US20180102464A1 - Advanced Solder Alloys For Electronic Interconnects - Google Patents
Advanced Solder Alloys For Electronic Interconnects Download PDFInfo
- Publication number
- US20180102464A1 US20180102464A1 US15/286,759 US201615286759A US2018102464A1 US 20180102464 A1 US20180102464 A1 US 20180102464A1 US 201615286759 A US201615286759 A US 201615286759A US 2018102464 A1 US2018102464 A1 US 2018102464A1
- Authority
- US
- United States
- Prior art keywords
- alloy
- less
- solder
- free
- solder alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H01L33/62—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
- B23K1/0016—Brazing of electronic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/002—Soldering by means of induction heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/005—Soldering by means of radiant energy
- B23K1/0056—Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/08—Soldering by means of dipping in molten solder
- B23K1/085—Wave soldering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
- C22C13/02—Alloys based on tin with antimony or bismuth as the next major constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H01L33/641—
-
- H01L33/647—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05647—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13199—Material of the matrix
- H01L2224/132—Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13201—Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13211—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13299—Base material
- H01L2224/133—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13301—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13313—Bismuth [Bi] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13299—Base material
- H01L2224/133—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13317—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/1332—Antimony [Sb] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13299—Base material
- H01L2224/133—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13299—Base material
- H01L2224/133—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13347—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/13198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/13298—Fillers
- H01L2224/13299—Base material
- H01L2224/133—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13355—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/165—Material
- H01L2224/16501—Material at the bonding interface
- H01L2224/16503—Material at the bonding interface comprising an intermetallic compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/165—Material
- H01L2224/16505—Material outside the bonding interface, e.g. in the bulk of the bump connector
- H01L2224/16507—Material outside the bonding interface, e.g. in the bulk of the bump connector comprising an intermetallic compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/292—Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29201—Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29211—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/29294—Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29301—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29311—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29301—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29313—Bismuth [Bi] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29317—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/2932—Antimony [Sb] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29347—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29355—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/325—Material
- H01L2224/32501—Material at the bonding interface
- H01L2224/32503—Material at the bonding interface comprising an intermetallic compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/325—Material
- H01L2224/32505—Material outside the bonding interface, e.g. in the bulk of the layer connector
- H01L2224/32507—Material outside the bonding interface, e.g. in the bulk of the layer connector comprising an intermetallic compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83399—Material
- H01L2224/834—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/83438—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/83447—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01058—Cerium [Ce]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/201—Temperature ranges
- H01L2924/20106—Temperature range 200 C=<T<250 C, 473.15 K =<T < 523.15K
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
-
- H01L2933/0066—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0364—Manufacture or treatment of packages of interconnections
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/858—Means for heat extraction or cooling
- H10H20/8581—Means for heat extraction or cooling characterised by their material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/858—Means for heat extraction or cooling
- H10H20/8585—Means for heat extraction or cooling being an interconnection
Definitions
- the invention generally relates to a method for improving the electrical and thermal properties of solder alloys used for LED/Power Semiconductors die attach and component attach.
- Wave soldering is a widely used method of mass soldering electronic assemblies. It may be used, for example, for through-hole circuit boards, where the board is passed over a wave of molten solder, which laps against the bottom of the board to wet the metal surfaces to be joined.
- soldering technique involves printing of the solder paste on the soldering pads on the printed circuit boards followed by placement and sending the whole assembly through a reflow oven. During the reflow process, the solder melts and wets the soldering surfaces on the boards as well as the components.
- soldering process involves immersing printed wiring boards into molten solder in order to coat the copper terminations with a solderable and protective layer. This solder application process is known as hot-air leveling and the subsequent soldering process is known as solder on pad.
- Ball grid array joints or chip scale packages are typically assembled with spheres of solder between two substrates. Arrays of these joints are used to mount chips on circuit boards.
- solder alloy there are a number of requirements for a solder alloy to be suitable for use in wave soldering, SMT (surface mount technology), die attach and ball grid arrays. Most importantly, the alloy must exhibit good wetting characteristics in relation to a variety of substrate materials such as copper, nickel, nickel phosphorus (“electroless nickel”), silver and copper-OSP (organic solderability preservative).
- Solder alloys tend to dissolve the substrate and form an intermetallic compound at the interface with the substrate.
- tin in the solder alloy may react with the substrate at the interface to form an intermetallic compound (IMC) layer.
- IMC intermetallic compound
- the substrate is copper
- a layer of Cu6Sn5 may be formed.
- Such a layer typically has a thickness anywhere from a fraction of a micron to a few microns.
- an IMC of Cu3Sn may be present.
- the interface intermetallic layers will tend to grow during aging, particularly at higher temperatures.
- the thicker intermetallic layers, together with any voids that may have developed, may further contribute to premature fracture of a stressed joint.
- solder alloys are based around the tin-copper eutectic composition, Sn-0.7 wt. % Cu.
- the tin-silver-copper system has been embraced by the electronics industry as a lead-free alternative for soldering materials.
- One particular alloy, the eutectic alloy SnAg3.0Cu0.5 exhibits a superior fatigue life compared to a Sn—Pb solder material, while maintaining a relatively low melting point of about 217 to 219° C.
- solder alloys In some fields, such as automotive, high power electronics and energy, including LED lighting, for example, it is desirable for solder alloys to operate at high temperatures, for example 150° C. or higher.
- the SnAg3.0Cu0.5 alloy does not perform well at such temperatures.
- Solders used in die attach and other electrical interconnects perform multiple functions such as providing mechanical strength to join the parts together, providing a path for electrical current, or providing a thermal interface as a route for heat generated in the device to dissipate to a heat sink.
- Physical properties of the solder material such as thermal conductivity, electrical conductivity, tensile strength, shear strength, creep, and its capacity to form a good interface with devices and circuit boards are important factors in determining its overall performance in the real life application. These properties also need to be stable over time under typical operating conditions.
- Metals and alloys Thermal energy in metals and alloys is primarily transported by electrons.
- metals and alloys show a decrease in thermal conductivity with increasing temperature. This is usually the result of a combination of several factors such as electron-electron scattering, electron-atom scattering, and electron scattering from the grain boundaries within the alloys and at the interfaces. Changes in conductivity are not desirable.
- the electrical resistivity of metals and alloys can also change with an increase in temperature. Resistivity changes in the solder alloys are also undesirable.
- the present invention seeks to remedy at least some of the problems associated with the prior art and provide a commercially acceptable alternative solution to existing solder alloys.
- a combination of micro additives is used to tailor solder microstructure thereby impacting properties of solder alloys.
- the present invention generally relates to a lead-free, antimony-free solder alloy comprising:
- the present invention relates to a soldered joint comprising a lead-free, antimony-free solder alloy comprising:
- the present invention relates to a method of soldering, the method comprising the steps of:
- FIG. 1 shows the effect of high temperature storage on the intermetallic thickness.
- FIG. 2 shows evolution of thermal conductivity and intermetallic during high temperature storage.
- FIG. 3 shows evolution of electrical resistivity and intermetallic during high temperature storage.
- FIG. 4 shows temperature dependence of thermal conductivity of a common Pb-free solder alloy SAC305 and two new solder alloys.
- FIG. 5 shows temperature dependence of the bulk electrical resistance of a common Pb-free solder alloy SAC305 and a new solder alloy A.
- FIG. 6 shows luminous flux of LEDs assembled with SAC305, Alloy A and Alloy B as a function of the driving electrical power. This is initial performance of as soldered LEDs before any aging or temperature cycling.
- FIG. 7 shows luminous flux of LEDs assembled with SAC305, Alloy A and Alloy B as a function of the driving electrical power. The performance of the LEDs is shown after 1500 temperature cycles.
- FIG. 8 shows luminous efficacy of three sets of LEDs after 1500 temperature cycles at various drive currents.
- FIG. 9 shows luminous flux of LEDs at 0.2 A drive current as a function of temperature cycling. LEDs were assembled with SAC305, Alloy A and Alloy B.
- FIG. 10 shows normalized luminous flux of LEDs at 0.2 A drive current as a function of temperature cycling.
- the LEDs were assembled with SAC305, Alloy A and Alloy B.
- FIG. 11 shows changes in efficacy of three sets of LEDs assembled with SAC305, Alloy A and Alloy B under temperature cycling.
- FIG. 12 shows Color Correlated Temperature (CCT) over 1500 cycles of LEDs assembled with SAC305, Alloy A and Alloy B. CCT was recorded at 0.2 A drive current.
- the invention relates to micro level additions to solder alloys to engineer the electrical and thermal properties for use in the manufacture of electronic components and devices, as well as in electronic assembly and packaging.
- novel solder alloys allow for improved electrical properties in addition to improved thermal fatigue life of the die attach layer.
- the invention results in lower contact resistance in a die attach layer, lower change in contact resistance during operation and aging of the die attach layer, and higher efficiency of LEDs, especially during high power operation.
- the engineered microstructure of finer IMC particles in the solder alloy allows for more uniform distribution of the particles compared to SAC alloys.
- the smaller size of bulk IMCs and their uniform distribution lowers the electronic scattering at interface between IMCs and the adjoining layers.
- the engineered microstructure allows for slower growth of bulk IMCs, controlled interfacial IMC and slower change in microstructure during high temperature operation and temperature cycling. This leads to very little change or degradation in LED performance over its lifetime when the disclosed solder alloys are used to die attach LEDs.
- novel solder alloys result in a lower coefficient of temperature dependence for electrical resistance.
- the alloys additionally result in a lower coefficient of temperature dependence for effective thermal resistance and effective thermal conductivity.
- the lower coefficient of temperature dependence for both electrical resistance and effective thermal resistance/conductivity results in lower drift in optical power, wavelength and efficiency of an LED.
- the preparation of the solder alloys includes solid solution strengthening whereby the crystalline lattice is distorted by addition of elements within the solubility limit. Aspects of the invention may further comprise methods such as grain refinement, precipitation strengthening and addition of diffusion modifiers.
- the solder alloy composition can be engineered such that the interfacial intermetallic results in overall improvement in thermal and electrical conductivity performance.
- the invention includes a family of interconnect materials compositions including solder alloy compositions that produce stable microstructures. These stable microstructure compositions do not exhibit significant changes when used (over time, operating temperature range, thermal cycling regime, and power loads etc.). Key metrics for evaluating microstructure properties, such as grain size, IMC thickness, creep properties (stress-strain hysteresis characteristics, etc.), and solder alloys, remain fairly constant when compared to traditional interconnect materials such as SAC 305.
- the stable microstructures exhibit stable thermal and electrical properties such as stable electrical resistance values. Stable electrical resistance values minimize variation in the output variable and yield stable outputs such as sustained electrical efficiency over time. This is important for use in power conversion devices.
- An example of such electrical efficiency is sustained lumen output (in case of LED and laser diodes) with minimal lumen depreciation over time.
- the invention uses a combination of micro level additions to the solder alloys to engineer the bulk solder microstructure. These additions are so small that that they do not have significant impact on the solder melting behavior but can have significant impact on other properties.
- New alloys are designed using a combination of solid solution strengthening, grain refinement, precipitate strengthening and diffusion modifiers.
- the crystalline lattice is distorted due to alloying elements addition within the solubility limit.
- Such lattice distortion generates stress fields that interact with dislocations present in the material.
- Strengthening arises from impeding dislocation motion, which prevents plastic deformation.
- elements such as Bi and Sb are added to a Sn based matrix, up to the limit in which a new phase would form, strengthening the alloy microstructure. Since dislocation movement is interrupted by grain boundaries, reducing grain size limits the dislocation movement, which results in higher mechanical strength of the alloy. For example, Ge and rare earths are used for grain refinement of alloys.
- alloying elements with lower solubility in the matrix form precipitated intermetallics.
- Such intermetallics desirably are uniformly distributed within the grains in the Sn matrix, pinning the dislocations and, consequently, improving the mechanical strength of the alloy. Examples of such additions are Ag, Cu, Ti, Co, Ni, Ce and Mn.
- interfacial IMC and interfacial voids can be controlled through addition of diffusion modifiers to the solder during the alloy development.
- mechanical properties of the bulk solder alloy can be controlled through the formation of intermetallics and microstructure refinement.
- the choice of which alloying element(s) to add depends on its relation with the alloy system and the resulting thermodynamics and kinetics properties.
- the invention shows that interfacial intermetallics are not only responsible for the actual bond between the solder and the substrate, but also can be designed to improve thermal and electrical conductivity.
- intermetallics Although brittle in nature, intermetallics have a quite unique behavior when subjected to extended periods under high temperature condition. It is shown here that thermal and electrical conductivity can be improved under high temperature operation depending on the alloy that is used. It is also shown that a solder alloy composition can be engineered such that its interfacial intermetallics result in improved thermal and electrical conductivity. Cu6Sn5 and Cu3Sn intermetallics form at the interface between bulk solder alloy and copper substrate. The individual values of thermal conductivity and electrical resistivity values of alloy A, alloy B, SAC305, Cu6Sn5 and Cu3Sn are shown in Table 1. Cu3Sn has higher thermal conductivity and lower electrical resistivity than SAC305 bulk alloy. Thus, in the case of a solder joint, the interfacial intermetallics play an important role in achieving high thermal and electrical conductivity.
- FIGS. 2 and 3 show the estimated values of thermal conductivity and electrical resistivity of SAC305 and alloy B during high temperature storage. Similar behavior was also observed for samples that were subjected to thermal cycling, i.e., alternated exposure to cold and hot cycles during a period of time. Unlike SAC305, Alloy B possesses the unique characteristic of increased thermal conductivity and decreased electrical conductivity with the increase of time under high temperature storage. Also to note, is that SAC305 was used as the benchmark because it has similar silver content than alloy B. Thus, the intermetallic characteristics of alloy B are not related to the alloy composition of an ordinary Sn—Ag—Cu alloy, but to its unique alloying additions.
- thermal conductivity of SAC305 drops by about 13% when temperature increases from 25 C to 150 C.
- thermal conductivity of new Alloy A drops by about 9% and Alloy B′s thermal conductivity drops by only 4%.
- alloy B is used for die attach, or component attach in a high power LED assembly, parts assembled with alloy B will show much less variation in LED performance at high current operation. In other words, there will be a smaller drift in LE wavelength, maintained efficiency and the LEDs can be operated at higher power density. Similarly, if this alloy is used for die attach and other parts assembly of the any other high power electronics components, similar performance advantages will be observed.
- the electrical resistivity of the SAC305 solder alloy increases by about 27% when temperature increases from 25 C to 85 C while under the same conditions, increase in electrical resistivity of the new Alloy A is less than 20%. If alloy A is used in die attach and for making electrical interconnects in a high-power LED assembly, it will show a much less variation in the LED performance under high current density operation and will operate at a higher efficacy/efficiency.
- LEDs Forty-eight mid-power LEDs were assembled on flexible PET substrates using SAC305, Alloy A, and Alloy B as the package attach material (approximately 16 each). These LEDs were evaluated in an integrating sphere to measure their optical, electrical, and thermal performance. After initial analysis, the LEDs were placed in an air-to-air thermocycling chamber cycling from ⁇ 40 to 125 C with a dwell time of 30 minutes. Every 250 thermocycles, up to 1500, these LEDs were removed and re-evaluated in the integrating sphere. Data reported here is absolute measured values and values normalized to each LED's pre-temperature cycling performance.
- FIG. 6 shows luminous flux of LEDs assembled with SAC305, Alloy A and Alloy B as a function of the driving electrical power.
- This is initial performance of as soldered LEDs before any aging or temperature cycling shows the LEDs with Alloy A and Alloy B show about 10% higher luminous flux than LEDs with SAC305.
- alloys A and B exhibit approximately 19% higher luminous flux at high power than SAC305 as shown in FIG. 7 .
- FIG. 8 a similar difference in performance is observed in luminous efficacy as well.
- alloys A and B exhibit approximately 12-18% higher luminous efficacy than SAC305.
- LEDs assembled with Alloys A and B show higher luminous flux output in the beginning (0 cycles) than those assembled with SAC305. In addition, these LEDs also show smaller drop in luminous flux during temperature cycling than LEDs assembled with SAC305.
- SAC305 LED show about 17% drop while in luminous flux over 1500 cycles while the drop for Alloy A and Alloy B LEDs is about 8-9% over the same number of cycles.
- luminous efficacy of these LEDs also shows higher value for LEDs assembled with Alloys A and B as compared SAC305.
- the drop in efficacy after temperature cycling is also reduced.
- FIG. 12 shows CCT of three sets of LEDs assembled with SAC305, Alloy A and Alloy B solders over 1500 temperature cycles. LEDs assembled with SAC305 show more than 15% change in CCT while those assembled with Alloy A and alloy B show a less than 5% change in CCT over 1500 temperature cycles. These results also point to stability of the mechanical, thermal and electrical properties of these alloys under high stress operating conditions.
- the invention is generally disclosed herein using affirmative language to describe the numerous embodiments.
- the invention also specifically includes embodiments in which particular subject matter is excluded, in full or in part, such as substances or materials, method steps and conditions, protocols, procedures, assays or analysis.
- the invention is generally not expressed herein in terms of what the invention does not include aspects that are not expressly included in the invention are nevertheless disclosed herein.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
- The invention generally relates to a method for improving the electrical and thermal properties of solder alloys used for LED/Power Semiconductors die attach and component attach.
- There are a wide variety of known soldering techniques in the electronics industry. Wave soldering is a widely used method of mass soldering electronic assemblies. It may be used, for example, for through-hole circuit boards, where the board is passed over a wave of molten solder, which laps against the bottom of the board to wet the metal surfaces to be joined.
- Another soldering technique involves printing of the solder paste on the soldering pads on the printed circuit boards followed by placement and sending the whole assembly through a reflow oven. During the reflow process, the solder melts and wets the soldering surfaces on the boards as well as the components.
- Another soldering process involves immersing printed wiring boards into molten solder in order to coat the copper terminations with a solderable and protective layer. This solder application process is known as hot-air leveling and the subsequent soldering process is known as solder on pad.
- Ball grid array joints or chip scale packages are typically assembled with spheres of solder between two substrates. Arrays of these joints are used to mount chips on circuit boards.
- There are a number of requirements for a solder alloy to be suitable for use in wave soldering, SMT (surface mount technology), die attach and ball grid arrays. Most importantly, the alloy must exhibit good wetting characteristics in relation to a variety of substrate materials such as copper, nickel, nickel phosphorus (“electroless nickel”), silver and copper-OSP (organic solderability preservative).
- Solder alloys tend to dissolve the substrate and form an intermetallic compound at the interface with the substrate. For example, tin in the solder alloy may react with the substrate at the interface to form an intermetallic compound (IMC) layer. If the substrate is copper, then a layer of Cu6Sn5 may be formed. Such a layer typically has a thickness anywhere from a fraction of a micron to a few microns. At the interface between this layer and the copper substrate an IMC of Cu3Sn may be present. The interface intermetallic layers will tend to grow during aging, particularly at higher temperatures. The thicker intermetallic layers, together with any voids that may have developed, may further contribute to premature fracture of a stressed joint.
- Other important factors are: (i) the presence of intermetallics in the alloy itself, which results in improved mechanical properties; (ii) oxidation resistance, which is important in solder spheres, preforms, and powder etc., where deterioration during storage or during repeated reflows may cause the soldering performance to become less than ideal; (iii) drossing rate; and (iv) alloy stability. These latter considerations are important for applications where the alloy is held in a tank or bath for long periods of time or where the formed solder joints are subjected to high operating temperatures for long periods of time.
- For environmental and health reasons, there is an increasing demand for lead-free and antimony-free replacements for lead- and antimony-containing conventional alloys. Many conventional solder alloys are based around the tin-copper eutectic composition, Sn-0.7 wt. % Cu. For example, the tin-silver-copper system has been embraced by the electronics industry as a lead-free alternative for soldering materials. One particular alloy, the eutectic alloy SnAg3.0Cu0.5, exhibits a superior fatigue life compared to a Sn—Pb solder material, while maintaining a relatively low melting point of about 217 to 219° C.
- In some fields, such as automotive, high power electronics and energy, including LED lighting, for example, it is desirable for solder alloys to operate at high temperatures, for example 150° C. or higher. The SnAg3.0Cu0.5 alloy does not perform well at such temperatures.
- Solders used in die attach and other electrical interconnects perform multiple functions such as providing mechanical strength to join the parts together, providing a path for electrical current, or providing a thermal interface as a route for heat generated in the device to dissipate to a heat sink. Physical properties of the solder material such as thermal conductivity, electrical conductivity, tensile strength, shear strength, creep, and its capacity to form a good interface with devices and circuit boards are important factors in determining its overall performance in the real life application. These properties also need to be stable over time under typical operating conditions.
- Electronic devices, especially high power devices such as LED and high power amplifiers and switches etc., generate a lot of heat which need to be dissipated. During operation of such devices, the thermal and electrical interface material sees high temperatures for long periods of time. During high temperature operation, the interconnect material also faces high mechanical stress due to coefficient of thermal expansion (CTE) miss-match between the device, substrate and interconnect materials. Therefore, for long life of the device under operation, the interconnect materials as well as the interfaces should have stable mechanical, thermal and electrical properties under these conditions.
- Thermal energy in metals and alloys is primarily transported by electrons. In general, metals and alloys show a decrease in thermal conductivity with increasing temperature. This is usually the result of a combination of several factors such as electron-electron scattering, electron-atom scattering, and electron scattering from the grain boundaries within the alloys and at the interfaces. Changes in conductivity are not desirable. The electrical resistivity of metals and alloys can also change with an increase in temperature. Resistivity changes in the solder alloys are also undesirable.
- The present invention seeks to remedy at least some of the problems associated with the prior art and provide a commercially acceptable alternative solution to existing solder alloys.
- In accordance with one or more aspects of the present disclosure, a combination of micro additives is used to tailor solder microstructure thereby impacting properties of solder alloys.
- It is an object of the current invention to provide a solder alloy with improved electrical properties.
- It is an object of the current invention to provide a solder alloy with improved thermal properties.
- It is an object of the current invention to provide a solder alloy with improved fatigue life.
- It is another object of the current invention to provide low contact resistance in an LED die attach layer.
- It is another object of the current invention to provide little to no change in contact resistance of a die attach layer during operation and aging.
- It is an object of the current invention to allow for higher efficiency of an LED or any other high-power electronic device at high power operation.
- To that end, in one embodiment, the present invention generally relates to a lead-free, antimony-free solder alloy comprising:
-
- (a) 10 wt. % or less of silver
- (b) 10 wt. % or less of bismuth
- (c) 3 wt. % or less of copper
- (d) at least one of the following elements
- up to 1 wt. % of nickel
- up to 1 wt. % of titanium
- up to 1 wt. % of cobalt
- up to 3.5 wt. % of indium
- up to 1 wt. % of zinc
- up to 1 wt. % of cerium
- (e) optionally one or more of the following elements
- 0 to 1 wt. % of manganese
- 0 to 1 wt. % of chromium
- 0 to 1 wt. % of germanium
- 0 to 1 wt. % of iron
- 0 to 1 wt. % of aluminum
- 0 to 1 wt. % of phosphorus
- 0 to 1 wt. % of gold
- 0 to 1 wt. % of gallium
- 0 to 1 wt. % of tellurium
- 0 to 1 wt. % of selenium
- 0 to 1 wt. % of calcium
- 0 to 1 wt. % of vanadium
- 0 to 1 wt. % of molybdenum
- 0 to 1 wt. % of platinum
- 0 to 1 wt. % of magnesium
- 0 to 1 wt. % of rare earths
- (f) the balance tin, together with any unavoidable impurities.
- In another preferred embodiment, the present invention relates to a soldered joint comprising a lead-free, antimony-free solder alloy comprising:
-
- (a) 10 wt. % or less of silver
- (b) 10 wt. % or less of bismuth
- (c) 3 wt. % or less of copper
- (d) at least one of the following elements
- up to 1 wt. % of nickel
- up to 1 wt. % of titanium
- up to 1 wt. % of cobalt
- up to 3.5 wt. % of indium
- up to 1 wt. % of zinc
- up to 1 wt. % of cerium
- (e) optionally one or more of the following elements
- 0 to 1 wt. % of manganese
- 0 to 1 wt. % of chromium
- 0 to 1 wt. % of germanium
- 0 to 1 wt. % of iron
- 0 to 1 wt. % of aluminum
- 0 to 1 wt. % of phosphorus
- 0 to 1 wt. % of gold
- 0 to 1 wt. % of gallium
- 0 to 1 wt. % of tellurium
- 0 to 1 wt. % of selenium
- 0 to 1 wt. % of calcium
- 0 to 1 wt. % of vanadium
- 0 to 1 wt. % of molybdenum
- 0 to 1 wt. % of platinum
- 0 to 1 wt. % of magnesium
- 0 to 1 wt. % of rare earths
- (f) the balance tin, together with any unavoidable impurities
- In yet another preferred embodiment, the present invention relates to a method of soldering, the method comprising the steps of:
-
- a) applying a solder alloy to a substrate, wherein the solder is a lead free or lead free, antimony free solder alloy;
- wherein the solder can be applied by wave soldering, Surface Mount Technology (SMT) soldering, die attach soldering, thermal interface soldering, hand soldering, laser and RF induction soldering, rework soldering, lamination, and combinations thereof.
-
FIG. 1 shows the effect of high temperature storage on the intermetallic thickness. -
FIG. 2 shows evolution of thermal conductivity and intermetallic during high temperature storage. -
FIG. 3 shows evolution of electrical resistivity and intermetallic during high temperature storage. -
FIG. 4 shows temperature dependence of thermal conductivity of a common Pb-free solder alloy SAC305 and two new solder alloys. -
FIG. 5 shows temperature dependence of the bulk electrical resistance of a common Pb-free solder alloy SAC305 and a new solder alloy A. -
FIG. 6 shows luminous flux of LEDs assembled with SAC305, Alloy A and Alloy B as a function of the driving electrical power. This is initial performance of as soldered LEDs before any aging or temperature cycling. -
FIG. 7 shows luminous flux of LEDs assembled with SAC305, Alloy A and Alloy B as a function of the driving electrical power. The performance of the LEDs is shown after 1500 temperature cycles. -
FIG. 8 shows luminous efficacy of three sets of LEDs after 1500 temperature cycles at various drive currents. -
FIG. 9 shows luminous flux of LEDs at 0.2 A drive current as a function of temperature cycling. LEDs were assembled with SAC305, Alloy A and Alloy B. -
FIG. 10 shows normalized luminous flux of LEDs at 0.2 A drive current as a function of temperature cycling. The LEDs were assembled with SAC305, Alloy A and Alloy B. -
FIG. 11 shows changes in efficacy of three sets of LEDs assembled with SAC305, Alloy A and Alloy B under temperature cycling. -
FIG. 12 shows Color Correlated Temperature (CCT) over 1500 cycles of LEDs assembled with SAC305, Alloy A and Alloy B. CCT was recorded at 0.2 A drive current. - The invention relates to micro level additions to solder alloys to engineer the electrical and thermal properties for use in the manufacture of electronic components and devices, as well as in electronic assembly and packaging.
- The novel solder alloys allow for improved electrical properties in addition to improved thermal fatigue life of the die attach layer. The invention results in lower contact resistance in a die attach layer, lower change in contact resistance during operation and aging of the die attach layer, and higher efficiency of LEDs, especially during high power operation.
- The engineered microstructure of finer IMC particles in the solder alloy allows for more uniform distribution of the particles compared to SAC alloys. The smaller size of bulk IMCs and their uniform distribution lowers the electronic scattering at interface between IMCs and the adjoining layers.
- The engineered microstructure allows for slower growth of bulk IMCs, controlled interfacial IMC and slower change in microstructure during high temperature operation and temperature cycling. This leads to very little change or degradation in LED performance over its lifetime when the disclosed solder alloys are used to die attach LEDs.
- The novel solder alloys result in a lower coefficient of temperature dependence for electrical resistance. The alloys additionally result in a lower coefficient of temperature dependence for effective thermal resistance and effective thermal conductivity. The lower coefficient of temperature dependence for both electrical resistance and effective thermal resistance/conductivity results in lower drift in optical power, wavelength and efficiency of an LED.
- The preparation of the solder alloys includes solid solution strengthening whereby the crystalline lattice is distorted by addition of elements within the solubility limit. Aspects of the invention may further comprise methods such as grain refinement, precipitation strengthening and addition of diffusion modifiers. The solder alloy composition can be engineered such that the interfacial intermetallic results in overall improvement in thermal and electrical conductivity performance.
- The invention includes a family of interconnect materials compositions including solder alloy compositions that produce stable microstructures. These stable microstructure compositions do not exhibit significant changes when used (over time, operating temperature range, thermal cycling regime, and power loads etc.). Key metrics for evaluating microstructure properties, such as grain size, IMC thickness, creep properties (stress-strain hysteresis characteristics, etc.), and solder alloys, remain fairly constant when compared to traditional interconnect materials such as
SAC 305. - The stable microstructures exhibit stable thermal and electrical properties such as stable electrical resistance values. Stable electrical resistance values minimize variation in the output variable and yield stable outputs such as sustained electrical efficiency over time. This is important for use in power conversion devices. An example of such electrical efficiency is sustained lumen output (in case of LED and laser diodes) with minimal lumen depreciation over time.
- The invention uses a combination of micro level additions to the solder alloys to engineer the bulk solder microstructure. These additions are so small that that they do not have significant impact on the solder melting behavior but can have significant impact on other properties. New alloys are designed using a combination of solid solution strengthening, grain refinement, precipitate strengthening and diffusion modifiers.
- In solid solution strengthening, the crystalline lattice is distorted due to alloying elements addition within the solubility limit. Such lattice distortion generates stress fields that interact with dislocations present in the material. Strengthening arises from impeding dislocation motion, which prevents plastic deformation. Thus elements such as Bi and Sb are added to a Sn based matrix, up to the limit in which a new phase would form, strengthening the alloy microstructure. Since dislocation movement is interrupted by grain boundaries, reducing grain size limits the dislocation movement, which results in higher mechanical strength of the alloy. For example, Ge and rare earths are used for grain refinement of alloys. Similarly, in precipitation strengthening, alloying elements with lower solubility in the matrix form precipitated intermetallics. Such intermetallics desirably are uniformly distributed within the grains in the Sn matrix, pinning the dislocations and, consequently, improving the mechanical strength of the alloy. Examples of such additions are Ag, Cu, Ti, Co, Ni, Ce and Mn.
- The growth of interfacial IMC and interfacial voids can be controlled through addition of diffusion modifiers to the solder during the alloy development. Similarly, the mechanical properties of the bulk solder alloy can be controlled through the formation of intermetallics and microstructure refinement. The choice of which alloying element(s) to add depends on its relation with the alloy system and the resulting thermodynamics and kinetics properties. The invention shows that interfacial intermetallics are not only responsible for the actual bond between the solder and the substrate, but also can be designed to improve thermal and electrical conductivity.
- Although brittle in nature, intermetallics have a quite unique behavior when subjected to extended periods under high temperature condition. It is shown here that thermal and electrical conductivity can be improved under high temperature operation depending on the alloy that is used. It is also shown that a solder alloy composition can be engineered such that its interfacial intermetallics result in improved thermal and electrical conductivity. Cu6Sn5 and Cu3Sn intermetallics form at the interface between bulk solder alloy and copper substrate. The individual values of thermal conductivity and electrical resistivity values of alloy A, alloy B, SAC305, Cu6Sn5 and Cu3Sn are shown in Table 1. Cu3Sn has higher thermal conductivity and lower electrical resistivity than SAC305 bulk alloy. Thus, in the case of a solder joint, the interfacial intermetallics play an important role in achieving high thermal and electrical conductivity.
-
TABLE 1 Thermal conductivity and electrical resistivity of alloys and intermetallics Thermal Conductivity Electrical Resistivity (W/mK) (μΩ · cm) Alloy A 55.2 16.4 Alloy B 59.2 14.2 SAC305 64 11.8 Cu3Sn (Ref. 1) 70.4 8.8 Cu6Sn5 (Ref. 1) 34.1 17.5 Reference 1: H. P. FL Frederikse, R. J. Fields, and A. Feldman, “Thermal and electrical properties of copper-tin and nickel-tin intermetallics”. J. Appl. Phys. 72 (7), 1 Oct. 1992. - The effect of high temperature storage at 175° C. on intermetallics thickness was investigated by evaluating solder joints on copper metallized dies, as shown in
FIG. 1 . Initially only Cu6Sn5 is observed, but upon time a second intermetallic Cu3Sn is also observed. As shown in Table 1, these intermetallics possess different thermal and electrical conductivities. Thus, the contribution of each intermetallic is calculated (FIG. 1 ) in the total intermetallic thickness and correlated with the thermal conductivity and electrical resistivity values shown in Table 1. - Both
FIGS. 2 and 3 show the estimated values of thermal conductivity and electrical resistivity of SAC305 and alloy B during high temperature storage. Similar behavior was also observed for samples that were subjected to thermal cycling, i.e., alternated exposure to cold and hot cycles during a period of time. Unlike SAC305, Alloy B possesses the unique characteristic of increased thermal conductivity and decreased electrical conductivity with the increase of time under high temperature storage. Also to note, is that SAC305 was used as the benchmark because it has similar silver content than alloy B. Thus, the intermetallic characteristics of alloy B are not related to the alloy composition of an ordinary Sn—Ag—Cu alloy, but to its unique alloying additions. - Change in Thermal Conductivity with Temperature:
- As shown in
FIG. 4 , thermal conductivity of SAC305 drops by about 13% when temperature increases from 25 C to 150 C. Under the same conditions, thermal conductivity of new Alloy A drops by about 9% and Alloy B′s thermal conductivity drops by only 4%. - Therefore if alloy B is used for die attach, or component attach in a high power LED assembly, parts assembled with alloy B will show much less variation in LED performance at high current operation. In other words, there will be a smaller drift in LE wavelength, maintained efficiency and the LEDs can be operated at higher power density. Similarly, if this alloy is used for die attach and other parts assembly of the any other high power electronics components, similar performance advantages will be observed.
- Change in Electrical Conductivity with Temperature:
- As shown in
FIG. 5 , the electrical resistivity of the SAC305 solder alloy increases by about 27% when temperature increases from 25 C to 85 C while under the same conditions, increase in electrical resistivity of the new Alloy A is less than 20%. If alloy A is used in die attach and for making electrical interconnects in a high-power LED assembly, it will show a much less variation in the LED performance under high current density operation and will operate at a higher efficacy/efficiency. - High-power LED performance:
- Forty-eight mid-power LEDs were assembled on flexible PET substrates using SAC305, Alloy A, and Alloy B as the package attach material (approximately 16 each). These LEDs were evaluated in an integrating sphere to measure their optical, electrical, and thermal performance. After initial analysis, the LEDs were placed in an air-to-air thermocycling chamber cycling from −40 to 125 C with a dwell time of 30 minutes. Every 250 thermocycles, up to 1500, these LEDs were removed and re-evaluated in the integrating sphere. Data reported here is absolute measured values and values normalized to each LED's pre-temperature cycling performance.
-
FIG. 6 shows luminous flux of LEDs assembled with SAC305, Alloy A and Alloy B as a function of the driving electrical power. This is initial performance of as soldered LEDs before any aging or temperature cycling shows the LEDs with Alloy A and Alloy B show about 10% higher luminous flux than LEDs with SAC305. After 1500 temperature cycles alloys A and B exhibit approximately 19% higher luminous flux at high power than SAC305 as shown inFIG. 7 . As shown inFIG. 8 , a similar difference in performance is observed in luminous efficacy as well. After 1500 temperature cycles, alloys A and B exhibit approximately 12-18% higher luminous efficacy than SAC305. - As shown in
FIG. 9 , LEDs assembled with Alloys A and B show higher luminous flux output in the beginning (0 cycles) than those assembled with SAC305. In addition, these LEDs also show smaller drop in luminous flux during temperature cycling than LEDs assembled with SAC305. - The change in flux output becomes even clearer when the normalized flux is compared for each set of LEDs as plotted in
FIG. 10 . SAC305 LED show about 17% drop while in luminous flux over 1500 cycles while the drop for Alloy A and Alloy B LEDs is about 8-9% over the same number of cycles. - Similarly, luminous efficacy of these LEDs also shows higher value for LEDs assembled with Alloys A and B as compared SAC305. In addition, as shown in
FIG. 11 , the drop in efficacy after temperature cycling is also reduced. - Another measure of LED performance is its Color Correlated Temperature (CCT) and its stability over the life of the LED.
FIG. 12 shows CCT of three sets of LEDs assembled with SAC305, Alloy A and Alloy B solders over 1500 temperature cycles. LEDs assembled with SAC305 show more than 15% change in CCT while those assembled with Alloy A and alloy B show a less than 5% change in CCT over 1500 temperature cycles. These results also point to stability of the mechanical, thermal and electrical properties of these alloys under high stress operating conditions. - Examples of the inventive alloys are shown in Table 1 with the balance of each alloy being tin.
-
Elements wt % Alloys Ag Bi Cu Ni Co Ge Mn Ti Ce In La Nd Sb Sn A 3.63 3.92 0.76 0.18 — — — — — — — — — balance B 3.81 3.94 0.8 0.25 — — — — 0.04 — — — — balance C 3.8 2.98 0.7 0.1 — — — 0.01 — — — — — balance D 3.85 3.93 0.68 0.22 — — — — 0.078 — — — — balance E 3.86 3.99 0.63 0.16 — — — 0.042 — — — — — balance F 3.82 3.96 0.6 0.16 0.042 — — — — — — — — balance G 3.9 3 0.6 0.12 — — 0.006 — — — — — — balance H 3.83 3.93 0.63 0.15 — 0.006 — — — — — — — balance I 4.2 3.99 0.63 0.18 — — — — — 3.22 — — — balance J 3.91 2.9 0.72 0.2 — — — — 0.04 — — — — balance K 3.87 3.02 0.61 0.14 — — — — — — 0.038 — — balance L 3.86 3.99 0.64 0.14 — — — — — — — 0.044 — balance M 3.94 3.92 0.7 0.12 0.023 — — — — — — — — balance N 3.72 5.1 0.52 0.1 — — — — — — — — — balance P 3.8 3 0.7 0.15 — — — — — — — — 1.4 balance - The invention is generally disclosed herein using affirmative language to describe the numerous embodiments. The invention also specifically includes embodiments in which particular subject matter is excluded, in full or in part, such as substances or materials, method steps and conditions, protocols, procedures, assays or analysis. Thus, even though the invention is generally not expressed herein in terms of what the invention does not include aspects that are not expressly included in the invention are nevertheless disclosed herein.
- A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.
Claims (20)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/286,759 US20180102464A1 (en) | 2016-10-06 | 2016-10-06 | Advanced Solder Alloys For Electronic Interconnects |
TW106133550A TWI650426B (en) | 2016-10-06 | 2017-09-29 | Advanced solder alloy and soldering method for electronic interconnection |
PCT/US2017/054699 WO2018067426A1 (en) | 2016-10-06 | 2017-10-02 | Advanced solder alloys for electronic enterconnects |
US16/257,441 US11411150B2 (en) | 2016-10-06 | 2019-01-25 | Advanced solder alloys for electronic interconnects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/286,759 US20180102464A1 (en) | 2016-10-06 | 2016-10-06 | Advanced Solder Alloys For Electronic Interconnects |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/257,441 Division US11411150B2 (en) | 2016-10-06 | 2019-01-25 | Advanced solder alloys for electronic interconnects |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180102464A1 true US20180102464A1 (en) | 2018-04-12 |
Family
ID=61830131
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/286,759 Abandoned US20180102464A1 (en) | 2016-10-06 | 2016-10-06 | Advanced Solder Alloys For Electronic Interconnects |
US16/257,441 Active 2037-07-29 US11411150B2 (en) | 2016-10-06 | 2019-01-25 | Advanced solder alloys for electronic interconnects |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/257,441 Active 2037-07-29 US11411150B2 (en) | 2016-10-06 | 2019-01-25 | Advanced solder alloys for electronic interconnects |
Country Status (3)
Country | Link |
---|---|
US (2) | US20180102464A1 (en) |
TW (1) | TWI650426B (en) |
WO (1) | WO2018067426A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170216975A1 (en) * | 2015-05-26 | 2017-08-03 | Senju Metal Industry Co., Ltd. | Solder Alloy, Solder Ball, Chip Solder, Solder Paste and Solder Joint |
WO2018209237A1 (en) | 2017-05-12 | 2018-11-15 | Alpha Assembly Solutions Inc. | Solder material and method for die attachment |
JP2020104169A (en) * | 2018-12-28 | 2020-07-09 | 株式会社タムラ製作所 | Lead-free solder alloy, material for solder joint, electronic circuit mounting board, and electronic controller |
CN112077408A (en) * | 2020-09-08 | 2020-12-15 | 宁波江丰电子材料股份有限公司 | Brazing method of chromium-silicon target and copper back plate |
CN113652575A (en) * | 2021-06-07 | 2021-11-16 | 中国工程物理研究院机械制造工艺研究所 | Sn-based plating layer or soft solder for steel without plating assistant agent |
US11285568B2 (en) * | 2017-04-25 | 2022-03-29 | Siemens Aktiengesellschaft | Solder preform for establishing a diffusion solder connection and method for producing a solder preform |
CN114728359A (en) * | 2019-11-26 | 2022-07-08 | 株式会社富士 | Component mounting method and component mounting system |
US11476399B2 (en) * | 2017-11-29 | 2022-10-18 | Panasonic Intellectual Property Management Co., Ltd. | Jointing material, fabrication method for semiconductor device using the jointing material, and semiconductor device |
US11577343B2 (en) * | 2017-11-09 | 2023-02-14 | Alpha Assembly Solutions Inc. | Low-silver alternative to standard SAC alloys for high reliability applications |
US20230068294A1 (en) * | 2020-02-14 | 2023-03-02 | Senju Metal Industry Co., Ltd. | Lead-Free and Antimony-Free Solder Alloy, Solder Ball, and Solder Joint |
US11732330B2 (en) | 2017-11-09 | 2023-08-22 | Alpha Assembly Solutions, Inc. | High reliability lead-free solder alloy for electronic applications in extreme environments |
EP4249165A1 (en) * | 2020-11-19 | 2023-09-27 | Senju Metal Industry Co., Ltd. | Solder alloy, solder ball and solder joint |
US12053843B2 (en) | 2020-06-23 | 2024-08-06 | Senju Metal Industry Co., Ltd. | Solder alloy, solder paste, solder ball, solder preform, solder joint, in-vehicle electronic circuit, ECU electronic circuit, in-vehicle electronic circuit device and ECU electronic circuit device |
JP7640921B1 (en) | 2024-07-23 | 2025-03-06 | 千住金属工業株式会社 | Solder alloy, solder paste, solder ball, solder preform, solder joint, on-vehicle electronic circuit, ECU electronic circuit, on-vehicle electronic circuit device, and ECU electronic circuit device |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6731034B2 (en) | 2018-12-25 | 2020-07-29 | 株式会社タムラ製作所 | Lead-free solder alloy, solder joint material, electronic circuit mounting board and electronic control device |
JP6700568B1 (en) * | 2019-08-09 | 2020-05-27 | 千住金属工業株式会社 | Lead-free and antimony-free solder alloys, solder balls, ball grid arrays and solder joints |
TWI742813B (en) * | 2019-09-02 | 2021-10-11 | 美商阿爾發金屬化工公司 | High temperature ultra-high reliability alloys |
DE102020102938A1 (en) * | 2020-02-05 | 2021-08-05 | Marelli Automotive Lighting Reutlingen (Germany) GmbH | Circuit carrier plate and method for manufacturing a circuit carrier plate |
JP7068370B2 (en) * | 2020-03-19 | 2022-05-16 | 千住金属工業株式会社 | Solder alloys, solder balls and solder fittings |
CN111705239A (en) * | 2020-06-29 | 2020-09-25 | 泰安晶品新材料科技有限公司 | Material formula and smelting process of BGA solder balls for packaging integrated circuit |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150224604A1 (en) * | 2012-10-09 | 2015-08-13 | Alpha Metals, Inc. | Lead-free and antimony-free tin solder reliable at high temperatures |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4758407A (en) * | 1987-06-29 | 1988-07-19 | J.W. Harris Company | Pb-free, tin base solder composition |
US4806309A (en) * | 1988-01-05 | 1989-02-21 | Willard Industries, Inc. | Tin base lead-free solder composition containing bismuth, silver and antimony |
US5197253A (en) | 1990-12-31 | 1993-03-30 | Johnson David W | Interlocking joint pultrusion construction |
US5435857A (en) * | 1994-01-06 | 1995-07-25 | Qualitek International, Inc. | Soldering composition |
US6197253B1 (en) * | 1998-12-21 | 2001-03-06 | Allen Broomfield | Lead-free and cadmium-free white metal casting alloy |
CN1144649C (en) * | 1999-06-11 | 2004-04-07 | 日本板硝子株式会社 | Lead-free solder |
DE10319888A1 (en) | 2003-04-25 | 2004-11-25 | Siemens Ag | Solder material based on SnAgCu |
US20050100474A1 (en) * | 2003-11-06 | 2005-05-12 | Benlih Huang | Anti-tombstoning lead free alloys for surface mount reflow soldering |
WO2006079199A1 (en) * | 2005-01-25 | 2006-08-03 | Tir Systems Ltd. | Method and apparatus for illumination and communication |
US8641964B2 (en) * | 2005-08-24 | 2014-02-04 | Fry's Metals, Inc. | Solder alloy |
US9175368B2 (en) * | 2005-12-13 | 2015-11-03 | Indium Corporation | MN doped SN-base solder alloy and solder joints thereof with superior drop shock reliability |
EP1971699A2 (en) * | 2006-01-10 | 2008-09-24 | Illinois Tool Works Inc. | Lead-free solder with low copper dissolution |
JP5376553B2 (en) * | 2006-06-26 | 2013-12-25 | 日立金属株式会社 | Wiring conductor and terminal connection |
KR100891761B1 (en) * | 2007-10-19 | 2009-04-07 | 삼성전기주식회사 | Semiconductor light emitting device, manufacturing method thereof and semiconductor light emitting device package using same |
WO2014002304A1 (en) | 2012-06-29 | 2014-01-03 | ハリマ化成株式会社 | Solder alloy, solder paste, and electronic circuit board |
WO2014013632A1 (en) | 2012-07-19 | 2014-01-23 | ハリマ化成株式会社 | Solder alloy, solder paste, and electronic circuit board |
US9005330B2 (en) * | 2012-08-09 | 2015-04-14 | Ormet Circuits, Inc. | Electrically conductive compositions comprising non-eutectic solder alloys |
JP2015077601A (en) | 2013-04-02 | 2015-04-23 | 千住金属工業株式会社 | Lead-free solder alloy |
US9606304B2 (en) * | 2014-12-02 | 2017-03-28 | Innovations In Optics, Inc. | High radiance light emitting diode light engine |
JP5723056B1 (en) | 2014-12-15 | 2015-05-27 | ハリマ化成株式会社 | Solder alloy, solder paste and electronic circuit board |
-
2016
- 2016-10-06 US US15/286,759 patent/US20180102464A1/en not_active Abandoned
-
2017
- 2017-09-29 TW TW106133550A patent/TWI650426B/en not_active IP Right Cessation
- 2017-10-02 WO PCT/US2017/054699 patent/WO2018067426A1/en active Application Filing
-
2019
- 2019-01-25 US US16/257,441 patent/US11411150B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150224604A1 (en) * | 2012-10-09 | 2015-08-13 | Alpha Metals, Inc. | Lead-free and antimony-free tin solder reliable at high temperatures |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170216975A1 (en) * | 2015-05-26 | 2017-08-03 | Senju Metal Industry Co., Ltd. | Solder Alloy, Solder Ball, Chip Solder, Solder Paste and Solder Joint |
US11465244B2 (en) * | 2015-05-26 | 2022-10-11 | Senju Metal Industry Co., Ltd. | Solder alloy, solder ball, chip solder, solder paste and solder joint |
US11285568B2 (en) * | 2017-04-25 | 2022-03-29 | Siemens Aktiengesellschaft | Solder preform for establishing a diffusion solder connection and method for producing a solder preform |
WO2018209237A1 (en) | 2017-05-12 | 2018-11-15 | Alpha Assembly Solutions Inc. | Solder material and method for die attachment |
US11577343B2 (en) * | 2017-11-09 | 2023-02-14 | Alpha Assembly Solutions Inc. | Low-silver alternative to standard SAC alloys for high reliability applications |
US11732330B2 (en) | 2017-11-09 | 2023-08-22 | Alpha Assembly Solutions, Inc. | High reliability lead-free solder alloy for electronic applications in extreme environments |
US11476399B2 (en) * | 2017-11-29 | 2022-10-18 | Panasonic Intellectual Property Management Co., Ltd. | Jointing material, fabrication method for semiconductor device using the jointing material, and semiconductor device |
JP2020104169A (en) * | 2018-12-28 | 2020-07-09 | 株式会社タムラ製作所 | Lead-free solder alloy, material for solder joint, electronic circuit mounting board, and electronic controller |
CN114728359A (en) * | 2019-11-26 | 2022-07-08 | 株式会社富士 | Component mounting method and component mounting system |
EP4105348A4 (en) * | 2020-02-14 | 2023-09-06 | Senju Metal Industry Co., Ltd. | LEAD-FREE AND ANTIMONY-FREE SOLDER ALLOY, SOLDER BALL AND SOLDER JOINT |
US20230068294A1 (en) * | 2020-02-14 | 2023-03-02 | Senju Metal Industry Co., Ltd. | Lead-Free and Antimony-Free Solder Alloy, Solder Ball, and Solder Joint |
US12053843B2 (en) | 2020-06-23 | 2024-08-06 | Senju Metal Industry Co., Ltd. | Solder alloy, solder paste, solder ball, solder preform, solder joint, in-vehicle electronic circuit, ECU electronic circuit, in-vehicle electronic circuit device and ECU electronic circuit device |
CN112077408A (en) * | 2020-09-08 | 2020-12-15 | 宁波江丰电子材料股份有限公司 | Brazing method of chromium-silicon target and copper back plate |
EP4249165A1 (en) * | 2020-11-19 | 2023-09-27 | Senju Metal Industry Co., Ltd. | Solder alloy, solder ball and solder joint |
EP4249165A4 (en) * | 2020-11-19 | 2024-05-15 | Senju Metal Industry Co., Ltd. | Solder alloy, solder ball and solder joint |
CN113652575A (en) * | 2021-06-07 | 2021-11-16 | 中国工程物理研究院机械制造工艺研究所 | Sn-based plating layer or soft solder for steel without plating assistant agent |
JP7640921B1 (en) | 2024-07-23 | 2025-03-06 | 千住金属工業株式会社 | Solder alloy, solder paste, solder ball, solder preform, solder joint, on-vehicle electronic circuit, ECU electronic circuit, on-vehicle electronic circuit device, and ECU electronic circuit device |
Also Published As
Publication number | Publication date |
---|---|
TWI650426B (en) | 2019-02-11 |
TW201819645A (en) | 2018-06-01 |
WO2018067426A1 (en) | 2018-04-12 |
US20190157535A1 (en) | 2019-05-23 |
US11411150B2 (en) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11411150B2 (en) | Advanced solder alloys for electronic interconnects | |
US20230330788A1 (en) | Lead-free and antimony-free tin solder reliable at high temperatures | |
TWI742813B (en) | High temperature ultra-high reliability alloys | |
US10322471B2 (en) | Low temperature high reliability alloy for solder hierarchy | |
TWI820277B (en) | Lead-free solder compositions | |
JP5614507B2 (en) | Sn-Cu lead-free solder alloy | |
WO2018168858A1 (en) | Solder material | |
CN113474474A (en) | High reliability lead-free solder alloy for harsh service conditions | |
KR102460042B1 (en) | Lead-free solder alloy, solder ball, solder paste, and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALPHA METALS, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE AVILA RIBAS, MORGANA;CHOUDHURY, PRITHA;SARKAR, SIULI;AND OTHERS;SIGNING DATES FROM 20161024 TO 20161025;REEL/FRAME:040735/0349 |
|
AS | Assignment |
Owner name: ALPHA ASSEMBLY SOLUTIONS INC., CONNECTICUT Free format text: CHANGE OF NAME;ASSIGNOR:ALPHA METALS, INC.;REEL/FRAME:043930/0680 Effective date: 20160928 |
|
AS | Assignment |
Owner name: BARCLAYS BANK PLC, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:ALPHA ASSEMBLY SOLUTIONS INC. (F/K/A ALPHA METALS, INC.);REEL/FRAME:048260/0683 Effective date: 20190131 Owner name: BARCLAYS BANK PLC, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:MACDERMID ENTHONE INC. (F/K/A ENTHONE INC.);REEL/FRAME:048261/0110 Effective date: 20190131 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: CITIBANK, N.A., NEW YORK Free format text: ASSIGNMENT OF SECURITY INTEREST IN PATENT COLLATERAL;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:061956/0643 Effective date: 20221115 |