+

US20180009936A1 - Benzothienothiophene isoindigo polymers - Google Patents

Benzothienothiophene isoindigo polymers Download PDF

Info

Publication number
US20180009936A1
US20180009936A1 US15/543,637 US201615543637A US2018009936A1 US 20180009936 A1 US20180009936 A1 US 20180009936A1 US 201615543637 A US201615543637 A US 201615543637A US 2018009936 A1 US2018009936 A1 US 2018009936A1
Authority
US
United States
Prior art keywords
alkyl
alkenyl
alkynyl
cycloalkyl
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/543,637
Other versions
US10669371B2 (en
Inventor
Pascal Hayoz
Daniel KAELBLEIN
Iain McCulloch
Wan Yue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clap Co Ltd
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Assigned to BASF SCHWEIZ AG reassignment BASF SCHWEIZ AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAYOZ, PASCAL
Assigned to BASF SE reassignment BASF SE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAELBLEIN, DANIEL
Publication of US20180009936A1 publication Critical patent/US20180009936A1/en
Assigned to BASF SE reassignment BASF SE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BASF SCHWEIZ AG
Assigned to CLAP CO., LTD. reassignment CLAP CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BASF SE
Application granted granted Critical
Publication of US10669371B2 publication Critical patent/US10669371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • H01L51/0071
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1483Heterocyclic containing nitrogen and sulfur as heteroatoms
    • H01L51/0558

Definitions

  • the present invention relates to Benzothienothiophene isoindigo polymers, to a process for the preparation of these polymers, to intermediates, to electronic devices comprising these polymers, as well as to the use of these polymers as semiconducting material.
  • Organic semiconducting materials can be used in electronic devices such as organic photovoltaic devices (OPVs), organic field-effect transistors (OFETs), organic light emitting diodes (OLEDs), organic photodiodes (OPDs) and organic electrochromic devices (ECDs).
  • OLEDs organic photovoltaic devices
  • OFETs organic field-effect transistors
  • OLEDs organic light emitting diodes
  • OPDs organic photodiodes
  • ECDs organic electrochromic devices
  • the organic semiconducting materials are compatible with liquid processing techniques such as spin coating as liquid processing techniques are convenient from the point of processability, and thus allow the production of low cost organic semiconducting material-based electronic devices.
  • liquid processing techniques are also compatible with plastic substrates, and thus allow the production of light weight and mechanically flexible organic semiconducting material-based electronic devices.
  • organic photovoltaic devices OLEDs
  • organic field-effect transistors OFETs
  • organic photodiodes OLEDs
  • organic photovoltaic devices OLEDs
  • OPDs organic photodiodes
  • the organic semiconducting materials should also show a strong absorption of the visible light and of the near infra-red light.
  • WO 2009/053291 describes semiconducting polymers comprising the following units
  • the polymers of the present invention comprise at least one unit of formula
  • R 1 is at each occurrence selected from the group consisting of H, C 1-100 -alkyl, C 2-100 -alkenyl, C 2-100 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl, a 5 to 20 membered heteroaryl, C(O)—C 1-100 -alkyl, C(O)—C 5-12 -cycloalkyl and C(O)—OC 1-100 -alkyl,
  • R Sia , R Sib and R Sic are independently selected from the group consisting of H, C 1-60 -alkyl, C 2-60 -alkenyl, C 2-60 -alkynyl, C 5-18 -cycloalkyl, C 6-14 -aryl, 5 to 14 membered heteroaryl, O—C 1-60 -alkyl, O—C 2-60 -alkenyl, O—C 2-60 -alkynyl, O—C 5-8 -cycloalkyl, O—C 6-14 -aryl, O-5 to 14 membered heteroaryl, —[O—SiR Sid R Sie ] o —R Sif , NR 5 R 6 , halogen and O—C(O)—R 5 ,
  • R 2 is at each occurrence selected from the group consisting of hydrogen, C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl, 5 to 20 membered heteroaryl, OR 21 , OC(O)—R 21 , C(O)—OR 21 , C(O)—R 21 , NR 21 R 22 , NR 21 —C(O)R 22 , C(O)—NR 21 R 22 , N[C(O)R 21 ][C(O)R 22 ], SR 21 , halogen, CN, SiR Sis R Sit R Siu and OH,
  • n 0, 1, 2 or 3
  • n 0, 1, 2 or 3
  • L 1 and are L 2 are independently from each other and at each occurrence selected from the group consisting of C 6-18 -arylene, 5 to 20 membered heteroarylene,
  • Halogen can be F, CI, Br and I.
  • C 1-4 -alkyl, C 1-10 -alkyl, C 1-20 -alkyl, C 1-30 -alkyl, C 1-36 -alkyl, C 1-50 -alkyl, C 1-60 -alkyl and C 1-100 -alkyl can be branched or unbranched.
  • Examples of C 1-4 -alkyl are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl and tert-butyl.
  • C 1-10 -alkyl examples include C 1-4 -alkyl, n-pentyl, neopentyl, isopentyl, n-(1-ethyl)propyl, n-hexyl, n-heptyl, n-octyl, n-(2-ethyl)hexyl, n-nonyl and n-decyl.
  • C 1-20 -alkyl examples are C 1-10 -alkyl and n-undecyl, n-dodecyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl and n-icosyl (C 20 ).
  • C 1-30 -alkyl, C 1-36 -alkyl, C 1-50 -alkyl, C 1-60 -alkyl and C 1-100 -alkyl are C 1-20 -alkyl and n-docosyl (C 22 ), n-tetracosyl (C 24 ), n-hexacosyl (C 26 ), n-octacosyl (C 28 ) and n-triacontyl (C 30 ).
  • C 2-10 -alkenyl, C 2-20 -alkenyl, C 2-30 -alkenyl, C 2-60 -alkenyl and C 2-100 -alkenyl can be branched or unbranched.
  • Examples of C 1-20 -alkenyl are vinyl, propenyl, cis-2-butenyl, trans-2-butenyl, 3-butenyl, cis-2-pentenyl, trans-2-pentenyl, cis-3-pentenyl, trans-3-pentenyl, 4-pentenyl, 2-methyl-3-butenyl, hexenyl, heptenyl, octenyl, nonenyl and docenyl.
  • Examples of C 2-20 -alkenyl, C 2-60 -alkenyl and C 2-100 -alkenyl are C 2-10 -alkenyl and linoleyl (C 18 ), linolenyl (C 18 ), oleyl (C 18 ), and arachidonyl (C 20 ).
  • Examples of C 2-30 -alkenyl are C 2-20 -alkenyl and erucyl (C 22 ).
  • C 2-10 -alkynyl, C 2-20 -alkynyl, C 2-30 -alkynyl, C 2-60 -alkynyl and C 2-100 -alkynyl can be branched or unbranched.
  • Examples of C 2-10 -alkynyl are ethynyl, 2-propynyl, 2-butynyl, 3-butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl and decynyl.
  • C 2-20 -alkynyl, C 2-30 -alkenyl, C 2-60 -alkynyl and C 2-100 -alkynyl are undecynyl, dodecynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl and icosynyl (C 20 ).
  • C 5-6 -cycloalkyl examples are cyclopentyl and cyclohexyl.
  • Examples of C 5-8 -cycloalkyl are C 5-6 -cycloalkyl and cycloheptyl and cyclooctyl.
  • C 5-12 -cycloalkyl are C 5-8 -cycloalkyl and cyclononyl, cyclodecyl, cycloundecyl and cyclododecyl.
  • C 6-10 -aryl examples include phenyl
  • C 6-14 -aryl examples are C 6-10 -aryl and
  • C 6-18 -aryl examples are C 6-14 -aryl and
  • 5 to 10 membered heteroaryl are 5 to 10 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ⁇ O.
  • 5 to 14 membered heteroaryl are 5 to 14 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by 50 O.
  • 5 to 20 membered heteroaryl are 5 to 20 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ⁇ O.
  • Examples of 5 to 14 membered heteroaryl are the examples given for the 5 to 10 membered heteroaryl and
  • Examples of 5 to 20 membered heteroaryl are the examples given for the 5 to 14 membered heteroaryl and
  • R 100 and R 101 are independently and at each occurrence selected from the group consisting of H, C 1-20 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 5-8 -cycloalkyl, C 6-14 -aryl, and 5 to 14 membered heteroaryl, or R 100 and R 101 , if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
  • C 5-8 -cycloalkyl can be substituted with one to five substituents selected from the group consisting of C 1-10 -alkyl, C 2-10 -alkenyl, C 2-10 -alkynyl, C 5-6 -cycloalkyl, C 6-10 -aryl, 5 to 10 membered heteroaryl, OR q , OC(O)—R q , C(O)—OR q , C(O)—R q , NR q R r , NR q -C(O)R r , C(O)—NR q R r , N[C(O)R q ][C(O)R r ], SR q , halogen, CN, and NO 2 ;
  • C 6-18 -arylene is a 6 to 18 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring system, which comprises at least one C-aromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ⁇ O.
  • R 102 and R 103 are independently and at each occurrence selected from the group consisting of H, C 1-20 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 5-8 -cycloalkyl, C 6-14 -aryl, and 5 to 14 membered heteroaryl, or R 102 and R 103 , if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
  • C 6-14 -aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C 1-10 -alkyl, C 2-10 -alkenyl, C 2-10 -alkynyl, C 5-6 -cycloalkyl, C 6-10 -aryl, 5 to 10 membered heteroaryl, OR s , OC(O)—Rt, C(O)—OR s , C(O)—R s , NR s R t , NR s —C(O)R t , C(O)—NR s R t , N[C(O)R s ][C(O)R t ], SR s , halogen, CN, and NO 2 ;
  • R 104 and R 105 are independently and at each occurrence selected from the group consisting of H, C 1-20 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 5-8 -cycloalkyl, C 6-14 -aryl, and 5 to 14 membered heteroaryl, or R 104 and R 105 , if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
  • the 5 to 12 membered ring system can contain, in addition to the atom, to which R 100 and R 101 , respectively R 102 and R 103 , respectively R 104 and R 105 , are attached, ring members selected from the group consisting of CH 2 , O, S and NR u werein R u is at each occurrence selected from the group consisting of H, C 1-10 -alkyl, C 2-10 -alkenyl and C 2-10 -alkynyl.
  • the polymers of the present invention comprise at least 60% by weight of units of formula (I) based on the weight of the polymer.
  • the polymers of the present invention comprise at least 80% by weight of units of formula (I) based on the weight of the polymer.
  • the polymers of the present invention essentially consist of units of formula (I).
  • R 1 is at each occurrence selected from the group consisting of H, C 1-100 -alkyl, C 2-100 -alkenyl, C 2-100 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl, and a 5 to 20 membered heteroaryl,
  • R 1 is at each occurrence selected from the group consisting of C 1-100 -alkyl, C 2-100 -alkenyl and C 2-100 -alkynyl,
  • R Sim , R Sin , R Sio are independently selected from the group consisting of H, C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-6 -cycloalkyl, C 6-10 -aryl, —[O—SiR Sip R Siq ] r —R Sir ,
  • R 1 is at each occurrence selected from the group consisting of C 1-50 -alkyl, C 2-50 -alkenyl and C 2-50 -alkynyl,
  • R Sid , R Sie , R Sif are independently selected from the group consisting of H, C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-6 -cycloalkyl, C 6-10 -aryl, —[O—SiR Sig R Sih ] p —R Sii ,
  • R 1 is at each occurrence selected from the group consisting of C 1-36 -alkyl, C 2-36 -alkenyl and C 2-36 -alkynyl,
  • R 1 is at each occurrence unsubstituted C 1-36 -alkyl.
  • R 2 is at each occurrence selected from the group consisting of hydrogen, C 1-30 -alkyl and halogen,
  • R 2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C 1-30 -alkyl and halogen.
  • R 2 is in each occurrence hydrogen.
  • n is 0, 1 or 2. More preferably, n is 0 or 1. Most preferably, n is 0.
  • m is 0, 1 or 2.
  • L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of C 6-18 -arylene, 5 to 20 membered heteroarylene,
  • R 4 can be substituted with one or two substituents R 4 at each occurrence selected from the group consisting of C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl and 5 to 20 membered heteroaryl, C(O)—R 41 , C(O)—NR 41 R 42 , C(O)—OR 41 and CN,
  • L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
  • L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
  • R 104 and R 105 are independently and at each occurrence selected from the group consisting of H, C 1-20 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 5-8 -cycloalkyl, C 6-14 -aryl, and 5 to 14 membered heteroaryl, or R 104 and R 105 , if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
  • L 1 and L 2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene,
  • L 1 and L 2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene,
  • n 0, 1, 2 or 3
  • n 0, 1, 2 or 3
  • L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of C 6-18 -arylene, 5 to 20 membered heteroarylene,
  • R 2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C 1-30 -alkyl and halogen,
  • L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
  • 5 to 20 membered heteroarylene can be substituted with one to six substituents R 3 at each occurrence selected from the group consisting of C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl and 5 to 20 membered heteroaryl, OR 31 , OC(O)—R 31 , C(O)—OR 31 , C(O)—R 31 , NR 31 R 32 , NR 31 —C(O)R 32 , C(O)—NR 31 R 32 , SR 31 , halogen, CN, SiR Siv R Siw R Six and OH, and
  • R 4 can be substituted with one or two substituents R 4 at each occurrence selected from the group consisting of C 1-30 -alkyl, C 2-30 -alkenyl, C 2-30 -alkynyl, C 5-12 -cycloalkyl, C 6-18 -aryl and 5 to 20 membered heteroaryl, C(O)—R 41 , C(O)—NR 41 R 42 , C(O)—OR 41 and CN,
  • R 1 is at each occurrence selected from the group consisting of C 1-36 -alkyl, C 2-36 -alkenyl and C 2-36 -alkynyl,
  • R Sid , R Sie , R Sif are independently selected from the group consisting of H, C 1-30 -alkyl, C 2-20 -alkenyl, C 2-20 -alkynyl, C 5-6 -cycloalkyl, C 6-10 -aryl, —[O—SiR Sig R Sih ] p -R Sii ,
  • n 0 or 1
  • n 0, 1 or 2
  • L 1 and L 2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
  • R 1 is at each occurrence unsubstituted C 1-36 -alkyl
  • R 2 is hydrogen
  • n 0,
  • n 0, 1 or 2
  • L 1 and L 2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene
  • Particular preferred polymers of the present invention comprise at least one unit of formula
  • the polymers of the present invention have preferably a weight average molecular weight (M w ) of 1 to 10000 kDa and a number average molecular weight (M n ) of 1 to 10000 kDa.
  • the polymers of the present invention have more preferably a weight average molecular weight (M w ) of 1 to 1000 kDa and a number average molecular weight (M n ) of 1 to 100 kDa.
  • the polymers of the present invention have most preferably a weight average molecular weight (M w ) of 10 to 100 kDa and a number average molecular weight (M n ) of 5 to 60 kDa.
  • the weight average molecular weight (M w ) and the number average molecular weight (M n ) can be determined by gel permeation chromatography (GPC) at 80° C. using chlorobenzene as eluent and a polystyrene as standard.
  • the polymers of the present invention can be prepared by methods known in the art.
  • polymers of the present invention comprising at least one unit of formula (1), wherein n is 0 and which are of formula (1-I)
  • R 1 , R 2 and L 2 are as defined above,
  • n 0, 1, 2 or 3
  • Z a and Z b are independently selected from the group consisting of B(OZ 1 )(OZ 2 ), SnZ 1 Z 2 Z 3 ,
  • polymers of the present invention comprising at least one unit of formula (1), wherein n and m are 0 and which are of formula (1-11)
  • R 1 and R 2 are as defined above
  • R 1 and R 2 are as defined for the compound of formula (1-11), and
  • Z a and Z b are independently selected from the group consisting of B(OZ 1 )(OZ 2 ), SnZ 1 Z 2 Z 3 ,
  • Z a and Z b are independently selected from the group consisting of B(OZ 1 )(OZ 2 ),
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 and Z 6 are independently from each other and at each occurrence H or C 1-4 -alkyl
  • the reaction is usually performed in the presence of a catalyst, preferably a Pd catalyst such as Pd(P(Ph) 3 ) 4 , Pd(OAc) 2 and Pd 2 (dba) 3 , and a base such as K 3 PO 4 , Na 2 CO 3 , K 2 CO 3 , LiOH and NaOMe.
  • a Pd catalyst such as Pd(P(Ph) 3 ) 4 , Pd(OAc) 2 and Pd 2 (dba) 3
  • a base such as K 3 PO 4 , Na 2 CO 3 , K 2 CO 3 , LiOH and NaOMe.
  • the reaction may also require the presence of a phosphine ligand such as P(Ph) 3 , P(o-tolyl) 3 and P(tert-Bu) 3 .
  • the reaction is also usually performed at elevated temperatures, such as at temperatures in the range of 40 to 250° C., preferably 60 to 200° C.
  • the reaction can be performed in the presence of
  • the reaction is usually performed in the presence of a catalyst, preferably a Pd catalyst such as Pd(P(Ph) 3 ) 4 and Pd 2 (dba) 3 .
  • a catalyst preferably a Pd catalyst such as Pd(P(Ph) 3 ) 4 and Pd 2 (dba) 3 .
  • the reaction may also require the presence of a phosphine ligand such as P(Ph) 3 , P(o-tolyl) 3 and P(tert-Bu) 3 .
  • the reaction is also usually performed at elevated temperatures, such as at temperatures in the range of 40 to 250° C., preferably 60 to 200° C.
  • the reaction can be performed in the presence of a suitable solvent such as toluene or chlorobenzene.
  • the reaction is usually performed under inert gas.
  • the compound of formula (2) can be prepared by methods known in the art.
  • R 1 is at each occurrence unsubstituted C 1-36 -alkyl, with an Y-donor.
  • the Y-donor can be N-bromosuccinimide.
  • the reaction can be performed at 0° C. in the presence of CHCI 3 /acetic acid as solvent.
  • a compound of formula (3), wherein R 1 is at each occurrence unsubstituted C 1-36 -alkyl, can be prepared by treating a compound of formula (4)
  • R 1 is at each occurrence unsubstituted C 1-36 -alkyl, with Eaton's reagent.
  • a compound of formula (4), wherein R 1 is at each occurrence unsubstituted C 1-36 -alkyl, can be prepared by treating a compound of formula (5)
  • R 1 is at each occurrence unsubstituted C 1-36 -alkyl, with a compound of formula (6)
  • the reaction is usually performed in a suitable solvent such as toluene and at a suitable temperature such as in the range of 0 to 140° C.
  • the compound of formula (5), wherein R 1 is at each occurrence unsubstituted C 1-36 -alkyl, can be prepared by treating a compound of formula (7)
  • the reaction is usually performed in the presence of a catalyst, preferably a palladium catalyst.
  • a catalyst preferably a palladium catalyst.
  • the reaction is usually performed in a suitable solvent, such as anhydrous toluene, at elevated temperatures such as in the range of 40 to 160° C.
  • R 1 and R 2 are as defined above,
  • Y is at each occurence I, Br, CI or O—S(O) 2 CF 3 .
  • R 1 is at each occurrence selected from the group consisting of C 1-50 -alkyl, C 2-50 -alkenyl and C 2-50 -alkynyl,
  • R 2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C 1-30 -alkyl and halogen, and
  • Y is at each occurence I, Br, CI or —O—S(O) 2 CF 3.
  • R 1 is at each occurrence selected from the group consisting of C 1-36 -alkyl, C 2-36 -alkenyl and C 2-36 -alkynyl,
  • R 2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C 1-30 -alkyl and halogen, and
  • Y is at each occurence I, Br, CI or —O—S(O) 2 CF 3 .
  • R 1 is at each occurrence unsubstituted C 1-36 -alkyl
  • R 2 is hydrogen
  • Y is at each occurence I, Br, CI or —O—S(O) 2 CF 3 .
  • Y is at each occurence I, Br or O—S(O) 2 CF 3
  • R 1 is at each occurrence unsubstituted C 1-36 -alkyl and R 2 is hydrogen.
  • R 1 is at each occurrence unsubstituted C 1-36 -alkyl and R 2 is hydrogen.
  • Also part of the invention is an electronic device comprising the polymer of the present invention.
  • the electronic device can be an organic photovoltaic device (OPVs), an organic field-effect transistor (OFETs), an organic light emitting diode (OLEDs) or an organic photodiode (OPDs).
  • OLEDs organic photovoltaic device
  • OPDs organic photodiode
  • the electronic device is an organic photovoltaic device (OPVs), an organic field-effect transistor (OFETs) or an organic photodiode (OPDs).
  • OCVs organic photovoltaic device
  • OFETs organic field-effect transistor
  • OPDs organic photodiode
  • the electronic device is an organic field effect transistor (OFET).
  • OFET organic field effect transistor
  • an organic field effect transistor comprises a dielectric layer, a semiconducting layer and a substrate.
  • an organic field effect transistor usually comprises a gate electrode and source/drain electrodes.
  • the semiconducting layer comprises the polymer of the present invention.
  • the semi-conducting layer can have a thickness of 5 to 500 nm, preferably of 10 to 100 nm, more preferably of 20 to 50 nm.
  • the dielectric layer comprises a dielectric material.
  • the dielectric material can be silicon dioxide or aluminium oxide, or, an organic polymer such as polystyrene (PS), poly(methylmethacrylate) (PMMA), poly(4-vinylphenol) (PVP), poly(vinyl alcohol) (PVA), benzocyclobutene (BCB), or polyimide (P1).
  • PS polystyrene
  • PMMA poly(methylmethacrylate)
  • PVP poly(4-vinylphenol)
  • PVA poly(vinyl alcohol)
  • BCB benzocyclobutene
  • P1 polyimide
  • the dielectric layer can have a thickness of 10 to 2000 nm, preferably of 50 to 1000 nm, more preferably of 100 to 800 nm.
  • the dielectric layer can in addition to the dielectric material comprise a self-assembled monolayer of organic silane derivates or organic phosphoric acid derivatives.
  • organic silane derivative is octyltrichlorosilane.
  • organic phosphoric acid derivative is octyldecylphosphoric acid.
  • the self-assembled monolayer comprised in the dielectric layer is usually in contact with the semiconducting layer.
  • the source/drain electrodes can be made from any suitable organic or inorganic source/drain material.
  • inorganic source/drain materials are gold (Au), silver (Ag) or copper (Cu), as well as alloys comprising at least one of these metals.
  • the source/drain electrodes can have a thickness of 1 to 100 nm, preferably from 20 to 70 nm.
  • the gate electrode can be made from any suitable gate material such as highly doped silicon, aluminium (Al), tungsten (W), indium tin oxide or gold (Au), or alloys comprising at least one of these metals.
  • the gate electrode can have a thickness of 1 to 200 nm, preferably from 5 to 100 nm.
  • the substrate can be any suitable substrate such as glass, or a plastic substrate such as polyethersulfone, polycarbonate, polysulfone, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • a plastic substrate such as polyethersulfone, polycarbonate, polysulfone, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the gate electrode for example highly doped silicon can also function as substrate.
  • the organic field effect transistor can be prepared by methods known in the art.
  • a bottom-gate top-contact organic field effect transistor can be prepared as follows:
  • the dielectric material for example Al 2 O 3 or silicon dioxide, can be applied as a layer on a gate electrode such as highly doped silicon wafer, which also functions as substrate, by a suitable deposition method such as atom layer deposition or thermal evaporation.
  • a self-assembled monolayer of an organic phosphoric acid derivative or an organic silane derivative can be applied to the layer of the dielectric material.
  • the organic phosphoric acid derivative or the organic silane derivative can be applied from solution using solution-deposition techniques.
  • the semiconducting layer can be formed by either solution deposition or thermal evaporation in vacuo of the polymer of the present invention on the self-assembled monolayer of the organic phosphoric acid derivative or the organic silane derivative.
  • Source/drain electrodes can be formed by deposition of a suitable source/drain material, for example tantalum (Ta) and/or gold (Au), on the semiconducting layer through a shadow masks.
  • a suitable source/drain material for example tantalum (Ta) and/or gold (Au)
  • the channel width (W) is typically 10 to 1000 ⁇ m and the channel length (L) is typically 5 to 500 ⁇ m.
  • a top-gate bottom-contact organic field effect transistor can be prepared as follows: Source/drain electrodes can be formed by evaporating a suitable source/drain material, for example gold (Au), on photo-lithographically defined electrodes on a suitable substrate, for example a glass substrate.
  • the semiconducting layer can be formed by depositing a solution of the polymers of the present invention, for example by spin-coating, on the source/drain electrodes, followed by annealing the layer at elevated temperatures such as at a temperature in the range of 80 to 360° C.
  • a dielectric layer can be formed by applying, for example, by spin-coating, a solution of a suitable dielectric material such as poly(methylmethacryate), on the semiconducting layer.
  • a suitable dielectric material such as poly(methylmethacryate)
  • the gate electrode of a suitable gate material for example gold (Au)
  • Au gold
  • Also part of the invention is the use of the polymer of the present invention as semiconducting material.
  • the polymers of the present invention show high charge carrier mobilities.
  • the polymer of the present invention can show ambipolar properties with high hole and electron mobilities.
  • the polymers of the present invention show a high stability, in particular a high thermal stability.
  • the polymers of the present invention are compatible with liquid processing techniques.
  • the polymers of the present invention show a strong absorption of the near infra-red light.
  • 6,6′-di(3-methylsulfinylthiophene) isoindigo (I-4) (800 mg, 0.65 mmol) is stirred with Eaton's reagent (6 mL) at room temperature in the dark for 3 days.
  • the mixture is poured into ice-water, extracted with chloroform and the organic phased is dried with MgSO4, the solvent is removed by reduced pressure and the crude product is dried in vacuum, which is followed to be redissolved in pyridine (10 mL) and then the mixture is refluxed overnight. After the mixture is cooled to room temperature, extracted with chloroform and diluted hydrochloride acid, the separated organic phase is dried over MgSO4, and solvent is removed by reduced pressure.
  • NBS (65g, 0.36 mmol) is added in small portions to a solution of benzothienothiophene isoindigo (200g, 0.17 mmol) in CHCl 3 /AcOH (20 mL: 5 mL), the reaction mixture is stirred at reflux for about 5 h, which can be monitored by TLC.
  • dibromoBTTIID I-6) (100 mg, 0.076 mmol, 1 equiv.) and 2,5-bis(trimethylstannyl)thiophene (31.04 mg, 0.076 ⁇ mol, 1 equiv), Pd2(dba)3 (1.50 mg) and P(o-Tol) 3 (1.84 mg).
  • the tube is sealed and flushed with Argon, and then degassed chlorobenzene (2 mL) is added. The mixture is thoroughly degassed under Argon, and then the argon inlet is removed.
  • the tube is subjected to the following conditions in a microwave reactor: 100° C. for 5 min, 140° C. for 5 min, 160° C.
  • dibromoBTTIID (I-6) (68.6 mg, 0.052 mmol,1 equiv.) and 2,5-bis(trimethylstannyl)selenophene (23.78 mg, 0.052 ⁇ mol, 1 equiv), Pd2(dba)3 (2 mg) and P(o-Tol) 3 (2.58 mg).
  • the tube is sealed and flushed with Argon, and then degassed chlorobenzene (1.0 mL) is added. The mixture is thoroughly degassed under Argon, and then the argon inlet is removed.
  • the tube is subjected to the following conditions in a microwave reactor: 100° C. for 5 min, 140° C. for 5 min, 160° C.
  • the polymer is precipitated into methanol, and filtered through a Soxhlet thimble.
  • the polymer is extracted using Soxhlet apparatus with methanol, acetone, hexane, dichloromethane, chloroform and chlorobenzene.
  • the chloroform and chlorobenzene solution is concentrated and precipitated into methanol.
  • the precipitates are filtered and dried under vacuum to afford P2 as a dark blue solid (55 mg (chloroform) and 6 mg (chlorobenzene), 87.1%).
  • Polymer P6 is synthesized from I-8 in analogy to polymer P2
  • OFET organic field-effect transistors
  • Semiconducting compound I-x or polymer Px is dissolved at a concentration of 0,75wt % in orthodichlorobenzene and subsequently coated onto a PET-substrate with lithographically prepatterned gold contacts, serving as Source and Drain contact of the FET.
  • 100 ⁇ l of the formulation is coated by a standard blade coater at a coating speed of 20 mm/s, yielding a homogenous layer of the semiconductor over the entire substrate.
  • the substrate is immediately transferred onto a preheated hotplate and heated for 30s at 90° C.
  • the gate dielectric layer consisting of Cytop CTL-809M is spincoated on top of the organic semiconductor (1200 rpm, 30s).
  • the substrate is again transferred to the hotplate and annealed for another 5 Min at 100° C.
  • the thickness of the dielectric layer is 535 nm measured by profilometer.
  • 50 nm thick shadow-mask patterend gold gate electrodes are deposited by vacuum evaporation to complete FETs in the BGTC-configuration (See FIG. 1 a - h )
  • the mobility ⁇ is calculated from the root representation of the transfer characteristic curve (solid grey curve) calculated in the saturation region.
  • the slope m is determined from the dashed black line in FIG. 1.
  • the dashed black line in FIG. 1 is fitted to a region of the root representation of the current characteristic ID such that a good correlation to the linear slope of the root representation is obtained.
  • the threshold voltage U Th can be taken from the intersection of black dashed line in FIG. 1 with the X-axis portion (V GS ).
  • ⁇ 0 is the vacuum permittivity of 8.85 ⁇ 10 ⁇ 12 As/Vm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thin Film Transistor (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Polymers comprising at least one unit of formula (1) and their use as semiconducting materials.
Figure US20180009936A1-20180111-C00001

Description

  • The present invention relates to Benzothienothiophene isoindigo polymers, to a process for the preparation of these polymers, to intermediates, to electronic devices comprising these polymers, as well as to the use of these polymers as semiconducting material.
  • Organic semiconducting materials can be used in electronic devices such as organic photovoltaic devices (OPVs), organic field-effect transistors (OFETs), organic light emitting diodes (OLEDs), organic photodiodes (OPDs) and organic electrochromic devices (ECDs).
  • It is desirable that the organic semiconducting materials are compatible with liquid processing techniques such as spin coating as liquid processing techniques are convenient from the point of processability, and thus allow the production of low cost organic semiconducting material-based electronic devices. In addition, liquid processing techniques are also compatible with plastic substrates, and thus allow the production of light weight and mechanically flexible organic semiconducting material-based electronic devices.
  • For application in organic photovoltaic devices (OPVs), organic field-effect transistors (OFETs), and organic photodiodes (OPDs), it is further desirable that the organic semiconducting materials show high charge carrier mobility.
  • For application in organic photovoltaic devices (OPVs) and organic photodiodes (OPDs), the organic semiconducting materials should also show a strong absorption of the visible light and of the near infra-red light.
  • The use of iso-indigo-type compounds as semiconducting materials in electronic devices is known in the art.
  • WO 2009/053291 describes semiconducting polymers comprising the following units
  • Figure US20180009936A1-20180111-C00002
  • and organic field effect transistors comprising these polymers.
  • It was the object of the present invention to provide organic semiconducting materials. This object is solved by the polymers of claim 1, the process of claim 10, the intermediates of claim 11, and the electronic device of claims 12 and 13 and the use of claim 14.
  • The polymers of the present invention comprise at least one unit of formula
  • Figure US20180009936A1-20180111-C00003
  • wherein
  • R1 is at each occurrence selected from the group consisting of H, C1-100-alkyl, C2-100-alkenyl, C2-100-alkynyl, C5-12-cycloalkyl, C6-18-aryl, a 5 to 20 membered heteroaryl, C(O)—C1-100-alkyl, C(O)—C5-12-cycloalkyl and C(O)—OC1-100-alkyl,
      • wherein
      • C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be substituted with one to fourty substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb, NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, CN, and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be replaced by O or S,
      • C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb, NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, CN, and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRa or NRa—CO,
      • C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5- 8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb, NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic),—O—Si(RSia)(RSib),RSic), halogen, CN, and NO2,
        • wherein
        • Ra and Rb are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl,
  • RSia, RSib and RSic are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-18-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, O—C1-60-alkyl, O—C2-60-alkenyl, O—C2-60-alkynyl, O—C5-8-cycloalkyl, O—C6-14-aryl, O-5 to 14 membered heteroaryl, —[O—SiRSidRSie]o—RSif, NR5R6, halogen and O—C(O)—R5,
          • wherein
          • o is an integer from 1 to 50,
          • RSid, RSie, RSif are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, O—C1-60-alkyl, O—C2-60-alkenyl, O—C2-60-alkynyl, O—C5-8-cycloalkyl, O—C6-14-aryl, O-5 to 14 membered heteroaryl, —[O—SiRSigRSih] p—RSii, NR50R60, halogen and ) O—C(O)—R50;
            • wherein
            • is an integer from 1 to 50,
        • RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, O—-Si(CH3)3, NR500R600, halogen and O—C(O)—R500,
          • R5, R6, R50, R60, R500 and R600 are independently selected from the group consisting of H, C1-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
          • C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be substituted with one to twenty substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc, Si(RSij)(RSik)(RSil), halogen, CN, and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be replaced by O or S,
          • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30 -alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc(O)—ORc, C(O)—Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc,) Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil), halogen, CN, and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-8-cycloalkyl can be replaced by O, S, OC(O), CO, NRc or NRc—CO,
          • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—
          • Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc, Si(Rsij)(RSik)(RSil),—O—Si(RSij)(RSik)(RSil), halogen, CN and NO2;
            • wherein
            • Rc and Rd are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl,
            • RSij, RSik and RSil are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6—cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, —[O—SiRSimRSin]q—RSio, NR7R8, halogen, and O—C(O)—R7,
            •  wherein
            •  q is an integer from 1 to 50,
            •  RSim, RSin, RSio are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O—5 to 10 membered heteroaryl, —[O—-SiRSipRSiq],r—RSir, NR70R80, halogen, and O—C(O)—R70;
            •   wherein
            •   r is an integer from 1 to 50,
            •   RSiP, RSiq, RSir are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, O—Si(CH3)3, NR700R800, halogen and O—C(O)—R700,
            •  R7, R8, R70, R80, R700 and R800 are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, and 5 to 10 membered heteroaryl,
            • C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen, CN and NO2,
  • R2 is at each occurrence selected from the group consisting of hydrogen, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl, 5 to 20 membered heteroaryl, OR21, OC(O)—R21, C(O)—OR21, C(O)—R21, NR21R22, NR21—C(O)R22, C(O)—NR21R22, N[C(O)R21][C(O)R22], SR21, halogen, CN, SiRSisRSitRSiu and OH,
      • wherein
      • R21 and R22 and are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
      • C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRe or NRe—CO,
      • C5-12-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2,
        • wherein
        • RSis, RSit and RSiu are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
        • Re and Rf are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
          • wherein C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)-NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
          • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O )Rg][C(O)Rh], SRg, halogen, CN, and NO2;
          • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)-Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
            • wherein
            • Rg and Rh are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
            •  wherein
            •  C1-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2,
  • n is 0, 1, 2 or 3,
  • m is 0, 1, 2 or 3,
  • and
  • L1 and are L2 are independently from each other and at each occurrence selected from the group consisting of C6-18-arylene, 5 to 20 membered heteroarylene,
  • Figure US20180009936A1-20180111-C00004
      • wherein
      • C6-18-arylene and 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C(O)—OR31, C(O)—R31, NR31R32, NR31—C(O)R32, C(O)NR31R32, N[C(O)R31][C(O)R32], SR31, halogen, CN, SiRSivRSiwRSix and OH, and
      • wherein
  • Figure US20180009936A1-20180111-C00005
      • can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42,)C(O)-13 OR41 and CN,
        • wherein
        • R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and
        • wherein
        • C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
        • C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)-13 Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)-13 NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
        • C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)-13 Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi-13 C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2,
          • wherein
          • RSiv, RSiw, RSix are independently from each other selected from the group consisting of H, C2-20-alkenyl, C02-20-alkynyl, C5-6-cycloalkyl, phenyl and O-13 Si(CH3)3,
          • Ri and Rj are independently selected from the group consisting of H, C1-20-alkyl, C1-20-alkenyl, C2-20-alkynyl, C05-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered hetereoaryl,
            • wherein
            • C1-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
            • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—R1, C(O)-ORk, C(O)-Rk, NRkRl, NRk-C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
            • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10 -alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rk, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
            •  wherein
            •  Rk and Rl are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
            •   wherein
            •   C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
  • Halogen can be F, CI, Br and I.
  • C1-4-alkyl, C1-10-alkyl, C1-20-alkyl, C1-30-alkyl, C1-36-alkyl, C1-50-alkyl, C1-60-alkyl and C1-100-alkyl can be branched or unbranched. Examples of C1-4-alkyl are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl and tert-butyl. Examples of C1-10-alkyl are C1-4-alkyl, n-pentyl, neopentyl, isopentyl, n-(1-ethyl)propyl, n-hexyl, n-heptyl, n-octyl, n-(2-ethyl)hexyl, n-nonyl and n-decyl. Examples of C1-20-alkyl are C1-10-alkyl and n-undecyl, n-dodecyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl and n-icosyl (C20). Examples of C1-30-alkyl, C1-36-alkyl, C1-50-alkyl, C1-60-alkyl and C1-100-alkyl are C1-20-alkyl and n-docosyl (C22), n-tetracosyl (C24), n-hexacosyl (C26), n-octacosyl (C28) and n-triacontyl (C30).
  • C2-10-alkenyl, C2-20-alkenyl, C2-30-alkenyl, C2-60 -alkenyl and C2-100-alkenyl can be branched or unbranched. Examples of C1-20-alkenyl are vinyl, propenyl, cis-2-butenyl, trans-2-butenyl, 3-butenyl, cis-2-pentenyl, trans-2-pentenyl, cis-3-pentenyl, trans-3-pentenyl, 4-pentenyl, 2-methyl-3-butenyl, hexenyl, heptenyl, octenyl, nonenyl and docenyl. Examples of C2-20-alkenyl, C2-60-alkenyl and C2-100-alkenyl are C2-10-alkenyl and linoleyl (C18), linolenyl (C18), oleyl (C18), and arachidonyl (C20). Examples of C2-30-alkenyl are C2-20-alkenyl and erucyl (C22).
  • C2-10-alkynyl, C2-20-alkynyl, C2-30-alkynyl, C2-60-alkynyl and C2-100-alkynyl can be branched or unbranched. Examples of C2-10-alkynyl are ethynyl, 2-propynyl, 2-butynyl, 3-butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl and decynyl. Examples of C2-20-alkynyl, C2-30-alkenyl, C2-60-alkynyl and C2-100-alkynyl are undecynyl, dodecynyl, undecynyl, dodecynyl, tridecynyl, tetradecynyl, pentadecynyl, hexadecynyl, heptadecynyl, octadecynyl, nonadecynyl and icosynyl (C20).
  • Examples of C5-6-cycloalkyl are cyclopentyl and cyclohexyl. Examples of C5-8-cycloalkyl are C5-6-cycloalkyl and cycloheptyl and cyclooctyl. C5-12-cycloalkyl are C5-8-cycloalkyl and cyclononyl, cyclodecyl, cycloundecyl and cyclododecyl.
  • Examples of C6-10-aryl are phenyl,
  • Figure US20180009936A1-20180111-C00006
  • Examples of C6-14-aryl are C6-10-aryl and
  • Figure US20180009936A1-20180111-C00007
  • Examples of C6-18-aryl are C6-14-aryl and
  • Figure US20180009936A1-20180111-C00008
  • 5 to 10 membered heteroaryl are 5 to 10 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ═O.
  • 5 to 14 membered heteroaryl are 5 to 14 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by 50 O.
  • 5 to 20 membered heteroaryl are 5 to 20 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring systems, which comprise at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ═O.
  • Examples of 5 to 10 membered heteroaryl are
  • Figure US20180009936A1-20180111-C00009
    Figure US20180009936A1-20180111-C00010
  • Examples of 5 to 14 membered heteroaryl are the examples given for the 5 to 10 membered heteroaryl and
  • Figure US20180009936A1-20180111-C00011
    Figure US20180009936A1-20180111-C00012
  • Examples of 5 to 20 membered heteroaryl are the examples given for the 5 to 14 membered heteroaryl and
  • Figure US20180009936A1-20180111-C00013
    Figure US20180009936A1-20180111-C00014
  • wherein
  • R100 and R101 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R100 and R101, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
      • wherein
      • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORq, OC(O)-Rq, C(O)—ORq, C(O)—Rq, NRqRr, NRq—C(O)Rr, C(O)—NRqRr, N[C(O)Rq][C(O)Rr], SRq, halogen, CN, and NO2;
  • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORq, OC(O)—Rq, C(O)—ORq, C(O)—Rq, NRqRr, NRq-C(O)Rr, C(O)—NRqRr, N[C(O)Rq][C(O)Rr], SRq, halogen, CN, and NO2;
      • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORq, OC(O)-Rq, C(O)-ORq, C(O)—Rq, NRqRr, NRq—C(O)Rr, C(O)—NRqRr, N[C(O)Rq][C(O)Rr], SRq, halogen, CN, and NO2;
      • 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORq, OC(O)—Rq, C(O)—ORq, C(O)—Rq, NRqRr, NRq—C(O)Rr, C(O)—NRqRr, N[C(O)Rq][C(O)Rr], SRq, halogen, CN, and NO2;
        • wherein
        • Rq and Rr are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
          • wherein
          • C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
  • C6-18-arylene is a 6 to 18 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring system, which comprises at least one C-aromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ═O.
  • Examples of C6-18-arylene are
  • Figure US20180009936A1-20180111-C00015
  • wherein
  • R102 and R103 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R102 and R103, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
      • wherein
      • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORS, C(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
      • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
  • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
      • 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
        • wherein
        • Rs and Rt are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
          • wherein
          • C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2. 5 to 20 membered heteroarylene is a 5 to 20 membered monocyclic or polycyclic, such as dicyclic, tricyclic or tetracyclic, ring system, which comprises at least one heteroaromatic ring, and which may also comprise non-aromatic rings, which may be substituted by ═O.
  • Examples of 5 to 20 membered heteroarylene are
  • Figure US20180009936A1-20180111-C00016
    Figure US20180009936A1-20180111-C00017
    Figure US20180009936A1-20180111-C00018
    Figure US20180009936A1-20180111-C00019
    Figure US20180009936A1-20180111-C00020
  • wherein
  • R104 and R105 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R104 and R105, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
      • wherein
      • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
      • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)R6 t], SRs, halogen, CN, and NO2;
      • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
      • 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)-Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
        • wherein
        • Rs and Rt are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
          • wherein
          • C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
  • The 5 to 12 membered ring system can contain, in addition to the atom, to which R100 and R101, respectively R102 and R103, respectively R104 and R105, are attached, ring members selected from the group consisting of CH2, O, S and NRu werein Ru is at each occurrence selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl.
  • Preferably, the polymers of the present invention comprise at least 60% by weight of units of formula (I) based on the weight of the polymer.
  • More preferably, the polymers of the present invention comprise at least 80% by weight of units of formula (I) based on the weight of the polymer.
  • Most preferably, the polymers of the present invention essentially consist of units of formula (I).
  • Preferably, R1 is at each occurrence selected from the group consisting of H, C1-100-alkyl, C2-100-alkenyl, C2-100-alkynyl, C5-12-cycloalkyl, C6-18-aryl, and a 5 to 20 membered heteroaryl,
      • wherein
      • C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be substituted with one to fourty substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRa—C(O)Rb, C(O)—NRaRb, SRa, Si(RSia)(RSib)(RSic,) —O—Si(RSia)(RSib)(RSic,)halogen and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be replaced by O or S,
      • C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRa—C(O)Rb, C(O)—NRaRb, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib),RSic), halogen, and CN; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRa or NRa—CO,
      • C6-18 -aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-60 -alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRa—C(O)Rb, C(O)—NRaRb, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib), halogen, and CN,
        • wherein
        • Ra and Rb are independently selected from the group consisting of H, C1-60-alkyl, C2-60 -alkenyl, C2-60 -alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl,
        • RSia, RSib and RSic are independently selected from the group consisting of H, C1-60-alkyl, C2-60 -alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, O—C1-60-alkyl, O—C2-60 -alkenyl, O—C2-60 -alkynyl, O—C5-8-cycloalkyl, —[O—SiRSidRSie]o—RSif,
          • wherein
          • o is an integer from 1 to 50,
          • RSid, RSie and RSif are independently selected from the group consisting of H, C1-60-alkyl, C2-60 -alkenyl, C2-60 -alkynyl, 06_8-cycloalkyl, C6-14-aryl, —[O—SiRSigRSih]p—RSii,
            • wherein
            • p is an integer from 1 to 50,
            • RSig RSih and RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
          • C1-60-alkyl, C2-60-alkenyl and C2-60 -alkynyl can be substituted with one to twenty substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil)halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-60-alkyl, C2-60-alkenyl and C2-60 -alkynyl can be replaced by O or S,
          • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc,C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil), —O—-Si(RSij)(RSik)(RSil), halogen, and CN; and one or two CH2-groups, but not adjacent CH2-groups, of C5-8-cycloalkyl can be replaced by O, S, OC(O), CO, NRc or NRc—CO,
          • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)( RSik)(RSil), —O—Si (RSij)(RSik)(RSil), halogen and CN;
            • wherein
            • Rc and Rd are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl,
            • RSij, RSik and RSil are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —-[O—SiRSimRSin]q—RSio,
            •  wherein
            •  q is an integer from 1 to 50,
            •  RSimRSin, RSio are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, —[O—SiRSipRSiq]r—RSir, NR70R80, halogen, and O—C(O)-13 R70;
            •   wherein
            •   r is an integer from 1 to 50,
            •   RSip, RSiq RSir are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, O—Si(CH3)3, NR70R800, halogen and O—C—(O)—R700,
            •  R70, R80, R700 and R800 are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, and 5 to 10 membered heteroaryl,
            • C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN.
  • More preferably, R1 is at each occurrence selected from the group consisting of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl,
      • wherein
      • C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be substituted with one to fourty substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRa—C(O)Rb, C(O)—NRaRb, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be re-placed by O or S,
        • wherein
        • Ra and Rb are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60 -alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl,
        • RSia, RSib and RSic are independently selected from the group consisting of H, C1-60-alkyl, C2-60 -alkenyl, C2-60 -alkynyl, C5-8-cycloalkyl, C6-14-aryl, —[O—SiRSidRSie]o—RSif,
          • wherein
          • o is an integer from 1 to 50,
          • RSid, RSie and RSif are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60 -alkynyl, C5-8-cycloalkyl, C6-14-aryl, —[O—SiRSigRSih]p—RSii,
            • wherein
            • p is an integer from 1 to 50,
            • RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
          • C1-60-alkyl, C2-60 -alkenyl and C2-60 -alkynyl can be substituted with one to twenty substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-60-alkyl, C2-60 -alkenyl and C2-60 -alkynyl can be replaced by O or S,
          • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil),—O—Si(RSij)(RSik)(RSil), halogen, and CN; and one or two CH2-groups, but not adjacent CH2-groups, of C5-8-cycloalkyl can be replaced by O, S, OC(O), CO, NRc or NRc—CO,
          • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil)—O—Si(RSij)(RSik)(RSil)halogen, and CN;
            • wherein
            • Rc and Rd are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl,
            • RSij, RSik and RSil are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSimRSin]q—RSio,
            •  wherein
            •  q is an integer from 1 to 50,
  • RSim, RSin, RSio are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSipRSiq]r—RSir,
            •   wherein
            •   r is an integer from 1 to 50, RSip, RSiq, RSir are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
            • C1-30-alkyl, C2-30-alkenyl and C2-30 -alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN.
  • Even more preferably, R1 is at each occurrence selected from the group consisting of C1-50-alkyl, C2-50-alkenyl and C2-50-alkynyl,
      • wherein
      • C1-50-alkyl, C2-50-alkenyl and C2-50-alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-50alkyl, C2-50-alkenyl and C2-50-alkynyl can be replaced by O or S,
      • wherein
      • Ra is independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl and C6-10-aryl,
      • RSia, RSib and RSic are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSidRSie]o—RSif,
        • wherein
        • o is an integer from 1 to 50,
  • RSid, RSie, RSif are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih]p—RSii,
          • wherein
          • p is an integer from 1 to 50,
          • RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
      • C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN.
  • Most preferably, R1 is at each occurrence selected from the group consisting of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl,
      • wherein
      • C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be replaced by O or S,
        • wherein
        • Ra is independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl and C6-10-aryl
        • RSia, RSiband RSic are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—Si RSidRSie]o—R Sif
          • wherein
          • o is an integer from 1 to 50,
          • RSid, RSie, RSif are independently selected from the group consisting of H, 01-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih] pRSii,
            • wherein
            • p is an integer from 1 to 50,
          • RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
        • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN.
  • In particular, R1 is at each occurrence unsubstituted C1-36-alkyl.
  • Preferably, R2 is at each occurrence selected from the group consisting of hydrogen, C1-30-alkyl and halogen,
      • wherein
      • C1-30-alkyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-30-alkyl can be replaced by O or S,
        • wherein
        • RSis, RSit and RSiu are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
        • Re and Rf are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
          • wherein
          • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
          • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][CRh], SRg, halogen, CN, and NO2;
          • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, 02-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][CRh], SRg, halogen, CN, and NO2;
          • wherein
          • Rg and Rh are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
            • wherein
            • C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
  • More preferably, R2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C1-30-alkyl and halogen.
  • In particular, R2 is in each occurrence hydrogen.
  • Preferably, n is 0, 1 or 2. More preferably, n is 0 or 1. Most preferably, n is 0.
  • Preferably, m is 0, 1 or 2.
  • Preferably, L1 and L2 are independently from each other and at each occurrence selected from the group consisting of C6-18-arylene, 5 to 20 membered heteroarylene,
      • and
  • Figure US20180009936A1-20180111-C00021
      • wherein
      • C6-18-arylene and 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C—OR31, C(O)—R31, NR31R32, NR31-13 C(O)R32, C(O)—NR31R32SR31, halogen, CN, SiRSivRSiwRSix and OH, and
      • wherein
  • Figure US20180009936A1-20180111-C00022
  • can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42, C(O)—OR41 and CN,
      • wherein
      • R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and
      • wherein
      • C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
      • C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
      • C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2,
        • wherein
        • RSiv, RSiw, RSix are independently from each other selected from the group consisting of H, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
        • Ri and Rj are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
          • wherein
          • C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
          • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
          • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
            • wherein
            • Rk and Rl are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
            •  wherein
            •  C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
  • More preferably, L1 and L2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
  • Figure US20180009936A1-20180111-C00023
      • and
      • wherein 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-20-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C(O)-13 R31, C(O)—R31, NR31R32, NR31—C(O)R32, C(O)—NR31R32, SR31, halogen, CN, SiRSivRSiwRSix and OH, and
  • Figure US20180009936A1-20180111-C00024
      • wherein
      • can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42, C(O)—OR41 and CN,
        • wherein
        • R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalky, C6-18-aryl and 5 to 20 membered heteroaryl, and
        • wherein
        • C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
        • C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Ri, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
        • C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRiC(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2,
          • wherein
          • RSiv, RSiw, RSix are independently from each other selected from the group consisting of H, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
          • Ri, and Rj are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
            • wherein
            • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Ri, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
      • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, 6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—R, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
      • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
            •  wherein
            •  Rk and Rl are independently selected from the group consisting of H, C1-10—alkyl, C2-10-alkenyl and C2-10-alkynyl,
            •   wherein
            •   C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
  • Even more preferably, L1 and L2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
  • Figure US20180009936A1-20180111-C00025
      • and
  • wherein 5 to 20 membered heteroarylene is selected from the group consisting of
  • Figure US20180009936A1-20180111-C00026
  • wherein
  • R104 and R105 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R104 and R105, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
      • wherein
      • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
      • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
      • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
      • 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
        • wherein
      • Rs and Rt are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
        • wherein
        • C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2,
      • wherein
      • 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl and halogen, and
      • wherein
  • Figure US20180009936A1-20180111-C00027
      • can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C(O)—R41, C(O)—OR41 and CN,
        • wherein
        • R41 is at each occurrence C1-30-alkyl.
  • Most preferably, L1 and L2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene,
  • wherein 5 to 20 membered heteroarylene is selected from the group consisting of
  • Figure US20180009936A1-20180111-C00028
      • wherein
      • R104 and R105 are independently and at each occurrence selected from the group consisting of H and C1-20-alkyl,
      • wherein
      • 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl and halogen.
  • In particular, L1 and L2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene,
  • wherein 5 to 20 membered heteroarylene is selected from the group consisting of
  • Figure US20180009936A1-20180111-C00029
      • wherein
      • 5 to 20 membered heteroarylene is unsubstituted.
  • In preferred polymers comprising at least one unit of formula (1)
  • wherein
  • n is 0, 1, 2 or 3,
  • m is 0, 1, 2 or 3, and
  • L1 and L2 are independently from each other and at each occurrence selected from the group consisting of C6-18-arylene, 5 to 20 membered heteroarylene,
  • Figure US20180009936A1-20180111-C00030
      • and
      • wherein
      • C6-18-arylene and 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C(O)—OR31, C(O)—R31, NR31R32, NR31—C(O)R32, C(O)—NR31R32, SR31, halogen, CN, SiRSivRSiwRSix and OH, and
      • wherein
  • Figure US20180009936A1-20180111-C00031
      • can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42,)C(O)—OR41 and CN,
        • wherein
        • R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12—cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and wherein
      • C1-30alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Ri, C(O)—ORi, C(O)—Ri, NRiRi, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
      • C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Ri], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
      • C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NR—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2,
        • wherein
        • RSiv, RSiw, RSix are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
        • Ri and Rj are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
          • wherein
          • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rk], SRk, halogen, CN, and NO2;
          • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
          • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
            • wherein
            • Rk and Rl are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
            •  wherein
            •  C1-10alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
  • R2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C1-30-alkyl and halogen,
  • L1 and L2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
  • Figure US20180009936A1-20180111-C00032
      • and
  • wherein
  • 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C(O)—OR31, C(O)—R31, NR31R32, NR31—C(O)R32, C(O)—NR31R32, SR31, halogen, CN, SiRSivRSiwRSix and OH, and
  • wherein
  • Figure US20180009936A1-20180111-C00033
  • can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42, C(O)—OR41 and CN,
      • wherein
      • R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and
      • wherein
      • C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Ri, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30alkynyl can be replaced by O or S,
      • C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Ri, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rl], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
  • In even more preferred polymers comprising at least one unit of formula (1)
  • R1 is at each occurrence selected from the group consisting of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl,
      • wherein
      • C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be replaced by O or S,
        • wherein
        • Ra and Rb are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl and C6-10-aryl
        • RSia, RSib and RSic are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSidRSie]o—RSif
          • wherein
          • o is an integer from 1 to 50,
  • RSid, RSie, RSif are independently selected from the group consisting of H, C1-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih]p-RSii,
            • wherein
            • is an integer from 1 to 50,
            • RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkly, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
        • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN,
      • R2 is at each occurrence selected from the group consisting of unsubstituted hydrogen, C1-30-alkyl and halogen,
  • n is 0 or 1,
  • m is 0, 1 or 2, and
  • L1 and L2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
  • Figure US20180009936A1-20180111-C00034
      • and
  • wherein 5 to 20 membered heteroarylene is selected from the group consisting of
  • Figure US20180009936A1-20180111-C00035
    Figure US20180009936A1-20180111-C00036
      • wherein p1 R104 and R105 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R104 and R105, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
        • wherein
        • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt,C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
        • C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
        • C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
        • 5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, 02-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
          • wherein
          • Rs and Rt are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
          • wherein
          • C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2,
      • wherein
      • 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl and halogen, and
      • wherein
  • Figure US20180009936A1-20180111-C00037
      • can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C(O)—R41, C(O)—OR41 and CN,
        • wherein
        • R41 is at each occurrence C1-30-alkyl.
  • In most preferred polymers comprising at least one unit of formula (1)
  • R1 is at each occurrence unsubstituted C1-36-alkyl,
  • R2 is hydrogen,
  • n is 0,
  • m is 0, 1 or 2, and
  • L1 and L2 are independently from each other and at each occurrence 5 to 20 membered heteroarylene,
  • wherein 5 to 20 membered heteroarylene is selected from the group consisting of
  • Figure US20180009936A1-20180111-C00038
      • wherein
      • 5 to 20 membered heteroarylene is unsubstituted.
  • Particular preferred polymers of the present invention comprise at least one unit of formula
  • Figure US20180009936A1-20180111-C00039
  • The polymers of the present invention have preferably a weight average molecular weight (Mw) of 1 to 10000 kDa and a number average molecular weight (Mn) of 1 to 10000 kDa. The polymers of the present invention have more preferably a weight average molecular weight (Mw) of 1 to 1000 kDa and a number average molecular weight (Mn) of 1 to 100 kDa. The polymers of the present invention have most preferably a weight average molecular weight (Mw) of 10 to 100 kDa and a number average molecular weight (Mn) of 5 to 60 kDa. The weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined by gel permeation chromatography (GPC) at 80° C. using chlorobenzene as eluent and a polystyrene as standard.
  • The polymers of the present invention can be prepared by methods known in the art.
  • For examples, polymers of the present invention comprising at least one unit of formula (1), wherein n is 0 and which are of formula (1-I)
  • Figure US20180009936A1-20180111-C00040
  • wherein
  • R1, R2 and L2 are as defined above,
  • m is 0, 1, 2 or 3,
  • can be prepared by reacting a compound of formula (2)
  • Figure US20180009936A1-20180111-C00041
  • wherein Y is at each occurrence I, Br, CI or O—S(O)2CF3, and R1 and R2 are as defined above, with one mol equivalents of a compound of formula (3)
  • Figure US20180009936A1-20180111-C00042
      • wherein
      • L2 is as defined for the compound of formula (1-I), and
  • Za and Zb are independently selected from the group consisting of B(OZ1)(OZ2), SnZ1Z2Z3,
  • Figure US20180009936A1-20180111-C00043
      • wherein Z1, Z2, Z3, Z4, Z5 and Z6 are independently from each other and at each occurrence H or C1-4-alkyl.
  • For examples, polymers of the present invention comprising at least one unit of formula (1), wherein n and m are 0 and which are of formula (1-11)
  • Figure US20180009936A1-20180111-C00044
  • wherein
  • R1 and R2 are as defined above
  • can be prepared by reacting a compound of formula (2)
  • Figure US20180009936A1-20180111-C00045
  • wherein Y is at each occurrence I, Br, CI or O—S(O)2CF3, and R1 and R2are as defined above, with a compound of formula (8)
  • Figure US20180009936A1-20180111-C00046
  • wherein
  • R1 and R2are as defined for the compound of formula (1-11), and
  • Za and Zb are independently selected from the group consisting of B(OZ1)(OZ2), SnZ1Z2Z3,
  • Figure US20180009936A1-20180111-C00047
      • wherein Z1, Z2, Z3, Z4, Z5 and Z6 are independently from each other and at each occurence H or C1-4-alkyl.
  • When Za and Zb are independently selected from the group consisting of B(OZ1)(OZ2),
  • Figure US20180009936A1-20180111-C00048
  • wherein Z1, Z2, Z3, Z4, Z5 and Z6 are independently from each other and at each occurrence H or C1-4-alkyl,
  • the reaction is usually performed in the presence of a catalyst, preferably a Pd catalyst such as Pd(P(Ph)3)4, Pd(OAc)2 and Pd2(dba)3, and a base such as K3PO4, Na2CO3, K2CO3, LiOH and NaOMe. Depending on the Pd catalyst, the reaction may also require the presence of a phosphine ligand such as P(Ph)3, P(o-tolyl)3 and P(tert-Bu)3. The reaction is also usually performed at elevated temperatures, such as at temperatures in the range of 40 to 250° C., preferably 60 to 200° C. The reaction can be performed in the presence of a suitable solvent such as tetrahydrofuran, toluene or chlorobenzene. The reaction is usually performed under inert gas.
  • When Za and Zb are independently SnZ1Z2Z3, wherein Z1, Z2 and Z3 are independently from each other C1-4-alkyl, the reaction is usually performed in the presence of a catalyst, preferably a Pd catalyst such as Pd(P(Ph)3)4 and Pd2(dba)3. Depending on the Pd catalyst, the reaction may also require the presence of a phosphine ligand such as P(Ph)3, P(o-tolyl)3 and P(tert-Bu)3. The reaction is also usually performed at elevated temperatures, such as at temperatures in the range of 40 to 250° C., preferably 60 to 200° C. The reaction can be performed in the presence of a suitable solvent such as toluene or chlorobenzene. The reaction is usually performed under inert gas.
  • The compound of formula (2) can be prepared by methods known in the art.
  • For examples, compounds of formula (2), wherein
  • Figure US20180009936A1-20180111-C00049
  • wherein Y is I, Br, CI or O-triflate, and R1 is at each occurrence unsubstituted C1-36-alkyl, can be prepared by treating a compound of formula (2′)
  • Figure US20180009936A1-20180111-C00050
  • wherein R1 is at each occurrence unsubstituted C1-36-alkyl, with an Y-donor.
  • For example, when Y is Br, the Y-donor can be N-bromosuccinimide. When using N-bromosuccinimide as Y-donor, the reaction can be performed at 0° C. in the presence of CHCI3/acetic acid as solvent.
  • A compound of formula (3), wherein R1 is at each occurrence unsubstituted C1-36-alkyl, can be prepared by treating a compound of formula (4)
  • Figure US20180009936A1-20180111-C00051
  • wherein R1 is at each occurrence unsubstituted C1-36-alkyl, with Eaton's reagent.
  • A compound of formula (4), wherein R1 is at each occurrence unsubstituted C1-36-alkyl, can be prepared by treating a compound of formula (5)
  • Figure US20180009936A1-20180111-C00052
  • wherein R1 is at each occurrence unsubstituted C1-36-alkyl, with a compound of formula (6)
  • Figure US20180009936A1-20180111-C00053
  • The reaction is usually performed in a suitable solvent such as toluene and at a suitable temperature such as in the range of 0 to 140° C.
  • The compound of formula (5), wherein R1 is at each occurrence unsubstituted C1-36-alkyl, can be prepared by treating a compound of formula (7)
  • Figure US20180009936A1-20180111-C00054
  • with bis(pinacolato)diboron.
  • The reaction is usually performed in the presence of a catalyst, preferably a palladium catalyst. The reaction is usually performed in a suitable solvent, such as anhydrous toluene, at elevated temperatures such as in the range of 40 to 160° C.
  • 6,6′-Dibromo isoindigo (7) and Bromo-3-methylsulfinylthiophene (6) can be synthesized according to the literature (Org. Lett. 2010, 12, 660-663; Adv. Mater. 2013, 25, 838-843.
  • Also part of the invention are intermediates of formulae
  • Figure US20180009936A1-20180111-C00055
  • wherein
  • R1 and R2 are as defined above,
  • Y is at each occurence I, Br, CI or O—S(O)2CF3.
  • In preferred intermediates of formulae (2) and (2′)
  • R1 is at each occurrence selected from the group consisting of C1-50-alkyl, C2-50-alkenyl and C2-50-alkynyl,
      • wherein
      • C1-50-alkyl, C2-50-alkenyl and C2-50 -alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-50-alkyl, C2-50 -alkenyl and C2-50-alkynyl can be replaced by O or S,
        • wherein
        • Ra is independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl and C6-10-aryl,
        • RSia, RSib and RSic are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSidRSie]o—RSif,
          • wherein
          • o is an integer from 1 to 50,
          • RSid, RSie, RSif are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih]p—RSii,
            • wherein
            • p is an integer from 1 to 50,
            • RSigRSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
      • C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN,
  • R2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C1-30-alkyl and halogen, and
  • Y is at each occurence I, Br, CI or —O—S(O)2CF3.
  • In more preferred intermediates of formulae (2) and (2′)
  • R1 is at each occurrence selected from the group consisting of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl,
      • wherein
      • C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic,) halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be replaced by O or S,
        • wherein
        • Ra is independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl and C6-10-aryl
        • RSia, RSib and RSic are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSidRSie]o—RSif
          • wherein
          • o is an integer from 1 to 50,
          • RSid, RSie, RSif are independently selected from the group consisting of H, C1-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih]p—RSii,
            • wherein
            • is an integer from 1 to 50,
          • RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
        • C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN,
  • R2 is at each occurrence selected from the group consisting of hydrogen, unsubstituted C1-30-alkyl and halogen, and
  • Y is at each occurence I, Br, CI or —O—S(O)2CF3.
  • In even more preferred intermediates of formulae (2) and (2′)
  • R1 is at each occurrence unsubstituted C1-36-alkyl, R2 is hydrogen and
  • Y is at each occurence I, Br, CI or —O—S(O)2CF3.
  • In most preferred intermediates of formula (2)
  • Y is at each occurence I, Br or O—S(O)2CF3, and R1 is at each occurrence unsubstituted C1-36-alkyl and R2 is hydrogen.
  • Particular preferred intermediate of formula (2)
  • Figure US20180009936A1-20180111-C00056
  • wherein, R1 is at each occurrence unsubstituted C1-36-alkyl and R2 is hydrogen.
  • Also part of the invention is an electronic device comprising the polymer of the present invention.
  • The electronic device can be an organic photovoltaic device (OPVs), an organic field-effect transistor (OFETs), an organic light emitting diode (OLEDs) or an organic photodiode (OPDs).
  • Preferably, the electronic device is an organic photovoltaic device (OPVs), an organic field-effect transistor (OFETs) or an organic photodiode (OPDs).
  • More preferably, the electronic device is an organic field effect transistor (OFET).
  • Usually, an organic field effect transistor comprises a dielectric layer, a semiconducting layer and a substrate. In addition, an organic field effect transistor usually comprises a gate electrode and source/drain electrodes.
  • Preferably, the semiconducting layer comprises the polymer of the present invention. The semi-conducting layer can have a thickness of 5 to 500 nm, preferably of 10 to 100 nm, more preferably of 20 to 50 nm.
  • The dielectric layer comprises a dielectric material. The dielectric material can be silicon dioxide or aluminium oxide, or, an organic polymer such as polystyrene (PS), poly(methylmethacrylate) (PMMA), poly(4-vinylphenol) (PVP), poly(vinyl alcohol) (PVA), benzocyclobutene (BCB), or polyimide (P1). The dielectric layer can have a thickness of 10 to 2000 nm, preferably of 50 to 1000 nm, more preferably of 100 to 800 nm.
  • The dielectric layer can in addition to the dielectric material comprise a self-assembled monolayer of organic silane derivates or organic phosphoric acid derivatives. An example of an organic silane derivative is octyltrichlorosilane. An examples of an organic phosphoric acid derivative is octyldecylphosphoric acid. The self-assembled monolayer comprised in the dielectric layer is usually in contact with the semiconducting layer.
  • The source/drain electrodes can be made from any suitable organic or inorganic source/drain material. Examples of inorganic source/drain materials are gold (Au), silver (Ag) or copper (Cu), as well as alloys comprising at least one of these metals. The source/drain electrodes can have a thickness of 1 to 100 nm, preferably from 20 to 70 nm.
  • The gate electrode can be made from any suitable gate material such as highly doped silicon, aluminium (Al), tungsten (W), indium tin oxide or gold (Au), or alloys comprising at least one of these metals. The gate electrode can have a thickness of 1 to 200 nm, preferably from 5 to 100 nm.
  • The substrate can be any suitable substrate such as glass, or a plastic substrate such as polyethersulfone, polycarbonate, polysulfone, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). Depending on the design of the organic field effect transistor, the gate electrode, for example highly doped silicon can also function as substrate.
  • The organic field effect transistor can be prepared by methods known in the art.
  • For example, a bottom-gate top-contact organic field effect transistor can be prepared as follows: The dielectric material, for example Al2O3 or silicon dioxide, can be applied as a layer on a gate electrode such as highly doped silicon wafer, which also functions as substrate, by a suitable deposition method such as atom layer deposition or thermal evaporation. A self-assembled monolayer of an organic phosphoric acid derivative or an organic silane derivative can be applied to the layer of the dielectric material. For example, the organic phosphoric acid derivative or the organic silane derivative can be applied from solution using solution-deposition techniques. The semiconducting layer can be formed by either solution deposition or thermal evaporation in vacuo of the polymer of the present invention on the self-assembled monolayer of the organic phosphoric acid derivative or the organic silane derivative. Source/drain electrodes can be formed by deposition of a suitable source/drain material, for example tantalum (Ta) and/or gold (Au), on the semiconducting layer through a shadow masks. The channel width (W) is typically 10 to 1000 μm and the channel length (L) is typically 5 to 500 μm.
  • For example, a top-gate bottom-contact organic field effect transistor can be prepared as follows: Source/drain electrodes can be formed by evaporating a suitable source/drain material, for example gold (Au), on photo-lithographically defined electrodes on a suitable substrate, for example a glass substrate. The semiconducting layer can be formed by depositing a solution of the polymers of the present invention, for example by spin-coating, on the source/drain electrodes, followed by annealing the layer at elevated temperatures such as at a temperature in the range of 80 to 360° C. After quenching the semiconducting layer, a dielectric layer can be formed by applying, for example, by spin-coating, a solution of a suitable dielectric material such as poly(methylmethacryate), on the semiconducting layer. The gate electrode of a suitable gate material, for example gold (Au), can be evaporated through a shadow mask on the dielectric layer.
  • Also part of the invention is the use of the polymer of the present invention as semiconducting material.
  • The polymers of the present invention show high charge carrier mobilities. The polymer of the present invention can show ambipolar properties with high hole and electron mobilities. In addition, the polymers of the present invention show a high stability, in particular a high thermal stability. Furthermore the polymers of the present invention are compatible with liquid processing techniques. In addition, the polymers of the present invention show a strong absorption of the near infra-red light.
  • EXAMPLES Example 1
  • a) Synthesis of compound I-1 is made is made in analogy to the literature by alkylation of 6,6′-dibromoisoindigo:
  • Figure US20180009936A1-20180111-C00057
  • b) Synthesis of 6,6′-diborate ester-isoindigo (I-2)
  • Figure US20180009936A1-20180111-C00058
  • A mixture of 6,6′-dibromoisoindigo I-1 (3 g, 2.75 mmol), bis(pinacolato)diboron (1.75 g, 6.88 mmol), Pd(PPh3)2Cl2 (190 mg, 0.275 mmol) and potassium acetate (1.08 g, 11 mmol) in anhydrous toluene (50 mL) are heated to 110° C. for 16 h under argon. The reaction mixture is then cooled to r.t and plugged through a short pad silica gel with methylene chloride. The collected filtration is concentrated and dried to give 6, 6′-diborate ester isoindigo without further purification as a dark red solid (2.65 g, 81%). 1H NMR (400 MHz, CDCI3, 300 K), δ (ppm): 9.14 (d, 3J=7.9 Hz, 2 H), 7.48 (dd, 3J=7.9, 4J=0.6 Hz, 2 H), 7.16 (s, 2 H), 3.70-3.68 (m, 4 H), 1.96 (t, 2 H), 1.36 (s, 24 H), 1.35-1.24 (m, 80 H), 0.89-0.85 (m, 12 H). 13C NMR (100 MHz, CDCI3, 300 K), δ (ppm): 168.09, 144.47, 134.31, 128.88, 128.74, 124.24, 113.50, 84.03, 44.45, 31.94, 30.02, 29.66, 29.37, 24.88, 22.70, 14.13.
  • c) Synthesis of 6, 6′- di(3-methylsulfinylthiophene) isoindigo (I-4):
  • Figure US20180009936A1-20180111-C00059
  • To an oven-dried 20 mL microwave vial, 6, 6′-diborate easter-isoindigo (I-2) (1.0 g, 7.7 mmol), Pd2(dba)3 (38 mg, 0.038 mmol) and P-(o-tol)3 (46 mg, 0.15 mmol), Bromo-3-methylsulfinylthiophene (I-3, made in analogy to the literature) (430 mg, 19.25 mol), the tube is sealed, then toluene (10 mL) with 2 drops of aliquat and 2M K3PO4 (3.5 mL) are added. The mixture is degassed under Argon for half an hour, and then the argon inlet is removed. The tube is subjected to reflux for 18 h. After cooling to room temperature, the reaction mixture is extracted with EA, and the organic phase is collected and dried with magnesium sulfate, solvent is removed by the reduced pressure, purified by column chromatography (eluent: DCM: EA=10:1) to afford a dark red solid (530 mg, 53%). 1H NMR (400 MHz, CDCI3, 300 K) δ (ppm): 9.26 (d, 3J=8.3 Hz, 2 H), 7.66 (d, 3J =5.4 Hz, 2 H), 7.50 (d, 3J =5.4 Hz, 2 H), 7.12 (dd, 3J =8.3, 4J=1.6 Hz, 2H), 6.95 (d, 4J =1.4 Hz, 2 H), 3.76-3.65 (m, 4 H), 2.79 (s, 6 H), 1.94 (t, 2 H), 1.37-1.23 (m, 80 H), 0.88-0.84 (m, 12 H). 13C NMR (100 MHz, CDCl3, 300 K), δ (ppm): 168.53, 145.66, 143.24, 135.45, 132.98, 130.72, 127.27, 125.41, 123.22, 122.00, 108.69, 44.05, 31.92, 31.76, 30.08, 29.63, 29.36, 26.52, 22.69, 14.12. HRMS (ESI, pos. mode): Calculated for C74H115N2O4S4: 1223.7661, [M+H]+, found: 1223.7594.
  • d) Synthesis of BTTIID (I-5)
  • Figure US20180009936A1-20180111-C00060
  • 6,6′-di(3-methylsulfinylthiophene) isoindigo (I-4) (800 mg, 0.65 mmol) is stirred with Eaton's reagent (6 mL) at room temperature in the dark for 3 days. The mixture is poured into ice-water, extracted with chloroform and the organic phased is dried with MgSO4, the solvent is removed by reduced pressure and the crude product is dried in vacuum, which is followed to be redissolved in pyridine (10 mL) and then the mixture is refluxed overnight. After the mixture is cooled to room temperature, extracted with chloroform and diluted hydrochloride acid, the separated organic phase is dried over MgSO4, and solvent is removed by reduced pressure. The crude is purified by column chromatography on silica gel (eluent: CHCl3: PE=1:3) to afford a red solid BTTIID (I-5) (450 mg, 59%). 1H NMR (400 MHz, CDCl3, 300 K) δ (ppm): 9.81 (s, 2 H), 7.56 (d, 3J=5.1 Hz, 2 H), 7.32 (d, 3J=5.1 Hz, 2 H), 6.98 (s, 2 H), 3.72-3.70 (m, 4 H), 1.99 (t, 2 H), 1.38-1.21 (m, 80H), 0.88-0.83 (m, 12 H).13C NMR (100 MHz, CDCl3, 300 K), 6 (ppm): 168.52, 142.60, 142.18, 136.62, 134.86, 134.48, 132.12, 129.38, 125.86, 120.74, 120.07, 99.45, 44.74, 31.93, 31.67, 30.05, 29.68, 29.36, 26.54, 22.69, 14.12. MS (MALDI-TOF, CHCl3): Calculated for C72H106N202S4: 1158.71, found: 1158.4. UV-vis (CHCl3): lmax/nm (e/M-1 cm-1) =510 (36700). CV (CH2012, 0.1 M TBAHFP, vs Fc/Fc+): E1/2red (X/X)=−1.28 V, E1/2red (X/X2−)=−1.64 V, E1/2ox (X/X+)=0.78 V
  • Example 2
  • Synthesis of dibromo BTTIID (I-6)
  • Figure US20180009936A1-20180111-C00061
  • NBS (65g, 0.36 mmol) is added in small portions to a solution of benzothienothiophene isoindigo (200g, 0.17 mmol) in CHCl3/AcOH (20 mL: 5 mL), the reaction mixture is stirred at reflux for about 5 h, which can be monitored by TLC. When the reaction is finished, cooled down to room temperature, the solvent is removed by reduced pressure and purified by column chromatography on silica gel (eluent: CHCl3: PE=1:4) to afford a red solid dibromo-BTTIID (I-6) (164 mg, 72%). 1H NMR (400 MHz, CDCl3, 300 K), 6 (ppm): 9.70 (s, 2 H), 7.23 (s, 2 H), 6.67 (s, 2 H), 3.66−3.64 (m, 4 H), 1.92 (t, 2 H), 1.37−1.21 (m, 80 H), 0.88−0.83 (m, 12 H).130 NMR (100 MHz, CDCl3, 300 K), 6 (ppm): 168.25, 142.62, 140.63, 135.07, 134.79, 133.61, 131.87, 125.68, 123.27, 120.07, 116.14, 98.77, 44.72, 31.94, 30.08, 29.75, 29.69, 29.39, 26.61, 22.71, 14.13. MS (MALDI-TOF, CHCl3): Calculated for C72H104Br2N2O2S4: 1314.5, found: 1314.1.
  • Example 3
  • Synthesis of P1
  • Figure US20180009936A1-20180111-C00062
  • To a microwave vial is added dibromoBTTIID (I-6) (100 mg, 0.076 mmol, 1 equiv.) and 2,5-bis(trimethylstannyl)thiophene (31.04 mg, 0.076 μmol, 1 equiv), Pd2(dba)3 (1.50 mg) and P(o-Tol)3 (1.84 mg). The tube is sealed and flushed with Argon, and then degassed chlorobenzene (2 mL) is added. The mixture is thoroughly degassed under Argon, and then the argon inlet is removed. The tube is subjected to the following conditions in a microwave reactor: 100° C. for 5 min, 140° C. for 5 min, 160° C. for 30 min. After cooling to RT, the polymer is precipitated into methanol, and filtered through a Soxhlet thimble. The polymer is extracted using Soxhlet apparatus with methanol, acetone, hexane, dichloromethane, chloroform and chlorobenzene. The chlorobenzene solution is concentrated and precipitated into methanol. The precipitates are filtered and dried under vacuum to afford P1 as a dark blue solid (40 mg, 40%). GPC (chlorobenzene, 80° C.): Mn 33000, Mw 91135 g mol-1, PDI=2.74. 1H NMR (1,1,2,2-tetrachloroethane-d2, 130° C., 400 MHz), δ (ppm): 9.68 (broad), 6.63 (broad), 3.96−3.89 (broad), 2.15−2.13 (broad), 1.76−0.96 (broad).
  • Example 4
  • Synthesis of P2
  • Figure US20180009936A1-20180111-C00063
  • To a microwave vial is added dibromoBTTIID (I-6) (68.6 mg, 0.052 mmol,1 equiv.) and 2,5-bis(trimethylstannyl)selenophene (23.78 mg, 0.052 μmol, 1 equiv), Pd2(dba)3 (2 mg) and P(o-Tol) 3 (2.58 mg). The tube is sealed and flushed with Argon, and then degassed chlorobenzene (1.0 mL) is added. The mixture is thoroughly degassed under Argon, and then the argon inlet is removed. The tube is subjected to the following conditions in a microwave reactor: 100° C. for 5 min, 140° C. for 5 min, 160° C. for 30 min. After cooling to RT, the polymer is precipitated into methanol, and filtered through a Soxhlet thimble. The polymer is extracted using Soxhlet apparatus with methanol, acetone, hexane, dichloromethane, chloroform and chlorobenzene. The chloroform and chlorobenzene solution is concentrated and precipitated into methanol. The precipitates are filtered and dried under vacuum to afford P2 as a dark blue solid (55 mg (chloroform) and 6 mg (chlorobenzene), 87.1%). 1H NMR (1,1,2,2-tetrachloroethane-d2, 130° C., 400 MHz), δ (ppm): 9.67 (broad), 6.49 (broad), 3.96−3.87 (broad), 1.64−0.96 (broad). GPC (chloroform fraction) (chlorobenzene, 80° C.): Mn 51500, Mw 17966 g mol-1, PDI=3.49.
  • Example 5
  • Synthesis of P3
  • The synthesis of polymer P3 is made in analogy to the synthesis of polymer P2:
  • Figure US20180009936A1-20180111-C00064
  • Example 6
  • Synthesis of P4
  • The synthesis of polymer P4 is made in analogy to the synthesis of polymer P2:
  • Figure US20180009936A1-20180111-C00065
  • Example 7
  • Synthesis of P5
  • The synthesis of polymer P5 is made in analogy to the synthesis of polymer P2:
  • Figure US20180009936A1-20180111-C00066
  • Example 8
  • Synthesis of compound (I-7)
  • Compound I-7 is synthesized in analogy to compound I-5
  • Figure US20180009936A1-20180111-C00067
  • Example 9
  • Synthesis of compound (I-8)
  • Compound I-8 is synthesized from I-7 in analogy to compound I-6
  • Figure US20180009936A1-20180111-C00068
  • Example 10
  • Synthesis of polymer (P6)
  • Polymer P6 is synthesized from I-8 in analogy to polymer P2
  • Figure US20180009936A1-20180111-C00069
  • Example 11
  • Synthesis of compound (I-9)
  • Compound I-9 is synthesized in analogy to compound I-5
  • Figure US20180009936A1-20180111-C00070
  • Example 12
  • Fabrication and electrical characterization of organic field-effect transistors (OFET) based on compounds and polymers of the present invention
  • Preparation of back-contact, top-gate FETs
  • Semiconducting compound I-x or polymer Px is dissolved at a concentration of 0,75wt % in orthodichlorobenzene and subsequently coated onto a PET-substrate with lithographically prepatterned gold contacts, serving as Source and Drain contact of the FET. 100 μl of the formulation is coated by a standard blade coater at a coating speed of 20 mm/s, yielding a homogenous layer of the semiconductor over the entire substrate. After the coating is completed, the substrate is immediately transferred onto a preheated hotplate and heated for 30s at 90° C. Next the gate dielectric layer consisting of Cytop CTL-809M is spincoated on top of the organic semiconductor (1200 rpm, 30s). After Spincoating, the substrate is again transferred to the hotplate and annealed for another 5 Min at 100° C. The thickness of the dielectric layer is 535 nm measured by profilometer. Finally 50 nm thick shadow-mask patterend gold gate electrodes are deposited by vacuum evaporation to complete FETs in the BGTC-configuration (See FIG. 1a-h)
  • Electrical characterization
  • The mobility μ is calculated from the root representation of the transfer characteristic curve (solid grey curve) calculated in the saturation region. The slope m is determined from the dashed black line in FIG. 1. The dashed black line in FIG. 1 is fitted to a region of the root representation of the current characteristic ID such that a good correlation to the linear slope of the root representation is obtained.
  • The threshold voltage UTh can be taken from the intersection of black dashed line in FIG. 1 with the X-axis portion (VGS).
  • In order to calculate the electrical properties of the OFET, the following equations are employed:
  • μ = m 2 * 2 L C G * W C G = ɛ 0 * ɛ r 1 d U Th = - 1 * m b ON / OFF = I D max I D min
  • where ε0 is the vacuum permittivity of 8.85×10−12 As/Vm. εr=2,1 for Cytop and d=535 nm is the thickness of the dielectric. With the channel length L=10 μm and the channel width W=250 μm.
  • The following mobilities have been calculated for the respective compounds:
  • Compound I-x Field-effect mobility μ Threshold voltage ON/OFF
    Polymer Px [cm2/Vs] UTH [V] ratio
    I-7 1.3E−2   0.72 5E3
    I-9 6E−4 −10.8 8E2
    P6 3E−3 −6.0 1E3
    P1 high Mw 4.5E−2   −4.7 6E4
    P3 5E−4 −13.87 7E2
    P1 low Mw 9E−3 −3.62 9E3
    P2 5E−2 −2.05 1E4
    P4 2E−3 7.5 3E8

Claims (14)

1. A polymer comprising at least one unit of formula (1):
Figure US20180009936A1-20180111-C00071
wherein
R1 is at each occurrence selected from the group consisting of H, C1-100-alkyl, C2-100-alkenyl, C2-100-alkynyl, C5-12-cycloalkyl, C6-18-aryl, a 5 to 20 membered heteroaryl, C(O)—C1-100-alkyl, C(O)—C5-12-cycloalkyl and C(O)—OC1-100-alkyl,
wherein
C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be substituted with one to fourty substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, CN, and NO2, and at least two CH2-groups, but not adjacent CH2-groups, of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be replaced by O or S,
C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb, NRa-C(O)R6, C(O)—NRaRb, N[C(O)Ra][C(O)Rb],SRaSi(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, CN, and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalky can be replaced by O, S, OC(O), CO, NRa or NRa-13 CO,
C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb, NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, CN, and NO2,
wherein
Ra and Rb are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl,
RSia, RSib and RSic are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, O—C1-60-alkyl, O—C2-60-alkenyl, O—C2-60-alkynyl, O—C5-8-cycloalkyl, O—C6-14-aryl, O-5 to 14 membered heteroaryl, —[O—SiRSidRSie]o—RSif, NR5R6, halogen and O—C(O)—R5,
wherein
o is an integer from 1 to 50,
RSid, RSie, RSif are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, O—C1-60-alkyl, O—C2-60-alkenyl, O—C2-60-alkynyl, O—C5-8-cycloalkyl, O—C6-14-aryl, O-5 to 14 membered heteroaryl, —[O—SiRSigRSih]p—RSii, halogen and O—C(O)—R50;
wherein
p is an integer from 1 to 50,
RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, O—Si(CH3)3, NR500R600, halogen and O—C(O)—R500 ,
R5, R6, R50, R60, R500 and R600 are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be substituted with one to twenty substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc, Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil), halogen, CN, and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be replaced by O or S,
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc, Si(RSij)(RSik)(RSil), —O—Si (RSij)(RSik)(RSil), halogen, CN, and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-8-cycloalkyl can be replaced by O, S, OC(O), CO, NRc or NRc-CO,
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc, Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSii), halogen, CN and NO2;
wherein
Rc and Rd are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl,
RSij, RSik RSil are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, [O—SiRSimRSin]qRSio, NR7R8, halogen, and O—C(O)—R7,
wherein
q is an integer from 1 to 50,
RSim, RSin, RSio are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, —[O—SiRSipRSiq]r—RSir, NR70R80, halogen, and O—C(O)—R70;
wherein
r is an integer from 1 to 50,
RSip, RSiq, RSir are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, O—Si(CH3)3, NR700R800 , halogen and O—C(O)—R700 ,
R7, R8, R70, R80, R700 and R800 are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, and 5 to 10 membered heteroaryl,
C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen, CN and NO2,
R2 is at each occurrence selected from the group consisting of hydrogen, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl, 5 to 20 membered heteroaryl, OR21, OC(O)—R21, C(O)—OR21, C(O)—R21, NR21R22, NR21—C(O)R22, C(O)—NR21R22, N[C(O)R21][C(O)R22], SR21, halogen, CN, SiRSisRSitRSiu and OH,
wherein
R21 and R22 and are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and
C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2, and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRe or NRe—CO,
C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2,
wherein
RSis, RSit and RSiu are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O-13 Si(CH3)3,
Re and Rf are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
wherein
C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2,
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh NRg—C(O)Rh C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
wherein
Rg and Rh are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
wherein
C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2,
n is 0, 1, 2 or 3,
m is 0, 1, 2 or 3,
and
L1 and are L2 are independently from each other and at each occurrence selected from the group consisting of C6-18-arylene, 5 to 20 membered heteroarylene,
Figure US20180009936A1-20180111-C00072
wherein
C6-18-arylene and 5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C(O)—OR31, C(O)—R31, NR31R32, NR31—C(O)R32, C(O)—NR31R32, N[C(O)R31][C(O)R32], SR31, halogen, CN, SiRSivRSiwRSix and OH, and
wherein
Figure US20180009936A1-20180111-C00073
can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42,C(O)—OR41 and CN,
wherein
R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and
wherein
C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO, p1 C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—R, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2,
wherein
SiRSivRSiwRSix are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
Ri and Rj are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
wherein
C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)-Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)R1], SRk, halogen, CN, and NO2,
wherein
Rk and Rl are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
wherein
C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
2. The polymer of claim 1, wherein
Rl is at each occurrence selected from the group consisting of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl,
wherein
C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be substituted with one to fourty substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRa—C(O)Rb, C(O)—NRaRb, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be replaced by O or S,
wherein
Ra and Rb are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl,
RSia, RSib and RSic are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, -—[O—SiRSidRSie]o—RSif,
wherein
o is an integer from 1 to 50,
RSid, RSie and RSif are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, —[O—SiRSigRSih]p—RSii,
wherein
p is an integer from 1 to 50,
RSig RSih, RSih are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
R5, R6, R50, R60, R500 and R600 are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be substituted with one to twenty substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil, halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be replaced by O or S,
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil), halogen, and CN; and one or two CH2-groups, but not adjacent CH2-groups, of C5-8-cycloalkyl can be replaced by O, S, OC(O), CO, NRc or NRc—CO,
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil), halogen, and CN;
wherein
Rc and Rd are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl,
RSij, RSik and RSil are independently selected from the group consisting of H, C,1-30 alkyl C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSim RSin]q—RSio,
wherein
q is an integer from 1 to 50,
RSim, RSin, RSio are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSipRSiq]r—RSir,
wherein
r is an integer from 1 to 50,
RSip, RSiq, RSir are independently selected from the group consisting of H,C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
C1-30alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN,
R2 is at each occurrence selected from the group consisting of hydrogen, C1-30-alkyl and halogen,
wherein
C-30-alkyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORc, OC(O)—Re C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-30-alkyl can be replaced by O or S,
wherein
RSis, RSit and RSiu are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
Re and Rf are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
wherein
C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg
, OC(O)—Rg, C(O)—ORg
, C(O)—Rg
, NRgRh, NRg
—C(O)Rh, C(O)13 NRg
Rh
, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
wherein
Rg and Rh are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
wherein
C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
3. The polymer of claim 1, wherein Rl is at each occurrence selected from the group consisting of C1-100-alkyl, C2-100-alkenyl and C2-100alkynyl,
wherein
C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be substituted with one to fourty substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRa—C(O)Rb, C(O)—NRaRb, SRa, Si(RSia)(RSib)(RSic) —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be replaced by O or S,
wherein
Ra and Rh are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl,
RSia, RSib and RSic are independently selected from the group consisting of H, C1-60-alkyk C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, —[O—SiRSidRSie]o-RSif,
wherein
o is an integer from 1 to 50,
RSid, RSie and RSif are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, —[O—SirSigRSih]p—RSii,
wherein
p is an integer from 1 to 50,
RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be substituted with one to twenty substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSii), —O—Si(RSij)(RSik)(RSil) , halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be replaced by O or S,
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRc—C(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSii), —O—Si(RSij)(RSik)(RSil), halogen, and CN; and one or two CH2-groups, but not adjacent CH2-groups, of C5-8-cycloalkyl can be replaced by O, S, OC(O), CO, NRc or NRc—CO,
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRcC(O)Rd, C(O)—NRcRd, SRc, Si(RSij)(RSik)(RSii), —O—Si(RSij)(RSik)(RSil), halogen, and CN;
wherein
Rc and Rd are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl,
RSij, RSik and RSid are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl —[O—SiRSimRSin]q—RSio,
wherein
q is an integer from 1 to 50,
RSim, RSin, RSio are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSipRSiq]r—RSir,
wherein
r is an integer from 1 to 50,
RSip, RSiq, RSir rare independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN,
R2 is at each occurrence selected from the group consisting of hydrogen, C1-30-alkyl and halogen,
wherein
C1-30-alkyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSin and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-30-alkyl can be replaced by O or S,
wherein
RSis, RSit and RSin are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
Re
and Rf are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
wherein
C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2,
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
wherein
Rg and Rh are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
wherein
C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
4. The polymer of claim 1 wherein
Rl is at each occurrence selected from the group consisting of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl,
wherein
C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be substituted with one to twenty substituents independently selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORa, SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, and CN; and at least two CH2-groups, but not adjacent CH2-groups, of C1-36-alkyl, C2-36-alkenyl and C2-36-alkynyl can be replaced by O or S,
wherein
Ra is independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl and C6-10 -aryl
RSia, RSib and RSic are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl,—[O—SiRSidRSie]o—RSif
wherein
o is an integer from 1 to 50,
RSid, RSie, RSif are independently selected from the group consisting of H, C1-30-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, —[O—SiRSigRSih]p-—RSii,
wherein
p is an integer from 1 to 50,
RSig RSih, RSii are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, C6-10-aryl, O—Si(CH3)3,
C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen and CN,
R2 is at each occurrence selected from the group consisting of unsubstituted hydrogen, C1-30-alkyl and halogen.
5. The polymer of claim 1, wherein
R1 is at each occurrence unsubstituted C1-36-alkyl, and
R2 is at each occurrence hydrogen.
6. The polymer of claim 1, wherein
L1 and L2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
Figure US20180009936A1-20180111-C00074
and
wherein
5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, OR31, OC(O)—R31, C(O)—OR31, C(O)—R31, NR31R32, NR31—C(O)R32, C(O)—NR31R32, SR31, halogen, CN, SiRSivRSiwRSix and OH, and
wherein
Figure US20180009936A1-20180111-C00075
can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, C(O)—R41, C(O)—NR41R42, C(O)—OR41 and CN,
wherein
R31, R32, R41 and R42 are independently from each other and at each occurrence selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and
wherein
C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and at least two CH2-groups, but not adjacent CH2-groups of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRi or NRi—CO,
C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORi, OC(O)—Rj, C(O)—ORi, C(O)—Ri, NRiRj, NRi—C(O)Rj, C(O)—NRiRj, N[C(O)Ri][C(O)Rj], SRi, halogen, CN, SiRSivRSiwRSix and NO2,
wherein
SiRSivRSiwRSix are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C—6-cycloalkyl, phenyl and O—Si(CH3)3,
Ri and Rj are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
wherein
C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl, NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2,
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRkhalogen, CN, and NO2;
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORk, OC(O)—Rl, C(O)—ORk, C(O)—Rk, NRkRl NRk—C(O)Rl, C(O)—NRkRl, N[C(O)Rk][C(O)Rl], SRk, halogen, CN, and NO2;
wherein
Rk and Rl are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
wherein
C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
7. The polymer of claim 6, wherein
L1 and L2 are independently from each other and at each occurrence selected from the group consisting of 5 to 20 membered heteroarylene,
Figure US20180009936A1-20180111-C00076
and
wherein 5 to 20 membered heteroarylene is selected from the group consisting of
Figure US20180009936A1-20180111-C00077
wherein
R104 and R105 are independently and at each occurrence selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl, or R104 and R105, if attached to the same atom, together with the atom, to which they are attached, form a 5 to 12 membered ring system,
wherein
C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs] [C(O)Rt], SRs, halogen, CN, and NO2;
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt],SRs, halogen, CN, and NO2;
5 to 12 membered ring system can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORs, OC(O)—Rt, C(O)—ORs, C(O)—Rs, NRsRt, NRs—C(O)Rt, C(O)—NRsRt, N[C(O)Rs][C(O)Rt], SRs, halogen, CN, and NO2;
wherein
Rs and Rt are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
wherein
C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2,
wherein
5 to 20 membered heteroarylene can be substituted with one to six substituents R3 at each occurrence selected from the group consisting of C1-30-alkyl and halogen, and
wherein
Figure US20180009936A1-20180111-C00078
can be substituted with one or two substituents R4 at each occurrence selected from the group consisting of C1-30-alkyl, C(O)—R41, C(O)—OR41 and CN,
wherein
R41 is at each occurrence C1-30-alkyl.
8. The polymer of claim 7, wherein
L1 and L2 are independently from each other and at each occurrence 5 to 20 membered
heteroarylene, wherein 5 to 20 membered heteroarylene is selected from the group consisting of
Figure US20180009936A1-20180111-C00079
wherein
5 to 20 membered heteroarylene is unsubstituted.
9. The polymer of claim 1, wherein
n is 0, 1 or 2, and
m is 0, 1 or 2.
10. A process for preparing the polymer of claim 1,
wherein the formula (1) is formula (1-1)
Figure US20180009936A1-20180111-C00080
the process comprising:
reacting a compound of formula (2)
Figure US20180009936A1-20180111-C00081
wherein Y is at each occurrence I, Br, Cl or O—S(O)2CF3,
with a compound of formula (3)
Figure US20180009936A1-20180111-C00082
wherein
Za and Zb are independently selected from the group consisting of B(OZ1)(OZ2), SnZ1Z2Z3,
Figure US20180009936A1-20180111-C00083
wherein Z1, Z2, Z3, Z4, Z5 and Z6 are independently from each other and at each occurrence H or C1-4-alkyl.
11. An intermediate of formula (2) or (2′)
Figure US20180009936A1-20180111-C00084
wherein
Y is at each occurrence I, Br, Cl or O—S(O)2CF3, R1 is at each occurrence selected from the group consisting of H, C1-100-alkyl, C2-100-alkenyl, C2-100-alkynyl, C5-12cycloalkyl, C6-18-aryl, a 5 to 20 membered heteroaryl, C(O)—C1-100-alkyl, C (O)—C5-12-cycloalkyl and C(O)—OC1-100-alkyl,
wherein
C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be substituted with one to fourty substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—OR, C(O)—Ra, NRaRb, NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, CN, and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-100-alkyl, C2-100-alkenyl and C2-100-alkynyl can be replaced by O or S,
C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-60-alkyl, C2-60-alkenyl, C,2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb, NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, CN, and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRa or NRa—CO,
C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-60-alkyl, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORa, OC(O)—Ra, C(O)—ORa, C(O)—Ra, NRaRb, NRa—C(O)Rb, C(O)—NRaRb, N[C(O)Ra][C(O)Rb], SRa, Si(RSia)(RSib)(RSic), —O—Si(RSia)(RSib)(RSic), halogen, CN, and NO2,
wherein
Ra and Rb are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl,
RSia, RSib RSic are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, O—C1-60-alkyl,O—C2-60-alkenyl, O—C2-60-alkynyl, O—C5-8cycloalkyl, O—C6-14-aryl, O-5 to 14 membered heteroaryl, —[O—SiRSidRSie]o—RSif, NR5R6, halogen and O—C(O)—R5,
wherein
o is an integer from 1 to 50,
RSid, RSie, RSif are independently selected from the group consisting of H, C1-60-alkyl, C 2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, O—C1-60-alkyl, O—C2-60-alkenyl, O—C2-60-alkynyl, O—C5-8-cycloalkyl, O—C6-14-aryl, O-5 to 14 membered heteroaryl, —[O—SiRSigRSih]p—RSii, NR 50R60 , halogen and O-13 C(O)—R50;
wherein
p is an integer from 1 to 50,
RSig RSih, RSii are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C 2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, O—Si(CH3)3, NR500R600, halogen and O—C(O)—R500,
R5, R6, R50, R60, R500 and R600 are independently selected from the group consisting of H, C1-60-alkyl, C2-60-alkenyl, C2-60-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be substituted with one to twenty substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc, Si (RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil), halogen, CN, and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-60-alkyl, C2-60-alkenyl and C2-60-alkynyl can be replaced by O or S,
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkenyl, C5-6-cycloalkyl, C6-10-aryl, ORc OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc, Si(RSij)(RSik)(RSil)—O—Si(RSij)(RSik)(RSik),halogen, CN, and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-8-cycloalkyl can be replaced by O, S, OC(O), CO, NRc or NRc—CO,
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, ORc, OC(O)—Rc, C(O)—ORc, C(O)—Rc, NRcRd, NRc—C(O)Rd, C(O)—NRcRd, N[C(O)Rc][C(O)Rd], SRc, Si(RSij)(RSik)(RSil), —O—Si(RSij)(RSik)(RSil), halogen, CN and NO2;
wherein
Rc and Rd are independently selected from the group consisting of H, C2-30-alkyl, C2-30-alkenyl, and C2-30-alkynyl,
RSij, RSik and RSil are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, —[O—SiRSimRSim]q—RSio, NR7R8, halogen, and O—C(O)—R7,
wherein
q is an integer from 1 to 50,
RSim, RSin, RSio are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, O—C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl,—[O—Sir SipRSiq]r-RSir, NR70R80, halogen, O—C(O)—R70;
wherein
r is an integer from 1 to 50,
RSiP, RSiq, RSir are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C6-5-cycloalkyl, C6-10aryl, 5 to 10 membered heteroaryl, O-13 C1-30-alkyl, O—C2-30-alkenyl, O—C2-30-alkynyl, O—C5-6-cycloalkyl, O—C6-10-aryl, O-5 to 10 membered heteroaryl, O—Si(CH3) , NR700R800, halogen and O—C(O)—R700,
R7, R8, R70, R80, R700 and R80 are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-6-cycloalkyl, C6-10-aryl, and 5 to 10 membered heteroaryl,
C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents selected from the group consisting of halogen, CN and NO2,
R2 is at each occurrence selected from the group consisting of hydrogen, C1-30-alkyl, C2-30-alkenyl, C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl, 5 to 20 membered heteroaryl, OR21, OC(O)—R21, C(O)—OR21, C(O)—R21, NR21R22, NR21-C(O)R22, C(O)-13 NR21R22, N[C(O)R21][C(O)R22], SR21, halogen, CN, SiRSisRSitRSiu and OH,
wherein
R21 and R22 and are independently selected from the group consisting of H, C1-30-alkyl, C2-30-alkenyl C2-30-alkynyl, C5-12-cycloalkyl, C6-18-aryl and 5 to 20 membered heteroaryl, and
C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be substituted with one to ten substituents independently selected from the group consisting of C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2; and at least two CH2-groups, but not adjacent CH2-groups, of C1-30-alkyl, C2-30-alkenyl and C2-30-alkynyl can be replaced by O or S,
C5-12-cycloalkyl can be substituted with one to six substituents independently selected from the group consisting of C1-20alkyl, C2-20alkenyl C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2; and one or two CH2-groups, but not adjacent CH2-groups, of C5-12-cycloalkyl can be replaced by O, S, OC(O), CO, NRe or NRe—CO,
C6-18-aryl and 5 to 20 membered heteroaryl can be substituted with one to six substituents independently selected from the group consisting of C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, 5 to 14 membered heteroaryl, ORe, OC(O)—Re, C(O)—ORe, C(O)—Re, NReRf, NRe—C(O)Rf, C(O)—NReRf, N[C(O)Re][C(O)Rf], SRe, halogen, CN, SiRSisRSitRSiu and NO2,
wherein
RSis, RSit and RSiu are independently from each other selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-6-cycloalkyl, phenyl and O—Si(CH3)3,
Re and Rf are independently selected from the group consisting of H, C1-20-alkyl, C2-20-alkenyl, C2-20-alkynyl, C5-8-cycloalkyl, C6-14-aryl, and 5 to 14 membered heteroaryl,
wherein
C1-20-alkyl, C2-20-alkenyl and C2-20-alkynyl can be substituted with one to five substituents selected from the group consisting of C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRg, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2,
C5-8-cycloalkyl can be substituted with one to five substituents selected from the group consisting of C1-10-alkyl, C2-10-alkenyl, C2-10-alkynyl, C5-6-cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)Rh, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one to five substituents independently selected from the group consisting of C1-10-alkyl, C2-10 -alkenyl, C2-1-alkynyl, C5-6cycloalkyl, C6-10-aryl, 5 to 10 membered heteroaryl, ORg, OC(O)—Rg, C(O)—ORg, C(O)—Rg, NRgRh, NRg—C(O)RK, C(O)—NRgRh, N[C(O)Rg][C(O)Rh], SRg, halogen, CN, and NO2;
wherein
Rg and Rh are independently selected from the group consisting of H, C1-10-alkyl, C2-10-alkenyl and C2-10-alkynyl,
wherein
C1-10-alkyl, C2-10-alkenyl and C7-10-alkynyl can be substituted with one to five substituents selected from the group consisting of halogen, CN and NO2.
12. An electronic device, comprising:
a polymer of claim 1.
13. The electronic device of claim 12, wherein the electronic device is an organic field effect transistor.
14. (canceled)
US15/543,637 2015-01-16 2016-01-15 Benzothienothiophene isoindigo polymers Active US10669371B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP15151475 2015-01-16
EP15151475 2015-01-16
EP15151475.9 2015-01-16
PCT/EP2016/050801 WO2016113403A1 (en) 2015-01-16 2016-01-15 Benzothienothiophene isoindigo polymers

Publications (2)

Publication Number Publication Date
US20180009936A1 true US20180009936A1 (en) 2018-01-11
US10669371B2 US10669371B2 (en) 2020-06-02

Family

ID=52345129

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/543,637 Active US10669371B2 (en) 2015-01-16 2016-01-15 Benzothienothiophene isoindigo polymers

Country Status (6)

Country Link
US (1) US10669371B2 (en)
EP (1) EP3245273B1 (en)
JP (1) JP6713470B2 (en)
KR (1) KR102410745B1 (en)
CN (1) CN107109214B (en)
WO (1) WO2016113403A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7026391B2 (en) 2016-05-25 2022-02-28 クラップ カンパニー リミテッド Semiconductor polymer
KR102568844B1 (en) * 2016-12-06 2023-08-21 주식회사 클랩 Thieno-indeno-monomers and polymers
CN110317210B (en) * 2018-03-30 2021-06-01 中国科学院化学研究所 Planar indenoindene-dithiophene photovoltaic acceptor material, preparation method and application thereof
CN112079996B (en) * 2020-09-18 2022-07-19 徐州工程学院 A kind of high plane n-type polymer and its preparation method and use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170084839A1 (en) * 2014-03-17 2017-03-23 Merck Patent Gmbh Organic semiconducting compounds

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3025771A1 (en) 1980-07-08 1982-02-04 Basf Ag, 6700 Ludwigshafen METHOD FOR THE PRODUCTION OF ELECTRICALLY CONDUCTIVE SOLUBLE HETEROPOLYPHENYLENE AND THEIR USE IN ELECTROTECHNICS AND FOR THE ANTISTATIC EQUIPMENT OF PLASTICS
US8758880B2 (en) 2007-10-25 2014-06-24 Basf Se Ketopyrroles as organic semiconductors
CN103154057B (en) * 2010-11-25 2015-04-01 海洋王照明科技股份有限公司 Conjugated polymer containing isoindigo units, preparation method and use thereof
US8613870B2 (en) * 2012-01-27 2013-12-24 Xerox Corporation Isothioindigo-based polymers
KR102030867B1 (en) * 2012-04-02 2019-10-10 바스프 에스이 Phenanthro[9,10-b]furan polymers and small molecules for electronic applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170084839A1 (en) * 2014-03-17 2017-03-23 Merck Patent Gmbh Organic semiconducting compounds

Also Published As

Publication number Publication date
JP2018504492A (en) 2018-02-15
KR102410745B1 (en) 2022-06-20
WO2016113403A1 (en) 2016-07-21
JP6713470B2 (en) 2020-06-24
US10669371B2 (en) 2020-06-02
EP3245273A1 (en) 2017-11-22
EP3245273B1 (en) 2018-11-07
CN107109214B (en) 2020-05-08
KR20170106991A (en) 2017-09-22
CN107109214A (en) 2017-08-29

Similar Documents

Publication Publication Date Title
US10815236B2 (en) Semiconducting polymer
US11667650B2 (en) Thieno-indeno-monomers and polymers
JP5812730B2 (en) Organic semiconductor composition, organic thin film, and organic thin film transistor comprising the same
US10669371B2 (en) Benzothienothiophene isoindigo polymers
US10793668B2 (en) Naphthoindacenodithiophenes and polymers
US10020456B2 (en) Ether-based polymers as photo-crosslinkable dielectrics
US10403822B2 (en) Thienothiophene-isoindigo
US20210277157A1 (en) Vinylether-based polymer as dielectric
US11778893B2 (en) Indaceno derivatives as organic semiconductors
US10059797B2 (en) Preparation of polymers comprising at least one benzo[c][1,2,5]thiadiazol-5,6-dicarbonitrile-unit

Legal Events

Date Code Title Description
AS Assignment

Owner name: BASF SCHWEIZ AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAYOZ, PASCAL;REEL/FRAME:044536/0867

Effective date: 20170622

Owner name: BASF SE, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAELBLEIN, DANIEL;REEL/FRAME:044536/0869

Effective date: 20170620

AS Assignment

Owner name: BASF SE, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BASF SCHWEIZ AG;REEL/FRAME:044649/0178

Effective date: 20180109

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

AS Assignment

Owner name: CLAP CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BASF SE;REEL/FRAME:052459/0201

Effective date: 20200121

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载