than the non-amine catalyst.
- The preparation of polyurethane or polyisocyanurate foams using the compositions described herein may follow any of the methods well known in the art can be employed, see Saunders and Frisch, Volumes I and II Polyurethanes Chemistry and technology, 1962, John Wiley and Sons, New York, N.Y. or Gum, Reese, Ulrich, Reaction Polymers, 1992, Oxford University Press, New York, N.Y. or Klempner and Sendijarevic, Polymeric Foams and Foam Technology, 2004, Hanser Gardner Publications, Cincinnati, Ohio. In general, polyurethane or polyisocyanurate foams are prepared by combining an isocyanate, the polyol premix composition, and other materials such as optional flame retardants, colorants, or other additives. These foams can be rigid, flexible, or semi-rigid, and can have a closed cell structure, an open cell structure or a mixture of open and closed cells.
- It is convenient in many applications to provide the components for polyurethane or polyisocyanurate foams in pre-blended formulations. Most typically, the foam formulation is pre-blended into two components. The isocyanate and optionally other isocyanate compatible raw materials, including but not limited to blowing agents and certain silicone surfactants, comprise the first component, commonly referred to as the “A” component. The polyol mixture composition, including surfactant, catalysts, blowing agents, and optional other ingredients comprise the second component, commonly referred to as the “B” component. In any given application, the “B” component may not contain all the above listed components, for example some formulations omit the flame retardant if flame retardancy is not a required foam property. Accordingly, polyurethane or polyisocyanurate foams are readily prepared by bringing together the A and B side components either by hand mix for small preparations and, preferably, machine mix techniques to form blocks, slabs, laminates, pour-in-place panels and other items, spray applied foams, froths, and the like. Optionally, other ingredients such as fire retardants, colorants, auxiliary blowing agents, water, and even other polyols can be added as a stream to the mix head or reaction site. Most conveniently, however, they are all incorporated into one B component as described above.
- A foamable composition suitable for forming a polyurethane or polyisocyanurate foam may be formed by reacting an organic polyisocyanate and the polyol premix composition described above. Any organic polyisocyanate can be employed in polyurethane or polyisocyanurate foam synthesis inclusive of aliphatic and aromatic polyisocyanates. Suitable organic polyisocyanates include aliphatic, cycloaliphatic, araliphatic, aromatic, and heterocyclic isocyanates which are well known in the field of polyurethane chemistry. These are described in, for example, U.S. Pat. Nos. 4,868,224; 3,401,190; 3,454,606; 3,277,138; 3,492,330; 3,001,973; 3,394,164; 3,124.605; and 3,201,372. Preferred as a class are the aromatic polyisocyanates.
- Representative organic polyisocyanates correspond to the formula:
-
R(NCO)z - wherein R is a polyvalent organic radical which is either aliphatic, aralkyl, aromatic or mixtures thereof, and z is an integer which corresponds to the valence of R and is at least two. Representative of the organic polyisocyanates contemplated herein includes, for example, the aromatic diisocyanates such as 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, mixtures of 2,4- and 2,6-toluene diisocyanate, crude toluene diisocyanate, methylene diphenyl diisocyanate, crude methylene diphenyl diisocyanate and the like; the aromatic triisocyanates such as 4,4′,4″-triphenylmethane triisocyanate, 2,4,6-toluene triisocyanates; the aromatic tetraisocyanates such as 4,4′-dimethyldiphenylmethane-2,2′5,5-'tetraisocyanate, and the like; arylalkyl polyisocyanates such as xylylene diisocyanate; aliphatic polyisocyanate such as hexamethylene-1,6-diisocyanate, lysine diisocyanate methylester and the like; and mixtures thereof. Other organic polyisocyanates include polymethylene polyphenylisocyanate, hydrogenated methylene diphenylisocyanate, m-phenylene diisocyanate, naphthylene-1,5-diisocyanate, 1-methoxyphenylene-2,4-diisocyanate, 4,4′-biphenylene diisocyanate, 3,3′-dimethoxy-4,4′-biphenyl diisocyanate, 3,3′-dimethyl-4,4′-biphenyl diisocyanate, and 3,3′-dimethyldiphenylmethane-4,4′-diisocyanate; Typical aliphatic polyisocyanates are alkylene diisocyanates such as trimethylene diisocyanate, tetramethylene diisocyanate, and hexamethylene diisocyanate, isophorene diisocyanate, 4, 4′-methylenebis(cyclohexyl isocyanate), and the like; typical aromatic polyisocyanates include m-, and p-phenylene disocyanate, polymethylene polyphenyl isocyanate, 2,4- and 2,6-toluenediisocyanate, dianisidine diisocyanate, bitoylene isocyanate, naphthylene 1,4-diisocyanate, bis(4-isocyanatophenyl)methene, bis(2-methyl-4-isocyanatophenyl)methane, and the like. Preferred polyisocyanates are the polymethylene polyphenyl isocyanates, Particularly the mixtures containing from about 30 to about 85 percent by weight of methylenebis(phenyl isocyanate) with the remainder of the mixture comprising the polymethylene polyphenyl polyisocyanates of functionality higher than 2. These polyisocyanates are prepared by conventional methods known in the art. In the present invention, the polyisocyanate and the polyol are employed in amounts which will yield an NCO/OH stoichiometric ratio in a range of from about 0.9 to about 5.0. In the present invention, the NCO/OH equivalent ratio is, preferably, about 1.0 or more and about 3.0 or less, with the ideal range being from about 1.1 to about 2.5. Especially suitable organic polyisocyanate include polymethylene polyphenyl isocyanate, methylenebis(phenyl isocyanate), toluene diisocyanates, or combinations thereof.
- In the preparation of polyisocyanurate foams, trimerization catalysts are used for the purpose of converting the blends in conjunction with excess A component to polyisocyanurate-polyurethane foams. The trimerization catalysts employed can be any catalyst known to one skilled in the art, including, but not limited to, glycine salts, tertiary amine trimerization catalysts, quaternary ammonium carboxylates, and alkali metal carboxylic acid salts and mixtures of the various types of catalysts. Preferred species within the classes are potassium acetate, potassium octoate, and sodium N-(2-hydroxy-5-nonylphenol)methyl-N-methylglycinate.
- Conventional flame retardants can also be incorporated, preferably in amount of not more than about 20 percent by weight of the reactants. Optional flame retardants include tris(2-chloroethyl)phosphate, tris(2-chloropropyl)phosphate, tris(2,3-dibromopropyl)phosphate, tris(1,3-dichloropropyl)phosphate, tri(2-chloroisopropyl)phosphate, tricresyl phosphate, tri(2,2-dichloroisopropyl)phosphate, diethyl N,N-bis(2-hydroxyethyl) aminomethylphosphonate, dimethyl methylphosphonate, tri(2,3-dibromopropyl)phosphate, tri(1,3-dichloropropyl)phosphate, and tetra-kis-(2-chloroethyl)ethylene diphosphate, triethylphosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, melamine, and the like. Other optional ingredients can include from 0 to about 7 percent water, which chemically reacts with the isocyanate to produce carbon dioxide. This carbon dioxide acts as an auxiliary blowing agent. Formic acid is also used to produce carbon dioxide by reacting with the isocyanate and is optionally added to the “B” component.
- In addition to the previously described ingredients, other ingredients such as, dyes, fillers, pigments and the like can be included in the preparation of the foams. Dispersing agents and cell stabilizers can be incorporated into the present blends. Conventional fillers for use herein include, for example, aluminum silicate, calcium silicate, magnesium silicate, calcium carbonate, barium sulfate, calcium sulfate, glass fibers, carbon black and silica. The filler, if used, is normally present in an amount by weight ranging from about 5 parts to 100 parts per 100 parts of polyol. A pigment which can be used herein can be any conventional pigment such as titanium dioxide, zinc oxide, iron oxide, antimony oxide, chrome green, chrome yellow, iron blue siennas, molybdate oranges and organic pigments such as para reds, benzidine yellow, toluidine red, toners and phthalocyanines.
- The polyurethane or polyisocyanurate foams produced can vary in density from about 0.5 pounds per cubic foot to about 60 pounds per cubic foot, preferably from about 1.0 to 20.0 pounds per cubic foot, and most preferably from about 1.5 to 6.0 pounds per cubic foot. The density obtained is a function of how much of the blowing agent or blowing agent mixture disclosed in this invention plus the amount of auxiliary blowing agent, such as water or other co-blowing agents is present in the A and/or B components, or alternatively added at the time the foam is prepared. These foams can be rigid, flexible, or semi-rigid foams, and can have a closed cell structure, an open cell structure or a mixture of open and closed cells. These foams are used in a variety of well known applications, including but not limited to thermal insulation, cushioning, flotation, packaging, adhesives, void filling, crafts and decorative, and shock absorption.
- The following non-limiting examples serve to illustrate the invention.
- A polyol (B Component) formulation was made up of 100 parts by weight of a polyol blend, 1.5 parts by weight Niax L6900 silicone surfactant, 1.5 parts by weight water, 1.2 parts by weight pentamethyldiethylenetriamine (sold as Polycat 5 by Air Products and Chemicals) catalyst, and 8 parts by weight trans-1,3,3,3-tetrafluoropropene blowing agent. The total B component composition, when freshly prepared and combined with 120.0 parts by weight of Lupranate M20S polymeric isocyanate yielded a good quality foam with a fine and regular cell structure. Foam reactivity was typical for a pour in place foam. The total B-side composition (112.2 parts) was then aged at 130° F. for 62 hours, and then combined with 120.0 parts of M20S polymeric isocyanate to make a foam. The foam was very poor in appearance with significant cell collapse. Significant yellowing of the polyol premix was noted during aging.
- A polyol (B Component) formulation was made up of 100 parts by weight of a polyol blend, 1.5 parts by weight Niax L6900 silicone surfactant, 1.5 parts by weight water, 1.2 parts by weight pentamethyldiethylenetriamine (sold as Polycat 5 by Air Products and Chemicals) catalyst and 8 parts by weight blowing agent trans-1-chloro-3,3,3-trifluoropropene. The total B component composition, when freshly prepared and combined with 120.0 parts by weight of Lupranate M20S polymeric isocyanate yielded a good quality foam with a fine and regular cell structure. Foam reactivity was typical for a pour in place foam. The total B-side composition (112.2 parts) was then aged at 130° F. for 168 hours, and then combined with 120.0 parts of M20S polymeric isocyanate to make a foam. The foam was very poor in appearance with significant cell collapse. Significant yellowing of the polyol premix was noted during aging.
- A polyol (B Component) formulation was made up of 100 parts by weight of a polyol blend, 1.5 parts by weight Niax L6900 silicone surfactant, 1.5 parts by weight water, 2.0 parts by weight N,N-dicyclohexylmethylamine (sold as Polycat 12 by Air Products and Chemicals) catalyst (a different amine was used such that both this foam and the comparative example had the same initial reactivity), 1.75 parts by weight a bismuth based catalyst (sold as Dabco MB-20 by Air Products and Chemicals) and 8 parts by weight trans-1,3,3,3-tetrafluoropropene blowing agent. The total B component composition, when freshly prepared and combined with 120.0 parts by weight of Lupranate M20S polymeric isocyanate yielded a good quality foam with a fine and regular cell structure. Foam reactivity was typical for a pour in place foam. The total B-side composition (114.75 parts) was then aged at 130° F. for 336 hours, and then combined with 120.0 parts of M20S polymeric isocyanate to make a foam. The foam was excellent in appearance with no evidence of cell collapse. There was no yellowing of the polyol premix noted during aging.
- A polyol (B Component) formulation was made up of 100 parts by weight of a polyol blend, 1.5 parts by weight Niax L6900 silicone surfactant, 0.5 parts by weight water, 2.0 parts by weight N,N-dicyclohexylmethylamine (sold as Polycat 12 by Air Products and Chemicals) catalyst (a different amine was used such that both this foam and the comparative example had the same initial reactivity), 1.75 parts by weight of zinc 2-ethylhexanoate (sold as 30-3038 by Strem Chemicals) and 8 parts by weight trans-1-chloro-3,3,3-trifluoropropene blowing agent. The total B component composition, when freshly prepared and combined with 103.0 parts by weight of Lupranate M20S polymeric isocyanate yielded a good quality foam with a fine and regular cell structure. Foam reactivity was typical for a pour in place foam. The total B-side composition (113.75 parts) was then aged at 130° F. for 336 hours, and then combined with 103.0 parts of M20S polymeric isocyanate to make a foam. The foam was excellent in appearance with no evidence of cell collapse. There was no yellowing of the polyol premix noted during aging
- A polyol (B Component) formulation was made up of 100 parts by weight of a polyol blend, 1.5 parts by weight Niax L6900 silicone surfactant, 1.0 parts by weight water, 2.0 parts by weight N,N-dicyclohexylmethylamine (sold as Polycat 12 by Air Products and Chemicals) catalyst (a different amine was used such that both this foam and the comparative example had the same initial reactivity), 1.75 parts by weight a Potassium based catalyst (sold as Dabco K15 by Air Products and Chemicals) and 8 parts by weight trans-1-chloro-3,3,3-trifluoropropene blowing agent. The total B component composition, when freshly prepared and combined with 112.0 parts by weight of Lupranate M20S polymeric isocyanate yielded a good quality foam with a fine and regular cell structure. Foam reactivity was typical for a pour in place foam. The total B-side composition (114.75 parts) was then aged at 130° F. for 504 hours, and then combined with 112.0 parts of M20S polymeric isocyanate to make a foam. The foam was good in appearance with only slight evidence of cell collapse. There was very slight yellowing of the polyol premix noted during aging.
Claims (12)
1. A stored foamable composition having storage stability comprising:
a. from about 1 wt. % to about 30 wt. % of blowing agent, said blowing agent comprising from about 5 wt. % to about 90 wt % of trans-1,3,3,3-tetrafluoropropene and/or trans-1-chloro-3,3,3-trifluoropropene,
b. one or more polyols,
c. one or more surfactants, and
d. a non-amine catalyst comprising an organometallic compound wherein the organometallic compound independently comprises a carboxylate salt of a metal selected from the group consisting of bismuth, zinc, tin and combinations thereof, wherein said stored foamable composition has been stored for a period of at least several weeks and is sufficiently stable to form foams with no substantial collapse after said period of storage.
2. The foamable composition of claim 1 wherein said non-amine catalyst comprises zinc 2-ethylhexanoate.
3. The foamable composition of claim 2 wherein said non-amine catalyst is present in an amount of about 0.25 wt. % to about 3.0 wt. %, by weight of the composition.
4. The foamable composition of claim 1 wherein said blowing agent further comprises a co-blowing agent selected from the group consisting of water, hydrocarbon, fluorocarbon, chlorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, halogenated hydrocarbon, ether, ester, alcohol, aldehyde, ketone, organic acid, gas generating material, and combinations thereof.
5. The foamable composition of claim 1 further comprising an amine catalyst, provided said amine catalyst is present in an amount that does not negate the foam forming ability of said foamable composition after said storage period.
6. The foamable composition of claim 5 wherein the amine catalyst is selected from the group consisting of N,N,N′,N″,N″-pentamethyldiethyltriamine, N,N-dicyclohexylmethylamine; N,N-ethyldiisopropylamine; N,N-dimethylcyclohexylamine; N,N-dimethylisopropylamine; N-methyl-N-isopropylbenzylamine; N-methyl-N-cyclopentylbenzylamine; N-isopropyl-N-sec-butyl-trifluoroethylamine; N,N-diethyl-(α-phenylethyl)amine, N,N,N-tri-n-propylamine, dicyclohexylamine; t-butylisopropylamine; di-t-butylamine; cyclohexyl-t-butylamine; di-sec-butylamine, dicyclopentylamine; di-(α-trifluoromethylethyl)amine; di-(α-phenylethyl)amine; triphenylmethylamine; 1,1-diethyl-n-propylamine; dimorpholinodiethylether; N-ethylmorpholine; N-methylmorpholine; bis(dimethylaminoethyl) ether; imidizole; n-methylimidazole; 1,2-dimethylimidazole; dimorpholinodimethylether; N,N,N′,N′,N″,N″-pentamethyldiethylenetriamine; N,N,N′,N′,N″,N″-pentaethyldiethylenetriamine; N,N,N′,N′,N″,N″-pentamethyldipropylenetriamine; bis(diethylaminoethyl) ether; bis(dimethylaminopropyl) ether; and combinations thereof.
7. A stored polyol premix composition having storage stability comprising:
a. from about 1 wt. % to about 30 wt. % of blowing agent, said blowing agent comprising from about 5 wt. % to about 90 wt % of trans-1,3,3,3-tetrafluoropropene and/or trans-1-chloro-3,3,3-trifluoropropene,
b. one or more polyols,
c. one or more surfactants, and
d. a non-amine catalyst comprising an organometallic compound wherein the organometallic compound comprises a carboxylate salt of a metal selected from the group consisting of bismuth, zinc, tin, combinations thereof, wherein said polyol premix composition has been stored for a period of at least several weeks and is sufficiently stable to form foams with no substantial collapse after said period of storage.
8. The polyol premix composition of claim 7 wherein said non-amine catalyst comprises zinc 2-ethylhexanoate.
9. The polyol premix composition of claim 8 wherein said non-amine catalyst is present in an amount of about 0.25 wt. % to about 3.0 wt. %, by weight of the composition.
10. The polyol premix of claim 7 further comprising an amine catalyst, provided said amine catalyst is present in an amount that does not negate the foam forming ability of said polyol premix composition after said storage period.
11. The polyol premix of claim 1 wherein said blowing agent comprises from about 5 wt. % to about 90 wt % of trans-1-chloro-3,3,3-trifluoropropene.
12. The polyol premix of claim 7 wherein said blowing agent comprises from about 5 wt. % to about 90 wt % of trans-1-chloro-3,3,3-trifluoropropene.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/843,684 US20180105633A1 (en) | 2005-06-24 | 2017-12-15 | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
US16/275,568 US11746180B2 (en) | 2009-12-17 | 2019-02-14 | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
US17/688,731 US20220195106A1 (en) | 2009-12-17 | 2022-03-07 | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69385305P | 2005-06-24 | 2005-06-24 | |
US78473106P | 2006-03-21 | 2006-03-21 | |
US11/474,887 US9796848B2 (en) | 2002-10-25 | 2006-06-26 | Foaming agents and compositions containing fluorine substituted olefins and methods of foaming |
US11/861,803 US9029430B2 (en) | 2002-10-25 | 2007-09-26 | Foaming agents, foamable compositions, foams and articles containing fluorine substituted olefins, and methods of making same |
US28760309P | 2009-12-17 | 2009-12-17 | |
US12/967,345 US20110152392A1 (en) | 2009-12-17 | 2010-12-14 | Catalysts For Polyurethane Foam Polyol Premixes Containing Halogenated Olefin Blowing Agents |
US14/710,104 US10011698B2 (en) | 2002-10-25 | 2015-05-12 | Foaming agents, foamable compositions, foams and articles containing fluorine substituted olefins, and methods of making same |
US15/843,684 US20180105633A1 (en) | 2005-06-24 | 2017-12-15 | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/967,345 Continuation US20110152392A1 (en) | 2005-06-24 | 2010-12-14 | Catalysts For Polyurethane Foam Polyol Premixes Containing Halogenated Olefin Blowing Agents |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/275,568 Continuation US11746180B2 (en) | 2009-12-17 | 2019-02-14 | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180105633A1 true US20180105633A1 (en) | 2018-04-19 |
Family
ID=44151969
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/967,345 Abandoned US20110152392A1 (en) | 2005-06-24 | 2010-12-14 | Catalysts For Polyurethane Foam Polyol Premixes Containing Halogenated Olefin Blowing Agents |
US15/843,684 Abandoned US20180105633A1 (en) | 2005-06-24 | 2017-12-15 | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
US16/275,568 Active US11746180B2 (en) | 2009-12-17 | 2019-02-14 | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
US17/688,731 Abandoned US20220195106A1 (en) | 2009-12-17 | 2022-03-07 | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/967,345 Abandoned US20110152392A1 (en) | 2005-06-24 | 2010-12-14 | Catalysts For Polyurethane Foam Polyol Premixes Containing Halogenated Olefin Blowing Agents |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/275,568 Active US11746180B2 (en) | 2009-12-17 | 2019-02-14 | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
US17/688,731 Abandoned US20220195106A1 (en) | 2009-12-17 | 2022-03-07 | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
Country Status (10)
Country | Link |
---|---|
US (4) | US20110152392A1 (en) |
EP (1) | EP2513227A4 (en) |
JP (3) | JP5810096B2 (en) |
KR (1) | KR20120115982A (en) |
CN (3) | CN102753624A (en) |
BR (1) | BR112012014267A2 (en) |
CA (1) | CA2784583A1 (en) |
MX (1) | MX2012006804A (en) |
RU (2) | RU2015144564A (en) |
WO (1) | WO2011084563A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020005270A1 (en) * | 2018-06-29 | 2020-01-02 | Boral Ip Holdings (Australia) Pty Limited | Foam composites and methods of preparation thereof |
WO2020185854A1 (en) | 2019-03-11 | 2020-09-17 | DDP Specialty Electronic Materials US, Inc. | A two-component polyurethane or polyisocyanurate spray foam composition containing a hydrohaloolefin blowing agent |
US11542358B2 (en) * | 2017-09-05 | 2023-01-03 | Huntsman Petrochemical Llc | Catalyst system for polyol premixes containing hydrohaloolefin blowing agents |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110152392A1 (en) * | 2009-12-17 | 2011-06-23 | Honeywell International Inc. | Catalysts For Polyurethane Foam Polyol Premixes Containing Halogenated Olefin Blowing Agents |
JP6134470B2 (en) * | 2008-03-07 | 2017-05-24 | アーケマ・インコーポレイテッド | Stable formulation system with chloro-3,3,3-trifluoropropene |
US9145480B2 (en) | 2010-10-28 | 2015-09-29 | Honeywell International Inc. | Mixtures containing 1,1,1,3,3,3-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene |
CN105968301A (en) * | 2011-02-21 | 2016-09-28 | 霍尼韦尔国际公司 | Polyurethane foam premixes containing halogenated olefin blowing agents and foams made from same |
US9556303B2 (en) * | 2011-02-21 | 2017-01-31 | Honeywell International Inc. | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
CN103415543B (en) * | 2011-03-11 | 2017-02-15 | 阿科玛股份有限公司 | Improved stability of polyurethane polyol blends containing halogenated olefin blowing agent |
PL2702088T3 (en) * | 2011-04-15 | 2018-08-31 | Arkema, Inc. | Improved stability of polyurethane polyol blends containing halogenated olefin blowing agent |
CN103814108B (en) * | 2011-07-28 | 2016-08-24 | 霍尼韦尔国际公司 | Foam containing 1-chloro-3,3,3-trifluoro propene (1233ZD) and the fire-retardant product being made up of the foam containing 1-chloro-3,3,3-trifluoro propene (1233ZD) |
US9896558B2 (en) * | 2011-08-01 | 2018-02-20 | Basf Se | HFO/water-blown rigid foam systems |
EP2758443B1 (en) * | 2011-09-21 | 2019-02-27 | Dow Global Technologies LLC | Polyurethanes made using mixtures of tertiary amine compounds and lewis acids as catalysts |
CN103890065B (en) * | 2011-10-20 | 2016-02-03 | 纳幕尔杜邦公司 | Azeotrope-like compositions of chloro-2,3,3, the 3-tetrafluoeopropenes of E-1-and uses thereof |
US20150322225A1 (en) * | 2011-12-09 | 2015-11-12 | Honeywell International Inc. | Foams and articles made from foams containing hcfo or hfo blowing agents |
EP2809699B1 (en) * | 2012-02-02 | 2020-04-08 | Arkema, Inc. | Improved shelf life of polyol blends containing halogenated olefins by encapsulation of active components |
US20130210946A1 (en) * | 2012-02-10 | 2013-08-15 | Honeywell International Inc. | Blowing agents, foam premixes and foams containing halogenated olefin blowing agent and adsorbent |
US10023681B2 (en) | 2012-10-24 | 2018-07-17 | Evonik Degussa Gmbh | Delay action catalyst for improving the stability of polyurethane systems having halogen containing blowing agents |
KR20150122171A (en) * | 2013-02-26 | 2015-10-30 | 허니웰 인터내셔날 인코포레이티드 | Polyurethane foam premixes containing halogenated olefin blowing agents and foams made from same |
CA2902979A1 (en) * | 2013-03-06 | 2014-09-12 | Honeywell International Inc. | Storage stable foamable compositions containing 1,1,1,4,4,4-hexafluoro-2-butene |
US20160145374A1 (en) * | 2013-07-24 | 2016-05-26 | Kao Corporation | Polyol mixture for producing rigid polyurethane foam |
WO2016056553A1 (en) * | 2014-10-08 | 2016-04-14 | 東洋ゴム工業株式会社 | Polyol composition for rigid polyurethane foam and process for producing rigid polyurethane foam |
JP6566517B2 (en) * | 2014-10-08 | 2019-08-28 | 積水ソフランウイズ株式会社 | Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam |
CN104530360B (en) * | 2014-12-25 | 2017-06-20 | 合肥美的电冰箱有限公司 | Composition, rigid polyurethane foam and refrigeration plant |
CN104530361B (en) * | 2014-12-25 | 2017-06-16 | 合肥华凌股份有限公司 | Composition, rigid polyurethane foam and refrigeration plant |
EP3245239A4 (en) * | 2015-01-12 | 2018-09-19 | ICP Adhesives and Sealants, Inc. | Process for extending the shelf life of gaseous olefinic propellants in polyurethane foams |
CN105906775A (en) * | 2016-03-23 | 2016-08-31 | 绍兴市辰星聚氨酯有限公司 | Ultralow GWP eco-friendly engineering spraying polyurethane thermal insulation material and preparation method thereof |
US10654966B2 (en) * | 2016-10-25 | 2020-05-19 | Elé Corporation | Low-viscosity phosphate polyols |
KR102475491B1 (en) * | 2016-12-08 | 2022-12-07 | 세키스이가가쿠 고교가부시키가이샤 | Urethane resin composition |
US20190367667A1 (en) * | 2017-02-22 | 2019-12-05 | Mitsui Chemicals Inc. | Polyurethane elastomer foam material, polyurethane elastomer foam, and method for producing polyurethane elastomer foam |
CN108503767A (en) * | 2017-02-28 | 2018-09-07 | 芜湖美的厨卫电器制造有限公司 | Combined polyether, hard polyurethane foams and preparation method thereof and water heater |
CN108503766A (en) * | 2017-02-28 | 2018-09-07 | 芜湖美的厨卫电器制造有限公司 | Combined polyether, hard polyurethane foams and preparation method thereof and water heater |
WO2018170107A1 (en) * | 2017-03-14 | 2018-09-20 | Dow Global Technologies Llc | Shelf-stable rigid foam formulations |
EP3681632A4 (en) * | 2017-09-14 | 2021-06-23 | Huntsman International LLC | CAST-IN-PLACE POLYURETHANE-BASED INSULATION FOAM COMPOSITION CONTAINING HALOGENATED OLEFINS |
TW201920334A (en) * | 2017-09-19 | 2019-06-01 | 美商霍尼韋爾國際公司 | Methods of forming polyol premixes and foamable compositions and foams formed therefrom |
EP3849701A4 (en) * | 2018-09-13 | 2022-05-11 | Huntsman International LLC | POLYURETHANE FOAM COMPOSITION WITH A STABILIZING COMPOUND |
WO2021043853A1 (en) * | 2019-09-04 | 2021-03-11 | Evonik Operations Gmbh | Phase transfer active trimerization catalyst salts |
PL3805285T3 (en) * | 2019-10-08 | 2024-11-04 | Evonik Operations Gmbh | Preparation of polyurethane rigid foam |
JP2024533572A (en) * | 2021-09-16 | 2024-09-12 | ハンツマン ペトロケミカル エルエルシー | Hindered Ether Amine Polyurethane Catalyst |
US11827735B1 (en) | 2022-09-01 | 2023-11-28 | Covestro Llc | HFO-containing isocyanate-reactive compositions, related foam-forming compositions and flame retardant PUR-PIR foams |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3277138A (en) * | 1966-10-04 | Method for the chlorination of aromatic isocyanates | ||
US3001973A (en) * | 1953-05-23 | 1961-09-26 | Bayer Ag | Production of cross-linked plastics |
BE536296A (en) * | 1954-03-22 | |||
IT535373A (en) * | 1954-06-10 | |||
US2846458A (en) * | 1956-05-23 | 1958-08-05 | Dow Corning | Organosiloxane ethers |
US3454606A (en) * | 1963-11-14 | 1969-07-08 | Union Carbide Corp | Isocyanatophenylsulfonyl isocyanates |
US3124605A (en) * | 1963-12-05 | 1964-03-10 | Biuret polyisocyanates | |
DE1202785B (en) | 1964-07-21 | 1965-10-14 | Scholven Chemie Ag | Process for the preparation of 1-isocyanato-3- (isocyanatomethyl) -3, 5, 5-trimethylcyclohexane |
US3394164A (en) * | 1965-10-24 | 1968-07-23 | Upjohn Co | Stabilized methylenebis-(phenyl isocyanate) compositions |
US3492330A (en) * | 1965-12-09 | 1970-01-27 | Union Carbide Corp | Norbornane diisocyanates |
US4147847A (en) * | 1973-11-14 | 1979-04-03 | Dow Corning Corporation | Method of preparing flexible flame retardant polyether based one-shot polyurethane foams and compositions therefore |
US4981880A (en) * | 1988-09-23 | 1991-01-01 | The Dow Chemical Company | Process for making low density flexible polyisocyanurate-polyurethane foams |
NZ230729A (en) * | 1988-09-23 | 1992-04-28 | Dow Chemical Co | Preparation of soft flexible polyurethane foam from a composition comprising a polyol and a monohydric polyether, in the presence of a trimerisation catalyst |
US4868224A (en) * | 1988-10-21 | 1989-09-19 | Mobay Corporation | Process for the production of molded products using internal mold release agents |
WO1996029646A1 (en) * | 1995-03-17 | 1996-09-26 | Hitachi, Ltd. | Processor |
JPH10226718A (en) * | 1997-02-17 | 1998-08-25 | Daikin Ind Ltd | Manufacturing method of rigid polyurethane foam |
DE69818701T2 (en) * | 1997-07-25 | 2004-06-17 | Huntsman International Llc, Salt Lake City | FLAME-RESISTANT POLYURETHANE RESOURCES, PULLED BY MEANS OF FLUOROCOLATES |
JP3804289B2 (en) * | 1998-09-22 | 2006-08-02 | ダイキン工業株式会社 | Process for producing 1,1,1,3,3-pentafluoropropane and / or 1-chloro-3,3,3-trifluoropropene |
US7230146B2 (en) * | 2003-10-27 | 2007-06-12 | Honeywell International Inc. | Process for producing fluoropropenes |
JP2004175973A (en) * | 2002-11-28 | 2004-06-24 | Dainippon Ink & Chem Inc | Polyol composition, composition for rigid polyurethane foam, and method for producing rigid polyurethane foam |
US6844475B1 (en) | 2003-08-08 | 2005-01-18 | Honeywell International Business Machines | Low temperature production of 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd) |
ES2860760T3 (en) * | 2004-04-16 | 2021-10-05 | Honeywell Int Inc | Tetrafluoropropene and trifluoroiodomethane azeotrope compositions |
BRPI0509947A (en) * | 2004-04-16 | 2007-09-25 | Honeywell Int Inc | azeotropic type composition, composition, heat transfer composition, refrigerant, cooling system, blowing agent, foamable composition, foam, closed cell foam, method for replacing an existing refrigerant contained in a cooling system, sprayable composition , and method of sterilization of an article |
US7605117B2 (en) * | 2004-04-16 | 2009-10-20 | Honeywell International Inc. | Methods of replacing refrigerant |
KR101141210B1 (en) * | 2004-04-29 | 2012-05-04 | 허니웰 인터내셔널 인코포레이티드 | Processes for Synthesis of 1,3,3,3-Tetrafluoropropene and 2,3,3,3-Tetrafluoropropene |
US20050277701A1 (en) * | 2004-06-15 | 2005-12-15 | Honeywell International Inc. | Process for making polyurethane and polyisocyanurate foams using mixtures of a hydrofluorocarbon and methyl formate as a blowing agent |
US20110152392A1 (en) * | 2009-12-17 | 2011-06-23 | Honeywell International Inc. | Catalysts For Polyurethane Foam Polyol Premixes Containing Halogenated Olefin Blowing Agents |
US7700004B2 (en) * | 2005-11-01 | 2010-04-20 | E.I. Du Pont De Nemours And Company | Solvent compositions comprising unsaturated fluorinated hydrocarbons |
CN102690434B (en) * | 2005-11-01 | 2015-08-19 | 纳幕尔杜邦公司 | The whipping agent comprising unsaturated fluorocarbons is utilized to prepare the method for foam |
FR2899234B1 (en) * | 2006-03-31 | 2017-02-17 | Arkema | EXPANSION AGENT COMPOSITION |
PL2129712T3 (en) * | 2007-03-29 | 2013-03-29 | Arkema Inc | Blowing agent compositions of hydrochlorofluoroolefins for thermoplastic foams |
CA2693203A1 (en) * | 2007-07-20 | 2009-01-29 | E.I. Du Pont De Nemours And Company | Compositions and use of trans-1,1,1,4,4,4-hexafluoro-2-butene foam-forming composition in the preparation of polyisocyanate-based foams |
US9550854B2 (en) * | 2007-10-12 | 2017-01-24 | Honeywell International Inc. | Amine catalysts for polyurethane foams |
US9453115B2 (en) * | 2007-10-12 | 2016-09-27 | Honeywell International Inc. | Stabilization of polyurethane foam polyol premixes containing halogenated olefin blowing agents |
US20090099273A1 (en) * | 2007-10-12 | 2009-04-16 | Williams David J | Non-silicone surfactants for polyurethane or polyisocyanurate foam containing halogenated olefins as blowing agents |
JP5272375B2 (en) * | 2007-10-26 | 2013-08-28 | 東ソー株式会社 | Amine catalyst for producing polyurethane resin and method for producing polyurethane resin using the same |
WO2009089400A1 (en) * | 2008-01-11 | 2009-07-16 | E. I. Du Pont De Nemours And Company | Compositions and use of 2-chloro-3,3,3-trifluoropropene foam-forming composition in the preparation of polyisocyanate-based foams |
US20120172476A1 (en) * | 2009-09-09 | 2012-07-05 | Arkema Inc. | Polyurethane foaming processes and foam properties using halogenated olefin blowing agent |
US9051442B2 (en) * | 2011-02-21 | 2015-06-09 | Honeywell International Inc. | Polyurethane foam premixes containing halogenated olefin blowing agents and foams made from same |
US9556303B2 (en) * | 2011-02-21 | 2017-01-31 | Honeywell International Inc. | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents |
US20160145374A1 (en) * | 2013-07-24 | 2016-05-26 | Kao Corporation | Polyol mixture for producing rigid polyurethane foam |
-
2010
- 2010-12-14 US US12/967,345 patent/US20110152392A1/en not_active Abandoned
- 2010-12-16 MX MX2012006804A patent/MX2012006804A/en unknown
- 2010-12-16 CN CN2010800640506A patent/CN102753624A/en active Pending
- 2010-12-16 CN CN201610557655.8A patent/CN106084163A/en active Pending
- 2010-12-16 KR KR1020127018803A patent/KR20120115982A/en not_active Ceased
- 2010-12-16 JP JP2012544812A patent/JP5810096B2/en active Active
- 2010-12-16 BR BR112012014267-4A patent/BR112012014267A2/en not_active Application Discontinuation
- 2010-12-16 RU RU2015144564A patent/RU2015144564A/en not_active Application Discontinuation
- 2010-12-16 RU RU2012130294/04A patent/RU2012130294A/en not_active Application Discontinuation
- 2010-12-16 CN CN201510000562.0A patent/CN104592468A/en active Pending
- 2010-12-16 CA CA2784583A patent/CA2784583A1/en not_active Abandoned
- 2010-12-16 EP EP10842585.1A patent/EP2513227A4/en not_active Withdrawn
- 2010-12-16 WO PCT/US2010/060678 patent/WO2011084563A2/en active Application Filing
-
2015
- 2015-07-27 JP JP2015147942A patent/JP6072157B2/en active Active
-
2016
- 2016-10-25 JP JP2016208470A patent/JP2017071781A/en active Pending
-
2017
- 2017-12-15 US US15/843,684 patent/US20180105633A1/en not_active Abandoned
-
2019
- 2019-02-14 US US16/275,568 patent/US11746180B2/en active Active
-
2022
- 2022-03-07 US US17/688,731 patent/US20220195106A1/en not_active Abandoned
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11542358B2 (en) * | 2017-09-05 | 2023-01-03 | Huntsman Petrochemical Llc | Catalyst system for polyol premixes containing hydrohaloolefin blowing agents |
WO2020005270A1 (en) * | 2018-06-29 | 2020-01-02 | Boral Ip Holdings (Australia) Pty Limited | Foam composites and methods of preparation thereof |
US11634553B2 (en) | 2018-06-29 | 2023-04-25 | Westlake Royal Building Products (Usa) Inc. | Foam composites and methods of preparation thereof |
US12168725B2 (en) | 2018-06-29 | 2024-12-17 | Westlake Royal Building Products (Usa) Inc. | Foam composites and methods of preparation thereof |
WO2020185854A1 (en) | 2019-03-11 | 2020-09-17 | DDP Specialty Electronic Materials US, Inc. | A two-component polyurethane or polyisocyanurate spray foam composition containing a hydrohaloolefin blowing agent |
WO2020185843A1 (en) | 2019-03-11 | 2020-09-17 | DDP Specialty Electronic Materials US, Inc. | A two-component polyurethane or polyisocyanurate low pressure spray foam composition containing a gaseous blowing agent comprising pressurized carbon dioxide |
US11655349B2 (en) | 2019-03-11 | 2023-05-23 | Ddp Specialty Electronic Materials Us, Llc | Two-component polyurethane or polyisocyanurate low pressure spray foam composition containing a gaseous blowing agent comprising pressurized carbon dioxide |
US11999835B2 (en) | 2019-03-11 | 2024-06-04 | Ddp Specialty Electronic Materials Us, Llc | Two-component polyurethane or polyisocyanurate low pressure spray foam composition containing a gaseous blowing agent comprising pressurized carbon dioxide |
Also Published As
Publication number | Publication date |
---|---|
EP2513227A4 (en) | 2014-12-03 |
RU2012130294A (en) | 2014-01-27 |
US20110152392A1 (en) | 2011-06-23 |
JP6072157B2 (en) | 2017-02-01 |
JP2016000820A (en) | 2016-01-07 |
RU2015144564A (en) | 2018-12-28 |
CN106084163A (en) | 2016-11-09 |
MX2012006804A (en) | 2012-08-31 |
US20220298288A9 (en) | 2022-09-22 |
EP2513227A2 (en) | 2012-10-24 |
KR20120115982A (en) | 2012-10-19 |
CN104592468A (en) | 2015-05-06 |
CN102753624A (en) | 2012-10-24 |
JP2017071781A (en) | 2017-04-13 |
RU2015144564A3 (en) | 2019-01-30 |
JP2013514452A (en) | 2013-04-25 |
US11746180B2 (en) | 2023-09-05 |
CA2784583A1 (en) | 2011-07-14 |
BR112012014267A2 (en) | 2020-08-25 |
US20200048397A1 (en) | 2020-02-13 |
WO2011084563A3 (en) | 2011-10-20 |
US20220195106A1 (en) | 2022-06-23 |
WO2011084563A2 (en) | 2011-07-14 |
JP5810096B2 (en) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11746180B2 (en) | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents | |
US10941237B2 (en) | Storage stable foamable compositions containing 1,1,1,4,4,4-hexafluoro-2-butene | |
US10526462B2 (en) | Stabilization of polyurethane foam polyol premixes containing halogenated olefin blowing agents | |
US12209168B2 (en) | Polyurethane foam premixes containing halogenated olefin blowing agents and foams made from same | |
US9695267B2 (en) | Foams and foamable compositions containing halogenated olefin blowing agents | |
US9556303B2 (en) | Catalysts for polyurethane foam polyol premixes containing halogenated olefin blowing agents | |
WO2012170912A2 (en) | Polyurethane foam premixes containing halogenated olefin blowing agents and foams made from same | |
WO2012115929A2 (en) | Polyurethane foam premixes containing halogenated olefin blowing agents and foams made from same | |
WO2014133986A1 (en) | Polyurethane foam premixes containing halogenated olefin blowing agents and foams made from same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |