US20180009936A1 - Benzothienothiophene isoindigo polymers - Google Patents
Benzothienothiophene isoindigo polymers Download PDFInfo
- Publication number
- US20180009936A1 US20180009936A1 US15/543,637 US201615543637A US2018009936A1 US 20180009936 A1 US20180009936 A1 US 20180009936A1 US 201615543637 A US201615543637 A US 201615543637A US 2018009936 A1 US2018009936 A1 US 2018009936A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- alkenyl
- alkynyl
- cycloalkyl
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 62
- MLCPSWPIYHDOKG-BUHFOSPRSA-N (3e)-3-(2-oxo-1h-indol-3-ylidene)-1h-indol-2-one Chemical compound O=C\1NC2=CC=CC=C2C/1=C1/C2=CC=CC=C2NC1=O MLCPSWPIYHDOKG-BUHFOSPRSA-N 0.000 title description 15
- OFPPMFSHIKARPG-UHFFFAOYSA-N thieno[3,2-b][1]benzothiole Chemical compound S1C2=CC=CC=C2C2=C1C=CS2 OFPPMFSHIKARPG-UHFFFAOYSA-N 0.000 title description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 203
- 150000002367 halogens Chemical class 0.000 claims description 202
- 125000001424 substituent group Chemical group 0.000 claims description 185
- -1 N[C(O)Ra][C(O)Rb] Inorganic materials 0.000 claims description 166
- 125000001072 heteroaryl group Chemical group 0.000 claims description 158
- 229910052739 hydrogen Inorganic materials 0.000 claims description 143
- 125000006704 (C5-C6) cycloalkyl group Chemical group 0.000 claims description 138
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 claims description 133
- 125000000041 C6-C10 aryl group Chemical group 0.000 claims description 129
- 125000000739 C2-C30 alkenyl group Chemical group 0.000 claims description 109
- 125000005915 C6-C14 aryl group Chemical group 0.000 claims description 107
- 125000001313 C5-C10 heteroaryl group Chemical group 0.000 claims description 83
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 81
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 claims description 78
- 125000006649 (C2-C20) alkynyl group Chemical group 0.000 claims description 77
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 claims description 77
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 73
- 229910052799 carbon Inorganic materials 0.000 claims description 72
- 229910003849 O-Si Inorganic materials 0.000 claims description 66
- 229910003872 O—Si Inorganic materials 0.000 claims description 66
- 229910052717 sulfur Inorganic materials 0.000 claims description 56
- 229910052760 oxygen Inorganic materials 0.000 claims description 55
- 229910052703 rhodium Inorganic materials 0.000 claims description 41
- 125000005549 heteroarylene group Chemical group 0.000 claims description 37
- 150000001875 compounds Chemical class 0.000 claims description 33
- 229910003827 NRaRb Inorganic materials 0.000 claims description 24
- 125000004122 cyclic group Chemical group 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 18
- 229910052702 rhenium Inorganic materials 0.000 claims description 17
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 16
- 230000005669 field effect Effects 0.000 claims description 15
- 125000004429 atom Chemical group 0.000 claims description 14
- 229910052794 bromium Inorganic materials 0.000 claims description 11
- 229910052740 iodine Inorganic materials 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 9
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 8
- MPVDXIMFBOLMNW-UHFFFAOYSA-N chembl1615565 Chemical group OC1=CC=C2C=C(S(O)(=O)=O)C=C(S(O)(=O)=O)C2=C1N=NC1=CC=CC=C1 MPVDXIMFBOLMNW-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 229910007161 Si(CH3)3 Inorganic materials 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims 2
- 239000004065 semiconductor Substances 0.000 abstract description 13
- 0 *CC1=C([2*])C2=C(S1)C1=C(S2)/C([2*])=C2/C(=C/1[2*])\N([1*])C(=O)\C2=C1\C(=O)N([1*])C2=C1/C([2*])=C1/SC3=C(SC(C*)=C3[2*])/C1=C/2[2*].C.C.C.C.C.C Chemical compound *CC1=C([2*])C2=C(S1)C1=C(S2)/C([2*])=C2/C(=C/1[2*])\N([1*])C(=O)\C2=C1\C(=O)N([1*])C2=C1/C([2*])=C1/SC3=C(SC(C*)=C3[2*])/C1=C/2[2*].C.C.C.C.C.C 0.000 description 48
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 24
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 24
- 239000010410 layer Substances 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 20
- 238000003786 synthesis reaction Methods 0.000 description 20
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- IAQRGUVFOMOMEM-ONEGZZNKSA-N C/C=C/C Chemical compound C/C=C/C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000000758 substrate Substances 0.000 description 13
- 239000010931 gold Substances 0.000 description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 12
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 11
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 10
- 238000013086 organic photovoltaic Methods 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 8
- 239000000543 intermediate Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- WRXWPHOHCOXNQJ-UHFFFAOYSA-N 2-bromo-3-methylsulfinylthiophene Chemical compound CS(=O)C=1C=CSC=1Br WRXWPHOHCOXNQJ-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical group BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000037230 mobility Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 125000002619 bicyclic group Chemical group 0.000 description 5
- 125000002950 monocyclic group Chemical group 0.000 description 5
- 125000006574 non-aromatic ring group Chemical group 0.000 description 5
- 125000003367 polycyclic group Chemical group 0.000 description 5
- AFINAILKDBCXMX-PBHICJAKSA-N (2s,3r)-2-amino-3-hydroxy-n-(4-octylphenyl)butanamide Chemical compound CCCCCCCCC1=CC=C(NC(=O)[C@@H](N)[C@@H](C)O)C=C1 AFINAILKDBCXMX-PBHICJAKSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- XPVFZSPKFBFSNG-UHFFFAOYSA-N CB1OC(C)(C)C(C)(C)C(C)(C)O1.CB1OC(C)(C)C(C)(C)O1.CB1OC2=C(O1)C(C)=C(C)C(C)=C2C Chemical compound CB1OC(C)(C)C(C)(C)C(C)(C)O1.CB1OC(C)(C)C(C)(C)O1.CB1OC2=C(O1)C(C)=C(C)C(C)=C2C XPVFZSPKFBFSNG-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 239000003480 eluent Substances 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002094 self assembled monolayer Substances 0.000 description 4
- 239000013545 self-assembled monolayer Substances 0.000 description 4
- 150000004756 silanes Chemical class 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- XXVDNKQPCZRWEE-ZEFKCYFOSA-N C/C=C/C.CC1=CC=C(C)C2=NSN=C12.CC1=CC=C(C)S1.CC1=CC=C(C)[Se]1 Chemical compound C/C=C/C.CC1=CC=C(C)C2=NSN=C12.CC1=CC=C(C)S1.CC1=CC=C(C)[Se]1 XXVDNKQPCZRWEE-ZEFKCYFOSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- KKRPPVXJVZKJON-UHFFFAOYSA-N trimethyl-(5-trimethylstannylthiophen-2-yl)stannane Chemical compound C[Sn](C)(C)C1=CC=C([Sn](C)(C)C)S1 KKRPPVXJVZKJON-UHFFFAOYSA-N 0.000 description 3
- QPFMBZIOSGYJDE-QDNHWIQGSA-N 1,1,2,2-tetrachlorethane-d2 Chemical compound [2H]C(Cl)(Cl)C([2H])(Cl)Cl QPFMBZIOSGYJDE-QDNHWIQGSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- ARGGFZNAMFRTJX-UHFFFAOYSA-N 3-methylsulfinylthiophene Chemical compound CS(=O)C=1C=CSC=1 ARGGFZNAMFRTJX-UHFFFAOYSA-N 0.000 description 2
- JHNLZOVBAQWGQU-UHFFFAOYSA-N 380814_sial Chemical compound CS(O)(=O)=O.O=P(=O)OP(=O)=O JHNLZOVBAQWGQU-UHFFFAOYSA-N 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 2
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 2
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- 125000006031 2-methyl-3-butenyl group Chemical group 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- NHDZESQHWMKRPE-UHFFFAOYSA-N C.C.CCC Chemical compound C.C.CCC NHDZESQHWMKRPE-UHFFFAOYSA-N 0.000 description 1
- IMDDOKQZKKKHLC-UHFFFAOYSA-N C/C1=C/C=C2/C=C\C3=CC=CC4=C3C2=C1C=C4.CC1=C/C2=C3C4=C(C=CC=C4/C=C/C3=C/1)C=C2.CC1=CC2=C(C=C1)C1=C(C=C2)C2=C(C=CC=C2)C=C1 Chemical compound C/C1=C/C=C2/C=C\C3=CC=CC4=C3C2=C1C=C4.CC1=C/C2=C3C4=C(C=CC=C4/C=C/C3=C/1)C=C2.CC1=CC2=C(C=C1)C1=C(C=C2)C2=C(C=CC=C2)C=C1 IMDDOKQZKKKHLC-UHFFFAOYSA-N 0.000 description 1
- ZMFDXQTVCRGRNM-YXTPZADFSA-N C/C=C/C.C/C=C\C Chemical compound C/C=C/C.C/C=C\C ZMFDXQTVCRGRNM-YXTPZADFSA-N 0.000 description 1
- GHGVPZWESBBSIN-OHSCNOFNSA-N C/C=C/C.C/C=C\C.CC#CC Chemical compound C/C=C/C.C/C=C\C.CC#CC GHGVPZWESBBSIN-OHSCNOFNSA-N 0.000 description 1
- SQXQUSIBNXYPFJ-UHFFFAOYSA-N CC1=C2C=CC=CC2=CC2=C1C=CC=C2.CC1=CC2=C(C=C1)C1=C(C=CC=C1)C=C2.CC1=CC2=C(C=C1)C=C1C=CC=CC1=C2.CC1=CC2=C(C=C1)C=CC1=C2C=CC=C1.CC1=CC=CC2=C1C=C1C=CC=CC1=C2 Chemical compound CC1=C2C=CC=CC2=CC2=C1C=CC=C2.CC1=CC2=C(C=C1)C1=C(C=CC=C1)C=C2.CC1=CC2=C(C=C1)C=C1C=CC=CC1=C2.CC1=CC2=C(C=C1)C=CC1=C2C=CC=C1.CC1=CC=CC2=C1C=C1C=CC=CC1=C2 SQXQUSIBNXYPFJ-UHFFFAOYSA-N 0.000 description 1
- QWDFCPOBZPRCDC-UHFFFAOYSA-N CC1=CC2=C(C=CC=C2)C=C1.CC1=CC=CC2=C1C=CC=C2 Chemical compound CC1=CC2=C(C=CC=C2)C=C1.CC1=CC=CC2=C1C=CC=C2 QWDFCPOBZPRCDC-UHFFFAOYSA-N 0.000 description 1
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N CCC Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 1
- QONFEDUTJGHAQR-VGFSZAGXSA-N CCCCCCC(CCCC)CN1C(=O)/C(=C2/C(=O)N(CC(CCCC)CCCCCC)C3=C2C=C2SC4=C(SC=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=CS1)S3 Chemical compound CCCCCCC(CCCC)CN1C(=O)/C(=C2/C(=O)N(CC(CCCC)CCCCCC)C3=C2C=C2SC4=C(SC=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=CS1)S3 QONFEDUTJGHAQR-VGFSZAGXSA-N 0.000 description 1
- SHRVILZDLLFROQ-QJGAVIKSSA-N CCCCCCCCCCC(CCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=C2SC4=C(SC(Br)=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=C(Br)S1)S3 Chemical compound CCCCCCCCCCC(CCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=C2SC4=C(SC(Br)=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=C(Br)S1)S3 SHRVILZDLLFROQ-QJGAVIKSSA-N 0.000 description 1
- IZUOFENNQCXIOW-QJGAVIKSSA-N CCCCCCCCCCC(CCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=C2SC4=C(SC=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=CS1)S3 Chemical compound CCCCCCCCCCC(CCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=C2SC4=C(SC=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=CS1)S3 IZUOFENNQCXIOW-QJGAVIKSSA-N 0.000 description 1
- BGVLSPHFLWIZKU-HQHWHPBGSA-N CCCCCCCCCCC(CCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(CCCCCCCC)CCCCCCCCCC)C3=C2C=C2SC4=C(SC(C5=CC=C(C)S5)=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=C(C)S1)S3.C[Sn](C)(C)C1=CC=C([Sn](C)(C)C)S1.PP(P)P(P)P.[I-8] Chemical compound CCCCCCCCCCC(CCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(CCCCCCCC)CCCCCCCCCC)C3=C2C=C2SC4=C(SC(C5=CC=C(C)S5)=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=C(C)S1)S3.C[Sn](C)(C)C1=CC=C([Sn](C)(C)C)S1.PP(P)P(P)P.[I-8] BGVLSPHFLWIZKU-HQHWHPBGSA-N 0.000 description 1
- CAVVRLJYGBOYCX-DNEUEPJJSA-N CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=C2SC4=C(SC(Br)=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=C(Br)S1)S3.CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=C2SC4=C(SC=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=CS1)S3.[I-5].[I-6] Chemical compound CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=C2SC4=C(SC(Br)=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=C(Br)S1)S3.CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=C2SC4=C(SC=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=CS1)S3.[I-5].[I-6] CAVVRLJYGBOYCX-DNEUEPJJSA-N 0.000 description 1
- YGTHEKOMLZIELV-JZLXFZSXSA-N CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=C2SC4=C(SC=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=CS1)S3.CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=CC(C2=C(S(C)=O)C=CS2)=C3)C2=CC=C(C3=C(S(C)=O)C=CS3)C=C21.[I-5].[IH-4] Chemical compound CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=C2SC4=C(SC=C4)C2=C3)C2=CC3=C(C=C21)C1=C(C=CS1)S3.CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=CC(C2=C(S(C)=O)C=CS2)=C3)C2=CC=C(C3=C(S(C)=O)C=CS3)C=C21.[I-5].[IH-4] YGTHEKOMLZIELV-JZLXFZSXSA-N 0.000 description 1
- HYAHGXVPPPQHMF-DAQJRKDLSA-N CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=CC(B2OC(C)(C)C(C)(C)O2)=C3)C2=CC=C(B3OC(C)(C)C(C)(C)O3)C=C21.CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=CC(Br)=C3)C2=CC=C(Br)C=C21.[I-].[IH-2] Chemical compound CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=CC(B2OC(C)(C)C(C)(C)O2)=C3)C2=CC=C(B3OC(C)(C)C(C)(C)O3)C=C21.CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=CC(Br)=C3)C2=CC=C(Br)C=C21.[I-].[IH-2] HYAHGXVPPPQHMF-DAQJRKDLSA-N 0.000 description 1
- ZPFLGAJKFVDDTK-PKUKEYDBSA-N CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=CC(Br)=C3)C2=CC=C(Br)C=C21.[H]N1C(=O)/C(=C2/C(=O)N([H])C3=C2C=CC(Br)=C3)C2=CC=C(Br)C=C21.[I-] Chemical compound CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(C)C)C3=C2C=CC(Br)=C3)C2=CC=C(Br)C=C21.[H]N1C(=O)/C(=C2/C(=O)N([H])C3=C2C=CC(Br)=C3)C2=CC=C(Br)C=C21.[I-] ZPFLGAJKFVDDTK-PKUKEYDBSA-N 0.000 description 1
- MIPRGLOQSOBUMM-NOJNNUFNSA-N CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(CCCCCCCCCC)CCCCCCCCCCCC)C3=C2C=CC(B2OC(C)(C)C(C)(C)O2)=C3)C2=CC=C(B3OC(C)(C)C(C)(C)O3)C=C21.CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(CCCCCCCCCC)CCCCCCCCCCCC)C3=C2C=CC(C2=C(S(C)=O)C=CS2)=C3)C2=CC=C(C3=C(S(C)=O)C=CS3)C=C21.CS(=O)C1=C(Br)SC=C1.[I-3].[IH-2].[IH-4] Chemical compound CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(CCCCCCCCCC)CCCCCCCCCCCC)C3=C2C=CC(B2OC(C)(C)C(C)(C)O2)=C3)C2=CC=C(B3OC(C)(C)C(C)(C)O3)C=C21.CCCCCCCCCCCCC(CCCCCCCCCC)CCCN1C(=O)/C(=C2/C(=O)N(CCCC(CCCCCCCCCC)CCCCCCCCCCCC)C3=C2C=CC(C2=C(S(C)=O)C=CS2)=C3)C2=CC=C(C3=C(S(C)=O)C=CS3)C=C21.CS(=O)C1=C(Br)SC=C1.[I-3].[IH-2].[IH-4] MIPRGLOQSOBUMM-NOJNNUFNSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 125000004097 arachidonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002036 chloroform fraction Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000006547 cyclononyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000005070 decynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 125000000950 dibromo group Chemical group Br* 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005644 linolenyl group Chemical group 0.000 description 1
- 125000005645 linoleyl group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005187 nonenyl group Chemical group C(=CCCCCCCC)* 0.000 description 1
- 125000005071 nonynyl group Chemical group C(#CCCCCCCC)* 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- RCHUVCPBWWSUMC-UHFFFAOYSA-N trichloro(octyl)silane Chemical group CCCCCCCC[Si](Cl)(Cl)Cl RCHUVCPBWWSUMC-UHFFFAOYSA-N 0.000 description 1
- DTJBEISROOTMQK-UHFFFAOYSA-N trimethyl-(5-trimethylstannylselenophen-2-yl)stannane Chemical compound C[Sn](C)(C)C1=CC=C([Sn](C)(C)C)[se]1 DTJBEISROOTMQK-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/124—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/127—Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/128—Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
-
- H01L51/0071—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/484—Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
- C08G2261/124—Copolymers alternating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/141—Side-chains having aliphatic units
- C08G2261/1412—Saturated aliphatic units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/34—Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
- C08G2261/344—Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/36—Oligomers, i.e. comprising up to 10 repeat units
- C08G2261/364—Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/411—Suzuki reactions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/414—Stille reactions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/51—Charge transport
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/92—TFT applications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1441—Heterocyclic
- C09K2211/1483—Heterocyclic containing nitrogen and sulfur as heteroatoms
-
- H01L51/0558—
Definitions
- the present invention relates to Benzothienothiophene isoindigo polymers, to a process for the preparation of these polymers, to intermediates, to electronic devices comprising these polymers, as well as to the use of these polymers as semiconducting material.
- Organic semiconducting materials can be used in electronic devices such as organic photovoltaic devices (OPVs), organic field-effect transistors (OFETs), organic light emitting diodes (OLEDs), organic photodiodes (OPDs) and organic electrochromic devices (ECDs).
- OLEDs organic photovoltaic devices
- OFETs organic field-effect transistors
- OLEDs organic light emitting diodes
- OPDs organic photodiodes
- ECDs organic electrochromic devices
- the organic semiconducting materials are compatible with liquid processing techniques such as spin coating as liquid processing techniques are convenient from the point of processability, and thus allow the production of low cost organic semiconducting material-based electronic devices.
- liquid processing techniques are also compatible with plastic substrates, and thus allow the production of light weight and mechanically flexible organic semiconducting material-based electronic devices.
- organic photovoltaic devices OLEDs
- organic field-effect transistors OFETs
- organic photodiodes OLEDs
- organic photovoltaic devices OLEDs
- OPDs organic photodiodes
- the organic semiconducting materials should also show a strong absorption of the visible light and of the near infra-red light.
- WO 2009/053291 describes semiconducting polymers comprising the following units
- the polymers of the present invention comprise at least one unit of formula
- R 1 is at each occurrence selected from the group consisting of H, C 1-100 -alkyl, C 2-100 -alkenyl, C 2-100 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl, a 5 to 20 membered heteroaryl, C(O)—C 1-100 -alkyl, C(O)—C 5-12 -cycloalkyl and C(O)—OC 1-100 -alkyl,
- R Sia , R Sib and R Sic are independently selected from the group consisting of H, C 1-60 -alkyl, C 2-60 -alkenyl, C 2-60 -alkynyl, C 5-18 -cycloalkyl, C 6-14 -aryl, 5 to 14 membered heteroaryl, O—C 1-60 -alkyl, O—C 2-60 -alkenyl, O—C 2-60 -alkynyl, O—C 5-8 -cycloalkyl, O—C 6-14 -aryl, O-5 to 14 membered heteroaryl, —[O—SiR Sid R Sie ] o —R Sif , NR 5 R 6 , halogen and O—C(O)—R 5 ,
- R 2 is at each occurrence selected from the group consisting of hydrogen, C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl, 5 to 20 membered heteroaryl, OR 21 , OC(O)—R 21 , C(O)—OR 21 , C(O)—R 21 , NR 21 R 22 , NR 21 —C(O)R 22 , C(O)—NR 21 R 22 , N[C(O)R 21 ][C(O)R 22 ], SR 21 , halogen, CN, SiR Sis R Sit R Siu and OH,
- n 0, 1, 2 or 3
- n 0, 1, 2 or 3
- L 1 and are L 2 are independently from each other and at each occurrence selected from the group consisting of C 6-18 -arylene, 5 to 20 membered heteroarylene,
- Halogen can be F, CI, Br and I.
- C 1-4 -alkyl, C 1-10 -alkyl, C 1-20 -alkyl, C 1-30 -alkyl, C 1-36 -alkyl, C 1-50 -alkyl, C 1-60 -alkyl and C 1-100 -alkyl can be branched or unbranched.
- Examples of C 1-4 -alkyl are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl and tert-butyl.
- C 1-10 -alkyl examples include C 1-4 -alkyl, n-pentyl, neopentyl, isopentyl, n-(1-ethyl)propyl, n-hexyl, n-heptyl, n-octyl, n-(2-ethyl)hexyl, n-nonyl and n-decyl.
- C 1-20 -alkyl examples are C 1-10 -alkyl and n-undecyl, n-dodecyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl and n-icosyl (C 20 ).
- C 1-30 -alkyl, C 1-36 -alkyl, C 1-50 -alkyl, C 1-60 -alkyl and C 1-100 -alkyl are C 1-20 -alkyl and n-docosyl (C 22 ), n-tetracosyl (C 24 ), n-hexacosyl (C 26 ), n-octacosyl (C 28 ) and n-triacontyl (C 30 ).
- C 2-10 -alkenyl, C 2-20 -alkenyl, C 2-30 -alkenyl, C 2-60 -alkenyl and C 2-100 -alkenyl can be branched or unbranched.
- Examples of C 1-20 -alkenyl are vinyl, propenyl, cis-2-butenyl, trans-2-butenyl, 3-butenyl, cis-2-pentenyl, trans-2-pentenyl, cis-3-pentenyl, trans-3-pentenyl, 4-pentenyl, 2-methyl-3-butenyl, hexenyl, heptenyl, octenyl, nonenyl and docenyl.
- Examples of C 2-20 -alkenyl, C 2-60 -alkenyl and C 2-100 -alkenyl are C 2-10 -alkenyl and linoleyl (C 18 ), linolenyl (C 18 ), oleyl (C 18 ), and arachidonyl (C 20 ).
- Examples of C 2-30 -alkenyl are C 2-20 -alkenyl and erucyl (C 22 ).
- C 2-10 -alkynyl, C 2-20 -alkynyl, C 2-30 -alkynyl, C 2-60 -alkynyl and C 2-100 -alkynyl can be branched or unbranched.
- Examples of C 2-10 -alkynyl are ethynyl, 2-propynyl, 2-butynyl, 3-butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl and decynyl.
- C 2-20 -alkynyl, C 2-30 -alkenyl, C 2-60 -alkynyl and C 2-100 -alkynyl are undecynyl, dodecynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl and icosynyl (C 20 ).
- C 5-6 -cycloalkyl examples are cyclopentyl and cyclohexyl.
- Examples of C 5-8 -cycloalkyl are C 5-6 -cycloalkyl and cycloheptyl and cyclooctyl.
- C 5-12 -cycloalkyl are C 5-8 -cycloalkyl and cyclononyl, cyclodecyl, cycloundecyl and cyclododecyl.
- C 6-10 -aryl examples include phenyl
- C 6-14 -aryl examples are C 6-10 -aryl and
- C 6-18 -aryl examples are C 6-14 -aryl and
- 5 to 10 membered heteroaryl are 5 to 10 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ⁇ O.
- 5 to 14 membered heteroaryl are 5 to 14 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by 50 O.
- 5 to 20 membered heteroaryl are 5 to 20 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ⁇ O.
- Examples of 5 to 14 membered heteroaryl are the examples given for the 5 to 10 membered heteroaryl and
- Examples of 5 to 20 membered heteroaryl are the examples given for the 5 to 14 membered heteroaryl and
- R 100 and R 101 are independently and at each occurrence selected from the group consisting of H, C 1-20 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 5-8 -cycloalkyl, C 6-14 -aryl, and 5 to 14 membered heteroaryl, or R 100 and R 101 , if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
- C 5-8 -cycloalkyl can be substituted with one to five substituents selected from the group consisting of C 1-10 -alkyl, C 2-10 -alkenyl, C 2-10 -alkynyl, C 5-6 -cycloalkyl, C 6-10 -aryl, 5 to 10 membered heteroaryl, OR q , OC(O)—R q , C(O)—OR q , C(O)—R q , NR q R r , NR q -C(O)R r , C(O)—NR q R r , N[C(O)R q ][C(O)R r ], SR q , halogen, CN, and NO 2 ;
- C 6-18 -arylene is a 6 to 18 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring system, which comprises at least one C-aromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ⁇ O.
- R 102 and R 103 are independently and at each occurrence selected from the group consisting of H, C 1-20 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 5-8 -cycloalkyl, C 6-14 -aryl, and 5 to 14 membered heteroaryl, or R 102 and R 103 , if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
- C 6-14 -aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C 1-10 -alkyl, C 2-10 -alkenyl, C 2-10 -alkynyl, C 5-6 -cycloalkyl, C 6-10 -aryl, 5 to 10 membered heteroaryl, OR s , OC(O)—Rt, C(O)—OR s , C(O)—R s , NR s R t , NR s —C(O)R t , C(O)—NR s R t , N[C(O)R s ][C(O)R t ], SR s , halogen, CN, and NO 2 ;
- R 104 and R 105 are independently and at each occurrence selected from the group consisting of H, C 1-20 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 5-8 -cycloalkyl, C 6-14 -aryl, and 5 to 14 membered heteroaryl, or R 104 and R 105 , if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
- the 5 to 12 membered ring system can contain, in addition to the atom, to which R 100 and R 101 , respectively R 102 and R 103 , respectively R 104 and R 105 , are attached, ring members selected from the group consisting of CH 2 , O, S and NR u werein R u is at each occurrence selected from the group consisting of H, C 1-10 -alkyl, C 2-10 -alkenyl and C 2-10 -alkynyl.
- the polymers of the present invention comprise at least 60% by weight of units of formula (I) based on the weight of the polymer.
- the polymers of the present invention comprise at least 80% by weight of units of formula (I) based on the weight of the polymer.
- the polymers of the present invention essentially consist of units of formula (I).
- R 1 is at each occurrence selected from the group consisting of H, C 1-100 -alkyl, C 2-100 -alkenyl, C 2-100 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl, and a 5 to 20 membered heteroaryl,
- R 1 is at each occurrence selected from the group consisting of C 1-100 -alkyl, C 2-100 -alkenyl and C 2-100 -alkynyl,
- R Sim , R Sin , R Sio are independently selected from the group consisting of H, C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-6 -cycloalkyl, C 6-10 -aryl, —[O—SiR Sip R Siq ] r —R Sir ,
- R 1 is at each occurrence selected from the group consisting of C 1-50 -alkyl, C 2-50 -alkenyl and C 2-50 -alkynyl,
- R Sid , R Sie , R Sif are independently selected from the group consisting of H, C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-6 -cycloalkyl, C 6-10 -aryl, —[O—SiR Sig R Sih ] p —R Sii ,
- R 1 is at each occurrence selected from the group consisting of C 1-36 -alkyl, C 2-36 -alkenyl and C 2-36 -alkynyl,
- R 1 is at each occurrence unsubstituted C 1-36 -alkyl.
- R 2 is at each occurrence selected from the group consisting of hydrogen, C 1-30 -alkyl and halogen,
- R 2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C 1-30 -alkyl and halogen.
- R 2 is in each occurrence hydrogen.
- n is 0, 1 or 2. More preferably, n is 0 or 1. Most preferably, n is 0.
- m is 0, 1 or 2.
- L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of C 6-18 -arylene, 5 to 20 membered heteroarylene,
- R 4 can be substituted with one or two substituents R 4 at each occurrence selected from the group consisting of C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl and 5 to 20 membered heteroaryl, C(O)—R 41 , C(O)—NR 41 R 42 , C(O)—OR 41 and CN,
- L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
- L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
- R 104 and R 105 are independently and at each occurrence selected from the group consisting of H, C 1-20 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 5-8 -cycloalkyl, C 6-14 -aryl, and 5 to 14 membered heteroaryl, or R 104 and R 105 , if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
- L 1 and L 2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene,
- L 1 and L 2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene,
- n 0, 1, 2 or 3
- n 0, 1, 2 or 3
- L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of C 6-18 -arylene, 5 to 20 membered heteroarylene,
- R 2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C 1-30 -alkyl and halogen,
- L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
- 5 to 20 membered heteroarylene can be substituted with one to six substituents R 3 at each occurrence selected from the group consisting of C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl and 5 to 20 membered heteroaryl, OR 31 , OC(O)—R 31 , C(O)—OR 31 , C(O)—R 31 , NR 31 R 32 , NR 31 —C(O)R 32 , C(O)—NR 31 R 32 , SR 31 , halogen, CN, SiR Siv R Siw R Six and OH, and
- R 4 can be substituted with one or two substituents R 4 at each occurrence selected from the group consisting of C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl and 5 to 20 membered heteroaryl, C(O)—R 41 , C(O)—NR 41 R 42 , C(O)—OR 41 and CN,
- R 1 is at each occurrence selected from the group consisting of C 1-36 -alkyl, C 2-36 -alkenyl and C 2-36 -alkynyl,
- R Sid , R Sie , R Sif are independently selected from the group consisting of H, C 1-30 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 5-6 -cycloalkyl, C 6-10 -aryl, —[O—SiR Sig R Sih ] p -R Sii ,
- n 0 or 1
- n 0, 1 or 2
- L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
- R 1 is at each occurrence unsubstituted C 1-36 -alkyl
- R 2 is hydrogen
- n 0,
- n 0, 1 or 2
- L 1 and L 2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene
- Particular preferred polymers of the present invention comprise at least one unit of formula
- the polymers of the present invention have preferably a weight average molecular weight (M w ) of 1 to 10000 kDa and a number average molecular weight (M n ) of 1 to 10000 kDa.
- the polymers of the present invention have more preferably a weight average molecular weight (M w ) of 1 to 1000 kDa and a number average molecular weight (M n ) of 1 to 100 kDa.
- the polymers of the present invention have most preferably a weight average molecular weight (M w ) of 10 to 100 kDa and a number average molecular weight (M n ) of 5 to 60 kDa.
- the weight average molecular weight (M w ) and the number average molecular weight (M n ) can be determined by gel permeation chromatography (GPC) at 80° C. using chlorobenzene as eluent and a polystyrene as standard.
- the polymers of the present invention can be prepared by methods known in the art.
- polymers of the present invention comprising at least one unit of formula (1), wherein n is 0 and which are of formula (1-I)
- R 1 , R 2 and L 2 are as defined above,
- n 0, 1, 2 or 3
- Z a and Z b are independently selected from the group consisting of B(OZ 1 )(OZ 2 ), SnZ 1 Z 2 Z 3 ,
- polymers of the present invention comprising at least one unit of formula (1), wherein n and m are 0 and which are of formula (1-11)
- R 1 and R 2 are as defined above
- R 1 and R 2 are as defined for the compound of formula (1-11), and
- Z a and Z b are independently selected from the group consisting of B(OZ 1 )(OZ 2 ), SnZ 1 Z 2 Z 3 ,
- Z a and Z b are independently selected from the group consisting of B(OZ 1 )(OZ 2 ),
- Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are independently from each other and at each occurrence H or C 1-4 -alkyl
- the reaction is usually performed in the presence of a catalyst, preferably a Pd catalyst such as Pd(P(Ph) 3 ) 4 , Pd(OAc) 2 and Pd 2 (dba) 3 , and a base such as K 3 PO 4 , Na 2 CO 3 , K 2 CO 3 , LiOH and NaOMe.
- a Pd catalyst such as Pd(P(Ph) 3 ) 4 , Pd(OAc) 2 and Pd 2 (dba) 3
- a base such as K 3 PO 4 , Na 2 CO 3 , K 2 CO 3 , LiOH and NaOMe.
- the reaction may also require the presence of a phosphine ligand such as P(Ph) 3 , P(o-tolyl) 3 and P(tert-Bu) 3 .
- the reaction is also usually performed at elevated temperatures, such as at temperatures in the range of 40 to 250° C., preferably 60 to 200° C.
- the reaction can be performed in the presence of
- the reaction is usually performed in the presence of a catalyst, preferably a Pd catalyst such as Pd(P(Ph) 3 ) 4 and Pd 2 (dba) 3 .
- a catalyst preferably a Pd catalyst such as Pd(P(Ph) 3 ) 4 and Pd 2 (dba) 3 .
- the reaction may also require the presence of a phosphine ligand such as P(Ph) 3 , P(o-tolyl) 3 and P(tert-Bu) 3 .
- the reaction is also usually performed at elevated temperatures, such as at temperatures in the range of 40 to 250° C., preferably 60 to 200° C.
- the reaction can be performed in the presence of a suitable solvent such as toluene or chlorobenzene.
- the reaction is usually performed under inert gas.
- the compound of formula (2) can be prepared by methods known in the art.
- R 1 is at each occurrence unsubstituted C 1-36 -alkyl, with an Y-donor.
- the Y-donor can be N-bromosuccinimide.
- the reaction can be performed at 0° C. in the presence of CHCI 3 /acetic acid as solvent.
- a compound of formula (3), wherein R 1 is at each occurrence unsubstituted C 1-36 -alkyl, can be prepared by treating a compound of formula (4)
- R 1 is at each occurrence unsubstituted C 1-36 -alkyl, with Eaton's reagent.
- a compound of formula (4), wherein R 1 is at each occurrence unsubstituted C 1-36 -alkyl, can be prepared by treating a compound of formula (5)
- R 1 is at each occurrence unsubstituted C 1-36 -alkyl, with a compound of formula (6)
- the reaction is usually performed in a suitable solvent such as toluene and at a suitable temperature such as in the range of 0 to 140° C.
- the compound of formula (5), wherein R 1 is at each occurrence unsubstituted C 1-36 -alkyl, can be prepared by treating a compound of formula (7)
- the reaction is usually performed in the presence of a catalyst, preferably a palladium catalyst.
- a catalyst preferably a palladium catalyst.
- the reaction is usually performed in a suitable solvent, such as anhydrous toluene, at elevated temperatures such as in the range of 40 to 160° C.
- R 1 and R 2 are as defined above,
- Y is at each occurence I, Br, CI or O—S(O) 2 CF 3 .
- R 1 is at each occurrence selected from the group consisting of C 1-50 -alkyl, C 2-50 -alkenyl and C 2-50 -alkynyl,
- R 2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C 1-30 -alkyl and halogen, and
- Y is at each occurence I, Br, CI or —O—S(O) 2 CF 3.
- R 1 is at each occurrence selected from the group consisting of C 1-36 -alkyl, C 2-36 -alkenyl and C 2-36 -alkynyl,
- R 2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C 1-30 -alkyl and halogen, and
- Y is at each occurence I, Br, CI or —O—S(O) 2 CF 3 .
- R 1 is at each occurrence unsubstituted C 1-36 -alkyl
- R 2 is hydrogen
- Y is at each occurence I, Br, CI or —O—S(O) 2 CF 3 .
- Y is at each occurence I, Br or O—S(O) 2 CF 3
- R 1 is at each occurrence unsubstituted C 1-36 -alkyl and R 2 is hydrogen.
- R 1 is at each occurrence unsubstituted C 1-36 -alkyl and R 2 is hydrogen.
- Also part of the invention is an electronic device comprising the polymer of the present invention.
- the electronic device can be an organic photovoltaic device (OPVs), an organic field-effect transistor (OFETs), an organic light emitting diode (OLEDs) or an organic photodiode (OPDs).
- OLEDs organic photovoltaic device
- OPDs organic photodiode
- the electronic device is an organic photovoltaic device (OPVs), an organic field-effect transistor (OFETs) or an organic photodiode (OPDs).
- OCVs organic photovoltaic device
- OFETs organic field-effect transistor
- OPDs organic photodiode
- the electronic device is an organic field effect transistor (OFET).
- OFET organic field effect transistor
- an organic field effect transistor comprises a dielectric layer, a semiconducting layer and a substrate.
- an organic field effect transistor usually comprises a gate electrode and source/drain electrodes.
- the semiconducting layer comprises the polymer of the present invention.
- the semi-conducting layer can have a thickness of 5 to 500 nm, preferably of 10 to 100 nm, more preferably of 20 to 50 nm.
- the dielectric layer comprises a dielectric material.
- the dielectric material can be silicon dioxide or aluminium oxide, or, an organic polymer such as polystyrene (PS), poly(methylmethacrylate) (PMMA), poly(4-vinylphenol) (PVP), poly(vinyl alcohol) (PVA), benzocyclobutene (BCB), or polyimide (P1).
- PS polystyrene
- PMMA poly(methylmethacrylate)
- PVP poly(4-vinylphenol)
- PVA poly(vinyl alcohol)
- BCB benzocyclobutene
- P1 polyimide
- the dielectric layer can have a thickness of 10 to 2000 nm, preferably of 50 to 1000 nm, more preferably of 100 to 800 nm.
- the dielectric layer can in addition to the dielectric material comprise a self-assembled monolayer of organic silane derivates or organic phosphoric acid derivatives.
- organic silane derivative is octyltrichlorosilane.
- organic phosphoric acid derivative is octyldecylphosphoric acid.
- the self-assembled monolayer comprised in the dielectric layer is usually in contact with the semiconducting layer.
- the source/drain electrodes can be made from any suitable organic or inorganic source/drain material.
- inorganic source/drain materials are gold (Au), silver (Ag) or copper (Cu), as well as alloys comprising at least one of these metals.
- the source/drain electrodes can have a thickness of 1 to 100 nm, preferably from 20 to 70 nm.
- the gate electrode can be made from any suitable gate material such as highly doped silicon, aluminium (Al), tungsten (W), indium tin oxide or gold (Au), or alloys comprising at least one of these metals.
- the gate electrode can have a thickness of 1 to 200 nm, preferably from 5 to 100 nm.
- the substrate can be any suitable substrate such as glass, or a plastic substrate such as polyethersulfone, polycarbonate, polysulfone, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
- a plastic substrate such as polyethersulfone, polycarbonate, polysulfone, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- the gate electrode for example highly doped silicon can also function as substrate.
- the organic field effect transistor can be prepared by methods known in the art.
- a bottom-gate top-contact organic field effect transistor can be prepared as follows:
- the dielectric material for example Al 2 O 3 or silicon dioxide, can be applied as a layer on a gate electrode such as highly doped silicon wafer, which also functions as substrate, by a suitable deposition method such as atom layer deposition or thermal evaporation.
- a self-assembled monolayer of an organic phosphoric acid derivative or an organic silane derivative can be applied to the layer of the dielectric material.
- the organic phosphoric acid derivative or the organic silane derivative can be applied from solution using solution-deposition techniques.
- the semiconducting layer can be formed by either solution deposition or thermal evaporation in vacuo of the polymer of the present invention on the self-assembled monolayer of the organic phosphoric acid derivative or the organic silane derivative.
- Source/drain electrodes can be formed by deposition of a suitable source/drain material, for example tantalum (Ta) and/or gold (Au), on the semiconducting layer through a shadow masks.
- a suitable source/drain material for example tantalum (Ta) and/or gold (Au)
- the channel width (W) is typically 10 to 1000 ⁇ m and the channel length (L) is typically 5 to 500 ⁇ m.
- a top-gate bottom-contact organic field effect transistor can be prepared as follows: Source/drain electrodes can be formed by evaporating a suitable source/drain material, for example gold (Au), on photo-lithographically defined electrodes on a suitable substrate, for example a glass substrate.
- the semiconducting layer can be formed by depositing a solution of the polymers of the present invention, for example by spin-coating, on the source/drain electrodes, followed by annealing the layer at elevated temperatures such as at a temperature in the range of 80 to 360° C.
- a dielectric layer can be formed by applying, for example, by spin-coating, a solution of a suitable dielectric material such as poly(methylmethacryate), on the semiconducting layer.
- a suitable dielectric material such as poly(methylmethacryate)
- the gate electrode of a suitable gate material for example gold (Au)
- Au gold
- Also part of the invention is the use of the polymer of the present invention as semiconducting material.
- the polymers of the present invention show high charge carrier mobilities.
- the polymer of the present invention can show ambipolar properties with high hole and electron mobilities.
- the polymers of the present invention show a high stability, in particular a high thermal stability.
- the polymers of the present invention are compatible with liquid processing techniques.
- the polymers of the present invention show a strong absorption of the near infra-red light.
- 6,6′-di(3-methylsulfinylthiophene) isoindigo (I-4) (800 mg, 0.65 mmol) is stirred with Eaton's reagent (6 mL) at room temperature in the dark for 3 days.
- the mixture is poured into ice-water, extracted with chloroform and the organic phased is dried with MgSO4, the solvent is removed by reduced pressure and the crude product is dried in vacuum, which is followed to be redissolved in pyridine (10 mL) and then the mixture is refluxed overnight. After the mixture is cooled to room temperature, extracted with chloroform and diluted hydrochloride acid, the separated organic phase is dried over MgSO4, and solvent is removed by reduced pressure.
- NBS (65g, 0.36 mmol) is added in small portions to a solution of benzothienothiophene isoindigo (200g, 0.17 mmol) in CHCl 3 /AcOH (20 mL: 5 mL), the reaction mixture is stirred at reflux for about 5 h, which can be monitored by TLC.
- dibromoBTTIID I-6) (100 mg, 0.076 mmol, 1 equiv.) and 2,5-bis(trimethylstannyl)thiophene (31.04 mg, 0.076 ⁇ mol, 1 equiv), Pd2(dba)3 (1.50 mg) and P(o-Tol) 3 (1.84 mg).
- the tube is sealed and flushed with Argon, and then degassed chlorobenzene (2 mL) is added. The mixture is thoroughly degassed under Argon, and then the argon inlet is removed.
- the tube is subjected to the following conditions in a microwave reactor: 100° C. for 5 min, 140° C. for 5 min, 160° C.
- dibromoBTTIID (I-6) (68.6 mg, 0.052 mmol,1 equiv.) and 2,5-bis(trimethylstannyl)selenophene (23.78 mg, 0.052 ⁇ mol, 1 equiv), Pd2(dba)3 (2 mg) and P(o-Tol) 3 (2.58 mg).
- the tube is sealed and flushed with Argon, and then degassed chlorobenzene (1.0 mL) is added. The mixture is thoroughly degassed under Argon, and then the argon inlet is removed.
- the tube is subjected to the following conditions in a microwave reactor: 100° C. for 5 min, 140° C. for 5 min, 160° C.
- the polymer is precipitated into methanol, and filtered through a Soxhlet thimble.
- the polymer is extracted using Soxhlet apparatus with methanol, acetone, hexane, dichloromethane, chloroform and chlorobenzene.
- the chloroform and chlorobenzene solution is concentrated and precipitated into methanol.
- the precipitates are filtered and dried under vacuum to afford P2 as a dark blue solid (55 mg (chloroform) and 6 mg (chlorobenzene), 87.1%).
- Polymer P6 is synthesized from I-8 in analogy to polymer P2
- OFET organic field-effect transistors
- Semiconducting compound I-x or polymer Px is dissolved at a concentration of 0,75wt % in orthodichlorobenzene and subsequently coated onto a PET-substrate with lithographically prepatterned gold contacts, serving as Source and Drain contact of the FET.
- 100 ⁇ l of the formulation is coated by a standard blade coater at a coating speed of 20 mm/s, yielding a homogenous layer of the semiconductor over the entire substrate.
- the substrate is immediately transferred onto a preheated hotplate and heated for 30s at 90° C.
- the gate dielectric layer consisting of Cytop CTL-809M is spincoated on top of the organic semiconductor (1200 rpm, 30s).
- the substrate is again transferred to the hotplate and annealed for another 5 Min at 100° C.
- the thickness of the dielectric layer is 535 nm measured by profilometer.
- 50 nm thick shadow-mask patterend gold gate electrodes are deposited by vacuum evaporation to complete FETs in the BGTC-configuration (See FIG. 1 a - h )
- the mobility ⁇ is calculated from the root representation of the transfer characteristic curve (solid grey curve) calculated in the saturation region.
- the slope m is determined from the dashed black line in FIG. 1.
- the dashed black line in FIG. 1 is fitted to a region of the root representation of the current characteristic ID such that a good correlation to the linear slope of the root representation is obtained.
- the threshold voltage U Th can be taken from the intersection of black dashed line in FIG. 1 with the X-axis portion (V GS ).
- ⁇ 0 is the vacuum permittivity of 8.85 ⁇ 10 ⁇ 12 As/Vm.
Landscapes
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thin Film Transistor (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
- The present invention relates to Benzothienothiophene isoindigo polymers, to a process for the preparation of these polymers, to intermediates, to electronic devices comprising these polymers, as well as to the use of these polymers as semiconducting material.
- Organic semiconducting materials can be used in electronic devices such as organic photovoltaic devices (OPVs), organic field-effect transistors (OFETs), organic light emitting diodes (OLEDs), organic photodiodes (OPDs) and organic electrochromic devices (ECDs).
- It is desirable that the organic semiconducting materials are compatible with liquid processing techniques such as spin coating as liquid processing techniques are convenient from the point of processability, and thus allow the production of low cost organic semiconducting material-based electronic devices. In addition, liquid processing techniques are also compatible with plastic substrates, and thus allow the production of light weight and mechanically flexible organic semiconducting material-based electronic devices.
- For application in organic photovoltaic devices (OPVs), organic field-effect transistors (OFETs), and organic photodiodes (OPDs), it is further desirable that the organic semiconducting materials show high charge carrier mobility.
- For application in organic photovoltaic devices (OPVs) and organic photodiodes (OPDs), the organic semiconducting materials should also show a strong absorption of the visible light and of the near infra-red light.
- The use of iso-indigo-type compounds as semiconducting materials in electronic devices is known in the art.
- WO 2009/053291 describes semiconducting polymers comprising the following units
- and organic field effect transistors comprising these polymers.
- It was the object of the present invention to provide organic semiconducting materials. This object is solved by the polymers of claim 1, the process of claim 10, the intermediates of claim 11, and the electronic device of claims 12 and 13 and the use of claim 14.
- The polymers of the present invention comprise at least one unit of formula
- wherein
- R1 is at each occurrence selected from the group consisting of H, C1-100-alkyl, C2-100-alkenyl, C2-100-alkynyl, C5-12-cycloalkyl, C6-18-aryl, a 5 to 20 membered heteroaryl, C(O)—C1-100-alkyl, C(O)—C5-12-cycloalkyl and C(O)—OC1-100-alkyl,
-
- wherein
- C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be substituted with one to fourty substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb, NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, CN, and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be replaced by O or S,
- C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb, NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, CN, and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRa or NRa—CO,
- C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5- 8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb, NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic),—O—Si(RSia)(RSib),RSic), halogen, CN, and NO2,
- wherein
- Ra and Rb are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl,
- RSia, RSib and RSic are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-18-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, O—C1-60-alkyl, O—C2-60-alkenyl, O—C2-60-alkynyl, O—C5-8-cycloalkyl, O—C6-14-aryl, O-5 to 14 membered heteroaryl, —[O—SiRSidRSie]o—RSif, NR5R6, halogen and O—C(O)—R5,
-
-
-
- wherein
- o is an integer from 1 to 50,
- RSid, RSie, RSif are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, O—C1-60-alkyl, O—C2-60-alkenyl, O—C2-60-alkynyl, O—C5-8-cycloalkyl, O—C6-14-aryl, O-5 to 14 membered heteroaryl, —[O—SiRSigRSih] p—RSii, NR50R60, halogen and ) O—C(O)—R50;
- wherein
- is an integer from 1 to 50,
- RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, O—-Si(CH3)3, NR500R600, halogen and O—C(O)—R500,
- R5, R6, R50, R60, R500 and R600 are independently selected from the group consisting of H, C1-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
- C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be substituted with one to twenty substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc, Si(RSij)(RSik)(RSil), halogen, CN, and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be replaced by O or S,
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30 -alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc(O)—ORc, C(O)—Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc,) Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil), halogen, CN, and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-8-cycloalkyl can be replaced by O, S, OC(O), CO, NRc or NRc—CO,
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—
- Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc, Si(Rsij)(RSik)(RSil),—O—Si(RSij)(RSik)(RSil), halogen, CN and NO2;
- wherein
- Rc and Rd are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl,
- RSij, RSik and RSil are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6—cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, —[O—SiRSimRSin]q—RSio, NR7R8, halogen, and O—C(O)—R7,
- wherein
- q is an integer from 1 to 50,
- RSim, RSin, RSio are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O—5 to 10 membered heteroaryl, —[O—-SiRSipRSiq],r—RSir, NR70R80, halogen, and O—C(O)—R70;
- wherein
- r is an integer from 1 to 50,
- RSiP, RSiq, RSir are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, O—Si(CH3)3, NR700R800, halogen and O—C(O)—R700,
- R7, R8, R70, R80, R700 and R800 are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, and 5 to 10 membered heteroaryl,
- C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen, CN and NO2,
-
-
- R2 is at each occurrence selected from the group consisting of hydrogen, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl, 5 to 20 membered heteroaryl, OR21, OC(O)—R21, C(O)—OR21, C(O)—R21, NR21R22, NR21—C(O)R22, C(O)—NR21R22, N[C(O)R21][C(O)R22], SR21, halogen, CN, SiRSisRSitRSiu and OH,
-
- wherein
- R21 and R22 and are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
- C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRe or NRe—CO,
- C5-12-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2,
- wherein
- RSis, RSit and RSiu are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
- Re and Rf are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
- wherein C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)-NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O )Rg][C(O)Rh], SRg, halogen, CN, and NO2;
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)-Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
- wherein
- Rg and Rh are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2,
- n is 0, 1, 2 or 3,
- m is 0, 1, 2 or 3,
- and
- L1 and are L2 are independently from each other and at each occurrence selected from the group consisting of C6-18-arylene, 5 to 20 membered heteroarylene,
-
- wherein
- C6-18-arylene and 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C(O)—OR31, C(O)—R31, NR31R32, NR31—C(O)R32, C(O)NR31R32, N[C(O)R31][C(O)R32], SR31, halogen, CN, SiRSivRSiwRSix and OH, and
- wherein
-
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42,)C(O)-13 OR41 and CN,
- wherein
- R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and
- wherein
- C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
- C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)-13 Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)-13 NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
- C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)-13 Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi-13 C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2,
- wherein
- RSiv, RSiw, RSix are independently from each other selected from the group consisting of H, C2-20-alkenyl, C02-20-alkynyl, C5-6-cycloalkyl, phenyl and O-13 Si(CH3)3,
- Ri and Rj are independently selected from the group consisting of H, C1-20-alkyl, C1-20-alkenyl, C2-20-alkynyl, C05-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered hetereoaryl,
- wherein
- C1-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—R1, C(O)-ORk, C(O)-Rk, NRkRl, NRk-C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10 -alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rk, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
- wherein
- Rk and Rl are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42,)C(O)-13 OR41 and CN,
- Halogen can be F, CI, Br and I.
- C1-4-alkyl, C1-10-alkyl, C1-20-alkyl, C1-30-alkyl, C1-36-alkyl, C1-50-alkyl, C1-60-alkyl and C1-100-alkyl can be branched or unbranched. Examples of C1-4-alkyl are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl and tert-butyl. Examples of C1-10-alkyl are C1-4-alkyl, n-pentyl, neopentyl, isopentyl, n-(1-ethyl)propyl, n-hexyl, n-heptyl, n-octyl, n-(2-ethyl)hexyl, n-nonyl and n-decyl. Examples of C1-20-alkyl are C1-10-alkyl and n-undecyl, n-dodecyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl and n-icosyl (C20). Examples of C1-30-alkyl, C1-36-alkyl, C1-50-alkyl, C1-60-alkyl and C1-100-alkyl are C1-20-alkyl and n-docosyl (C22), n-tetracosyl (C24), n-hexacosyl (C26), n-octacosyl (C28) and n-triacontyl (C30).
- C2-10-alkenyl, C2-20-alkenyl, C2-30-alkenyl, C2-60 -alkenyl and C2-100-alkenyl can be branched or unbranched. Examples of C1-20-alkenyl are vinyl, propenyl, cis-2-butenyl, trans-2-butenyl, 3-butenyl, cis-2-pentenyl, trans-2-pentenyl, cis-3-pentenyl, trans-3-pentenyl, 4-pentenyl, 2-methyl-3-butenyl, hexenyl, heptenyl, octenyl, nonenyl and docenyl. Examples of C2-20-alkenyl, C2-60-alkenyl and C2-100-alkenyl are C2-10-alkenyl and linoleyl (C18), linolenyl (C18), oleyl (C18), and arachidonyl (C20). Examples of C2-30-alkenyl are C2-20-alkenyl and erucyl (C22).
- C2-10-alkynyl, C2-20-alkynyl, C2-30-alkynyl, C2-60-alkynyl and C2-100-alkynyl can be branched or unbranched. Examples of C2-10-alkynyl are ethynyl, 2-propynyl, 2-butynyl, 3-butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl and decynyl. Examples of C2-20-alkynyl, C2-30-alkenyl, C2-60-alkynyl and C2-100-alkynyl are undecynyl, dodecynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl and icosynyl (C20).
- Examples of C5-6-cycloalkyl are cyclopentyl and cyclohexyl. Examples of C5-8-cycloalkyl are C5-6-cycloalkyl and cycloheptyl and cyclooctyl. C5-12-cycloalkyl are C5-8-cycloalkyl and cyclononyl, cyclodecyl, cycloundecyl and cyclododecyl.
- Examples of C6-10-aryl are phenyl,
- Examples of C6-14-aryl are C6-10-aryl and
- Examples of C6-18-aryl are C6-14-aryl and
- 5 to 10 membered heteroaryl are 5 to 10 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ═O.
- 5 to 14 membered heteroaryl are 5 to 14 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by 50 O.
- 5 to 20 membered heteroaryl are 5 to 20 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ═O.
- Examples of 5 to 10 membered heteroaryl are
- Examples of 5 to 14 membered heteroaryl are the examples given for the 5 to 10 membered heteroaryl and
- Examples of 5 to 20 membered heteroaryl are the examples given for the 5 to 14 membered heteroaryl and
- wherein
- R100 and R101 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R100 and R101, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
-
- wherein
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORq, OC(O)-Rq, C(O)—ORq, C(O)—Rq, NRqRr, NRq—C(O)Rr, C(O)—NRqRr, N[C(O)Rq][C(O)Rr], SRq, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORq, OC(O)—Rq, C(O)—ORq, C(O)—Rq, NRqRr, NRq-C(O)Rr, C(O)—NRqRr, N[C(O)Rq][C(O)Rr], SRq, halogen, CN, and NO2;
-
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORq, OC(O)-Rq, C(O)-ORq, C(O)—Rq, NRqRr, NRq—C(O)Rr, C(O)—NRqRr, N[C(O)Rq][C(O)Rr], SRq, halogen, CN, and NO2;
- 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORq, OC(O)—Rq, C(O)—ORq, C(O)—Rq, NRqRr, NRq—C(O)Rr, C(O)—NRqRr, N[C(O)Rq][C(O)Rr], SRq, halogen, CN, and NO2;
- wherein
- Rq and Rr are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
- C6-18-arylene is a 6 to 18 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring system, which comprises at least one C-aromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ═O.
- Examples of C6-18-arylene are
- wherein
- R102 and R103 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R102 and R103, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
-
- wherein
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORS, C(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
-
- 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- wherein
- Rs and Rt are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2. 5 to 20 membered heteroarylene is a 5 to 20 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring system, which comprises at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ═O.
- 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- Examples of 5 to 20 membered heteroarylene are
- wherein
- R104 and R105 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R104 and R105, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
-
- wherein
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)R6 t], SRs, halogen, CN, and NO2;
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)-Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- wherein
- Rs and Rt are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
- The 5 to 12 membered ring system can contain, in addition to the atom, to which R100 and R101, respectively R102 and R103, respectively R104 and R105, are attached, ring members selected from the group consisting of CH2, O, S and NRu werein Ru is at each occurrence selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl.
- Preferably, the polymers of the present invention comprise at least 60% by weight of units of formula (I) based on the weight of the polymer.
- More preferably, the polymers of the present invention comprise at least 80% by weight of units of formula (I) based on the weight of the polymer.
- Most preferably, the polymers of the present invention essentially consist of units of formula (I).
- Preferably, R1 is at each occurrence selected from the group consisting of H, C1-100-alkyl, C2-100-alkenyl, C2-100-alkynyl, C5-12-cycloalkyl, C6-18-aryl, and a 5 to 20 membered heteroaryl,
-
- wherein
- C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be substituted with one to fourty substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRa—C(O)Rb, C(O)—NRaRb, SRa, Si(RSia)(RSib)(RSic,) —O—Si(RSia)(RSib)(RSic,)halogen and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be replaced by O or S,
- C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRa—C(O)Rb, C(O)—NRaRb, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib),RSic), halogen, and CN; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRa or NRa—CO,
- C6-18 -aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-60 -alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRa—C(O)Rb, C(O)—NRaRb, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib), halogen, and CN,
- wherein
- Ra and Rb are independently selected from the group consisting of H, C1-60-alkyl, C2-60 -alkenyl, C2-60 -alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl,
- RSia, RSib and RSic are independently selected from the group consisting of H, C1-60-alkyl, C2-60 -alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, O—C1-60-alkyl, O—C2-60 -alkenyl, O—C2-60 -alkynyl, O—C5-8-cycloalkyl, —[O—SiRSidRSie]o—RSif,
- wherein
- o is an integer from 1 to 50,
- RSid, RSie and RSif are independently selected from the group consisting of H, C1-60-alkyl, C2-60 -alkenyl, C2-60 -alkynyl, 06_8-cycloalkyl, C6-14-aryl, —[O—SiRSigRSih]p—RSii,
- wherein
- p is an integer from 1 to 50,
- RSig RSih and RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
- C1-60-alkyl, C2-60-alkenyl and C2-60 -alkynyl can be substituted with one to twenty substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil)halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-60-alkyl, C2-60-alkenyl and C2-60 -alkynyl can be replaced by O or S,
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc,C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil), —O—-Si(RSij)(RSik)(RSil), halogen, and CN; and one or two CH2-groups, but not adjacent CH2-groups, of C5-8-cycloalkyl can be replaced by O, S, OC(O), CO, NRc or NRc—CO,
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)( RSik)(RSil), —O—Si (RSij)(RSik)(RSil), halogen and CN;
- wherein
- Rc and Rd are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl,
- RSij, RSik and RSil are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —-[O—SiRSimRSin]q—RSio,
- wherein
- q is an integer from 1 to 50,
- RSimRSin, RSio are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, —[O—SiRSipRSiq]r—RSir, NR70R80, halogen, and O—C(O)-13 R70;
- wherein
- r is an integer from 1 to 50,
- RSip, RSiq RSir are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, O—Si(CH3)3, NR70R800, halogen and O—C—(O)—R700,
- R70, R80, R700 and R800 are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, and 5 to 10 membered heteroaryl,
- C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN.
- More preferably, R1 is at each occurrence selected from the group consisting of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl,
-
- wherein
- C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be substituted with one to fourty substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRa—C(O)Rb, C(O)—NRaRb, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be re-placed by O or S,
- wherein
- Ra and Rb are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60 -alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl,
- RSia, RSib and RSic are independently selected from the group consisting of H, C1-60-alkyl, C2-60 -alkenyl, C2-60 -alkynyl, C5-8-cycloalkyl, C6-14-aryl, —[O—SiRSidRSie]o—RSif,
- wherein
- o is an integer from 1 to 50,
- RSid, RSie and RSif are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60 -alkynyl, C5-8-cycloalkyl, C6-14-aryl, —[O—SiRSigRSih]p—RSii,
- wherein
- p is an integer from 1 to 50,
- RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
- C1-60-alkyl, C2-60 -alkenyl and C2-60 -alkynyl can be substituted with one to twenty substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-60-alkyl, C2-60 -alkenyl and C2-60 -alkynyl can be replaced by O or S,
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil),—O—Si(RSij)(RSik)(RSil), halogen, and CN; and one or two CH2-groups, but not adjacent CH2-groups, of C5-8-cycloalkyl can be replaced by O, S, OC(O), CO, NRc or NRc—CO,
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil)—O—Si(RSij)(RSik)(RSil)halogen, and CN;
- wherein
- Rc and Rd are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl,
- RSij, RSik and RSil are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSimRSin]q—RSio,
- wherein
- q is an integer from 1 to 50,
- RSim, RSin, RSio are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSipRSiq]r—RSir,
-
-
-
-
- wherein
- r is an integer from 1 to 50, RSip, RSiq, RSir are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
- C1-30-alkyl, C2-30-alkenyl and C2-30 -alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN.
-
-
-
- Even more preferably, R1 is at each occurrence selected from the group consisting of C1-50-alkyl, C2-50-alkenyl and C2-50-alkynyl,
-
- wherein
- C1-50-alkyl, C2-50-alkenyl and C2-50-alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-50alkyl, C2-50-alkenyl and C2-50-alkynyl can be replaced by O or S,
- wherein
- Ra is independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl and C6-10-aryl,
- RSia, RSib and RSic are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSidRSie]o—RSif,
- wherein
- o is an integer from 1 to 50,
- RSid, RSie, RSif are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih]p—RSii,
-
-
-
- wherein
- p is an integer from 1 to 50,
- RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
-
- C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN.
-
- Most preferably, R1 is at each occurrence selected from the group consisting of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl,
-
- wherein
- C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be replaced by O or S,
- wherein
- Ra is independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl and C6-10-aryl
- RSia, RSiband RSic are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—Si RSidRSie]o—R Sif
- wherein
- o is an integer from 1 to 50,
- RSid, RSie, RSif are independently selected from the group consisting of H, 01-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih] pRSii,
- wherein
- p is an integer from 1 to 50,
- RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN.
- In particular, R1 is at each occurrence unsubstituted C1-36-alkyl.
- Preferably, R2 is at each occurrence selected from the group consisting of hydrogen, C1-30-alkyl and halogen,
-
- wherein
- C1-30-alkyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-30-alkyl can be replaced by O or S,
- wherein
- RSis, RSit and RSiu are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
- Re and Rf are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
- wherein
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][CRh], SRg, halogen, CN, and NO2;
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, 02-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][CRh], SRg, halogen, CN, and NO2;
- wherein
- Rg and Rh are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
- More preferably, R2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C1-30-alkyl and halogen.
- In particular, R2 is in each occurrence hydrogen.
- Preferably, n is 0, 1 or 2. More preferably, n is 0 or 1. Most preferably, n is 0.
- Preferably, m is 0, 1 or 2.
- Preferably, L1 and L2 are independently from each other and at each occurrence selected from the group consisting of C6-18-arylene, 5 to 20 membered heteroarylene,
-
- and
-
- wherein
- C6-18-arylene and 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C—OR31, C(O)—R31, NR31R32, NR31-13 C(O)R32, C(O)—NR31R32SR31, halogen, CN, SiRSivRSiwRSix and OH, and
- wherein
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42, C(O)—OR41 and CN,
-
- wherein
- R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and
- wherein
- C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
- C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
- C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2,
- wherein
- RSiv, RSiw, RSix are independently from each other selected from the group consisting of H, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
- Ri and Rj are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
- wherein
- C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
- wherein
- Rk and Rl are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
- More preferably, L1 and L2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
-
- and
- wherein 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-20-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C(O)-13 R31, C(O)—R31, NR31R32, NR31—C(O)R32, C(O)—NR31R32, SR31, halogen, CN, SiRSivRSiwRSix and OH, and
-
- wherein
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42, C(O)—OR41 and CN,
- wherein
- R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalky, C6-18-aryl and 5 to 20 membered heteroaryl, and
- wherein
- C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
- C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Ri, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
- C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRiC(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2,
- wherein
- RSiv, RSiw, RSix are independently from each other selected from the group consisting of H, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
- Ri, and Rj are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
- wherein
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Ri, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, 6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—R, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
-
-
- wherein
- Rk and Rl are independently selected from the group consisting of H, C1-10—alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
-
-
- Even more preferably, L1 and L2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
-
- and
- wherein 5 to 20 membered heteroarylene is selected from the group consisting of
- wherein
- R104 and R105 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R104 and R105, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
-
- wherein
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- wherein
- Rs and Rt are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2,
- wherein
- 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl and halogen, and
- wherein
-
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C(O)—R41, C(O)—OR41 and CN,
- wherein
- R41 is at each occurrence C1-30-alkyl.
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C(O)—R41, C(O)—OR41 and CN,
- Most preferably, L1 and L2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene,
- wherein 5 to 20 membered heteroarylene is selected from the group consisting of
-
- wherein
- R104 and R105 are independently and at each occurrence selected from the group consisting of H and C1-20-alkyl,
- wherein
- 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl and halogen.
- In particular, L1 and L2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene,
- wherein 5 to 20 membered heteroarylene is selected from the group consisting of
-
- wherein
- 5 to 20 membered heteroarylene is unsubstituted.
- In preferred polymers comprising at least one unit of formula (1)
- wherein
- n is 0, 1, 2 or 3,
- m is 0, 1, 2 or 3, and
- L1 and L2 are independently from each other and at each occurrence selected from the group consisting of C6-18-arylene, 5 to 20 membered heteroarylene,
-
- and
- wherein
- C6-18-arylene and 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C(O)—OR31, C(O)—R31, NR31R32, NR31—C(O)R32, C(O)—NR31R32, SR31, halogen, CN, SiRSivRSiwRSix and OH, and
- wherein
-
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42,)C(O)—OR41 and CN,
- wherein
- R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12—cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and wherein
- C1-30alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Ri, C(O)—ORi, C(O)—Ri, NRiRi, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
- C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Ri], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
- C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NR—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2,
- wherein
- RSiv, RSiw, RSix are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
- Ri and Rj are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
- wherein
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rk], SRk, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
- wherein
- Rk and Rl are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42,)C(O)—OR41 and CN,
- R2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C1-30-alkyl and halogen,
- L1 and L2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
-
- and
- wherein
- 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C(O)—OR31, C(O)—R31, NR31R32, NR31—C(O)R32, C(O)—NR31R32, SR31, halogen, CN, SiRSivRSiwRSix and OH, and
- wherein
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42, C(O)—OR41 and CN,
-
- wherein
- R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and
- wherein
- C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Ri, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30alkynyl can be replaced by O or S,
- C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Ri, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rl], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
- In even more preferred polymers comprising at least one unit of formula (1)
- R1 is at each occurrence selected from the group consisting of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl,
-
- wherein
- C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be replaced by O or S,
- wherein
- Ra and Rb are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl and C6-10-aryl
- RSia, RSib and RSic are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSidRSie]o—RSif
- wherein
- o is an integer from 1 to 50,
- RSid, RSie, RSif are independently selected from the group consisting of H, C1-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih]p-RSii,
-
-
-
-
- wherein
- is an integer from 1 to 50,
- RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkly, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
-
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN,
-
- R2 is at each occurrence selected from the group consisting of unsubstituted hydrogen, C1-30-alkyl and halogen,
-
- n is 0 or 1,
- m is 0, 1 or 2, and
- L1 and L2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
-
- and
- wherein 5 to 20 membered heteroarylene is selected from the group consisting of
-
- wherein p1 R104 and R105 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R104 and R105, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
- wherein
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt,C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, 02-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
- wherein
- Rs and Rt are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
- wherein
- C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2,
- wherein
- 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl and halogen, and
- wherein
- wherein p1 R104 and R105 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R104 and R105, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
-
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C(O)—R41, C(O)—OR41 and CN,
- wherein
- R41 is at each occurrence C1-30-alkyl.
- can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C(O)—R41, C(O)—OR41 and CN,
- In most preferred polymers comprising at least one unit of formula (1)
- R1 is at each occurrence unsubstituted C1-36-alkyl,
- R2 is hydrogen,
- n is 0,
- m is 0, 1 or 2, and
- L1 and L2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene,
- wherein 5 to 20 membered heteroarylene is selected from the group consisting of
-
- wherein
- 5 to 20 membered heteroarylene is unsubstituted.
- Particular preferred polymers of the present invention comprise at least one unit of formula
- The polymers of the present invention have preferably a weight average molecular weight (Mw) of 1 to 10000 kDa and a number average molecular weight (Mn) of 1 to 10000 kDa. The polymers of the present invention have more preferably a weight average molecular weight (Mw) of 1 to 1000 kDa and a number average molecular weight (Mn) of 1 to 100 kDa. The polymers of the present invention have most preferably a weight average molecular weight (Mw) of 10 to 100 kDa and a number average molecular weight (Mn) of 5 to 60 kDa. The weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined by gel permeation chromatography (GPC) at 80° C. using chlorobenzene as eluent and a polystyrene as standard.
- The polymers of the present invention can be prepared by methods known in the art.
- For examples, polymers of the present invention comprising at least one unit of formula (1), wherein n is 0 and which are of formula (1-I)
- wherein
- R1, R2 and L2 are as defined above,
- m is 0, 1, 2 or 3,
- can be prepared by reacting a compound of formula (2)
- wherein Y is at each occurrence I, Br, CI or O—S(O)2CF3, and R1 and R2 are as defined above, with one mol equivalents of a compound of formula (3)
-
- wherein
- L2 is as defined for the compound of formula (1-I), and
- Za and Zb are independently selected from the group consisting of B(OZ1)(OZ2), SnZ1Z2Z3,
-
- wherein Z1, Z2, Z3, Z4, Z5 and Z6 are independently from each other and at each occurrence H or C1-4-alkyl.
- For examples, polymers of the present invention comprising at least one unit of formula (1), wherein n and m are 0 and which are of formula (1-11)
- wherein
- R1 and R2 are as defined above
- can be prepared by reacting a compound of formula (2)
- wherein Y is at each occurrence I, Br, CI or O—S(O)2CF3, and R1 and R2are as defined above, with a compound of formula (8)
- wherein
- R1 and R2are as defined for the compound of formula (1-11), and
- Za and Zb are independently selected from the group consisting of B(OZ1)(OZ2), SnZ1Z2Z3,
-
- wherein Z1, Z2, Z3, Z4, Z5 and Z6 are independently from each other and at each occurence H or C1-4-alkyl.
- When Za and Zb are independently selected from the group consisting of B(OZ1)(OZ2),
- wherein Z1, Z2, Z3, Z4, Z5 and Z6 are independently from each other and at each occurrence H or C1-4-alkyl,
- the reaction is usually performed in the presence of a catalyst, preferably a Pd catalyst such as Pd(P(Ph)3)4, Pd(OAc)2 and Pd2(dba)3, and a base such as K3PO4, Na2CO3, K2CO3, LiOH and NaOMe. Depending on the Pd catalyst, the reaction may also require the presence of a phosphine ligand such as P(Ph)3, P(o-tolyl)3 and P(tert-Bu)3. The reaction is also usually performed at elevated temperatures, such as at temperatures in the range of 40 to 250° C., preferably 60 to 200° C. The reaction can be performed in the presence of a suitable solvent such as tetrahydrofuran, toluene or chlorobenzene. The reaction is usually performed under inert gas.
- When Za and Zb are independently SnZ1Z2Z3, wherein Z1, Z2 and Z3 are independently from each other C1-4-alkyl, the reaction is usually performed in the presence of a catalyst, preferably a Pd catalyst such as Pd(P(Ph)3)4 and Pd2(dba)3. Depending on the Pd catalyst, the reaction may also require the presence of a phosphine ligand such as P(Ph)3, P(o-tolyl)3 and P(tert-Bu)3. The reaction is also usually performed at elevated temperatures, such as at temperatures in the range of 40 to 250° C., preferably 60 to 200° C. The reaction can be performed in the presence of a suitable solvent such as toluene or chlorobenzene. The reaction is usually performed under inert gas.
- The compound of formula (2) can be prepared by methods known in the art.
- For examples, compounds of formula (2), wherein
- wherein Y is I, Br, CI or O-triflate, and R1 is at each occurrence unsubstituted C1-36-alkyl, can be prepared by treating a compound of formula (2′)
- wherein R1 is at each occurrence unsubstituted C1-36-alkyl, with an Y-donor.
- For example, when Y is Br, the Y-donor can be N-bromosuccinimide. When using N-bromosuccinimide as Y-donor, the reaction can be performed at 0° C. in the presence of CHCI3/acetic acid as solvent.
- A compound of formula (3), wherein R1 is at each occurrence unsubstituted C1-36-alkyl, can be prepared by treating a compound of formula (4)
- wherein R1 is at each occurrence unsubstituted C1-36-alkyl, with Eaton's reagent.
- A compound of formula (4), wherein R1 is at each occurrence unsubstituted C1-36-alkyl, can be prepared by treating a compound of formula (5)
- wherein R1 is at each occurrence unsubstituted C1-36-alkyl, with a compound of formula (6)
- The reaction is usually performed in a suitable solvent such as toluene and at a suitable temperature such as in the range of 0 to 140° C.
- The compound of formula (5), wherein R1 is at each occurrence unsubstituted C1-36-alkyl, can be prepared by treating a compound of formula (7)
- with bis(pinacolato)diboron.
- The reaction is usually performed in the presence of a catalyst, preferably a palladium catalyst. The reaction is usually performed in a suitable solvent, such as anhydrous toluene, at elevated temperatures such as in the range of 40 to 160° C.
- 6,6′-Dibromo isoindigo (7) and Bromo-3-methylsulfinylthiophene (6) can be synthesized according to the literature (Org. Lett. 2010, 12, 660-663; Adv. Mater. 2013, 25, 838-843.
- Also part of the invention are intermediates of formulae
- wherein
- R1 and R2 are as defined above,
- Y is at each occurence I, Br, CI or O—S(O)2CF3.
- In preferred intermediates of formulae (2) and (2′)
- R1 is at each occurrence selected from the group consisting of C1-50-alkyl, C2-50-alkenyl and C2-50-alkynyl,
-
- wherein
- C1-50-alkyl, C2-50-alkenyl and C2-50 -alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-50-alkyl, C2-50 -alkenyl and C2-50-alkynyl can be replaced by O or S,
- wherein
- Ra is independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl and C6-10-aryl,
- RSia, RSib and RSic are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSidRSie]o—RSif,
- wherein
- o is an integer from 1 to 50,
- RSid, RSie, RSif are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih]p—RSii,
- wherein
- p is an integer from 1 to 50,
- RSigRSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
- C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN,
- R2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C1-30-alkyl and halogen, and
- Y is at each occurence I, Br, CI or —O—S(O)2CF3.
- In more preferred intermediates of formulae (2) and (2′)
- R1 is at each occurrence selected from the group consisting of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl,
-
- wherein
- C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic,) halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be replaced by O or S,
- wherein
- Ra is independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl and C6-10-aryl
- RSia, RSib and RSic are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSidRSie]o—RSif
- wherein
- o is an integer from 1 to 50,
- RSid, RSie, RSif are independently selected from the group consisting of H, C1-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih]p—RSii,
- wherein
- is an integer from 1 to 50,
- RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
- C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN,
- R2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C1-30-alkyl and halogen, and
- Y is at each occurence I, Br, CI or —O—S(O)2CF3.
- In even more preferred intermediates of formulae (2) and (2′)
- R1 is at each occurrence unsubstituted C1-36-alkyl, R2 is hydrogen and
- Y is at each occurence I, Br, CI or —O—S(O)2CF3.
- In most preferred intermediates of formula (2)
- Y is at each occurence I, Br or O—S(O)2CF3, and R1 is at each occurrence unsubstituted C1-36-alkyl and R2 is hydrogen.
- Particular preferred intermediate of formula (2)
- wherein, R1 is at each occurrence unsubstituted C1-36-alkyl and R2 is hydrogen.
- Also part of the invention is an electronic device comprising the polymer of the present invention.
- The electronic device can be an organic photovoltaic device (OPVs), an organic field-effect transistor (OFETs), an organic light emitting diode (OLEDs) or an organic photodiode (OPDs).
- Preferably, the electronic device is an organic photovoltaic device (OPVs), an organic field-effect transistor (OFETs) or an organic photodiode (OPDs).
- More preferably, the electronic device is an organic field effect transistor (OFET).
- Usually, an organic field effect transistor comprises a dielectric layer, a semiconducting layer and a substrate. In addition, an organic field effect transistor usually comprises a gate electrode and source/drain electrodes.
- Preferably, the semiconducting layer comprises the polymer of the present invention. The semi-conducting layer can have a thickness of 5 to 500 nm, preferably of 10 to 100 nm, more preferably of 20 to 50 nm.
- The dielectric layer comprises a dielectric material. The dielectric material can be silicon dioxide or aluminium oxide, or, an organic polymer such as polystyrene (PS), poly(methylmethacrylate) (PMMA), poly(4-vinylphenol) (PVP), poly(vinyl alcohol) (PVA), benzocyclobutene (BCB), or polyimide (P1). The dielectric layer can have a thickness of 10 to 2000 nm, preferably of 50 to 1000 nm, more preferably of 100 to 800 nm.
- The dielectric layer can in addition to the dielectric material comprise a self-assembled monolayer of organic silane derivates or organic phosphoric acid derivatives. An example of an organic silane derivative is octyltrichlorosilane. An examples of an organic phosphoric acid derivative is octyldecylphosphoric acid. The self-assembled monolayer comprised in the dielectric layer is usually in contact with the semiconducting layer.
- The source/drain electrodes can be made from any suitable organic or inorganic source/drain material. Examples of inorganic source/drain materials are gold (Au), silver (Ag) or copper (Cu), as well as alloys comprising at least one of these metals. The source/drain electrodes can have a thickness of 1 to 100 nm, preferably from 20 to 70 nm.
- The gate electrode can be made from any suitable gate material such as highly doped silicon, aluminium (Al), tungsten (W), indium tin oxide or gold (Au), or alloys comprising at least one of these metals. The gate electrode can have a thickness of 1 to 200 nm, preferably from 5 to 100 nm.
- The substrate can be any suitable substrate such as glass, or a plastic substrate such as polyethersulfone, polycarbonate, polysulfone, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). Depending on the design of the organic field effect transistor, the gate electrode, for example highly doped silicon can also function as substrate.
- The organic field effect transistor can be prepared by methods known in the art.
- For example, a bottom-gate top-contact organic field effect transistor can be prepared as follows: The dielectric material, for example Al2O3 or silicon dioxide, can be applied as a layer on a gate electrode such as highly doped silicon wafer, which also functions as substrate, by a suitable deposition method such as atom layer deposition or thermal evaporation. A self-assembled monolayer of an organic phosphoric acid derivative or an organic silane derivative can be applied to the layer of the dielectric material. For example, the organic phosphoric acid derivative or the organic silane derivative can be applied from solution using solution-deposition techniques. The semiconducting layer can be formed by either solution deposition or thermal evaporation in vacuo of the polymer of the present invention on the self-assembled monolayer of the organic phosphoric acid derivative or the organic silane derivative. Source/drain electrodes can be formed by deposition of a suitable source/drain material, for example tantalum (Ta) and/or gold (Au), on the semiconducting layer through a shadow masks. The channel width (W) is typically 10 to 1000 μm and the channel length (L) is typically 5 to 500 μm.
- For example, a top-gate bottom-contact organic field effect transistor can be prepared as follows: Source/drain electrodes can be formed by evaporating a suitable source/drain material, for example gold (Au), on photo-lithographically defined electrodes on a suitable substrate, for example a glass substrate. The semiconducting layer can be formed by depositing a solution of the polymers of the present invention, for example by spin-coating, on the source/drain electrodes, followed by annealing the layer at elevated temperatures such as at a temperature in the range of 80 to 360° C. After quenching the semiconducting layer, a dielectric layer can be formed by applying, for example, by spin-coating, a solution of a suitable dielectric material such as poly(methylmethacryate), on the semiconducting layer. The gate electrode of a suitable gate material, for example gold (Au), can be evaporated through a shadow mask on the dielectric layer.
- Also part of the invention is the use of the polymer of the present invention as semiconducting material.
- The polymers of the present invention show high charge carrier mobilities. The polymer of the present invention can show ambipolar properties with high hole and electron mobilities. In addition, the polymers of the present invention show a high stability, in particular a high thermal stability. Furthermore the polymers of the present invention are compatible with liquid processing techniques. In addition, the polymers of the present invention show a strong absorption of the near infra-red light.
- a) Synthesis of compound I-1 is made is made in analogy to the literature by alkylation of 6,6′-dibromoisoindigo:
- b) Synthesis of 6,6′-diborate ester-isoindigo (I-2)
- A mixture of 6,6′-dibromoisoindigo I-1 (3 g, 2.75 mmol), bis(pinacolato)diboron (1.75 g, 6.88 mmol), Pd(PPh3)2Cl2 (190 mg, 0.275 mmol) and potassium acetate (1.08 g, 11 mmol) in anhydrous toluene (50 mL) are heated to 110° C. for 16 h under argon. The reaction mixture is then cooled to r.t and plugged through a short pad silica gel with methylene chloride. The collected filtration is concentrated and dried to give 6, 6′-diborate ester isoindigo without further purification as a dark red solid (2.65 g, 81%). 1H NMR (400 MHz, CDCI3, 300 K), δ (ppm): 9.14 (d, 3J=7.9 Hz, 2 H), 7.48 (dd, 3J=7.9, 4J=0.6 Hz, 2 H), 7.16 (s, 2 H), 3.70-3.68 (m, 4 H), 1.96 (t, 2 H), 1.36 (s, 24 H), 1.35-1.24 (m, 80 H), 0.89-0.85 (m, 12 H). 13C NMR (100 MHz, CDCI3, 300 K), δ (ppm): 168.09, 144.47, 134.31, 128.88, 128.74, 124.24, 113.50, 84.03, 44.45, 31.94, 30.02, 29.66, 29.37, 24.88, 22.70, 14.13.
- c) Synthesis of 6, 6′- di(3-methylsulfinylthiophene) isoindigo (I-4):
- To an oven-dried 20 mL microwave vial, 6, 6′-diborate easter-isoindigo (I-2) (1.0 g, 7.7 mmol), Pd2(dba)3 (38 mg, 0.038 mmol) and P-(o-tol)3 (46 mg, 0.15 mmol), Bromo-3-methylsulfinylthiophene (I-3, made in analogy to the literature) (430 mg, 19.25 mol), the tube is sealed, then toluene (10 mL) with 2 drops of aliquat and 2M K3PO4 (3.5 mL) are added. The mixture is degassed under Argon for half an hour, and then the argon inlet is removed. The tube is subjected to reflux for 18 h. After cooling to room temperature, the reaction mixture is extracted with EA, and the organic phase is collected and dried with magnesium sulfate, solvent is removed by the reduced pressure, purified by column chromatography (eluent: DCM: EA=10:1) to afford a dark red solid (530 mg, 53%). 1H NMR (400 MHz, CDCI3, 300 K) δ (ppm): 9.26 (d, 3J=8.3 Hz, 2 H), 7.66 (d, 3J =5.4 Hz, 2 H), 7.50 (d, 3J =5.4 Hz, 2 H), 7.12 (dd, 3J =8.3, 4J=1.6 Hz, 2H), 6.95 (d, 4J =1.4 Hz, 2 H), 3.76-3.65 (m, 4 H), 2.79 (s, 6 H), 1.94 (t, 2 H), 1.37-1.23 (m, 80 H), 0.88-0.84 (m, 12 H). 13C NMR (100 MHz, CDCl3, 300 K), δ (ppm): 168.53, 145.66, 143.24, 135.45, 132.98, 130.72, 127.27, 125.41, 123.22, 122.00, 108.69, 44.05, 31.92, 31.76, 30.08, 29.63, 29.36, 26.52, 22.69, 14.12. HRMS (ESI, pos. mode): Calculated for C74H115N2O4S4: 1223.7661, [M+H]+, found: 1223.7594.
- d) Synthesis of BTTIID (I-5)
- 6,6′-di(3-methylsulfinylthiophene) isoindigo (I-4) (800 mg, 0.65 mmol) is stirred with Eaton's reagent (6 mL) at room temperature in the dark for 3 days. The mixture is poured into ice-water, extracted with chloroform and the organic phased is dried with MgSO4, the solvent is removed by reduced pressure and the crude product is dried in vacuum, which is followed to be redissolved in pyridine (10 mL) and then the mixture is refluxed overnight. After the mixture is cooled to room temperature, extracted with chloroform and diluted hydrochloride acid, the separated organic phase is dried over MgSO4, and solvent is removed by reduced pressure. The crude is purified by column chromatography on silica gel (eluent: CHCl3: PE=1:3) to afford a red solid BTTIID (I-5) (450 mg, 59%). 1H NMR (400 MHz, CDCl3, 300 K) δ (ppm): 9.81 (s, 2 H), 7.56 (d, 3J=5.1 Hz, 2 H), 7.32 (d, 3J=5.1 Hz, 2 H), 6.98 (s, 2 H), 3.72-3.70 (m, 4 H), 1.99 (t, 2 H), 1.38-1.21 (m, 80H), 0.88-0.83 (m, 12 H).13C NMR (100 MHz, CDCl3, 300 K), 6 (ppm): 168.52, 142.60, 142.18, 136.62, 134.86, 134.48, 132.12, 129.38, 125.86, 120.74, 120.07, 99.45, 44.74, 31.93, 31.67, 30.05, 29.68, 29.36, 26.54, 22.69, 14.12. MS (MALDI-TOF, CHCl3): Calculated for C72H106N202S4: 1158.71, found: 1158.4. UV-vis (CHCl3): lmax/nm (e/M-1 cm-1) =510 (36700). CV (CH2012, 0.1 M TBAHFP, vs Fc/Fc+): E1/2red (X/X−)=−1.28 V, E1/2red (X/X2−)=−1.64 V, E1/2ox (X/X+)=0.78 V
- Synthesis of dibromo BTTIID (I-6)
- NBS (65g, 0.36 mmol) is added in small portions to a solution of benzothienothiophene isoindigo (200g, 0.17 mmol) in CHCl3/AcOH (20 mL: 5 mL), the reaction mixture is stirred at reflux for about 5 h, which can be monitored by TLC. When the reaction is finished, cooled down to room temperature, the solvent is removed by reduced pressure and purified by column chromatography on silica gel (eluent: CHCl3: PE=1:4) to afford a red solid dibromo-BTTIID (I-6) (164 mg, 72%). 1H NMR (400 MHz, CDCl3, 300 K), 6 (ppm): 9.70 (s, 2 H), 7.23 (s, 2 H), 6.67 (s, 2 H), 3.66−3.64 (m, 4 H), 1.92 (t, 2 H), 1.37−1.21 (m, 80 H), 0.88−0.83 (m, 12 H).130 NMR (100 MHz, CDCl3, 300 K), 6 (ppm): 168.25, 142.62, 140.63, 135.07, 134.79, 133.61, 131.87, 125.68, 123.27, 120.07, 116.14, 98.77, 44.72, 31.94, 30.08, 29.75, 29.69, 29.39, 26.61, 22.71, 14.13. MS (MALDI-TOF, CHCl3): Calculated for C72H104Br2N2O2S4: 1314.5, found: 1314.1.
- Synthesis of P1
- To a microwave vial is added dibromoBTTIID (I-6) (100 mg, 0.076 mmol, 1 equiv.) and 2,5-bis(trimethylstannyl)thiophene (31.04 mg, 0.076 μmol, 1 equiv), Pd2(dba)3 (1.50 mg) and P(o-Tol)3 (1.84 mg). The tube is sealed and flushed with Argon, and then degassed chlorobenzene (2 mL) is added. The mixture is thoroughly degassed under Argon, and then the argon inlet is removed. The tube is subjected to the following conditions in a microwave reactor: 100° C. for 5 min, 140° C. for 5 min, 160° C. for 30 min. After cooling to RT, the polymer is precipitated into methanol, and filtered through a Soxhlet thimble. The polymer is extracted using Soxhlet apparatus with methanol, acetone, hexane, dichloromethane, chloroform and chlorobenzene. The chlorobenzene solution is concentrated and precipitated into methanol. The precipitates are filtered and dried under vacuum to afford P1 as a dark blue solid (40 mg, 40%). GPC (chlorobenzene, 80° C.): Mn 33000, Mw 91135 g mol-1, PDI=2.74. 1H NMR (1,1,2,2-tetrachloroethane-d2, 130° C., 400 MHz), δ (ppm): 9.68 (broad), 6.63 (broad), 3.96−3.89 (broad), 2.15−2.13 (broad), 1.76−0.96 (broad).
- Synthesis of P2
- To a microwave vial is added dibromoBTTIID (I-6) (68.6 mg, 0.052 mmol,1 equiv.) and 2,5-bis(trimethylstannyl)selenophene (23.78 mg, 0.052 μmol, 1 equiv), Pd2(dba)3 (2 mg) and P(o-Tol) 3 (2.58 mg). The tube is sealed and flushed with Argon, and then degassed chlorobenzene (1.0 mL) is added. The mixture is thoroughly degassed under Argon, and then the argon inlet is removed. The tube is subjected to the following conditions in a microwave reactor: 100° C. for 5 min, 140° C. for 5 min, 160° C. for 30 min. After cooling to RT, the polymer is precipitated into methanol, and filtered through a Soxhlet thimble. The polymer is extracted using Soxhlet apparatus with methanol, acetone, hexane, dichloromethane, chloroform and chlorobenzene. The chloroform and chlorobenzene solution is concentrated and precipitated into methanol. The precipitates are filtered and dried under vacuum to afford P2 as a dark blue solid (55 mg (chloroform) and 6 mg (chlorobenzene), 87.1%). 1H NMR (1,1,2,2-tetrachloroethane-d2, 130° C., 400 MHz), δ (ppm): 9.67 (broad), 6.49 (broad), 3.96−3.87 (broad), 1.64−0.96 (broad). GPC (chloroform fraction) (chlorobenzene, 80° C.): Mn 51500, Mw 17966 g mol-1, PDI=3.49.
- Synthesis of P3
- The synthesis of polymer P3 is made in analogy to the synthesis of polymer P2:
- Synthesis of P4
- The synthesis of polymer P4 is made in analogy to the synthesis of polymer P2:
- Synthesis of P5
- The synthesis of polymer P5 is made in analogy to the synthesis of polymer P2:
- Synthesis of compound (I-7)
- Compound I-7 is synthesized in analogy to compound I-5
- Synthesis of compound (I-8)
- Compound I-8 is synthesized from I-7 in analogy to compound I-6
- Synthesis of polymer (P6)
- Polymer P6 is synthesized from I-8 in analogy to polymer P2
- Synthesis of compound (I-9)
- Compound I-9 is synthesized in analogy to compound I-5
- Fabrication and electrical characterization of organic field-effect transistors (OFET) based on compounds and polymers of the present invention
- Preparation of back-contact, top-gate FETs
- Semiconducting compound I-x or polymer Px is dissolved at a concentration of 0,75wt % in orthodichlorobenzene and subsequently coated onto a PET-substrate with lithographically prepatterned gold contacts, serving as Source and Drain contact of the FET. 100 μl of the formulation is coated by a standard blade coater at a coating speed of 20 mm/s, yielding a homogenous layer of the semiconductor over the entire substrate. After the coating is completed, the substrate is immediately transferred onto a preheated hotplate and heated for 30s at 90° C. Next the gate dielectric layer consisting of Cytop CTL-809M is spincoated on top of the organic semiconductor (1200 rpm, 30s). After Spincoating, the substrate is again transferred to the hotplate and annealed for another 5 Min at 100° C. The thickness of the dielectric layer is 535 nm measured by profilometer. Finally 50 nm thick shadow-mask patterend gold gate electrodes are deposited by vacuum evaporation to complete FETs in the BGTC-configuration (See FIG. 1a-h)
- Electrical characterization
- The mobility μ is calculated from the root representation of the transfer characteristic curve (solid grey curve) calculated in the saturation region. The slope m is determined from the dashed black line in FIG. 1. The dashed black line in FIG. 1 is fitted to a region of the root representation of the current characteristic ID such that a good correlation to the linear slope of the root representation is obtained.
- The threshold voltage UTh can be taken from the intersection of black dashed line in FIG. 1 with the X-axis portion (VGS).
- In order to calculate the electrical properties of the OFET, the following equations are employed:
-
- where ε0 is the vacuum permittivity of 8.85×10−12 As/Vm. εr=2,1 for Cytop and d=535 nm is the thickness of the dielectric. With the channel length L=10 μm and the channel width W=250 μm.
- The following mobilities have been calculated for the respective compounds:
-
Compound I-x Field-effect mobility μ Threshold voltage ON/OFF Polymer Px [cm2/Vs] UTH [V] ratio I-7 1.3E−2 0.72 5E3 I-9 6E−4 −10.8 8E2 P6 3E−3 −6.0 1E3 P1 high Mw 4.5E−2 −4.7 6E4 P3 5E−4 −13.87 7E2 P1 low Mw 9E−3 −3.62 9E3 P2 5E−2 −2.05 1E4 P4 2E−3 7.5 3E8
Claims (14)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15151475 | 2015-01-16 | ||
EP15151475 | 2015-01-16 | ||
EP15151475.9 | 2015-01-16 | ||
PCT/EP2016/050801 WO2016113403A1 (en) | 2015-01-16 | 2016-01-15 | Benzothienothiophene isoindigo polymers |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180009936A1 true US20180009936A1 (en) | 2018-01-11 |
US10669371B2 US10669371B2 (en) | 2020-06-02 |
Family
ID=52345129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/543,637 Active US10669371B2 (en) | 2015-01-16 | 2016-01-15 | Benzothienothiophene isoindigo polymers |
Country Status (6)
Country | Link |
---|---|
US (1) | US10669371B2 (en) |
EP (1) | EP3245273B1 (en) |
JP (1) | JP6713470B2 (en) |
KR (1) | KR102410745B1 (en) |
CN (1) | CN107109214B (en) |
WO (1) | WO2016113403A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7026391B2 (en) | 2016-05-25 | 2022-02-28 | クラップ カンパニー リミテッド | Semiconductor polymer |
KR102568844B1 (en) * | 2016-12-06 | 2023-08-21 | 주식회사 클랩 | Thieno-indeno-monomers and polymers |
CN110317210B (en) * | 2018-03-30 | 2021-06-01 | 中国科学院化学研究所 | Planar indenoindene-dithiophene photovoltaic acceptor material, preparation method and application thereof |
CN112079996B (en) * | 2020-09-18 | 2022-07-19 | 徐州工程学院 | A kind of high plane n-type polymer and its preparation method and use |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170084839A1 (en) * | 2014-03-17 | 2017-03-23 | Merck Patent Gmbh | Organic semiconducting compounds |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3025771A1 (en) | 1980-07-08 | 1982-02-04 | Basf Ag, 6700 Ludwigshafen | METHOD FOR THE PRODUCTION OF ELECTRICALLY CONDUCTIVE SOLUBLE HETEROPOLYPHENYLENE AND THEIR USE IN ELECTROTECHNICS AND FOR THE ANTISTATIC EQUIPMENT OF PLASTICS |
US8758880B2 (en) | 2007-10-25 | 2014-06-24 | Basf Se | Ketopyrroles as organic semiconductors |
CN103154057B (en) * | 2010-11-25 | 2015-04-01 | 海洋王照明科技股份有限公司 | Conjugated polymer containing isoindigo units, preparation method and use thereof |
US8613870B2 (en) * | 2012-01-27 | 2013-12-24 | Xerox Corporation | Isothioindigo-based polymers |
KR102030867B1 (en) * | 2012-04-02 | 2019-10-10 | 바스프 에스이 | Phenanthro[9,10-b]furan polymers and small molecules for electronic applications |
-
2016
- 2016-01-15 EP EP16700757.4A patent/EP3245273B1/en active Active
- 2016-01-15 CN CN201680005668.2A patent/CN107109214B/en active Active
- 2016-01-15 JP JP2017537371A patent/JP6713470B2/en not_active Expired - Fee Related
- 2016-01-15 KR KR1020177022344A patent/KR102410745B1/en active Active
- 2016-01-15 US US15/543,637 patent/US10669371B2/en active Active
- 2016-01-15 WO PCT/EP2016/050801 patent/WO2016113403A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170084839A1 (en) * | 2014-03-17 | 2017-03-23 | Merck Patent Gmbh | Organic semiconducting compounds |
Also Published As
Publication number | Publication date |
---|---|
JP2018504492A (en) | 2018-02-15 |
KR102410745B1 (en) | 2022-06-20 |
WO2016113403A1 (en) | 2016-07-21 |
JP6713470B2 (en) | 2020-06-24 |
US10669371B2 (en) | 2020-06-02 |
EP3245273A1 (en) | 2017-11-22 |
EP3245273B1 (en) | 2018-11-07 |
CN107109214B (en) | 2020-05-08 |
KR20170106991A (en) | 2017-09-22 |
CN107109214A (en) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10815236B2 (en) | Semiconducting polymer | |
US11667650B2 (en) | Thieno-indeno-monomers and polymers | |
JP5812730B2 (en) | Organic semiconductor composition, organic thin film, and organic thin film transistor comprising the same | |
US10669371B2 (en) | Benzothienothiophene isoindigo polymers | |
US10793668B2 (en) | Naphthoindacenodithiophenes and polymers | |
US10020456B2 (en) | Ether-based polymers as photo-crosslinkable dielectrics | |
US10403822B2 (en) | Thienothiophene-isoindigo | |
US20210277157A1 (en) | Vinylether-based polymer as dielectric | |
US11778893B2 (en) | Indaceno derivatives as organic semiconductors | |
US10059797B2 (en) | Preparation of polymers comprising at least one benzo[c][1,2,5]thiadiazol-5,6-dicarbonitrile-unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASF SCHWEIZ AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAYOZ, PASCAL;REEL/FRAME:044536/0867 Effective date: 20170622 Owner name: BASF SE, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAELBLEIN, DANIEL;REEL/FRAME:044536/0869 Effective date: 20170620 |
|
AS | Assignment |
Owner name: BASF SE, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BASF SCHWEIZ AG;REEL/FRAME:044649/0178 Effective date: 20180109 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
AS | Assignment |
Owner name: CLAP CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BASF SE;REEL/FRAME:052459/0201 Effective date: 20200121 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |