US20180036619A1 - Bicycle exercise apparatus - Google Patents
Bicycle exercise apparatus Download PDFInfo
- Publication number
- US20180036619A1 US20180036619A1 US15/553,581 US201615553581A US2018036619A1 US 20180036619 A1 US20180036619 A1 US 20180036619A1 US 201615553581 A US201615553581 A US 201615553581A US 2018036619 A1 US2018036619 A1 US 2018036619A1
- Authority
- US
- United States
- Prior art keywords
- main frame
- bicycle
- exercise apparatus
- roller
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000005540 biological transmission Effects 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- 230000033001 locomotion Effects 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 13
- 239000000470 constituent Substances 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/16—Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/00058—Mechanical means for varying the resistance
- A63B21/00069—Setting or adjusting the resistance level; Compensating for a preload prior to use, e.g. changing length of resistance or adjusting a valve
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/005—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
- A63B21/0058—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using motors
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0015—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
- A63B22/0023—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements the inclination of the main axis of the movement path being adjustable, e.g. the inclination of an endless band
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/02—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/06—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
- A63B22/0605—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing a circular movement, e.g. ergometers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B23/00—Exercising apparatus specially adapted for particular parts of the body
- A63B23/035—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
- A63B23/04—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/16—Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles
- A63B2069/161—Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles supports for the front of the bicycle
- A63B2069/163—Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles supports for the front of the bicycle for the front wheel
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/16—Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles
- A63B2069/164—Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles supports for the rear of the bicycle, e.g. for the rear forks
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/16—Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles
- A63B2069/167—Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles on rollers without further support
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2225/00—Miscellaneous features of sport apparatus, devices or equipment
- A63B2225/09—Adjustable dimensions
- A63B2225/093—Height
Definitions
- the present invention relates to a bicycle exercise apparatus, and more particularly, to a bicycle exercise apparatus capable of allowing a bicycle to be seated on the bicycle exercise apparatus and implementing the same effect as when the bicycle travels on an inclined road section such as an actual road.
- a user In general, a user just uses a bicycle to travel a road, a park, a mountain road (forest road), and the like, but the bicycle cannot be used as an indoor exercise machine.
- an indoor-only bicycle exercise apparatus is required for the user to inevitably use for exercising indoors, but most of the indoor-only bicycle exercise apparatuses just allow the user to sit on a chair and rotate a pedal.
- a bicycle exercise apparatus which allows an actual bicycle to be installed indoors and allows the user to do traveling exercise, has been developed in addition to a bicycle-type exercise machine having a simple shape.
- a separate auxiliary device is provided on a general bicycle which is used on a road, such that the bicycle may be utilized as an indoor health bicycle, and an exercise machine, which allows the bicycle to be mounted on the exercise machine in the form of a running machine and allows the user to ride the bicycle, has been developed.
- the aforementioned exercise machines just allow the user to ride the bicycle on a flat floor, but the exercise machines are insufficient to implement an environment like an actual road and allow the user to enjoy, even indoors, an exercise effect that can be obtained when the user rides the bicycle outdoors.
- the present invention has been made in an effort to solve the problem in the related art, and an object of the present invention is as follows.
- an object of the present invention is to provide a treadmill capable of traveling at a high speed.
- Another object of the present invention is to provide a bicycle exercise apparatus capable of allowing a bicycle to be seated on the bicycle exercise apparatus and allowing a user to ride the bicycle while having the same effect as when the user rides the bicycle on a road, such as an actual traveling road, having an inclination.
- Still another object of the present invention is to provide a bicycle exercise apparatus capable of allowing a user to enjoy acceleration and deceleration effects by implementing an inclined road.
- yet another object of the present invention is to provide a bicycle exercise apparatus capable of preventing a rollover of a bicycle and stably supporting the bicycle.
- a bicycle exercise apparatus of the present invention includes a main frame, a front support unit, a rear support unit, and a rotation unit.
- the main frame is elongated and has a predetermined width, and a bicycle is positioned on the main frame.
- the front support unit is provided at one side in a longitudinal direction of the main frame, and a front wheel of the bicycle is rotatably seated on the front support unit.
- the rear support unit includes a rotation support unit that has a predetermined length and a central portion in the longitudinal direction rotatably coupled to the other side in the longitudinal direction of the main frame such that the rotation support unit maintains a horizontal state while rotating together with the main frame in accordance with a rotation angle of the main frame, and one or more rear rollers that are provided on the rotation support unit, disposed in parallel with a front roller, and rotated together with a rear wheel when the bicycle travels.
- the rotation unit supports the main frame such that the main frame is positioned at a predetermined height from a floor, and is rotatably coupled to a central portion of the main frame in the longitudinal direction so as to adjust an inclination angle of the main frame.
- the front support unit may be a treadmill including: a pair of frames which has a length in a traveling direction; a deck which is positioned between the pair of frames and supports a load applied from above; a pair of rollers which is disposed at front and rear sides of the deck, is installed between the pair of frames so as to be rotatable in the same direction, and has anti-slip grooves formed at predetermined intervals in a circumferential direction on outer circumferential surfaces of the pair of rollers; and a belt which is installed to surround the pair of rollers and the deck from the outside, moves in accordance with the rotation of a driving roller, and has anti-slip protrusions formed corresponding to the anti-slip grooves on a surface that abuts against the pair of rollers.
- a friction reducing member for reducing friction by minimizing a contact area with the belt may be provided on an upper surface of the deck.
- the friction reducing member may include: a ring-shaped support portion which is formed with a hollow portion; and a spherical rotating portion which is positioned in the hollow portion of the support portion and rotated in conjunction with the movement of the belt in a state in which the spherical rotating portion is in contact with the belt.
- the treadmill may be mechanically connected to any one of the pair of rollers and may adjust tension of the belt by adjusting a distance between the pair of rollers.
- the treadmill may include: a tension block to which a rotating shaft of any one of the pair of rollers is coupled and which is coupled to be movable in a front and rear direction with respect to the frame; and a tension adjusting member which fastens the frame and the tension block and moves the tension block in the front and rear direction while rotating.
- the treadmill may further include a drive motor which provides driving power to any one of the pair of rollers.
- the rear rollers may include a first rear roller and a second rear roller which are disposed at both ends in the longitudinal direction of the rotation support unit so as to be spaced apart from each other.
- At least one of the first rear roller and the second rear roller may provide a load to the rotation of the rear wheel corresponding to the inclination angle of the main frame.
- the second rear roller may include: a fixed shaft which is elongated in a width direction of the rotation support unit; a cylindrical second rotary drum which has an outer surface with which the rear wheel is in contact, and is coupled to be rotatable about the fixed shaft; and a load generating means which is provided in the second rotary drum, and selectively generates a load in accordance with the rotation of the second rotary drum corresponding to the inclination angle of the main frame.
- the load generating means may have a disc shape, may be fixedly coupled to the second rotary drum, and may have a central portion rotatably coupled to the fixed shaft.
- the load generating means may increase a load to be applied to the rotation of the second rotary drum.
- the first rear roller may rotate the rear wheel regardless of external force by a user.
- the first rear roller may include: a cylindrical first rotary drum which has an outer surface with which the rear wheel is in contact, and is rotatably coupled to the rotation support unit; a drive motor which is fixed to the rotation support unit in the first rotary drum and rotated; and a gear means which is rotated by a first drive motor to rotate the first rotary drum, and allows the first rotary drum to rotate in one direction relative to the drive motor.
- the front support unit may include the front roller which abuts against the front wheel and rotates together with the front wheel.
- the plurality of front rollers may be provided to be disposed to be spaced apart from one another in the longitudinal direction of the main frame.
- the main frame may further include a power transmission unit which is connected to the front roller and the rear roller and transmits rotational force of the rear roller to the front roller to allow the front roller to rotate together with the rear roller when the rear wheel is operated by external force applied by the user.
- a power transmission unit which is connected to the front roller and the rear roller and transmits rotational force of the rear roller to the front roller to allow the front roller to rotate together with the rear roller when the rear wheel is operated by external force applied by the user.
- the power transmission unit may include: a rear shaft which is provided on a rotation axis of the rotation support unit and the main frame, and has one side connected to any one of the first rear roller and the second rear roller by a separate transmission means such that the rear shaft is rotated together with the rear wheel when the rear wheel is rotated; a front shaft which is provided on a rotation axis of the main frame and the front roller, and rotated together with the front roller; and a circulation belt which is elongated, and has one side connected to the front shaft and the other side connected to the rear shaft, such that the circulation belt rotates the front shaft while circulating by the rotation of the rear shaft.
- the rotation unit may include: a casing which is rotatably coupled to the central portion of the main frame in the longitudinal direction while having a main rotating shaft; a drive motor which is provided in the casing and selectively rotates; an arc portion which has an arc shape on the main frame, protrudes downward so that the main rotating shaft is positioned at a center of an arc, and has a rack gear that is formed on an inner surface of the arc so as to protrude in a direction toward the main rotating shaft; and one or more gear units which are connected to the drive motor, and engaged with the rack gear to rotate the arc portion.
- the arc portions may be provided at both sides in a width direction of the main frame, respectively.
- the main frame may include a plurality of unit links so that a part of the main frame in the longitudinal direction is selectively tilted.
- the bicycle exercise apparatus of the present invention may include a guide unit which includes: a front frame which is positioned at a front side of the front wheel at one side in the longitudinal direction of the main frame and protrudes upward; a rear frame which is positioned at a rear side of the rear wheel at the other side in the longitudinal direction of the main frame and is elongated upward; and connecting wires which are elongated, are provided on the front frame and the rear frame, respectively, and each have one side detachably connected to a central portion of the bicycle in a width direction so as to support the bicycle so that the bicycle does not roll over.
- the connecting wires may be spaced apart from the floor at a predetermined height, and provided, at the same height, on the front frame and the rear frame, respectively.
- connecting wires may be detachably and selectively coupled to the bicycle through separate coupling means provided at one side in the longitudinal direction.
- the connecting wire may include a material having elasticity.
- the guide unit may further include a safety frame which is elongated, has both ends coupled to the front frame and the rear frame, respectively, at a predetermined height, and is disposed to be eccentric toward one side in the width direction of the main frame.
- a safety frame which is elongated, has both ends coupled to the front frame and the rear frame, respectively, at a predetermined height, and is disposed to be eccentric toward one side in the width direction of the main frame.
- the anti-slip grooves are formed at predetermined intervals on the outer circumferential surfaces of a driving roller and a driven roller, and the anti-slip protrusions, which correspond to the anti-slip grooves, are formed on the belt, such that the belt is moved while the anti-slip grooves and the anti-slip protrusions are engaged with one another in accordance with the rotation of the driving roller and the driven roller, and the friction reducing members for minimizing friction with the belt are provided on the upper portion of the deck, and as a result, it is possible to prevent a slip of the belt caused by high-speed traveling and prevent the user from rolling over caused by the slip of belt.
- the bicycle is seated on the main frame having the front support unit and the rear support unit at both ends thereof, and an inclination angle of the main frame is selectively adjusted, such that when the user rides the bicycle, the user may have the same effect as when the user rides the bicycle on an inclined road.
- the second rear roller provides a load in accordance with the rotation of the rear wheel by being selectively operated in accordance with an inclination direction of the main frame, and the first rear roller accelerates the rear wheel to a predetermined speed regardless of external force applied by the user by being selectively operated in accordance with an inclination direction of the main frame, such that the user may enjoy the same effect as when the user rides the bicycle on an uphill road and a downhill road.
- the bicycle exercise apparatus includes the guide unit which is provided on the main frame at a predetermined height or higher and selectively coupled at the front and rear sides of the bicycle, and the guide unit with elasticity is connected to the front and rear sides of the bicycle and supports the bicycle, such that it is possible to prevent a rollover of the bicycle when the user rides the bicycle and to enable the dancing motion in the left and right direction, thereby implementing the same effect as when the user rides the bicycle on an actual road.
- FIG. 1 is a view schematically illustrating a configuration of a bicycle exercise apparatus according to an exemplary embodiment of the present invention.
- FIG. 2 is a view illustrating a side of the bicycle exercise apparatus in FIG. 1 .
- FIG. 3 is a view illustrating a top side of the bicycle exercise apparatus in FIG. 1 .
- FIG. 4 is a view illustrating a state in which a separate safety bar and a bicycle are seated on the bicycle exercise apparatus in FIG. 1 and the bicycle travels.
- FIG. 5 is a view illustrating a state in which an inclination of a main frame of the bicycle exercise apparatus in FIG. 4 is adjusted.
- FIG. 6 is a view schematically illustrating a configuration of a rotation unit of the bicycle exercise apparatus in FIG. 1 .
- FIG. 7 is a view illustrating detailed configurations an arc portion and a gear unit of the rotation unit in FIG. 6 .
- FIG. 8 is a view illustrating an internal configuration of a second rear roller of the bicycle exercise apparatus in FIG. 1 .
- FIG. 9 is a view illustrating an internal configuration of a first rear roller of the bicycle exercise apparatus in FIG. 1 .
- FIG. 10 is a view illustrating a state in which the main frame of the bicycle exercise apparatus in FIG. 4 is inclined forward and upward.
- FIG. 11 is a view illustrating a state in which the main frame of the bicycle exercise apparatus in FIG. 4 is inclined forward and downward.
- FIGS. 12A and 12B show views illustrating a state in which a first rotary drum and a drive motor are relatively rotated in accordance with a rotational speed of the first rotary drum in the first rear roller of the bicycle exercise apparatus in FIG. 11 .
- FIG. 13 is a view illustrating a top side of the bicycle exercise apparatus in FIG. 1 .
- FIG. 14 is a view illustrating a state in which the bicycle is moved while dancing by a user in the bicycle exercise apparatus in FIG. 1 .
- FIG. 15 is a view illustrating a state in which a connecting wire is coupled to the bicycle in the bicycle exercise apparatus in FIG. 1 .
- FIG. 16 is a perspective view illustrating a bicycle exercise apparatus according to another exemplary embodiment of the present invention.
- FIG. 17 is a perspective view illustrating a state in which a bicycle is installed on the bicycle exercise apparatus according to another exemplary embodiment of the present invention.
- FIG. 18 is a view illustrating an external appearance of a front support unit according to another exemplary embodiment of the present invention.
- FIG. 19 is a view illustrating an interior of the front support unit according to another exemplary embodiment of the present invention.
- FIG. 20 is an enlarged view of part A in FIG. 19 .
- FIG. 21 is an enlarged view of part B in FIG. 19 .
- FIG. 22 is an enlarged view of part C in FIG. 19 .
- FIG. 1 is a view schematically illustrating a configuration of a bicycle exercise apparatus according to an exemplary embodiment of the present invention
- FIG. 2 is a view illustrating a side of the bicycle exercise apparatus in FIG. 1
- FIG. 3 is a view illustrating a top side of the bicycle exercise apparatus in FIG. 1
- FIG. 4 is a view illustrating a state in which a separate safety bar and a bicycle are seated on the bicycle exercise apparatus in FIG. 1 and the bicycle travels.
- the bicycle exercise apparatus broadly includes a main frame 100 , a front support unit 200 , a rear support unit 300 , and a rotation unit 400 .
- the main frame 100 is configured to substantially support a bicycle 10 and adjust an inclination, the main frame 100 is elongated and has a predetermined width, and the bicycle 10 is positioned on the main frame 100 .
- the shape of the main frame 100 is formed by connecting a plurality of structures and is similar to a shape of a ladder.
- the main frame 100 is elongated and has a predetermined width, and a central portion of the main frame 100 in a longitudinal direction is configured to be rotatable together with the rotation unit 400 to be described below.
- a width of the main frame 100 is set to be sufficient for a user to seat himself/herself on the typical bicycle 10 in a state in which the bicycle 10 is positioned on the main frame 10 , and the front and rear support units 200 and 300 to be described below are provided at both ends in the longitudinal direction.
- main frame 100 may be configured by continuously connecting a plurality of unit links 102 in the longitudinal direction, and the main frame 100 may be configured to be selectively tilted.
- the longitudinal direction of the main frame 100 is a direction A that indicates a direction in which the bicycle 10 is disposed in a front and rear direction
- a width direction of the main frame 100 is a direction B that indicates a left and right direction of the bicycle 10 .
- the main frame 100 includes three or more unit links 102 in the longitudinal direction, the main frame 100 is configured to be tilted for convenience for the user, and therefore, a volume of the bicycle exercise apparatus is reduced such that the bicycle exercise apparatus is easily accommodated.
- the main frame 100 may of course be integrally configured in the longitudinal direction.
- the front support unit 200 is provided at one side of the main frame 100 in the longitudinal direction, and a front wheel 12 of the bicycle 10 is rotatably seated on the front support unit 200 .
- the front support unit 200 has a front roller 202 which is provided at one side of the main frame 100 and supports the front wheel 12 of the bicycle 10 , and the front roller 202 is rotatably provided on the main frame 100 .
- front roller 202 is in contact with the front wheel 12 and supports the front wheel 12 , and the front roller 202 is coupled to one side of the main frame 100 so as to be rotatable together with the front wheel 12 .
- the front support unit 200 includes one or more front rollers 202 , and the front roller 202 is formed in the form of a cylindrical roller, such that the front roller 202 is rotatably coupled to one side of the main frame 100 in the longitudinal direction.
- the front roller 202 which is provided as described above, has an outer surface that supports the front wheel 12 of the bicycle 10 and has frictional force at a predetermined level or larger so that the front wheel 12 of the bicycle 10 may be rotated together with the front roller 202 when the front roller 202 is rotated by external force.
- the front support unit 200 includes the single front roller 202 , as illustrated, but otherwise, a plurality of front rollers 202 may be provided to be disposed to be spaced apart from one another in the longitudinal direction of the main frame 100 .
- the plurality of front rollers 202 is disposed in parallel with a rotation axis of the front wheel 12 so as to be spaced apart from one another in the longitudinal direction of the main frame 100 .
- the rear support unit 300 is provided at the other side of the main frame 100 and supports a rear wheel 14 of the bicycle 10 so that the rear wheel 14 is rotatable, and the rear support unit 300 broadly includes a rotation support unit 310 and rear rollers 320 .
- the rotation support unit 310 has a predetermined length and a width corresponding to the width of the main frame 100 , and a central portion of the rotation support unit 310 in the longitudinal direction is rotatably coupled to the other side of the main frame 100 in the longitudinal direction.
- the rotation support unit 310 is elongated in the form of a frame and rotatably coupled to the main frame 100 , and the rear rollers 320 to be described below are rotatably coupled to the rotation support unit 310 separately from the main frame 100 .
- the rotation support unit 310 has a width relatively smaller than the width of the main frame 100 and is rotatably coupled to the other side of the main frame 100 .
- the rotation support unit 310 is also formed in the form of a frame and has a predetermined width, and the rear rollers 320 are rotatably coupled to the rotation support unit 310 .
- the rotation support unit 310 which is configured as described above, is maintained in a horizontal state, and when an inclination of the main frame 100 is changed, the rotation support unit 310 is relatively rotated at the other side of the main frame 100 corresponding to the change in the inclination of the main frame 100 , thereby maintaining the horizontal state.
- one or more rear rollers 320 are provided on the rotation support unit 310 , and disposed perpendicular to a traveling direction of the bicycle 10 .
- the rear roller 320 supports the rear wheel 14 of the bicycle 10 and rotates together with the rear wheel 14 of the bicycle 10 when the rear wheel 14 of the bicycle 10 is rotated by the user's operation.
- one or more rear rollers 320 are provided, the rear roller 320 has a rotation axis perpendicular to the traveling direction of the bicycle 10 , and the rear roller 320 is rotatably coupled to the rotation support unit 310 .
- the rear rollers 320 include a pair of first and second rear rollers 322 and 324 , and the first and second rear rollers 322 and 324 are disposed at both ends in the longitudinal direction of the rotation support unit 310 so as to be spaced apart from each other.
- the rear wheel 14 of the bicycle 10 is supported by the first rear roller 322 and the second rear roller 324 .
- first rear roller 322 and the second rear roller 324 have rotation axes parallel to each other on the rotation support unit 310 , and the first rear roller 322 and the second rear roller 324 are disposed to be spaced apart from each other in the longitudinal direction of the rotation support unit 310 and configured to be rotated together with the rear wheel 14 of the bicycle 10 when the rear wheel 14 of the bicycle 10 is rotated by the user.
- first rear roller 322 and the second rear roller 324 are provided at both ends of the rotation support unit 310 in the longitudinal direction, and the central portion of the rotation support unit 310 in the longitudinal direction is provided at the other side of the main frame 100 .
- the rear support unit 300 has the separate rotation support unit 310 , such that the rear rollers 320 are rotatably coupled to the rotation support unit 310 instead of being coupled directly to the main frame 100 .
- the rotation support unit 310 maintains the horizontal state by a load of the bicycle 10 of which the rear wheel 14 is seated on the rear rollers 320 .
- the rotation support unit 310 may be maintained in the horizontal state because a load of the bicycle 10 is applied to the rotation support unit 310 .
- the rotation support unit 310 since the rotation support unit 310 is configured as described above, the rotation support unit 310 maintains the horizontal state while relatively rotating on the main frame 100 corresponding to a rotation angle of the main frame 100 , and the bicycle 10 seated on the main frame 100 is supported by the first rear roller 322 and the second rear roller 324 so that the bicycle 10 is not moved downward even though the main frame 100 has an inclination.
- the rotation unit 400 supports the main frame 100 so that the main frame 100 is positioned at a predetermined height from a floor, and the rotation unit 400 is rotatably coupled to the central portion of the main frame 100 in the longitudinal direction while having a main rotating shaft 402 , and adjusts the inclination angle of the main frame 100 .
- the rotation unit 400 has therein a separate drive motor (not illustrated) to rotate the main frame 100 , thereby adjusting the inclination angle of the main frame 100 .
- the single rotation unit 400 is provided and configured to support the main frame 100 and selectively adjust the inclination angle of the main frame 100 .
- the bicycle exercise apparatus may further include a control unit (not illustrated) which selectively adjusts the inclination angle of the main frame 100 by using the rotation unit 400 .
- the control unit may be provided in the main frame 100 or the rotation unit 400 , and may adjust the inclination angle of the main frame 100 based on information about a traveling road which is provided from the outside or inputted to the control unit.
- control unit may control the rotation unit 400 to adjust the inclination angle of the main frame 100 in order to implement an inclination identical to an inclination of an actual traveling road in accordance with a traveling distance when the bicycle 10 travels based on separate information about the traveling road.
- a rotational speed of the rear roller 320 or a rotational speed of a driving roller 232 or a driven roller 234 of a treadmill 200 is measured to measure the traveling distance of the bicycle 10 , and the inclination angle of the main frame 100 is adjusted by comparing the traveling distance of the bicycle 10 with the information about an actual traveling road.
- the bicycle exercise apparatus includes the main frame 100 , the front support unit 200 , the rear support unit 300 , the rotation unit 400 , and the control unit, and the user may exercise while riding the bicycle 10 in a state in which the front wheel 12 and the rear wheel 14 of the bicycle 10 are seated on the front support unit 200 and the rear support unit 300 , respectively.
- the inclination angle of the main frame 100 is adjusted by the rotation unit 400 , and as a result, the user may enjoy the same effect as when the user rides the bicycle on an actual inclined road.
- the main frame 100 may further include a separate power transmission unit 110 .
- the power transmission unit 110 is connected to the front roller 202 and the rear roller 320 and transmits rotational force of the rear roller 320 to the front roller 202 when the rear wheel 14 is operated by external force applied by the user, thereby allowing the front roller 202 to be rotated together with the rear roller 320 .
- the power transmission unit 110 includes a rear shaft 112 which is rotated together with the rear roller 320 in accordance with the rotation of the rear roller 320 , a front shaft 114 which is rotated together with the front roller 202 in accordance with the rotation of the front roller 202 , and a circulation belt 116 which is connected to the front shaft 114 and the rear shaft 112 and transmits the rotational force.
- the rear shaft 112 is provided on the rotation axis of the rotation support unit 310 and the main frame 100 , and the rear shaft 112 is connected to any one of the first rear roller 322 and the second rear roller 324 by a separate transmission means 112 d and rotated in conjunction with the rotation of the rear wheel 14 .
- the rear shaft 112 is elongated on the rotation axis of the rotation support unit 310 and the main frame 100 , one side of the rear shaft 112 protrudes outward from the main frame 100 , and a rear pulley 112 a is provided at one side of the rear shaft 112 .
- the other side of the rear shaft 112 is connected to the first rear roller 322 by the belt-shaped transmission means 112 d , such that the rear shaft 112 is configured to be rotated together with the first rear roller 322 when the first rear roller 322 is rotated.
- a second pulley 112 b may be provided at the other side of the rear shaft 112
- a first pulley 112 c which is connected to the first rear roller 322 and rotated, may be provided on a rotation axis on which the first rear roller 322 and the rotation support unit 310 are coupled to each other
- the transmission means 112 d is connected to the first pulley 112 c and the second pulley 112 b and configured to transmit the rotational force of the first rear roller 322 to the rear shaft 112 while circulating.
- the transmission means 112 d and the first pulley 112 c may of course be provided on the second rear roller 324 and connected to the second rear roller 324 .
- the rear shaft 112 is provided on the rotation axis on which the rear support unit and the main frame 100 are coupled to each other, and the rear shaft 112 is configured to be rotated by receiving the rotational force of the rear roller 320 .
- the front shaft 114 is formed similar to the rear shaft 112 , provided on the rotation axis of the main frame 100 and the front roller 202 , and rotated together with the front roller 202 .
- the front shaft 114 is elongated on the rotation axis of the front roller 202 , one side of the front shaft 114 protrudes outward from the main frame 100 , and a front pulley 114 a is provided at one side of the front shaft 114 . Further, the other side of the front shaft 114 is connected to the front roller 202 and configured to be rotated together with the front roller 202 .
- the front shaft 114 is formed to protrude toward one side in the width direction of the main frame 100 , as illustrated, but otherwise, the front shaft 114 may protrude toward both sides and the front pulleys 114 a may be provided at both sides of the front shaft 114 .
- the front shaft 114 is provided on the rotation axis of the front roller 202 and the main frame 100 and configured to be rotatable together with the front roller 202 .
- the circulation belt 116 is elongated, one side of the circulation belt 116 is connected to the front shaft 114 , the other side of the circulation belt 116 is connected to the rear shaft 112 , and the circulation belt 116 rotates the front shaft 114 while circulating by the rotation of the rear shaft 112 .
- the circulation belt 116 is connected to the front pulley 114 a and the rear pulley 112 a , and rotates the front pulley 114 a together with the rear pulley 112 a while circulating when the rear pulley 112 a is rotated.
- the circulation belt 116 is formed in the form of a belt having elasticity, connected to the front pulley 114 a and the rear pulley 112 a , and configured to transmit the rotational force while circulating, but otherwise, the circulation belt 116 may be formed in the form of a chain or a track.
- the power transmission unit 110 is configured as described above, and the rotational force by which the rear roller 320 is rotated by the rear wheel 14 is transmitted to the front roller 202 through the power transmission unit 110 , such that the front wheel 12 may be rotated together with the rear wheel 14 .
- the power transmission unit 110 is provided to transmit the rotational force of the rear roller 320 , which is rotated together with the rear wheel 14 , to the front roller 202 , thereby rotating the front wheel 12 together with the rear wheel 14 .
- the power transmission unit 110 transmits the rotational force of the rear wheel 14 to the front roller 202 in order to rotate the front roller 202 , and as a result, the front wheel 12 may also be rotated together with the rear wheel 14 .
- the user since the front wheel 12 and the rear wheel 14 of the bicycle 10 are rotated together, the user may ride the bicycle 10 seated on the main frame 100 without a separate safety device, and the user may enjoy left and right dancing motions when riding the bicycle 10 in a similar way as the user actually rides the bicycle 10 .
- the bicycle exercise apparatus is configured as described above and additionally includes a separate safety bar 500 and a separate connecting wire 510 , and the safety bar 500 and the connecting wire 510 may be used as safety devices for preventing excessive motion and withdrawal of the bicycle 10 when the bicycle 10 is seated on the main frame 100 .
- FIG. 5 is a view illustrating a state in which the inclination of the main frame of the bicycle exercise apparatus in FIG. 4 is adjusted.
- the rotation unit 400 rotates the main frame 100 clockwise so that the main frame 100 has an upward inclination in order to implement a state in which the bicycle 10 seated on the main frame 100 of the bicycle exercise apparatus according to the present invention travels an uphill road.
- the rotation support unit 310 is rotated relative to the other side of the main frame 100 by a weight of the rear wheel 14 seated on the rear roller 320 , thereby maintaining the horizontal state.
- the rotation support unit 310 is rotated counterclockwise, that is, in a direction opposite to the direction of the main frame 100 .
- the rear support unit which includes the pair of rollers, supports the rear wheel 14 of the bicycle 10 , thereby preventing the bicycle 10 from falling down in the direction toward the other side of the main frame 100 .
- FIG. 6 is a view schematically illustrating a configuration of the rotation unit of the bicycle exercise apparatus in FIG. 1
- FIG. 7 is a view illustrating detailed configurations an arc portion and a gear unit of the rotation unit in FIG. 6 .
- the rotation unit 400 is configured to support the main frame 100 at the lower side of the main frame 100 and to adjust the inclination angle of the main frame 100 by the control unit, and the rotation unit 400 broadly includes a casing 410 , a drive motor 420 , an arc portion 430 , and a gear unit 440 .
- the casing 410 supports the main frame 100 at a predetermined height or higher from the floor and accommodates therein the drive motor 420 and the gear unit 440 .
- an upper portion of the casing 410 is rotatably coupled to the central portion of the main frame 100 in the longitudinal direction while having the main rotating shaft 402 , and a lower portion of the casing 410 is positioned on the floor.
- the drive motor 420 is provided in the casing 410 and configured to rotate the main frame 100 about the main rotating shaft 402 by being operated by the control unit.
- one or more drive motors 420 may be provided, and the driver motor 420 is connected to the main rotating shaft 402 to rotate the main frame 100 to a predetermined angle.
- the drive motor 420 may be coupled directly to the main rotating shaft 402 while having the same rotation axis as the main frame 100 , but otherwise, as illustrated, the drive motor 420 may be coupled to the main rotating shaft 402 through the gear unit 440 .
- the arc portion 430 is formed to protrude downward from the main frame 100 and configured to rotate the main frame 100 by receiving rotational force of the drive motor 420 , and the arc portion 430 has an arc shape on the main frame 100 and protrudes downward so that the main rotating shaft 402 is positioned at a center of an arc.
- a pair of arc portions 430 is provided to be symmetrically disposed at left and right sides of the main frame 100 and fixedly coupled to the main frame 100 so that the center of the arc is positioned on the main rotating shaft 402 .
- the arc portion 430 has a rack gear 432 which is formed on an inner surface of the arc so as to protrude in a rotation axis direction, and the arc portion 430 is rotated about the main rotating shaft 402 by receiving rotational force of the drive motor 420 .
- the arc portion 430 is rotated about the main rotating shaft 402 as the rack gear 432 slides along the arc by receiving rotational force by the drive motor 420 and the gear unit 440 to be described below which are accommodated in the casing 410 .
- the arc portion 430 receives the rotational force of the drive motor 420 as the rack gear 432 , which is formed on the inner surface of the arc so as to protrude in the direction toward the main rotating shaft 402 , meshes with the gear unit 440 to be described below.
- gear units 440 are provided and connected to the drive motor 420 , and the gear unit 440 is engaged with the rack gear 432 formed on the arc portion 430 , thereby rotating the arc portion 430 .
- the gear unit 440 is connected to a rotating shaft of the drive motor 420 and rotated, and the gear unit 440 meshes with the rack gear 432 formed on the arc portion 430 , thereby allowing the arc portion 430 to be rotated about the main rotating shaft 402 .
- the gear unit 440 is configured such that a plurality of gears meshes one another, but otherwise, the gear unit 440 may include a single gear that is connected directly to the drive motor 420 and meshes with the rack gear 432 .
- the rotation unit 400 adjusts the inclination angle of the main frame 100 as the drive motor 420 configured in the rotation unit 400 is selectively operated by the control unit.
- the rotation unit 400 is configured to selectively provide a load to at least one of the first rear roller 322 and the second rear roller 324 , and provides a load in accordance with the rotation of the rear wheel 14 by the control unit corresponding to the inclination angle of the main frame 100 .
- the rear roller 320 generates a load in accordance with the rotation when the main frame 100 has an inclination by the rotation unit 400 to be described below and the rear wheel 14 is changed to a position lower than the front wheel 12 .
- FIG. 8 is a view illustrating an internal configuration of the second rear roller of the bicycle exercise apparatus in FIG. 1
- FIG. 9 is a view illustrating an internal configuration of the first rear roller of the bicycle exercise apparatus in FIG. 1 .
- the second rear roller 324 is configured in the rotation support unit 310 so as to be rotatable while having a rotation axis, and the rear wheel 14 is in contact with an outer surface of the second rear roller 324 , such that the second rear roller 324 is rotated together with the rear wheel 14 when the rear wheel 14 is rotated.
- the second rear roller 324 is provided at a rear side in the longitudinal direction of the rotation support unit 310
- the first rear roller 322 is provided at a front side in the longitudinal direction of the rotation support unit 310 .
- the second rear roller 324 broadly includes a fixed shaft 324 c , a second rotary drum 324 a , and a load generating means 324 b.
- the fixed shaft 324 c is a rotating shaft of the second rear roller 324 , the fixed shaft 324 c is elongated in the width direction of the rotation support unit 310 , and both ends of the fixed shaft 324 c are fixedly coupled to the rotation support unit 310 .
- the second rotary drum 324 a has an outer surface that is in contact with the rear wheel 14 , and the second rotary drum 324 a is configured to be rotatable about the fixed shaft 324 c.
- the outer surface of the second rotary drum 324 a is in contact with the rear wheel 14 , and the second rotary drum 324 a is formed in a cylindrical shape and coupled to be rotatable about the fixed shaft 324 c.
- the second rotary drum 324 a is rotated together with the rear wheel 14 about the fixed shaft 324 c.
- the load generating means 324 b is provided in the second rotary drum 324 a , and selectively generates a load in accordance with the rotation of the second rotary drum 324 a corresponding to the inclination angle of the main frame 100 .
- the load generating means 324 b is configured to be rotatable about the fixed shaft 324 c in the second rotary drum 324 a , and at least a part of the load generating means 324 b is fixedly coupled to the second rotary drum 324 a.
- the load generating means 324 b is rotated about the fixed shaft 324 c together with the second rotary drum 324 a when the second rotary drum 324 a is rotated by the rear wheel 14 .
- the load generating means 324 b is selectively operated by the control unit, and in the present exemplary embodiment, the load generating means 324 b is formed in the form of a disc and fixedly coupled to an inner surface of the second rotary drum 324 a.
- a central portion of the load generating means 324 b is rotatably coupled to the fixed shaft 324 c by a separate bearing.
- the second rotary drum 324 a is also rotated together with the rear wheel 14 , and the load generating means 324 b is selectively operated corresponding to the inclination angle of the main frame 100 , thereby providing a load in accordance with the rotation of the second rotary drum 324 a.
- the load generating means 324 b is configured to generate a load in accordance with the rotation relative to the fixed shaft 324 c by providing electric power to a generally used disc.
- the first rear roller 322 has therein a drive motor 322 b to rotate the first rear roller 322 when the main frame 100 is disposed to have a downward inclination, thereby artificially rotating the rear wheel 14 .
- the first rear roller 322 broadly includes a first rotary drum 322 a , the drive motor 322 b , and gear means 322 c and 322 d.
- the first rotary drum 322 a Similar to the second rotary drum 324 a , the first rotary drum 322 a has a cylindrical shape, the first rotary drum 322 a is disposed in an elongated manner in the width direction of the rotation support unit 310 , and the rear wheel 14 is in contact with an outer surface of the first rotary drum 322 a . Therefore, the first rotary drum 322 a is rotated together with the rear wheel 14 when the rear wheel 14 is rotated.
- the drive motor 322 b is provided in the first rotary drum 322 a and connected to the first rotary drum 322 a through the gear means 322 c and 322 d , thereby rotating the first rotary drum 322 a.
- the drive motor 322 b is operated by the control unit, and a rotational speed of the drive motor 322 b is adjusted corresponding to the inclination angle of the main frame 100 .
- the gear means 322 c and 322 d are provided in the drive motor 322 b and the first rotary drum 322 a and transmit rotational force of the drive motor 322 b to the first rotary drum 322 a , thereby rotating the first rotary drum 322 a.
- the gear means 322 c and 322 d include a ratchet 322 c which is provided on a rotating shaft of the drive motor 322 b , and a catching member 322 d which protrudes from a surface of the first rotary drum 322 a and is selectively caught by the ratchet 322 c.
- ratchet 322 c which is rotated by the drive motor 322 b , and the first rotary drum 322 a are relatively rotated in one direction.
- the gear means 322 c and 322 d are means for protecting the drive motor 322 b when the first rotary drum 322 a and the drive motor 322 b are rotated, and the gear means 322 c and 322 d are configured such that the rotating shaft of the drive motor 322 b and the first rotary drum 322 a may be relatively rotated in one direction.
- first rear roller 322 and the second rear roller 324 according to the present invention are configured as described above, it is possible to implement likeness of traveling on the inclined road by tilting the main frame 100 when the user rides the bicycle, and to implement acceleration and deceleration of the bicycle in accordance with an uphill road and a downhill road.
- FIG. 10 is a view illustrating a state in which the main frame of the bicycle exercise apparatus in FIG. 4 is inclined forward and upward
- FIG. 11 is a view illustrating a state in which the main frame of the bicycle exercise apparatus in FIG. 4 is inclined forward and downward
- FIGS. 12A and 12B show views illustrating a state in which the first rotary drum and the drive motor are relatively rotated corresponding to a rotational speed of the first rotary drum of the first rear roller of the bicycle exercise apparatus in FIG. 11 .
- FIG. 10 illustrates a state in which the bicycle exercise apparatus implements an uphill road, that is, the main frame 100 is tilted clockwise to a predetermined angle by the rotation unit 400 .
- the rotation support unit 310 maintains the horizontal state by the relative rotation between the main frame 100 and the rotation support unit 310 , and the first rear roller 322 and the second rear roller 324 are rotated clockwise by the rotation of the rear wheel 14 .
- control unit detects an inclination direction and an inclination angle of the main frame 100 and operates the load generating means 324 b corresponding to the inclination direction and the inclination angle of the main frame 100 , such that a load is generated in accordance with the rotation of the second rear roller 324 , thereby providing a load in accordance with the rotation of the rear wheel 14 .
- the drive motor 322 b provided in the first rear roller 322 is not operated, and only the first rotary drum 322 a is independently rotated by the gear means 322 c and 322 d in accordance with the rotation of the rear wheel 14 .
- the bicycle exercise apparatus implements a state in which the user rides the bicycle on an uphill road as the main frame 100 is tilted to be inclined forward and upward and a load is generated only by the second rear roller 324 .
- the main frame 100 when the main frame 100 is tilted counterclockwise by the rotation unit 400 to implement a downhill road as illustrated in FIG. 11 , the main frame 100 is disposed to be inclined forward and downward, and the rotation support unit 310 maintains the horizontal state while rotating relative to the main frame 100 .
- control unit detects the inclination direction and the inclination angle of the main frame 100 , and rotates the first rear roller 322 .
- control unit operates the drive motor 322 b provided in the first rear roller 322 , and the first rotary drum 322 a is rotated by the rotation of the drive motor 322 b , thereby rotating the rear wheel 14 .
- the bicycle is accelerated by gravity when the user rides the bicycle on a downhill road, and similarly, acceleration is implemented at a predetermined level as the first rear roller 322 is rotated by the drive motor 322 b regardless of external force applied by the user.
- the user may rotate the rear wheel 14 regardless of a rotational speed of the drive motor 322 b in a state in which the first rotary drum 322 a is rotated by the drive motor 322 b.
- the gear formed on the ratchet 322 c is not caught by the catching member 322 d , such that the first rotary drum 322 a is independently rotated.
- the rear wheel 14 is rotated at a predetermined speed by the drive motor 322 b , and the user may rotate the rear wheel 14 at a speed higher than the rotational speed of the drive motor 322 b in accordance with the user's selection.
- the bicycle exercise apparatus may more precisely implement likeness of traveling on the inclined road by the first rear roller 322 and the second rear roller 324 , and as a result, the user may enjoy the exercise similar to actually traveling on the road.
- the bicycle exercise apparatus includes a guide unit.
- the guide unit 500 is provided on the main frame 100 and configured to prevent a rollover of the bicycle 10 when the user rides the bicycle 10 by restricting a part of the motion of the bicycle 10 in a state in which the bicycle 10 is seated on the main frame 100 .
- FIG. 13 is a view illustrating a top side of the bicycle exercise apparatus in FIG. 1
- FIG. 14 is a view illustrating a state in which the bicycle is moved while dancing by the user in the bicycle exercise apparatus in FIG. 1 .
- the guide unit 500 broadly includes a front frame 510 , a rear frame 520 , and connecting wires 530 .
- the front frame 510 is positioned at a front side of the front wheel 12 at one side in the longitudinal direction of the main frame 100 , and the front frame 510 protrudes upward in an elongated manner.
- the rear frame 520 is positioned at a rear side of the rear wheel 14 at the other side in the longitudinal direction of the main frame 100 , and the rear frame 520 protrudes upward in an elongated manner.
- the front frame 510 and the rear frame 520 are detachably coupled to the main frame 100 , but otherwise, the front frame 510 and the rear frame 520 may be configured integrally with the main frame 100 .
- the connecting wires 530 are provided on the front frame 510 and the rear frame 520 , respectively, and one side of each of the connecting wires 530 is connected to a central portion of the bicycle 10 in the width direction, thereby supporting the bicycle 10 so that the bicycle 10 does not roll over.
- the connecting wires 530 are provided at positions spaced apart from the floor at a predetermined height in a direction toward upper portions of the front frame 510 and the rear frame 520 , and the connecting wires 530 are provided at the same height.
- the other sides of the connecting wire 530 are fixedly coupled to the front frame 510 and the rear frame 520 , and a separate coupling means 532 is provided at one side of each of the connecting wires 530 .
- connecting wires 530 are coupled to a frame of the bicycle 10 through the coupling means 532 when the bicycle 10 is seated on the main frame 100 .
- one or more coupling means 532 are provided and detachably coupled to the bicycle 10 .
- the connecting wire 530 may be elongated in the form of a wire and made of a material having elasticity at a predetermined level, and the connecting wire 530 supports the bicycle 10 so that the bicycle 10 does not roll over and allows the bicycle 10 to dance in a left and right direction, as illustrated in FIG. 14 , when the bicycle 10 travels by external force applied by the user.
- the other sides of the connecting wires 530 may be positioned on the front frame 510 and the rear frame 520 at a central portion of the main frame 100 in the width direction, and as a result, the bicycle 10 may be stably supported on the main frame 100 .
- the coupling means 532 is formed in various shapes and configured such that the connecting wires 530 are selectively and fixedly coupled to the bicycle 10 .
- FIG. 15 is a view illustrating a state in which the connecting wires are coupled to the bicycle in the bicycle exercise apparatus in FIG. 1 .
- the coupling means 532 is formed in the form of a bracket 532 a , and the connecting wire 530 may be fixed to the bicycle 10 through a separate fixing pin 532 b .
- the coupling means 532 may of course be formed in various shapes in addition to the bracket 532 a , and any other shape may be applied to the coupling means 532 as long as the coupling means 532 may be selectively fixed to the frame of the bicycle 10 .
- the coupling means 532 are selectively coupled to the bicycle 10 as described above, the bicycle 10 is fixed by the connecting wires 530 so as not to roll over, and the bicycle 10 is supported to perform left and right dancing motions to a certain degree by external force applied by the user.
- the connecting wire 530 is made of metal or synthetic resin which is a material having elasticity at a predetermined level, and a degree to which the left and right dancing motions of the bicycle 10 are restricted may be adjusted in accordance with a material of the connecting wire 530 .
- the guide unit 500 is configured to prevent the user's safety accident caused by a rollover of the bicycle 10 when the bicycle 10 seated on the main frame 100 travels, and to allow a motion in the width direction to a predetermined level or higher, thereby implementing the same effect as when the user rides the bicycle on an actual road.
- the guide unit 500 may further include a safety frame 540 in addition to the front frame 510 , the rear frame 520 , and the connecting wire 530 .
- the safety frame 540 is elongated, both ends of the safety frame 540 are coupled to the front frame 510 and the rear frame 520 at a predetermined height, and the safety frame 540 is disposed to be eccentric toward one side in the width direction of the main frame 100 .
- the safety frame 540 is formed in a bar shape, and both ends of the safety frame 540 are connected to the front frame 510 and the rear frame 520 , respectively.
- the safety frame 540 is disposed to be eccentric toward one side so that the user or the bicycle 10 does not interfere with the safety frame 540 when the bicycle 10 is seated on the main frame 100 .
- the safety frame 540 supports the bicycle 10 to prevent a rollover of the bicycle 10 , or the user grasps the safety frame 540 , and as a result, it is possible to prevent a safety accident.
- the safety frame 540 together with the connecting wire 530 , is used as an auxiliary safety means for preventing a falling accident by allowing the user to stably keep his/her balance on the bicycle 10 or allowing the user to directly grasp the safety frame 540 when the bicycle is about to roll over.
- the guide unit 500 is provided in the bicycle exercise apparatus as described above, it is possible to prevent an inadvertent rollover of the bicycle 10 when the user exercises by using the bicycle 10 , and to implement the left and right dancing motions of the bicycle 10 by external force applied by the user.
- FIG. 16 is a perspective view illustrating a bicycle exercise apparatus according to another exemplary embodiment of the present invention
- FIG. 17 is a perspective view illustrating a state in which a bicycle is installed on the bicycle exercise apparatus according to another exemplary embodiment of the present invention.
- the bicycle exercise apparatus broadly includes the main frame 100 , the front support unit 200 , the rear support unit 300 , the rotation unit 400 , and the guide unit 500 .
- main frame 100 the rear support unit 300 , the rotation unit 400 , and the guide unit 500 are identical to those in the exemplary embodiment of the present invention, descriptions of the identical configurations and operations will be omitted.
- the front support unit 200 in the present exemplary embodiment is a treadmill 200
- the front support unit 200 is provided at one side of the main frame 100 and supports the front wheel 12 of the bicycle 10 .
- FIG. 18 is a view illustrating an external appearance of the front support unit according to another exemplary embodiment of the present invention
- FIG. 19 is a view illustrating an interior of the front support unit according to another exemplary embodiment of the present invention.
- the treadmill 200 which is the front support unit 200 of the present exemplary embodiment, includes a pair of frames 210 , a deck 220 , a pair of rollers, a belt 240 , and a drive motor 250 .
- the pair of frames 210 has a length in the traveling direction, and is disposed to be spaced apart from each other while facing each other.
- the deck 220 is positioned between the pair of frames 210 and abuts against the front wheel 12 , thereby supporting a load of the bicycle 10 applied from above.
- the pair of rollers includes the driving roller 232 which is connected to the drive motor 250 for providing driving power, and the driven roller 234 which is rotated together with the driving roller 232 in accordance with the rotation of the driving roller 232 .
- the driving roller 232 and the driven roller 234 may be rotated by the drive motor 250 , but the driving roller 232 and the driven roller 234 may be rotated by the rotation of the front wheel 12 of the bicycle 10 even in a state in which the drive motor 250 is not operated.
- FIG. 20 is an enlarged view of part A in FIG. 19 .
- the driving roller 232 and the driven roller 234 are disposed at front and rear sides of the deck 220 , respectively, and installed between the pair of frames 210 so as to be rotatable in the same direction, and as illustrated in FIG. 20 , anti-slip grooves 232 a and 234 a are formed at predetermined intervals in a circumferential direction on outer circumferential surfaces of the driving roller 232 and the driven roller 234 .
- the belt 240 is installed to surround the driving roller 232 , the driven roller 234 , and the deck 220 from the outside, and moved in conjunction with the rotation of the driving roller 232 . Further, as illustrated in FIG. 20 , anti-slip protrusions 240 a , which correspond to the anti-slip grooves 232 a and 234 a , are formed on a surface of the belt 240 which abuts against the driving roller 232 and the driven roller 234 .
- the bicycle 10 travels at a higher speed than a person running, and a larger load is applied when a person rides the bicycle 10 on the treadmill 200 than when a person runs on the treadmill 200 , and as a result, the belt may slip on the roller when the belt is operated at a high speed. This phenomenon often occurs on the typical treadmill 200 .
- the anti-slip grooves 232 a and 234 a and the anti-slip protrusions 240 a are formed on the driving roller 232 , the driven roller 234 , and the belt 240 of the treadmill 200 in the present exemplary embodiment and engaged with one another, and as a result, it is possible to prevent a slip of the belt 240 .
- friction reducing members 222 may be provided on an upper surface of the deck 220 in order to reduce friction by minimizing a contact area with the belt 240 .
- FIG. 21 is an enlarged view of part B in FIG. 19 .
- the friction reducing member 222 may include a ring-shaped support portion 222 a which has a hollow portion, and a spherical rotating portion 222 b which is positioned in the hollow portion of the support portion 222 a and in contact with the belt 240 so as to be rotated in conjunction with the movement of the belt 240 .
- a ball is embedded in the ring-shaped support portion 222 a in order to allow the rotating portion 222 b to smoothly rotate, and the rotating portion 222 b is rotated in a state in which the ball and the rotating portion 222 b are in point-to-point contact with each other.
- the treadmill 200 according to the present exemplary embodiment is more suitable for a high-speed operation in comparison with the typical treadmill 200 .
- the rotating portion 222 b is not limited to the aforementioned configuration, and any configuration may be applied as long as the configuration may reduce friction between the deck 220 and the belt 240 .
- the treadmill 200 is mechanically connected to the driven roller 234 and may be configured to adjust tension of the belt 240 by adjusting a distance between the driving roller 232 and the driven roller 234 .
- FIG. 22 is an enlarged view of part C in FIG. 19 .
- a tension block 236 to which a rotating shaft 234 b of the driven roller 234 is coupled and which is coupled to be movable in the front and rear direction with respect to the frame 210 , may be provided, and a tension adjusting member 238 , which fastens the frame 210 and the tension block 236 and moves the tension block 236 in the front and rear direction while rotating, may be provided.
- the configuration for adjusting tension of the belt 240 by using the tension block 236 and the tension adjusting member 238 is just one exemplary embodiment, and various configurations may be applied as long as tension of the belt 240 may be adjusted.
- the front wheel 12 of the bicycle 10 is supported by the treadmill 200 as described above, the front wheel 12 and the treadmill 200 are in surface-to-surface contact with each other, such that the user may feel the same likeness as when the user rides the bicycle on an actual road.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Rehabilitation Tools (AREA)
- Motorcycle And Bicycle Frame (AREA)
Abstract
Disclosed is a bicycle exercise apparatus. A bicycle exercise apparatus includes: a main frame on which a bicycle is positioned; a front support unit which is provided at one side of the main frame and on which a front wheel of the bicycle is rotatably seated; a rear support unit which includes a rotation support unit that has a central portion rotatably coupled to the other side of the main frame such that the rotation support unit maintains a horizontal state while rotating together with the main frame, and one or more rear rollers that are provided on the rotation support unit and rotated together with a rear wheel when the bicycle travels; and a rotation unit which supports the main frame and is rotatably coupled to a central portion of the main frame so as to adjust an inclination angle of the main frame.
Description
- The present invention relates to a bicycle exercise apparatus, and more particularly, to a bicycle exercise apparatus capable of allowing a bicycle to be seated on the bicycle exercise apparatus and implementing the same effect as when the bicycle travels on an inclined road section such as an actual road.
- In general, a user just uses a bicycle to travel a road, a park, a mountain road (forest road), and the like, but the bicycle cannot be used as an indoor exercise machine.
- However, in a case in which it is difficult for the user to use actual bicycle for exercise, an indoor-only bicycle exercise apparatus is required for the user to inevitably use for exercising indoors, but most of the indoor-only bicycle exercise apparatuses just allow the user to sit on a chair and rotate a pedal.
- However, because the user cannot have sufficiently do desired exercise with the aforementioned exercise apparatus, a bicycle exercise apparatus, which allows an actual bicycle to be installed indoors and allows the user to do traveling exercise, has been developed in addition to a bicycle-type exercise machine having a simple shape.
- Specifically, a separate auxiliary device is provided on a general bicycle which is used on a road, such that the bicycle may be utilized as an indoor health bicycle, and an exercise machine, which allows the bicycle to be mounted on the exercise machine in the form of a running machine and allows the user to ride the bicycle, has been developed.
- However, the aforementioned exercise machines just allow the user to ride the bicycle on a flat floor, but the exercise machines are insufficient to implement an environment like an actual road and allow the user to enjoy, even indoors, an exercise effect that can be obtained when the user rides the bicycle outdoors.
- The present invention has been made in an effort to solve the problem in the related art, and an object of the present invention is as follows.
- First, an object of the present invention is to provide a treadmill capable of traveling at a high speed.
- Second, another object of the present invention is to provide a bicycle exercise apparatus capable of allowing a bicycle to be seated on the bicycle exercise apparatus and allowing a user to ride the bicycle while having the same effect as when the user rides the bicycle on a road, such as an actual traveling road, having an inclination.
- Third, still another object of the present invention is to provide a bicycle exercise apparatus capable of allowing a user to enjoy acceleration and deceleration effects by implementing an inclined road.
- Fourth, yet another object of the present invention is to provide a bicycle exercise apparatus capable of preventing a rollover of a bicycle and stably supporting the bicycle.
- Technical problems of the present invention are not limited to the aforementioned technical problems, and other technical problems, which are not mentioned above, may be clearly understood by those skilled in the art from the following descriptions.
- To achieve the aforementioned objects, a bicycle exercise apparatus of the present invention includes a main frame, a front support unit, a rear support unit, and a rotation unit.
- The main frame is elongated and has a predetermined width, and a bicycle is positioned on the main frame.
- The front support unit is provided at one side in a longitudinal direction of the main frame, and a front wheel of the bicycle is rotatably seated on the front support unit.
- The rear support unit includes a rotation support unit that has a predetermined length and a central portion in the longitudinal direction rotatably coupled to the other side in the longitudinal direction of the main frame such that the rotation support unit maintains a horizontal state while rotating together with the main frame in accordance with a rotation angle of the main frame, and one or more rear rollers that are provided on the rotation support unit, disposed in parallel with a front roller, and rotated together with a rear wheel when the bicycle travels.
- The rotation unit supports the main frame such that the main frame is positioned at a predetermined height from a floor, and is rotatably coupled to a central portion of the main frame in the longitudinal direction so as to adjust an inclination angle of the main frame.
- The front support unit may be a treadmill including: a pair of frames which has a length in a traveling direction; a deck which is positioned between the pair of frames and supports a load applied from above; a pair of rollers which is disposed at front and rear sides of the deck, is installed between the pair of frames so as to be rotatable in the same direction, and has anti-slip grooves formed at predetermined intervals in a circumferential direction on outer circumferential surfaces of the pair of rollers; and a belt which is installed to surround the pair of rollers and the deck from the outside, moves in accordance with the rotation of a driving roller, and has anti-slip protrusions formed corresponding to the anti-slip grooves on a surface that abuts against the pair of rollers.
- Further, a friction reducing member for reducing friction by minimizing a contact area with the belt may be provided on an upper surface of the deck.
- The friction reducing member may include: a ring-shaped support portion which is formed with a hollow portion; and a spherical rotating portion which is positioned in the hollow portion of the support portion and rotated in conjunction with the movement of the belt in a state in which the spherical rotating portion is in contact with the belt.
- The treadmill may be mechanically connected to any one of the pair of rollers and may adjust tension of the belt by adjusting a distance between the pair of rollers.
- In addition, the treadmill may include: a tension block to which a rotating shaft of any one of the pair of rollers is coupled and which is coupled to be movable in a front and rear direction with respect to the frame; and a tension adjusting member which fastens the frame and the tension block and moves the tension block in the front and rear direction while rotating.
- Further, the treadmill may further include a drive motor which provides driving power to any one of the pair of rollers.
- Meanwhile, the rear rollers may include a first rear roller and a second rear roller which are disposed at both ends in the longitudinal direction of the rotation support unit so as to be spaced apart from each other.
- When an inclination angle of the main frame is changed such that the rear wheel is positioned at a position lower than the front wheel, at least one of the first rear roller and the second rear roller may provide a load to the rotation of the rear wheel corresponding to the inclination angle of the main frame.
- Here, the second rear roller may include: a fixed shaft which is elongated in a width direction of the rotation support unit; a cylindrical second rotary drum which has an outer surface with which the rear wheel is in contact, and is coupled to be rotatable about the fixed shaft; and a load generating means which is provided in the second rotary drum, and selectively generates a load in accordance with the rotation of the second rotary drum corresponding to the inclination angle of the main frame.
- The load generating means may have a disc shape, may be fixedly coupled to the second rotary drum, and may have a central portion rotatably coupled to the fixed shaft.
- When the main frame has an upward inclination and the inclination angle thereof is increased, the load generating means may increase a load to be applied to the rotation of the second rotary drum.
- When the main frame is rotated to be inclined forward and downward, the first rear roller may rotate the rear wheel regardless of external force by a user.
- The first rear roller may include: a cylindrical first rotary drum which has an outer surface with which the rear wheel is in contact, and is rotatably coupled to the rotation support unit; a drive motor which is fixed to the rotation support unit in the first rotary drum and rotated; and a gear means which is rotated by a first drive motor to rotate the first rotary drum, and allows the first rotary drum to rotate in one direction relative to the drive motor.
- Meanwhile, the front support unit may include the front roller which abuts against the front wheel and rotates together with the front wheel.
- The plurality of front rollers may be provided to be disposed to be spaced apart from one another in the longitudinal direction of the main frame.
- Further, the main frame may further include a power transmission unit which is connected to the front roller and the rear roller and transmits rotational force of the rear roller to the front roller to allow the front roller to rotate together with the rear roller when the rear wheel is operated by external force applied by the user.
- The power transmission unit may include: a rear shaft which is provided on a rotation axis of the rotation support unit and the main frame, and has one side connected to any one of the first rear roller and the second rear roller by a separate transmission means such that the rear shaft is rotated together with the rear wheel when the rear wheel is rotated; a front shaft which is provided on a rotation axis of the main frame and the front roller, and rotated together with the front roller; and a circulation belt which is elongated, and has one side connected to the front shaft and the other side connected to the rear shaft, such that the circulation belt rotates the front shaft while circulating by the rotation of the rear shaft.
- In addition, the rotation unit may include: a casing which is rotatably coupled to the central portion of the main frame in the longitudinal direction while having a main rotating shaft; a drive motor which is provided in the casing and selectively rotates; an arc portion which has an arc shape on the main frame, protrudes downward so that the main rotating shaft is positioned at a center of an arc, and has a rack gear that is formed on an inner surface of the arc so as to protrude in a direction toward the main rotating shaft; and one or more gear units which are connected to the drive motor, and engaged with the rack gear to rotate the arc portion.
- Here, the arc portions may be provided at both sides in a width direction of the main frame, respectively.
- The main frame may include a plurality of unit links so that a part of the main frame in the longitudinal direction is selectively tilted.
- Meanwhile, the bicycle exercise apparatus of the present invention may include a guide unit which includes: a front frame which is positioned at a front side of the front wheel at one side in the longitudinal direction of the main frame and protrudes upward; a rear frame which is positioned at a rear side of the rear wheel at the other side in the longitudinal direction of the main frame and is elongated upward; and connecting wires which are elongated, are provided on the front frame and the rear frame, respectively, and each have one side detachably connected to a central portion of the bicycle in a width direction so as to support the bicycle so that the bicycle does not roll over.
- The connecting wires may be spaced apart from the floor at a predetermined height, and provided, at the same height, on the front frame and the rear frame, respectively.
- Further, the connecting wires may be detachably and selectively coupled to the bicycle through separate coupling means provided at one side in the longitudinal direction.
- In addition, the connecting wire may include a material having elasticity.
- The guide unit may further include a safety frame which is elongated, has both ends coupled to the front frame and the rear frame, respectively, at a predetermined height, and is disposed to be eccentric toward one side in the width direction of the main frame.
- The effects of the present invention configured as described above will be described below.
- First, according to the treadmill according to the exemplary embodiment of the present invention, the anti-slip grooves are formed at predetermined intervals on the outer circumferential surfaces of a driving roller and a driven roller, and the anti-slip protrusions, which correspond to the anti-slip grooves, are formed on the belt, such that the belt is moved while the anti-slip grooves and the anti-slip protrusions are engaged with one another in accordance with the rotation of the driving roller and the driven roller, and the friction reducing members for minimizing friction with the belt are provided on the upper portion of the deck, and as a result, it is possible to prevent a slip of the belt caused by high-speed traveling and prevent the user from rolling over caused by the slip of belt.
- Second, according to the bicycle exercise apparatus according to the exemplary embodiment of the present invention, the bicycle is seated on the main frame having the front support unit and the rear support unit at both ends thereof, and an inclination angle of the main frame is selectively adjusted, such that when the user rides the bicycle, the user may have the same effect as when the user rides the bicycle on an inclined road.
- Third, according to the bicycle exercise apparatus according to the exemplary embodiment of the present invention, the second rear roller provides a load in accordance with the rotation of the rear wheel by being selectively operated in accordance with an inclination direction of the main frame, and the first rear roller accelerates the rear wheel to a predetermined speed regardless of external force applied by the user by being selectively operated in accordance with an inclination direction of the main frame, such that the user may enjoy the same effect as when the user rides the bicycle on an uphill road and a downhill road.
- Fourth, the bicycle exercise apparatus according to the exemplary embodiment of the present invention includes the guide unit which is provided on the main frame at a predetermined height or higher and selectively coupled at the front and rear sides of the bicycle, and the guide unit with elasticity is connected to the front and rear sides of the bicycle and supports the bicycle, such that it is possible to prevent a rollover of the bicycle when the user rides the bicycle and to enable the dancing motion in the left and right direction, thereby implementing the same effect as when the user rides the bicycle on an actual road.
- The effects of the present invention are not limited to the aforementioned effects, and other effects, which are not mentioned above, will be clearly understood by those skilled in the art from the claims.
- A detailed description of the exemplary embodiment of the present application to be described below as well as the summary explained above will be understood well when reading the detailed description and the summary with reference to the accompanying drawings. The exemplary embodiments are illustrated in the drawings for the purpose of exemplifying the present invention. However, it should be understood that the present application is not limited to the illustrated exact arrangement and means.
-
FIG. 1 is a view schematically illustrating a configuration of a bicycle exercise apparatus according to an exemplary embodiment of the present invention. -
FIG. 2 is a view illustrating a side of the bicycle exercise apparatus inFIG. 1 . -
FIG. 3 is a view illustrating a top side of the bicycle exercise apparatus inFIG. 1 . -
FIG. 4 is a view illustrating a state in which a separate safety bar and a bicycle are seated on the bicycle exercise apparatus inFIG. 1 and the bicycle travels. -
FIG. 5 is a view illustrating a state in which an inclination of a main frame of the bicycle exercise apparatus inFIG. 4 is adjusted. -
FIG. 6 is a view schematically illustrating a configuration of a rotation unit of the bicycle exercise apparatus inFIG. 1 . -
FIG. 7 is a view illustrating detailed configurations an arc portion and a gear unit of the rotation unit inFIG. 6 . -
FIG. 8 is a view illustrating an internal configuration of a second rear roller of the bicycle exercise apparatus inFIG. 1 . -
FIG. 9 is a view illustrating an internal configuration of a first rear roller of the bicycle exercise apparatus inFIG. 1 . -
FIG. 10 is a view illustrating a state in which the main frame of the bicycle exercise apparatus inFIG. 4 is inclined forward and upward. -
FIG. 11 is a view illustrating a state in which the main frame of the bicycle exercise apparatus inFIG. 4 is inclined forward and downward. -
FIGS. 12A and 12B show views illustrating a state in which a first rotary drum and a drive motor are relatively rotated in accordance with a rotational speed of the first rotary drum in the first rear roller of the bicycle exercise apparatus inFIG. 11 . -
FIG. 13 is a view illustrating a top side of the bicycle exercise apparatus inFIG. 1 . -
FIG. 14 is a view illustrating a state in which the bicycle is moved while dancing by a user in the bicycle exercise apparatus inFIG. 1 . -
FIG. 15 is a view illustrating a state in which a connecting wire is coupled to the bicycle in the bicycle exercise apparatus inFIG. 1 . -
FIG. 16 is a perspective view illustrating a bicycle exercise apparatus according to another exemplary embodiment of the present invention. -
FIG. 17 is a perspective view illustrating a state in which a bicycle is installed on the bicycle exercise apparatus according to another exemplary embodiment of the present invention. -
FIG. 18 is a view illustrating an external appearance of a front support unit according to another exemplary embodiment of the present invention. -
FIG. 19 is a view illustrating an interior of the front support unit according to another exemplary embodiment of the present invention. -
FIG. 20 is an enlarged view of part A inFIG. 19 . -
FIG. 21 is an enlarged view of part B inFIG. 19 . -
FIG. 22 is an enlarged view of part C inFIG. 19 . - Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, it will be easily understood by those skilled in the art that the accompanying drawings are provided only to more easily disclose the contents of the present invention and the scope of the present invention is not limited to the scope of the accompanying drawings.
- Further, it is noted that in the description of the exemplary embodiments of the present invention, like terms and like reference numerals are used for constituent elements having the same function, but the constituent elements are not substantially and completely identical to the constituent elements in the related art.
- In addition, terms used in the present application are used only to describe specific exemplary embodiments, and are not intended to limit the present invention. Singular expressions used herein include plurals expressions unless they have definitely opposite meanings in the context. In the present application, it should be appreciated that terms “including” and “having” are intended to designate the existence of characteristics, numbers, steps, operations, constituent elements, and components described in the specification or a combination thereof, and do not exclude a possibility of the existence or addition of one or more other characteristics, numbers, steps, operations, constituent elements, and components, or a combination thereof in advance.
- Hereinafter, a bicycle exercise apparatus according to an exemplary embodiment of the present invention will be described with reference to the drawings.
-
FIG. 1 is a view schematically illustrating a configuration of a bicycle exercise apparatus according to an exemplary embodiment of the present invention,FIG. 2 is a view illustrating a side of the bicycle exercise apparatus inFIG. 1 , andFIG. 3 is a view illustrating a top side of the bicycle exercise apparatus inFIG. 1 . Further,FIG. 4 is a view illustrating a state in which a separate safety bar and a bicycle are seated on the bicycle exercise apparatus inFIG. 1 and the bicycle travels. - As illustrated in
FIGS. 1 to 4 , the bicycle exercise apparatus according to the present invention broadly includes amain frame 100, afront support unit 200, arear support unit 300, and arotation unit 400. - The
main frame 100 is configured to substantially support abicycle 10 and adjust an inclination, themain frame 100 is elongated and has a predetermined width, and thebicycle 10 is positioned on themain frame 100. - Specifically, the shape of the
main frame 100 is formed by connecting a plurality of structures and is similar to a shape of a ladder. - As illustrated, in the present exemplary embodiment, the
main frame 100 is elongated and has a predetermined width, and a central portion of themain frame 100 in a longitudinal direction is configured to be rotatable together with therotation unit 400 to be described below. - In this case, a width of the
main frame 100 is set to be sufficient for a user to seat himself/herself on thetypical bicycle 10 in a state in which thebicycle 10 is positioned on themain frame 10, and the front andrear support units - Further, the
main frame 100 according to the present invention may be configured by continuously connecting a plurality ofunit links 102 in the longitudinal direction, and themain frame 100 may be configured to be selectively tilted. - In the present exemplary embodiment, the longitudinal direction of the
main frame 100 is a direction A that indicates a direction in which thebicycle 10 is disposed in a front and rear direction, and a width direction of themain frame 100 is a direction B that indicates a left and right direction of thebicycle 10. - Specifically, as illustrated, the
main frame 100 includes three or more unit links 102 in the longitudinal direction, themain frame 100 is configured to be tilted for convenience for the user, and therefore, a volume of the bicycle exercise apparatus is reduced such that the bicycle exercise apparatus is easily accommodated. - Otherwise, the
main frame 100 may of course be integrally configured in the longitudinal direction. - Meanwhile, the
front support unit 200 is provided at one side of themain frame 100 in the longitudinal direction, and afront wheel 12 of thebicycle 10 is rotatably seated on thefront support unit 200. - Specifically, the
front support unit 200 has afront roller 202 which is provided at one side of themain frame 100 and supports thefront wheel 12 of thebicycle 10, and thefront roller 202 is rotatably provided on themain frame 100. - Further, the
front roller 202 is in contact with thefront wheel 12 and supports thefront wheel 12, and thefront roller 202 is coupled to one side of themain frame 100 so as to be rotatable together with thefront wheel 12. - That is, the
front support unit 200 includes one or morefront rollers 202, and thefront roller 202 is formed in the form of a cylindrical roller, such that thefront roller 202 is rotatably coupled to one side of themain frame 100 in the longitudinal direction. - Further, the
front roller 202, which is provided as described above, has an outer surface that supports thefront wheel 12 of thebicycle 10 and has frictional force at a predetermined level or larger so that thefront wheel 12 of thebicycle 10 may be rotated together with thefront roller 202 when thefront roller 202 is rotated by external force. - In the present exemplary embodiment, the
front support unit 200 includes the singlefront roller 202, as illustrated, but otherwise, a plurality offront rollers 202 may be provided to be disposed to be spaced apart from one another in the longitudinal direction of themain frame 100. - In this case, in the case in which the plurality of
front rollers 202 is provided, the plurality offront rollers 202 is disposed in parallel with a rotation axis of thefront wheel 12 so as to be spaced apart from one another in the longitudinal direction of themain frame 100. - Meanwhile, the
rear support unit 300 is provided at the other side of themain frame 100 and supports arear wheel 14 of thebicycle 10 so that therear wheel 14 is rotatable, and therear support unit 300 broadly includes arotation support unit 310 andrear rollers 320. - The
rotation support unit 310 has a predetermined length and a width corresponding to the width of themain frame 100, and a central portion of therotation support unit 310 in the longitudinal direction is rotatably coupled to the other side of themain frame 100 in the longitudinal direction. - Specifically, the
rotation support unit 310 is elongated in the form of a frame and rotatably coupled to themain frame 100, and therear rollers 320 to be described below are rotatably coupled to therotation support unit 310 separately from themain frame 100. - In the present exemplary embodiment, as illustrated, the
rotation support unit 310 has a width relatively smaller than the width of themain frame 100 and is rotatably coupled to the other side of themain frame 100. - In this case, the
rotation support unit 310 is also formed in the form of a frame and has a predetermined width, and therear rollers 320 are rotatably coupled to therotation support unit 310. - Further, the
rotation support unit 310, which is configured as described above, is maintained in a horizontal state, and when an inclination of themain frame 100 is changed, therotation support unit 310 is relatively rotated at the other side of themain frame 100 corresponding to the change in the inclination of themain frame 100, thereby maintaining the horizontal state. - Meanwhile, one or more
rear rollers 320 are provided on therotation support unit 310, and disposed perpendicular to a traveling direction of thebicycle 10. - Further, the
rear roller 320 supports therear wheel 14 of thebicycle 10 and rotates together with therear wheel 14 of thebicycle 10 when therear wheel 14 of thebicycle 10 is rotated by the user's operation. - Specifically, one or more
rear rollers 320 are provided, therear roller 320 has a rotation axis perpendicular to the traveling direction of thebicycle 10, and therear roller 320 is rotatably coupled to therotation support unit 310. - In the present exemplary embodiment, the
rear rollers 320 include a pair of first and secondrear rollers rear rollers rotation support unit 310 so as to be spaced apart from each other. - Further, the
rear wheel 14 of thebicycle 10 is supported by the firstrear roller 322 and the secondrear roller 324. - Here, the first
rear roller 322 and the secondrear roller 324 have rotation axes parallel to each other on therotation support unit 310, and the firstrear roller 322 and the secondrear roller 324 are disposed to be spaced apart from each other in the longitudinal direction of therotation support unit 310 and configured to be rotated together with therear wheel 14 of thebicycle 10 when therear wheel 14 of thebicycle 10 is rotated by the user. - That is, the first
rear roller 322 and the secondrear roller 324 are provided at both ends of therotation support unit 310 in the longitudinal direction, and the central portion of therotation support unit 310 in the longitudinal direction is provided at the other side of themain frame 100. - As described above, the
rear support unit 300 has the separaterotation support unit 310, such that therear rollers 320 are rotatably coupled to therotation support unit 310 instead of being coupled directly to themain frame 100. - Further, the
rotation support unit 310 maintains the horizontal state by a load of thebicycle 10 of which therear wheel 14 is seated on therear rollers 320. - Therefore, even though the
main frame 100 is not maintained in the horizontal state but rotated to have an inclination, therotation support unit 310 may be maintained in the horizontal state because a load of thebicycle 10 is applied to therotation support unit 310. - In addition, since the
rotation support unit 310 is configured as described above, therotation support unit 310 maintains the horizontal state while relatively rotating on themain frame 100 corresponding to a rotation angle of themain frame 100, and thebicycle 10 seated on themain frame 100 is supported by the firstrear roller 322 and the secondrear roller 324 so that thebicycle 10 is not moved downward even though themain frame 100 has an inclination. - Meanwhile, the
rotation unit 400 supports themain frame 100 so that themain frame 100 is positioned at a predetermined height from a floor, and therotation unit 400 is rotatably coupled to the central portion of themain frame 100 in the longitudinal direction while having a mainrotating shaft 402, and adjusts the inclination angle of themain frame 100. - Further, the
rotation unit 400 has therein a separate drive motor (not illustrated) to rotate themain frame 100, thereby adjusting the inclination angle of themain frame 100. - In the present exemplary embodiment, the
single rotation unit 400 is provided and configured to support themain frame 100 and selectively adjust the inclination angle of themain frame 100. - Meanwhile, the bicycle exercise apparatus according to the present invention may further include a control unit (not illustrated) which selectively adjusts the inclination angle of the
main frame 100 by using therotation unit 400. - The control unit may be provided in the
main frame 100 or therotation unit 400, and may adjust the inclination angle of themain frame 100 based on information about a traveling road which is provided from the outside or inputted to the control unit. - Specifically, the control unit may control the
rotation unit 400 to adjust the inclination angle of themain frame 100 in order to implement an inclination identical to an inclination of an actual traveling road in accordance with a traveling distance when thebicycle 10 travels based on separate information about the traveling road. - In this case, a rotational speed of the
rear roller 320 or a rotational speed of a drivingroller 232 or a drivenroller 234 of atreadmill 200 is measured to measure the traveling distance of thebicycle 10, and the inclination angle of themain frame 100 is adjusted by comparing the traveling distance of thebicycle 10 with the information about an actual traveling road. - As described above, the bicycle exercise apparatus according to the present invention includes the
main frame 100, thefront support unit 200, therear support unit 300, therotation unit 400, and the control unit, and the user may exercise while riding thebicycle 10 in a state in which thefront wheel 12 and therear wheel 14 of thebicycle 10 are seated on thefront support unit 200 and therear support unit 300, respectively. - In addition, the inclination angle of the
main frame 100 is adjusted by therotation unit 400, and as a result, the user may enjoy the same effect as when the user rides the bicycle on an actual inclined road. - Detailed configuration and operation of the
rotation unit 400 will be described below. - Meanwhile, the
main frame 100 according to the present invention may further include a separate power transmission unit 110. - The power transmission unit 110 is connected to the
front roller 202 and therear roller 320 and transmits rotational force of therear roller 320 to thefront roller 202 when therear wheel 14 is operated by external force applied by the user, thereby allowing thefront roller 202 to be rotated together with therear roller 320. - Specifically, the power transmission unit 110 includes a
rear shaft 112 which is rotated together with therear roller 320 in accordance with the rotation of therear roller 320, afront shaft 114 which is rotated together with thefront roller 202 in accordance with the rotation of thefront roller 202, and acirculation belt 116 which is connected to thefront shaft 114 and therear shaft 112 and transmits the rotational force. - The
rear shaft 112 is provided on the rotation axis of therotation support unit 310 and themain frame 100, and therear shaft 112 is connected to any one of the firstrear roller 322 and the secondrear roller 324 by a separate transmission means 112 d and rotated in conjunction with the rotation of therear wheel 14. - In the present exemplary embodiment, the
rear shaft 112 is elongated on the rotation axis of therotation support unit 310 and themain frame 100, one side of therear shaft 112 protrudes outward from themain frame 100, and arear pulley 112 a is provided at one side of therear shaft 112. - Further, the other side of the
rear shaft 112 is connected to the firstrear roller 322 by the belt-shaped transmission means 112 d, such that therear shaft 112 is configured to be rotated together with the firstrear roller 322 when the firstrear roller 322 is rotated. - Here, a
second pulley 112 b may be provided at the other side of therear shaft 112, afirst pulley 112 c, which is connected to the firstrear roller 322 and rotated, may be provided on a rotation axis on which the firstrear roller 322 and therotation support unit 310 are coupled to each other, and the transmission means 112 d is connected to thefirst pulley 112 c and thesecond pulley 112 b and configured to transmit the rotational force of the firstrear roller 322 to therear shaft 112 while circulating. - Otherwise, the transmission means 112 d and the
first pulley 112 c may of course be provided on the secondrear roller 324 and connected to the secondrear roller 324. - As described above, the
rear shaft 112 is provided on the rotation axis on which the rear support unit and themain frame 100 are coupled to each other, and therear shaft 112 is configured to be rotated by receiving the rotational force of therear roller 320. - Meanwhile, the
front shaft 114 is formed similar to therear shaft 112, provided on the rotation axis of themain frame 100 and thefront roller 202, and rotated together with thefront roller 202. - Specifically, the
front shaft 114 is elongated on the rotation axis of thefront roller 202, one side of thefront shaft 114 protrudes outward from themain frame 100, and afront pulley 114 a is provided at one side of thefront shaft 114. Further, the other side of thefront shaft 114 is connected to thefront roller 202 and configured to be rotated together with thefront roller 202. - In the present exemplary embodiment, the
front shaft 114 is formed to protrude toward one side in the width direction of themain frame 100, as illustrated, but otherwise, thefront shaft 114 may protrude toward both sides and thefront pulleys 114 a may be provided at both sides of thefront shaft 114. - As described above, the
front shaft 114 is provided on the rotation axis of thefront roller 202 and themain frame 100 and configured to be rotatable together with thefront roller 202. - Meanwhile, the
circulation belt 116 is elongated, one side of thecirculation belt 116 is connected to thefront shaft 114, the other side of thecirculation belt 116 is connected to therear shaft 112, and thecirculation belt 116 rotates thefront shaft 114 while circulating by the rotation of therear shaft 112. - Specifically, the
circulation belt 116 is connected to thefront pulley 114 a and therear pulley 112 a, and rotates thefront pulley 114 a together with therear pulley 112 a while circulating when therear pulley 112 a is rotated. - In the present exemplary embodiment, the
circulation belt 116 is formed in the form of a belt having elasticity, connected to thefront pulley 114 a and therear pulley 112 a, and configured to transmit the rotational force while circulating, but otherwise, thecirculation belt 116 may be formed in the form of a chain or a track. - The power transmission unit 110 according to the present invention is configured as described above, and the rotational force by which the
rear roller 320 is rotated by therear wheel 14 is transmitted to thefront roller 202 through the power transmission unit 110, such that thefront wheel 12 may be rotated together with therear wheel 14. - If the
front wheel 12 is not rotated when the user on thebicycle 10 rotates therear wheel 14 to ride thebicycle 10, thebicycle 10 will fall down laterally without maintaining an upright state. - Therefore, the power transmission unit 110 is provided to transmit the rotational force of the
rear roller 320, which is rotated together with therear wheel 14, to thefront roller 202, thereby rotating thefront wheel 12 together with therear wheel 14. - That is, the power transmission unit 110 transmits the rotational force of the
rear wheel 14 to thefront roller 202 in order to rotate thefront roller 202, and as a result, thefront wheel 12 may also be rotated together with therear wheel 14. - Therefore, since the
front wheel 12 and therear wheel 14 of thebicycle 10 are rotated together, the user may ride thebicycle 10 seated on themain frame 100 without a separate safety device, and the user may enjoy left and right dancing motions when riding thebicycle 10 in a similar way as the user actually rides thebicycle 10. - The bicycle exercise apparatus according to the present invention is configured as described above and additionally includes a
separate safety bar 500 and a separate connectingwire 510, and thesafety bar 500 and the connectingwire 510 may be used as safety devices for preventing excessive motion and withdrawal of thebicycle 10 when thebicycle 10 is seated on themain frame 100. - Next, a state in which the inclination angle of the
main frame 100 of the bicycle exercise apparatus according to the present invention is adjusted and therear support unit 300 is operated will be described below. -
FIG. 5 is a view illustrating a state in which the inclination of the main frame of the bicycle exercise apparatus inFIG. 4 is adjusted. - Referring to the illustrated drawing, the
rotation unit 400 rotates themain frame 100 clockwise so that themain frame 100 has an upward inclination in order to implement a state in which thebicycle 10 seated on themain frame 100 of the bicycle exercise apparatus according to the present invention travels an uphill road. - In this case, the
rotation support unit 310 is rotated relative to the other side of themain frame 100 by a weight of therear wheel 14 seated on therear roller 320, thereby maintaining the horizontal state. Here, therotation support unit 310 is rotated counterclockwise, that is, in a direction opposite to the direction of themain frame 100. - Since the
rotation support unit 310 maintains the horizontal state regardless of the inclination of themain frame 100 as described above, the rear support unit, which includes the pair of rollers, supports therear wheel 14 of thebicycle 10, thereby preventing thebicycle 10 from falling down in the direction toward the other side of themain frame 100. - Next, a specific configuration of the
rotation unit 400 according to the present invention will be described below with reference toFIGS. 6 and 7 . -
FIG. 6 is a view schematically illustrating a configuration of the rotation unit of the bicycle exercise apparatus inFIG. 1 , andFIG. 7 is a view illustrating detailed configurations an arc portion and a gear unit of the rotation unit inFIG. 6 . - The
rotation unit 400 according to the present invention is configured to support themain frame 100 at the lower side of themain frame 100 and to adjust the inclination angle of themain frame 100 by the control unit, and therotation unit 400 broadly includes acasing 410, adrive motor 420, anarc portion 430, and agear unit 440. - The
casing 410 supports themain frame 100 at a predetermined height or higher from the floor and accommodates therein thedrive motor 420 and thegear unit 440. - Specifically, as illustrated, an upper portion of the
casing 410 is rotatably coupled to the central portion of themain frame 100 in the longitudinal direction while having the mainrotating shaft 402, and a lower portion of thecasing 410 is positioned on the floor. - The
drive motor 420 is provided in thecasing 410 and configured to rotate themain frame 100 about the mainrotating shaft 402 by being operated by the control unit. - Specifically, one or
more drive motors 420 may be provided, and thedriver motor 420 is connected to the mainrotating shaft 402 to rotate themain frame 100 to a predetermined angle. - In this case, the
drive motor 420 may be coupled directly to the mainrotating shaft 402 while having the same rotation axis as themain frame 100, but otherwise, as illustrated, thedrive motor 420 may be coupled to the mainrotating shaft 402 through thegear unit 440. - Meanwhile, the
arc portion 430 is formed to protrude downward from themain frame 100 and configured to rotate themain frame 100 by receiving rotational force of thedrive motor 420, and thearc portion 430 has an arc shape on themain frame 100 and protrudes downward so that the mainrotating shaft 402 is positioned at a center of an arc. - Specifically, as illustrated, a pair of
arc portions 430 is provided to be symmetrically disposed at left and right sides of themain frame 100 and fixedly coupled to themain frame 100 so that the center of the arc is positioned on the mainrotating shaft 402. - Further, the
arc portion 430 has arack gear 432 which is formed on an inner surface of the arc so as to protrude in a rotation axis direction, and thearc portion 430 is rotated about the mainrotating shaft 402 by receiving rotational force of thedrive motor 420. - In this case, since the
arc portion 430 is fixedly coupled to themain frame 100, themain frame 100 is rotated together with thearc portion 430. - That is, the
arc portion 430 is rotated about the mainrotating shaft 402 as therack gear 432 slides along the arc by receiving rotational force by thedrive motor 420 and thegear unit 440 to be described below which are accommodated in thecasing 410. - In the present exemplary embodiment, the
arc portion 430 receives the rotational force of thedrive motor 420 as therack gear 432, which is formed on the inner surface of the arc so as to protrude in the direction toward the mainrotating shaft 402, meshes with thegear unit 440 to be described below. - Meanwhile, one or
more gear units 440 are provided and connected to thedrive motor 420, and thegear unit 440 is engaged with therack gear 432 formed on thearc portion 430, thereby rotating thearc portion 430. - Specifically, the
gear unit 440 is connected to a rotating shaft of thedrive motor 420 and rotated, and thegear unit 440 meshes with therack gear 432 formed on thearc portion 430, thereby allowing thearc portion 430 to be rotated about the mainrotating shaft 402. - In the present exemplary embodiment, the
gear unit 440 is configured such that a plurality of gears meshes one another, but otherwise, thegear unit 440 may include a single gear that is connected directly to thedrive motor 420 and meshes with therack gear 432. - As described above, the
rotation unit 400 according to the present invention adjusts the inclination angle of themain frame 100 as thedrive motor 420 configured in therotation unit 400 is selectively operated by the control unit. - Here, the
rotation unit 400 is configured to selectively provide a load to at least one of the firstrear roller 322 and the secondrear roller 324, and provides a load in accordance with the rotation of therear wheel 14 by the control unit corresponding to the inclination angle of themain frame 100. - In particular, the
rear roller 320 generates a load in accordance with the rotation when themain frame 100 has an inclination by therotation unit 400 to be described below and therear wheel 14 is changed to a position lower than thefront wheel 12. - Further, as the load is generated on the
rear roller 320 as described above, a larger effort is required for the user to rotate therear wheel 14 of the bicycle. - That is, when the inclination angle of the
main frame 100 is adjusted and themain frame 100 is disposed in a similar way as the bicycle travels an inclined road, a load is generated on therear roller 320, and as a result, a larger effort is required to operate therear wheel 14 like when the user rides the bicycle on an uphill road. - In the present exemplary embodiment, an example in which a load generating means is provided on the second rear roller will be described.
-
FIG. 8 is a view illustrating an internal configuration of the second rear roller of the bicycle exercise apparatus inFIG. 1 , andFIG. 9 is a view illustrating an internal configuration of the first rear roller of the bicycle exercise apparatus inFIG. 1 . - First, a configuration of the second
rear roller 324 will be described with reference toFIGS. 8 and 9 , the secondrear roller 324 is configured in therotation support unit 310 so as to be rotatable while having a rotation axis, and therear wheel 14 is in contact with an outer surface of the secondrear roller 324, such that the secondrear roller 324 is rotated together with therear wheel 14 when therear wheel 14 is rotated. - Here, the second
rear roller 324 is provided at a rear side in the longitudinal direction of therotation support unit 310, and the firstrear roller 322 is provided at a front side in the longitudinal direction of therotation support unit 310. - The second
rear roller 324 according to the present invention broadly includes a fixedshaft 324 c, a secondrotary drum 324 a, and a load generating means 324 b. - The fixed
shaft 324 c is a rotating shaft of the secondrear roller 324, the fixedshaft 324 c is elongated in the width direction of therotation support unit 310, and both ends of the fixedshaft 324 c are fixedly coupled to therotation support unit 310. - Further, the second
rotary drum 324 a has an outer surface that is in contact with therear wheel 14, and the secondrotary drum 324 a is configured to be rotatable about the fixedshaft 324 c. - Specifically, the outer surface of the second
rotary drum 324 a is in contact with therear wheel 14, and the secondrotary drum 324 a is formed in a cylindrical shape and coupled to be rotatable about the fixedshaft 324 c. - Further, when the
rear wheel 14 is rotated by the user, the secondrotary drum 324 a is rotated together with therear wheel 14 about the fixedshaft 324 c. - The load generating means 324 b is provided in the second
rotary drum 324 a, and selectively generates a load in accordance with the rotation of the secondrotary drum 324 a corresponding to the inclination angle of themain frame 100. - Specifically, the load generating means 324 b is configured to be rotatable about the fixed
shaft 324 c in the secondrotary drum 324 a, and at least a part of the load generating means 324 b is fixedly coupled to the secondrotary drum 324 a. - Further, the load generating means 324 b is rotated about the fixed
shaft 324 c together with the secondrotary drum 324 a when the secondrotary drum 324 a is rotated by therear wheel 14. - Here, the load generating means 324 b is selectively operated by the control unit, and in the present exemplary embodiment, the load generating means 324 b is formed in the form of a disc and fixedly coupled to an inner surface of the second
rotary drum 324 a. - Further, a central portion of the load generating means 324 b is rotatably coupled to the fixed
shaft 324 c by a separate bearing. - Therefore, when the
rear wheel 14 is rotated by external force applied by the user, the secondrotary drum 324 a is also rotated together with therear wheel 14, and the load generating means 324 b is selectively operated corresponding to the inclination angle of themain frame 100, thereby providing a load in accordance with the rotation of the secondrotary drum 324 a. - In this case, the load generating means 324 b is configured to generate a load in accordance with the rotation relative to the fixed
shaft 324 c by providing electric power to a generally used disc. - Meanwhile, a configuration of the first
rear roller 322 will be described, and the firstrear roller 322 has therein a drive motor 322 b to rotate the firstrear roller 322 when themain frame 100 is disposed to have a downward inclination, thereby artificially rotating therear wheel 14. - In the present invention, the first
rear roller 322 broadly includes a firstrotary drum 322 a, the drive motor 322 b, and gear means 322 c and 322 d. - Similar to the second
rotary drum 324 a, the firstrotary drum 322 a has a cylindrical shape, the firstrotary drum 322 a is disposed in an elongated manner in the width direction of therotation support unit 310, and therear wheel 14 is in contact with an outer surface of the firstrotary drum 322 a. Therefore, the firstrotary drum 322 a is rotated together with therear wheel 14 when therear wheel 14 is rotated. - Further, the drive motor 322 b is provided in the first
rotary drum 322 a and connected to the firstrotary drum 322 a through the gear means 322 c and 322 d, thereby rotating the firstrotary drum 322 a. - Specifically, when the
main frame 100 is disposed to be inclined forward and downward as described above, the drive motor 322 b is operated by the control unit, and a rotational speed of the drive motor 322 b is adjusted corresponding to the inclination angle of themain frame 100. - Meanwhile, the gear means 322 c and 322 d are provided in the drive motor 322 b and the first
rotary drum 322 a and transmit rotational force of the drive motor 322 b to the firstrotary drum 322 a, thereby rotating the firstrotary drum 322 a. - Here, as illustrated, the gear means 322 c and 322 d include a ratchet 322 c which is provided on a rotating shaft of the drive motor 322 b, and a catching member 322 d which protrudes from a surface of the first
rotary drum 322 a and is selectively caught by the ratchet 322 c. - Further, the ratchet 322 c, which is rotated by the drive motor 322 b, and the first
rotary drum 322 a are relatively rotated in one direction. - That is, when the drive motor 322 b is rotated, the first
rotary drum 322 a is rotated as the catching member 322 d is caught by a gear formed on the ratchet 322 c. - However, when a rotational speed of the first
rotary drum 322 a is higher than a rotational speed of the ratchet 322 c rotated by the drive motor 322 b when the firstrotary drum 322 a is rotated by the rotation of therear wheel 14, the catching member 322 d is not caught by the ratchet 322 c, and as a result, the firstrotary drum 322 a is independently rotated regardless of whether the drive motor 322 b is rotated. - Therefore, a load is not generated on the drive motor 322 b, and damage may be prevented when the drive motor 322 b is not operated or the drive motor 322 b is operated at a speed relatively lower than the rotational speed of the first
rotary drum 322 a even though the driver motor 322 b is operated. - That is, the gear means 322 c and 322 d are means for protecting the drive motor 322 b when the first
rotary drum 322 a and the drive motor 322 b are rotated, and the gear means 322 c and 322 d are configured such that the rotating shaft of the drive motor 322 b and the firstrotary drum 322 a may be relatively rotated in one direction. - Since the first
rear roller 322 and the secondrear roller 324 according to the present invention are configured as described above, it is possible to implement likeness of traveling on the inclined road by tilting themain frame 100 when the user rides the bicycle, and to implement acceleration and deceleration of the bicycle in accordance with an uphill road and a downhill road. -
FIG. 10 is a view illustrating a state in which the main frame of the bicycle exercise apparatus inFIG. 4 is inclined forward and upward,FIG. 11 is a view illustrating a state in which the main frame of the bicycle exercise apparatus inFIG. 4 is inclined forward and downward, andFIGS. 12A and 12B show views illustrating a state in which the first rotary drum and the drive motor are relatively rotated corresponding to a rotational speed of the first rotary drum of the first rear roller of the bicycle exercise apparatus inFIG. 11 . - First,
FIG. 10 illustrates a state in which the bicycle exercise apparatus implements an uphill road, that is, themain frame 100 is tilted clockwise to a predetermined angle by therotation unit 400. - In this case, the
rotation support unit 310 maintains the horizontal state by the relative rotation between themain frame 100 and therotation support unit 310, and the firstrear roller 322 and the secondrear roller 324 are rotated clockwise by the rotation of therear wheel 14. - Here, the control unit detects an inclination direction and an inclination angle of the
main frame 100 and operates the load generating means 324 b corresponding to the inclination direction and the inclination angle of themain frame 100, such that a load is generated in accordance with the rotation of the secondrear roller 324, thereby providing a load in accordance with the rotation of therear wheel 14. - In this state, the drive motor 322 b provided in the first
rear roller 322 is not operated, and only the firstrotary drum 322 a is independently rotated by the gear means 322 c and 322 d in accordance with the rotation of therear wheel 14. - As described above, the bicycle exercise apparatus according to the present invention implements a state in which the user rides the bicycle on an uphill road as the
main frame 100 is tilted to be inclined forward and upward and a load is generated only by the secondrear roller 324. - On the contrary, when the
main frame 100 is tilted counterclockwise by therotation unit 400 to implement a downhill road as illustrated inFIG. 11 , themain frame 100 is disposed to be inclined forward and downward, and therotation support unit 310 maintains the horizontal state while rotating relative to themain frame 100. - Further, the control unit detects the inclination direction and the inclination angle of the
main frame 100, and rotates the firstrear roller 322. - Specifically, the control unit operates the drive motor 322 b provided in the first
rear roller 322, and the firstrotary drum 322 a is rotated by the rotation of the drive motor 322 b, thereby rotating therear wheel 14. - In this case, because the load generating means 324 b is not operated, the second
rear roller 324 freely rotates together with therear wheel 14. - In general, the bicycle is accelerated by gravity when the user rides the bicycle on a downhill road, and similarly, acceleration is implemented at a predetermined level as the first
rear roller 322 is rotated by the drive motor 322 b regardless of external force applied by the user. - Of course, the user may rotate the
rear wheel 14 regardless of a rotational speed of the drive motor 322 b in a state in which the firstrotary drum 322 a is rotated by the drive motor 322 b. - Specifically, in the drawing illustrating the first
rotary drum 322 a and the gear means 322 c and 322 d, when a rotational speed R1 of the drive motor 322 b is higher than a rotational speed R2 of the firstrotary drum 322 a, the ratchet 322 c meshes with the catching member 322 d, such that the firstrotary drum 322 a is rotated. - However, on the contrary, when the user rotates the
rear wheel 14 at a high speed in a state in which the drive motor 322 b is rotated, the rotational speed R2 of the firstrotary drum 322 a becomes relatively higher than the rotational speed R1 of the drive motor 322 b. - Further, in this case, the gear formed on the ratchet 322 c is not caught by the catching member 322 d, such that the first
rotary drum 322 a is independently rotated. - Therefore, when the
main frame 100 is tilted to be inclined forward and downward, therear wheel 14 is rotated at a predetermined speed by the drive motor 322 b, and the user may rotate therear wheel 14 at a speed higher than the rotational speed of the drive motor 322 b in accordance with the user's selection. - As described above, the bicycle exercise apparatus according to the present invention may more precisely implement likeness of traveling on the inclined road by the first
rear roller 322 and the secondrear roller 324, and as a result, the user may enjoy the exercise similar to actually traveling on the road. - Meanwhile, the bicycle exercise apparatus according to the exemplary embodiment of the present invention includes a guide unit. The
guide unit 500 is provided on themain frame 100 and configured to prevent a rollover of thebicycle 10 when the user rides thebicycle 10 by restricting a part of the motion of thebicycle 10 in a state in which thebicycle 10 is seated on themain frame 100. -
FIG. 13 is a view illustrating a top side of the bicycle exercise apparatus inFIG. 1 , andFIG. 14 is a view illustrating a state in which the bicycle is moved while dancing by the user in the bicycle exercise apparatus inFIG. 1 . - As illustrated in
FIG. 13 , theguide unit 500 according to the present invention broadly includes afront frame 510, arear frame 520, and connectingwires 530. - The
front frame 510 is positioned at a front side of thefront wheel 12 at one side in the longitudinal direction of themain frame 100, and thefront frame 510 protrudes upward in an elongated manner. - Further, similar to the
front frame 510, therear frame 520 is positioned at a rear side of therear wheel 14 at the other side in the longitudinal direction of themain frame 100, and therear frame 520 protrudes upward in an elongated manner. - In this case, the
front frame 510 and therear frame 520 are detachably coupled to themain frame 100, but otherwise, thefront frame 510 and therear frame 520 may be configured integrally with themain frame 100. - The connecting
wires 530 are provided on thefront frame 510 and therear frame 520, respectively, and one side of each of the connectingwires 530 is connected to a central portion of thebicycle 10 in the width direction, thereby supporting thebicycle 10 so that thebicycle 10 does not roll over. - Specifically, the connecting
wires 530 are provided at positions spaced apart from the floor at a predetermined height in a direction toward upper portions of thefront frame 510 and therear frame 520, and the connectingwires 530 are provided at the same height. - In this case, the other sides of the connecting
wire 530 are fixedly coupled to thefront frame 510 and therear frame 520, and a separate coupling means 532 is provided at one side of each of the connectingwires 530. - Further, the connecting
wires 530 are coupled to a frame of thebicycle 10 through the coupling means 532 when thebicycle 10 is seated on themain frame 100. Here, one or more coupling means 532 are provided and detachably coupled to thebicycle 10. - In the present exemplary embodiment, as illustrated, the connecting
wire 530 may be elongated in the form of a wire and made of a material having elasticity at a predetermined level, and the connectingwire 530 supports thebicycle 10 so that thebicycle 10 does not roll over and allows thebicycle 10 to dance in a left and right direction, as illustrated inFIG. 14 , when thebicycle 10 travels by external force applied by the user. - Here, as illustrated, the other sides of the connecting
wires 530 may be positioned on thefront frame 510 and therear frame 520 at a central portion of themain frame 100 in the width direction, and as a result, thebicycle 10 may be stably supported on themain frame 100. - Meanwhile, the coupling means 532 is formed in various shapes and configured such that the connecting
wires 530 are selectively and fixedly coupled to thebicycle 10. -
FIG. 15 is a view illustrating a state in which the connecting wires are coupled to the bicycle in the bicycle exercise apparatus inFIG. 1 . - As illustrated in
FIG. 15 , in the present exemplary embodiment, the coupling means 532 is formed in the form of abracket 532 a, and the connectingwire 530 may be fixed to thebicycle 10 through a separate fixing pin 532 b. Otherwise, the coupling means 532 may of course be formed in various shapes in addition to thebracket 532 a, and any other shape may be applied to the coupling means 532 as long as the coupling means 532 may be selectively fixed to the frame of thebicycle 10. - Since the coupling means 532 are selectively coupled to the
bicycle 10 as described above, thebicycle 10 is fixed by the connectingwires 530 so as not to roll over, and thebicycle 10 is supported to perform left and right dancing motions to a certain degree by external force applied by the user. - Here, the connecting
wire 530 is made of metal or synthetic resin which is a material having elasticity at a predetermined level, and a degree to which the left and right dancing motions of thebicycle 10 are restricted may be adjusted in accordance with a material of the connectingwire 530. - As described above, the
guide unit 500 according to the present invention is configured to prevent the user's safety accident caused by a rollover of thebicycle 10 when thebicycle 10 seated on themain frame 100 travels, and to allow a motion in the width direction to a predetermined level or higher, thereby implementing the same effect as when the user rides the bicycle on an actual road. - Meanwhile, the
guide unit 500 according to the present invention may further include asafety frame 540 in addition to thefront frame 510, therear frame 520, and the connectingwire 530. - The
safety frame 540 is elongated, both ends of thesafety frame 540 are coupled to thefront frame 510 and therear frame 520 at a predetermined height, and thesafety frame 540 is disposed to be eccentric toward one side in the width direction of themain frame 100. - Specifically, as illustrated, the
safety frame 540 is formed in a bar shape, and both ends of thesafety frame 540 are connected to thefront frame 510 and therear frame 520, respectively. In this case, thesafety frame 540 is disposed to be eccentric toward one side so that the user or thebicycle 10 does not interfere with thesafety frame 540 when thebicycle 10 is seated on themain frame 100. - Therefore, when the
bicycle 10 positioned on themain frame 100 is about to roll over, thesafety frame 540 supports thebicycle 10 to prevent a rollover of thebicycle 10, or the user grasps thesafety frame 540, and as a result, it is possible to prevent a safety accident. - That is, the
safety frame 540, together with the connectingwire 530, is used as an auxiliary safety means for preventing a falling accident by allowing the user to stably keep his/her balance on thebicycle 10 or allowing the user to directly grasp thesafety frame 540 when the bicycle is about to roll over. - Since the
guide unit 500 is provided in the bicycle exercise apparatus as described above, it is possible to prevent an inadvertent rollover of thebicycle 10 when the user exercises by using thebicycle 10, and to implement the left and right dancing motions of thebicycle 10 by external force applied by the user. - As described above, the bicycle exercise apparatus according to the exemplary embodiment of the present invention has been described.
- Hereinafter, a bicycle exercise apparatus according to another exemplary embodiment of the present invention will be described with reference to the drawings.
-
FIG. 16 is a perspective view illustrating a bicycle exercise apparatus according to another exemplary embodiment of the present invention, andFIG. 17 is a perspective view illustrating a state in which a bicycle is installed on the bicycle exercise apparatus according to another exemplary embodiment of the present invention. - As illustrated in
FIGS. 16 to 17 , the bicycle exercise apparatus according to another exemplary embodiment of the present invention broadly includes themain frame 100, thefront support unit 200, therear support unit 300, therotation unit 400, and theguide unit 500. - Here, because the
main frame 100, therear support unit 300, therotation unit 400, and theguide unit 500 are identical to those in the exemplary embodiment of the present invention, descriptions of the identical configurations and operations will be omitted. - However, the
front support unit 200 in the present exemplary embodiment is atreadmill 200, and thefront support unit 200 is provided at one side of themain frame 100 and supports thefront wheel 12 of thebicycle 10. -
FIG. 18 is a view illustrating an external appearance of the front support unit according to another exemplary embodiment of the present invention, andFIG. 19 is a view illustrating an interior of the front support unit according to another exemplary embodiment of the present invention. - As illustrated in
FIGS. 18 and 19 , thetreadmill 200, which is thefront support unit 200 of the present exemplary embodiment, includes a pair offrames 210, adeck 220, a pair of rollers, abelt 240, and adrive motor 250. - The pair of
frames 210 has a length in the traveling direction, and is disposed to be spaced apart from each other while facing each other. - Further, the
deck 220 is positioned between the pair offrames 210 and abuts against thefront wheel 12, thereby supporting a load of thebicycle 10 applied from above. - The pair of rollers includes the driving
roller 232 which is connected to thedrive motor 250 for providing driving power, and the drivenroller 234 which is rotated together with the drivingroller 232 in accordance with the rotation of the drivingroller 232. - The driving
roller 232 and the drivenroller 234 may be rotated by thedrive motor 250, but the drivingroller 232 and the drivenroller 234 may be rotated by the rotation of thefront wheel 12 of thebicycle 10 even in a state in which thedrive motor 250 is not operated. -
FIG. 20 is an enlarged view of part A inFIG. 19 . - As illustrated in
FIG. 19 , the drivingroller 232 and the drivenroller 234 are disposed at front and rear sides of thedeck 220, respectively, and installed between the pair offrames 210 so as to be rotatable in the same direction, and as illustrated inFIG. 20 ,anti-slip grooves 232 a and 234 a are formed at predetermined intervals in a circumferential direction on outer circumferential surfaces of the drivingroller 232 and the drivenroller 234. - The
belt 240 is installed to surround the drivingroller 232, the drivenroller 234, and thedeck 220 from the outside, and moved in conjunction with the rotation of the drivingroller 232. Further, as illustrated inFIG. 20 ,anti-slip protrusions 240 a, which correspond to theanti-slip grooves 232 a and 234 a, are formed on a surface of thebelt 240 which abuts against the drivingroller 232 and the drivenroller 234. - The
bicycle 10 travels at a higher speed than a person running, and a larger load is applied when a person rides thebicycle 10 on thetreadmill 200 than when a person runs on thetreadmill 200, and as a result, the belt may slip on the roller when the belt is operated at a high speed. This phenomenon often occurs on thetypical treadmill 200. - However, the
anti-slip grooves 232 a and 234 a and theanti-slip protrusions 240 a are formed on the drivingroller 232, the drivenroller 234, and thebelt 240 of thetreadmill 200 in the present exemplary embodiment and engaged with one another, and as a result, it is possible to prevent a slip of thebelt 240. - Meanwhile,
friction reducing members 222 may be provided on an upper surface of thedeck 220 in order to reduce friction by minimizing a contact area with thebelt 240. -
FIG. 21 is an enlarged view of part B inFIG. 19 . - As illustrated in
FIG. 21 , in the present exemplary embodiment, thefriction reducing member 222 may include a ring-shapedsupport portion 222 a which has a hollow portion, and a sphericalrotating portion 222 b which is positioned in the hollow portion of thesupport portion 222 a and in contact with thebelt 240 so as to be rotated in conjunction with the movement of thebelt 240. - Further, although not illustrated in the drawing, a ball is embedded in the ring-shaped
support portion 222 a in order to allow therotating portion 222 b to smoothly rotate, and therotating portion 222 b is rotated in a state in which the ball and therotating portion 222 b are in point-to-point contact with each other. - Since friction between the
deck 220 and thebelt 240 is reduced as described above, thetreadmill 200 according to the present exemplary embodiment is more suitable for a high-speed operation in comparison with thetypical treadmill 200. - Here, the rotating
portion 222 b is not limited to the aforementioned configuration, and any configuration may be applied as long as the configuration may reduce friction between thedeck 220 and thebelt 240. - Meanwhile, the
treadmill 200 according to the present exemplary embodiment is mechanically connected to the drivenroller 234 and may be configured to adjust tension of thebelt 240 by adjusting a distance between the drivingroller 232 and the drivenroller 234. -
FIG. 22 is an enlarged view of part C inFIG. 19 . - To implement this configuration, as illustrated in
FIG. 22 , atension block 236, to which a rotating shaft 234 b of the drivenroller 234 is coupled and which is coupled to be movable in the front and rear direction with respect to theframe 210, may be provided, and atension adjusting member 238, which fastens theframe 210 and thetension block 236 and moves thetension block 236 in the front and rear direction while rotating, may be provided. - However, the configuration for adjusting tension of the
belt 240 by using thetension block 236 and thetension adjusting member 238 is just one exemplary embodiment, and various configurations may be applied as long as tension of thebelt 240 may be adjusted. - Since the
front wheel 12 of thebicycle 10 is supported by thetreadmill 200 as described above, thefront wheel 12 and thetreadmill 200 are in surface-to-surface contact with each other, such that the user may feel the same likeness as when the user rides the bicycle on an actual road. - While the exemplary embodiments according to the present invention have been described above, it is obvious to those skilled in the art that the present invention may be specified in other particular forms in addition to the aforementioned exemplary embodiments without departing from the spirit or the scope of the present invention. Accordingly, it should be understood that the aforementioned exemplary embodiments are not restrictive but illustrative, and thus the present invention is not limited to the aforementioned description, and may be modified within the scope of the appended claims and the equivalent range thereto.
Claims (26)
1. A bicycle exercise apparatus comprising:
a main frame which is elongated and has a predetermined width and on which a bicycle is positioned;
a front support unit which is provided at one side in a longitudinal direction of the main frame and on which a front wheel of the bicycle is rotatably seated;
a rear support unit which includes a rotation support unit that has a predetermined length and a central portion in the longitudinal direction rotatably coupled to the other side in the longitudinal direction of the main frame such that the rotation support unit maintains a horizontal state while rotating together with the main frame in accordance with a rotation angle of the main frame, and one or more rear rollers that are provided on the rotation support unit, disposed in parallel with a front roller, and rotated together with a rear wheel when the bicycle travels; and
a rotation unit which supports the main frame such that the main frame is positioned at a predetermined height from a floor, and is rotatably coupled to a central portion of the main frame in the longitudinal direction so as to adjust an inclination angle of the main frame.
2. The bicycle exercise apparatus of claim 1 , wherein the front support unit is a treadmill including:
a pair of frames which has a length in a traveling direction;
a deck which is positioned between the pair of frames and supports a load applied from above;
a pair of rollers which is disposed at front and rear sides of the deck, is installed between the pair of frames so as to be rotatable in the same direction, and has anti-slip grooves formed at predetermined intervals in a circumferential direction on outer circumferential surfaces of the pair of rollers; and
a belt which is installed to surround the pair of rollers and the deck from the outside, moves in accordance with a rotation of a driving roller, and has anti-slip protrusions formed corresponding to the anti-slip grooves on a surface that abuts against the pair of rollers.
3. The bicycle exercise apparatus of claim 2 , wherein a friction reducing member for reducing friction by minimizing a contact area with the belt is provided on an upper surface of the deck.
4. The bicycle exercise apparatus of claim 3 , wherein the friction reducing member includes:
a ring-shaped support portion which is formed with a hollow portion; and
a spherical rotating portion which is positioned in the hollow portion of the support portion and rotated in conjunction with the movement of the belt in a state in which the spherical rotating portion is in contact with the belt.
5. The bicycle exercise apparatus of claim 2 , wherein the treadmill is mechanically connected to any one of the pair of rollers and adjusts tension of the belt by adjusting a distance between the pair of rollers.
6. The bicycle exercise apparatus of claim 5 , wherein the treadmill includes:
a tension block to which a rotating shaft of any one of the pair of rollers is coupled and which is coupled to be movable in a front and rear direction with respect to the frame; and
a tension adjusting member which fastens the frame and the tension block and moves the tension block in the front and rear direction while rotating.
7. The bicycle exercise apparatus of claim 2 , wherein the treadmill further includes a drive motor which provides driving power to any one of the pair of rollers.
8. The bicycle exercise apparatus of claim 1 , wherein the rear rollers include a first rear roller and a second rear roller which are disposed at both ends in the longitudinal direction of the rotation support unit so as to be spaced apart from each other.
9. The bicycle exercise apparatus of claim 8 , wherein when an inclination angle of the main frame is changed such that the rear wheel is positioned at a position lower than the front wheel, at least one of the first rear roller and the second rear roller provides a load to the rotation of the rear wheel corresponding to the inclination angle of the main frame.
10. The bicycle exercise apparatus of claim 9 , wherein the second rear roller includes:
a fixed shaft which is elongated in a width direction of the rotation support unit;
a cylindrical second rotary drum which has an outer surface with which the rear wheel is in contact, and is coupled to be rotatable about the fixed shaft; and
a load generating means which is provided in the second rotary drum, and selectively generates a load in accordance with the rotation of the second rotary drum corresponding to the inclination angle of the main frame.
11. The bicycle exercise apparatus of claim 10 , wherein the load generating means has a disc shape, is fixedly coupled to the second rotary drum, and has a central portion rotatably coupled to the fixed shaft.
12. The bicycle exercise apparatus of claim 10 , wherein when the main frame has an upward inclination and the inclination angle thereof is increased, the load generating means increases a load to be applied to the rotation of the second rotary drum.
13. The bicycle exercise apparatus of claim 9 , wherein when the main frame is rotated to be inclined forward and downward, the first rear roller rotates the rear wheel regardless of external force by a user.
14. The bicycle exercise apparatus of claim 13 , wherein the first rear roller includes:
a cylindrical first rotary drum which has an outer surface with which the rear wheel is in contact, and is rotatably coupled to the rotation support unit;
a drive motor which is fixed to the rotation support unit in the first rotary drum and rotated; and
a gear means which is rotated by a first drive motor to rotate the first rotary drum, and allows the first rotary drum to rotate in one direction relative to the drive motor.
15. The bicycle exercise apparatus of claim 1 , wherein the front support unit includes the front roller which abuts against the front wheel and rotates together with the front wheel.
16. The bicycle exercise apparatus of claim 15 , wherein the plurality of front rollers is provided to be disposed to be spaced apart from one another in the longitudinal direction of the main frame.
17. The bicycle exercise apparatus of claim 15 , wherein the main frame further includes a power transmission unit which is connected to the front roller and the rear roller and transmits rotational force of the rear roller to the front roller to allow the front roller to rotate together with the rear roller when the rear wheel is operated by external force applied by the user.
18. The bicycle exercise apparatus of claim 17 , wherein the power transmission unit includes:
a rear shaft which is provided on a rotation axis of the rotation support unit and the main frame, and has one side connected to any one of the first rear roller and the second rear roller by a separate transmission means such that the rear shaft is rotated together with the rear wheel when the rear wheel is rotated;
a front shaft which is provided on a rotation axis of the main frame and the front roller, and rotated together with the front roller; and
a circulation belt which is elongated, and has one side connected to the front shaft and the other side connected to the rear shaft, such that the circulation belt rotates the front shaft while circulating by the rotation of the rear shaft.
19. The bicycle exercise apparatus of claim 8 , wherein the rotation unit includes:
a casing which is rotatably coupled to the central portion of the main frame in the longitudinal direction while having a main rotating shaft;
a drive motor which is provided in the casing and selectively rotates;
an arc portion which has an arc shape on the main frame, protrudes downward so that the main rotating shaft is positioned at a center of an arc, and has a rack gear that is formed on an inner surface of the arc so as to protrude in a direction toward the main rotating shaft; and
one or more gear units which are connected to the drive motor, and engaged with the rack gear to rotate the arc portion.
20. The bicycle exercise apparatus of claim 18 , wherein the arc portions are provided at both sides in a width direction of the main frame, respectively.
21. The bicycle exercise apparatus of claim 8 , wherein the main frame includes a plurality of unit links so that a part of the main frame in the longitudinal direction is selectively tilted.
22. The bicycle exercise apparatus of claim 8 , comprising:
a guide unit which includes: a front frame which is positioned at a front side of the front wheel at one side in the longitudinal direction of the main frame and protrudes upward; a rear frame which is positioned at a rear side of the rear wheel at the other side in the longitudinal direction of the main frame and is elongated upward; and connecting wires which are elongated, are provided on the front frame and the rear frame, respectively, and each have one side detachably connected to a central portion of the bicycle in a width direction so as to support the bicycle so that the bicycle does not roll over.
23. The bicycle exercise apparatus of claim 22 , wherein the connecting wires are spaced apart from the floor at a predetermined height, and provided, at the same height, on the front frame and the rear frame, respectively.
24. The bicycle exercise apparatus of claim 22 , wherein the connecting wires are detachably and selectively coupled to the bicycle through separate coupling means provided at one side in the longitudinal direction.
25. The bicycle exercise apparatus of claim 22 , wherein the connecting wire includes a material having elasticity.
26. The bicycle exercise apparatus of claim 22 , wherein the guide unit further includes a safety frame which is elongated, has both ends coupled to the front frame and the rear frame, respectively, at a predetermined height, and is disposed to be eccentric toward one side in the width direction of the main frame.
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150028316A KR101730127B1 (en) | 2015-02-27 | 2015-02-27 | Exercise Apparatus Having Guide Unit with Bicycle |
KR10-2015-0028309 | 2015-02-27 | ||
KR10-2015-0028316 | 2015-02-27 | ||
KR1020150028309A KR101643378B1 (en) | 2015-02-27 | 2015-02-27 | Exercise Apparatus with Bicycle |
KR1020150036712A KR101730130B1 (en) | 2015-03-17 | 2015-03-17 | Exercise Apparatus Having Slope Realizing Function with Bicycle |
KR10-2015-0036712 | 2015-03-17 | ||
KR10-2015-0187430 | 2015-12-28 | ||
KR1020150187430A KR101811777B1 (en) | 2015-12-28 | 2015-12-28 | Exercise Apparatus Having Treadmill with Bicycle |
PCT/KR2016/002011 WO2016137305A1 (en) | 2015-02-27 | 2016-02-29 | Bicycle exercise apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180036619A1 true US20180036619A1 (en) | 2018-02-08 |
Family
ID=56788700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/553,581 Abandoned US20180036619A1 (en) | 2015-02-27 | 2016-02-29 | Bicycle exercise apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US20180036619A1 (en) |
CN (1) | CN107427714A (en) |
WO (1) | WO2016137305A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108872773A (en) * | 2018-08-29 | 2018-11-23 | 天津铭志成科技有限责任公司 | Electric bicycle or light motorcycle detects with drenching water test platform |
RU2687773C1 (en) * | 2018-04-24 | 2019-05-16 | Зайнитдин Хабитдинович Хисаметдинов | Device for increasing cyclist stability on stationary bicycle |
US10384111B2 (en) * | 2017-11-08 | 2019-08-20 | Shu-Chiung Liao Lai | Bicycle trainer |
RU2702816C1 (en) * | 2019-06-05 | 2019-10-11 | Зайнитдин Хабитдинович Хисаметдинов | Exercise bike |
US20210093922A1 (en) * | 2018-06-14 | 2021-04-01 | Real Design Tech Co., Ltd. | Bicycle simulator |
JP2021142107A (en) * | 2020-03-12 | 2021-09-24 | 公生 ▲高▼橋 | Training device for bicycle |
US11413499B2 (en) * | 2018-03-09 | 2022-08-16 | Nicholas Maroldi | Device to produce assisted, active and resisted motion of a joint or extremity |
US20220323823A1 (en) * | 2019-09-03 | 2022-10-13 | Real Design Tech Co., Ltd. | Bicycle simulator |
US20230037020A1 (en) * | 2020-09-16 | 2023-02-02 | Revolutionice Inc. | Ambulation simulation systems, terrain simulation systems, treadmill systems, and related systems and methods |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111790100A (en) * | 2020-07-27 | 2020-10-20 | 福州利得特智能科技有限公司 | Body-building apparatus equipped with bicycle |
CN114129962B (en) * | 2022-01-05 | 2024-04-26 | 桂林电子科技大学 | Wheelbarrow riding skill training device |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4026546A (en) * | 1976-02-09 | 1977-05-31 | Kabushiki Kaisha Kawamura Saikuru | Bicycle pedaling stand |
US4982953A (en) * | 1990-03-26 | 1991-01-08 | Makishi Todd K | Exercise apparatus |
US5110003A (en) * | 1990-06-28 | 1992-05-05 | Stant Inc. | Torque-override cap |
US5382208A (en) * | 1994-03-02 | 1995-01-17 | Hu; Hui-Hsin | Magnetic-resistance control device for an exercise bicycle |
US5468201A (en) * | 1990-03-30 | 1995-11-21 | Minoura Co., Ltd. | Loading apparatus for exercise device |
US5522781A (en) * | 1992-12-25 | 1996-06-04 | Minoura Co., Ltd. | Exercise stand for a bicycle |
US6042517A (en) * | 1998-09-10 | 2000-03-28 | Bell Sports, Inc. | Bicycle trainer magnetic resistance device |
US6070774A (en) * | 1997-10-29 | 2000-06-06 | Jac Products, Inc. | Vehicle article carrier |
US6238155B1 (en) * | 1995-11-06 | 2001-05-29 | Southco, Inc. | Torque screw fastener |
US6620081B2 (en) * | 2001-07-20 | 2003-09-16 | Cal M. Phillips | Exercise stand and centrifugal resistance unit for a bicycle |
US6736761B2 (en) * | 2001-11-06 | 2004-05-18 | Wan-Fu Huang | Stationary bicycle resistance generator |
US20050209064A1 (en) * | 2004-03-15 | 2005-09-22 | Peterson Lewis D | Bicycle trainer |
US6964633B2 (en) * | 2003-02-20 | 2005-11-15 | Saris Cycling Group, Inc. | Exercise device with an adjustable magnetic resistance arrangement |
US7011607B2 (en) * | 2002-01-23 | 2006-03-14 | Saris Cycling Group, Inc. | Variable magnetic resistance unit for an exercise device |
US20060217237A1 (en) * | 2004-12-30 | 2006-09-28 | Rhodes Jeffrey F | Exercise apparatus |
US7727124B1 (en) * | 2008-05-06 | 2010-06-01 | Saris Cycling Group, Inc. | Foldable and camming pivot mount for a resistance unit in a bicycle trainer |
US7955228B2 (en) * | 2008-09-08 | 2011-06-07 | Hamilton Brian H | Bicycle trainer with variable magnetic resistance to pedaling |
US8439808B2 (en) * | 2008-09-08 | 2013-05-14 | Brian H Hamilton | Bicycle trainer with variable resistance to pedaling |
US20140296038A1 (en) * | 2012-09-24 | 2014-10-02 | SportCrafters, Inc. | Progressive Resistance System for an Exercise Device |
US20150133272A1 (en) * | 2013-11-14 | 2015-05-14 | Larry C. Papadopolous | Light Weight Portable Bicycle Rollers |
US9381396B2 (en) * | 2014-02-04 | 2016-07-05 | SportCrafters, Inc. | Portable progressive resistance exercise device |
US9511271B2 (en) * | 2014-09-18 | 2016-12-06 | SportCrafters, Inc. | Two stage progressive resistance trainer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2227969Y (en) * | 1995-06-12 | 1996-05-29 | 北京市机械工业局技术开发研究所 | Multi-functional training table for cycling |
WO2008099429A1 (en) * | 2007-02-14 | 2008-08-21 | Cammax S.A. | Treadmill with endless belt tension adjusting device |
KR101036096B1 (en) * | 2010-02-05 | 2011-05-19 | 최장원 | Exercise bike |
KR20110009037U (en) * | 2010-03-16 | 2011-09-22 | 주식회사 영원사이클 | Bicycle indoor exercise device |
KR101184984B1 (en) * | 2010-04-19 | 2012-10-02 | 주식회사 모아로봇 | Health machine by using bicycle |
KR20130072407A (en) * | 2011-12-22 | 2013-07-02 | 우용준 | Walking machine |
KR101385004B1 (en) * | 2012-06-21 | 2014-04-14 | 홍순창 | Self-powered treadmill with adjustable tilt angle |
-
2016
- 2016-02-29 US US15/553,581 patent/US20180036619A1/en not_active Abandoned
- 2016-02-29 CN CN201680012599.8A patent/CN107427714A/en not_active Withdrawn
- 2016-02-29 WO PCT/KR2016/002011 patent/WO2016137305A1/en active Application Filing
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4026546A (en) * | 1976-02-09 | 1977-05-31 | Kabushiki Kaisha Kawamura Saikuru | Bicycle pedaling stand |
US4982953A (en) * | 1990-03-26 | 1991-01-08 | Makishi Todd K | Exercise apparatus |
US5468201A (en) * | 1990-03-30 | 1995-11-21 | Minoura Co., Ltd. | Loading apparatus for exercise device |
US5110003A (en) * | 1990-06-28 | 1992-05-05 | Stant Inc. | Torque-override cap |
US5522781A (en) * | 1992-12-25 | 1996-06-04 | Minoura Co., Ltd. | Exercise stand for a bicycle |
US5382208A (en) * | 1994-03-02 | 1995-01-17 | Hu; Hui-Hsin | Magnetic-resistance control device for an exercise bicycle |
US6238155B1 (en) * | 1995-11-06 | 2001-05-29 | Southco, Inc. | Torque screw fastener |
US6070774A (en) * | 1997-10-29 | 2000-06-06 | Jac Products, Inc. | Vehicle article carrier |
US6042517A (en) * | 1998-09-10 | 2000-03-28 | Bell Sports, Inc. | Bicycle trainer magnetic resistance device |
US6620081B2 (en) * | 2001-07-20 | 2003-09-16 | Cal M. Phillips | Exercise stand and centrifugal resistance unit for a bicycle |
US6736761B2 (en) * | 2001-11-06 | 2004-05-18 | Wan-Fu Huang | Stationary bicycle resistance generator |
US7011607B2 (en) * | 2002-01-23 | 2006-03-14 | Saris Cycling Group, Inc. | Variable magnetic resistance unit for an exercise device |
US6964633B2 (en) * | 2003-02-20 | 2005-11-15 | Saris Cycling Group, Inc. | Exercise device with an adjustable magnetic resistance arrangement |
US20050209064A1 (en) * | 2004-03-15 | 2005-09-22 | Peterson Lewis D | Bicycle trainer |
US20060217237A1 (en) * | 2004-12-30 | 2006-09-28 | Rhodes Jeffrey F | Exercise apparatus |
US7727124B1 (en) * | 2008-05-06 | 2010-06-01 | Saris Cycling Group, Inc. | Foldable and camming pivot mount for a resistance unit in a bicycle trainer |
US7955228B2 (en) * | 2008-09-08 | 2011-06-07 | Hamilton Brian H | Bicycle trainer with variable magnetic resistance to pedaling |
US8439808B2 (en) * | 2008-09-08 | 2013-05-14 | Brian H Hamilton | Bicycle trainer with variable resistance to pedaling |
US20140296038A1 (en) * | 2012-09-24 | 2014-10-02 | SportCrafters, Inc. | Progressive Resistance System for an Exercise Device |
US20150133272A1 (en) * | 2013-11-14 | 2015-05-14 | Larry C. Papadopolous | Light Weight Portable Bicycle Rollers |
US9381396B2 (en) * | 2014-02-04 | 2016-07-05 | SportCrafters, Inc. | Portable progressive resistance exercise device |
US9511271B2 (en) * | 2014-09-18 | 2016-12-06 | SportCrafters, Inc. | Two stage progressive resistance trainer |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10384111B2 (en) * | 2017-11-08 | 2019-08-20 | Shu-Chiung Liao Lai | Bicycle trainer |
US11413499B2 (en) * | 2018-03-09 | 2022-08-16 | Nicholas Maroldi | Device to produce assisted, active and resisted motion of a joint or extremity |
RU2687773C1 (en) * | 2018-04-24 | 2019-05-16 | Зайнитдин Хабитдинович Хисаметдинов | Device for increasing cyclist stability on stationary bicycle |
US20210093922A1 (en) * | 2018-06-14 | 2021-04-01 | Real Design Tech Co., Ltd. | Bicycle simulator |
US12053673B2 (en) * | 2018-06-14 | 2024-08-06 | Real Design Tech Co., Ltd. | Bicycle simulator |
CN108872773A (en) * | 2018-08-29 | 2018-11-23 | 天津铭志成科技有限责任公司 | Electric bicycle or light motorcycle detects with drenching water test platform |
RU2702816C1 (en) * | 2019-06-05 | 2019-10-11 | Зайнитдин Хабитдинович Хисаметдинов | Exercise bike |
US20220323823A1 (en) * | 2019-09-03 | 2022-10-13 | Real Design Tech Co., Ltd. | Bicycle simulator |
JP2021142107A (en) * | 2020-03-12 | 2021-09-24 | 公生 ▲高▼橋 | Training device for bicycle |
US20230037020A1 (en) * | 2020-09-16 | 2023-02-02 | Revolutionice Inc. | Ambulation simulation systems, terrain simulation systems, treadmill systems, and related systems and methods |
US12102903B2 (en) * | 2020-09-16 | 2024-10-01 | Xprnc Inc. | Ambulation simulation systems, terrain simulation systems, treadmill systems, and related systems and methods |
Also Published As
Publication number | Publication date |
---|---|
WO2016137305A1 (en) | 2016-09-01 |
CN107427714A (en) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180036619A1 (en) | Bicycle exercise apparatus | |
US10661115B2 (en) | Stationary manual exercise sled | |
US9227101B2 (en) | Endless belt multi-function training system | |
JP5826843B2 (en) | Single belt omnidirectional treadmill | |
US7448986B1 (en) | Exercise equipment with automatic adjustment of stride length and/or stride height based upon the heart rate of a person exercising on the exercise equipment | |
KR102147400B1 (en) | Bicycle Simulator | |
KR101566613B1 (en) | Brain Functions And Muscle Strength Exercise Equipment Using Bicycle | |
US7806808B2 (en) | Athletic apparatus with non-parallel linear sliding track | |
CN114340745B (en) | Bicycle simulator | |
KR101730130B1 (en) | Exercise Apparatus Having Slope Realizing Function with Bicycle | |
KR101811777B1 (en) | Exercise Apparatus Having Treadmill with Bicycle | |
US10130864B2 (en) | Cycling training apparatus with stationary movement | |
KR101771889B1 (en) | Cycle roller health machine | |
KR102467025B1 (en) | Bicycle Simulator | |
KR101730127B1 (en) | Exercise Apparatus Having Guide Unit with Bicycle | |
KR102018511B1 (en) | Exercise apparatus using bicycle | |
KR101643378B1 (en) | Exercise Apparatus with Bicycle | |
US20190381349A1 (en) | Climbing Machine | |
KR20110007693A (en) | Bicycle driving machine | |
KR102778187B1 (en) | Bicycle Simulator | |
KR20130113290A (en) | A ride | |
GB2515470A (en) | Endless belt multi-function training system | |
EP2186549B1 (en) | Athletic apparatus with non-parallel linear sliding track | |
KR100868496B1 (en) | Fitness equipment | |
EP2186550B1 (en) | Athletic apparatus with non-linear sliding track |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |