US20180045741A1 - Biomarker for parkinson's disease and use thereof - Google Patents
Biomarker for parkinson's disease and use thereof Download PDFInfo
- Publication number
- US20180045741A1 US20180045741A1 US15/725,712 US201715725712A US2018045741A1 US 20180045741 A1 US20180045741 A1 US 20180045741A1 US 201715725712 A US201715725712 A US 201715725712A US 2018045741 A1 US2018045741 A1 US 2018045741A1
- Authority
- US
- United States
- Prior art keywords
- ubiquitin
- disease
- parkinson
- phosphorylated
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000018737 Parkinson disease Diseases 0.000 title claims description 117
- 239000000090 biomarker Substances 0.000 title claims description 19
- 102000044159 Ubiquitin Human genes 0.000 claims description 265
- 108090000848 Ubiquitin Proteins 0.000 claims description 265
- 210000004027 cell Anatomy 0.000 claims description 137
- 238000000034 method Methods 0.000 claims description 84
- 101000605835 Homo sapiens Serine/threonine-protein kinase PINK1, mitochondrial Proteins 0.000 claims description 62
- 102100038376 Serine/threonine-protein kinase PINK1, mitochondrial Human genes 0.000 claims description 62
- 238000006366 phosphorylation reaction Methods 0.000 claims description 62
- 239000003795 chemical substances by application Substances 0.000 claims description 56
- 239000003814 drug Substances 0.000 claims description 45
- 229940124597 therapeutic agent Drugs 0.000 claims description 45
- 230000003449 preventive effect Effects 0.000 claims description 44
- 210000003470 mitochondria Anatomy 0.000 claims description 39
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 claims description 38
- 150000001413 amino acids Chemical class 0.000 claims description 34
- 150000001875 compounds Chemical class 0.000 claims description 30
- 239000000284 extract Substances 0.000 claims description 21
- 235000001014 amino acid Nutrition 0.000 claims description 15
- 238000012216 screening Methods 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 15
- 229910019142 PO4 Inorganic materials 0.000 claims description 10
- CKLJMWTZIZZHCS-REOHCLBHSA-N aspartic acid group Chemical group N[C@@H](CC(=O)O)C(=O)O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 10
- 239000010452 phosphate Substances 0.000 claims description 10
- 238000012217 deletion Methods 0.000 claims description 7
- 230000037430 deletion Effects 0.000 claims description 7
- 230000001900 immune effect Effects 0.000 claims description 7
- 238000003780 insertion Methods 0.000 claims description 5
- 230000037431 insertion Effects 0.000 claims description 5
- 238000006467 substitution reaction Methods 0.000 claims description 5
- 102000001253 Protein Kinase Human genes 0.000 claims description 4
- 108060006633 protein kinase Proteins 0.000 claims description 4
- 125000003275 alpha amino acid group Chemical group 0.000 claims 4
- 101000619542 Homo sapiens E3 ubiquitin-protein ligase parkin Proteins 0.000 description 70
- 102000045222 parkin Human genes 0.000 description 70
- 230000026731 phosphorylation Effects 0.000 description 40
- UGTJLJZQQFGTJD-UHFFFAOYSA-N Carbonylcyanide-3-chlorophenylhydrazone Chemical compound ClC1=CC=CC(NN=C(C#N)C#N)=C1 UGTJLJZQQFGTJD-UHFFFAOYSA-N 0.000 description 29
- 230000004913 activation Effects 0.000 description 27
- 239000000243 solution Substances 0.000 description 22
- 241001465754 Metazoa Species 0.000 description 21
- 238000003556 assay Methods 0.000 description 21
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 18
- 108090000765 processed proteins & peptides Proteins 0.000 description 17
- 239000000126 substance Substances 0.000 description 17
- 108091000080 Phosphotransferase Proteins 0.000 description 15
- 238000001514 detection method Methods 0.000 description 15
- 102000020233 phosphotransferase Human genes 0.000 description 15
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- 239000000872 buffer Substances 0.000 description 13
- 108090000623 proteins and genes Proteins 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 210000004671 cell-free system Anatomy 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 12
- 241000283973 Oryctolagus cuniculus Species 0.000 description 11
- 238000004949 mass spectrometry Methods 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 108010033276 Peptide Fragments Proteins 0.000 description 9
- 102000007079 Peptide Fragments Human genes 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 210000001700 mitochondrial membrane Anatomy 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 102220549527 Polyubiquitin-C_S65D_mutation Human genes 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000008034 disappearance Effects 0.000 description 7
- 229960003638 dopamine Drugs 0.000 description 7
- 238000010353 genetic engineering Methods 0.000 description 7
- 238000003119 immunoblot Methods 0.000 description 7
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 7
- 230000034512 ubiquitination Effects 0.000 description 7
- 238000010798 ubiquitination Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 108010068086 Polyubiquitin Proteins 0.000 description 6
- 102100037935 Polyubiquitin-C Human genes 0.000 description 6
- 102220549525 Polyubiquitin-C_S65E_mutation Human genes 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 210000000170 cell membrane Anatomy 0.000 description 6
- 238000001962 electrophoresis Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 230000000149 penetrating effect Effects 0.000 description 6
- 238000011002 quantification Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 241000700199 Cavia porcellus Species 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 108060003951 Immunoglobulin Proteins 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- -1 carrier Substances 0.000 description 4
- 239000013592 cell lysate Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000011257 definitive treatment Methods 0.000 description 4
- 230000007850 degeneration Effects 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 4
- 102000018358 immunoglobulin Human genes 0.000 description 4
- 238000001114 immunoprecipitation Methods 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 230000021125 mitochondrion degradation Effects 0.000 description 4
- 229920002401 polyacrylamide Polymers 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- 241001430294 unidentified retrovirus Species 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 208000027089 Parkinsonian disease Diseases 0.000 description 3
- 206010034010 Parkinsonism Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 230000003466 anti-cipated effect Effects 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 238000011532 immunohistochemical staining Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 230000004770 neurodegeneration Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 230000035790 physiological processes and functions Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000007115 recruitment Effects 0.000 description 3
- 238000009256 replacement therapy Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 229960004793 sucrose Drugs 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 2
- 235000005956 Cosmos caudatus Nutrition 0.000 description 2
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 2
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- QRLVDLBMBULFAL-UHFFFAOYSA-N Digitonin Natural products CC1CCC2(OC1)OC3C(O)C4C5CCC6CC(OC7OC(CO)C(OC8OC(CO)C(O)C(OC9OCC(O)C(O)C9OC%10OC(CO)C(O)C(OC%11OC(CO)C(O)C(O)C%11O)C%10O)C8O)C(O)C7O)C(O)CC6(C)C5CCC4(C)C3C2C QRLVDLBMBULFAL-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 208000012661 Dyskinesia Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 2
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 2
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 2
- 102000006404 Mitochondrial Proteins Human genes 0.000 description 2
- 108010058682 Mitochondrial Proteins Proteins 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 108010030544 Peptidyl-Lys metalloendopeptidase Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 102000003923 Protein Kinase C Human genes 0.000 description 2
- 108090000315 Protein Kinase C Proteins 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 102000006275 Ubiquitin-Protein Ligases Human genes 0.000 description 2
- 108010083111 Ubiquitin-Protein Ligases Proteins 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 2
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 210000000628 antibody-producing cell Anatomy 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- UVYVLBIGDKGWPX-KUAJCENISA-N digitonin Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)C[C@@H](O)[C@H](O[C@H]5[C@@H]([C@@H](O)[C@@H](O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)CO7)O)[C@H](O)[C@@H](CO)O6)O[C@H]6[C@@H]([C@@H](O[C@H]7[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O7)O)[C@@H](O)[C@@H](CO)O6)O)[C@@H](CO)O5)O)C[C@@H]4CC[C@H]3[C@@H]2[C@@H]1O)C)[C@@H]1C)[C@]11CC[C@@H](C)CO1 UVYVLBIGDKGWPX-KUAJCENISA-N 0.000 description 2
- UVYVLBIGDKGWPX-UHFFFAOYSA-N digitonine Natural products CC1C(C2(CCC3C4(C)CC(O)C(OC5C(C(O)C(OC6C(C(OC7C(C(O)C(O)CO7)O)C(O)C(CO)O6)OC6C(C(OC7C(C(O)C(O)C(CO)O7)O)C(O)C(CO)O6)O)C(CO)O5)O)CC4CCC3C2C2O)C)C2OC11CCC(C)CO1 UVYVLBIGDKGWPX-UHFFFAOYSA-N 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000012133 immunoprecipitate Substances 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000004068 intracellular signaling Effects 0.000 description 2
- 238000011813 knockout mouse model Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 230000003950 pathogenic mechanism Effects 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 239000000419 plant extract Substances 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- GUUBJKMBDULZTE-UHFFFAOYSA-M potassium;2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid;hydroxide Chemical compound [OH-].[K+].OCCN1CCN(CCS(O)(=O)=O)CC1 GUUBJKMBDULZTE-UHFFFAOYSA-M 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 239000011535 reaction buffer Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008684 selective degradation Effects 0.000 description 2
- 230000010305 self ubiquitination Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 210000003523 substantia nigra Anatomy 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- PLRACCBDVIHHLZ-UHFFFAOYSA-N 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Chemical compound C1N(C)CCC(C=2C=CC=CC=2)=C1 PLRACCBDVIHHLZ-UHFFFAOYSA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- 206010001541 Akinesia Diseases 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 239000012109 Alexa Fluor 568 Substances 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 101150012716 CDK1 gene Proteins 0.000 description 1
- PCDQPRRSZKQHHS-XVFCMESISA-N CTP Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 PCDQPRRSZKQHHS-XVFCMESISA-N 0.000 description 1
- 101100190541 Caenorhabditis elegans pink-1 gene Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- 101100059559 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) nimX gene Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 101000976899 Homo sapiens Mitogen-activated protein kinase 15 Proteins 0.000 description 1
- 101000950687 Homo sapiens Mitogen-activated protein kinase 7 Proteins 0.000 description 1
- 101000950669 Homo sapiens Mitogen-activated protein kinase 9 Proteins 0.000 description 1
- 108700020121 Human Immunodeficiency Virus-1 rev Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 208000006083 Hypokinesia Diseases 0.000 description 1
- 208000015592 Involuntary movements Diseases 0.000 description 1
- 108010055717 JNK Mitogen-Activated Protein Kinases Proteins 0.000 description 1
- 102000019145 JUN kinase activity proteins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102000019149 MAP kinase activity proteins Human genes 0.000 description 1
- 108040008097 MAP kinase activity proteins Proteins 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102100033703 Mitofusin-2 Human genes 0.000 description 1
- 108050004120 Mitofusin-2 Proteins 0.000 description 1
- 102100023483 Mitogen-activated protein kinase 15 Human genes 0.000 description 1
- 102100037805 Mitogen-activated protein kinase 7 Human genes 0.000 description 1
- 102100037809 Mitogen-activated protein kinase 9 Human genes 0.000 description 1
- 208000001089 Multiple system atrophy Diseases 0.000 description 1
- 101001135571 Mus musculus Tyrosine-protein phosphatase non-receptor type 2 Proteins 0.000 description 1
- 208000002740 Muscle Rigidity Diseases 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710129178 Outer plastidial membrane protein porin Proteins 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010067206 Postural reflex impairment Diseases 0.000 description 1
- 206010071390 Resting tremor Diseases 0.000 description 1
- 101100221606 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) COS7 gene Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- RZCIEJXAILMSQK-JXOAFFINSA-N TTP Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 RZCIEJXAILMSQK-JXOAFFINSA-N 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- PGAVKCOVUIYSFO-XVFCMESISA-N UTP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 PGAVKCOVUIYSFO-XVFCMESISA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 102100037820 Voltage-dependent anion-selective channel protein 1 Human genes 0.000 description 1
- 101100273808 Xenopus laevis cdk1-b gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 208000024453 abnormal involuntary movement Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000035578 autophosphorylation Effects 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000003483 hypokinetic effect Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000012151 immunohistochemical method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012155 injection solvent Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 210000001259 mesencephalon Anatomy 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000007625 mitochondrial abnormality Effects 0.000 description 1
- 230000004769 mitochondrial stress Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000017311 musculoskeletal movement, spinal reflex action Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- FIKAKWIAUPDISJ-UHFFFAOYSA-L paraquat dichloride Chemical compound [Cl-].[Cl-].C1=C[N+](C)=CC=C1C1=CC=[N+](C)C=C1 FIKAKWIAUPDISJ-UHFFFAOYSA-L 0.000 description 1
- 235000015927 pasta Nutrition 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 238000003566 phosphorylation assay Methods 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 102000009929 raf Kinases Human genes 0.000 description 1
- 108010077182 raf Kinases Proteins 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229940080817 rotenone Drugs 0.000 description 1
- JUVIOZPCNVVQFO-UHFFFAOYSA-N rotenone Natural products O1C2=C3CC(C(C)=C)OC3=CC=C2C(=O)C2C1COC1=C2C=C(OC)C(OC)=C1 JUVIOZPCNVVQFO-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 208000003755 striatonigral degeneration Diseases 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 239000012929 tonicity agent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
- G01N33/6896—Neurological disorders, e.g. Alzheimer's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/48—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
- C12Q1/485—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/11—Protein-serine/threonine kinases (2.7.11)
- C12Y207/11001—Non-specific serine/threonine protein kinase (2.7.11.1), i.e. casein kinase or checkpoint kinase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5076—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving cell organelles, e.g. Golgi complex, endoplasmic reticulum
- G01N33/5079—Mitochondria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/91—Transferases (2.)
- G01N2333/912—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/91—Transferases (2.)
- G01N2333/912—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- G01N2333/91205—Phosphotransferases in general
- G01N2333/9121—Phosphotransferases in general with an alcohol group as acceptor (2.7.1), e.g. general tyrosine, serine or threonine kinases
- G01N2333/91215—Phosphotransferases in general with an alcohol group as acceptor (2.7.1), e.g. general tyrosine, serine or threonine kinases with a definite EC number (2.7.1.-)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2440/00—Post-translational modifications [PTMs] in chemical analysis of biological material
- G01N2440/14—Post-translational modifications [PTMs] in chemical analysis of biological material phosphorylation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/20—Screening for compounds of potential therapeutic value cell-free systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
- G01N2800/2835—Movement disorders, e.g. Parkinson, Huntington, Tourette
Definitions
- the present invention relates to a biomarker for the diagnosis of Parkinson's disease, an antibody against the same, a method for testing for and/or diagnosing Parkinson's disease, and a therapeutic agent or a preventive agent for Parkinson's disease and a screening method therefor.
- Parkinson's disease is a neurodegenerative disease which develops with high frequency with aging, and the incidence rate is more than 1% of the population aged 65 and over. It is anticipated that the number of patients with Parkinson's disease will significantly increase in association with the aging of the population in the future, and thus, it is imperative to promptly establish methods for diagnosing, preventing and/or treating Parkinson's disease.
- Parkinson's disease is developed by degeneration and/or defluxion of dopamine neurons in the substantia nigra in the midbrain.
- a dopamine replacement therapy involving administration of L-dopa has been carried out as the primary prognosis treatment for Parkinson's disease.
- the dopamine replacement therapy merely treats symptoms, and thus, in order to suppress the symptoms of Parkinson's disease, drug administration must be continued.
- the dopamine replacement therapy has been problematic in that long-term administration of L-dopa produces progressively less effect caused by shortened duration of medicinal effects or serious side effects such as abnormal involuntary movement called “dyskinesia”.
- Parkinson's disease In addition, for diagnosis of Parkinson's disease, there is only a diagnostic method based on symptoms characteristic of this disease. Thus, under the current circumstances, Parkinson's disease cannot be clearly distinguished from other neurological diseases at an early stage with mild symptoms. In order to establish a radical therapy for Parkinson's disease and a method for specifically diagnosing this disease at an early stage, it is necessary to elucidate the mechanism of pathogenesis of Parkinson's disease, that is, the mechanism by which degeneration of dopamine neurons progresses. It has been desired to promptly elucidate such mechanisms.
- Parkinson's disease develop sporadically, but some cases are familial (hereditary) diseases. Multiple associated genes have been isolated and identified. Since sporadic Parkinson's disease shares clinical symptoms with familial Parkinson's disease, it has been assumed that the two typos of Parkinson's diseases would have a common mechanism of degeneration of dopamine cells, and thus, it has been anticipated that analysis of genes responsible for hereditary Parkinson's disease would lead to elucidation of the pathogenic mechanism of sporadic Parkinson's disease. PINK1 and Parkin have been identified as causal genes responsible for hereditary recessive early-onset Parkinsonism (Non Patent Document 1).
- Non-Patent Document 2 An abnormality in this selective degradation mechanism of defective mitochondria (mitophagy) is considered to be a cause of neurodegeneration in Parkinson's disease.
- Parkin is ubiquitin ligase (E3).
- E3 is the most important enzyme for determining substrate specificity in a ubiquitin-proteasome system, and in order to elucidate the pathogenic mechanism of Parkinson's disease due to abnormal mitophagy, it is extremely important to understand the mechanism of activation of Parkin.
- Parkin is generally present in the cytoplasm in an inactive form. When Parkin is recruited to defective mitochondria, it is activated and functions as an E3 enzyme. It has been known that PINK1 is essential for both recruitment of Parkin to mitochondria and the activation thereof (Non-Patent Document 3).
- Non-Patent Document 4 Non-Patent Document 5
- phosphorylation of Parkin is essential, but not sufficient, for the activation thereof.
- the mechanism of activation of Parkin is still only partially understood.
- Parkin which has been activated as an E3 enzyme, ubiquitinates a substrate protein on the mitochondrial outer membrane to induce the mitochondria to degrade.
- Ubiquitin is a protein consisting of 76 amino acids, which universally exists in all eukaryotes, and the amino acid sequence thereof is highly conserved. Studies regarding such ubiquitin have a long history, and it has been revealed that the ubiquitin acts as a tag for inducing the degradation of a substrate protein, and at the same time, it is involved in various functions such as DNA repair or intracellular signaling.
- the ubiquitin has seven lysine residues, and that the ubiquitin binds to a glycine residue at the C-terminus of another ubiquitin via these lysine residues to form a polyubiquitin chain, and various different functions are exhibited depending on the binding pattern (i.e., a difference in the shape of a polyubiquitin chain).
- the ubiquitin itself has undergone a certain posttranslational modification, and as a result, its function is changed.
- phosphorylation of ubiquitin is essential for complete activation of the Parkin.
- the finding that phosphorylation of ubiquitin is essential for activation of Parkin is novel.
- the findings that the ubiquitin itself undergoes a certain posttranslational modification, and that the ubiquitin is thereby involved in the control of intracellular signaling are previously completely unknown, and these are surprising discoveries.
- the present inventors have found that a phosphorylated ubiquitin is useful for the detection, diagnosis, prevention and treatment of Parkinson's disease, and also for screening for a preventive and/or a therapeutic agent of Parkinson's disease.
- the present invention provides a method for testing for Parkinson's disease, which comprises a step of detecting or quantifying a ubiquitin protein comprising a phosphorylated serine residue at position 65 in a sample isolated from a subject.
- the step of detecting or quantifying is preferably carried out by an immunological technique.
- the present invention provides a biomarker for detecting Parkinson's disease, which consists of a ubiquitin protein comprising a phosphorylated serine residue at position 65.
- the present invention provides an antibody having an ability to specifically bind to a ubiquitin protein comprising a phosphorylated serine residue at position 65.
- the antibody is preferably a polyclonal antibody or a monoclonal antibody.
- the present invention provides a therapeutic agent or a preventive agent for Parkinson's disease, which comprises a ubiquitin protein comprising a phosphorylated serine residue at position 65.
- the present invention provides a therapeutic agent or a preventive agent for Parkinson's disease, which comprises a phosphorylation-mimicking form of ubiquitin, in which the serine residue at position 65 is substituted with an aspartic acid residue.
- the present invention provides a method for screening, for a therapeutic agent or a preventive agent for Parkinson's disease, which comprises: (1) a step of providing cells that express PINK1; (2) a step of damaging mitochondria in the cells; (3) a step of contacting the cells with a candidate compound; and (4) a step of measuring the amount of a ubiquitin protein comprising a phosphorylated serine residue at position 65, which has been generated in the cells.
- the present invention provides a method for screening for a therapeutic agent or a preventive agent for Parkinson's disease, which comprises: (1) a step of preparing a phosphorylation reaction solution containing a ubiquitin protein, a kinase, and a phosphate donor; (2) a step of adding a candidate compound to the phosphorylation reaction solution; and (3) a step of measuring the amount of a ubiquitin protein comprising a phosphorylated serine residue at position 65, which has been generated in the phosphorylation reaction solution.
- the phosphorylation reaction solution is preferably a cell extract.
- the phosphorylated ubiquitin according to the present invention is useful as a biomarker capable of measuring and/or evaluating the pathogenic process of Parkinson's disease, for an early and specific diagnosis of Parkinson's disease, or for the screening of a therapeutic agent or a preventive agent for Parkinson's disease.
- the antibody according to the present invention having an ability to specifically bind to the phosphorylated ubiquitin is useful for the detection and/or measurement of the biomarker.
- the phosphorylated ubiquitin and phosphorylation-mimicking form of ubiquitin according to the present invention are useful as therapeutic agents or preventive agents for Parkinson's disease, and these substances enable an early and definitive treatment of Parkinson's disease.
- FIG. 1 is a view, in which the phosphorylation of ubiquitin in CCCP-treated cells has been confirmed by a Phos-tag assay.
- FIG. 2 is a view, in which the phosphorylation of ubiquitin in a cell-free system has been confirmed by a Phos-tag assay.
- FIG. 3 is a view showing the results of a mass spectrometry performed to specify the phosphorylation site of ubiquitin.
- FIG. 4 is a view in which it has been confirmed by a Phos-tag assay that the phosphorylation site of a recombinant ubiquitin in a cell-free system is the serine residue at position 65.
- FIG. 5 is a view in which it has been confirmed by a Phos-tag assay that the phosphorylation site of a recombinant ubiquitin in CCCP-treated cells is the serine residue at position 65.
- FIG. 6 is a view in which it has been confirmed by a Phos-tag assay that the phosphorylation of ubiquitin is disappeared in PINK1 ⁇ / ⁇ cells.
- FIG. 7 is a view in which the phosphorylation of ubiquitin by isolated PINK1 has been confirmed by a Phos-tag assay.
- FIG. 8 is a view in which the activation of Parkin by a phosphorylation-mimicking form of ubiquitin has been confirmed by an intracellular ubiquitination assay.
- FIG. 9 is a view in which Parkin activation by a C-terminus-modified ubiquitin protein has been confirmed by an intracellular ubiquitination assay.
- FIG. 10 includes multiple fluorescence immunostained images showing the ubiquitination of mitochondria.
- FIG. 11 is a view showing the activation of Parkin by a recombinant ubiquitin or ubiquitin comprising a phosphorylated serine residue at position 65 in a cell-free system.
- FIG. 12 is a schematic view showing the mechanism of activation of Parkin.
- FIG. 13 is a view showing the detection of ubiquitin comprising a phosphorylated serine residue at position 65, using an anti-phosphorylated ubiquitin rabbit polyclonal antibody.
- FIG. 14 is a view showing the detection of ubiquitin comprising a phosphorylated serine residue at position 65, using an anti-phosphorylated ubiquitin guinea pig polyclonal antibody.
- FIG. 15 is a view in which the presence of ubiquitin comprising a phosphorylated serine residue at position 65 in a cell has been confirmed by mass spectrometry.
- a first aspect of the present invention relates to early detection of Parkinson's disease.
- a biomarker for detecting Parkinson's disease and an intended use thereof are provided.
- the present invention is a biomarker for detecting Parkinson's disease, which consists of a ubiquitin protein comprising a phosphorylated serine residue at position 65.
- the “biomarker for detecting Parkinson's disease” of the present embodiment means a biomolecule serving as an indicator for detecting the presence or absence of affection with Parkinson's disease or the degree of the affection.
- the “Parkinson's disease” is a neurodegenerative disease, which clinically has at least two symptoms selected from among (1) muscular rigidity of limbs, (2) involuntary movements such as resting tremor, (3) hypokinesia or akinesia, and (4) postural reflex impairment, and which is pathologically characterized by degeneration and defluxion of dopamine neurons in the substantia nigra.
- the “Parkinson's disease” according to the present invention includes early-onset Parkinsonism, familial (hereditary) Parkinsonism, striatonigral degeneration (multiple system atrophy), and the like, as well as what is called Parkinson's disease (sporadic Parkinson's disease).
- the biomarker for detecting Parkinson's disease of the present embodiment consists of a ubiquitin protein comprising a phosphorylated serine residue at position 65.
- a ubiquitin protein comprising a phosphorylated serine residue at position 65 is referred to as “Ser65-phosphorylated ubiquitin”.
- the “Ser65-phosphorylated ubiquitin” of the present embodiment may include not only a ubiquitin protein consisting of a specific amino acid sequence (SEQ ID NO: 1), but also a ubiquitin protein consisting of an amino acid sequence comprising a substitution, deletion, insertion and/or addition of one to several amino acids with respect to the amino acid sequence shown in SEQ ID NO: 1, on condition that the phosphorylated serine residue at position 65 is conserved.
- “one to several” is preferably “1 to 3,” “1 or 2,” or “1”.
- the “Ser65-phosphorylated ubiquitin” of the present embodiment may include a ubiquitin protein consisting of an amino acid sequence having an identity of 80% or more with SEQ ID NO: 1, on condition that the phosphorylated serine residue at position 65 is conserved and physiological functions equivalent to those of the ubiquitin consisting of SEQ ID NO: 1 are maintained.
- the amino acid sequence identity is preferably approximately 90% or more, 95% or more, 96% or more, or 97% or more, and particularly preferably 98% or more, or 99% or more.
- the amino acid sequence identity can be determined using sequence analysis software, or using program commonly used in the present technical field (FASTA, BLAST, etc.).
- the biomarker for detecting Parkinson's disease of the present embodiment is generated as a result of mitochondria abnormality occurring, and it then disappears in a normal subject (not affected with Parkinson's disease). However, in a Parkinson's disease patient, it is anticipated that the biomarker will not be generated due to the loss of function of PINK1, or that the concentration thereof will be increased by the loss of function of Parkin or by acceleration in mitochondrial stress. That is to say, the biomarker for detecting Parkinson's disease of the present embodiment is able to specifically detect Parkinson's disease at an early stage, by using, as an indicator, a deviation (a reduction or an increase) from the normal value of a subject who is not affected with Parkinson's disease.
- the present invention is a method for testing for Parkinson's disease, which comprises a step of detecting or quantifying a biomarker for detecting Parkinson's disease consisting of a Ser65-phosphorylated ubiquitin protein in a sample isolated from a subject.
- test may be used in the present embodiment to mean that Parkinson's disease is numerically quantified or the presence or absence of Parkinson's disease is detected by using a biomarker for detecting Parkinson's disease consisting of a Ser65-phosphorylated ubiquitin protein as an indicator. Based on the test results, a physician is able to determine and/or diagnose whether or not the subject is affected by Parkinson's disease, and then, is able to determine appropriate therapeutic strategies.
- subject is used in the present embodiment to mean an individual animal, which can be affected with Parkinson's disease.
- the animal include a mouse, a rat, a rabbit, a dog, non-human primates, and mammals such as a human.
- the animal is preferably a human.
- sample of the present embodiment is a biological sample, which can be collected from a subject.
- the sample may be, for example, tissues, cells, body fluid and the like, which are derived from a subject, but the examples are not particularly limited thereto.
- tissue sample or the cell sample may include brain, cardiac muscle, and skeletal muscle.
- body fluid may include blood, plasma, serum, and cerebrospinal fluid.
- Such a sample can be obtained from a subject by a method well known to a person skilled in the art.
- a Ser65-phosphorylated ubiquitin protein can be detected or quantified by a method well known in the present technical field.
- the method for detecting or quantifying the Ser65-phosphorylated ubiquitin include immunological techniques such as enzyme immunoassay (EIA), radioimmunoassay (RIA), immunoblotting, immunoprecipitation or immunohistochemical staining, and methods such as liquid chromatography or mass spectrometry.
- EIA enzyme immunoassay
- RIA radioimmunoassay
- immunoblotting immunoprecipitation or immunohistochemical staining
- methods such as liquid chromatography or mass spectrometry.
- a preferred detection or quantification method is an immunological technique. Detection or quantification of the Ser65-phosphorylated ubiquitin by an immunological technique can be carried out, for example, by using an antibody having an ability to specifically bind to the Ser65-phosphorylated ubiquitin.
- ubiquitin purified from a sample is cleaved by protease such as trypsin or endoproteinase Lys-C, and then, for example, a signal derived from a peptide fragment: E(pS)TLHLVLR (corresponding to the amino acids at positions 64 to 72 of phosphorylated ubiquitin), in which the m/z of a precursor ion (Precursor m/z) is 574.297 and the charge state is +2, is detected.
- protease such as trypsin or endoproteinase Lys-C
- a signal derived from a peptide fragment: ESTLHLVLR (corresponding to the amino acids at positions 64 to 72 of non-phosphorylated ubiquitin), in which the m/z of a precursor ion is 534.314 and the charge state is +2, can be detected as a positive control.
- the method for testing for Parkinson's disease of the present embodiment may further comprise a step of comparing the results of the above described detection or quantification with the predetermined biomarker profiles with regard to a sample derived from a control which is not affected with Parkinson's disease (a normal control sample). Based on the comparison results, if the biomarker for detecting Parkinson's disease in the subject-derived sample is significantly deviated from a normal value, it is determined that the subject is likely to be affected with Parkinson's disease.
- the method for testing for Parkinson's disease of the present embodiment can also be a method for evaluating and determining whether or not a subject is affected with Parkinson's disease, that is, a diagnostic method.
- the detection or quantification results in a single person may be compared between before and after administration of a therapeutic agent, so that the therapeutic effects can be determined.
- the method for testing for Parkinson's disease of the present embodiment enables early and specific detection of Parkinson's disease, and thus, it is extremely useful.
- the present invention is an antibody having an ability to specifically bind to a Ser65-phosphorylated ubiquitin protein.
- the antibody having an ability to specifically bind to the Ser65-phosphorylated ubiquitin protein is referred to as an “anti-Ser65-phosphorylated ubiquitin antibody.”
- the “antibody” of the present embodiment may be a polyclonal antibody, a monoclonal antibody, a chimeric antibody, a humanized antibody, or an antibody fragment such as Fab, F(ab′) 2 or scFv. These antibodies can be produced by methods well known in the present technical field.
- the antibody of the present embodiment is preferably a polyclonal antibody or a monoclonal antibody.
- the Ser65-phosphorylated ubiquitin or a partial peptide thereof may be used as an antigen, and a mammal such as a rat, a rabbit, a guinea pig or a goat is immunized with the antigen. Thereafter, serum is recovered from the animal, and is then purified, so as to obtain a polyclonal antibody.
- the antibody of the present embodiment is a monoclonal antibody
- antibody-producing cells are recovered from an immunized animal that has been produced by the same procedures as those described above, and the antibody-producing cells are then fused with myeloma cells to prepare hybridomas. Thereafter, hybridoma clones producing an antibody exhibiting a highly specific affinity for the antigen are selected, and a culture solution of the selected clones is recovered and is then purified, so as to obtain a monoclonal antibody.
- the chimeric antibody is a monoclonal antibody produced by genetic engineering.
- a specific example of the chimeric antibody may be an antibody, the variable region of which is derived from the immunoglobulin of an animal other than a human and the constant region of which is derived from human immunoglobulin.
- the animal other than a human is not particularly limited, as long as it is able to produce hybridomas, and examples of such an animal include a mouse, a rat, and a rabbit.
- the chimeric antibody can be produced by a method well known in the present technical field.
- the humanized antibody (i.e., a CDR-grafted humanized antibody) is a monoclonal antibody produced by genetic engineering.
- the humanized antibody means an antibody, in which a part or all of complementarity-determining regions in the hypervariable region thereof are derived from the monoclonal antibody of an animal other than a human, and the framework region in the variable region thereof is derived from human immunoglobulin, and the constant region thereof is derived from human immunoglobulin.
- the humanized antibody can be produced by a method well known in the present technical field.
- the antibody fragment such as Fab, F(ab′) 2 or scFv, is a portion comprising the antigen-binding region of the above-described antibody, or a portion derived from the region.
- the antibody fragment can be produced by a method well known in the present technical field.
- the anti-Ser65-phosphorylated ubiquitin antibody of the present embodiment can be used to detect or quantify a Ser65-phosphorylated ubiquitin protein in cells or tissues.
- the anti-Ser65-phosphorylated ubiquitin antibody of the present embodiment can also be used as a reagent for testing for Parkinson's disease by being bound to any given labeling substance.
- any given labeling substance may be all labeling substances used for nucleic acid, which are known in the present technical field. Examples of the labeling substance include biotin, fluorescent dyes, luminescent substances, radioisotopes, and enzymes.
- the reagent for detecting the Ser65-phosphorylated ubiquitin may be further combined with additional elements, such as a container, a buffer, a positive control, a negative control and test protocols, as necessary, so as to produce a kit for testing for Parkinson's disease.
- the present invention relates to the treatment or prevention of Parkinson's disease.
- a therapeutic agent or a preventive agent for Parkinson's disease is provided.
- the present invention is a therapeutic agent or a preventive agent for Parkinson's disease, which comprises a Ser65-phosphorylated ubiquitin protein.
- the Ser65-phosphorylated ubiquitin can activate Parkin and normalize mitophagy, so as to definitively treat or prevent Parkinson's disease.
- treatment does not only include complete cure of Parkinson's disease, but it may also include remission of the symptoms of Parkinson's disease, alleviation of the conditions thereof, and retardation or halt of the progression of the pathologic conditions thereof.
- the Ser65-phosphorylated ubiquitin may include not only a ubiquitin protein consisting of a specific amino acid sequence (SEQ ID NO: 1), but also a ubiquitin protein consisting of an amino acid sequence comprising a substitution, deletion, insertion and/or addition of one to several amino acids with respect to the amino acid sequence shown in SEQ ID NO: 1, on condition that the phosphorylated serine residue at position 65 is conserved.
- SEQ ID NO: 1 a specific amino acid sequence
- a ubiquitin protein consisting of an amino acid sequence comprising a substitution, deletion, insertion and/or addition of one to several amino acids with respect to the amino acid sequence shown in SEQ ID NO: 1, on condition that the phosphorylated serine residue at position 65 is conserved.
- “one to several” is preferably “1 to 3,” “1 or 2,” or “1”.
- the “Ser65-phosphorylated ubiquitin” of the present embodiment may include a ubiquitin protein consisting of an amino acid sequence having an identity of 80% or more with SEQ ID NO: 1, on condition that the phosphorylated serine residue at position 65 is conserved and physiological functions equivalent to those of the ubiquitin consisting of SEQ ID NO: 1 are maintained.
- the amino acid sequence identity is preferably approximately 90% or more, 95% or more, 96% or more, or 97% or more, and particularly preferably 98% or more, or 99% or more.
- the amino acid sequence identity can be determined using sequence analysis software, or using a program commonly used in the present technical field (PASTA, BLAST, etc.).
- the Ser65-phosphorylated ubiquitin of the present embodiment can be produced by biosynthesis involving a genetic engineering method, or chemical synthesis.
- host cells may be transformed, for example, with an expression vector comprising DNA encoding a ubiquitin protein, so that the ubiquitin is allowed to express in the host cells, and thereafter, the ubiquitin protein can be purified and be then phosphorylated, thereby producing a Ser65-phosphorylated ubiquitin protein.
- bacteria, enzymes, mammalian cells and the like can be used, for example.
- Preferred examples of the host cells that can be used herein include Escherichia coli such as BL21 (DE3) or Rosetta (DE3), and human-derived cells such as HeLa cells, CHO cells or COST cells.
- Escherichia coli examples of the expression vector that can be used include Escherichia coli expression plasmids, such as pT7 (Sigma-Aldrich) or pET (Merck Millipore).
- examples of the expression vector that can be used include animal cell expression plasmids such as pcDNA3.1 (Invitrogen), and animal virus vectors such as retroviruses or adenoviruses.
- the transformation can be carried out by well-known methods such as a calcium phosphate co-precipitation method, an electroporation method, a microinjection method or a lipofection method.
- Phosphorylation of ubiquitin can be carried out by allowing ubiquitin isolated and purified from host cells to react with mitochondria in which PINK is accumulated by reducing membrane potential, or with an immunoprecipitation product comprising PINK1, or with PINK1.
- the reaction can be carried out in a buffer containing divalent ions such as magnesium and a phosphate donor such as ATP.
- a ubiquitin protein may be synthesized using a peptide synthesizer, and it may be then subjected to a phosphorylation modification to produce the Ser65-phosphorylated ubiquitin. Operations for carrying out such chemical synthesis can be all carried out by known methods.
- the Ser65-phosphorylated ubiquitin of the present embodiment may also be fused with a cell membrane penetrating peptide at the carboxyl terminus thereof.
- the cell membrane penetrating peptide-fused Ser65-phosphorylated ubiquitin is preferable because it can be efficiently delivered into a cell.
- the cell membrane penetrating peptide may be a peptide comprising a large amount of basic amino acid such as arginine or lysine and having the property of penetrating into a cell membrane.
- Examples of the cell membrane penetrating peptide of the present embodiment include, but are not limited to, HIV-1 Tat, HIV-1 Rev, BMV-gag, and HTLV-IIRex.
- the therapeutic agent or preventive agent for Parkinson's disease comprises a Ser65-phosphorylated ubiquitin protein, as an active ingredient.
- This therapeutic agent or preventive agent may be composed of only the active ingredient, but it may also comprise, as any given components, a pharmaceutically acceptable known diluent, carrier, excipient, and other components.
- the Ser65-phosphorylated ubiquitin may be combined with the above-described known diluent, carrier, excipient, and other components, as necessary, to prepare a formulation.
- the Ser65-phosphorylated ubiquitin may be comprised, as an active ingredient, in the therapeutic agent or preventive agent for Parkinson's disease, such that it can be an appropriate dose within a range that depends on each dosage form.
- the content of the Ser65-phosphorylated ubiquitin in the agent is preferably determined, such that the dose of the Ser65-phosphorylated ubiquitin per adult per day can be generally 0.001 mg/kg (body weight) or more, and preferably 0.01 mg/kg (body weight) or more.
- the content of the Ser65-phosphorylated ubiquitin is not limited to the aforementioned range, and it can be appropriately adjusted depending on symptoms, age, sex and the like of a patient.
- the upper limit of the dose per day is preferably 10 mg/kg (body weight) or less, and more preferably 1 mg/kg (body weight) or less.
- the therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment may be formulated into a tablet, a capsule, a powder agent, a granule, a syrup agent, an injection, a rectal administration agent, and the like. Accordingly, the therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment can be achieved by various methods including oral, intraperitoneal, intradermal, intravenous or intramuscular administration.
- Examples of the oral preparation of the therapeutic agent or preventive agent for Parkinson's disease may include solid agents such as a tablet, a capsule, a powder agent or a granule.
- suitable additives for example, additives such as starch, lactose, saccharose, mannitol, carboxymethyl cellulose, corn starch or inorganic salts, and further, as desired, a binder, a disintegrator, a lubricant, a coloring agent, a flavor, and the like, may be mixed into the therapeutic agent or preventive agent for Parkinson's disease.
- the oral preparation of the therapeutic agent or preventive agent for Parkinson's disease can be, for example, a liquid such as a syrup agent.
- sterile water, normal saline, ethanol or the like can be used as a carrier.
- an auxiliary agent such as a suspending agent, a sweetener, a flavoring agent, an antiseptic, and the like may be added to the oral preparation of the therapeutic agent or preventive agent for Parkinson's disease, as desired.
- the parenteral agent of the therapeutic agent or preventive agent for Parkinson's disease can be, for example, a liquid agent such as an injection or a rectal administration agent.
- the Ser65-phosphorylated ubiquitin used as an active ingredient may be dissolved or suspended in distilled water for injection, normal saline, glucose aqueous solution, vegetable oil for injection, propylene glycol, polyethylene glycol or the like according to a common method, and thereafter, a disinfectant, a stabilizer, a tonicity agent, a soothing agent and the like may be further added to the solution or suspension, as necessary, so as to prepare a parenteral agent.
- a parenteral agent can also be prepared by producing a solid composition, and then dissolving the solid composition in sterile water or a sterile injection solvent before use.
- the therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment is useful for the definitive treatment or prevention of Parkinson's disease.
- the present invention is a therapeutic agent or a preventive agent for Parkinson's disease, which comprises a phosphorylation-mimicking form of ubiquitin, in which the serine residue at position 65 is substituted with an aspartic acid residue.
- the phosphorylation-mimicking form of ubiquitin, in which the serine residue at position 65 is substituted with an aspartic acid residue can activate Parkin and normalize mitophagy, as with the Ser65-phosphorylated ubiquitin, so as to definitively treat or prevent Parkinson's disease.
- the phosphorylation-mimicking form of ubiquitin in which the serine residue at position 65 is substituted with an aspartic acid residue, is referred to as “Ser65Asp phosphorylation-mimicking ubiquitin”.
- the Ser65Asp phosphorylation-mimicking ubiquitin of the present embodiment may include not only a ubiquitin protein consisting of a specific amino acid sequence (SEQ ID NO: 2), but also a ubiquitin protein consisting of an amino acid sequence comprising a substitution, deletion, insertion and/or addition of one to several amino acids with respect to the amino acid sequence shown in SEQ ID NO: 2, on condition that the aspartic acid residue at position 65 is conserved.
- “one to several” is preferably “1 to 3,” “1 or 2,” or “1”.
- the “Ser65Asp phosphorylation-mimicking ubiquitin” of the present embodiment may include a ubiquitin protein consisting of an amino acid sequence having an identity of 80% or more with SEQ ID NO: 2, on condition that the aspartic acid residue at position 65 is conserved and physiological functions equivalent to those of the Ser65-phosphorylated ubiquitin are maintained.
- the amino acid sequence identity is preferably approximately 90% or more, 95% or more, 96% or more, or 97% or more, and particularly preferably 98% or more, or 99% or more.
- the amino acid sequence identity can be determined using sequence analysis software, or using a program commonly used in the present technical field (FASTA, BLAST, etc.).
- the Ser65Asp phosphorylation-mimicking ubiquitin of the present embodiment can be produced by biosynthesis involving a genetic engineering method, or chemical synthesis, as in the case of the above described Ser65-phosphorylated ubiquitin.
- the Ser65Asp phosphorylation-mimicking ubiquitin of the present embodiment may also be fused with a cell membrane penetrating peptide at the carboxyl terminus thereof, as in the case of the above described Ser65-phosphorylated ubiquitin.
- the therapeutic agent or preventive agent for Parkinson's disease comprises a Ser65Asp phosphorylation-mimicking ubiquitin protein, as an active ingredient.
- This therapeutic agent or preventive agent may be composed of only the active ingredient, but it may also comprise, as any given components, a pharmaceutically acceptable known diluent, carrier, excipient, and other components.
- the therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment can be formulated, as in the case of the above described therapeutic agent or preventive agent for Parkinson's disease comprising a Ser65-phosphorylated ubiquitin protein.
- the therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment is useful for the definitive treatment or prevention of Parkinson's disease.
- the present invention relates to the development of a novel therapeutic agent or a novel preventive agent for Parkinson's disease.
- a method for screening for a therapeutic agent or a preventive agent for Parkinson's disease is provided.
- the present invention is a method for screening for a therapeutic agent or a preventive agent for Parkinson's disease, which comprises: (1) a step of providing cells that express PINK1; (2) a step of damaging mitochondria in the cells; (3) a step of contacting the cells with a candidate compound; and (4) a step of measuring the amount of a ubiquitin protein comprising a phosphorylated serine residue at position 65, which has been generated in the cells.
- a compound that promotes phosphorylation of the Ser 65 of a ubiquitin protein can be obtained as a substance effective for a therapeutic agent or a preventive agent for Parkinson's disease.
- PINK1-expressing cells living cells that express PINK1 are referred to as “PINK1-expressing cells”.
- the PINK1-expressing cells of the present embodiment can be cells collected from an individual animal.
- Such individual animal-derived cells can be collected from tissues expressing PINK1, for example, from the tissues of brain or muscle, according to a method well known to one skilled in the art.
- Examples of the individual animal include a mouse, a rat, a rabbit, a dog, non-human primates, and a human.
- the animal is preferably a human.
- the PINK1-expressing cells of the present embodiment may be a mammalian cell line that expresses PINK1.
- Examples of the mammalian cell line that is preferably used herein include human-derived cell lines such as HeLa cells, CHO cells or COS7 cells.
- Mitochondria can be damaged by a conventionally known method, and examples of the method include a CCCP treatment, a rotenone treatment, a paraquat treatment, and an MPTP treatment.
- a candidate compound is contacted with PINK1-expressing cells, in which mitochondria are damaged.
- the candidate compound may be a protein, a peptide, a nucleic acid, a non-peptide compound, a synthetic compound, a cell extract, a plant extract, and an animal tissue extract. These substances may be either novel substances or known substances.
- the above-described contact of the cells with a candidate compound can be carried out, for example, by adding the candidate compound to a medium for culturing PINK1-expressing cells or various types of buffers such as a phosphate buffered saline or a Tris-HCl buffer, and then incubating the cells in the mixed solution for a certain period of time.
- concentration of the candidate compound to be added may be different depending on the type of the compound, and it can be appropriately selected, for example, from the range of 0.1 nM to 100 nM.
- the incubation can be preferably carried out for 10 minutes to 24 hours.
- the amount of the Ser65-phosphorylated ubiquitin in the cells is measured.
- the amount of the Ser65-phosphorylated ubiquitin can be measured, for example, by various types of immunological techniques such as ELISA, immunohistochemical staining or immunoblotting, in which the anti-Ser65-phosphorylated ubiquitin antibody is used, or by means such as mass spectrometry, as in the case of detection or quantification of a Ser65-phosphorylated ubiquitin protein in the above described method for testing for Parkinson's disease.
- this candidate compound when the amount of the Ser65-phosphorylated ubiquitin in the cells is significantly increased in comparison to before the contact with the candidate compound, this candidate compound can be evaluated to be promising as a therapeutic agent or a preventive agent for Parkinson's disease.
- this candidate compound when the Ser65-phosphorylated ubiquitin is detected in the cells only in an amount equivalent to or less than the amount thereof before the contact with the candidate compound, this candidate compound can be evaluated not to be promising as a therapeutic agent or a preventive agent for Parkinson's disease.
- the present invention is a method for screening for a therapeutic agent or a preventive agent for Parkinson's disease, which comprises: (1) a step of preparing a phosphorylation reaction solution containing a ubiquitin protein, a kinase, and a phosphate donor; (2) a step of adding a candidate compound to the phosphorylation reaction solution; and (3) a step of measuring the amount of a ubiquitin protein comprising a phosphorylated serine residue at position 65, which has been generated in the phosphorylation reaction solution.
- a compound that promotes phosphorylation of Ser 65 of a ubiquitin protein can be obtained as a substance effective for a therapeutic agent or a preventive agent for Parkinson's disease.
- the screening method of the present embodiment may be a cell-free system assay, in which a phosphorylation reaction solution containing a ubiquitin protein, a kinase and a phosphate donor is used.
- the phosphorylation reaction solution of the present embodiment which is used herein, may be a cell extract prepared from living cells, or an artificial reaction solution prepared by mixing a ubiquitin protein, a kinase and a phosphate donor.
- the phosphorylation reaction solution of the present embodiment is preferably a cell extract.
- the cell extract When a cell extract is used as such a phosphorylation reaction solution, the cell extract may be prepared from the above described PINK1-expressing cells, or may also be prepared from cells that do not express PINK1.
- the “cells that do not express PINK1” of the present embodiment may include not only cells that do not express PINK1 at all, but also cells that do not substantially express PINK1.
- the cells that do not substantially express PINK1 mean cells, in which the expression of a PINK1 gene cannot be detected by commonly used means for detecting gene expression (e.g., a Northern blotting method, etc.).
- the cells that do not substantially express PINK1 can be collected, for example, from tissues in an individual animal that do not substantially express PINK1, such as lung, spleen, thymus or leukocytes, according to a method well known to a person skilled in the art.
- Examples of the individual animal include a mouse, a rat, a rabbit, a dog, non-human primates, and a human.
- the animal is preferably a human.
- the cells that do not express PINK1 at all may be collected from a PINK1.sup. ⁇ / ⁇ knockout animal, and the cells may be, for example, the mouse embryonic fibroblasts (MEFs) of a PINK1 ⁇ / ⁇ knockout mouse.
- MEFs mouse embryonic fibroblasts
- the cell extract of the present embodiment can be prepared by a conventionally known method, such as a method of physically crushing cells or a method of dissolving cells using a surfactant such as CHAPS.
- the cell extract of the present embodiment is preferably prepared by physically crushing cells.
- reaction solution prepared by mixing a ubiquitin protein, a kinase and a phosphate donor can be prepared by mixing a ubiquitin protein, a kinase and a phosphate donor in a reaction buffer that is suitable for a phosphorylation reaction with kinase.
- a reaction buffer a Tris-HCl buffer containing Mg 2+ or Mn 2+ can be used, for example.
- the composition of individual components in a phosphorylation reaction solution can be determined, as appropriate, in accordance with the composition of a cell extract prepared from cells.
- the ubiquitin protein of the present embodiment may be derived from any given eukaryote. It is preferably derived from mammals such as a mouse, a rat, a rabbit, a dog, non-human primates or a human, and it is particularly preferably human-derived ubiquitin.
- the ubiquitin protein of the present embodiment can be prepared by biosynthesis involving a genetic engineering method, or chemical synthesis, as in the case of the above-described Ser65-phosphorylated ubiquitin.
- MAP kinase such as ERK1/2, ERK5, ERK7, JNK/SAPK or p38, or any given Ser/Thr kinase such as protein kinase A (PKA), protein kinase C (PKC), CaM kinase, Mos/Raf kinase or cdc2
- PKA protein kinase A
- PKC protein kinase C
- CaM kinase CaM kinase
- Mos/Raf kinase or cdc2 can be used.
- the kinase of the present embodiment is preferably PINK1.
- the kinase of the present embodiment may be derived from any given eukaryote.
- kinase of the present embodiment can be prepared by biosynthesis involving a genetic engineering method.
- ATP As the phosphate donor of the present embodiment, ATP, CTP, GTP, TTP, UTP, dATP, dCTP, dGTP, dTTP, dUTP or the like can be used, for example.
- the phosphate donor of the present embodiment is preferably ATP or GTP.
- a candidate compound is added to the phosphorylation reaction solution.
- the candidate compound may be a protein, a peptide, a nucleic acid, a non-peptide compound, a synthetic compound, a cell extract, a plant extract, and an animal tissue extract. These substances may be either novel substances or known substances.
- the concentration of the candidate compound to be added may be different depending on the type of the compound, and it can be appropriately selected, for example, from the range of 0.1 nM to 100 nM.
- the phosphorylation reaction can be preferably carried out for 10 minutes to 24 hours.
- the amount of the Ser65-phosphorylated ubiquitin in the cells is measured.
- the amount of the Ser65-phosphorylated ubiquitin can be measured, for example, by various types of immunological techniques such as ELISA, immunohistochemical staining or immunoblotting, in which the anti-Ser65-phosphorylated ubiquitin antibody is used, or by means such as mass spectrometry, as in the case of detection or quantification of a Ser65-phosphorylated ubiquitin protein in the above described method for testing for Parkinson's disease.
- this candidate compound when the amount of the Ser65-phosphorylated ubiquitin in the phosphorylation reaction solution is significantly increased in comparison to before the contact with the candidate compound, this candidate compound can be evaluated to be promising as a therapeutic agent or a preventive agent for Parkinson's disease.
- the Ser65-phosphorylated ubiquitin when the Ser65-phosphorylated ubiquitin is detected in the phosphorylation reaction solution only in an amount equivalent to or smaller than the amount thereof before the contact with the candidate compound, this candidate compound can be evaluated not to be promising as a therapeutic agent or a preventive agent for Parkinson's disease.
- HeLa cells were cultured in 5% CO 2 at 37° C. in Dulbecco's Modified Eagle's Medium (DMEM) (Sigma-Aldrich), to which 1 ⁇ nonessential amino acid (Lifetec Co., Ltd.), 1 ⁇ sodium pyruvate (Lifetec Co., Ltd.) and 10% bovine serum (Lifetec Co., Ltd.) had been added.
- the HeLa cells were treated with 15 to 30 ⁇ M CCCP (Wako Pure Chemical Industries, Inc.) for 3 hours, and were then suspended in a cell extraction buffer (20 mM Tris-HCl (pH 7.5), 150 mM, NaCl, 1 mM EDTA, and 1% NP-40) to prepare a cell lysate.
- a cell lysate which was prepared by the same procedures as those described above with the exception that the CCCP treatment was not performed, was used as a negative control.
- the obtained cell lysate was applied to 12.5-15% polyacrylamide gel containing 50 ⁇ M Phos-tag acrylamide (Wako Pure Chemical Industries, Inc.) and 100 ⁇ M MnCl 2 , and the obtained mixture was then subjected to electrophoresis.
- electrophoresis was carried out using polyacrylamide gel that did not contain Phos-tag.
- the resulting gel was washed with a transfer buffer containing 0.01% SDS and 1 mM EDTA for 10 minutes, and it was then incubated in a 0.01% SDS transfer buffer that did not contain EDTA for 10 minutes.
- the resultant was transcribed on a PVDF membrane, and immunoblotting was then carried out thereon, using the anti-ubiquitin antibody P4D1 (Cell Signaling Technology) (1:1000) as a primary antibody, and also using a goat anti-mouse IgG-AP antibody (Santa Cruz Biotechnology, Inc.) (1:10000) as a secondary antibody.
- Detection was carried out using a BCIP/NBT reagent (Nacalai Tesque).
- FIG. 1 The results are shown in FIG. 1 .
- the left view of FIG. 1 shows the results obtained by performing electrophoresis using polyacrylamide gel that did not contain Phos-tag, whereas the right view of FIG. 1 shows the results obtained by performing electrophoresis using polyacrylamide gel containing Phos-tag.
- a band of slow electrophoretic mobility indicated by an asterisk “*” in the figure. From these results, it was suggested that the ubiquitin would be phosphorylated in the CCCP-treated cells.
- a ubiquitin phosphorylation assay was carried out in a cell-free system.
- HeLa cells were subjected to a CCCP treatment by the same procedures as those described in 1-1 above, and the resulting cells were then suspended in a buffer for cell-free assay (20 mM HEPES-KOH (pH 7.5), 220 mM sorbitol, 10 mM KAc, and 70 mM sucrose), to which an EDTA-free protease inhibitor cocktail (Roche Diagnostics) had been added.
- the cell suspension was passed through a 25-gauge injection needle 30 times to crush the cells, so as to obtain a cell homogenate. Subsequently, the cell homogenate was centrifuged at 4° C. at 800 ⁇ g for 10 minutes, and after the removal of a nucleus, a supernatant was recovered. The obtained nucleus-free supernatant was further centrifuged at 4° C. at 10,000 ⁇ g for 20 minutes, so as to recover a mitochondrial pellet.
- the mitochondria were incubated at 30° C. for 1 hour in ubiquitin (Boston Biochem), HA-ubiquitin (Boston Biochem), or His 6 -ubiquitin (Boston Biochem), each having a final concentration of 40 ng/ ⁇ L, which had been prepared with a buffer for cell-free system assay, to which 5 mM MgCl 2 , 5 mM ATP, 2 mM DTT and 1% glycerol had been added. Thereafter, the resultant was centrifuged at 4° C. at 16,000 ⁇ g for 10 minutes, to remove the mitochondria. The obtained supernatant was subjected to a Phos-tag assay by the same procedures as those described in 1-1 above.
- a resultant which was prepared without subjecting to a CCCP treatment, was used as a negative control.
- the immunoblotting was carried out using an anti-ubiquitin antibody (Dako Japan) (1:500) as a primary antibody, and also using a goat anti-rabbit IgG-AP antibody (Santa Cruz Biotechnology, Inc.) (1:5000) as a secondary antibody.
- Detection was carried out using a BCIP/NBT reagent (Nacalai Tesque).
- FIG. 2 The results are shown in FIG. 2 .
- the band indicated by the asterisk “*” in FIG. 2 is caused by the cross reaction of antibody. From these results, it was demonstrated that phosphorylation of ubiquitin takes place depending on the disappearance of mitochondrial membrane potential. In addition, it was confirmed that even if an HA tag or His 6 tag is added to the N-terminus of ubiquitin, phosphorylation of the ubiquitin is not inhibited (right view of FIG. 2 , lanes 10 and 12).
- the excised gel section was chopped into small sections with a size of 1 mm 2 , and the sections were then stirred in 1 mL of 50 mM ammonium bicarbonate/50% acetonitrile (ACN) for 1 hour, followed by dehydration. Thereafter, small gel sections were completely dehydrated with 100% ACN. Sequencing Grade Modified Trypsin (Promega), which had been prepared to a concentration of 20 ng/ ⁇ L with 50 mM ammonium bicarbonate/5% ACN (pH 8.0), was added to the small gel sections, and the obtained mixture was then incubated at 37° C. overnight, so as to carry out in-gel trypsin digestion.
- ACN acetonitrile
- the results are shown in FIG. 3 .
- the ubiquitin-derived peptide fragment which had been allowed to react with the mitochondria isolated from the CCCP-treated cells, was analyzed. As a result, it was confirmed that the serine at position 65 in a peptide fragment corresponding to the amino acids at positions 55 to 72 of ubiquitin was phosphorylated (TLSDYNIQKE(pS)TLHLVLR). Further, it was also confirmed that the serine at position 65 in a peptide fragment corresponding to the amino acids at positions 64 to 72 of ubiquitin was phosphorylated (E(pS)TLHLVLR).
- a recombinant ubiquitin into the Ser 65 of which a mutation had been introduced, was subjected to a Phos-tag assay by the same procedures as those described in 1-2 above.
- a ubiquitin mutant in which the Ser 65 had been substituted with alanine (S65A) and a ubiquitin mutant in which the Ser 65 had been substituted with aspartic acid (S65D) were used, and as a control, wild-type ubiquitin (WT) was used.
- the recombinant ubiquitin mutants and the wild-type ubiquitin were prepared by the following procedures. Using a pT7 vector (Sigma-Aldrich), into which DNA encoding the aforementioned mutant or wild-type ubiquitin, to the N-terminus of which a His 6 tag sequence had been added, had been incorporated, the Escherichia coli Rosetta 2 (DE3) (Novagen) was transformed. The obtained transformant was pre-cultured at 37° C. overnight in 20 mL of LB medium containing 100 ⁇ g/mL ampicillin and 24 ⁇ g/mL chloramphenicol, and thereafter, the pre-culture was transferred into 200 mL of medium. After completion of the incubation at 37° C.
- IPTG final concentration: 1 mM
- the recovered cells were suspended in 40 mL of 20 mM Tris-HCl (pH 7.5), and was then crushed by an ultrasonic treatment. The resultant was centrifuged at 8,000 rpm for 10 minutes. Thereafter, a supernatant was recovered, was then purified by an ordinary method, and was then dialyzed against buffer A (50 mM Tris-HCl (pH 7.5)/100 mM NaCl/10% glycerol).
- FIG. 5 The results are shown in FIG. 5 .
- the wild-type ubiquitin was phosphorylated in the cells (right view of FIG. 5 , lane 2), whereas the S65A ubiquitin was not phosphorylated therein (right view of FIG. 5 , lane 4). Also from these results, it was confirmed that the Ser 65 of ubiquitin is a phosphorylation site.
- PINK1 is a kinase and is activated depending on the disappearance of mitochondrial membrane potential.
- the enzyme that phosphorylates ubiquitin is likely to be PINK1.
- MEFs mouse fetal fibroblasts
- PINK1 ⁇ / ⁇ MEFs were prepared from PINK1 ⁇ / ⁇ mouse fetuses, and the cells were provided by Jie Shen, Ph.D. (Harvard University).
- a gene encoding Wild-type PINK1, kinase activity-deleted (KD) mutant PINK1, A168P mutant PINK1 or G386A mutant PINK1 was packaged into a retrovirus, using a pMX-puro vector (COSMO BIO CO., LTD.). By infecting the PINK1 ⁇ / ⁇ MEFs with the obtained retrovirus, wild-type PINK1-expressing cells or mutant PINK1-expressing cells were produced. Thereafter, except for the aforementioned operations, a Phos-tag assay was carried out by the same procedures as those described in 1-2 above.
- PINK1 was isolated from CCCP-treated cells, and whether or not the PINK1 phosphorylates ubiquitin was then examined.
- a PINK1-3 ⁇ Flag gene was introduced into HeLa cells, in which the mouse retrovirus receptor mCAT1 had been transiently expressed, by the same procedures as those described in 3-1 above, so as to obtain stable expression cells.
- the cells were suspended in a buffer for cell-free assay by the same procedures as those described in 1-2 above. Subsequently, the suspension was treated with 10 mg/mL digitonin at 4° C.
- the anti-VDAC antibody ab2 (Calbiochem) (1:1,000), the anti-mitofusin 2 antibody ab56889 (Abeam) (1:500), and anti-FoF1-ATPase (provided from Ph. D. Ueno) (1:1,000) were used.
- a Phos-tag assay was carried out by the same procedures as those described in 1-2 above, with the exception that isolated PINK1 was used instead of mitochondria.
- isolated PINK1 was used instead of mitochondria.
- mitochondria isolated from CCCP-treated cells was used as a control.
- FIG. 7 The results are shown in FIG. 7 . It was demonstrated that PINK1 isolated from CCCP-treated cells phosphorylates ubiquitin, as with mitochondria isolated from CCCP-treated cells (right view of FIG. 7 , lane 4). From these results, it was clearly demonstrated that PINK1 phosphorylates the ubiquitin.
- the S65D ubiquitin was used as a phosphorylation-mimicking form of ubiquitin.
- the S65D ubiquitin was allowed to express in HeLa cells by introducing a pcDNA3 vector (Invitrogen) comprising DNA encoding the S65D ubiquitin into the HeLa cells, using FuGENE6 (Roche Diagnostics).
- GFP-wild-type Parkin (GFP-Parkin WT) or GFP-mutant Parkin was also expressed in HeLa cells by introducing the vector therein in the same manner as described above.
- GFP-mutant Parkin Parkin that mimics the phosphorylation of Ser 65, which is essential for activation of the Parkin as an E3 enzyme and the recruitment thereof to mitochondria (GFP-Parkin S65E), and Parkin known as partially activated Parkin, in which the cysteine residue at position 403 is substituted with alanine (GFP-Parkin W403A), were used.
- Activation of Parkin as an E3 enzyme was evaluated based on the self-ubiquitination of Parkin.
- An intracellular ubiquitination assay was carried out by isolating a cytoplasmic fraction of HeLa cells, containing GFP-Parkin or GFP-mutant Parkin and a wild-type ubiquitin or a phosphorylation-mimicking form of ubiquitin, from the cells by the same procedures as those described in 1-1 above, and then subjecting the isolated fraction to immunoblotting.
- a CCCP treatment was carried out by the same procedures as those described in 1-1 above.
- the results are shown in FIG. 8 .
- the S65D recombinant ubiquitin did not activate wild-type Parkin in the absence of a CCCP treatment, that is, under conditions in which PINK1 was not activated (left view of FIG. 8 , lane 3).
- the S65E recombinant Parkin and the W403A recombinant Parkin were activated by the S65D recombinant ubiquitin even in the absence of a CCCP treatment (central view of FIG. 8 , lane 3, and right view of FIG. 8 , lane 3). From these results, it was suggested that a phosphorylated ubiquitin could be an activator for Parkin.
- S65A mutant ubiquitin was added to a substrate protein on mitochondria.
- the S65A mutant ubiquitin was allowed to express in HeLa cells by the same procedures as those described in 2-3 above.
- wild-type ubiquitin allowed to express in HeLa cells was used as a control.
- a CCCP treatment was carried out by the same procedures as those described in 1-1 above.
- the cells were fixed using 4% formaldehyde, and were then solubilized with 50 mg/mL digitonin. Thereafter, immunostaining was carried out using the anti-GFP antibody ab6556 (Abcam) (1:500), the anti-Flag antibody 2H8 (Trans Genic Inc., Ltd.) (1:500) and the anti-Tom20 antibody FL-145 (Santa Cruz Biotechnology, Inc.) (1:3,000) as primary antibodies, and also using Alexa Fluor 488 or 568-labeled anti-mouse or rabbit IgG antibody (Invitrogen) (1:2,000) as a secondary antibody. After completion of the staining, the cells were observed using a confocal laser scanning microscope system LSM510 (Carl Zeiss). In the statistical analysis, 100 or more cells were analyzed through three experiments, and a Student's t-test was carried out.
- LSM510 Carl Zeiss
- WT, S65E or W403A GFP-Parkin was prepared from HeLa cells or PINK1 ⁇ / ⁇ MEFs, which had not been treated with CCCP, by the following procedures.
- the cells were suspended in a buffer for cell-free assay (20 mM HEPES-KOH (pH 7.5), 220 mM sorbitol, 10 mM KAc, and 70 mM sucrose), to which an EDTA-free protease inhibitor cocktail (Roche Diagnostics) had been added.
- the cell suspension was passed through a 25-gauge injection needle 30 times to crush the cells, so as to obtain a cell homogenate. Subsequently, the cell homogenate was centrifuged at 4° C. at 800 ⁇ g for 10 minutes, and after the removal of nuclei, a supernatant was recovered. The thus obtained nucleus-free supernatant was further centrifuged at 4° C. at 16,000 ⁇ g for 20 minutes to recover a supernatant, thereby obtaining a cytoplasmic fraction from which the mitochondria were removed. To this supernatant, 5 mM MgCl 2 , 5 mM ATP, 2 mM DTT and 1% glycerol were added. WT, S65A or S65D His 6 -ubiquitin, or His 6 -Ser65-phosphorylated ubiquitin, was prepared by the same procedures as those described in 2-1 and 2-2 above.
- Activation of Parkin as an E3 enzyme was evaluated based on the self-ubiquitination of the Parkin.
- a cell-free ubiquitination assay was carried out by adding the wild-type ubiquitin, S65D recombinant ubiquitin or Ser65-phosphorylated ubiquitin (final concentration 50 ⁇ g/mL), prepared by the procedures described in 1-2 and 2-1 above, to a cytoplasmic fraction of HeLa cells containing GFP-Parkin or GFP-recombinant Parkin, and then incubating the obtained mixture at 30° C. for 2 hours.
- the results are shown in FIG. 11 .
- the S65E recombinant Parkin and the W403A recombinant Parkin were activated by an S65D phosphorylation-mimicking form of ubiquitin, even though mitochondria having no membrane potential were missing (upper case of FIG. 11 , lanes 12 and 18), but the wild-type Parkin was not activated by the S65D phosphorylation-mimicking form of ubiquitin (upper case of FIG. 11 , lane 6).
- the wild-type ubiquitin or the S65A recombinant ubiquitin did not activate the S65E recombinant Parkin and the W403A recombinant Parkin (upper case of FIG. 11 , lanes 10 and 16).
- the mechanism of activation of Parkin assumed from the aforementioned results of the Examples is shown in FIG. 12 .
- the activated PINK1 phosphorylates both Parkin and ubiquitin.
- phosphorylation of Parkin by PINK1 is necessary for activation of the Parkin.
- only partial activation of Parkin takes place by phosphorylation of the Parkin by PINK1, and for complete activation of the Parkin, the presence of ubiquitin, the Ser 65 of which is phosphorylated, is necessary.
- the Ser65-phosphorylated ubiquitin according to the present invention is a constitutional molecule essential for activation of Parkin, and that the present Ser65-phosphorylated ubiquitin can be used as a biomarker for detecting Parkinson's disease.
- a method for screening for a therapeutic agent or a preventive agent for Parkinson's disease can be provided.
- the Ser65-phosphorylated ubiquitin and the Ser65Asp phosphorylation-mimicking ubiquitin have the effect of activating Parkin, and can be used as therapeutic agents or preventive agents for Parkinson's disease.
- an antibody having an ability to specifically bind to the Ser65-phosphorylated ubiquitin was produced.
- a rabbit was immunized with CNIQKE(pS)TLH, which is a ubiquitin fragment comprising phosphorylated Ser 65, and a guinea pig was immunized with CNIQKE(pS)TLHLV, 4 or 5 times at intervals of 2 weeks. Thereafter, whole blood was collected from each animal, and serum was then obtained, thereby obtaining antiserum containing a polyclonal antibody.
- the binding ability of the obtained polyclonal antibody was evaluated using a ubiquitin sample prepared by the same procedures as those described in 1-2 above.
- the anti-ubiquitin antibody Z0458 (Dako) was used as a positive control.
- the results are shown in FIG. 13 and FIG. 14 .
- both the anti-ubiquitin rabbit polyclonal antibody and the anti-ubiquitin guinea pig polyclonal antibody specifically detected only the phosphorylated ubiquitin.
- the anti-Ser65-phosphorylated ubiquitin antibody according to the present invention have an ability to specifically bind to the Ser65-phosphorylated ubiquitin, and that the present anti-Ser65-phosphorylated ubiquitin antibody can be used in the above described method for detecting Parkinson's disease.
- LC-MS/MS measurement was carried out on a cell extract.
- a cell extract was prepared from CCCP-treated or CCCP-untreated HeLa cells by the same procedures as those described in 1-1 above, and it was then subjected to SDS-PAGE. Subsequently, peripheral gel corresponding to the molecular weight of ubiquitin was excised, and a sample was then prepared in the same manner as that described in 2-1 above. The prepared sample was subjected to a mass spectrometric analysis using an LC-MS/MS apparatus.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Psychology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
Abstract
An antibody has as a target molecule a ubiquitin protein comprising a phosphorylated serine residue at position 65. In addition, a method is provided for specifically detecting Parkinson's disease at an early stage, in which a target molecule is a ubiquitin protein comprising a phosphorylated serine residue at position 65, a pharmaceutical composition for definitively treating or preventing Parkinson's disease, and a method for screening for the pharmaceutical composition.
Description
- This application is a divisional application of, and claims priority to, U.S. patent application Ser. No. 15/119,645, filed Aug. 17, 2016 (allowed), which is a 35 U.S.C. §371 national phase application of PCT Application PCT/JP2015/053930 filed Feb. 13, 2015, which claims priority to Japanese Application No. 2014-028449 filed Feb. 18, 2014. The entire content of each is incorporated herein by reference in its entirety.
- A Sequence Listing in ASCII text format, submitted under 37 C.F.R. §1.821, entitled 5576-325DV_ST25.txt, 2,001 bytes in size, generated on Sep. 28, 2017, and filed via EFS-Web, is provided in lieu of a paper copy. This Sequence Listing is hereby incorporated by reference into the specification for its disclosures.
- The present invention relates to a biomarker for the diagnosis of Parkinson's disease, an antibody against the same, a method for testing for and/or diagnosing Parkinson's disease, and a therapeutic agent or a preventive agent for Parkinson's disease and a screening method therefor.
- Parkinson's disease is a neurodegenerative disease which develops with high frequency with aging, and the incidence rate is more than 1% of the population aged 65 and over. It is anticipated that the number of patients with Parkinson's disease will significantly increase in association with the aging of the population in the future, and thus, it is imperative to promptly establish methods for diagnosing, preventing and/or treating Parkinson's disease.
- It has been known that Parkinson's disease is developed by degeneration and/or defluxion of dopamine neurons in the substantia nigra in the midbrain. A dopamine replacement therapy involving administration of L-dopa has been carried out as the primary prognosis treatment for Parkinson's disease. However, the dopamine replacement therapy merely treats symptoms, and thus, in order to suppress the symptoms of Parkinson's disease, drug administration must be continued. Moreover, the dopamine replacement therapy has been problematic in that long-term administration of L-dopa produces progressively less effect caused by shortened duration of medicinal effects or serious side effects such as abnormal involuntary movement called “dyskinesia”. In addition, for diagnosis of Parkinson's disease, there is only a diagnostic method based on symptoms characteristic of this disease. Thus, under the current circumstances, Parkinson's disease cannot be clearly distinguished from other neurological diseases at an early stage with mild symptoms. In order to establish a radical therapy for Parkinson's disease and a method for specifically diagnosing this disease at an early stage, it is necessary to elucidate the mechanism of pathogenesis of Parkinson's disease, that is, the mechanism by which degeneration of dopamine neurons progresses. It has been desired to promptly elucidate such mechanisms.
- The majority of cases of Parkinson's disease develop sporadically, but some cases are familial (hereditary) diseases. Multiple associated genes have been isolated and identified. Since sporadic Parkinson's disease shares clinical symptoms with familial Parkinson's disease, it has been assumed that the two typos of Parkinson's diseases would have a common mechanism of degeneration of dopamine cells, and thus, it has been anticipated that analysis of genes responsible for hereditary Parkinson's disease would lead to elucidation of the pathogenic mechanism of sporadic Parkinson's disease. PINK1 and Parkin have been identified as causal genes responsible for hereditary recessive early-onset Parkinsonism (Non Patent Document 1). PINK1 encodes Ser/Thr kinase localized in mitochondria, and Parkin encodes ubiquitin ligase (E3). When mitochondria lose their membrane potential, PINK1 and Parkin accumulate on mitochondria and they ubiquitinate the mitochondria, so as to induce only defective mitochondria to selective degradation (Non-Patent Document 2). An abnormality in this selective degradation mechanism of defective mitochondria (mitophagy) is considered to be a cause of neurodegeneration in Parkinson's disease.
- Parkin is ubiquitin ligase (E3). E3 is the most important enzyme for determining substrate specificity in a ubiquitin-proteasome system, and in order to elucidate the pathogenic mechanism of Parkinson's disease due to abnormal mitophagy, it is extremely important to understand the mechanism of activation of Parkin. Parkin is generally present in the cytoplasm in an inactive form. When Parkin is recruited to defective mitochondria, it is activated and functions as an E3 enzyme. It has been known that PINK1 is essential for both recruitment of Parkin to mitochondria and the activation thereof (Non-Patent Document 3). Moreover, as a result of recent studies, it has been found that the autophosphorylation of PINK1 occurs with a reduction in the mitochondrial membrane potential, and thereby Parkin is phosphorylated in a PINK1-dependent manner, and as a result, Parkin is recruited to the mitochondria and is activated as an E3 enzyme (
Non-Patent Document 4 and Non-Patent Document 5). However, it also has been confirmed that phosphorylation of Parkin is essential, but not sufficient, for the activation thereof. Hence, the mechanism of activation of Parkin is still only partially understood. - Parkin, which has been activated as an E3 enzyme, ubiquitinates a substrate protein on the mitochondrial outer membrane to induce the mitochondria to degrade. Ubiquitin is a protein consisting of 76 amino acids, which universally exists in all eukaryotes, and the amino acid sequence thereof is highly conserved. Studies regarding such ubiquitin have a long history, and it has been revealed that the ubiquitin acts as a tag for inducing the degradation of a substrate protein, and at the same time, it is involved in various functions such as DNA repair or intracellular signaling. Moreover, it has been studied in detail that the ubiquitin has seven lysine residues, and that the ubiquitin binds to a glycine residue at the C-terminus of another ubiquitin via these lysine residues to form a polyubiquitin chain, and various different functions are exhibited depending on the binding pattern (i.e., a difference in the shape of a polyubiquitin chain). However, it has not thus far been reported that the ubiquitin itself has undergone a certain posttranslational modification, and as a result, its function is changed.
- Non-Patent Document 1: Nature, Vol. 392, pp. 605-608 (1998)
- Non-Patent Document 2: Nature, Vol. 441, pp. 1162-1166 (2006)
- Non-Patent Document 3: J. Cell Biol., Vol. 189, pp. 211-221 (2010)
- Non-Patent Document 4: Sci. Rep., Vol. 2, srep 01002 (2012)
- Non-Patent Document 5: J. Biol. Chem., Vol. 288, pp. 22019-22012 (2013)
- It is an object of the present invention to elucidate the mechanism of activation of Parkin, and to provide early diagnosis, prevention and definitive treatment of Parkinson's disease, based on the elucidated mechanism.
- As a result of intensive research, the present inventors have found that phosphorylation of ubiquitin, as well as phosphorylation of Parkin, is essential for complete activation of the Parkin. The finding that phosphorylation of ubiquitin is essential for activation of Parkin is novel. Moreover, the findings that the ubiquitin itself undergoes a certain posttranslational modification, and that the ubiquitin is thereby involved in the control of intracellular signaling, are previously completely unknown, and these are surprising discoveries. Based on these novel discoveries, the present inventors have found that a phosphorylated ubiquitin is useful for the detection, diagnosis, prevention and treatment of Parkinson's disease, and also for screening for a preventive and/or a therapeutic agent of Parkinson's disease.
- Specifically, according to one embodiment, the present invention provides a method for testing for Parkinson's disease, which comprises a step of detecting or quantifying a ubiquitin protein comprising a phosphorylated serine residue at
position 65 in a sample isolated from a subject. - The step of detecting or quantifying is preferably carried out by an immunological technique.
- In addition, according to one embodiment, the present invention provides a biomarker for detecting Parkinson's disease, which consists of a ubiquitin protein comprising a phosphorylated serine residue at
position 65. - Moreover, according to one embodiment, the present invention provides an antibody having an ability to specifically bind to a ubiquitin protein comprising a phosphorylated serine residue at
position 65. - The antibody is preferably a polyclonal antibody or a monoclonal antibody.
- Furthermore, according to one embodiment, the present invention provides a therapeutic agent or a preventive agent for Parkinson's disease, which comprises a ubiquitin protein comprising a phosphorylated serine residue at
position 65. - Further, according to one embodiment, the present invention provides a therapeutic agent or a preventive agent for Parkinson's disease, which comprises a phosphorylation-mimicking form of ubiquitin, in which the serine residue at
position 65 is substituted with an aspartic acid residue. - Still further, according to one embodiment, the present invention provides a method for screening, for a therapeutic agent or a preventive agent for Parkinson's disease, which comprises: (1) a step of providing cells that express PINK1; (2) a step of damaging mitochondria in the cells; (3) a step of contacting the cells with a candidate compound; and (4) a step of measuring the amount of a ubiquitin protein comprising a phosphorylated serine residue at
position 65, which has been generated in the cells. - Still further, according, to one embodiment, the present invention provides a method for screening for a therapeutic agent or a preventive agent for Parkinson's disease, which comprises: (1) a step of preparing a phosphorylation reaction solution containing a ubiquitin protein, a kinase, and a phosphate donor; (2) a step of adding a candidate compound to the phosphorylation reaction solution; and (3) a step of measuring the amount of a ubiquitin protein comprising a phosphorylated serine residue at
position 65, which has been generated in the phosphorylation reaction solution. - The phosphorylation reaction solution is preferably a cell extract.
- The phosphorylated ubiquitin according to the present invention is useful as a biomarker capable of measuring and/or evaluating the pathogenic process of Parkinson's disease, for an early and specific diagnosis of Parkinson's disease, or for the screening of a therapeutic agent or a preventive agent for Parkinson's disease. In addition, the antibody according to the present invention having an ability to specifically bind to the phosphorylated ubiquitin is useful for the detection and/or measurement of the biomarker.
- Moreover, the phosphorylated ubiquitin and phosphorylation-mimicking form of ubiquitin according to the present invention are useful as therapeutic agents or preventive agents for Parkinson's disease, and these substances enable an early and definitive treatment of Parkinson's disease.
-
FIG. 1 is a view, in which the phosphorylation of ubiquitin in CCCP-treated cells has been confirmed by a Phos-tag assay. -
FIG. 2 is a view, in which the phosphorylation of ubiquitin in a cell-free system has been confirmed by a Phos-tag assay. -
FIG. 3 is a view showing the results of a mass spectrometry performed to specify the phosphorylation site of ubiquitin. -
FIG. 4 is a view in which it has been confirmed by a Phos-tag assay that the phosphorylation site of a recombinant ubiquitin in a cell-free system is the serine residue atposition 65. -
FIG. 5 is a view in which it has been confirmed by a Phos-tag assay that the phosphorylation site of a recombinant ubiquitin in CCCP-treated cells is the serine residue atposition 65. -
FIG. 6 is a view in which it has been confirmed by a Phos-tag assay that the phosphorylation of ubiquitin is disappeared in PINK1−/− cells. -
FIG. 7 is a view in which the phosphorylation of ubiquitin by isolated PINK1 has been confirmed by a Phos-tag assay. -
FIG. 8 is a view in which the activation of Parkin by a phosphorylation-mimicking form of ubiquitin has been confirmed by an intracellular ubiquitination assay. -
FIG. 9 is a view in which Parkin activation by a C-terminus-modified ubiquitin protein has been confirmed by an intracellular ubiquitination assay. -
FIG. 10 includes multiple fluorescence immunostained images showing the ubiquitination of mitochondria. -
FIG. 11 is a view showing the activation of Parkin by a recombinant ubiquitin or ubiquitin comprising a phosphorylated serine residue atposition 65 in a cell-free system. -
FIG. 12 is a schematic view showing the mechanism of activation of Parkin. -
FIG. 13 is a view showing the detection of ubiquitin comprising a phosphorylated serine residue atposition 65, using an anti-phosphorylated ubiquitin rabbit polyclonal antibody. -
FIG. 14 is a view showing the detection of ubiquitin comprising a phosphorylated serine residue atposition 65, using an anti-phosphorylated ubiquitin guinea pig polyclonal antibody. -
FIG. 15 is a view in which the presence of ubiquitin comprising a phosphorylated serine residue atposition 65 in a cell has been confirmed by mass spectrometry. - Hereinafter, the present invention will be described in detail. However, the present invention is not limited to embodiments described in the present description.
- A first aspect of the present invention relates to early detection of Parkinson's disease. In this aspect, a biomarker for detecting Parkinson's disease and an intended use thereof are provided.
- According to one embodiment, the present invention is a biomarker for detecting Parkinson's disease, which consists of a ubiquitin protein comprising a phosphorylated serine residue at
position 65. The “biomarker for detecting Parkinson's disease” of the present embodiment means a biomolecule serving as an indicator for detecting the presence or absence of affection with Parkinson's disease or the degree of the affection. - The “Parkinson's disease” is a neurodegenerative disease, which clinically has at least two symptoms selected from among (1) muscular rigidity of limbs, (2) involuntary movements such as resting tremor, (3) hypokinesia or akinesia, and (4) postural reflex impairment, and which is pathologically characterized by degeneration and defluxion of dopamine neurons in the substantia nigra. The “Parkinson's disease” according to the present invention includes early-onset Parkinsonism, familial (hereditary) Parkinsonism, striatonigral degeneration (multiple system atrophy), and the like, as well as what is called Parkinson's disease (sporadic Parkinson's disease).
- The biomarker for detecting Parkinson's disease of the present embodiment consists of a ubiquitin protein comprising a phosphorylated serine residue at
position 65. Hereinafter, in the present description, a ubiquitin protein comprising a phosphorylated serine residue atposition 65 is referred to as “Ser65-phosphorylated ubiquitin”. - The “Ser65-phosphorylated ubiquitin” of the present embodiment may include not only a ubiquitin protein consisting of a specific amino acid sequence (SEQ ID NO: 1), but also a ubiquitin protein consisting of an amino acid sequence comprising a substitution, deletion, insertion and/or addition of one to several amino acids with respect to the amino acid sequence shown in SEQ ID NO: 1, on condition that the phosphorylated serine residue at
position 65 is conserved. Herein, “one to several” is preferably “1 to 3,” “1 or 2,” or “1”. - Moreover, the “Ser65-phosphorylated ubiquitin” of the present embodiment may include a ubiquitin protein consisting of an amino acid sequence having an identity of 80% or more with SEQ ID NO: 1, on condition that the phosphorylated serine residue at
position 65 is conserved and physiological functions equivalent to those of the ubiquitin consisting of SEQ ID NO: 1 are maintained. The amino acid sequence identity is preferably approximately 90% or more, 95% or more, 96% or more, or 97% or more, and particularly preferably 98% or more, or 99% or more. The amino acid sequence identity can be determined using sequence analysis software, or using program commonly used in the present technical field (FASTA, BLAST, etc.). - The biomarker for detecting Parkinson's disease of the present embodiment is generated as a result of mitochondria abnormality occurring, and it then disappears in a normal subject (not affected with Parkinson's disease). However, in a Parkinson's disease patient, it is anticipated that the biomarker will not be generated due to the loss of function of PINK1, or that the concentration thereof will be increased by the loss of function of Parkin or by acceleration in mitochondrial stress. That is to say, the biomarker for detecting Parkinson's disease of the present embodiment is able to specifically detect Parkinson's disease at an early stage, by using, as an indicator, a deviation (a reduction or an increase) from the normal value of a subject who is not affected with Parkinson's disease.
- According to one embodiment, the present invention is a method for testing for Parkinson's disease, which comprises a step of detecting or quantifying a biomarker for detecting Parkinson's disease consisting of a Ser65-phosphorylated ubiquitin protein in a sample isolated from a subject.
- The term “test” may be used in the present embodiment to mean that Parkinson's disease is numerically quantified or the presence or absence of Parkinson's disease is detected by using a biomarker for detecting Parkinson's disease consisting of a Ser65-phosphorylated ubiquitin protein as an indicator. Based on the test results, a physician is able to determine and/or diagnose whether or not the subject is affected by Parkinson's disease, and then, is able to determine appropriate therapeutic strategies.
- The term “subject” is used in the present embodiment to mean an individual animal, which can be affected with Parkinson's disease. Examples of the animal include a mouse, a rat, a rabbit, a dog, non-human primates, and mammals such as a human. The animal is preferably a human.
- The “sample” of the present embodiment is a biological sample, which can be collected from a subject. The sample may be, for example, tissues, cells, body fluid and the like, which are derived from a subject, but the examples are not particularly limited thereto. Examples of the tissue sample or the cell sample may include brain, cardiac muscle, and skeletal muscle. Examples of the body fluid may include blood, plasma, serum, and cerebrospinal fluid. Such a sample can be obtained from a subject by a method well known to a person skilled in the art.
- In the present embodiment, a Ser65-phosphorylated ubiquitin protein can be detected or quantified by a method well known in the present technical field. Examples of the method for detecting or quantifying the Ser65-phosphorylated ubiquitin include immunological techniques such as enzyme immunoassay (EIA), radioimmunoassay (RIA), immunoblotting, immunoprecipitation or immunohistochemical staining, and methods such as liquid chromatography or mass spectrometry. A preferred detection or quantification method is an immunological technique. Detection or quantification of the Ser65-phosphorylated ubiquitin by an immunological technique can be carried out, for example, by using an antibody having an ability to specifically bind to the Ser65-phosphorylated ubiquitin.
- When the Ser65-phosphorylated ubiquitin is detected or quantified by mass spectrometry, ubiquitin purified from a sample is cleaved by protease such as trypsin or endoproteinase Lys-C, and then, for example, a signal derived from a peptide fragment: E(pS)TLHLVLR (corresponding to the amino acids at
positions 64 to 72 of phosphorylated ubiquitin), in which the m/z of a precursor ion (Precursor m/z) is 574.297 and the charge state is +2, is detected. Moreover, at that time, a signal derived from a peptide fragment: ESTLHLVLR (corresponding to the amino acids atpositions 64 to 72 of non-phosphorylated ubiquitin), in which the m/z of a precursor ion is 534.314 and the charge state is +2, can be detected as a positive control. - The method for testing for Parkinson's disease of the present embodiment may further comprise a step of comparing the results of the above described detection or quantification with the predetermined biomarker profiles with regard to a sample derived from a control which is not affected with Parkinson's disease (a normal control sample). Based on the comparison results, if the biomarker for detecting Parkinson's disease in the subject-derived sample is significantly deviated from a normal value, it is determined that the subject is likely to be affected with Parkinson's disease. In this sense, the method for testing for Parkinson's disease of the present embodiment can also be a method for evaluating and determining whether or not a subject is affected with Parkinson's disease, that is, a diagnostic method. In addition, the detection or quantification results in a single person may be compared between before and after administration of a therapeutic agent, so that the therapeutic effects can be determined.
- The method for testing for Parkinson's disease of the present embodiment enables early and specific detection of Parkinson's disease, and thus, it is extremely useful.
- According to one embodiment, the present invention is an antibody having an ability to specifically bind to a Ser65-phosphorylated ubiquitin protein. Hereinafter, in the present description, the antibody having an ability to specifically bind to the Ser65-phosphorylated ubiquitin protein is referred to as an “anti-Ser65-phosphorylated ubiquitin antibody.”
- The “antibody” of the present embodiment may be a polyclonal antibody, a monoclonal antibody, a chimeric antibody, a humanized antibody, or an antibody fragment such as Fab, F(ab′)2 or scFv. These antibodies can be produced by methods well known in the present technical field. The antibody of the present embodiment is preferably a polyclonal antibody or a monoclonal antibody.
- Specifically, when the antibody of the present embodiment is a polyclonal antibody, the Ser65-phosphorylated ubiquitin or a partial peptide thereof (a fragment comprising phosphorylated
Ser 65 and having a length of 6 to 30 amino acids, and preferably 9 to 25 amino acids) may be used as an antigen, and a mammal such as a rat, a rabbit, a guinea pig or a goat is immunized with the antigen. Thereafter, serum is recovered from the animal, and is then purified, so as to obtain a polyclonal antibody. - On the other hand, when the antibody of the present embodiment is a monoclonal antibody, antibody-producing cells are recovered from an immunized animal that has been produced by the same procedures as those described above, and the antibody-producing cells are then fused with myeloma cells to prepare hybridomas. Thereafter, hybridoma clones producing an antibody exhibiting a highly specific affinity for the antigen are selected, and a culture solution of the selected clones is recovered and is then purified, so as to obtain a monoclonal antibody.
- The chimeric antibody is a monoclonal antibody produced by genetic engineering. A specific example of the chimeric antibody may be an antibody, the variable region of which is derived from the immunoglobulin of an animal other than a human and the constant region of which is derived from human immunoglobulin. The animal other than a human is not particularly limited, as long as it is able to produce hybridomas, and examples of such an animal include a mouse, a rat, and a rabbit. The chimeric antibody can be produced by a method well known in the present technical field.
- The humanized antibody (i.e., a CDR-grafted humanized antibody) is a monoclonal antibody produced by genetic engineering. Specifically, the humanized antibody means an antibody, in which a part or all of complementarity-determining regions in the hypervariable region thereof are derived from the monoclonal antibody of an animal other than a human, and the framework region in the variable region thereof is derived from human immunoglobulin, and the constant region thereof is derived from human immunoglobulin. The humanized antibody can be produced by a method well known in the present technical field.
- The antibody fragment, such as Fab, F(ab′)2 or scFv, is a portion comprising the antigen-binding region of the above-described antibody, or a portion derived from the region. The antibody fragment can be produced by a method well known in the present technical field.
- The anti-Ser65-phosphorylated ubiquitin antibody of the present embodiment can be used to detect or quantify a Ser65-phosphorylated ubiquitin protein in cells or tissues.
- The anti-Ser65-phosphorylated ubiquitin antibody of the present embodiment can also be used as a reagent for testing for Parkinson's disease by being bound to any given labeling substance. Herein, any given labeling substance may be all labeling substances used for nucleic acid, which are known in the present technical field. Examples of the labeling substance include biotin, fluorescent dyes, luminescent substances, radioisotopes, and enzymes. Moreover, the reagent for detecting the Ser65-phosphorylated ubiquitin may be further combined with additional elements, such as a container, a buffer, a positive control, a negative control and test protocols, as necessary, so as to produce a kit for testing for Parkinson's disease.
- In a second aspect, the present invention relates to the treatment or prevention of Parkinson's disease. In this aspect, a therapeutic agent or a preventive agent for Parkinson's disease is provided.
- That is, according to one embodiment, the present invention is a therapeutic agent or a preventive agent for Parkinson's disease, which comprises a Ser65-phosphorylated ubiquitin protein. The Ser65-phosphorylated ubiquitin can activate Parkin and normalize mitophagy, so as to definitively treat or prevent Parkinson's disease.
- In the present invention, the term “treatment” does not only include complete cure of Parkinson's disease, but it may also include remission of the symptoms of Parkinson's disease, alleviation of the conditions thereof, and retardation or halt of the progression of the pathologic conditions thereof.
- The Ser65-phosphorylated ubiquitin according to the present embodiment may include not only a ubiquitin protein consisting of a specific amino acid sequence (SEQ ID NO: 1), but also a ubiquitin protein consisting of an amino acid sequence comprising a substitution, deletion, insertion and/or addition of one to several amino acids with respect to the amino acid sequence shown in SEQ ID NO: 1, on condition that the phosphorylated serine residue at
position 65 is conserved. Herein, “one to several” is preferably “1 to 3,” “1 or 2,” or “1”. - Moreover, the “Ser65-phosphorylated ubiquitin” of the present embodiment may include a ubiquitin protein consisting of an amino acid sequence having an identity of 80% or more with SEQ ID NO: 1, on condition that the phosphorylated serine residue at
position 65 is conserved and physiological functions equivalent to those of the ubiquitin consisting of SEQ ID NO: 1 are maintained. The amino acid sequence identity is preferably approximately 90% or more, 95% or more, 96% or more, or 97% or more, and particularly preferably 98% or more, or 99% or more. The amino acid sequence identity can be determined using sequence analysis software, or using a program commonly used in the present technical field (PASTA, BLAST, etc.). - The Ser65-phosphorylated ubiquitin of the present embodiment can be produced by biosynthesis involving a genetic engineering method, or chemical synthesis.
- When the Ser65-phosphorylated ubiquitin is produced by biosynthesis involving a genetic engineering method, host cells may be transformed, for example, with an expression vector comprising DNA encoding a ubiquitin protein, so that the ubiquitin is allowed to express in the host cells, and thereafter, the ubiquitin protein can be purified and be then phosphorylated, thereby producing a Ser65-phosphorylated ubiquitin protein.
- As host cells in which a ubiquitin protein is expressed, bacteria, enzymes, mammalian cells and the like can be used, for example. Preferred examples of the host cells that can be used herein include Escherichia coli such as BL21 (DE3) or Rosetta (DE3), and human-derived cells such as HeLa cells, CHO cells or COST cells. In a case in which Escherichia coli are used as host cells, examples of the expression vector that can be used include Escherichia coli expression plasmids, such as pT7 (Sigma-Aldrich) or pET (Merck Millipore). In a case in which mammalian cells are used as host cells, examples of the expression vector that can be used include animal cell expression plasmids such as pcDNA3.1 (Invitrogen), and animal virus vectors such as retroviruses or adenoviruses. The transformation can be carried out by well-known methods such as a calcium phosphate co-precipitation method, an electroporation method, a microinjection method or a lipofection method.
- Phosphorylation of ubiquitin can be carried out by allowing ubiquitin isolated and purified from host cells to react with mitochondria in which PINK is accumulated by reducing membrane potential, or with an immunoprecipitation product comprising PINK1, or with PINK1. The reaction can be carried out in a buffer containing divalent ions such as magnesium and a phosphate donor such as ATP.
- When the Ser65-phosphorylated ubiquitin is produced by chemical synthesis, for example, a ubiquitin protein may be synthesized using a peptide synthesizer, and it may be then subjected to a phosphorylation modification to produce the Ser65-phosphorylated ubiquitin. Operations for carrying out such chemical synthesis can be all carried out by known methods.
- The Ser65-phosphorylated ubiquitin of the present embodiment may also be fused with a cell membrane penetrating peptide at the carboxyl terminus thereof. The cell membrane penetrating peptide-fused Ser65-phosphorylated ubiquitin is preferable because it can be efficiently delivered into a cell. The cell membrane penetrating peptide may be a peptide comprising a large amount of basic amino acid such as arginine or lysine and having the property of penetrating into a cell membrane. Examples of the cell membrane penetrating peptide of the present embodiment include, but are not limited to, HIV-1 Tat, HIV-1 Rev, BMV-gag, and HTLV-IIRex.
- The therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment comprises a Ser65-phosphorylated ubiquitin protein, as an active ingredient. This therapeutic agent or preventive agent may be composed of only the active ingredient, but it may also comprise, as any given components, a pharmaceutically acceptable known diluent, carrier, excipient, and other components.
- In order to produce the therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment, the Ser65-phosphorylated ubiquitin may be combined with the above-described known diluent, carrier, excipient, and other components, as necessary, to prepare a formulation. The Ser65-phosphorylated ubiquitin may be comprised, as an active ingredient, in the therapeutic agent or preventive agent for Parkinson's disease, such that it can be an appropriate dose within a range that depends on each dosage form. The content of the Ser65-phosphorylated ubiquitin in the agent is preferably determined, such that the dose of the Ser65-phosphorylated ubiquitin per adult per day can be generally 0.001 mg/kg (body weight) or more, and preferably 0.01 mg/kg (body weight) or more. However, the content of the Ser65-phosphorylated ubiquitin is not limited to the aforementioned range, and it can be appropriately adjusted depending on symptoms, age, sex and the like of a patient. The upper limit of the dose per day is preferably 10 mg/kg (body weight) or less, and more preferably 1 mg/kg (body weight) or less.
- The therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment may be formulated into a tablet, a capsule, a powder agent, a granule, a syrup agent, an injection, a rectal administration agent, and the like. Accordingly, the therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment can be achieved by various methods including oral, intraperitoneal, intradermal, intravenous or intramuscular administration.
- Examples of the oral preparation of the therapeutic agent or preventive agent for Parkinson's disease may include solid agents such as a tablet, a capsule, a powder agent or a granule. In this case, suitable additives, for example, additives such as starch, lactose, saccharose, mannitol, carboxymethyl cellulose, corn starch or inorganic salts, and further, as desired, a binder, a disintegrator, a lubricant, a coloring agent, a flavor, and the like, may be mixed into the therapeutic agent or preventive agent for Parkinson's disease. Otherwise, the oral preparation of the therapeutic agent or preventive agent for Parkinson's disease can be, for example, a liquid such as a syrup agent. In this case, sterile water, normal saline, ethanol or the like can be used as a carrier. Moreover, an auxiliary agent such as a suspending agent, a sweetener, a flavoring agent, an antiseptic, and the like may be added to the oral preparation of the therapeutic agent or preventive agent for Parkinson's disease, as desired.
- The parenteral agent of the therapeutic agent or preventive agent for Parkinson's disease can be, for example, a liquid agent such as an injection or a rectal administration agent. In this case, the Ser65-phosphorylated ubiquitin used as an active ingredient may be dissolved or suspended in distilled water for injection, normal saline, glucose aqueous solution, vegetable oil for injection, propylene glycol, polyethylene glycol or the like according to a common method, and thereafter, a disinfectant, a stabilizer, a tonicity agent, a soothing agent and the like may be further added to the solution or suspension, as necessary, so as to prepare a parenteral agent. Otherwise, such a parenteral agent can also be prepared by producing a solid composition, and then dissolving the solid composition in sterile water or a sterile injection solvent before use.
- The therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment is useful for the definitive treatment or prevention of Parkinson's disease.
- In addition, according to one embodiment, the present invention is a therapeutic agent or a preventive agent for Parkinson's disease, which comprises a phosphorylation-mimicking form of ubiquitin, in which the serine residue at
position 65 is substituted with an aspartic acid residue. The phosphorylation-mimicking form of ubiquitin, in which the serine residue atposition 65 is substituted with an aspartic acid residue, can activate Parkin and normalize mitophagy, as with the Ser65-phosphorylated ubiquitin, so as to definitively treat or prevent Parkinson's disease. Hereinafter, in the present description, the phosphorylation-mimicking form of ubiquitin, in which the serine residue atposition 65 is substituted with an aspartic acid residue, is referred to as “Ser65Asp phosphorylation-mimicking ubiquitin”. - The Ser65Asp phosphorylation-mimicking ubiquitin of the present embodiment may include not only a ubiquitin protein consisting of a specific amino acid sequence (SEQ ID NO: 2), but also a ubiquitin protein consisting of an amino acid sequence comprising a substitution, deletion, insertion and/or addition of one to several amino acids with respect to the amino acid sequence shown in SEQ ID NO: 2, on condition that the aspartic acid residue at
position 65 is conserved. Herein, “one to several” is preferably “1 to 3,” “1 or 2,” or “1”. - Moreover, the “Ser65Asp phosphorylation-mimicking ubiquitin” of the present embodiment may include a ubiquitin protein consisting of an amino acid sequence having an identity of 80% or more with SEQ ID NO: 2, on condition that the aspartic acid residue at
position 65 is conserved and physiological functions equivalent to those of the Ser65-phosphorylated ubiquitin are maintained. The amino acid sequence identity is preferably approximately 90% or more, 95% or more, 96% or more, or 97% or more, and particularly preferably 98% or more, or 99% or more. The amino acid sequence identity can be determined using sequence analysis software, or using a program commonly used in the present technical field (FASTA, BLAST, etc.). - The Ser65Asp phosphorylation-mimicking ubiquitin of the present embodiment can be produced by biosynthesis involving a genetic engineering method, or chemical synthesis, as in the case of the above described Ser65-phosphorylated ubiquitin.
- The Ser65Asp phosphorylation-mimicking ubiquitin of the present embodiment may also be fused with a cell membrane penetrating peptide at the carboxyl terminus thereof, as in the case of the above described Ser65-phosphorylated ubiquitin.
- The therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment comprises a Ser65Asp phosphorylation-mimicking ubiquitin protein, as an active ingredient. This therapeutic agent or preventive agent may be composed of only the active ingredient, but it may also comprise, as any given components, a pharmaceutically acceptable known diluent, carrier, excipient, and other components.
- The therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment can be formulated, as in the case of the above described therapeutic agent or preventive agent for Parkinson's disease comprising a Ser65-phosphorylated ubiquitin protein.
- The therapeutic agent or preventive agent for Parkinson's disease according to the present embodiment is useful for the definitive treatment or prevention of Parkinson's disease.
- In a third aspect, the present invention relates to the development of a novel therapeutic agent or a novel preventive agent for Parkinson's disease. In this aspect, a method for screening for a therapeutic agent or a preventive agent for Parkinson's disease is provided.
- According to one embodiment, the present invention is a method for screening for a therapeutic agent or a preventive agent for Parkinson's disease, which comprises: (1) a step of providing cells that express PINK1; (2) a step of damaging mitochondria in the cells; (3) a step of contacting the cells with a candidate compound; and (4) a step of measuring the amount of a ubiquitin protein comprising a phosphorylated serine residue at
position 65, which has been generated in the cells. According to the method of the present embodiment, a compound that promotes phosphorylation of theSer 65 of a ubiquitin protein can be obtained as a substance effective for a therapeutic agent or a preventive agent for Parkinson's disease. - In the screening method of the present embodiment, cells that express PINK1 are prepared and are then used. Hereinafter, in the present description, living cells that express PINK1 are referred to as “PINK1-expressing cells”.
- The PINK1-expressing cells of the present embodiment can be cells collected from an individual animal. Such individual animal-derived cells can be collected from tissues expressing PINK1, for example, from the tissues of brain or muscle, according to a method well known to one skilled in the art. Examples of the individual animal include a mouse, a rat, a rabbit, a dog, non-human primates, and a human. The animal is preferably a human.
- The PINK1-expressing cells of the present embodiment may be a mammalian cell line that expresses PINK1. Examples of the mammalian cell line that is preferably used herein include human-derived cell lines such as HeLa cells, CHO cells or COS7 cells.
- Subsequently, mitochondria in the PINK1-expressing cells are damaged. Mitochondria can be damaged by a conventionally known method, and examples of the method include a CCCP treatment, a rotenone treatment, a paraquat treatment, and an MPTP treatment.
- Subsequently, a candidate compound is contacted with PINK1-expressing cells, in which mitochondria are damaged. Examples of the candidate compound may be a protein, a peptide, a nucleic acid, a non-peptide compound, a synthetic compound, a cell extract, a plant extract, and an animal tissue extract. These substances may be either novel substances or known substances.
- The above-described contact of the cells with a candidate compound can be carried out, for example, by adding the candidate compound to a medium for culturing PINK1-expressing cells or various types of buffers such as a phosphate buffered saline or a Tris-HCl buffer, and then incubating the cells in the mixed solution for a certain period of time. The concentration of the candidate compound to be added may be different depending on the type of the compound, and it can be appropriately selected, for example, from the range of 0.1 nM to 100 nM. The incubation can be preferably carried out for 10 minutes to 24 hours.
- Subsequently, the amount of the Ser65-phosphorylated ubiquitin in the cells is measured. The amount of the Ser65-phosphorylated ubiquitin can be measured, for example, by various types of immunological techniques such as ELISA, immunohistochemical staining or immunoblotting, in which the anti-Ser65-phosphorylated ubiquitin antibody is used, or by means such as mass spectrometry, as in the case of detection or quantification of a Ser65-phosphorylated ubiquitin protein in the above described method for testing for Parkinson's disease.
- In the screening method of the present embodiment, when the amount of the Ser65-phosphorylated ubiquitin in the cells is significantly increased in comparison to before the contact with the candidate compound, this candidate compound can be evaluated to be promising as a therapeutic agent or a preventive agent for Parkinson's disease. On the other hand, when the Ser65-phosphorylated ubiquitin is detected in the cells only in an amount equivalent to or less than the amount thereof before the contact with the candidate compound, this candidate compound can be evaluated not to be promising as a therapeutic agent or a preventive agent for Parkinson's disease.
- Moreover, according to one embodiment, the present invention is a method for screening for a therapeutic agent or a preventive agent for Parkinson's disease, which comprises: (1) a step of preparing a phosphorylation reaction solution containing a ubiquitin protein, a kinase, and a phosphate donor; (2) a step of adding a candidate compound to the phosphorylation reaction solution; and (3) a step of measuring the amount of a ubiquitin protein comprising a phosphorylated serine residue at
position 65, which has been generated in the phosphorylation reaction solution. According to the method of the present embodiment, a compound that promotes phosphorylation ofSer 65 of a ubiquitin protein can be obtained as a substance effective for a therapeutic agent or a preventive agent for Parkinson's disease. - The screening method of the present embodiment may be a cell-free system assay, in which a phosphorylation reaction solution containing a ubiquitin protein, a kinase and a phosphate donor is used. The phosphorylation reaction solution of the present embodiment, which is used herein, may be a cell extract prepared from living cells, or an artificial reaction solution prepared by mixing a ubiquitin protein, a kinase and a phosphate donor. The phosphorylation reaction solution of the present embodiment is preferably a cell extract.
- When a cell extract is used as such a phosphorylation reaction solution, the cell extract may be prepared from the above described PINK1-expressing cells, or may also be prepared from cells that do not express PINK1.
- The “cells that do not express PINK1” of the present embodiment may include not only cells that do not express PINK1 at all, but also cells that do not substantially express PINK1. The cells that do not substantially express PINK1 mean cells, in which the expression of a PINK1 gene cannot be detected by commonly used means for detecting gene expression (e.g., a Northern blotting method, etc.). The cells that do not substantially express PINK1 can be collected, for example, from tissues in an individual animal that do not substantially express PINK1, such as lung, spleen, thymus or leukocytes, according to a method well known to a person skilled in the art. Examples of the individual animal include a mouse, a rat, a rabbit, a dog, non-human primates, and a human. The animal is preferably a human. The cells that do not express PINK1 at all may be collected from a PINK1.sup.−/− knockout animal, and the cells may be, for example, the mouse embryonic fibroblasts (MEFs) of a PINK1−/− knockout mouse.
- The cell extract of the present embodiment can be prepared by a conventionally known method, such as a method of physically crushing cells or a method of dissolving cells using a surfactant such as CHAPS. The cell extract of the present embodiment is preferably prepared by physically crushing cells.
- When the reaction solution prepared by mixing a ubiquitin protein, a kinase and a phosphate donor is used as a phosphorylation reaction solution, such a reaction solution can be prepared by mixing a ubiquitin protein, a kinase and a phosphate donor in a reaction buffer that is suitable for a phosphorylation reaction with kinase. As such a reaction buffer, a Tris-HCl buffer containing Mg2+ or Mn2+ can be used, for example. The composition of individual components in a phosphorylation reaction solution can be determined, as appropriate, in accordance with the composition of a cell extract prepared from cells.
- The ubiquitin protein of the present embodiment may be derived from any given eukaryote. It is preferably derived from mammals such as a mouse, a rat, a rabbit, a dog, non-human primates or a human, and it is particularly preferably human-derived ubiquitin. The ubiquitin protein of the present embodiment can be prepared by biosynthesis involving a genetic engineering method, or chemical synthesis, as in the case of the above-described Ser65-phosphorylated ubiquitin.
- As the kinase of the present embodiment, in addition to PINK1, MAP kinase such as ERK1/2, ERK5, ERK7, JNK/SAPK or p38, or any given Ser/Thr kinase such as protein kinase A (PKA), protein kinase C (PKC), CaM kinase, Mos/Raf kinase or cdc2 can be used. The kinase of the present embodiment is preferably PINK1. The kinase of the present embodiment may be derived from any given eukaryote. It is preferably derived from mammals such as a mouse, a rat, a rabbit, a dog, non-human primates or a human, and it is particularly preferably a human-derived kinase. The kinase of the present embodiment can be prepared by biosynthesis involving a genetic engineering method.
- As the phosphate donor of the present embodiment, ATP, CTP, GTP, TTP, UTP, dATP, dCTP, dGTP, dTTP, dUTP or the like can be used, for example. The phosphate donor of the present embodiment is preferably ATP or GTP.
- Subsequently, a candidate compound is added to the phosphorylation reaction solution. Examples of the candidate compound may be a protein, a peptide, a nucleic acid, a non-peptide compound, a synthetic compound, a cell extract, a plant extract, and an animal tissue extract. These substances may be either novel substances or known substances. The concentration of the candidate compound to be added may be different depending on the type of the compound, and it can be appropriately selected, for example, from the range of 0.1 nM to 100 nM. The phosphorylation reaction can be preferably carried out for 10 minutes to 24 hours.
- Subsequently, the amount of the Ser65-phosphorylated ubiquitin in the cells is measured. The amount of the Ser65-phosphorylated ubiquitin can be measured, for example, by various types of immunological techniques such as ELISA, immunohistochemical staining or immunoblotting, in which the anti-Ser65-phosphorylated ubiquitin antibody is used, or by means such as mass spectrometry, as in the case of detection or quantification of a Ser65-phosphorylated ubiquitin protein in the above described method for testing for Parkinson's disease.
- In the screening method of the present embodiment, when the amount of the Ser65-phosphorylated ubiquitin in the phosphorylation reaction solution is significantly increased in comparison to before the contact with the candidate compound, this candidate compound can be evaluated to be promising as a therapeutic agent or a preventive agent for Parkinson's disease. On the other hand, when the Ser65-phosphorylated ubiquitin is detected in the phosphorylation reaction solution only in an amount equivalent to or smaller than the amount thereof before the contact with the candidate compound, this candidate compound can be evaluated not to be promising as a therapeutic agent or a preventive agent for Parkinson's disease.
- Hereinafter, the present invention will be more specifically described in the following examples. However, these examples are not intended to limit the scope of the present invention.
- HeLa cells were cultured in 5% CO2 at 37° C. in Dulbecco's Modified Eagle's Medium (DMEM) (Sigma-Aldrich), to which 1× nonessential amino acid (Lifetec Co., Ltd.), 1× sodium pyruvate (Lifetec Co., Ltd.) and 10% bovine serum (Lifetec Co., Ltd.) had been added. The HeLa cells were treated with 15 to 30 μM CCCP (Wako Pure Chemical Industries, Inc.) for 3 hours, and were then suspended in a cell extraction buffer (20 mM Tris-HCl (pH 7.5), 150 mM, NaCl, 1 mM EDTA, and 1% NP-40) to prepare a cell lysate. A cell lysate, which was prepared by the same procedures as those described above with the exception that the CCCP treatment was not performed, was used as a negative control.
- The obtained cell lysate was applied to 12.5-15% polyacrylamide gel containing 50 μM Phos-tag acrylamide (Wako Pure Chemical Industries, Inc.) and 100 μM MnCl2, and the obtained mixture was then subjected to electrophoresis. As a control, electrophoresis was carried out using polyacrylamide gel that did not contain Phos-tag. After completion of the electrophoresis, the resulting gel was washed with a transfer buffer containing 0.01% SDS and 1 mM EDTA for 10 minutes, and it was then incubated in a 0.01% SDS transfer buffer that did not contain EDTA for 10 minutes. Thereafter, the resultant was transcribed on a PVDF membrane, and immunoblotting was then carried out thereon, using the anti-ubiquitin antibody P4D1 (Cell Signaling Technology) (1:1000) as a primary antibody, and also using a goat anti-mouse IgG-AP antibody (Santa Cruz Biotechnology, Inc.) (1:10000) as a secondary antibody. Detection was carried out using a BCIP/NBT reagent (Nacalai Tesque).
- The results are shown in
FIG. 1 . The left view ofFIG. 1 shows the results obtained by performing electrophoresis using polyacrylamide gel that did not contain Phos-tag, whereas the right view ofFIG. 1 shows the results obtained by performing electrophoresis using polyacrylamide gel containing Phos-tag. When the cell lysate subjected to a CCCP treatment was electrophoresed on Phos-tag-containing gel, a band of slow electrophoretic mobility (indicated by an asterisk “*” in the figure) was found. From these results, it was suggested that the ubiquitin would be phosphorylated in the CCCP-treated cells. - In order to confirm that phosphorylation of ubiquitin takes place due to the disappearance of mitochondrial membrane potential, a ubiquitin phosphorylation assay was carried out in a cell-free system. HeLa cells were subjected to a CCCP treatment by the same procedures as those described in 1-1 above, and the resulting cells were then suspended in a buffer for cell-free assay (20 mM HEPES-KOH (pH 7.5), 220 mM sorbitol, 10 mM KAc, and 70 mM sucrose), to which an EDTA-free protease inhibitor cocktail (Roche Diagnostics) had been added. The cell suspension was passed through a 25-gauge injection needle 30 times to crush the cells, so as to obtain a cell homogenate. Subsequently, the cell homogenate was centrifuged at 4° C. at 800×g for 10 minutes, and after the removal of a nucleus, a supernatant was recovered. The obtained nucleus-free supernatant was further centrifuged at 4° C. at 10,000×g for 20 minutes, so as to recover a mitochondrial pellet.
- The mitochondria were incubated at 30° C. for 1 hour in ubiquitin (Boston Biochem), HA-ubiquitin (Boston Biochem), or His6-ubiquitin (Boston Biochem), each having a final concentration of 40 ng/μL, which had been prepared with a buffer for cell-free system assay, to which 5 mM MgCl2, 5 mM ATP, 2 mM DTT and 1% glycerol had been added. Thereafter, the resultant was centrifuged at 4° C. at 16,000×g for 10 minutes, to remove the mitochondria. The obtained supernatant was subjected to a Phos-tag assay by the same procedures as those described in 1-1 above. A resultant, which was prepared without subjecting to a CCCP treatment, was used as a negative control. The immunoblotting was carried out using an anti-ubiquitin antibody (Dako Japan) (1:500) as a primary antibody, and also using a goat anti-rabbit IgG-AP antibody (Santa Cruz Biotechnology, Inc.) (1:5000) as a secondary antibody. Detection was carried out using a BCIP/NBT reagent (Nacalai Tesque).
- The results are shown in
FIG. 2 . The ubiquitin, which was allowed to react with mitochondria isolated from the CCCP-treated cells, was phosphorylated (right view ofFIG. 2 ,lane 8, the band indicated as “pUb”). In contrast, the ubiquitin, which was allowed to react with mitochondria isolated from the cells that had not been subjected to the CCCP treatment, was not phosphorylated (right view ofFIG. 2 , lane 7). It is to be noted that the band indicated by the asterisk “*” inFIG. 2 is caused by the cross reaction of antibody. From these results, it was demonstrated that phosphorylation of ubiquitin takes place depending on the disappearance of mitochondrial membrane potential. In addition, it was confirmed that even if an HA tag or His6 tag is added to the N-terminus of ubiquitin, phosphorylation of the ubiquitin is not inhibited (right view ofFIG. 2 ,lanes 10 and 12). - In order to specify the phosphorylation site of ubiquitin, an analysis was carried out by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ubiquitin was allowed to react with CCCP-treated mitochondria in a cell-free system in the same manner as that described in 1-2 above, and it was then subjected to SDS-PAGE. After completion of the electrophoresis, the gel was stained with CCB to detect a band. The gel was washed with ultrapure water, and a band of interest was then excised. The excised gel section was chopped into small sections with a size of 1 mm2, and the sections were then stirred in 1 mL of 50 mM ammonium bicarbonate/50% acetonitrile (ACN) for 1 hour, followed by dehydration. Thereafter, small gel sections were completely dehydrated with 100% ACN. Sequencing Grade Modified Trypsin (Promega), which had been prepared to a concentration of 20 ng/μL with 50 mM ammonium bicarbonate/5% ACN (pH 8.0), was added to the small gel sections, and the obtained mixture was then incubated at 37° C. overnight, so as to carry out in-gel trypsin digestion.
- After completion of the digestion reaction, 50 μL of 50% ACN/0.1% trifluoroacetic acid (TFA) was added to the reaction product, and the mixture was then shaken for 1 hour to extract a fragmented peptide. The extract was recovered in another tube, and 50 μL of 70% ACN/0.1% TFA was further added to the remaining small gel sections. The obtained mixture was shaken for 30 minutes, so as to carry out additional extraction. The recovered extract was concentrated to 20 μL, using SpeedVac (EYELA). 20 μL of 0.1% TFA was added to the concentrated fragmented peptide to prepare a sample for LC-MS/MS. For the LC-MS/MS, as nanoflow U HPLC apparatuses, Easy-nLC1000 (Thermo Fisher Scientific) and Q-Exactive mass spectrometer (Thermo Fisher Scientific) were used, and as analysis software, Xcalibur (Thermo Fisher Scientific) was used. The spectrum of the fragmented peptide was searched using MASCOT search engine against UniProt database.
- The results are shown in
FIG. 3 . The ubiquitin-derived peptide fragment, which had been allowed to react with the mitochondria isolated from the CCCP-treated cells, was analyzed. As a result, it was confirmed that the serine atposition 65 in a peptide fragment corresponding to the amino acids at positions 55 to 72 of ubiquitin was phosphorylated (TLSDYNIQKE(pS)TLHLVLR). Further, it was also confirmed that the serine atposition 65 in a peptide fragment corresponding to the amino acids atpositions 64 to 72 of ubiquitin was phosphorylated (E(pS)TLHLVLR). The above described phosphorylated peptide fragment was not detected in the control, which had been allowed to react with the mitochondria isolated from cells not subjected to a CCCP treatment. From these results, it was demonstrated that the serine residue at position 65 (Ser 65) of ubiquitin is a phosphorylation site. - In order to further confirm that the
Ser 65 of ubiquitin is phosphorylated depending on the disappearance of mitochondrial membrane potential, a recombinant ubiquitin, into theSer 65 of which a mutation had been introduced, was subjected to a Phos-tag assay by the same procedures as those described in 1-2 above. As such recombinant ubiquitin mutants, a ubiquitin mutant in which theSer 65 had been substituted with alanine (S65A) and a ubiquitin mutant in which theSer 65 had been substituted with aspartic acid (S65D) were used, and as a control, wild-type ubiquitin (WT) was used. - The recombinant ubiquitin mutants and the wild-type ubiquitin were prepared by the following procedures. Using a pT7 vector (Sigma-Aldrich), into which DNA encoding the aforementioned mutant or wild-type ubiquitin, to the N-terminus of which a His6 tag sequence had been added, had been incorporated, the Escherichia coli Rosetta 2 (DE3) (Novagen) was transformed. The obtained transformant was pre-cultured at 37° C. overnight in 20 mL of LB medium containing 100 μg/mL ampicillin and 24 μg/mL chloramphenicol, and thereafter, the pre-culture was transferred into 200 mL of medium. After completion of the incubation at 37° C. for 2 hours, IPTG (final concentration: 1 mM) was added to the resultant, and the obtained mixture was further cultured for 6 hours. Thereafter, the recovered cells were suspended in 40 mL of 20 mM Tris-HCl (pH 7.5), and was then crushed by an ultrasonic treatment. The resultant was centrifuged at 8,000 rpm for 10 minutes. Thereafter, a supernatant was recovered, was then purified by an ordinary method, and was then dialyzed against buffer A (50 mM Tris-HCl (pH 7.5)/100 mM NaCl/10% glycerol).
- The results are shown in
FIG. 4 . It was found that the wild-typeubiquitin having Ser 65 was phosphorylated (right view ofFIG. 4 , lane 2), but that the recombinant ubiquitin mutants having the substitutedSer 65 were both not phosphorylated (right view ofFIG. 4 ,lanes 4 and 6). From these results, it was confirmed that theSer 65 of ubiquitin is a phosphorylation site. - An extract from CCCP-treated HeLa cells was subjected to a Phos-tag assay by the same procedures as those described in 1-1 above. S65A recombinant ubiquitin and WT ubiquitin were each allowed to express in the HeLa cells by introducing into the cells, a pcDNA3 vector (Invitrogen), into which DNA encoding the recombinant ubiquitin or the WT ubiquitin had been inserted, using FuGENE6 (Roche Diagnostics).
- The results are shown in
FIG. 5 . The wild-type ubiquitin was phosphorylated in the cells (right view ofFIG. 5 , lane 2), whereas the S65A ubiquitin was not phosphorylated therein (right view ofFIG. 5 , lane 4). Also from these results, it was confirmed that theSer 65 of ubiquitin is a phosphorylation site. - It is known that PINK1 is a kinase and is activated depending on the disappearance of mitochondrial membrane potential. Thus, the enzyme that phosphorylates ubiquitin is likely to be PINK1. In order to verify this hypothesis, using the mouse fetal fibroblasts (MEFs) of a PINK1−/− knockout mouse, a phosphorylation test was carried out in a cell-free system. PINK1−/− MEFs were prepared from PINK1−/− mouse fetuses, and the cells were provided by Jie Shen, Ph.D. (Harvard University). A gene encoding Wild-type PINK1, kinase activity-deleted (KD) mutant PINK1, A168P mutant PINK1 or G386A mutant PINK1 was packaged into a retrovirus, using a pMX-puro vector (COSMO BIO CO., LTD.). By infecting the PINK1−/− MEFs with the obtained retrovirus, wild-type PINK1-expressing cells or mutant PINK1-expressing cells were produced. Thereafter, except for the aforementioned operations, a Phos-tag assay was carried out by the same procedures as those described in 1-2 above.
- The results are shown in
FIG. 6 . It was found that the mitochondria isolated from the CCCP-treated PINK1−/− MEFs did not induce phosphorylation of the ubiquitin (right view ofFIG. 6 , lane 2), but that the mitochondria isolated from PINK1−/− MEFs, into which wild-type PINK1 had been introduced, induced phosphorylation of the ubiquitin in a CCCP treatment-dependent manner (right view ofFIG. 6 , lane 4). On the other hand, none of the mitochondria isolated from PINK1−/− MEFs, into which mutant PINK1 having no kinase activity had been introduced, phosphorylated the ubiquitin (right view ofFIG. 6 ,lanes - 3-2. Phosphorylation of Ubiquitin by PINK1 Isolated from CCCP-Treated Cells
- In order to further confirm that PINK1 phosphorylates ubiquitin, PINK1 was isolated from CCCP-treated cells, and whether or not the PINK1 phosphorylates ubiquitin was then examined. Using a pMX-puro vector (COSMO BIO CO., LTD.), a PINK1-3× Flag gene was introduced into HeLa cells, in which the mouse retrovirus receptor mCAT1 had been transiently expressed, by the same procedures as those described in 3-1 above, so as to obtain stable expression cells. The cells were suspended in a buffer for cell-free assay by the same procedures as those described in 1-2 above. Subsequently, the suspension was treated with 10 mg/mL digitonin at 4° C. for 15 minutes, so that the cells were solubilized. Thereafter, the cells were allowed to react with
Protein G Sepharose 4 Fast Flow (GE Healthcare Life Sciences) conjugated to the anti-FLAG antibody 2H8 (Trans Genic Inc., Ltd.), at 4° C. for 1 hour, so as to carry out immunoprecipitation. The immunoprecipitate obtained after completion of the reaction was washed with the above described buffer, and was then recovered by centrifugation. The obtained immunoprecipitate was electrophoresed by SDS-PAGE, and then, immunoblotting was carried out in the same manner as that described in 1-1 above. For detection of a mitochondrial protein, the anti-VDAC antibody ab2 (Calbiochem) (1:1,000), theanti-mitofusin 2 antibody ab56889 (Abeam) (1:500), and anti-FoF1-ATPase (provided from Ph. D. Ueno) (1:1,000) were used. - The results are shown in
FIG. 7 . It was demonstrated that, as a result of the immunoprecipitation reaction, only the PINK1 was isolated, and other mitochondrial proteins (VDAC,mitofusin 2, and FoF1-ATPase) were eliminated (left view ofFIG. 7 ). - Subsequently, a Phos-tag assay was carried out by the same procedures as those described in 1-2 above, with the exception that isolated PINK1 was used instead of mitochondria. In addition, the case of using mitochondria isolated from CCCP-treated cells was used as a control.
- The results are shown in
FIG. 7 . It was demonstrated that PINK1 isolated from CCCP-treated cells phosphorylates ubiquitin, as with mitochondria isolated from CCCP-treated cells (right view ofFIG. 7 , lane 4). From these results, it was clearly demonstrated that PINK1 phosphorylates the ubiquitin. - It is known that if PINK1 is activated, activation of Parkin as an E3 enzyme and the recruitment thereof to mitochondria take place. Hence, in order to examine the role of ubiquitin phosphorylated as a result of activation of PINK1, whether or not Parkin can be activated using a phosphorylation-mimicking form of ubiquitin was examined.
- The S65D ubiquitin was used as a phosphorylation-mimicking form of ubiquitin. The S65D ubiquitin was allowed to express in HeLa cells by introducing a pcDNA3 vector (Invitrogen) comprising DNA encoding the S65D ubiquitin into the HeLa cells, using FuGENE6 (Roche Diagnostics). GFP-wild-type Parkin (GFP-Parkin WT) or GFP-mutant Parkin was also expressed in HeLa cells by introducing the vector therein in the same manner as described above. As such GFP-mutant Parkin, Parkin that mimics the phosphorylation of
Ser 65, which is essential for activation of the Parkin as an E3 enzyme and the recruitment thereof to mitochondria (GFP-Parkin S65E), and Parkin known as partially activated Parkin, in which the cysteine residue at position 403 is substituted with alanine (GFP-Parkin W403A), were used. - Activation of Parkin as an E3 enzyme was evaluated based on the self-ubiquitination of Parkin. An intracellular ubiquitination assay was carried out by isolating a cytoplasmic fraction of HeLa cells, containing GFP-Parkin or GFP-mutant Parkin and a wild-type ubiquitin or a phosphorylation-mimicking form of ubiquitin, from the cells by the same procedures as those described in 1-1 above, and then subjecting the isolated fraction to immunoblotting. A CCCP treatment was carried out by the same procedures as those described in 1-1 above.
- The results are shown in
FIG. 8 . The S65D recombinant ubiquitin did not activate wild-type Parkin in the absence of a CCCP treatment, that is, under conditions in which PINK1 was not activated (left view ofFIG. 8 , lane 3). On the other hand, it was demonstrated that the S65E recombinant Parkin and the W403A recombinant Parkin were activated by the S65D recombinant ubiquitin even in the absence of a CCCP treatment (central view ofFIG. 8 ,lane 3, and right view ofFIG. 8 , lane 3). From these results, it was suggested that a phosphorylated ubiquitin could be an activator for Parkin. - In order to further examine the role of a phosphorylated ubiquitin in activation of Parkin, an intracellular ubiquitination assay was carried out by the same procedures as those described in 4-1 above, using mutant ubiquitin (GGAA or GGVV) and a recombinant phosphorylation-mimicking form of ubiquitin (S65DGGAA or S65DGGVV), with a deletion of a glycine residue at the C-terminus of ubiquitin, which is necessary for the formation of a polyubiquitin chain. The results are shown in
FIG. 9 . It was demonstrated that the S65D phosphorylation-mimicking form of ubiquitin with a deletion of the glycine residue at the C-terminus thereof also activates the S65E recombinant Parkin and the W403A recombinant Parkin, as with the S65D phosphorylation-mimicking form of ubiquitin having the glycine residue at the C-terminus thereof (FIG. 9 ,lanes 4 to 6). From these results, it was suggested that the phosphorylated ubiquitin could not be used for a polyubiquitin chain added by Parkin, but that it functions as an activator for Parkin based on a mechanism independent from the polyubiquitin chain. - In order to further verify the matter suggested in 4-2 above, whether or not unphosphorylated S65A mutant ubiquitin is added to a substrate protein on mitochondria was examined. The S65A mutant ubiquitin was allowed to express in HeLa cells by the same procedures as those described in 2-3 above. In addition, wild-type ubiquitin allowed to express in HeLa cells was used as a control. A CCCP treatment was carried out by the same procedures as those described in 1-1 above.
- The cells were fixed using 4% formaldehyde, and were then solubilized with 50 mg/mL digitonin. Thereafter, immunostaining was carried out using the anti-GFP antibody ab6556 (Abcam) (1:500), the anti-Flag antibody 2H8 (Trans Genic Inc., Ltd.) (1:500) and the anti-Tom20 antibody FL-145 (Santa Cruz Biotechnology, Inc.) (1:3,000) as primary antibodies, and also using Alexa Fluor 488 or 568-labeled anti-mouse or rabbit IgG antibody (Invitrogen) (1:2,000) as a secondary antibody. After completion of the staining, the cells were observed using a confocal laser scanning microscope system LSM510 (Carl Zeiss). In the statistical analysis, 100 or more cells were analyzed through three experiments, and a Student's t-test was carried out.
- The results are shown in
FIG. 10 . It was demonstrated that the unphosphorylated S65A recombinant ubiquitin is also added to a substrate protein on mitochondria, as with the wild-type ubiquitin. From these results as well, it was confirmed that the polyubiquitin chain added by Parkin is not limited to one derived from phosphorylated ubiquitin. - Finally, activation of Parkin was evaluated by a cell-free system, in which recombinant Parkin and recombinant ubiquitin or Ser65-phosphorylated ubiquitin were used. WT, S65E or W403A GFP-Parkin was prepared from HeLa cells or PINK1−/− MEFs, which had not been treated with CCCP, by the following procedures. The cells were suspended in a buffer for cell-free assay (20 mM HEPES-KOH (pH 7.5), 220 mM sorbitol, 10 mM KAc, and 70 mM sucrose), to which an EDTA-free protease inhibitor cocktail (Roche Diagnostics) had been added. The cell suspension was passed through a 25-gauge injection needle 30 times to crush the cells, so as to obtain a cell homogenate. Subsequently, the cell homogenate was centrifuged at 4° C. at 800×g for 10 minutes, and after the removal of nuclei, a supernatant was recovered. The thus obtained nucleus-free supernatant was further centrifuged at 4° C. at 16,000×g for 20 minutes to recover a supernatant, thereby obtaining a cytoplasmic fraction from which the mitochondria were removed. To this supernatant, 5 mM MgCl2, 5 mM ATP, 2 mM DTT and 1% glycerol were added. WT, S65A or S65D His6-ubiquitin, or His6-Ser65-phosphorylated ubiquitin, was prepared by the same procedures as those described in 2-1 and 2-2 above.
- Activation of Parkin as an E3 enzyme was evaluated based on the self-ubiquitination of the Parkin. A cell-free ubiquitination assay was carried out by adding the wild-type ubiquitin, S65D recombinant ubiquitin or Ser65-phosphorylated ubiquitin (
final concentration 50 μg/mL), prepared by the procedures described in 1-2 and 2-1 above, to a cytoplasmic fraction of HeLa cells containing GFP-Parkin or GFP-recombinant Parkin, and then incubating the obtained mixture at 30° C. for 2 hours. - The results are shown in
FIG. 11 . The S65E recombinant Parkin and the W403A recombinant Parkin were activated by an S65D phosphorylation-mimicking form of ubiquitin, even though mitochondria having no membrane potential were missing (upper case ofFIG. 11 ,lanes 12 and 18), but the wild-type Parkin was not activated by the S65D phosphorylation-mimicking form of ubiquitin (upper case ofFIG. 11 , lane 6). The wild-type ubiquitin or the S65A recombinant ubiquitin did not activate the S65E recombinant Parkin and the W403A recombinant Parkin (upper case ofFIG. 11 ,lanes 10 and 16). Moreover, although the influence of PINK1 was eliminated, exactly the same results were obtained (middle case ofFIG. 11 ). Furthermore, it was confirmed that the same results as described above were obtained even in the case of using ubiquitin, theSer 65 of which was actually phosphorylated, instead of the S65D phosphorylation-mimicking form of ubiquitin (lower case ofFIG. 11 ). - The mechanism of activation of Parkin assumed from the aforementioned results of the Examples is shown in
FIG. 12 . The activated PINK1 phosphorylates both Parkin and ubiquitin. In addition, phosphorylation of Parkin by PINK1 is necessary for activation of the Parkin. However, only partial activation of Parkin takes place by phosphorylation of the Parkin by PINK1, and for complete activation of the Parkin, the presence of ubiquitin, theSer 65 of which is phosphorylated, is necessary. - Thus, it was confirmed that the Ser65-phosphorylated ubiquitin according to the present invention is a constitutional molecule essential for activation of Parkin, and that the present Ser65-phosphorylated ubiquitin can be used as a biomarker for detecting Parkinson's disease. Moreover, it was suggested that, using the biomarker for detecting Parkinson's disease according to the present invention, a method for screening for a therapeutic agent or a preventive agent for Parkinson's disease can be provided. Furthermore, it was also suggested that the Ser65-phosphorylated ubiquitin and the Ser65Asp phosphorylation-mimicking ubiquitin have the effect of activating Parkin, and can be used as therapeutic agents or preventive agents for Parkinson's disease.
- Subsequently, an antibody having an ability to specifically bind to the Ser65-phosphorylated ubiquitin was produced. A rabbit was immunized with CNIQKE(pS)TLH, which is a ubiquitin fragment comprising phosphorylated
Ser 65, and a guinea pig was immunized with CNIQKE(pS)TLHLV, 4 or 5 times at intervals of 2 weeks. Thereafter, whole blood was collected from each animal, and serum was then obtained, thereby obtaining antiserum containing a polyclonal antibody. - The binding ability of the obtained polyclonal antibody was evaluated using a ubiquitin sample prepared by the same procedures as those described in 1-2 above. In addition, as a positive control, the anti-ubiquitin antibody Z0458 (Dako) was used. The results are shown in
FIG. 13 andFIG. 14 . In the positive control, both phosphorylated ubiquitin (in the figure, indicated by the asterisk “*”) and unphosphorylated ubiquitin (in the figure, indicated by the double asterisk “**”) were detected. In contrast, both the anti-ubiquitin rabbit polyclonal antibody and the anti-ubiquitin guinea pig polyclonal antibody specifically detected only the phosphorylated ubiquitin. - As such, it was suggested that the anti-Ser65-phosphorylated ubiquitin antibody according to the present invention have an ability to specifically bind to the Ser65-phosphorylated ubiquitin, and that the present anti-Ser65-phosphorylated ubiquitin antibody can be used in the above described method for detecting Parkinson's disease.
- In order to confirm whether or not the
Ser 65 of ubiquitin is actually phosphorylated in vivo depending on the disappearance of mitochondrial membrane potential, an LC-MS/MS measurement was carried out on a cell extract. A cell extract was prepared from CCCP-treated or CCCP-untreated HeLa cells by the same procedures as those described in 1-1 above, and it was then subjected to SDS-PAGE. Subsequently, peripheral gel corresponding to the molecular weight of ubiquitin was excised, and a sample was then prepared in the same manner as that described in 2-1 above. The prepared sample was subjected to a mass spectrometric analysis using an LC-MS/MS apparatus. Upon cleavage with protease, in addition to trypsin (Promega), endoproteinase Lys-C (Wako Pure Chemical Industries, Inc.) was used. After completion of the LC-MS/MS measurement, with regard to fragment ions derived from a phosphorylated peptide (E(pS)TLHLVLR) and a non-phosphorylated peptide (ESTLHLVLR), corresponding to the amino acids atpositions 64 to 72 of the ubiquitin, the area under the curves (AUC) was calculated using PinPoint software (Thermo Fisher Scientific). - The results are shown in
FIG. 15 . A signal derived from the phosphorylated peptide fragment (E(pS)TLHLVLR) was detected in the extract of the CCCP-treated HeLa cells, whereas such a phosphorylated peptide fragment was not detected in the extract of the CCCP-untreated HeLa cells. A signal derived from the non-phosphorylated peptide fragment (ESTLHLVLR) was detected in the cell extracts of both the CCCP-treated and CCCP-untreated HeLa cells. From these results, it was demonstrated that the phosphorylation of theSer 65 of ubiquitin, which actually takes place in vivo depending on the disappearance of mitochondrial membrane potential, can be detected by mass spectrometry.
Claims (10)
1. A ubiquitin protein comprising a phosphorylated serine residue at position 65 (SEQ ID NO:1), or a ubiquitin protein consisting of an amino acid sequence comprising a substitution, deletion, insertion and/or addition of 1 to 3 amino acids with respect to the amino acid sequence shown in SEQ ID NO:1, on condition that the phosphorylated serine residue at position 65 is conserved.
2. A phosphorylation-mimicking form of ubiquitin, in which the serine residue at position 65 is substituted with an aspartic acid residue (SEQ ID NO:2), or a phosphorylation-mimicking form of ubiquitin consisting of an amino acid sequence comprising a substitution, deletion, insertion and/or addition of 1 to 3 amino acids with respect to the amino acid sequence shown in SEQ ID NO:2, on condition that the aspartic acid residue at position 65 is conserved.
3. A method for testing for Parkinson's disease, comprising a step of detecting or quantifying a ubiquitin protein comprising a phosphorylated serine residue at position 65 in a sample isolated from a subject.
4. The method according to claim 3 , wherein the step of detecting or quantifying is carried out by an immunological technique.
5. A biomarker for detecting Parkinson's disease, which consists of a ubiquitin protein comprising a phosphorylated serine residue at position 65.
6. A therapeutic agent or a preventive agent for Parkinson's disease, which comprises a ubiquitin protein comprising a phosphorylated serine residue at position 65.
7. A therapeutic agent or a preventive agent for Parkinson's disease, which comprises a phosphorylation-mimicking form of ubiquitin in which the serine residue at position 65 is substituted with an aspartic acid residue.
8. A method for screening for a therapeutic agent or a preventive agent for Parkinson's disease, which comprises:
(1) a step of providing cells that express PINK1;
(2) a step of damaging mitochondria in the cells;
(3) a step of contacting the cells with a candidate compound; and
(4) a step of measuring the amount of a ubiquitin protein comprising a phosphorylated serine residue at position 65, which has been generated in the cells.
9. A method for screening for a therapeutic agent or a preventive agent for Parkinson's disease, which comprises:
(1) a step of preparing a phosphorylation reaction solution containing a ubiquitin protein, a kinase, and a phosphate donor;
(2) a step of adding a candidate compound to the phosphorylation reaction solution; and
(3) a step of measuring the amount of a ubiquitin protein comprising a phosphorylated serine residue at position 65, which has been generated in the phosphorylation reaction solution.
10. The method according to claim 9 , wherein the phosphorylation reaction solution is a cell extract.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/725,712 US20180045741A1 (en) | 2014-02-18 | 2017-10-05 | Biomarker for parkinson's disease and use thereof |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-028449 | 2014-02-18 | ||
JP2014028449 | 2014-02-18 | ||
PCT/JP2015/053930 WO2015125702A1 (en) | 2014-02-18 | 2015-02-13 | Biomarker for parkinson's disease and use therefor |
US201615119645A | 2016-08-17 | 2016-08-17 | |
US15/725,712 US20180045741A1 (en) | 2014-02-18 | 2017-10-05 | Biomarker for parkinson's disease and use thereof |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/119,645 Division US9804174B2 (en) | 2014-02-18 | 2015-02-13 | Biomarker for parkinson's disease and use thereof |
PCT/JP2015/053930 Division WO2015125702A1 (en) | 2014-02-18 | 2015-02-13 | Biomarker for parkinson's disease and use therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180045741A1 true US20180045741A1 (en) | 2018-02-15 |
Family
ID=53878207
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/119,645 Active US9804174B2 (en) | 2014-02-18 | 2015-02-13 | Biomarker for parkinson's disease and use thereof |
US15/725,712 Abandoned US20180045741A1 (en) | 2014-02-18 | 2017-10-05 | Biomarker for parkinson's disease and use thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/119,645 Active US9804174B2 (en) | 2014-02-18 | 2015-02-13 | Biomarker for parkinson's disease and use thereof |
Country Status (4)
Country | Link |
---|---|
US (2) | US9804174B2 (en) |
EP (2) | EP3109636B1 (en) |
JP (1) | JP5997394B2 (en) |
WO (1) | WO2015125702A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3109636B1 (en) | 2014-02-18 | 2018-10-31 | Tokyo Metropolitan Institute of Medical Science | Biomarker for parkinson's disease and use therefor |
WO2019090284A1 (en) * | 2017-11-06 | 2019-05-09 | Mayo Foundation For Medical Education And Research | Methods and materials for identifying and treating cancers having elevated levels of phosphorylated ubiquitin |
WO2020187104A1 (en) * | 2019-03-19 | 2020-09-24 | 中南大学湘雅医院 | Method for assisting diagnosis and treatment of parkinson's disease, and reagent |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010005077A1 (en) * | 2008-07-11 | 2010-01-14 | 財団法人ヒューマンサイエンス振興財団 | Disease-related protein for parkinson’s disease, and use thereof |
GB201206382D0 (en) * | 2012-04-11 | 2012-05-23 | Univ Dundee | Parkinson's disease biomarker |
JP6024953B2 (en) * | 2012-07-25 | 2016-11-16 | 国立大学法人 岡山大学 | Use of PINK1 for ubiquitination assay and screening |
EP3109636B1 (en) | 2014-02-18 | 2018-10-31 | Tokyo Metropolitan Institute of Medical Science | Biomarker for parkinson's disease and use therefor |
-
2015
- 2015-02-13 EP EP15751770.7A patent/EP3109636B1/en active Active
- 2015-02-13 JP JP2015545213A patent/JP5997394B2/en active Active
- 2015-02-13 US US15/119,645 patent/US9804174B2/en active Active
- 2015-02-13 WO PCT/JP2015/053930 patent/WO2015125702A1/en active Application Filing
- 2015-02-13 EP EP18195817.4A patent/EP3441769B1/en active Active
-
2017
- 2017-10-05 US US15/725,712 patent/US20180045741A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20170010285A1 (en) | 2017-01-12 |
EP3109636A1 (en) | 2016-12-28 |
WO2015125702A1 (en) | 2015-08-27 |
JP5997394B2 (en) | 2016-09-28 |
JPWO2015125702A1 (en) | 2017-03-30 |
EP3441769A1 (en) | 2019-02-13 |
EP3441769B1 (en) | 2022-06-22 |
EP3109636B1 (en) | 2018-10-31 |
EP3109636A4 (en) | 2017-08-30 |
US9804174B2 (en) | 2017-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jung et al. | Regulation of RCAN1 protein activity by Dyrk1A protein-mediated phosphorylation | |
Seyfried et al. | Quantitative analysis of the detergent-insoluble brain proteome in frontotemporal lobar degeneration using SILAC internal standards | |
Flach et al. | Axotrophin/MARCH7 acts as an E3 ubiquitin ligase and ubiquitinates tau protein in vitro impairing microtubule binding | |
US20100136573A1 (en) | Diagnosing neurodegenerative diseases | |
US20180045741A1 (en) | Biomarker for parkinson's disease and use thereof | |
Hu et al. | Lrrk2 g2019s mutation inhibits degradation of α-synuclein in an in vitro model of parkinson’s disease | |
Blazejczyk et al. | Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling | |
US20200138951A1 (en) | Fkbp52-tau interaction as a novel therapeutical target for treating the neurological disorders involving tau dysfunction | |
Park et al. | SUMOylation regulates nuclear localization and stability of TRAIP/RNF206 | |
Fuentes et al. | Molecular determinants of survival motor neuron (SMN) protein cleavage by the calcium-activated protease, calpain | |
US20060094013A1 (en) | Salt-inducible kinases 2 and use thereof | |
Midorikawa et al. | Monitoring the glycosylation of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole‐propionate‐type glutamate receptors using specific antibodies reveals a novel regulatory mechanism of N‐glycosylation occupancy by molecular chaperones in mice | |
Schulze-Krebs et al. | In situ enzymatic activity of transglutaminase isoforms on brain tissue sections of rodents: A new approach to monitor differences in post-translational protein modifications during neurodegeneration | |
KR101413590B1 (en) | Pharmaceutical compositions containing inhibitors of TAZ tyrosine phosphorylation as active ingredient for NFAT5/TonEBP activation for prevention and treatment of kidney disorder | |
KR101634612B1 (en) | AGR2 homo-dimer attenuating ER stress induced cell death | |
US20090023794A1 (en) | Use of Sumoylation Inhibitors for the Treatment of Neurodegenerative Disease | |
KR101588285B1 (en) | AGR2 homo-dimer attenuating ER stress induced cell death | |
Mirzalieva | The MUL1/ISG15 Axis Dysregulates Endoplasmic Reticulum-Mitochondrial Contacts and Calcium Homeostasis in Ataxia Telangiectasia | |
Turberville | Unravelling the mechanisms by which mutations in TG6 cause ataxia | |
US11768205B2 (en) | Methods and materials for identifying and treating cancers having elevated levels of phosphorylated ubiquitin | |
Hummer | Sorting of Cargo Proteins Within the Regulated Secretory Pathway: The Peripheral Membrane Protein Hid-1 as Sorting and Vesicle Biogenesis Factor | |
EP1707637A1 (en) | Method of judging clinical malignancy of fals | |
WEN | MECHANISMS OF SUBSTRATE DEGRADATION AND RECRUITMENT BY CULLIN E3 LIGASES | |
Li | Regulation of organic anion transporters–molecular and cellular mechanisms | |
Chen | Characterization of Caspase-8 and p85alpha in Ovarian Cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |