US20180000706A1 - Conditioner Composition Comprising a Chelant - Google Patents
Conditioner Composition Comprising a Chelant Download PDFInfo
- Publication number
- US20180000706A1 US20180000706A1 US15/630,431 US201715630431A US2018000706A1 US 20180000706 A1 US20180000706 A1 US 20180000706A1 US 201715630431 A US201715630431 A US 201715630431A US 2018000706 A1 US2018000706 A1 US 2018000706A1
- Authority
- US
- United States
- Prior art keywords
- hair
- conditioner composition
- hair conditioner
- chelants
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 206
- 239000013522 chelant Substances 0.000 title abstract description 27
- 210000004209 hair Anatomy 0.000 claims abstract description 197
- 150000001875 compounds Chemical class 0.000 claims abstract description 44
- 239000003093 cationic surfactant Substances 0.000 claims abstract description 32
- 238000002844 melting Methods 0.000 claims abstract description 20
- 230000008018 melting Effects 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 14
- 229920001296 polysiloxane Polymers 0.000 claims description 114
- -1 2-hydroxypropyl Chemical group 0.000 claims description 86
- 125000004432 carbon atom Chemical group C* 0.000 claims description 38
- 125000000217 alkyl group Chemical group 0.000 claims description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 30
- 229910052802 copper Inorganic materials 0.000 claims description 29
- 239000010949 copper Substances 0.000 claims description 29
- 208000001840 Dandruff Diseases 0.000 claims description 20
- 239000003795 chemical substances by application Substances 0.000 claims description 18
- KFZMGEQAYNKOFK-UHFFFAOYSA-N 2-propanol Substances CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 16
- 230000008901 benefit Effects 0.000 claims description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 14
- 230000008021 deposition Effects 0.000 claims description 12
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 10
- 239000008365 aqueous carrier Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 6
- 239000002304 perfume Substances 0.000 claims description 5
- ZAXCZCOUDLENMH-UHFFFAOYSA-N 3,3,3-tetramine Chemical compound NCCCNCCCNCCCN ZAXCZCOUDLENMH-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 claims description 3
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 claims description 3
- 239000011782 vitamin Substances 0.000 claims description 3
- 235000013343 vitamin Nutrition 0.000 claims description 3
- 229940088594 vitamin Drugs 0.000 claims description 3
- 229930003231 vitamin Natural products 0.000 claims description 3
- 108090000790 Enzymes Proteins 0.000 claims description 2
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 239000003242 anti bacterial agent Substances 0.000 claims description 2
- 239000005667 attractant Substances 0.000 claims description 2
- 239000000975 dye Substances 0.000 claims description 2
- 125000001841 imino group Chemical group [H]N=* 0.000 claims description 2
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 claims description 2
- 239000000049 pigment Substances 0.000 claims description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 claims description 2
- MBYLVOKEDDQJDY-UHFFFAOYSA-N tris(2-aminoethyl)amine Chemical compound NCCN(CCN)CCN MBYLVOKEDDQJDY-UHFFFAOYSA-N 0.000 claims description 2
- 238000011282 treatment Methods 0.000 description 41
- 229920013822 aminosilicone Polymers 0.000 description 36
- 230000003750 conditioning effect Effects 0.000 description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 239000000463 material Substances 0.000 description 28
- 239000002453 shampoo Substances 0.000 description 27
- 229920000642 polymer Polymers 0.000 description 25
- 150000003863 ammonium salts Chemical class 0.000 description 23
- 229920005573 silicon-containing polymer Polymers 0.000 description 22
- 239000000839 emulsion Substances 0.000 description 21
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000004205 dimethyl polysiloxane Substances 0.000 description 16
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 16
- 150000003839 salts Chemical class 0.000 description 16
- 125000003277 amino group Chemical group 0.000 description 15
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 15
- 239000003921 oil Substances 0.000 description 15
- 239000011701 zinc Substances 0.000 description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 14
- 125000003118 aryl group Chemical group 0.000 description 14
- 239000000375 suspending agent Substances 0.000 description 14
- 229910052725 zinc Inorganic materials 0.000 description 14
- 239000012071 phase Substances 0.000 description 13
- 150000001412 amines Chemical class 0.000 description 12
- 238000000151 deposition Methods 0.000 description 12
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 12
- 229940008099 dimethicone Drugs 0.000 description 11
- 230000000845 anti-microbial effect Effects 0.000 description 10
- 239000004599 antimicrobial Substances 0.000 description 10
- 239000000499 gel Substances 0.000 description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- 235000010755 mineral Nutrition 0.000 description 10
- 239000011707 mineral Substances 0.000 description 10
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 10
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 150000002191 fatty alcohols Chemical class 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 9
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- 239000004615 ingredient Substances 0.000 description 9
- YBBJKCMMCRQZMA-UHFFFAOYSA-N pyrithione Chemical class ON1C=CC=CC1=S YBBJKCMMCRQZMA-UHFFFAOYSA-N 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 8
- 229920002125 Sokalan® Polymers 0.000 description 8
- 125000003545 alkoxy group Chemical group 0.000 description 8
- 150000002148 esters Chemical class 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- OSCJHTSDLYVCQC-UHFFFAOYSA-N 2-ethylhexyl 4-[[4-[4-(tert-butylcarbamoyl)anilino]-6-[4-(2-ethylhexoxycarbonyl)anilino]-1,3,5-triazin-2-yl]amino]benzoate Chemical compound C1=CC(C(=O)OCC(CC)CCCC)=CC=C1NC1=NC(NC=2C=CC(=CC=2)C(=O)NC(C)(C)C)=NC(NC=2C=CC(=CC=2)C(=O)OCC(CC)CCCC)=N1 OSCJHTSDLYVCQC-UHFFFAOYSA-N 0.000 description 7
- 229940100484 5-chloro-2-methyl-4-isothiazolin-3-one Drugs 0.000 description 7
- 0 [75*][N+]([76*])([77*])[78*].[CH3-] Chemical compound [75*][N+]([76*])([77*])[78*].[CH3-] 0.000 description 7
- 125000002877 alkyl aryl group Chemical group 0.000 description 7
- DHNRXBZYEKSXIM-UHFFFAOYSA-N chloromethylisothiazolinone Chemical compound CN1SC(Cl)=CC1=O DHNRXBZYEKSXIM-UHFFFAOYSA-N 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 6
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 229960000541 cetyl alcohol Drugs 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000009499 grossing Methods 0.000 description 6
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 6
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 6
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical compound CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- WHMDPDGBKYUEMW-UHFFFAOYSA-N pyridine-2-thiol Chemical class SC1=CC=CC=N1 WHMDPDGBKYUEMW-UHFFFAOYSA-N 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000008439 repair process Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 5
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 150000002194 fatty esters Chemical class 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 229960004125 ketoconazole Drugs 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 5
- BTSZTGGZJQFALU-UHFFFAOYSA-N piroctone olamine Chemical compound NCCO.CC(C)(C)CC(C)CC1=CC(C)=CC(=O)N1O BTSZTGGZJQFALU-UHFFFAOYSA-N 0.000 description 5
- 229960002026 pyrithione Drugs 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 210000004761 scalp Anatomy 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000003760 tallow Substances 0.000 description 5
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 5
- 206010019049 Hair texture abnormal Diseases 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000002252 acyl group Chemical group 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- 229920002678 cellulose Chemical class 0.000 description 4
- 239000001913 cellulose Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 4
- 230000001804 emulsifying effect Effects 0.000 description 4
- VEVFSWCSRVJBSM-HOFKKMOUSA-N ethyl 4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine-1-carboxylate Chemical compound C1CN(C(=O)OCC)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 VEVFSWCSRVJBSM-HOFKKMOUSA-N 0.000 description 4
- 239000000194 fatty acid Chemical class 0.000 description 4
- 229930195729 fatty acid Chemical class 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 4
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229950001046 piroctone Drugs 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229960004889 salicylic acid Drugs 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229940043810 zinc pyrithione Drugs 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UIEOWUNWDUASFC-UHFFFAOYSA-N CN([Y])CN(C)[Y] Chemical compound CN([Y])CN(C)[Y] UIEOWUNWDUASFC-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 235000019445 benzyl alcohol Nutrition 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000013500 performance material Substances 0.000 description 3
- 229920001515 polyalkylene glycol Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- VIDTVPHHDGRGAF-UHFFFAOYSA-N selenium sulfide Chemical compound [Se]=S VIDTVPHHDGRGAF-UHFFFAOYSA-N 0.000 description 3
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 3
- 239000004299 sodium benzoate Substances 0.000 description 3
- 235000010234 sodium benzoate Nutrition 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 150000005846 sugar alcohols Polymers 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- LEZWWPYKPKIXLL-UHFFFAOYSA-N 1-{2-(4-chlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 LEZWWPYKPKIXLL-UHFFFAOYSA-N 0.000 description 2
- WCOXQTXVACYMLM-UHFFFAOYSA-N 2,3-bis(12-hydroxyoctadecanoyloxy)propyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC(O)CCCCCC)COC(=O)CCCCCCCCCCC(O)CCCCCC WCOXQTXVACYMLM-UHFFFAOYSA-N 0.000 description 2
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- 229940099451 3-iodo-2-propynylbutylcarbamate Drugs 0.000 description 2
- WYVVKGNFXHOCQV-UHFFFAOYSA-N 3-iodoprop-2-yn-1-yl butylcarbamate Chemical compound CCCCNC(=O)OCC#CI WYVVKGNFXHOCQV-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- 244000303965 Cyamopsis psoralioides Species 0.000 description 2
- 235000017788 Cydonia oblonga Nutrition 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- DTHZWUDUWBPDQI-UHFFFAOYSA-N [Zn].ClO Chemical compound [Zn].ClO DTHZWUDUWBPDQI-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000007259 addition reaction Methods 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- 125000005233 alkylalcohol group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical class Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 150000003851 azoles Chemical class 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- GJWSUKYXUMVMGX-UHFFFAOYSA-N citronellic acid Chemical compound OC(=O)CC(C)CCC=C(C)C GJWSUKYXUMVMGX-UHFFFAOYSA-N 0.000 description 2
- 239000011280 coal tar Substances 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- SUCKQWWOYOOODR-UHFFFAOYSA-K copper;zinc;carbonate;hydroxide Chemical compound [OH-].[Cu+2].[Zn+2].[O-]C([O-])=O SUCKQWWOYOOODR-UHFFFAOYSA-K 0.000 description 2
- 239000008406 cosmetic ingredient Substances 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- ZCPCLAPUXMZUCD-UHFFFAOYSA-M dihexadecyl(dimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCC ZCPCLAPUXMZUCD-UHFFFAOYSA-M 0.000 description 2
- 229960000735 docosanol Drugs 0.000 description 2
- 229960003913 econazole Drugs 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- 229940100608 glycol distearate Drugs 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229960004130 itraconazole Drugs 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 229940049292 n-(3-(dimethylamino)propyl)octadecanamide Drugs 0.000 description 2
- KKBOOQDFOWZSDC-UHFFFAOYSA-N n-[2-(diethylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCN(CC)CC KKBOOQDFOWZSDC-UHFFFAOYSA-N 0.000 description 2
- WWVIUVHFPSALDO-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCCN(C)C WWVIUVHFPSALDO-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- UUZZMWZGAZGXSF-UHFFFAOYSA-N peroxynitric acid Chemical compound OON(=O)=O UUZZMWZGAZGXSF-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 2
- 229920013639 polyalphaolefin Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 229940057950 sodium laureth sulfate Drugs 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229940037312 stearamide Drugs 0.000 description 2
- 229940012831 stearyl alcohol Drugs 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- BLSQLHNBWJLIBQ-OZXSUGGESA-N (2R,4S)-terconazole Chemical compound C1CN(C(C)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2N=CN=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 BLSQLHNBWJLIBQ-OZXSUGGESA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 1
- MPIPASJGOJYODL-SFHVURJKSA-N (R)-isoconazole Chemical compound ClC1=CC(Cl)=CC=C1[C@@H](OCC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 MPIPASJGOJYODL-SFHVURJKSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- DMBUODUULYCPAK-UHFFFAOYSA-N 1,3-bis(docosanoyloxy)propan-2-yl docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCCCCCC DMBUODUULYCPAK-UHFFFAOYSA-N 0.000 description 1
- WGYZMNBUZFHYRX-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-ol Chemical compound COCC(C)OCC(C)O WGYZMNBUZFHYRX-UHFFFAOYSA-N 0.000 description 1
- MPTJIDOGFUQSQH-UHFFFAOYSA-N 1-(2,4-dichloro-10,11-dihydrodibenzo[a,d][7]annulen-5-yl)imidazole Chemical compound C12=CC=CC=C2CCC2=CC(Cl)=CC(Cl)=C2C1N1C=CN=C1 MPTJIDOGFUQSQH-UHFFFAOYSA-N 0.000 description 1
- OWEGWHBOCFMBLP-UHFFFAOYSA-N 1-(4-chlorophenoxy)-1-(1H-imidazol-1-yl)-3,3-dimethylbutan-2-one Chemical compound C1=CN=CN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 OWEGWHBOCFMBLP-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- ZCJYUTQZBAIHBS-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-{[4-(phenylsulfanyl)benzyl]oxy}ethyl]imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C=CC(SC=2C=CC=CC=2)=CC=1)CN1C=NC=C1 ZCJYUTQZBAIHBS-UHFFFAOYSA-N 0.000 description 1
- OCAPBUJLXMYKEJ-UHFFFAOYSA-N 1-[biphenyl-4-yl(phenyl)methyl]imidazole Chemical compound C1=NC=CN1C(C=1C=CC(=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 OCAPBUJLXMYKEJ-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- QXHHHPZILQDDPS-UHFFFAOYSA-N 1-{2-[(2-chloro-3-thienyl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound S1C=CC(COC(CN2C=NC=C2)C=2C(=CC(Cl)=CC=2)Cl)=C1Cl QXHHHPZILQDDPS-UHFFFAOYSA-N 0.000 description 1
- JLGKQTAYUIMGRK-UHFFFAOYSA-N 1-{2-[(7-chloro-1-benzothiophen-3-yl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C2=CC=CC(Cl)=C2SC=1)CN1C=NC=C1 JLGKQTAYUIMGRK-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical class OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- FLPJVCMIKUWSDR-UHFFFAOYSA-N 2-(4-formylphenoxy)acetamide Chemical compound NC(=O)COC1=CC=C(C=O)C=C1 FLPJVCMIKUWSDR-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- ZAYHEMRDHPVMSC-UHFFFAOYSA-N 2-(octadecanoylamino)ethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCOC(=O)CCCCCCCCCCCCCCCCC ZAYHEMRDHPVMSC-UHFFFAOYSA-N 0.000 description 1
- AKWFJQNBHYVIPY-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO AKWFJQNBHYVIPY-UHFFFAOYSA-N 0.000 description 1
- SJBOEHIKNDEHHO-UHFFFAOYSA-N 2-[2-aminoethyl(carboxymethyl)amino]acetic acid Chemical compound NCCN(CC(O)=O)CC(O)=O SJBOEHIKNDEHHO-UHFFFAOYSA-N 0.000 description 1
- XWSGEVNYFYKXCP-UHFFFAOYSA-N 2-[carboxymethyl(methyl)amino]acetic acid Chemical compound OC(=O)CN(C)CC(O)=O XWSGEVNYFYKXCP-UHFFFAOYSA-N 0.000 description 1
- AQFJPHAVWFBQQY-UHFFFAOYSA-N 2-[carboxymethyl(propyl)amino]acetic acid Chemical compound CCCN(CC(O)=O)CC(O)=O AQFJPHAVWFBQQY-UHFFFAOYSA-N 0.000 description 1
- MBRHNTMUYWQHMR-UHFFFAOYSA-N 2-aminoethanol;6-cyclohexyl-1-hydroxy-4-methylpyridin-2-one Chemical class NCCO.ON1C(=O)C=C(C)C=C1C1CCCCC1 MBRHNTMUYWQHMR-UHFFFAOYSA-N 0.000 description 1
- OYINQIKIQCNQOX-UHFFFAOYSA-M 2-hydroxybutyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCC(O)C[N+](C)(C)C OYINQIKIQCNQOX-UHFFFAOYSA-M 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical class CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- HZLHRDBTVSZCBS-GHTYLULLSA-N 4-[(z)-(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]-2-methylaniline;hydrochloride Chemical class Cl.C1=CC(=N)C(C)=C\C1=C(C=1C=C(C)C(N)=CC=1)\C1=CC=C(N)C=C1 HZLHRDBTVSZCBS-GHTYLULLSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- KTBYIVLXJMVFAI-UHFFFAOYSA-N CC(O)CN(CCN(CC(C)O)CC(C)O)CC(C)O.CC(O)CN(CCN(CC(C)O)CC(C)O)CCN(CC(C)O)CC(C)O.NCCCCCCCCCCCN.NCCCCCNCCCCCNCCN.NCCCCCNCCN.NCCN(CCN)CCN.NCCNCCCCCNCCN.OCCN(CCO)CCN(CCO)CCN(CCO)CCN(CCO)CCN(CCO)CCO Chemical compound CC(O)CN(CCN(CC(C)O)CC(C)O)CC(C)O.CC(O)CN(CCN(CC(C)O)CC(C)O)CCN(CC(C)O)CC(C)O.NCCCCCCCCCCCN.NCCCCCNCCCCCNCCN.NCCCCCNCCN.NCCN(CCN)CCN.NCCNCCCCCNCCN.OCCN(CCO)CCN(CCO)CCN(CCO)CCN(CCO)CCN(CCO)CCO KTBYIVLXJMVFAI-UHFFFAOYSA-N 0.000 description 1
- HXFHUDRZCXZWHT-UHFFFAOYSA-N CCCN(CC(=O)O)CC(=O)O.CN(CC(=O)O)CC(=O)O.NCCN(CC(=O)O)CC(=O)O.O=C(O)CCCC(=O)O.O=C(O)CN(CC(=O)O)CC(=O)O.O=C(O)CN(CCO)CC(=O)O Chemical compound CCCN(CC(=O)O)CC(=O)O.CN(CC(=O)O)CC(=O)O.NCCN(CC(=O)O)CC(=O)O.O=C(O)CCCC(=O)O.O=C(O)CN(CC(=O)O)CC(=O)O.O=C(O)CN(CCO)CC(=O)O HXFHUDRZCXZWHT-UHFFFAOYSA-N 0.000 description 1
- CMZQFDDCJRHVSM-UHFFFAOYSA-N COC(=O)CN(C)CCOC=O Chemical compound COC(=O)CN(C)CCOC=O CMZQFDDCJRHVSM-UHFFFAOYSA-N 0.000 description 1
- 229930008398 Citronellate Natural products 0.000 description 1
- 244000183685 Citrus aurantium Species 0.000 description 1
- 235000007716 Citrus aurantium Nutrition 0.000 description 1
- 244000018436 Coriandrum sativum Species 0.000 description 1
- 235000002787 Coriandrum sativum Nutrition 0.000 description 1
- WHPAGCJNPTUGGD-UHFFFAOYSA-N Croconazole Chemical compound ClC1=CC=CC(COC=2C(=CC=CC=2)C(=C)N2C=NC=C2)=C1 WHPAGCJNPTUGGD-UHFFFAOYSA-N 0.000 description 1
- 244000236931 Cydonia oblonga Species 0.000 description 1
- 244000166652 Cymbopogon martinii Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- CTETYYAZBPJBHE-UHFFFAOYSA-N Haloprogin Chemical compound ClC1=CC(Cl)=C(OCC#CI)C=C1Cl CTETYYAZBPJBHE-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- ZRTQSJFIDWNVJW-WYMLVPIESA-N Lanoconazole Chemical compound ClC1=CC=CC=C1C(CS\1)SC/1=C(\C#N)N1C=NC=C1 ZRTQSJFIDWNVJW-WYMLVPIESA-N 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical compound OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 1
- OTGQIQQTPXJQRG-UHFFFAOYSA-N N-(octadecanoyl)ethanolamine Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCO OTGQIQQTPXJQRG-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- GWFGDXZQZYMSMJ-UHFFFAOYSA-N Octadecansaeure-heptadecylester Natural products CCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC GWFGDXZQZYMSMJ-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229920000688 Poly[(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone)] Polymers 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 235000017304 Ruaghas Nutrition 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 241000934878 Sterculia Species 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CRKGMGQUHDNAPB-UHFFFAOYSA-N Sulconazole nitrate Chemical compound O[N+]([O-])=O.C1=CC(Cl)=CC=C1CSC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 CRKGMGQUHDNAPB-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 240000002657 Thymus vulgaris Species 0.000 description 1
- 235000007303 Thymus vulgaris Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- AXMVYSVVTMKQSL-UHFFFAOYSA-N UNPD142122 Natural products OC1=CC=C(C=CC=O)C=C1O AXMVYSVVTMKQSL-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940023476 agar Drugs 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- TUFYVOCKVJOUIR-UHFFFAOYSA-N alpha-Thujaplicin Natural products CC(C)C=1C=CC=CC(=O)C=1O TUFYVOCKVJOUIR-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229940063656 aluminum chloride Drugs 0.000 description 1
- 229940009868 aluminum magnesium silicate Drugs 0.000 description 1
- WMGSQTMJHBYJMQ-UHFFFAOYSA-N aluminum;magnesium;silicate Chemical compound [Mg+2].[Al+3].[O-][Si]([O-])([O-])[O-] WMGSQTMJHBYJMQ-UHFFFAOYSA-N 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000000559 atomic spectroscopy Methods 0.000 description 1
- YSJGOMATDFSEED-UHFFFAOYSA-M behentrimonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)C YSJGOMATDFSEED-UHFFFAOYSA-M 0.000 description 1
- 229940075506 behentrimonium chloride Drugs 0.000 description 1
- 229940095077 behentrimonium methosulfate Drugs 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 229940092782 bentonite Drugs 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- CUBCNYWQJHBXIY-UHFFFAOYSA-N benzoic acid;2-hydroxybenzoic acid Chemical class OC(=O)C1=CC=CC=C1.OC(=O)C1=CC=CC=C1O CUBCNYWQJHBXIY-UHFFFAOYSA-N 0.000 description 1
- YBHILYKTIRIUTE-UHFFFAOYSA-N berberine Chemical compound C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 YBHILYKTIRIUTE-UHFFFAOYSA-N 0.000 description 1
- 229940093265 berberine Drugs 0.000 description 1
- QISXPYZVZJBNDM-UHFFFAOYSA-N berberine Natural products COc1ccc2C=C3N(Cc2c1OC)C=Cc4cc5OCOc5cc34 QISXPYZVZJBNDM-UHFFFAOYSA-N 0.000 description 1
- FUWUEFKEXZQKKA-UHFFFAOYSA-N beta-thujaplicin Chemical compound CC(C)C=1C=CC=C(O)C(=O)C=1 FUWUEFKEXZQKKA-UHFFFAOYSA-N 0.000 description 1
- 229960002206 bifonazole Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229960005074 butoconazole Drugs 0.000 description 1
- SWLMUYACZKCSHZ-UHFFFAOYSA-N butoconazole Chemical compound C1=CC(Cl)=CC=C1CCC(SC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 SWLMUYACZKCSHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- KHAVLLBUVKBTBG-UHFFFAOYSA-N caproleic acid Chemical class OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 229940007002 castellani paint Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229960002788 cetrimonium chloride Drugs 0.000 description 1
- 229940074979 cetyl palmitate Drugs 0.000 description 1
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 1
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical class CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 1
- 229960004375 ciclopirox olamine Drugs 0.000 description 1
- 229940117916 cinnamic aldehyde Drugs 0.000 description 1
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 1
- 239000010630 cinnamon oil Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229960003344 climbazole Drugs 0.000 description 1
- 229960004022 clotrimazole Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 1
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 229960002042 croconazole Drugs 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M crystal violet Chemical class [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- WSDISUOETYTPRL-UHFFFAOYSA-N dmdm hydantoin Chemical compound CC1(C)N(CO)C(=O)N(CO)C1=O WSDISUOETYTPRL-UHFFFAOYSA-N 0.000 description 1
- UCYFZDNMZYZSPN-UHFFFAOYSA-N docosyl(trimethyl)azanium Chemical class CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)C UCYFZDNMZYZSPN-UHFFFAOYSA-N 0.000 description 1
- QIVLQXGSQSFTIF-UHFFFAOYSA-M docosyl(trimethyl)azanium;methyl sulfate Chemical compound COS([O-])(=O)=O.CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)C QIVLQXGSQSFTIF-UHFFFAOYSA-M 0.000 description 1
- 229960003062 eberconazole Drugs 0.000 description 1
- 239000008387 emulsifying waxe Substances 0.000 description 1
- 150000002170 ethers Chemical group 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 239000001734 eugenia caryophyllata l. bud oleoresin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 229960001274 fenticonazole Drugs 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229960001235 gentian violet Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 125000005908 glyceryl ester group Chemical group 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- 230000037308 hair color Effects 0.000 description 1
- 230000003700 hair damage Effects 0.000 description 1
- 230000003699 hair surface Effects 0.000 description 1
- 229960001906 haloprogin Drugs 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- PXDJXZJSCPSGGI-UHFFFAOYSA-N hexadecanoic acid hexadecyl ester Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCC PXDJXZJSCPSGGI-UHFFFAOYSA-N 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 229920013818 hydroxypropyl guar gum Polymers 0.000 description 1
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229960004849 isoconazole Drugs 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 239000000231 karaya gum Substances 0.000 description 1
- 229940039371 karaya gum Drugs 0.000 description 1
- 239000003410 keratolytic agent Substances 0.000 description 1
- 229950010163 lanoconazole Drugs 0.000 description 1
- 229940094522 laponite Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 108010056929 lyticase Proteins 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- XGZOMURMPLSSKQ-UHFFFAOYSA-N n,n-bis(2-hydroxyethyl)octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)N(CCO)CCO XGZOMURMPLSSKQ-UHFFFAOYSA-N 0.000 description 1
- UTTVXKGNTWZECK-UHFFFAOYSA-N n,n-dimethyloctadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)[O-] UTTVXKGNTWZECK-UHFFFAOYSA-N 0.000 description 1
- QCTVGFNUKWXQNN-UHFFFAOYSA-N n-(2-hydroxypropyl)octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCC(C)O QCTVGFNUKWXQNN-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- KHPAAXRLVYMUHU-UHFFFAOYSA-N n-[2-(diethylamino)ethyl]docosanamide Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)NCCN(CC)CC KHPAAXRLVYMUHU-UHFFFAOYSA-N 0.000 description 1
- UIUQXDQHAWBLOW-UHFFFAOYSA-N n-[2-(diethylamino)ethyl]icosanamide Chemical compound CCCCCCCCCCCCCCCCCCCC(=O)NCCN(CC)CC UIUQXDQHAWBLOW-UHFFFAOYSA-N 0.000 description 1
- NCBXVQKSCKRNTB-UHFFFAOYSA-N n-[2-(dimethylamino)ethyl]icosanamide Chemical compound CCCCCCCCCCCCCCCCCCCC(=O)NCCN(C)C NCBXVQKSCKRNTB-UHFFFAOYSA-N 0.000 description 1
- XNJXGLWSAVUJRR-UHFFFAOYSA-N n-[2-(dimethylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCN(C)C XNJXGLWSAVUJRR-UHFFFAOYSA-N 0.000 description 1
- DYAVLIWAWOZKBI-UHFFFAOYSA-N n-[3-(diethylamino)propyl]hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(=O)NCCCN(CC)CC DYAVLIWAWOZKBI-UHFFFAOYSA-N 0.000 description 1
- OVCKOYOTKXBZKK-UHFFFAOYSA-N n-[3-(diethylamino)propyl]icosanamide Chemical compound CCCCCCCCCCCCCCCCCCCC(=O)NCCCN(CC)CC OVCKOYOTKXBZKK-UHFFFAOYSA-N 0.000 description 1
- KUIOQEAUQATWEY-UHFFFAOYSA-N n-[3-(diethylamino)propyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCCN(CC)CC KUIOQEAUQATWEY-UHFFFAOYSA-N 0.000 description 1
- MNAZHGAWPCLLGX-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]docosanamide Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)NCCCN(C)C MNAZHGAWPCLLGX-UHFFFAOYSA-N 0.000 description 1
- BDHJUCZXTYXGCZ-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(=O)NCCCN(C)C BDHJUCZXTYXGCZ-UHFFFAOYSA-N 0.000 description 1
- HJXPIPGLPXVLGN-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]icosanamide Chemical compound CCCCCCCCCCCCCCCCCCCC(=O)NCCCN(C)C HJXPIPGLPXVLGN-UHFFFAOYSA-N 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- VWOIKFDZQQLJBJ-DTQAZKPQSA-N neticonazole Chemical compound CCCCCOC1=CC=CC=C1\C(=C/SC)N1C=NC=C1 VWOIKFDZQQLJBJ-DTQAZKPQSA-N 0.000 description 1
- 229950010757 neticonazole Drugs 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229940079938 nitrocellulose Drugs 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- FWWQKRXKHIRPJY-UHFFFAOYSA-N octadecyl aldehyde Natural products CCCCCCCCCCCCCCCCCC=O FWWQKRXKHIRPJY-UHFFFAOYSA-N 0.000 description 1
- NKBWPOSQERPBFI-UHFFFAOYSA-N octadecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC NKBWPOSQERPBFI-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 229960004031 omoconazole Drugs 0.000 description 1
- JMFOSJNGKJCTMJ-ZHZULCJRSA-N omoconazole Chemical compound C1=CN=CN1C(/C)=C(C=1C(=CC(Cl)=CC=1)Cl)\OCCOC1=CC=C(Cl)C=C1 JMFOSJNGKJCTMJ-ZHZULCJRSA-N 0.000 description 1
- 229960002894 oxiconazole nitrate Drugs 0.000 description 1
- WVNOAGNOIPTWPT-NDUABGMUSA-N oxiconazole nitrate Chemical compound O[N+]([O-])=O.ClC1=CC(Cl)=CC=C1CO\N=C(C=1C(=CC(Cl)=CC=1)Cl)/CN1C=NC=C1 WVNOAGNOIPTWPT-NDUABGMUSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229960000292 pectin Drugs 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- ZFACJPAPCXRZMQ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O.OC(=O)C1=CC=CC=C1C(O)=O ZFACJPAPCXRZMQ-UHFFFAOYSA-N 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 229940068124 pine tar Drugs 0.000 description 1
- 239000011297 pine tar Substances 0.000 description 1
- 229940081510 piroctone olamine Drugs 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 229940089994 ppg-2 methyl ether Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N protonated dimethyl amine Natural products CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- GGOZGYRTNQBSSA-UHFFFAOYSA-N pyridine-2,3-diol Chemical compound OC1=CC=CN=C1O GGOZGYRTNQBSSA-UHFFFAOYSA-N 0.000 description 1
- 229940032044 quaternium-18 Drugs 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229930195734 saturated hydrocarbon Chemical group 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 229960005429 sertaconazole Drugs 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229920003179 starch-based polymer Polymers 0.000 description 1
- 239000004628 starch-based polymer Substances 0.000 description 1
- 229940032160 stearamidoethyl diethylamine Drugs 0.000 description 1
- 229940105131 stearamine Drugs 0.000 description 1
- 229940073743 steareth-20 methacrylate Drugs 0.000 description 1
- 229960004718 sulconazole nitrate Drugs 0.000 description 1
- 150000003871 sulfonates Chemical group 0.000 description 1
- 229960005349 sulfur Drugs 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000010677 tea tree oil Substances 0.000 description 1
- 229940111630 tea tree oil Drugs 0.000 description 1
- 229960002722 terbinafine Drugs 0.000 description 1
- DOMXUEMWDBAQBQ-WEVVVXLNSA-N terbinafine Chemical compound C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 DOMXUEMWDBAQBQ-WEVVVXLNSA-N 0.000 description 1
- 229960000580 terconazole Drugs 0.000 description 1
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 description 1
- 239000001585 thymus vulgaris Substances 0.000 description 1
- 229960004214 tioconazole Drugs 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 229940098780 tribehenin Drugs 0.000 description 1
- 150000003627 tricarboxylic acid derivatives Chemical class 0.000 description 1
- 229940077400 trideceth-12 Drugs 0.000 description 1
- 229940057400 trihydroxystearin Drugs 0.000 description 1
- PDSVZUAJOIQXRK-UHFFFAOYSA-N trimethyl(octadecyl)azanium Chemical class CCCCCCCCCCCCCCCCCC[N+](C)(C)C PDSVZUAJOIQXRK-UHFFFAOYSA-N 0.000 description 1
- 229960002703 undecylenic acid Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- MQWLIFWNJWLDCI-UHFFFAOYSA-L zinc;carbonate;hydrate Chemical compound O.[Zn+2].[O-]C([O-])=O MQWLIFWNJWLDCI-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/41—Amines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/34—Alcohols
- A61K8/342—Alcohols having more than seven atoms in an unbroken chain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/41—Amines
- A61K8/416—Quaternary ammonium compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/46—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
- A61K8/463—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/891—Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/896—Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
- A61K8/898—Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/002—Preparations for repairing the hair, e.g. hair cure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/12—Preparations containing hair conditioners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/51—Chelating agents
Definitions
- hair conditioner compositions comprising one or more chelants, one or more high melting point fatty compounds, a cationic surfactant, and a carrier.
- the hair conditioner composition inhibits both deposition/penetration of copper salts and other transition metal salts in the hair and removes such salts from hair fiber.
- a method of treating hair with the hair conditioner composition is also described herein.
- Described herein is a hair conditioner composition
- a hair conditioner composition comprising:
- the hair conditioner composition has a pH from about 3 to about 8.
- compositions, methods, uses, kits, and processes of the present invention can comprise, consist of, and consist essentially of the elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein.
- the terms “include,” “includes,” and “including,” are meant to be non-limiting and are understood to mean “comprise,” “comprises,” and “comprising,” respectively.
- mixtures is meant to include a simple combination of materials and any compounds that may result from their combination.
- molecular weight or “M. Wt.” as used herein refers to the weight average molecular weight unless otherwise stated. “QS” means sufficient quantity for 100%.
- fluid includes liquids and gels.
- log x refers to the common (or decadic) logarithm of x.
- mixtures is meant to include a simple combination of materials and any compounds that may result from their combination.
- substantially free from or “substantially free of” as used herein means less than about 1%, or less than about 0.8%, or less than about 0.5%, or less than about 0.3%, or about 0%, by total weight of the composition.
- “Hair,” as used herein, means mammalian hair including scalp hair, facial hair and body hair, particularly on hair on the human head and scalp.
- Cosmetically acceptable means that the compositions, formulations or components described are suitable for use in contact with human keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like. All compositions described herein which have the purpose of being directly applied to keratinous tissue are limited to those being cosmetically acceptable.
- Derivatives includes but is not limited to, amide, ether, ester, amino, carboxyl, acetyl, acid, and/or alcohol derivatives of a given compound.
- Polymer means a chemical formed from the polymerisation of two or more monomers, which may be the same or different.
- the term “polymer” as used herein shall include all materials made by the polymerisation of monomers as well as natural polymers. Polymers made from only one type of monomer are called homopolymers. A polymer comprises at least two monomers. Polymers made from two or more different types of monomers are called copolymers. The distribution of the different monomers can be calculated statistically or block-wise—both possibilities are suitable for the present invention. Except if stated otherwise, the term “polymer” used herein includes any type of polymer including homopolymers and copolymers.
- log P is the n-octanol/water partition coefficients of the material.
- component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
- the hair composition described herein is a conditioning hair care composition that delivers consumer desired conditioning in addition to inhibiting the deposition of minerals (i.e. from the water used to rinse) on the hair.
- the hair conditioner composition comprises: (a) from about 0.005% to about 5% of one or more chelants, by weight of the hair conditioner composition; (b) from about 0.1% to about 20% of one or more high melting point fatty compounds, by weight of the hair conditioner composition; (c) from about 0.1% to about 10% of a cationic surfactant, by weight of the hair conditioner composition; and (d) from about 75% to about 98% of an aqueous carrier, by weight of the hair conditioner composition; wherein the hair conditioner composition has a pH from about 3 to about 8.
- the hair conditioner composition comprises from about 0.005% to about 10%, alternatively from about 0.01% to about 5%, alternatively from about 0.05% to about 3%, alternatively from about 0.1% to about 1.5%, and alternatively from about 0.1% to about 0.5% of one or more chelants, by weight of the hair conditioner composition, wherein the one or more chelants have a molecular structure as follows:
- the relative affinity of a chelant at a specified pH for Cu +2 can be assessed by its Stability Constant.
- the Stability Constant of a metal chelant interaction is defined as:
- [ML] is the concentration of metal ligand complex at equilibrium
- [M] is the concentration of free metal ion
- [L] is the concentration of free ligand in a fully deprotonated form
- K ML is the stability constant for the metal chelant complex.
- the one or more chelants for use in the shampoo composition may be selected from the group consisting of triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, tris(2-aminoethyl)amine, ethylenedinitrilotetrapropan-2-ol, 1,1′,1′′-[[2-hydroxypropyl)imino]bis(2,1-ethanediylnitrilo)]tetrakis-2-propanol, tetraethylenepentaamine-(1-EO), 1,5,9,13-tetraazatridecane, and mixtures thereof.
- the log of the formation constant log K ML of its complex with copper can be higher than 6, alternatively higher than 8, alternatively higher than 9, alternatively higher than 10, alternatively higher than 12, alternatively higher than 14, alternatively higher than 16, alternatively higher than 17, alternatively higher than 18, and alternatively higher than 20.
- the log of the formation constant log K ML of its complex with copper can be from about 6 to about 28, alternatively from about 8 to about 27, alternatively from about 9 to about 26, alternatively from about 10 to about 25, alternatively from about 12 to about 24, alternatively from about 14 to about 24, alternatively from about 16 to about 24, alternatively from about 17 to about 24, alternatively from about 18 to about 24, and alternatively from about 20 to about 23.
- the log P value of the one or more chelants can be from about ⁇ 5 to about 2, alternatively from about ⁇ 4 to about 1, alternatively from about ⁇ 3.5 to about 0, and alternatively from about ⁇ 2.9 to about ⁇ 2.5.
- the molecular weight of the one or more chelants can be from about 50 to about 500, alternatively from about 75 to about 400, alternatively from about 100 to about 350, alternatively from about 125 to about 325, alternatively from about 140 to about 300, alternatively from about 140 to about 200.
- chelants that can be used to reduce copper content of hair have the following general structure:
- M is hydrogen or a metal ion; p is 1 or 2; q is 1 or 2; and X is selected from the group containing hydrogen, methyl, ethyl, propyl, —CH 2 CH 2 OH, —CH 2 CH(CH 3 )OH), —CH 2 CH 2 NH 2 , —CH 2 CH(CH 3 )NH2, —CH 2 COOM, or —CH 2 CH 2 SH, and —CH 2 CH(CH 3 )SH).
- Non-limiting examples of the one or more chelants include iminodiacetic acid, N-(2-hydroxyethyl)iminodiacetic acid, N-methyliminodiacetic acid, N-(2-aminoethyl)iminodiacetic acid, N-propyliminodiacetic acid, and nitrilotriacetic acid.
- the hair care composition described herein comprises a cationic surfactant system.
- the cationic surfactant system can be one cationic surfactant or a mixture of two or more cationic surfactants.
- the cationic surfactant system can be selected from: mono-long alkyl quaternized ammonium salt; a combination of mono-long alkyl quaternized ammonium salt and di-long alkyl quaternized ammonium salt; mono-long alkyl amidoamine salt; a combination of mono-long alkyl amidoamine salt and di-long alkyl quaternized ammonium salt, a combination of mono-long alkyl amindoamine salt and mono-long alkyl quaternized ammonium salt.
- the cationic surfactant system can be included in the hair conditioner composition at a level of from about 0.1% to about 10%, alternatively from about 0.5% to about 8%, alternatively from about 0.8% to about 5%, and alternatively from about 1.0% to about 4%, by weight of the hair conditioner composition.
- the monoalkyl quaternized ammonium salt cationic surfactants useful herein are those having one long alkyl chain which has from 12 to 30 carbon atoms, from 16 to 24 carbon atoms, and in one embodiment at C18-22 alkyl group.
- the remaining groups attached to nitrogen are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms.
- Mono-long alkyl quaternized ammonium salts useful herein are those having the formula (I):
- R 75 , R 76 , R 77 and R 78 is selected from an alkyl group of from 12 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 30 carbon atoms; the remainder of R 75 , R 76 , R 77 and R 78 are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms; and X ⁇ is a salt-forming anion such as those selected from halogen, (e.g.
- alkyl groups can contain, in addition to carbon and hydrogen atoms, ether and/or ester linkages, and other groups such as amino groups.
- the longer chain alkyl groups e.g., those of about 12 carbons, or higher, can be saturated or unsaturated.
- R 75 , R 76 , R 77 and R 78 can be selected from an alkyl group of from 12 to 30 carbon atoms, from 16 to 24 carbon atoms, from 18 to 22 carbon atoms, an/or 22 carbon atoms; the remainder of R 75 , R 76 , R 77 and R 78 are independently selected from CH 3 , C 2 H 5 , C 2 H 4 OH, and mixtures thereof; and X is selected from the group consisting of Cl, Br, CH 3 OSO 3 , C 2 H 5 OSO 3 , and mixtures thereof.
- Nonlimiting examples of such mono-long alkyl quaternized ammonium salt cationic surfactants include: behenyl trimethyl ammonium salt; stearyl trimethyl ammonium salt; cetyl trimethyl ammonium salt; and hydrogenated tallow alkyl trimethyl ammonium salt.
- Mono-long alkyl amines are also suitable as cationic surfactants.
- Primary, secondary, and tertiary fatty amines are useful. Particularly useful are tertiary amido amines having an alkyl group of from about 12 to about 22 carbons.
- Exemplary tertiary amido amines include: stearamidopropyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyldiethyl amine, palmitamidoethyldiethyl amine, palmitamidoethyldimethyl amine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamidoethyldiethylamine, behenamidoethyldimethylamine, arachidamidopropyldimethylamine, arachidamidopropyldiethylamine, arachidamidoethyldiethylamine, arachidamidoethyldiethylamine, arachidamidoeth
- amines in the present invention are disclosed in U.S. Pat. No. 4,275,055, Nachtigal, et al. These amines can also be used in combination with acids such as l-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, tartaric acid, citric acid, glutamic hydrochloride, maleic acid, and mixtures thereof; in one embodiment l-glutamic acid, lactic acid, and/or citric acid.
- the amines herein can be partially neutralized with any of the acids at a molar ratio of the amine to the acid of from about 1:0.3 to about 1:2, and/or from about 1:0.4 to about 1:1.
- Di-long alkyl quaternized ammonium salt can be combined with a mono-long alkyl quaternized ammonium salt or mono-long alkyl amidoamine salt. It is believed that such combination can provide easy-to rinse feel, compared to single use of a monoalkyl quaternized ammonium salt or mono-long alkyl amidoamine salt.
- the di-long alkyl quaternized ammonium salts are used at a level such that the wt % of the dialkyl quaternized ammonium salt in the cationic surfactant system is in the range of from about 10% to about 50%, and/or from about 30% to about 45%.
- dialkyl quaternized ammonium salt cationic surfactants useful herein are those having two long alkyl chains having 12-30 carbon atoms, and/or 16-24 carbon atoms, and/or 18-22 carbon atoms.
- the remaining groups attached to nitrogen are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms.
- Di-long alkyl quaternized ammonium salts useful herein are those having the formula (II):
- R 75 , R 76 , R 77 and R 78 is selected from an alkyl group of from 12 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 30 carbon atoms; the remainder of R 75 , R 76 , R 77 and R 78 are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms; and X ⁇ is a salt-forming anion such as those selected from halogen, (e.g.
- alkyl groups can contain, in addition to carbon and hydrogen atoms, ether and/or ester linkages, and other groups such as amino groups.
- the longer chain alkyl groups e.g., those of about 12 carbons, or higher, can be saturated or unsaturated.
- R 75 , R 76 , R 77 and R 78 can be selected from an alkyl group of from 12 to 30 carbon atoms, from 16 to 24 carbon atoms, from 18 to 22 carbon atoms, and/or 22 carbon atoms; the remainder of R 75 , R 76 , R 77 and R 78 are independently selected from CH 3 , C 2 H 5 , C 2 H 4 OH, and mixtures thereof; and X is selected from the group consisting of Cl, Br, CH 3 OSO 3 , C 2 H 5 OSO 3 , and mixtures thereof.
- dialkyl quaternized ammonium salt cationic surfactants include, for example, dialkyl (14-18) dimethyl ammonium chloride, ditallow alkyl dimethyl ammonium chloride, dihydrogenated tallow alkyl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, and dicetyl dimethyl ammonium chloride.
- dialkyl quaternized ammonium salt cationic surfactants also include, for example, asymmetric dialkyl quaternized ammonium salt cationic surfactants.
- the hair conditioner composition comprises one or more high melting point fatty compounds.
- the one or more high melting point fatty compounds useful herein can have a melting point of 25° C. or higher, and can be selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, and mixtures thereof. It is understood by the artisan that the compounds disclosed in this section of the specification can in some instances fall into more than one classification, e.g., some fatty alcohol derivatives can also be classified as fatty acid derivatives. However, a given classification is not intended to be a limitation on that particular compound, but is done so for convenience of classification and nomenclature.
- certain compounds having certain carbon atoms may have a melting point of less than 25° C. Such compounds of low melting point are not intended to be included in this section.
- Nonlimiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
- fatty alcohols are suitable for use in the hair conditioner composition.
- the fatty alcohols useful herein are those having from about 14 to about 30 carbon atoms, from about 16 to about 22 carbon atoms. These fatty alcohols are saturated and can be straight or branched chain alcohols. Suitable fatty alcohols include, for example, cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof.
- High melting point fatty compounds of a single compound of high purity can be used.
- Single compounds of pure fatty alcohols selected from the group of pure cetyl alcohol, stearyl alcohol, and behenyl alcohol can also be used.
- pure herein, what is meant is that the compound has a purity of at least about 90%, and/or at least about 95%.
- the one or more high melting point fatty compounds can be included in the hair care composition at a level of from about 0.1% to about 20%, alternatively from about 1% to about 15%, and alternatively from about 1.5% to about 8%, by weight of the hair conditioner.
- the one or more high melting point fatty compounds can provide improved conditioning benefits such as slippery feel during the application of the hair conditioner composition to wet hair, hair softness on dry hair, and moisturized feel on dry hair.
- the hair care composition comprises an aqueous carrier at a level of from about 75% to about 98%, alternatively from about 80% to about 95%, by weight of the hair care composition. Accordingly, the hair care composition can be in the form of pourable liquids (under ambient conditions).
- the aqueous carrier may comprise water, or a miscible mixture of water and organic solvent, and in one aspect may comprise water with minimal or no significant concentrations of organic solvent, except as otherwise incidentally incorporated into the composition as minor ingredients of other components.
- the aqueous carrier can include water solutions of lower alkyl alcohols and polyhydric alcohols.
- the lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, in one aspect, ethanol and isopropanol.
- the polyhydric alcohols useful herein include propylene glycol, hexylene glycol, glycerin, and propane diol.
- the hair conditioner composition may have a pH in the range from about 2 to about 10, alternatively from about 3 to about 8, at 25° C.
- the hair care composition can also be effective toward washing out the existing minerals and redox metals deposits, which can reduce cuticle distortion and thereby reduce cuticle chipping and damage.
- the hair conditioner composition can comprise a gel matrix.
- the gel matrix comprises a cationic surfactant, a high melting point fatty compound, and an aqueous carrier.
- the gel matrix is suitable for providing various conditioning benefits such as slippery feel during the application to wet hair and softness and moisturized feel on dry hair.
- the cationic surfactant and the high melting point fatty compound are contained at a level such that the weight ratio of the cationic surfactant to the high melting point fatty compound is in the range of, from about 1:1 to about 1:10, and/or from about 1:1 to about 1:6.
- the hair conditioner composition can include a silicone conditioning agent which comprises a silicone compound.
- the silicone compound may comprise volatile silicone, non-volatile silicones, or combinations thereof. If volatile silicones are present, it will typically be incidental to their use as a solvent or carrier for commercially available forms of non-volatile silicone materials ingredients, such as silicone gums and resins.
- the silicone compounds may comprise a silicone fluid conditioning agent and may also comprise other ingredients, such as a silicone resin to improve silicone fluid deposition efficiency or enhance glossiness of the hair.
- the concentration of the silicone compound in the hair conditioner composition typically ranges from about 0.01 wt % to about 10 wt %, from about 0.1 wt % to about 8 wt %, from about 0.1 wt % to about 5 wt %, or even from about 0.2 wt % to about 3 wt %.
- Exemplary silicone compounds include (a) a first polysiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 100,000 mm 2 s ⁇ 1 to about 30,000,000 mm 2 s ⁇ 1 ; (b) a second polysiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 5 mm 2 s ⁇ 1 to about 10,000 mm 2 s ⁇ 1 ; (c) an aminosilicone having less than about 0.5 wt % nitrogen by weight of the aminosilicone; (d) a silicone copolymer emulsion with an internal phase viscosity of greater than about 100 ⁇ 10 6 mm 2 s ⁇ 1 , as measured at 25° C.; (e) a silicone polymer containing quaternary groups; or (f) a grafted silicone polyol, wherein the silicone compounds (a)-(f) are disclosed in U.S. Patent Application Publication
- the hair conditioner composition may comprise a first polysiloxane.
- the first polysiloxane is non-volatile, and substantially free of amino groups.
- the first polysiloxanes being “substantially free of amino groups” can mean that the first polysiloxane contains 0 wt % of amino groups.
- the first polysiloxane has a viscosity of from about 100,000 mm 2 s ⁇ 1 to about 30,000,000 mm 2 s ⁇ 1 at 25° C.
- the viscosity may range from about 300,000 mm 2 s ⁇ 1 to about 25,000,000 mm 2 s ⁇ 1 , or from about 10,000,000 mm 2 s ⁇ 1 to about 20,000,000 mm 2 s ⁇ 1 .
- the first polysiloxane has a molecular weight from about 100,000 to about 1,000,000.
- the molecular weight may range from about 130,000 to about 800,000, or from about 230,000 to about 600,000.
- the first polysiloxane may be nonionic.
- Exemplary first non-volatile polysiloxanes useful herein include those in accordance with the following the general formula (I):
- R is alkyl or aryl
- p is an integer from about 1,300 to about 15,000, such as from about 1,700 to about 11,000, or from about 3,000 to about 8,000.
- Z represents groups which block the ends of the silicone chains.
- the alkyl or aryl groups substituted on the siloxane chain (R) or at the ends of the siloxane chains Z can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and is capable of being deposited on and conditions the hair.
- suitable Z groups include hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy.
- the two R groups on each silicon atom may represent the same group or different groups. According to one embodiment, the two R groups may represent the same group.
- Suitable R groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl.
- Exemplary silicone compounds include polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. According to one embodiment, polydimethylsiloxane is the first polysiloxane.
- Commercially available silicone compounds useful herein include, for example, those available from the General Electric Company in their TSF451 series, and those available from Dow Corning in their Dow Corning SH200 series.
- the silicone compounds that can be used herein also include a silicone gum.
- silicone gum means a polyorganosiloxane material having a viscosity at 25° C. of greater than or equal to 1,000,000 mm 2 s ⁇ 1 . It is recognized that the silicone gums described herein can also have some overlap with the above-disclosed silicone compounds. This overlap is not intended as a limitation on any of these materials.
- the “silicone gums” will typically have a mass molecular weight in excess of about 165,000, generally between about 165,000 and about 1,000,000.
- silicone gums useful herein include, for example, TSE200A available from the General Electric Company.
- the hair conditioner composition may comprise a second polysiloxane.
- the second polysiloxane is non-volatile, and substantially free of amino groups.
- the second polysiloxane being “substantially free of amino groups” means that the second polysiloxane contains 0 wt % of amino groups.
- the second polysiloxane has a viscosity of from about 5 mm 2 s ⁇ 1 to about 10,000 mm 2 s ⁇ 1 at 25° C., such as from about 5 mm 2 s ⁇ 1 to about 5,000 mm 2 s ⁇ 1 , from about 10 mm 2 s ⁇ 1 to about 1,000 mm 2 s ⁇ 1 , or from about 20 mm 2 s ⁇ 1 to about 350 mm 2 s ⁇ 1 .
- the second polysiloxane has a molecular weight of from about 400 to about 65,000.
- the molecular weight of the second polysiloxane may range from about 800 to about 50,000, from about 400 to about 30,000, or from about 400 to about 15,000.
- the second polysiloxane may be nonionic.
- the second polysiloxane may be a linear silicone.
- Exemplary second non-volatile polysiloxanes useful herein include polyalkyl or polyaryl siloxanes in accordance with the following the general formula (II):
- R 1 is alkyl or aryl
- r is an integer from about 7 to about 850, such as from about 7 to about 665, from about 7 to about 400, or from about 7 to about 200.
- Z 1 represents groups which block the ends of the silicone chains.
- the alkyl or aryl groups substituted on the siloxane chain (R 1 ) or at the ends of the siloxane chains Z 1 can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and is capable of being deposited on and conditions the hair.
- suitable Z 1 groups include hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy.
- the two R 1 groups on each silicon atom may represent the same group or different groups. According to one embodiment, the two R 1 groups may represent the same group.
- Suitable R 1 groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl.
- Exemplary silicone compounds include polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. According to one embodiment, polydimethylsiloxane is the second polysiloxane.
- Commercially available silicone compounds useful herein include, for example, those available from the General Electric Company in their TSF451 series, and those available from Dow Corning in their Dow Corning SH200 series.
- the hair conditioner composition may comprise an amino silicone having less than about 0.5 wt % nitrogen by weight of the aminosilicone, such as less than about 0.2 wt %, or less than about 0.1 wt %, in view of friction reduction benefit. It has been surprisingly found that higher levels of nitrogen (amine functional groups) in the amino silicone tend to result in less friction reduction, and consequently less conditioning benefit from the aminosilicone.
- the aminosilicone useful herein may have at least one silicone block with greater than 200 siloxane units, in view of friction reduction benefit.
- the aminosilicones useful herein include, for example, quaternized aminosilicone and non-quaternized aminosilicone.
- the aminosilicones useful herein are water-insoluble.
- Water-insoluble aminosilicone means that the aminosilicone has a solubility of 10 g or less per 100 g water at 25° C., in another embodiment 5 g or less per 100 g water at 25° C., and in another embodiment 1 g or less per 100 g water at 25° C.
- water-insoluble aminosilicone means that the aminosilicone is substantially free of copolyol groups. If copolyol groups are present, they are present at a level of less than 10 wt %, less than 1 wt %, or less than 0.1 wt % by weight of the aminosilicone.
- Aminosilicones useful herein are those which conform to the general formula (III):
- the aforementioned aminosilicones can be called terminal aminosilicones, as one or both ends of the silicone chain are terminated by nitrogen containing group.
- Such terminal aminosilicones may provide improved friction reduction compared to graft aminosilicones.
- aminosilicone useful herein includes, for example, quaternized aminosilicone having a tradename KF8020 available from Shinetsu.
- the non-volatile linear silicones useful herein are those having a viscosity of from about 1 mm 2 s ⁇ 1 to about 20,000 mm 2 s ⁇ 1 , such as from about 20 mm 2 s ⁇ 1 to about 10,000 mm 2 s ⁇ 1 , at 25° C.
- the solvents are non-polar, volatile hydrocarbons, especially non-polar, volatile isoparaffins, in view of reducing the viscosity of the aminosilicones and providing improved hair conditioning benefits such as reduced friction on dry hair.
- Such mixtures may have a viscosity of from about 1,000 mPa ⁇ s to about 100,000 mPa ⁇ s, and alternatively from about 5,000 mPa ⁇ s to about 50,000 mPa ⁇ s.
- the hair conditioner composition may comprise a silicone copolymer emulsion with an internal phase viscosity of greater than about 100 ⁇ 10 6 mm 2 s ⁇ 1 .
- the silicone copolymer emulsion may be present in an amount of from about 0.1 wt % to about 15 wt %, alternatively from about 0.3 wt % to about 10 wt %, and alternatively about 0.5 wt % to about 5 wt %, by weight of the composition, in view of providing clean feel.
- the silicone copolymer emulsion has a viscosity at 25° C. of greater than about 100 ⁇ 10 6 mm 2 s ⁇ 1 , alternatively greater than about 120 ⁇ 10 6 mm 2 s ⁇ 1 , and alternatively greater than about 150 ⁇ 10 6 mm 2 s ⁇ 1 .
- the silicone copolymer emulsion has a viscosity at 25° C. of less than about 1000 ⁇ 10 6 mm 2 s ⁇ 1 , alternatively less than about 500 ⁇ 10 6 mm 2 s ⁇ 1 , and alternatively less than about 300 ⁇ 10 6 mm 2 s ⁇ 1 .
- the following procedure can be used to break the polymer from the emulsion: 1) add 10 grams of an emulsion sample to 15 milliliters of isopropyl alcohol; 2) mix well with a spatula; 3) decant the isopropyl alcohol; 4) add 10 milliliters of acetone and knead polymer with spatula; 5) decant the acetone; 6) place polymer in an aluminum container and flatten/dry with a paper towel; and 7) dry for two hours in an 80° C.
- the polymer can then be tested using any known rheometer, such as, for example, a CarriMed, Haake, or Monsanto rheometer, which operates in the dynamic shear mode.
- the internal phase viscosity values can be obtained by recording the dynamic viscosity (n′) at a 9.900*10 ⁇ 3 Hz frequency point.
- the average particle size of the emulsions is less than about 1 micron, such as less than about 0.7 micron.
- the silicone copolymer emulsions of the present invention may comprise a silicone copolymer, at least one surfactant, and water.
- R 4 is a group capable of reacting by chain addition reaction such as, for example, a hydrogen atom, an aliphatic group with ethylenic unsaturation (i.e., vinyl, allyl, or hexenyl), a hydroxyl group, an alkoxyl group (i.e., methoxy, ethoxy, or propoxy), an acetoxyl group, or an amino or alkylamino group;
- R 5 is alkyl, cycloalkyl, aryl, or alkylaryl and may include additional functional groups such as ethers, hydroxyls, amines, carboxyls, thiols esters, and sulfonates; in an embodiment, R 5 is methyl.
- a small mole percentage of the groups may be reactive groups as described above for R 5 , to produce a polymer which is substantially linear but with a small amount of branching. In this case, the level of R 5 groups equivalent to R 4 groups may be less than about 10% on a mole percentage basis, such as less than about 2%;
- s is an integer having a value such that the polysiloxane of formula (IV) has a viscosity of from about 1 mm 2 s ⁇ 1 to about 1 ⁇ 10 6 mm 2 s ⁇ 1 ;
- the metal containing catalysts used in the above described reactions are often specific to the particular reaction.
- Such catalysts are known in the art. Generally, they are materials containing metals such as platinum, rhodium, tin, titanium, copper, lead, etc.
- the mixture used to form the emulsion also may contain at least one surfactant.
- This can include non-ionic surfactants, cationic surfactants, anionic surfactants, alkylpolysaccharides, amphoteric surfactants, and the like.
- the above surfactants can be used individually or in combination.
- An exemplary method of making the silicone copolymer emulsions described herein comprises the steps of 1) mixing materials (a) described above with material (b) described above, followed by mixing in an appropriate metal containing catalyst, such that material (b) is capable of reacting with material (a) in the presence of the metal containing catalyst; 2) further mixing in at least one surfactant and water; and 3) emulsifying the mixture.
- Methods of making such silicone copolymer emulsions are disclosed in U.S. Pat. No. 6,013,682; PCT Application No. WO 01/58986 A1; and European Patent Application No. EP0874017 A2.
- a commercially available example of a silicone copolymer emulsion is an emulsion of about 60-70 wt % of divinyldimethicone/dimethicone copolymer having an internal phase viscosity of minimum 120 ⁇ 10 6 mm 2 s ⁇ 1 , available from Dow Corning with a tradename HMW2220.
- the hair conditioner composition may comprise a silicone polymer containing quaternary groups (i.e., a quaternized silicone polymer).
- a quaternized silicone polymer provides improved conditioning benefits such as smooth feel, reduced friction, prevention of hair damage.
- the quaternary group can have good affinity with damaged/colorant hairs.
- the quaternized silicone polymer is present in an amount of from about 0.1 wt % to about 15 wt %, based on the total weight of the hair conditioning composition.
- the quaternized silicone polymer may be present in an amount from about 0.2 wt % to about 10 wt %, alternatively from about 0.3 wt % to about 5 wt %, and alternatively from about 0.5 wt % to about 4 wt %, by weight of the composition.
- the quaternized silicone polymer of the present invention is comprised of at least one silicone block and at least one non-silicone block containing quaternary nitrogen groups, wherein the number of the non-silicone blocks is one greater than the number of the silicone blocks.
- the silicone polymers correspond to the general structure (V):
- B is a silicone block having greater than 200 siloxane units;
- a 1 is an end group which may contain quaternary groups;
- a 2 is a non-silicone blocks containing quaternary nitrogen groups; and
- the silicone polymers can be represented by the following structure (VI)
- A is a group which contains at least one quaternary nitrogen group, and which is linked to the silicon atoms of the silicone block by a silicon-carbon bond, each A independently can be the same or different;
- R 6 is an alkyl group of from about 1 to about 22 carbon atoms or an aryl group; each R 6 independently can be the same or different;
- t is an integer having a value of from 0 or greater, for example t can be less than 20, or less than 10; and
- u is an integer greater than about 200, such as greater than about 250, or greater than about 300, and u may be less than about 700, or less than about 500.
- R 6 is methyl.
- the hair conditioner composition may comprise a grafted silicone copolyol in combination with the quaternized silicone polymer. It is believed that this grafted silicone copolyol can improve the spreadability of the quaternized silicone polymer by reducing the viscosity of the quaternized silicone polymer, and also can stabilize the quaternized silicone polymer in aqueous conditioner matrix. It is also believed that, by such improved spreadability, the hair care compositions of the present invention can provide better dry conditioning benefits such as friction reduction and/or prevention of damage with reduced tacky feel.
- the combination of the quaternized silicone polymer, grafted silicone copolyol, and cationic surfactant system comprising di-alkyl quaternized ammonium salt cationic surfactants provides improved friction reduction benefit, compared to a similar combination.
- Such similar combinations are, for example, a combination in which the grafted silicone copolyol is replaced with end-capped silicone copolyol, and another combination in which the cationic surfactant system is substantially free of di-alkyl quaternized ammonium salt cationic surfactants.
- the grafted silicone copolyol is contained in the composition at a level such that the weight % of the grafted silicone copolyol to its mixture with quaternized silicone copolymer is in the range of from about 1 wt % to about 50 wt %, alternatively from about 5 wt % to about 40 wt %, and alternatively from about 10 wt % to 30 wt %.
- the grafted silicone copolyols useful herein are those having a silicone backbone such as dimethicone backbone and polyoxyalkylene substitutions such as polyethylene oxide and/or polypropylene oxide substitutions.
- the grafted silicone copolyols useful herein have a hydrophilic-lipophilic balance (HLB) value of from about 5 to about 17, such as from about 8 to about 17, or from about 8 to about 12.
- HLB hydrophilic-lipophilic balance
- the grafted silicone copolyols having the same INCI name have a variety of the weight ratio, depending on the molecular weight of the silicone portion and the number of the polyethylene oxide and/or polypropylene oxide substitutions.
- exemplary commercially available grafted dimethicone copolyols include, for example: those having a tradename Silsoft 430 having an HLB value of from about 9 to about 12 (INCI name “PEG/PPG-20/23 dimethicone”) available from GE; those having a tradename Silsoft 475 having an HLB value of from about 13 to about 17 (INCI name “PEG-23/PPG-6 dimethicone”); those having a tradename Silsoft 880 having an HLB value of from about 13 to about 17 (INCI name “PEG-12 dimethicone”); those having a tradename Silsoft 440 having an HLB value of from about 9 to about 12 (INCI name “PEG-20/PPG-23 dimethicone”); those having a tradename DC5330 (INCI name “PEG-15/PPG-15 dimethicone”) available from Dow Corning.
- the above quaternized silicone polymer and the grafted silicone copolyol may be mixed and emulsified by a emulsifying surfactant, prior to incorporating them into a gel matrix formed by cationic surfactants and high melting point fatty compounds, as discussed below. It is believed that, this pre-mixture can improve behavior of the quaternized silicone polymer and the grafted silicone copolyol, for example, increase the stability and reduce the viscosity to form more homogenized formulation together with the other components.
- Such emulsifying surfactant can be used at a level of about 0.001 wt % to about 1.5 wt %, alternatively from about 0.005% to about 1.0%, and alternatively from about 0.01 wt % to about 0.5 wt %, based on the total weight of the hair conditioning composition.
- Such surfactants may be nonionic, and have an HLB value of from about 2 to about 15, such as from about 3 to about 14, or from about 3 to about 10.
- Commercially available examples of emulsifying surfactant include nonionic surfactants having an INCI name C12-C14 Pareth-3 and having an HLB value of about 8 supplied from NIKKO Chemicals Co., Ltd. with tradename NIKKOL BT-3.
- the hair conditioner composition comprises a combination of two or more silicone conditioning agents, along with an EDDS sequestering agent and a gel matrix.
- the hair conditioner composition comprises a polyalkylsiloxane mixture comprising (i) a first polyalkylsiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 100,000 mm 2 s ⁇ 1 to about 30,000,000 mm 2 s ⁇ 1 , and (ii) a second polyalkylsiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 5 mm 2 s ⁇ 1 to about 10,000 mm 2 s ⁇ 1 ; an aminosilicone having less than about 0.5 wt % nitrogen by weight of the aminosilicone; and a silicone copolymer emulsion with an internal phase viscosity of greater than about 100 ⁇ 10 6 mm 2 s ⁇ 1 , as measured at 25° C.
- the hair care composition comprises from about 0.5 wt % to about 10 wt % of a polyalkylsiloxane mixture comprising (i) a first polyalkylsiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 100,000 mm 2 s ⁇ 1 to about 30,000,000 mm 2 s ⁇ 1 , and (ii) a second polyalkylsiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 5 mm 2 s ⁇ 1 to about 10,000 mm 2 s ⁇ 1 ; from about 0.1 wt % to about 5 wt % of an aminosilicone having less than about 0.5 wt % nitrogen by weight of the aminosilicone; and from about 0.1 wt % to about 5 wt % of a silicone copolymer emulsion with an internal phase viscosity of greater
- the hair conditioner composition comprises a silicone polymer containing quaternary groups wherein said silicone polymer comprises silicone blocks with greater than about 200 siloxane units; and a grafted silicone copolyol.
- the hair care composition comprises from about 0.1 wt % to about 15 wt % of a silicone polymer containing quaternary groups wherein said silicone polymer comprises silicone blocks with greater than about 200 siloxane units; and a grafted silicone copolyol at a level such that the weight % of the grafted silicone copolyol in its mixture with the quaternized silicone polymer is in the range of from about 1 wt % to about 50 wt %.
- the hair conditioner composition comprises an aminosilicone having a viscosity of from about 1,000 centistokes to about 1,000,000 centistokes, and less than about 0.5% nitrogen by weight of the aminosilicone; and (2) a silicone copolymer emulsion with an internal phase viscosity of greater than about 120 ⁇ 10 6 centistokes, as measured at 25° C.
- conditioning agents are also suitable for use in the hair conditioner compositions herein.
- the hair conditioner composition may also further comprise an organic conditioning oil.
- the hair conditioner composition may comprise from about 0.05 wt % to about 3 wt %, from about 0.08 wt % to about 1.5 wt %, or even from about 0.1 wt % to about 1 wt %, of at least one organic conditioning oil as the conditioning agent, in combination with other conditioning agents, such as the silicones (described herein).
- Suitable conditioning oils include hydrocarbon oils, polyolefins, and fatty esters.
- Suitable hydrocarbon oils include, but are not limited to, hydrocarbon oils having at least about 10 carbon atoms, such as cyclic hydrocarbons, straight chain aliphatic hydrocarbons (saturated or unsaturated), and branched chain aliphatic hydrocarbons (saturated or unsaturated), including polymers and mixtures thereof.
- Straight chain hydrocarbon oils are typically from about C12 to about C19.
- Branched chain hydrocarbon oils, including hydrocarbon polymers typically will contain more than 19 carbon atoms.
- Suitable polyolefins include liquid polyolefins, liquid poly- ⁇ -olefins, or even hydrogenated liquid poly- ⁇ -olefins.
- Polyolefins for use herein may be prepared by polymerization of C4 to about C14 or even C6 to about C12.
- Suitable fatty esters include, but are not limited to, fatty esters having at least 10 carbon atoms. These fatty esters include esters with hydrocarbyl chains derived from fatty acids or alcohols (e.g. mono-esters, polyhydric alcohol esters, and di- and tri-carboxylic acid esters).
- the hydrocarbyl radicals of the fatty esters hereof may include or have covalently bonded thereto other compatible functionalities, such as amides and alkoxy moieties (e.g., ethoxy or ether linkages, etc.).
- the hair conditioner composition may also further comprise a nonionic polymer.
- the conditioning agent for use in the hair care composition of the present invention may include a polyalkylene glycol polymer.
- polyalkylene glycols having a molecular weight of more than about 1000 are useful herein. Useful are those having the following general formula (VIII):
- R 11 is selected from the group consisting of H, methyl, and mixtures thereof; and v is the number of ethoxy units.
- the polyalkylene glycols such as polyethylene glycols, can be included in the hair care compositions of the present invention at a level of from about 0.001 wt % to about 10 wt %. In an embodiment, the polyethylene glycol is present in an amount up to about 5 wt % based on the weight of the composition.
- Polyethylene glycol polymers useful herein are PEG-2M (also known as Polyox WSR® N-10, which is available from Union Carbide and as PEG-2,000); PEG-5M (also known as Polyox WSR® N-35 and Polyox WSR® N-80, available from Union Carbide and as PEG-5,000 and Polyethylene Glycol 300,000); PEG-7M (also known as Polyox WSR® N-750 available from Union Carbide); PEG-9M (also known as Polyox WSR® N-3333 available from Union Carbide); and PEG-14 M (also known as Polyox WSR® N-3000 available from Union Carbide).
- PEG-2M also known as Polyox WSR® N-10, which is available from Union Carbide and as PEG-2,000
- PEG-5M also known as Polyox WSR® N-35 and Polyox WSR® N-80, available from Union Carbide and as PEG-5,000 and Polyethylene Glycol 300,000
- PEG-7M also
- the hair conditioner composition may further comprise a suspending agent at concentrations effective for suspending water-insoluble material in dispersed form in the compositions or for modifying the viscosity of the composition. Such concentrations range from about 0.1 wt % to about 10 wt %, or even from about 0.3 wt % to about 5.0 wt %.
- Suspending agents useful herein include anionic polymers and nonionic polymers.
- vinyl polymers such as cross linked acrylic acid polymers with the CTFA name Carbomer, cellulose derivatives and modified cellulose polymers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, nitro cellulose, sodium cellulose sulfate, sodium carboxymethyl cellulose, crystalline cellulose, cellulose powder, polyvinylpyrrolidone, polyvinyl alcohol, guar gum, hydroxypropyl guar gum, xanthan gum, arabia gum, tragacanth, galactan, carob gum, guar gum, karaya gum, carrageenan, pectin, agar, quince seed ( Cydonia oblonga Mill), starch (rice, corn, potato, wheat), algae colloids (algae extract), microbiological polymers such as dextran, succinoglucan, pulleran, star
- Viscosity modifiers highly useful herein include Carbomers with trade names Carbopol® 934, Carbopol® 940, Carbopol® 950, Carbopol® 980, and Carbopol® 981, all available from B. F.
- suspending agents include crystalline suspending agents which can be categorized as acyl derivatives, long chain amine oxides, and mixtures thereof. These suspending agents are described in U.S. Pat. No. 4,741,855.
- suspending agents include ethylene glycol esters of fatty acids in one aspect having from about 16 to about 22 carbon atoms.
- useful suspending agents include ethylene glycol stearates, both mono and distearate, but in one aspect, the distearate containing less than about 7% of the mono stearate.
- Other suitable suspending agents include alkanol amides of fatty acids, having from about 16 to about 22 carbon atoms, or even about 16 to 18 carbon atoms, examples of which include stearic monoethanolamide, stearic diethanolamide, stearic monoisopropanolamide and stearic monoethanolamide stearate.
- long chain acyl derivatives include long chain esters of long chain fatty acids (e.g., stearyl stearate, cetyl palmitate, etc.); long chain esters of long chain alkanol amides (e.g., stearamide diethanolamide distearate, stearamide monoethanolamide stearate); and glyceryl esters (e.g., glyceryl distearate, trihydroxystearin, tribehenin) a commercial example of which is Thixin R available from Rheox, Inc.
- Long chain acyl derivatives, ethylene glycol esters of long chain carboxylic acids, long chain amine oxides, and alkanol amides of long chain carboxylic acids in addition to the materials listed above may be used as suspending agents.
- Suitable long chain amine oxides for use as suspending agents include alkyl dimethyl amine oxides, e.g., stearyl dimethyl amine oxide.
- suspending agents include primary amines having a fatty alkyl moiety having at least about 16 carbon atoms, examples of which include palmitamine or stearamine, and secondary amines having two fatty alkyl moieties each having at least about 12 carbon atoms, examples of which include dipalmitoylamine or di(hydrogenated tallow)amine
- suitable suspending agents include di(hydrogenated tallow)phthalic acid amide, and crosslinked maleic anhydride-methyl vinyl ether copolymer.
- the hair conditioner composition can further comprises one or more additional benefit agents.
- the benefit agents comprise a material selected from the group consisting of anti-dandruff agents, vitamins, lipid soluble vitamins, chelants, perfumes, brighteners, enzymes, sensates, attractants, anti-bacterial agents, dyes, pigments, bleaches, and mixtures thereof.
- said benefit agent may comprise an anti-dandruff agent.
- anti-dandruff particulate should be physically and chemically compatible with the components of the composition, and should not otherwise unduly impair product stability, aesthetics or performance.
- the hair conditioner composition comprises an anti-dandruff active, which may be an anti-dandruff active particulate.
- the anti-dandruff active is selected from the group consisting of: pyridinethione salts; azoles, such as ketoconazole, econazole, and elubiol; selenium sulphide; particulate sulfur; keratolytic agents such as salicylic acid; and mixtures thereof.
- the anti-dandruff particulate is a pyridinethione salt.
- Pyridinethione particulates are suitable particulate anti-dandruff actives.
- the anti-dandruff active is a 1-hydroxy-2-pyridinethione salt and is in particulate form.
- the concentration of pyridinethione anti-dandruff particulate ranges from about 0.01 wt % to about 5 wt %, or from about 0.1 wt % to about 3 wt %, or from about 0.1 wt % to about 2 wt %.
- the pyridinethione salts are those formed from heavy metals such as zinc, tin, cadmium, magnesium, aluminium and zirconium, generally zinc, typically the zinc salt of 1-hydroxy-2-pyridinethione (known as “zinc pyridinethione” or “ZPT”), commonly 1-hydroxy-2-pyridinethione salts in platelet particle form.
- ZPT zinc pyridinethione
- the 1-hydroxy-2-pyridinethione salts in platelet particle form have an average particle size of up to about 20 microns, or up to about 5 microns, or up to about 2.5 microns. Salts formed from other cations, such as sodium, may also be suitable.
- Pyridinethione anti-dandruff actives are described, for example, in U.S. Pat. No.
- the composition further comprises one or more anti-fungal and/or anti-microbial actives.
- the anti-microbial active is selected from the group consisting of: coal tar, sulfur, fcharcoal, whitfield's ointment, castellani's paint, aluminum chloride, gentian violet, octopirox (piroctone olamine), ciclopirox olamine, undecylenic acid and its metal salts, potassium permanganate, selenium sulphide, sodium thiosulfate, propylene glycol, oil of bitter orange, urea preparations, griseofulvin, 8-hydroxyquinoline ciloquinol, thiobendazole, thiocarbamates, haloprogin, polyenes, hydroxypyridone, morpholine, benzylamine, allylamines (such as
- the azole anti-microbials is an imidazole selected from the group consisting of: benzimidazole, benzothiazole, bifonazole, butaconazole nitrate, climbazole, clotrimazole, croconazole, eberconazole, econazole, elubiol, fenticonazole, fluconazole, flutimazole, isoconazole, ketoconazole, lanoconazole, metronidazole, miconazole, neticonazole, omoconazole, oxiconazole nitrate, sertaconazole, sulconazole nitrate, tioconazole, thiazole, and mixtures thereof, or the azole anti-microbials is a triazole selected from the group consisting of: terconazole, itraconazole, and mixtures thereof.
- the azole anti-microbial active can be included in an amount of from about 0.01 wt % to about 5 wt %, or from about 0.1 wt % to about 3 wt %, or from about 0.3 wt % to about 2 wt %.
- the azole anti-microbial active is ketoconazole.
- the sole anti-microbial active is ketoconazole.
- Embodiments of the hair conditioner composition may also comprise a combination of anti-microbial actives.
- the combination of anti-microbial active is selected from the group of combinations consisting of: octopirox and zinc pyrithione, pine tar and sulfur, salicylic acid and zinc pyrithione, salicylic acid and elubiol, zinc pyrithione and elubiol, zinc pyrithione and climbasole, octopirox and climbasole, salicylic acid and octopirox, and mixtures thereof.
- the hair conditioner composition comprises an effective amount of a zinc-containing layered material.
- the hair conditioner composition comprises from about 0.001 wt % to about 10 wt %, or from about 0.01 wt % to about 7 wt %, or from about 0.1 wt % to about 5 wt % of a zinc-containing layered material, by total weight of the hair conditioner composition.
- Zinc-containing layered materials may be those with crystal growth primarily occurring in two dimensions. It is conventional to describe layer structures as not only those in which all the atoms are incorporated in well-defined layers, but also those in which there are ions or molecules between the layers, called gallery ions (A. F. Wells “Structural Inorganic Chemistry” Clarendon Press, 1975). Zinc-containing layered materials (ZLMs) may have zinc incorporated in the layers and/or be components of the gallery ions. The following classes of ZLMs represent relatively common examples of the general category and are not intended to be limiting as to the broader scope of materials which fit this definition.
- the ZLM is selected from the group consisting of: hydrozincite (zinc carbonate hydroxide), aurichalcite (zinc copper carbonate hydroxide), rosasite (copper zinc carbonate hydroxide), and mixtures thereof.
- Related minerals that are zinc-containing may also be included in the composition.
- Natural ZLMs can also occur wherein anionic layer species such as clay-type minerals (e.g., phyllosilicates) contain ion-exchanged zinc gallery ions. All of these natural materials can also be obtained synthetically or formed in situ in a composition or during a production process.
- the ZLM is a layered double hydroxide conforming to the formula [M 2+ 1 ⁇ x M 3+ x (OH) 2 ] x+ A m ⁇ x/m .nH 2 O wherein some or all of the divalent ions (M 2+ ) are zinc ions (Crepaldi, E L, Pava, P C, Tronto, J, Valim, J B J. Colloid Interfac. Sci. 2002, 248, 429-42).
- ZLMs can be prepared called hydroxy double salts (Morioka, H., Tagaya, H., Karasu, M, Kadokawa, J, Chiba, K Inorg. Chem. 1999, 38, 4211-6).
- the ZLM is zinc hydroxychloride and/or zinc hydroxynitrate. These are related to hydrozincite as well wherein a divalent anion replaces the monovalent anion. These materials can also be formed in situ in a composition or in or during a production process.
- the ratio of zinc-containing layered material to pyrithione or a polyvalent metal salt of pyrithione is from about 5:100 to about 10:1, or from about 2:10 to about 5:1, or from about 1:2 to about 3:1.
- the on-scalp deposition of the anti-dandruff active is at least about 1 microgram/cm 2 .
- the on-scalp deposition of the anti-dandruff active is important in view of ensuring that the anti-dandruff active reaches the scalp where it is able to perform its function.
- the deposition of the anti-dandruff active on the scalp is at least about 1.5 microgram/cm 2 , or at least about 2.5 microgram/cm 2 , or at least about 3 microgram/cm 2 , or at least about 4 microgram/cm 2 , or at least about 6 microgram/cm 2 , or at least about 7 microgram/cm 2 , or at least about 8 microgram/cm 2 , or at least about 8 microgram/cm 2 , or at least about 10 microgram/cm 2 .
- the on-scalp deposition of the anti-dandruff active is measured by having the hair of individuals washed with a composition comprising an anti-dandruff active, for example a composition pursuant to the present invention, by trained a cosmetician according to a conventional washing protocol. The hair is then parted on an area of the scalp to allow an open-ended glass cylinder to be held on the surface while an aliquot of an extraction solution is added and agitated prior to recovery and analytical determination of anti-dandruff active content by conventional methodology, such as HPLC.
- the hair conditioner compositions described herein are generally prepared by conventional methods such as are known in the art of making the compositions. Such methods typically involve mixing of the ingredients in one or more steps to a relatively uniform state, with or without heating, cooling, application of vacuum, and the like.
- the compositions are prepared such as to optimize stability (physical stability, chemical stability, photostability) and/or delivery of the active materials.
- the hair conditioner composition may be in a single phase or a single product, or the hair care composition may be in a separate phases or separate products. If two products are used, the products may be used together, at the same time or sequentially. Sequential use may occur in a short period of time, such as immediately after the use of one product, or it may occur over a period of hours or days.
- the rinse-off conditioner compositions can be prepared by any conventional method well known in the art.
- the cationic surfactants and the fatty alcohols are mixed together and heated to from about 66° C. to about 85° C. to form an oil phase.
- the disodium EDTA, the Methylchloroisothiazolinone (preservative) and the water are mixed and heated to from about 20° C. to about 48° C. to form an aqueous phase.
- the oil phase is mixed into the water phase under high shear to form the gel matrix.
- the remaining of the components are added into the gel matrix with agitation. Then, the composition is cooled down to room temperature.
- All testing are performed on colored hair switches (see Method of Measurement of copper on hair below) weighing approximately 4.0 grams and having a length of approximately 6 inches.
- the hair switches are commercially available from IHIP (International Hair Importers).
- Three hair switches per shampoo composition are used. An amount of 0.20 g of shampoo is spread via a syringe onto separate hair switch. That is, the dosage is 0.10 g of shampoo per g of hair.
- Each application consists of adding shampoo to the hair, milking for 30 seconds followed by rinsing for 30 seconds. Shampoo is then reapplied (0.1 g/g), milked for 30 seconds and rinsed for 30 seconds.
- All testing are performed on colored hair switches (see Method of Measurement of copper on hair below) weighing approximately 4.0 grams and having a length of approximately 6 inches.
- the hair switches are commercially available from IHIP (International Hair Importers). Three hair switches per rinse-off compositions are used. Each hair switch is washed with shampoo followed by a treatment with the rinse-off conditioner according to the following protocol.
- the rinse-off conditioner treatment is followed by hair treatment with a leave-on treatment composition.
- a leave-on treatment composition is uniformly sprayed or spread onto separate hair switches (dosage of 0.10 g of solution per g of hair). The hair is then allowed to air dry.
- the following test method was used to assess the ability of the compositions and regimens to remove copper from the hair and to inhibit copper deposition onto the hair.
- Hair switches had been colored once with an oxidative hair colorant. An extra blonde shade was used for the testing.
- the hair switches were washed for 10 or 20 repeat wash cycles in tap water containing 7 grains per gallon water hardness (Ca/Mg) and 0.06 ⁇ g/g copper ions.
- Each wash cycle consisted of two applications of 0.1 g/g a shampoo to the hair switches.
- Each application consisted of adding shampoo to the hair, milking for 30 secs followed by rinsing for 30 secs.
- Shampoo was then reapplied 0.1 g/g, milked for 30 secs, rinsed for 30 secs and then dried in a heat box (60° C.) until dry.
- Samples of 100 mg of hair were digested overnight with 2 ml of high purity concentrated nitric acid.
- the digestive mixture also contained 150 ⁇ L of 100 ⁇ g/g Yttrium internal standard (Inorganic Ventures, Christianburg, Va., USA).
- samples were heated to 70-80° C. for one hour, cooled to room temperature and diluted to 15 mL with deionized water.
- Copper content of the hair switches was determined by inductively coupled plasma atomic spectroscopy (ICP-OES)). For each leg, 3 different samples were analyzed.
- Similar protocol is utilized for testing regimens, that is, series of products such as shampoo and rinse-off conditioner combinations or shampoo, rinse-off conditioner and/or rinse-off treatment combinations.
- Inhibition of copper deposition on hair and facilitation of the removal of copper deposited on hair may also be achieved by applying a leave-on treatment to the hair after rinsing the conditioner from the hair.
- the leave-on treatment may deliver consumer desired conditioning in addition to inhibiting the deposition of copper (i.e. from the water used to rinse) on the hair.
- the leave-on treatment described herein may comprise from about 0.025% to about 0.50%, alternatively from about 0.05% to about 0.25% of a chelant selected from Class I, Class II or Class III and mixtures thereof, by weight of the leave-on treatment.
- the leave-on treatment may also comprise one or more rheology modifiers and an aqueous carrier.
- Leave-on Treatment Composition Ex. 11 Components Wt % Amodimethicone and 0.35 Cetrimonium chloride and Trideceth-12 1 Polyquaternium-11 2 0.75 PEG-40 Hydrogenated castor oil 0.50 PPG-2 Methyl ether 0.5 DMDM Hydantoin 0.20 Disodium EDTA 0.14 Poysorbate 80 0.12 Aminomethyl propanol 0.1 Citric acid anhydrous 0.08 2,3-Triethylenetetramine 0.10 Distilled Water Q.S.
- Each treatment includes cleaning with conditioning shampoo followed by a rinse-off conditioner, followed by a leave-on treatment spray (when indicated).
- Shampoo Ex. 1 (a) Composition Ex. 3 Control Ex. 5 Ex. 4
- Addition of 2,3-Triethylenetetramine in any of the products of the regimen contributes to an effective removal of copper from hair after 20 conditioning shampoo/rinse-off conditioner/leave-on treatment regimen cycles compared to the corresponding treatment with control conditioning shampoo/control rinse-off conditioner.
- the regimen where the chelant is added in the leave-on treatment is particularly effective in removing copper form hair.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Emergency Medicine (AREA)
- Cosmetics (AREA)
Abstract
Description
- Described herein are hair conditioner compositions comprising one or more chelants, one or more high melting point fatty compounds, a cationic surfactant, and a carrier. The hair conditioner composition inhibits both deposition/penetration of copper salts and other transition metal salts in the hair and removes such salts from hair fiber. A method of treating hair with the hair conditioner composition is also described herein.
- Many water sources that are used by consumers for personal care contain elevated levels of calcium and magnesium salts, as well as undesirable levels of redox metals (e.g., copper and/or iron) salts. As such, using chelants to sequester trace redox metals often proves to be ineffective because most chelants also competitively bind calcium and/or magnesium.
- It has been found that even trace quantities of these minerals can deposit on the hair surface and in between the cuticle layers of hair. This deposition of minerals on hair is especially problematic because transition metal ions, such as copper and iron, can facilitate reduction-oxidation (redox) reactions during hair coloring treatments and during UV exposure. These reactions generate reactive oxygen species (ROS), which in turn can cause damage to the hair. In addition, they can interfere with the oxidative color formation chemistry and lead to reduced color uptake for hair colorant users.
- It has also been found that traditional chelating agents such as EDDS can result in stability problems for conditioners containing cationic surfactants.
- Accordingly, there is a need for hair care compositions that can inhibit minerals depositing on keratinous tissue, as well as facilitate the removal of minerals already deposited thereon. Additionally, there is a need for chelating agents which can facilitate removal of minerals deposited on the hair without interfering with the hair care formulation in which the chelating agent is included.
- Described herein is a hair conditioner composition comprising:
-
- (a) from about 0.005% to about 5% of one or more chelants, by weight of the hair conditioner composition, wherein the one or more chelants have a molecular structure as follows:
-
-
- wherein n is 2 or 3; m is 1, 2, 3, or 4; and
- Y and Z are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, pentyl, —CH2CH2OH, —CH2CH(CH3)OH), —CH2CH2NH2, —CH2CH(CH3)NH2, and combinations thereof;
- and wherein the one or more chelants comprise:
- (1) log of the formation constant log KML of its complex with copper is higher than 6;
- (2) log P value is from about −5 to about 2; and
- (3) molecular weight of from about 50 to about 500;
- (b) from about 0.1% to about 20% of one or more high melting point fatty compounds, by weight of the hair conditioner composition;
- (c) from about 0.1% to about 10% of a cationic surfactant, by weight of the hair conditioner composition; and
- (d) from about 75% to about 98% of an aqueous carrier, by weight of the hair conditioner composition;
-
- wherein the hair conditioner composition has a pH from about 3 to about 8.
- While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the hair conditioner composition described herein will be better understood from the following description.
- Herein, “comprising” means that other steps and other ingredients which do not affect the end result can be added. This term encompasses the terms “consisting of” and “consisting essentially of”. The compositions, methods, uses, kits, and processes of the present invention can comprise, consist of, and consist essentially of the elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein. As used herein, the terms “include,” “includes,” and “including,” are meant to be non-limiting and are understood to mean “comprise,” “comprises,” and “comprising,” respectively.
- All percentages, parts and ratios are based upon the total weight of the compositions of the present invention, unless otherwise specified. Unless otherwise noted, all such weights as they pertain to listed ingredients are based on the active level and, therefore, do not include carriers or by-products that may be included in commercially available materials.
- Herein, “mixtures” is meant to include a simple combination of materials and any compounds that may result from their combination.
- The term “molecular weight” or “M. Wt.” as used herein refers to the weight average molecular weight unless otherwise stated. “QS” means sufficient quantity for 100%.
- As used herein, the term “fluid” includes liquids and gels.
- As used herein, the term “log x” refers to the common (or decadic) logarithm of x.
- As used herein, the articles including “a” and “an” when used in a claim, are understood to mean one or more of what is claimed or described.
- As used herein, “mixtures” is meant to include a simple combination of materials and any compounds that may result from their combination.
- All numerical amounts are understood to be modified by the word “about” unless otherwise specifically indicated. Unless otherwise indicated, all measurements are understood to be made at 25° C. and at ambient conditions, where “ambient conditions” means conditions under about one atmosphere of pressure and at about 50% relative humidity. All such weights percents (wt %) as they pertain to listed ingredients are based on the active level and do not include carriers or by-products that may be included in commercially available materials, unless otherwise specified.
- The term “substantially free from” or “substantially free of” as used herein means less than about 1%, or less than about 0.8%, or less than about 0.5%, or less than about 0.3%, or about 0%, by total weight of the composition.
- “Hair,” as used herein, means mammalian hair including scalp hair, facial hair and body hair, particularly on hair on the human head and scalp.
- “Cosmetically acceptable,” as used herein, means that the compositions, formulations or components described are suitable for use in contact with human keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like. All compositions described herein which have the purpose of being directly applied to keratinous tissue are limited to those being cosmetically acceptable.
- “Derivatives,” as used herein, includes but is not limited to, amide, ether, ester, amino, carboxyl, acetyl, acid, and/or alcohol derivatives of a given compound.
- “Polymer,” as used herein, means a chemical formed from the polymerisation of two or more monomers, which may be the same or different. The term “polymer” as used herein shall include all materials made by the polymerisation of monomers as well as natural polymers. Polymers made from only one type of monomer are called homopolymers. A polymer comprises at least two monomers. Polymers made from two or more different types of monomers are called copolymers. The distribution of the different monomers can be calculated statistically or block-wise—both possibilities are suitable for the present invention. Except if stated otherwise, the term “polymer” used herein includes any type of polymer including homopolymers and copolymers.
- The term log P is the n-octanol/water partition coefficients of the material.
- All percentages, parts and ratios are based upon the total weight of the compositions of the present invention, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the active level and, therefore, do not include carriers or by-products that may be included in commercially available materials.
- Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
- It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
- The hair composition described herein is a conditioning hair care composition that delivers consumer desired conditioning in addition to inhibiting the deposition of minerals (i.e. from the water used to rinse) on the hair. The hair conditioner composition comprises: (a) from about 0.005% to about 5% of one or more chelants, by weight of the hair conditioner composition; (b) from about 0.1% to about 20% of one or more high melting point fatty compounds, by weight of the hair conditioner composition; (c) from about 0.1% to about 10% of a cationic surfactant, by weight of the hair conditioner composition; and (d) from about 75% to about 98% of an aqueous carrier, by weight of the hair conditioner composition; wherein the hair conditioner composition has a pH from about 3 to about 8.
- A. Chelants
- The hair conditioner composition comprises from about 0.005% to about 10%, alternatively from about 0.01% to about 5%, alternatively from about 0.05% to about 3%, alternatively from about 0.1% to about 1.5%, and alternatively from about 0.1% to about 0.5% of one or more chelants, by weight of the hair conditioner composition, wherein the one or more chelants have a molecular structure as follows:
-
- wherein n is 2 or 3; m is 1, 2, 3, or 4; and
- Y and Z are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, pentyl, —CH2CH2OH, —CH2CH(CH3)OH), —CH2CH2NH2, —CH2CH(CH3)NH2, and combinations thereof;
- and wherein the one or more chelants comprise:
- (1) log of the formation constant log KML of its complex with copper is higher than 6;
- (2) log P value is from about −5 to about 2; and
- (3) molecular weight of from about 50 to about 500.
- The relative affinity of a chelant at a specified pH for Cu+2 can be assessed by its Stability Constant. The Stability Constant of a metal chelant interaction is defined as:
-
- where:
[ML] is the concentration of metal ligand complex at equilibrium;
[M] is the concentration of free metal ion;
[L] is the concentration of free ligand in a fully deprotonated form; and
KML is the stability constant for the metal chelant complex. - The stability constants of chelant-metal ion complexes are well documented in the literature for commonly used chelants (see, for example, Arthur Martell & Robert M Smith, Critically Selected Stability Constants of Metal Complexes Database, Version 3.0 and above, incorporated herein by reference). When not documented the constants can be measured using various analytical methods (see “Metal Complexes in Aqueous Solutions”, Martel and Hancock, edition Modem Inorganic Chemistry, p. 226-228, incorporated herein by reference).
- It has been found that effective chelants need to have a high affinity for copper in order to preferentially bind copper found in hair. However, it has been found that also important to efficacy is the ability for the chelant to penetrate inside the hair fibers rapidly during the shampoo lathering process (which typically lasts between 30 seconds and 1 minute). The copper to be removed is inside the hair and the chelant needs to penetrate inside hair and form a strong copper-chelant complex. This copper-chelant complex needs to be water soluble and thus easily removed during the rinsing process. To be able to do this, two additional parameters have been shown to be important for chelant efficacy. These are log P, the octanol/water partitioning coefficient, and the molecular weight of the chelant. Both are related to the ability of the chelant to penetrate into hair and also form a water soluble copper-chelant complex
- The one or more chelants for use in the shampoo composition may be selected from the group consisting of triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, tris(2-aminoethyl)amine, ethylenedinitrilotetrapropan-2-ol, 1,1′,1″-[[2-hydroxypropyl)imino]bis(2,1-ethanediylnitrilo)]tetrakis-2-propanol, tetraethylenepentaamine-(1-EO), 1,5,9,13-tetraazatridecane, and mixtures thereof.
- The log of the formation constant log KML of its complex with copper can be higher than 6, alternatively higher than 8, alternatively higher than 9, alternatively higher than 10, alternatively higher than 12, alternatively higher than 14, alternatively higher than 16, alternatively higher than 17, alternatively higher than 18, and alternatively higher than 20. The log of the formation constant log KML of its complex with copper can be from about 6 to about 28, alternatively from about 8 to about 27, alternatively from about 9 to about 26, alternatively from about 10 to about 25, alternatively from about 12 to about 24, alternatively from about 14 to about 24, alternatively from about 16 to about 24, alternatively from about 17 to about 24, alternatively from about 18 to about 24, and alternatively from about 20 to about 23.
- The log P value of the one or more chelants can be from about −5 to about 2, alternatively from about −4 to about 1, alternatively from about −3.5 to about 0, and alternatively from about −2.9 to about −2.5.
- The molecular weight of the one or more chelants can be from about 50 to about 500, alternatively from about 75 to about 400, alternatively from about 100 to about 350, alternatively from about 125 to about 325, alternatively from about 140 to about 300, alternatively from about 140 to about 200.
- Other chelants that can be used to reduce copper content of hair have the following general structure:
- wherein M is hydrogen or a metal ion;
p is 1 or 2;
q is 1 or 2; and
X is selected from the group containing hydrogen, methyl, ethyl, propyl, —CH2CH2OH, —CH2CH(CH3)OH), —CH2CH2NH2, —CH2CH(CH3)NH2, —CH2COOM, or —CH2CH2SH, and —CH2CH(CH3)SH). - Non-limiting examples of the one or more chelants include iminodiacetic acid, N-(2-hydroxyethyl)iminodiacetic acid, N-methyliminodiacetic acid, N-(2-aminoethyl)iminodiacetic acid, N-propyliminodiacetic acid, and nitrilotriacetic acid.
- B. Cationic Surfactant System
- The hair care composition described herein comprises a cationic surfactant system. The cationic surfactant system can be one cationic surfactant or a mixture of two or more cationic surfactants. The cationic surfactant system can be selected from: mono-long alkyl quaternized ammonium salt; a combination of mono-long alkyl quaternized ammonium salt and di-long alkyl quaternized ammonium salt; mono-long alkyl amidoamine salt; a combination of mono-long alkyl amidoamine salt and di-long alkyl quaternized ammonium salt, a combination of mono-long alkyl amindoamine salt and mono-long alkyl quaternized ammonium salt.
- The cationic surfactant system can be included in the hair conditioner composition at a level of from about 0.1% to about 10%, alternatively from about 0.5% to about 8%, alternatively from about 0.8% to about 5%, and alternatively from about 1.0% to about 4%, by weight of the hair conditioner composition.
- The monoalkyl quaternized ammonium salt cationic surfactants useful herein are those having one long alkyl chain which has from 12 to 30 carbon atoms, from 16 to 24 carbon atoms, and in one embodiment at C18-22 alkyl group. The remaining groups attached to nitrogen are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms.
- Mono-long alkyl quaternized ammonium salts useful herein are those having the formula (I):
- wherein one of R75, R76, R77 and R78 is selected from an alkyl group of from 12 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 30 carbon atoms; the remainder of R75, R76, R77 and R78 are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms; and X− is a salt-forming anion such as those selected from halogen, (e.g. chloride, bromide), acetate, citrate, lactate, glycolate, phosphate, nitrate, sulfonate, sulfate, alkylsulfate, and alkyl sulfonate radicals. The alkyl groups can contain, in addition to carbon and hydrogen atoms, ether and/or ester linkages, and other groups such as amino groups. The longer chain alkyl groups, e.g., those of about 12 carbons, or higher, can be saturated or unsaturated. One of R75, R76, R77 and R78 can be selected from an alkyl group of from 12 to 30 carbon atoms, from 16 to 24 carbon atoms, from 18 to 22 carbon atoms, an/or 22 carbon atoms; the remainder of R75, R76, R77 and R78 are independently selected from CH3, C2H5, C2H4OH, and mixtures thereof; and X is selected from the group consisting of Cl, Br, CH3OSO3, C2H5OSO3, and mixtures thereof.
- Nonlimiting examples of such mono-long alkyl quaternized ammonium salt cationic surfactants include: behenyl trimethyl ammonium salt; stearyl trimethyl ammonium salt; cetyl trimethyl ammonium salt; and hydrogenated tallow alkyl trimethyl ammonium salt.
- Mono-long alkyl amines are also suitable as cationic surfactants. Primary, secondary, and tertiary fatty amines are useful. Particularly useful are tertiary amido amines having an alkyl group of from about 12 to about 22 carbons. Exemplary tertiary amido amines include: stearamidopropyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyldiethyl amine, palmitamidoethyldiethyl amine, palmitamidoethyldimethyl amine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamidoethyldiethylamine, behenamidoethyldimethylamine, arachidamidopropyldimethylamine, arachidamidopropyldiethylamine, arachidamidoethyldiethylamine, arachidamidoethyldimethylamine, diethylaminoethylstearamide. Useful amines in the present invention are disclosed in U.S. Pat. No. 4,275,055, Nachtigal, et al. These amines can also be used in combination with acids such as l-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, tartaric acid, citric acid, glutamic hydrochloride, maleic acid, and mixtures thereof; in one embodiment l-glutamic acid, lactic acid, and/or citric acid. The amines herein can be partially neutralized with any of the acids at a molar ratio of the amine to the acid of from about 1:0.3 to about 1:2, and/or from about 1:0.4 to about 1:1.
- Di-long alkyl quaternized ammonium salt can be combined with a mono-long alkyl quaternized ammonium salt or mono-long alkyl amidoamine salt. It is believed that such combination can provide easy-to rinse feel, compared to single use of a monoalkyl quaternized ammonium salt or mono-long alkyl amidoamine salt. In such combination with a mono-long alkyl quaternized ammonium salt or mono-long alkyl amidoamine salt, the di-long alkyl quaternized ammonium salts are used at a level such that the wt % of the dialkyl quaternized ammonium salt in the cationic surfactant system is in the range of from about 10% to about 50%, and/or from about 30% to about 45%.
- The dialkyl quaternized ammonium salt cationic surfactants useful herein are those having two long alkyl chains having 12-30 carbon atoms, and/or 16-24 carbon atoms, and/or 18-22 carbon atoms. The remaining groups attached to nitrogen are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms.
- Di-long alkyl quaternized ammonium salts useful herein are those having the formula (II):
- wherein two of R75, R76, R77 and R78 is selected from an alkyl group of from 12 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 30 carbon atoms; the remainder of R75, R76, R77 and R78 are independently selected from an alkyl group of from 1 to about 4 carbon atoms or an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 4 carbon atoms; and X− is a salt-forming anion such as those selected from halogen, (e.g. chloride, bromide), acetate, citrate, lactate, glycolate, phosphate, nitrate, sulfonate, sulfate, alkylsulfate, and alkyl sulfonate radicals. The alkyl groups can contain, in addition to carbon and hydrogen atoms, ether and/or ester linkages, and other groups such as amino groups. The longer chain alkyl groups, e.g., those of about 12 carbons, or higher, can be saturated or unsaturated. One of R75, R76, R77 and R78 can be selected from an alkyl group of from 12 to 30 carbon atoms, from 16 to 24 carbon atoms, from 18 to 22 carbon atoms, and/or 22 carbon atoms; the remainder of R75, R76, R77 and R78 are independently selected from CH3, C2H5, C2H4OH, and mixtures thereof; and X is selected from the group consisting of Cl, Br, CH3OSO3, C2H5OSO3, and mixtures thereof.
- Such dialkyl quaternized ammonium salt cationic surfactants include, for example, dialkyl (14-18) dimethyl ammonium chloride, ditallow alkyl dimethyl ammonium chloride, dihydrogenated tallow alkyl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, and dicetyl dimethyl ammonium chloride. Such dialkyl quaternized ammonium salt cationic surfactants also include, for example, asymmetric dialkyl quaternized ammonium salt cationic surfactants.
- C. High Melting Point Fatty Compound
- The hair conditioner composition comprises one or more high melting point fatty compounds. The one or more high melting point fatty compounds useful herein can have a melting point of 25° C. or higher, and can be selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, and mixtures thereof. It is understood by the artisan that the compounds disclosed in this section of the specification can in some instances fall into more than one classification, e.g., some fatty alcohol derivatives can also be classified as fatty acid derivatives. However, a given classification is not intended to be a limitation on that particular compound, but is done so for convenience of classification and nomenclature. Further, it is understood by the artisan that, depending on the number and position of double bonds, and length and position of the branches, certain compounds having certain carbon atoms may have a melting point of less than 25° C. Such compounds of low melting point are not intended to be included in this section. Nonlimiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
- Among a variety of high melting point fatty compounds, fatty alcohols are suitable for use in the hair conditioner composition. The fatty alcohols useful herein are those having from about 14 to about 30 carbon atoms, from about 16 to about 22 carbon atoms. These fatty alcohols are saturated and can be straight or branched chain alcohols. Suitable fatty alcohols include, for example, cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof.
- High melting point fatty compounds of a single compound of high purity can be used. Single compounds of pure fatty alcohols selected from the group of pure cetyl alcohol, stearyl alcohol, and behenyl alcohol can also be used. By “pure” herein, what is meant is that the compound has a purity of at least about 90%, and/or at least about 95%. These single compounds of high purity provide good rinsability from the hair when the consumer rinses off the composition.
- The one or more high melting point fatty compounds can be included in the hair care composition at a level of from about 0.1% to about 20%, alternatively from about 1% to about 15%, and alternatively from about 1.5% to about 8%, by weight of the hair conditioner. The one or more high melting point fatty compounds can provide improved conditioning benefits such as slippery feel during the application of the hair conditioner composition to wet hair, hair softness on dry hair, and moisturized feel on dry hair.
- D. Aqueous Carrier
- The hair care composition comprises an aqueous carrier at a level of from about 75% to about 98%, alternatively from about 80% to about 95%, by weight of the hair care composition. Accordingly, the hair care composition can be in the form of pourable liquids (under ambient conditions). The aqueous carrier may comprise water, or a miscible mixture of water and organic solvent, and in one aspect may comprise water with minimal or no significant concentrations of organic solvent, except as otherwise incidentally incorporated into the composition as minor ingredients of other components.
- The aqueous carrier can include water solutions of lower alkyl alcohols and polyhydric alcohols. The lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, in one aspect, ethanol and isopropanol. The polyhydric alcohols useful herein include propylene glycol, hexylene glycol, glycerin, and propane diol.
- The hair conditioner composition may have a pH in the range from about 2 to about 10, alternatively from about 3 to about 8, at 25° C. The hair care composition can also be effective toward washing out the existing minerals and redox metals deposits, which can reduce cuticle distortion and thereby reduce cuticle chipping and damage.
- E. Gel Matrix
- The hair conditioner composition can comprise a gel matrix. The gel matrix comprises a cationic surfactant, a high melting point fatty compound, and an aqueous carrier.
- The gel matrix is suitable for providing various conditioning benefits such as slippery feel during the application to wet hair and softness and moisturized feel on dry hair. In view of providing the above gel matrix, the cationic surfactant and the high melting point fatty compound are contained at a level such that the weight ratio of the cationic surfactant to the high melting point fatty compound is in the range of, from about 1:1 to about 1:10, and/or from about 1:1 to about 1:6.
- F. Additional Components
- 1. Silicone Conditioning Agent
- The hair conditioner composition can include a silicone conditioning agent which comprises a silicone compound. The silicone compound may comprise volatile silicone, non-volatile silicones, or combinations thereof. If volatile silicones are present, it will typically be incidental to their use as a solvent or carrier for commercially available forms of non-volatile silicone materials ingredients, such as silicone gums and resins. The silicone compounds may comprise a silicone fluid conditioning agent and may also comprise other ingredients, such as a silicone resin to improve silicone fluid deposition efficiency or enhance glossiness of the hair. The concentration of the silicone compound in the hair conditioner composition typically ranges from about 0.01 wt % to about 10 wt %, from about 0.1 wt % to about 8 wt %, from about 0.1 wt % to about 5 wt %, or even from about 0.2 wt % to about 3 wt %.
- Exemplary silicone compounds include (a) a first polysiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 100,000 mm2s−1 to about 30,000,000 mm2s−1; (b) a second polysiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 5 mm2s−1 to about 10,000 mm2s−1; (c) an aminosilicone having less than about 0.5 wt % nitrogen by weight of the aminosilicone; (d) a silicone copolymer emulsion with an internal phase viscosity of greater than about 100×106 mm2s−1, as measured at 25° C.; (e) a silicone polymer containing quaternary groups; or (f) a grafted silicone polyol, wherein the silicone compounds (a)-(f) are disclosed in U.S. Patent Application Publication Nos. 2008/0292574, 2007/0041929, 2008/0292575, and 2007/0286837, each of which is incorporated by reference herein in its entirety.
- a. First Polysiloxane
- The hair conditioner composition may comprise a first polysiloxane. The first polysiloxane is non-volatile, and substantially free of amino groups. The first polysiloxanes being “substantially free of amino groups” can mean that the first polysiloxane contains 0 wt % of amino groups. The first polysiloxane has a viscosity of from about 100,000 mm2s−1 to about 30,000,000 mm2s−1 at 25° C. For example, the viscosity may range from about 300,000 mm2s−1 to about 25,000,000 mm2s−1, or from about 10,000,000 mm2s−1 to about 20,000,000 mm2s−1. The first polysiloxane has a molecular weight from about 100,000 to about 1,000,000. For example, the molecular weight may range from about 130,000 to about 800,000, or from about 230,000 to about 600,000. According to one aspect, the first polysiloxane may be nonionic.
- Exemplary first non-volatile polysiloxanes useful herein include those in accordance with the following the general formula (I):
- wherein R is alkyl or aryl, and p is an integer from about 1,300 to about 15,000, such as from about 1,700 to about 11,000, or from about 3,000 to about 8,000. Z represents groups which block the ends of the silicone chains. The alkyl or aryl groups substituted on the siloxane chain (R) or at the ends of the siloxane chains Z can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and is capable of being deposited on and conditions the hair. According to an embodiment, suitable Z groups include hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy. The two R groups on each silicon atom may represent the same group or different groups. According to one embodiment, the two R groups may represent the same group. Suitable R groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl. Exemplary silicone compounds include polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. According to one embodiment, polydimethylsiloxane is the first polysiloxane. Commercially available silicone compounds useful herein include, for example, those available from the General Electric Company in their TSF451 series, and those available from Dow Corning in their Dow Corning SH200 series.
- The silicone compounds that can be used herein also include a silicone gum. The term “silicone gum”, as used herein, means a polyorganosiloxane material having a viscosity at 25° C. of greater than or equal to 1,000,000 mm2s−1. It is recognized that the silicone gums described herein can also have some overlap with the above-disclosed silicone compounds. This overlap is not intended as a limitation on any of these materials. The “silicone gums” will typically have a mass molecular weight in excess of about 165,000, generally between about 165,000 and about 1,000,000. Specific examples include polydimethylsiloxane, poly(dimethylsiloxane methylvinylsiloxane) copolymer, poly(dimethylsiloxane diphenylsiloxane methylvinylsiloxane) copolymer and mixtures thereof. Commercially available silicone gums useful herein include, for example, TSE200A available from the General Electric Company.
- b. Second Polysiloxane
- The hair conditioner composition may comprise a second polysiloxane. The second polysiloxane is non-volatile, and substantially free of amino groups. In the present invention, the second polysiloxane being “substantially free of amino groups” means that the second polysiloxane contains 0 wt % of amino groups. The second polysiloxane has a viscosity of from about 5 mm2s−1 to about 10,000 mm2s−1 at 25° C., such as from about 5 mm2s−1 to about 5,000 mm2s−1, from about 10 mm2s−1 to about 1,000 mm2s−1, or from about 20 mm2s−1 to about 350 mm2s−1. The second polysiloxane has a molecular weight of from about 400 to about 65,000. For example, the molecular weight of the second polysiloxane may range from about 800 to about 50,000, from about 400 to about 30,000, or from about 400 to about 15,000. According to one aspect, the second polysiloxane may be nonionic. According to another aspect, the second polysiloxane may be a linear silicone.
- Exemplary second non-volatile polysiloxanes useful herein include polyalkyl or polyaryl siloxanes in accordance with the following the general formula (II):
- wherein R1 is alkyl or aryl, and r is an integer from about 7 to about 850, such as from about 7 to about 665, from about 7 to about 400, or from about 7 to about 200. Z1 represents groups which block the ends of the silicone chains. The alkyl or aryl groups substituted on the siloxane chain (R1) or at the ends of the siloxane chains Z1 can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and is capable of being deposited on and conditions the hair. According to an embodiment, suitable Z1 groups include hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy. The two R1 groups on each silicon atom may represent the same group or different groups. According to one embodiment, the two R1 groups may represent the same group. Suitable R1 groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl. Exemplary silicone compounds include polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. According to one embodiment, polydimethylsiloxane is the second polysiloxane. Commercially available silicone compounds useful herein include, for example, those available from the General Electric Company in their TSF451 series, and those available from Dow Corning in their Dow Corning SH200 series.
- c. Aminosilicone
- The hair conditioner composition may comprise an amino silicone having less than about 0.5 wt % nitrogen by weight of the aminosilicone, such as less than about 0.2 wt %, or less than about 0.1 wt %, in view of friction reduction benefit. It has been surprisingly found that higher levels of nitrogen (amine functional groups) in the amino silicone tend to result in less friction reduction, and consequently less conditioning benefit from the aminosilicone. The aminosilicone useful herein may have at least one silicone block with greater than 200 siloxane units, in view of friction reduction benefit. The aminosilicones useful herein include, for example, quaternized aminosilicone and non-quaternized aminosilicone.
- In an embodiment, the aminosilicones useful herein are water-insoluble. “Water-insoluble aminosilicone” means that the aminosilicone has a solubility of 10 g or less per 100 g water at 25° C., in another embodiment 5 g or less per 100 g water at 25° C., and in another embodiment 1 g or less per 100 g water at 25° C. In the present invention, “water-insoluble aminosilicone” means that the aminosilicone is substantially free of copolyol groups. If copolyol groups are present, they are present at a level of less than 10 wt %, less than 1 wt %, or less than 0.1 wt % by weight of the aminosilicone.
- Aminosilicones useful herein are those which conform to the general formula (III):
-
(R2)aG3-a-Si(—O—SiG2)n(—O—SiGb(R2)2-b)m—O—SiG3-a(R2)a (III) - wherein G is hydrogen, phenyl, hydroxy, or C1-C8 alkyl, such as methyl; a is an integer having a value from 1 to 3, such as 1; b is an integer having a value from 0 to 2, such as 1; n is a number from 1 to 2,000, such as from 100 to 1,800, from 300 to 800, or from 500 to 600; m is an integer having a value from 0 to 1,999, such as from 0 to 10, or 0; R2 is a monovalent radical conforming to the general formula CqH2qL, wherein q is an integer having a value from 2 to 8 and L is selected from the following groups: —N(R3 2)CH2—CH2—N(R3 2)2; —N(R3)2; —N+(R3)3A−; —N(R3)CH2—CH2—N+R3H2A−; wherein R3 is hydrogen, phenyl, benzyl, or a saturated hydrocarbon radical, such as an alkyl radical from about C1 to about C20; A− is a halide ion. According to an embodiment, L is —N(CH3)2 or —NH2. According to another embodiment, L is —NH2.
- The aminosilicone of the above formula is used at levels by weight of the composition of from about 0.1 wt % to about 5 wt %, alternatively from about 0.2 wt % to about 2 wt %, alternatively from about 0.2 wt % to about 1.0 wt %, and alternatively from about 0.3 wt % to about 0.8 wt %.
- According to one embodiment, the aminosilicone may include those compounds corresponding to formula (III) wherein m=0; a=1; q=3; G=methyl; n is from about 1400 to about 1700, such as about 1600; and L is —N(CH3)2 or —NH2, such as —NH2. According to another embodiment, the aminosilicone may include those compounds corresponding to formula (III) wherein m=0; a=1; q=3; G=methyl; n is from about 400 to about 800, such as from about 500 to around 600; and L is L is —N(CH3)2 or —NH2, such as —NH2. Accordingly, the aforementioned aminosilicones can be called terminal aminosilicones, as one or both ends of the silicone chain are terminated by nitrogen containing group. Such terminal aminosilicones may provide improved friction reduction compared to graft aminosilicones.
- Another example of an aminosilicone useful herein includes, for example, quaternized aminosilicone having a tradename KF8020 available from Shinetsu.
- The above aminosilicones, when incorporated into the hair care composition, can be mixed with solvent having a lower viscosity. Such solvents include, for example, polar or non-polar, volatile or non-volatile oils. Such oils include, for example, silicone oils, hydrocarbons, and esters. Among such a variety of solvents, exemplary solvents include those selected from the group consisting of non-polar, volatile hydrocarbons, volatile cyclic silicones, non-volatile linear silicones, and mixtures thereof. The non-volatile linear silicones useful herein are those having a viscosity of from about 1 mm2s−1 to about 20,000 mm2s−1, such as from about 20 mm2s−1 to about 10,000 mm2s−1, at 25° C. According to one embodiment, the solvents are non-polar, volatile hydrocarbons, especially non-polar, volatile isoparaffins, in view of reducing the viscosity of the aminosilicones and providing improved hair conditioning benefits such as reduced friction on dry hair. Such mixtures may have a viscosity of from about 1,000 mPa·s to about 100,000 mPa·s, and alternatively from about 5,000 mPa·s to about 50,000 mPa·s.
- d. Silicone Copolymer Emulsion
- The hair conditioner composition may comprise a silicone copolymer emulsion with an internal phase viscosity of greater than about 100×106 mm2s−1. The silicone copolymer emulsion may be present in an amount of from about 0.1 wt % to about 15 wt %, alternatively from about 0.3 wt % to about 10 wt %, and alternatively about 0.5 wt % to about 5 wt %, by weight of the composition, in view of providing clean feel.
- According to one embodiment, the silicone copolymer emulsion has a viscosity at 25° C. of greater than about 100×106 mm2s−1, alternatively greater than about 120×106 mm2s−1, and alternatively greater than about 150×106 mm2s−1. According to another embodiment, the silicone copolymer emulsion has a viscosity at 25° C. of less than about 1000×106 mm2s−1, alternatively less than about 500×106 mm2s−1, and alternatively less than about 300×106 mm2s−1. To measure the internal phase viscosity of the silicone copolymer emulsion, one may first break the polymer from the emulsion. By way of example, the following procedure can be used to break the polymer from the emulsion: 1) add 10 grams of an emulsion sample to 15 milliliters of isopropyl alcohol; 2) mix well with a spatula; 3) decant the isopropyl alcohol; 4) add 10 milliliters of acetone and knead polymer with spatula; 5) decant the acetone; 6) place polymer in an aluminum container and flatten/dry with a paper towel; and 7) dry for two hours in an 80° C. The polymer can then be tested using any known rheometer, such as, for example, a CarriMed, Haake, or Monsanto rheometer, which operates in the dynamic shear mode. The internal phase viscosity values can be obtained by recording the dynamic viscosity (n′) at a 9.900*10−3 Hz frequency point. According to one embodiment, the average particle size of the emulsions is less than about 1 micron, such as less than about 0.7 micron.
- The silicone copolymer emulsions of the present invention may comprise a silicone copolymer, at least one surfactant, and water.
- The silicone copolymer results from the addition reaction of the following two materials in the presence of a metal containing catalyst:
- (i) a polysiloxane with reactive groups on both termini, represented by a general formula (IV):
- wherein:
- R4 is a group capable of reacting by chain addition reaction such as, for example, a hydrogen atom, an aliphatic group with ethylenic unsaturation (i.e., vinyl, allyl, or hexenyl), a hydroxyl group, an alkoxyl group (i.e., methoxy, ethoxy, or propoxy), an acetoxyl group, or an amino or alkylamino group;
- R5 is alkyl, cycloalkyl, aryl, or alkylaryl and may include additional functional groups such as ethers, hydroxyls, amines, carboxyls, thiols esters, and sulfonates; in an embodiment, R5 is methyl. Optionally, a small mole percentage of the groups may be reactive groups as described above for R5, to produce a polymer which is substantially linear but with a small amount of branching. In this case, the level of R5 groups equivalent to R4 groups may be less than about 10% on a mole percentage basis, such as less than about 2%;
- s is an integer having a value such that the polysiloxane of formula (IV) has a viscosity of from about 1 mm2s−1 to about 1×106 mm2s−1;
- and,
- (ii) at least one silicone compound or non-silicone compound comprising at least one or at most two groups capable of reacting with the R4 groups of the polysiloxane in formula (IV). According to one embodiment, the reactive group is an aliphatic group with ethylenic unsaturation.
- The metal containing catalysts used in the above described reactions are often specific to the particular reaction. Such catalysts are known in the art. Generally, they are materials containing metals such as platinum, rhodium, tin, titanium, copper, lead, etc.
- The mixture used to form the emulsion also may contain at least one surfactant. This can include non-ionic surfactants, cationic surfactants, anionic surfactants, alkylpolysaccharides, amphoteric surfactants, and the like. The above surfactants can be used individually or in combination.
- An exemplary method of making the silicone copolymer emulsions described herein comprises the steps of 1) mixing materials (a) described above with material (b) described above, followed by mixing in an appropriate metal containing catalyst, such that material (b) is capable of reacting with material (a) in the presence of the metal containing catalyst; 2) further mixing in at least one surfactant and water; and 3) emulsifying the mixture. Methods of making such silicone copolymer emulsions are disclosed in U.S. Pat. No. 6,013,682; PCT Application No. WO 01/58986 A1; and European Patent Application No. EP0874017 A2.
- A commercially available example of a silicone copolymer emulsion is an emulsion of about 60-70 wt % of divinyldimethicone/dimethicone copolymer having an internal phase viscosity of minimum 120×106 mm2s−1, available from Dow Corning with a tradename HMW2220.
- e. Silicone Polymer Containing Quaternary Groups
- The hair conditioner composition may comprise a silicone polymer containing quaternary groups (i.e., a quaternized silicone polymer). The quaternized silicone polymer provides improved conditioning benefits such as smooth feel, reduced friction, prevention of hair damage. Especially, the quaternary group can have good affinity with damaged/colorant hairs. The quaternized silicone polymer is present in an amount of from about 0.1 wt % to about 15 wt %, based on the total weight of the hair conditioning composition. For example, according to an embodiment, the quaternized silicone polymer may be present in an amount from about 0.2 wt % to about 10 wt %, alternatively from about 0.3 wt % to about 5 wt %, and alternatively from about 0.5 wt % to about 4 wt %, by weight of the composition.
- The quaternized silicone polymer of the present invention is comprised of at least one silicone block and at least one non-silicone block containing quaternary nitrogen groups, wherein the number of the non-silicone blocks is one greater than the number of the silicone blocks. The silicone polymers correspond to the general structure (V):
-
A1-B-(A2-B)m-A1 (V) - wherein, B is a silicone block having greater than 200 siloxane units; A1 is an end group which may contain quaternary groups; A2 is a non-silicone blocks containing quaternary nitrogen groups; and m is an integer 0 or greater, with the proviso that if m=0 then the A1 group contains quaternary groups.
- Structures corresponding to the general formula, for example, are disclosed in U.S. Pat. No. 4,833,225, in U.S. Patent Application Publication No. 2004/0138400, in U.S. Patent Application Publication No. 2004/0048996, and in U.S. Patent Application Publication No. 2008/0292575.
- In one embodiment, the silicone polymers can be represented by the following structure (VI)
- wherein, A is a group which contains at least one quaternary nitrogen group, and which is linked to the silicon atoms of the silicone block by a silicon-carbon bond, each A independently can be the same or different; R6 is an alkyl group of from about 1 to about 22 carbon atoms or an aryl group; each R6 independently can be the same or different; t is an integer having a value of from 0 or greater, for example t can be less than 20, or less than 10; and u is an integer greater than about 200, such as greater than about 250, or greater than about 300, and u may be less than about 700, or less than about 500. According to an embodiment, R6 is methyl.
- f. Grafted Silicone Copolyol
- The hair conditioner composition may comprise a grafted silicone copolyol in combination with the quaternized silicone polymer. It is believed that this grafted silicone copolyol can improve the spreadability of the quaternized silicone polymer by reducing the viscosity of the quaternized silicone polymer, and also can stabilize the quaternized silicone polymer in aqueous conditioner matrix. It is also believed that, by such improved spreadability, the hair care compositions of the present invention can provide better dry conditioning benefits such as friction reduction and/or prevention of damage with reduced tacky feel. It has been surprisingly found that the combination of the quaternized silicone polymer, grafted silicone copolyol, and cationic surfactant system comprising di-alkyl quaternized ammonium salt cationic surfactants provides improved friction reduction benefit, compared to a similar combination. Such similar combinations are, for example, a combination in which the grafted silicone copolyol is replaced with end-capped silicone copolyol, and another combination in which the cationic surfactant system is substantially free of di-alkyl quaternized ammonium salt cationic surfactants.
- The grafted silicone copolyol is contained in the composition at a level such that the weight % of the grafted silicone copolyol to its mixture with quaternized silicone copolymer is in the range of from about 1 wt % to about 50 wt %, alternatively from about 5 wt % to about 40 wt %, and alternatively from about 10 wt % to 30 wt %.
- The grafted silicone copolyols useful herein are those having a silicone backbone such as dimethicone backbone and polyoxyalkylene substitutions such as polyethylene oxide and/or polypropylene oxide substitutions. The grafted silicone copolyols useful herein have a hydrophilic-lipophilic balance (HLB) value of from about 5 to about 17, such as from about 8 to about 17, or from about 8 to about 12. The grafted silicone copolyols having the same INCI name have a variety of the weight ratio, depending on the molecular weight of the silicone portion and the number of the polyethylene oxide and/or polypropylene oxide substitutions.
- According to an embodiment, exemplary commercially available grafted dimethicone copolyols include, for example: those having a tradename Silsoft 430 having an HLB value of from about 9 to about 12 (INCI name “PEG/PPG-20/23 dimethicone”) available from GE; those having a tradename Silsoft 475 having an HLB value of from about 13 to about 17 (INCI name “PEG-23/PPG-6 dimethicone”); those having a tradename Silsoft 880 having an HLB value of from about 13 to about 17 (INCI name “PEG-12 dimethicone”); those having a tradename Silsoft 440 having an HLB value of from about 9 to about 12 (INCI name “PEG-20/PPG-23 dimethicone”); those having a tradename DC5330 (INCI name “PEG-15/PPG-15 dimethicone”) available from Dow Corning.
- The above quaternized silicone polymer and the grafted silicone copolyol may be mixed and emulsified by a emulsifying surfactant, prior to incorporating them into a gel matrix formed by cationic surfactants and high melting point fatty compounds, as discussed below. It is believed that, this pre-mixture can improve behavior of the quaternized silicone polymer and the grafted silicone copolyol, for example, increase the stability and reduce the viscosity to form more homogenized formulation together with the other components. Such emulsifying surfactant can be used at a level of about 0.001 wt % to about 1.5 wt %, alternatively from about 0.005% to about 1.0%, and alternatively from about 0.01 wt % to about 0.5 wt %, based on the total weight of the hair conditioning composition. Such surfactants may be nonionic, and have an HLB value of from about 2 to about 15, such as from about 3 to about 14, or from about 3 to about 10. Commercially available examples of emulsifying surfactant include nonionic surfactants having an INCI name C12-C14 Pareth-3 and having an HLB value of about 8 supplied from NIKKO Chemicals Co., Ltd. with tradename NIKKOL BT-3.
- According to one embodiment, the hair conditioner composition comprises a combination of two or more silicone conditioning agents, along with an EDDS sequestering agent and a gel matrix.
- In one embodiment, the hair conditioner composition comprises a polyalkylsiloxane mixture comprising (i) a first polyalkylsiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 100,000 mm2s−1 to about 30,000,000 mm2s−1, and (ii) a second polyalkylsiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 5 mm2s−1 to about 10,000 mm2s−1; an aminosilicone having less than about 0.5 wt % nitrogen by weight of the aminosilicone; and a silicone copolymer emulsion with an internal phase viscosity of greater than about 100×106 mm2s−1, as measured at 25° C. For example, in another embodiment, the hair care composition comprises from about 0.5 wt % to about 10 wt % of a polyalkylsiloxane mixture comprising (i) a first polyalkylsiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 100,000 mm2s−1 to about 30,000,000 mm2s−1, and (ii) a second polyalkylsiloxane which is non-volatile, substantially free of amino groups, and has a viscosity of from about 5 mm2s−1 to about 10,000 mm2s−1; from about 0.1 wt % to about 5 wt % of an aminosilicone having less than about 0.5 wt % nitrogen by weight of the aminosilicone; and from about 0.1 wt % to about 5 wt % of a silicone copolymer emulsion with an internal phase viscosity of greater than about 100×106 mm2s−1, as measured at 25° C.
- In another embodiment, the hair conditioner composition comprises a silicone polymer containing quaternary groups wherein said silicone polymer comprises silicone blocks with greater than about 200 siloxane units; and a grafted silicone copolyol. For example, in another embodiment, the hair care composition comprises from about 0.1 wt % to about 15 wt % of a silicone polymer containing quaternary groups wherein said silicone polymer comprises silicone blocks with greater than about 200 siloxane units; and a grafted silicone copolyol at a level such that the weight % of the grafted silicone copolyol in its mixture with the quaternized silicone polymer is in the range of from about 1 wt % to about 50 wt %.
- In yet another embodiment, the hair conditioner composition comprises an aminosilicone having a viscosity of from about 1,000 centistokes to about 1,000,000 centistokes, and less than about 0.5% nitrogen by weight of the aminosilicone; and (2) a silicone copolymer emulsion with an internal phase viscosity of greater than about 120×106 centistokes, as measured at 25° C.
- 2. Other Conditioning Agents
- Also suitable for use in the hair conditioner compositions herein are the conditioning agents described by the Procter & Gamble Company in U.S. Pat. Nos. 5,674,478, and 5,750,122. Also suitable for use herein are those conditioning agents described in U.S. Pat. Nos. 4,529,586, 4,507,280, 4,663,158, 4,197,865, 4,217, 914, 4,381,919, and 4,422, 853.
- a. Organic Conditioning Oils
- The hair conditioner composition may also further comprise an organic conditioning oil. According to embodiments, the hair conditioner composition may comprise from about 0.05 wt % to about 3 wt %, from about 0.08 wt % to about 1.5 wt %, or even from about 0.1 wt % to about 1 wt %, of at least one organic conditioning oil as the conditioning agent, in combination with other conditioning agents, such as the silicones (described herein). Suitable conditioning oils include hydrocarbon oils, polyolefins, and fatty esters. Suitable hydrocarbon oils include, but are not limited to, hydrocarbon oils having at least about 10 carbon atoms, such as cyclic hydrocarbons, straight chain aliphatic hydrocarbons (saturated or unsaturated), and branched chain aliphatic hydrocarbons (saturated or unsaturated), including polymers and mixtures thereof. Straight chain hydrocarbon oils are typically from about C12 to about C19. Branched chain hydrocarbon oils, including hydrocarbon polymers, typically will contain more than 19 carbon atoms. Suitable polyolefins include liquid polyolefins, liquid poly-α-olefins, or even hydrogenated liquid poly-α-olefins. Polyolefins for use herein may be prepared by polymerization of C4 to about C14 or even C6 to about C12. Suitable fatty esters include, but are not limited to, fatty esters having at least 10 carbon atoms. These fatty esters include esters with hydrocarbyl chains derived from fatty acids or alcohols (e.g. mono-esters, polyhydric alcohol esters, and di- and tri-carboxylic acid esters). The hydrocarbyl radicals of the fatty esters hereof may include or have covalently bonded thereto other compatible functionalities, such as amides and alkoxy moieties (e.g., ethoxy or ether linkages, etc.).
- 3. Nonionic Polymers
- The hair conditioner composition may also further comprise a nonionic polymer. According to an embodiment, the conditioning agent for use in the hair care composition of the present invention may include a polyalkylene glycol polymer. For example, polyalkylene glycols having a molecular weight of more than about 1000 are useful herein. Useful are those having the following general formula (VIII):
- wherein R11 is selected from the group consisting of H, methyl, and mixtures thereof; and v is the number of ethoxy units. The polyalkylene glycols, such as polyethylene glycols, can be included in the hair care compositions of the present invention at a level of from about 0.001 wt % to about 10 wt %. In an embodiment, the polyethylene glycol is present in an amount up to about 5 wt % based on the weight of the composition. Polyethylene glycol polymers useful herein are PEG-2M (also known as Polyox WSR® N-10, which is available from Union Carbide and as PEG-2,000); PEG-5M (also known as Polyox WSR® N-35 and Polyox WSR® N-80, available from Union Carbide and as PEG-5,000 and Polyethylene Glycol 300,000); PEG-7M (also known as Polyox WSR® N-750 available from Union Carbide); PEG-9M (also known as Polyox WSR® N-3333 available from Union Carbide); and PEG-14 M (also known as Polyox WSR® N-3000 available from Union Carbide).
- 4. Suspending Agent
- The hair conditioner composition may further comprise a suspending agent at concentrations effective for suspending water-insoluble material in dispersed form in the compositions or for modifying the viscosity of the composition. Such concentrations range from about 0.1 wt % to about 10 wt %, or even from about 0.3 wt % to about 5.0 wt %.
- Suspending agents useful herein include anionic polymers and nonionic polymers. Useful herein are vinyl polymers such as cross linked acrylic acid polymers with the CTFA name Carbomer, cellulose derivatives and modified cellulose polymers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, nitro cellulose, sodium cellulose sulfate, sodium carboxymethyl cellulose, crystalline cellulose, cellulose powder, polyvinylpyrrolidone, polyvinyl alcohol, guar gum, hydroxypropyl guar gum, xanthan gum, arabia gum, tragacanth, galactan, carob gum, guar gum, karaya gum, carrageenan, pectin, agar, quince seed (Cydonia oblonga Mill), starch (rice, corn, potato, wheat), algae colloids (algae extract), microbiological polymers such as dextran, succinoglucan, pulleran, starch-based polymers such as carboxymethyl starch, methylhydroxypropyl starch, alginic acid-based polymers such as sodium alginate, alginic acid propylene glycol esters, acrylate polymers such as sodium polyacrylate, polyethylacrylate, polyacrylamide, polyethyleneimine, and inorganic water soluble material such as bentonite, aluminum magnesium silicate, laponite, hectonite, and anhydrous silicic acid.
- Commercially available viscosity modifiers highly useful herein include Carbomers with trade names Carbopol® 934, Carbopol® 940, Carbopol® 950, Carbopol® 980, and Carbopol® 981, all available from B. F. Goodrich Company, acrylates/steareth-20 methacrylate copolymer with trade name ACRYSOL™ 22 available from Rohm and Hass, nonoxynyl hydroxyethylcellulose with trade name Amercell™ POLYMER HM-1500 available from Amerchol, methylcellulose with trade name BENECEL®, hydroxyethyl cellulose with trade name NATROSOL®, hydroxypropyl cellulose with trade name KLUCEL®, cetyl hydroxyethyl cellulose with trade name POLYSURF® 67, all supplied by Hercules, ethylene oxide and/or propylene oxide based polymers with trade names CARBOWAX® PEGs, POLYOX WASRs, and UCON® FLUIDS, all supplied by Amerchol.
- Other optional suspending agents include crystalline suspending agents which can be categorized as acyl derivatives, long chain amine oxides, and mixtures thereof. These suspending agents are described in U.S. Pat. No. 4,741,855.
- These suspending agents include ethylene glycol esters of fatty acids in one aspect having from about 16 to about 22 carbon atoms. In one aspect, useful suspending agents include ethylene glycol stearates, both mono and distearate, but in one aspect, the distearate containing less than about 7% of the mono stearate. Other suitable suspending agents include alkanol amides of fatty acids, having from about 16 to about 22 carbon atoms, or even about 16 to 18 carbon atoms, examples of which include stearic monoethanolamide, stearic diethanolamide, stearic monoisopropanolamide and stearic monoethanolamide stearate. Other long chain acyl derivatives include long chain esters of long chain fatty acids (e.g., stearyl stearate, cetyl palmitate, etc.); long chain esters of long chain alkanol amides (e.g., stearamide diethanolamide distearate, stearamide monoethanolamide stearate); and glyceryl esters (e.g., glyceryl distearate, trihydroxystearin, tribehenin) a commercial example of which is Thixin R available from Rheox, Inc. Long chain acyl derivatives, ethylene glycol esters of long chain carboxylic acids, long chain amine oxides, and alkanol amides of long chain carboxylic acids in addition to the materials listed above may be used as suspending agents.
- Other long chain acyl derivatives suitable for use as suspending agents include N,N-dihydrocarbyl amido benzoic acid and soluble salts thereof (e.g., Na, K), particularly N,N-di(hydrogenated) C16, C18 and tallow amido benzoic acid species of this family, which are commercially available from Stepan Company (Northfield, Ill., USA).
- Examples of suitable long chain amine oxides for use as suspending agents include alkyl dimethyl amine oxides, e.g., stearyl dimethyl amine oxide.
- Other suitable suspending agents include primary amines having a fatty alkyl moiety having at least about 16 carbon atoms, examples of which include palmitamine or stearamine, and secondary amines having two fatty alkyl moieties each having at least about 12 carbon atoms, examples of which include dipalmitoylamine or di(hydrogenated tallow)amine Still other suitable suspending agents include di(hydrogenated tallow)phthalic acid amide, and crosslinked maleic anhydride-methyl vinyl ether copolymer.
- H. Benefit Agents
- The hair conditioner composition can further comprises one or more additional benefit agents. The benefit agents comprise a material selected from the group consisting of anti-dandruff agents, vitamins, lipid soluble vitamins, chelants, perfumes, brighteners, enzymes, sensates, attractants, anti-bacterial agents, dyes, pigments, bleaches, and mixtures thereof.
- In one aspect said benefit agent may comprise an anti-dandruff agent. Such anti-dandruff particulate should be physically and chemically compatible with the components of the composition, and should not otherwise unduly impair product stability, aesthetics or performance.
- According to an embodiment, the hair conditioner composition comprises an anti-dandruff active, which may be an anti-dandruff active particulate. In an embodiment, the anti-dandruff active is selected from the group consisting of: pyridinethione salts; azoles, such as ketoconazole, econazole, and elubiol; selenium sulphide; particulate sulfur; keratolytic agents such as salicylic acid; and mixtures thereof. In an embodiment, the anti-dandruff particulate is a pyridinethione salt.
- Pyridinethione particulates are suitable particulate anti-dandruff actives. In an embodiment, the anti-dandruff active is a 1-hydroxy-2-pyridinethione salt and is in particulate form. In an embodiment, the concentration of pyridinethione anti-dandruff particulate ranges from about 0.01 wt % to about 5 wt %, or from about 0.1 wt % to about 3 wt %, or from about 0.1 wt % to about 2 wt %. In an embodiment, the pyridinethione salts are those formed from heavy metals such as zinc, tin, cadmium, magnesium, aluminium and zirconium, generally zinc, typically the zinc salt of 1-hydroxy-2-pyridinethione (known as “zinc pyridinethione” or “ZPT”), commonly 1-hydroxy-2-pyridinethione salts in platelet particle form. In an embodiment, the 1-hydroxy-2-pyridinethione salts in platelet particle form have an average particle size of up to about 20 microns, or up to about 5 microns, or up to about 2.5 microns. Salts formed from other cations, such as sodium, may also be suitable. Pyridinethione anti-dandruff actives are described, for example, in U.S. Pat. No. 2,809,971; U.S. Pat. No. 3,236,733; U.S. Pat. No. 3,753,196; U.S. Pat. No. 3,761,418; U.S. Pat. No. 4,345,080; U.S. Pat. No. 4,323,683; U.S. Pat. No. 4,379,753; and U.S. Pat. No. 4,470,982.
- In an embodiment, in addition to the anti-dandruff active selected from polyvalent metal salts of pyrithione, the composition further comprises one or more anti-fungal and/or anti-microbial actives. In an embodiment, the anti-microbial active is selected from the group consisting of: coal tar, sulfur, fcharcoal, whitfield's ointment, castellani's paint, aluminum chloride, gentian violet, octopirox (piroctone olamine), ciclopirox olamine, undecylenic acid and its metal salts, potassium permanganate, selenium sulphide, sodium thiosulfate, propylene glycol, oil of bitter orange, urea preparations, griseofulvin, 8-hydroxyquinoline ciloquinol, thiobendazole, thiocarbamates, haloprogin, polyenes, hydroxypyridone, morpholine, benzylamine, allylamines (such as terbinafine), tea tree oil, clove leaf oil, coriander, palmarosa, berberine, thyme red, cinnamon oil, cinnamic aldehyde, citronellic acid, hinokitol, ichthyol pale, Sensiva SC-50, Elestab HP-100, azelaic acid, lyticase, iodopropynyl butylcarbamate (IPBC), isothiazalinones such as octyl isothiazalinone, and azoles, and mixtures thereof. In an embodiment, the anti-microbial is selected from the group consisting of: itraconazole, ketoconazole, selenium sulphide, coal tar, and mixtures thereof.
- In an embodiment, the azole anti-microbials is an imidazole selected from the group consisting of: benzimidazole, benzothiazole, bifonazole, butaconazole nitrate, climbazole, clotrimazole, croconazole, eberconazole, econazole, elubiol, fenticonazole, fluconazole, flutimazole, isoconazole, ketoconazole, lanoconazole, metronidazole, miconazole, neticonazole, omoconazole, oxiconazole nitrate, sertaconazole, sulconazole nitrate, tioconazole, thiazole, and mixtures thereof, or the azole anti-microbials is a triazole selected from the group consisting of: terconazole, itraconazole, and mixtures thereof. When present in the hair care composition, the azole anti-microbial active can be included in an amount of from about 0.01 wt % to about 5 wt %, or from about 0.1 wt % to about 3 wt %, or from about 0.3 wt % to about 2 wt %. In an embodiment, the azole anti-microbial active is ketoconazole. In an embodiment, the sole anti-microbial active is ketoconazole.
- Embodiments of the hair conditioner composition may also comprise a combination of anti-microbial actives. In an embodiment, the combination of anti-microbial active is selected from the group of combinations consisting of: octopirox and zinc pyrithione, pine tar and sulfur, salicylic acid and zinc pyrithione, salicylic acid and elubiol, zinc pyrithione and elubiol, zinc pyrithione and climbasole, octopirox and climbasole, salicylic acid and octopirox, and mixtures thereof.
- In an embodiment, the hair conditioner composition comprises an effective amount of a zinc-containing layered material. In an embodiment, the hair conditioner composition comprises from about 0.001 wt % to about 10 wt %, or from about 0.01 wt % to about 7 wt %, or from about 0.1 wt % to about 5 wt % of a zinc-containing layered material, by total weight of the hair conditioner composition.
- Zinc-containing layered materials may be those with crystal growth primarily occurring in two dimensions. It is conventional to describe layer structures as not only those in which all the atoms are incorporated in well-defined layers, but also those in which there are ions or molecules between the layers, called gallery ions (A. F. Wells “Structural Inorganic Chemistry” Clarendon Press, 1975). Zinc-containing layered materials (ZLMs) may have zinc incorporated in the layers and/or be components of the gallery ions. The following classes of ZLMs represent relatively common examples of the general category and are not intended to be limiting as to the broader scope of materials which fit this definition.
- Many ZLMs occur naturally as minerals. In an embodiment, the ZLM is selected from the group consisting of: hydrozincite (zinc carbonate hydroxide), aurichalcite (zinc copper carbonate hydroxide), rosasite (copper zinc carbonate hydroxide), and mixtures thereof. Related minerals that are zinc-containing may also be included in the composition. Natural ZLMs can also occur wherein anionic layer species such as clay-type minerals (e.g., phyllosilicates) contain ion-exchanged zinc gallery ions. All of these natural materials can also be obtained synthetically or formed in situ in a composition or during a production process.
- Another common class of ZLMs, which are often, but not always, synthetic, is layered double hydroxides. In an embodiment, the ZLM is a layered double hydroxide conforming to the formula [M2+ 1−xM3+ x(OH)2]x+Am− x/m.nH2O wherein some or all of the divalent ions (M2+) are zinc ions (Crepaldi, E L, Pava, P C, Tronto, J, Valim, J B J. Colloid Interfac. Sci. 2002, 248, 429-42).
- Yet another class of ZLMs can be prepared called hydroxy double salts (Morioka, H., Tagaya, H., Karasu, M, Kadokawa, J, Chiba, K Inorg. Chem. 1999, 38, 4211-6). In an embodiment, the ZLM is a hydroxy double salt conforming to the formula [M2+ 1−xM2+ 1+x(OH)3(1-y)]+An− (1=3y)/n.nH2O where the two metal ions (M2+) may be the same or different. If they are the same and represented by zinc, the formula simplifies to [Zn1+x(OH)2]2x+2xA−.nH2O. This latter formula represents (where x=0.4) materials such as zinc hydroxychloride and zinc hydroxynitrate. In an embodiment, the ZLM is zinc hydroxychloride and/or zinc hydroxynitrate. These are related to hydrozincite as well wherein a divalent anion replaces the monovalent anion. These materials can also be formed in situ in a composition or in or during a production process.
- In embodiments having a zinc-containing layered material and a pyrithione or polyvalent metal salt of pyrithione, the ratio of zinc-containing layered material to pyrithione or a polyvalent metal salt of pyrithione is from about 5:100 to about 10:1, or from about 2:10 to about 5:1, or from about 1:2 to about 3:1.
- The on-scalp deposition of the anti-dandruff active is at least about 1 microgram/cm2. The on-scalp deposition of the anti-dandruff active is important in view of ensuring that the anti-dandruff active reaches the scalp where it is able to perform its function. In an embodiment, the deposition of the anti-dandruff active on the scalp is at least about 1.5 microgram/cm2, or at least about 2.5 microgram/cm2, or at least about 3 microgram/cm2, or at least about 4 microgram/cm2, or at least about 6 microgram/cm2, or at least about 7 microgram/cm2, or at least about 8 microgram/cm2, or at least about 8 microgram/cm2, or at least about 10 microgram/cm2. The on-scalp deposition of the anti-dandruff active is measured by having the hair of individuals washed with a composition comprising an anti-dandruff active, for example a composition pursuant to the present invention, by trained a cosmetician according to a conventional washing protocol. The hair is then parted on an area of the scalp to allow an open-ended glass cylinder to be held on the surface while an aliquot of an extraction solution is added and agitated prior to recovery and analytical determination of anti-dandruff active content by conventional methodology, such as HPLC.
- The hair conditioner compositions described herein are generally prepared by conventional methods such as are known in the art of making the compositions. Such methods typically involve mixing of the ingredients in one or more steps to a relatively uniform state, with or without heating, cooling, application of vacuum, and the like. The compositions are prepared such as to optimize stability (physical stability, chemical stability, photostability) and/or delivery of the active materials. The hair conditioner composition may be in a single phase or a single product, or the hair care composition may be in a separate phases or separate products. If two products are used, the products may be used together, at the same time or sequentially. Sequential use may occur in a short period of time, such as immediately after the use of one product, or it may occur over a period of hours or days.
- The rinse-off conditioner compositions can be prepared by any conventional method well known in the art. The cationic surfactants and the fatty alcohols are mixed together and heated to from about 66° C. to about 85° C. to form an oil phase. Separately, the disodium EDTA, the Methylchloroisothiazolinone (preservative) and the water are mixed and heated to from about 20° C. to about 48° C. to form an aqueous phase. The oil phase is mixed into the water phase under high shear to form the gel matrix. The remaining of the components are added into the gel matrix with agitation. Then, the composition is cooled down to room temperature.
- All testing are performed on colored hair switches (see Method of Measurement of copper on hair below) weighing approximately 4.0 grams and having a length of approximately 6 inches. The hair switches are commercially available from IHIP (International Hair Importers). Three hair switches per shampoo composition are used. An amount of 0.20 g of shampoo is spread via a syringe onto separate hair switch. That is, the dosage is 0.10 g of shampoo per g of hair. Each application consists of adding shampoo to the hair, milking for 30 seconds followed by rinsing for 30 seconds. Shampoo is then reapplied (0.1 g/g), milked for 30 seconds and rinsed for 30 seconds. Excess water is squeezed from the hair switches and left to air dry or treated with a rinse-off conditioner and/or a leave-on treatment composition. This protocol is repeated for a number of times/cycles (as indicated in the tables below, which describe the details of hair treatments).
- All testing are performed on colored hair switches (see Method of Measurement of copper on hair below) weighing approximately 4.0 grams and having a length of approximately 6 inches. The hair switches are commercially available from IHIP (International Hair Importers). Three hair switches per rinse-off compositions are used. Each hair switch is washed with shampoo followed by a treatment with the rinse-off conditioner according to the following protocol.
- After treatment with shampoo and after the step of squeezing the excess water from the hair switches (see previous paragraph), 0.1 g/g of the rinse-off conditioner composition is applied and milked for 30 seconds and then rinsed for 30 seconds. This protocol is repeated for a number of times/cycles (as indicated in the tables below.
- In several cases during this inventigation, the rinse-off conditioner treatment is followed by hair treatment with a leave-on treatment composition. Specifically, the appropriate quantity of the leave-on treatment composition is uniformly sprayed or spread onto separate hair switches (dosage of 0.10 g of solution per g of hair). The hair is then allowed to air dry.
- The following test method was used to assess the ability of the compositions and regimens to remove copper from the hair and to inhibit copper deposition onto the hair.
- Hair switches had been colored once with an oxidative hair colorant. An extra blonde shade was used for the testing. The hair switches were washed for 10 or 20 repeat wash cycles in tap water containing 7 grains per gallon water hardness (Ca/Mg) and 0.06 μg/g copper ions. Each wash cycle consisted of two applications of 0.1 g/g a shampoo to the hair switches. Each application consisted of adding shampoo to the hair, milking for 30 secs followed by rinsing for 30 secs. Shampoo was then reapplied 0.1 g/g, milked for 30 secs, rinsed for 30 secs and then dried in a heat box (60° C.) until dry.
- Samples of 100 mg of hair were digested overnight with 2 ml of high purity concentrated nitric acid. The digestive mixture also contained 150 μL of 100 μg/g Yttrium internal standard (Inorganic Ventures, Christianburg, Va., USA). Following digestion, samples were heated to 70-80° C. for one hour, cooled to room temperature and diluted to 15 mL with deionized water. Copper content of the hair switches was determined by inductively coupled plasma atomic spectroscopy (ICP-OES)). For each leg, 3 different samples were analyzed.
- Similar protocol is utilized for testing regimens, that is, series of products such as shampoo and rinse-off conditioner combinations or shampoo, rinse-off conditioner and/or rinse-off treatment combinations.
- Inhibition of copper deposition on hair and facilitation of the removal of copper deposited on hair may also be achieved by applying a leave-on treatment to the hair after rinsing the conditioner from the hair. The leave-on treatment may deliver consumer desired conditioning in addition to inhibiting the deposition of copper (i.e. from the water used to rinse) on the hair. The leave-on treatment described herein may comprise from about 0.025% to about 0.50%, alternatively from about 0.05% to about 0.25% of a chelant selected from Class I, Class II or Class III and mixtures thereof, by weight of the leave-on treatment. The leave-on treatment may also comprise one or more rheology modifiers and an aqueous carrier.
- The following are non-limiting examples of the hair conditioner composition described herein. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the hair conditioner composition, as many variations thereof are possible without departing from the spirit and scope of the hair conditioner composition, which would be recognized by one of ordinary skill in the art.
- In order to minimize the variability of the variability of the resulting copper content on hair that is related to (a) lot-to-lot variability due to hair switches and (b) day-to-day variability of the water used during shampoo and conditioner treatments, a single lot of hair switches is used for each experimental series and a separate control experiment/treatment is run for each experimental series (see below).
-
-
Conditioning shampoo compositions Ex. 1 Control Ex. 2 Components Wt % Wt % Sodium Laureth-3 Sulfate1 6.10 6.10 Sodium Lauryl Sulfate2 4.00 4.00 Cocoamide MEA3 0.90 0.90 Guar hydroxypropyltrimonium chloride4 0.25 0.25 Glycol distearate 1.50 1.50 Dimethicone5 1.00 1.00 Tetrasodium EDTA dihydrate 0.16 0.16 Citric Acid (Anhydrous) 0.18 0.18 Sodium benzoate 0.27 0.27 Methylchloroisothiazolinone/ 0.0006 0.0006 Methylisothiazolinone6 Sodium chloride 0.20 0.20 Hydrochloric acid (6N) 0.06 0.06 2,3-Triethylenetetramine (TETA) 0.00 0.10 Perfume 0.40 0.40 Distilled Water Q.S. Q.S. 1Sodium laureth-3-sulfate available from BASF as Standapol ES-3 (28 wt. % active). 2Sodium Lauryl Sulfate available from BASF as Standapol WAQ-LC (29 wt. % active). 3Cocamide MEA available from BASF as Comperlan CMEA (85 wt. % active). 4Jaguar C-500 available from Ashland. 5Silicone oil with viscosity of 330.000 cP 6Kathon CG available from Dow (1.5 wt % active). -
Clarifying Shampoo Compositions Ex. 1 (a) Control Ex. 3 Components Wt % Wt % Sodium Laureth-3 Sulfate1 6.00 6.00 Sodium Lauryl Sulfate2 9.50 9.50 Cocamidopropyl betaine 1.88 1.88 Tetrasodium EDTA dehydrate 0.16 0.16 Citric Acid (Anhydrous) 0.28 0.28 Sodium benzoate 0.25 0.25 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone3 Sodium chloride 0.57 0.57 Hydroxypropylmethylcellulose 0.25 0.25 2,3-Triethylenetetramine (TETA) 0.0 0.10 Perfume 0.40 0.40 Distilled Water Q.S. Q.S. 1Sodium laureth-3-sulfate available from BASF as Standapol ES-3 (28 wt. % active). 2Sodium Lauryl Sulfate available from BASF as Standapol WAQ-LC (29 wt. % active). 3Kathon CG available from Dow (1.5 wt % active). -
Hair Repair Shampoo Compositions Ex. 4 Control Ex. 5 Components Wt % Wt % Ammonium lauryl sulfate 16.00 16.00 Cocoamide MEA1 0.8 0.8 Cetyl alcohol 0.9 0.9 Polyquaternium-102 0.5 0.5 Polyethylene glycol 7M3 0.10 0.10 Dimethicone4 2.00 2.00 Glycol distearate 1.50 1.50 Sodium benzoate 0.25 0.25 Disodium EDTA 0.13 0.13 Citric acid 0.04 0.04 Sodium citrate dehydrate 0.45 0.45 Sodium chloride 0.03 0.03 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone5 Perfume 0.50 0.50 2,3-Triethylenetetramine (TETA) 0.00 0.10 Distilled Water Q.S. Q.S. 1Cocamide MEA available from BASF as Comperlan CMEA (85 wt. % active). 2Quatemized hydroxyethyl cellulose avaliable from Dow Unival LR30M. 3Available by Dow. 4Silicone oil with viscosity of 330.000 cP. 5Kathon CG available from Dow (1.5 wt % active). -
Smoothing Rinse-off Conditioner Compositions Ex. 6 Control Ex. 7 Components Wt % Wt % Stearyl alcohol 2.32 2.32 Cetyl alcohol 0.93 0.93 Dicetyldimonium chloride 0.34 0.34 Behentrimonium methosulfate 1.16 1.16 Propylene glycol 0.16 0.16 Isopropyl alcohol 0.28 0.28 Disodium EDTA Dihydrate 0.13 0.13 Terminal amodimethicone1 0.75 0.75 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone2 Benzyl alcohol 0.40 0.40 2,3-Triethylenetetramine (TETA) 0.00 0.10 Distilled Water Q.S. Q.S. 1Terminal amodimethicone with visc. Of 10,000 cP at 25 oC is available by Momentive Performance Materials. 2Kathon CG available from Dow (1.5 wt % active) -
Volumizing Rinse-off Conditioner Compositions Ex. 7 (a) Control Ex. 8 Components Wt % Wt % Hydroxypropyl guar1 0.35 0.35 DTDMAC (Quaternium-182) 0.75 0.75 Stearamidopropyldimethylamine 1.00 1.00 Glyceryl monostearate 0.25 0.25 Emulsifying wax NF (Polywax NF) 0.50 0.50 Cetyl alcohol 1.20 1.20 Stearyl alcohol 0.80 0.80 Oleyl alcohol 0.25 0.25 Citric acid 0.13 0.13 EDTA 0.10 0.10 Terminal amodimethicone3 0.50 0.50 2,3-Triethylenetetramine (TETA) 0.00 0.10 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone4 Benzyl alcohol 0.4 0.4 Distilled Water Q.S. Q.S. 1Jaguar HP-105 supplied by Rhodia 2Diatallowdimethylammonium chloride 3Terminal amodimethicone with visc. Of 10,000 cP at 25 oC is available by Momentive Performance Materials. 4Kathon CG available from Dow (1.5 wt % active). -
Hair Repair Rinse-off Conditioner Compositions EX. 9 Control EX. 10 Components Wt % Wt % Behentrimonium chloride 2.28 2.28 Stearyl alcohol 4.64 4.64 Cetyl alcohol 0.93 0.93 Isopropyl alcohol 0.57 0.57 Disodium EDTA Dihydrate 0.13 0.13 Dimethicone1 4.20 4.20 Sodium hydroxide 0.02 0.02 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone2 Benzyl alcohol 0.40 0.40 2,3-Triethylenetetramine 0.00 0.10 Distilled Water Q.S. Q.S. 1Mixture of silicone gum and silicone oil XF49-B1747 available from Momentive Performance Materials. 2Kathon CG available from Dow (1.5 wt % active). -
Leave-on Treatment Composition Ex. 11 Components Wt % Amodimethicone and 0.35 Cetrimonium chloride and Trideceth-121 Polyquaternium-112 0.75 PEG-40 Hydrogenated castor oil 0.50 PPG-2 Methyl ether 0.5 DMDM Hydantoin 0.20 Disodium EDTA 0.14 Poysorbate 80 0.12 Aminomethyl propanol 0.1 Citric acid anhydrous 0.08 2,3-Triethylenetetramine 0.10 Distilled Water Q.S. 1Siameter MEM-0949 Emulsion available from Dow Corning; it contains 35% aminosilicone 2Copolymer of vinylpyrrolidone and quatemized dimethylaminoethyl methacrylate; Gafquat 755 NH available by Ashland - Each treatment (regimen) includes cleaning with conditioning shampoo followed by a rinse-off conditioner, followed by a leave-on treatment spray (when indicated).
-
Shampoo Ex. 1 Control Composition Conditioning SH Ex. 2 Ex. 1 Control Ex. 1 Control (SH) (Treatment AM) Conditioning SH Conditioning SH Conditioning SH Smoothing Ex. 6 Control Ex. 6 Control Ex. 7 Ex. 5 Control Rinse-off Smoothing ROC Smoothing ROC Smoothing ROC Smoothing ROC conditioner composition (ROC) Leave-on No LOT No LOT No LOT Ex. 11 treatment LOT composition (LOT) Summary SH Control SH w/chelant SH Control SH Control Description of ROC Control ROC Control ROC w/chelant ROC Control Composition No LOT No LOT No LOT LOT w/chelant Concentration 0% in SH 0.1% in SH 0% in SH 0% in SH of Chelant 0% in ROC 0% in ROC 0.1% in ROC 0% in ROC No LOT No LOT No LOT 0.1% in LOT Chelant used — 2,3- 2,3- 2,3- Triethylenetetramine Triethylenetetramine Triethylenetetramine Cycles 20 20 20 20 Average final 84 30 25 43 copper concentration in hair (ppm) Standard 5.6 2.1 1.7 0.2 deviation Relative content 100 36 30 51 of Copper v. Treatment AM v. Treatment AM v. Treatment AM content on hair after treatment (versus control shampoo treatment) Shampoo Ex. 1 (a) Composition Ex. 3 Control Ex. 5 Ex. 4 Control (SH) Clarifying SH Clarifying SH Repair SH Repair SH Rinse-off Ex. 7(a) Control Ex. 8 Ex. 9 Control Ex. 10 conditioner Volumizing ROC Volumizing ROC Repair ROC Repair ROC composition (ROC) Leave-on No LOT No LOT No LOT No LOT treatment composition (LOT) Summary SH w/chelant SH Control SH w/chelant SH Control Description of ROC Control ROC w/chelant ROC Control ROC w/chelant Composition No LOT No LOT No LOT Concentration 0.1% in SH 0% in SH 0.1% in SH 0.1% in SH of Chelant 0% in ROC 0.1% in ROC 0% in ROC 0% in ROC No LOT No LOT No LOT No LOT Chelant used — 2,3- 2,3- 2,3- Triethylenetetramine Triethylenetetramine Triethylenetetramine Cycles 20 20 20 20 Average final 32 28 35 26 copper concentration in hair (ppm) Standard 1.6 3.4 4.5 0.7 deviation Relative content 35 30 38 28 of Copper v. Treatment AM v. Treatment AM v. Treatment AM v. Treatment AM content on hair after treatment (versus control shampoo treatment) - Addition of 2,3-Triethylenetetramine in any of the products of the regimen contributes to an effective removal of copper from hair after 20 conditioning shampoo/rinse-off conditioner/leave-on treatment regimen cycles compared to the corresponding treatment with control conditioning shampoo/control rinse-off conditioner. The regimen where the chelant is added in the leave-on treatment is particularly effective in removing copper form hair.
- The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
- Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
- While particular embodiments of the hair conditioner composition have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/630,431 US20180000706A1 (en) | 2016-06-30 | 2017-06-22 | Conditioner Composition Comprising a Chelant |
US16/985,902 US10973744B2 (en) | 2016-06-30 | 2020-08-05 | Conditioner composition comprising a chelant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662356976P | 2016-06-30 | 2016-06-30 | |
US15/630,431 US20180000706A1 (en) | 2016-06-30 | 2017-06-22 | Conditioner Composition Comprising a Chelant |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/985,902 Continuation US10973744B2 (en) | 2016-06-30 | 2020-08-05 | Conditioner composition comprising a chelant |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180000706A1 true US20180000706A1 (en) | 2018-01-04 |
Family
ID=59276889
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/630,431 Abandoned US20180000706A1 (en) | 2016-06-30 | 2017-06-22 | Conditioner Composition Comprising a Chelant |
US16/985,902 Active US10973744B2 (en) | 2016-06-30 | 2020-08-05 | Conditioner composition comprising a chelant |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/985,902 Active US10973744B2 (en) | 2016-06-30 | 2020-08-05 | Conditioner composition comprising a chelant |
Country Status (6)
Country | Link |
---|---|
US (2) | US20180000706A1 (en) |
EP (1) | EP3478258A1 (en) |
JP (1) | JP2019518055A (en) |
CN (1) | CN109219433A (en) |
MX (1) | MX388498B (en) |
WO (1) | WO2018005261A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10749855B2 (en) | 2017-10-30 | 2020-08-18 | Vmware, Inc. | Securely managing digital assistants that access third-party applications |
US10973744B2 (en) | 2016-06-30 | 2021-04-13 | The Procter And Gamble Company | Conditioner composition comprising a chelant |
US11166894B2 (en) | 2016-06-30 | 2021-11-09 | The Procter And Gamble Company | Shampoo compositions comprising a chelant |
US11246816B2 (en) | 2016-06-30 | 2022-02-15 | The Procter And Gamble Company | Shampoo compositions comprising a chelant |
US11274266B2 (en) | 2018-08-24 | 2022-03-15 | The Procter & Gamble Company | Treatment compositions comprising a surfactant system and an oligoamine |
US11279901B2 (en) | 2018-08-24 | 2022-03-22 | The Procter & Gamble Company | Treatment compositions comprising low levels of an oligoamine |
US11458085B2 (en) | 2016-06-30 | 2022-10-04 | The Procter And Gamble Company | Hair care compositions for calcium chelation |
US11786447B2 (en) | 2016-06-30 | 2023-10-17 | The Procter & Gamble Company | Conditioner composition comprising a chelant |
US11956047B2 (en) * | 2016-10-11 | 2024-04-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods for adapting density of demodulation reference signals |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060287219A1 (en) * | 2001-10-19 | 2006-12-21 | Dykstra Robert R | Benefit agent delivery systems |
US20090071493A1 (en) * | 2007-09-14 | 2009-03-19 | L'oreal | Compositions and methods for conditioning hair |
US20130122070A1 (en) * | 2010-07-15 | 2013-05-16 | Stuart Anthony Barnett | Benefit delivery particle, process for preparing said particle, compositions comprising said particles and a method for treating substrates |
Family Cites Families (154)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2809971A (en) | 1955-11-22 | 1957-10-15 | Olin Mathieson | Heavy-metal derivatives of 1-hydroxy-2-pyridinethiones and method of preparing same |
US3236733A (en) | 1963-09-05 | 1966-02-22 | Vanderbilt Co R T | Method of combatting dandruff with pyridinethiones metal salts detergent compositions |
US3761418A (en) | 1967-09-27 | 1973-09-25 | Procter & Gamble | Detergent compositions containing particle deposition enhancing agents |
US3940482A (en) * | 1971-04-21 | 1976-02-24 | Colgate-Palmolive Company | Solubilization of the zinc salt of 1-hydroxy-2-pyridinethione |
US3753196A (en) | 1971-10-05 | 1973-08-14 | Kulite Semiconductor Products | Transducers employing integral protective coatings and supports |
US4185106A (en) | 1972-07-11 | 1980-01-22 | Hoechst Aktiengesellschaft | Pyridones as antidandruff agents |
US4422853A (en) | 1974-05-16 | 1983-12-27 | L'oreal | Hair dyeing compositions containing quaternized polymer |
US4217914A (en) | 1974-05-16 | 1980-08-19 | L'oreal | Quaternized polymer for use as a cosmetic agent in cosmetic compositions for the hair and skin |
US4089945A (en) | 1975-06-30 | 1978-05-16 | The Procter & Gamble Company | Antidandruff shampoos containing metallic cation complex to reduce in-use sulfide odor |
US4197865A (en) | 1975-07-04 | 1980-04-15 | L'oreal | Treating hair with quaternized polymers |
AT365448B (en) | 1975-07-04 | 1982-01-11 | Oreal | COSMETIC PREPARATION |
US4321156A (en) | 1977-03-30 | 1982-03-23 | S. C. Johnson & Son, Inc. | Shampoo composition |
US4275055A (en) | 1979-06-22 | 1981-06-23 | Conair Corporation | Hair conditioner having a stabilized, pearlescent effect |
US4507280A (en) | 1979-07-02 | 1985-03-26 | Clairol Incorporated | Hair conditioning composition and method for use |
US4663158A (en) | 1979-07-02 | 1987-05-05 | Clairol Incorporated | Hair conditioning composition containing cationic polymer and amphoteric surfactant and method for use |
US4379753A (en) | 1980-02-07 | 1983-04-12 | The Procter & Gamble Company | Hair care compositions |
US4345080A (en) | 1980-02-07 | 1982-08-17 | The Procter & Gamble Company | Pyridinethione salts and hair care compositions |
US4323683A (en) | 1980-02-07 | 1982-04-06 | The Procter & Gamble Company | Process for making pyridinethione salts |
US4529586A (en) | 1980-07-11 | 1985-07-16 | Clairol Incorporated | Hair conditioning composition and process |
CA1147262A (en) * | 1980-12-02 | 1983-05-31 | Irving R. Schmolka | Hydroxyalkylated alkylene diamine in acid beauty aid composition |
US4470982A (en) | 1980-12-22 | 1984-09-11 | The Procter & Gamble Company | Shampoo compositions |
JPS57109711A (en) | 1980-12-26 | 1982-07-08 | Lion Corp | Hair cosmetic |
US4412943A (en) | 1981-02-23 | 1983-11-01 | Kao Soap Co., Ltd. | Liquid detergent composition |
CA1261276A (en) | 1984-11-09 | 1989-09-26 | Mark B. Grote | Shampoo compositions |
US4822604A (en) * | 1985-05-20 | 1989-04-18 | S. C. Johnson & Son, Inc. | Local treatment of dandruff, seborrheic dermatitis, and psoriasis |
DE3602746A1 (en) | 1986-01-30 | 1987-08-06 | Wella Ag | HAIR TREATMENT AND METHOD FOR IMPROVING THE CONDITION OF THE HAIR |
JPS63150213A (en) | 1986-12-15 | 1988-06-22 | Kao Corp | Shampoo composition |
US4749507A (en) * | 1987-02-12 | 1988-06-07 | Clairol, Incorporated | Process for removing hair dyes from hair and skin, and product for carrying out the process |
DE3705121A1 (en) | 1987-02-18 | 1988-09-01 | Goldschmidt Ag Th | POLYQUATERIAL POLYSILOXANE POLYMERS, THEIR PRODUCTION AND USE IN COSMETIC PREPARATIONS |
US5100657A (en) | 1990-05-01 | 1992-03-31 | The Procter & Gamble Company | Clean conditioning compositions for hair |
CA2125691C (en) | 1991-12-13 | 2003-04-08 | Frederick K. Ault | Compositions and methods for removing minerals from hair |
JP2665292B2 (en) | 1992-03-18 | 1997-10-22 | ホーユー株式会社 | Hair cosmetics |
GB9210768D0 (en) | 1992-05-20 | 1992-07-08 | Unilever Plc | Cosmetic composition |
JP2587755B2 (en) | 1992-07-22 | 1997-03-05 | 花王株式会社 | Detergent composition |
US5306489A (en) | 1992-07-24 | 1994-04-26 | Revlon Consumer Products Corporation | Hair care products containing N-alkoxyalkylamides |
JPH07258698A (en) | 1994-03-22 | 1995-10-09 | Sunstar Inc | Fluid soap composition |
GB2288812B (en) | 1994-04-26 | 1998-08-26 | Procter & Gamble | Cleansing compositions |
JP3526327B2 (en) | 1994-10-04 | 2004-05-10 | 花王株式会社 | Rinse composition |
US5635167A (en) | 1994-12-28 | 1997-06-03 | L'avante Garde, Inc. | Removal of minerals from human hair and animal keratin fibers |
JPH09183996A (en) | 1995-12-28 | 1997-07-15 | Kose Corp | Detergent composition |
US6579891B1 (en) | 1995-12-29 | 2003-06-17 | Novactyl, Inc. | Agent and method for prevention and treatment of cancer in animals |
US5674478A (en) | 1996-01-12 | 1997-10-07 | The Procter & Gamble Company | Hair conditioning compositions |
US5750122A (en) | 1996-01-16 | 1998-05-12 | The Procter & Gamble Company | Compositions for treating hair or skin |
JPH09291024A (en) | 1996-04-24 | 1997-11-11 | Lion Corp | Bathing agent composition |
US5847003A (en) | 1996-06-04 | 1998-12-08 | Avon Products, Inc. | Oxa acids and related compounds for treating skin conditions |
GB9615633D0 (en) | 1996-07-25 | 1996-09-04 | Procter & Gamble | Shampoo compositions |
WO1998004233A1 (en) | 1996-07-31 | 1998-02-05 | The Procter & Gamble Company | Conditioning shampoo compositions comprising polyalkoxylated polyalkyleneamine |
FR2753378B1 (en) | 1996-09-17 | 1998-11-20 | Oreal | USE IN A COMPOSITION AS A TYROSINASE STIMULATOR OF AT LEAST ONE PYRIMIDINE 3-OXIDE DERIVATIVE, SUBSTITUTED IN 6 |
DE19650102A1 (en) | 1996-12-03 | 1998-06-04 | Basf Ag | Use of bis (dicarboxylic acid) diaminoalkylene derivatives as biodegradable complexing agents for alkaline earth and heavy metal ions |
US6432147B1 (en) | 1996-12-23 | 2002-08-13 | The Procter & Gamble Company | Hair coloring compositions |
GB9708182D0 (en) | 1997-04-23 | 1997-06-11 | Dow Corning Sa | A method of making silicone in water emulsions |
JPH11139941A (en) | 1997-11-06 | 1999-05-25 | Hoyu Co Ltd | Hair-treating agent composition |
JPH11180836A (en) | 1997-12-19 | 1999-07-06 | Ajinomoto Co Inc | Hair cosmetic |
JP3807846B2 (en) | 1998-03-20 | 2006-08-09 | 株式会社資生堂 | Acid dye cleaning composition |
US6908608B1 (en) | 1998-11-02 | 2005-06-21 | Ciba Specialty Chemical Corporation | Stabilization of body-care and household products |
CN1250191C (en) | 1998-11-02 | 2006-04-12 | 西巴特殊化学品控股有限公司 | Stabilization of body-care and household products |
JP3208381B2 (en) | 1998-12-28 | 2001-09-10 | 花王株式会社 | Hair cosmetics |
JP3208382B2 (en) | 1998-12-28 | 2001-09-10 | 花王株式会社 | Hair cleanser |
GB9913764D0 (en) | 1999-06-14 | 1999-08-11 | Procter & Gamble | Hair care compositions |
US6544500B1 (en) | 1999-02-28 | 2003-04-08 | The Procter & Gamble Company | Hair care compositions |
GB9913762D0 (en) | 1999-06-14 | 1999-08-11 | Procter & Gamble | Hair care compositions |
GB9913765D0 (en) | 1999-06-14 | 1999-08-11 | Procter & Gamble | Hair care compoaitions |
US6432394B2 (en) | 1999-04-19 | 2002-08-13 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc | Hair conditioning compositions comprising one or more dibasic amino acids |
EP1046390A1 (en) | 1999-04-20 | 2000-10-25 | Calgon Corporation | Compositions and methods for cleaning and removing contaminants from hair |
DE60040464D1 (en) | 1999-05-26 | 2008-11-20 | Rhodia | BLOCK POLYMERS, COMPOSITIONS AND METHOD FOR USE IN FOAM, DETERGENT, SHOWER CLEANER AND COAGULATING AGENT |
US6495498B2 (en) | 1999-05-27 | 2002-12-17 | Johnson & Johnson Consumer Companies, Inc. | Detergent compositions with enhanced depositing, conditioning and softness capabilities |
US6861397B2 (en) | 1999-06-23 | 2005-03-01 | The Dial Corporation | Compositions having enhanced deposition of a topically active compound on a surface |
GB9917453D0 (en) | 1999-07-23 | 1999-09-29 | Unilever Plc | Method of hair treatment using organic amino compounds |
GB9917452D0 (en) | 1999-07-23 | 1999-09-29 | Unilever Plc | Method of hair treatment using organic amino compounds |
DE19943597A1 (en) | 1999-09-11 | 2001-03-15 | Henkel Kgaa | Use of basic amino acids as hair protection in hair treatment products |
US6287547B1 (en) | 1999-10-12 | 2001-09-11 | Sanyo Chemical Industries, Ltd. | Hair treatment composition |
JP3371098B2 (en) | 1999-11-04 | 2003-01-27 | 花王株式会社 | Detergent composition |
GB0003061D0 (en) | 2000-02-11 | 2000-03-29 | Dow Corning Sa | Silicone polymer emulsions |
US6365143B1 (en) * | 2000-04-03 | 2002-04-02 | Larry D. Lundmark | Cleansing composition and method for removing chemically bound residues and mineral deposits from hair |
IT1318571B1 (en) | 2000-06-09 | 2003-08-27 | Farmaka Srl | COSMETIC COMPOSITIONS FOR THE CARE OF HAIR AND HAIR. |
CA2423285C (en) | 2000-07-27 | 2009-12-22 | Ge Bayer Silicones Gmbh & Co. Kg | Polyammonium-polysiloxane compounds, methods for the production and use thereof |
US7041767B2 (en) | 2000-07-27 | 2006-05-09 | Ge Bayer Silicones Gmbh & Co. Kg | Polysiloxane polymers, method for their production and the use thereof |
US6602493B2 (en) | 2001-02-15 | 2003-08-05 | Avlon Industries, Inc. | Hair relaxer system and method therefor |
US7186275B2 (en) | 2001-03-20 | 2007-03-06 | The Procter & Gamble Company | Compositions suitable for the treatment of hair comprising chelants and methods for reducing oxidative hair damage |
US20040123402A1 (en) | 2001-03-20 | 2004-07-01 | The Procter & Gamble Company | Oxidizing compositions comprising a chelant and a conditioning agent and methods of treating hair |
JP4229236B2 (en) | 2001-04-23 | 2009-02-25 | エムジーピー イングリーディエンツ アイエヌシー. | Method for preparing hydrolyzed jojoba protein and formulation comprising hydrolyzed jojoba protein |
US6927196B2 (en) | 2001-09-13 | 2005-08-09 | The Procter & Gamble Company | Transparent concentrated hair conditioning composition |
DE10163052A1 (en) | 2001-12-21 | 2003-07-17 | Henkel Kgaa | Restructuring and finishing of keratin fibers |
US7186274B2 (en) | 2002-04-08 | 2007-03-06 | L'oreal | Method for treating human keratin fibers with organomodified metallic particles |
AU2003218279A1 (en) | 2002-04-22 | 2003-11-03 | The Procter & Gamble Company | Use of materials having zinc ionophoric behavior |
US8119168B2 (en) | 2002-04-22 | 2012-02-21 | The Procter & Gamble Company | Personal care compositions comprising a zinc containing material in an aqueous surfactant composition |
GB0209485D0 (en) | 2002-04-25 | 2002-06-05 | Procter & Gamble | Durable fiber treatment composition |
DE60332012D1 (en) | 2002-05-02 | 2010-05-20 | Basf Se | STABILIZED BODY CARE AND BUDGET PRODUCTS |
US6743434B1 (en) | 2002-05-14 | 2004-06-01 | Larry D. Lundmark | Carbonic emulsion skin care compositions and method for removing chemically bound residues and mineral deposits from hair |
DE10232780A1 (en) | 2002-07-18 | 2004-02-12 | Basf Ag | Co-surfactants based on aldehydes |
JP4046570B2 (en) | 2002-07-31 | 2008-02-13 | ポーラ化成工業株式会社 | Hair cosmetics |
US7547454B2 (en) | 2002-11-07 | 2009-06-16 | Shyam K Gupta | Hydroxy acid complexes for antiaging and skin renovation |
DE10259199A1 (en) | 2002-12-16 | 2004-06-24 | Henkel Kgaa | Composition useful in treating keratin fibers or as a textile finish or detergent comprises a polymerizable phenolic, arylamine, enol and/or enamine substrate and a polyphenoloxidase |
EP1466592A1 (en) | 2003-04-07 | 2004-10-13 | Kao Corporation | Cleansing compositions |
FR2853530B3 (en) | 2003-04-08 | 2005-07-01 | Sephytal | REPAIR SHAMPOO FOR HAIR |
FR2853529B3 (en) | 2003-04-08 | 2005-07-01 | Sephytal | VITALIZING SHAMPOO FOR HAIR |
FR2853531B3 (en) | 2003-04-08 | 2008-10-03 | Sephytal | AFTER SHAMPOO COMPOSITION FOR HAIR |
JP4050676B2 (en) | 2003-08-22 | 2008-02-20 | 花王株式会社 | Cleaning fee |
US20050095215A1 (en) | 2003-11-03 | 2005-05-05 | Popp Karl F. | Antimicrobial shampoo compositions |
US20050239723A1 (en) | 2004-04-27 | 2005-10-27 | Amin Avinash N | Compositions and methods useful for treatment of acne |
US7045493B2 (en) | 2004-07-09 | 2006-05-16 | Arkema Inc. | Stabilized thickened hydrogen peroxide containing compositions |
JP2006160708A (en) | 2004-12-10 | 2006-06-22 | Shiseido Co Ltd | Multilayer-type hair cosmetic |
DE602004028031D1 (en) | 2004-12-16 | 2010-08-19 | Kpss Kao Gmbh | cleaning supplies |
US7745382B2 (en) | 2005-01-18 | 2010-06-29 | Bestline International Research Inc. | Synthetic lubricant additive with micro lubrication technology to be used with a broad range of synthetic or miner host lubricants from automotive, trucking, marine, heavy industry to turbines including, gas, jet and steam |
US8022020B2 (en) | 2005-01-18 | 2011-09-20 | Bestline International Research, Inc. | Universal synthetic penetrating lubricant, method and product-by-process |
DE102005013438A1 (en) | 2005-03-21 | 2006-09-28 | Henkel Kgaa | Hair treatment kit, useful in cosmetic product e.g. hair shampoo, comprises a compartment containing a complex binder; and a color compartment for coloring the keratin fibers (preferably human hairs) |
US20070041929A1 (en) | 2005-06-16 | 2007-02-22 | Torgerson Peter M | Hair conditioning composition comprising silicone polymers containing quaternary groups |
DE102005063096A1 (en) | 2005-12-30 | 2007-07-05 | Henkel Kgaa | Cosmetic agent, useful for protecting skin and hair before resoiling, cleaning skin and hair and restructuring the keratin fibers, preferably in human hair, comprises an hyperbranched polyester and/or polyester amide |
US20070286837A1 (en) | 2006-05-17 | 2007-12-13 | Torgerson Peter M | Hair care composition comprising an aminosilicone and a high viscosity silicone copolymer emulsion |
US20080057015A1 (en) | 2006-08-30 | 2008-03-06 | Oblong John E | Hair care compositions, methods, and articles of commerce that can help maintain a longer lasting hair style appearance |
GB0617191D0 (en) | 2006-08-31 | 2006-10-11 | York Pharma Plc | Improvements in pharmaceutical compositions |
US8673274B2 (en) | 2006-12-15 | 2014-03-18 | The Procter & Gamble Company | Composition comprising pyrithione or a polyvalent metal salt of a pyrithione and furametpyr |
JP4865574B2 (en) | 2007-01-15 | 2012-02-01 | ホーユー株式会社 | Hair treatment composition and hair treatment method |
WO2008136000A2 (en) * | 2007-05-07 | 2008-11-13 | Technion Research & Development Foundation Ltd. | Compositions, articles and methods for preventing or reducing tobacco-associated damage |
US8728450B2 (en) | 2007-05-23 | 2014-05-20 | The Procter & Gamble Company | Hair conditioning composition comprising quaternized silicone polymer, grafted silicone copolyol, and dialkyl cationic surfactant |
US20080292574A1 (en) | 2007-05-23 | 2008-11-27 | Nobuaki Uehara | Hair conditioning composition comprising polyalkylsiloxane mixture, aminosilicone, and silicone copolymer emulsion |
JP5530588B2 (en) | 2007-06-14 | 2014-06-25 | ホーユー株式会社 | Hair elasticity improver |
US20090074700A1 (en) * | 2007-09-14 | 2009-03-19 | L'oreal | Compositions and methods for imparting shine onto hair |
EP2067467A3 (en) * | 2007-09-14 | 2012-12-12 | L'Oréal | Compositions and methods for treating keratinous substrates |
US20090092561A1 (en) | 2007-10-09 | 2009-04-09 | Lupia Joseph A | Body-care and household products and compositions comprising specific sulfur-containing compounds |
KR100929956B1 (en) | 2008-01-11 | 2009-12-04 | 주식회사 엘지생활건강 | Now Hair Conditioning Compositions With Persistence |
BRPI0908173A2 (en) | 2008-02-21 | 2016-12-06 | Basf Se | personal care composition and method for manufacturing a personal care antimicrobial composition or formulation |
KR20100089329A (en) | 2009-02-03 | 2010-08-12 | 삼성전자주식회사 | Display apparatus and method of manufacturing the same |
US8637489B2 (en) | 2009-02-09 | 2014-01-28 | L'oreal | Clear carrier compositions for lipophilic compounds, and method of treating keratinous substrates using such compositions |
GB2468715A (en) | 2009-03-20 | 2010-09-22 | Patrick Lehane | Varying composition of an agent according to geographical location |
EP2246036A1 (en) | 2009-04-27 | 2010-11-03 | KPSS-Kao Professional Salon Services GmbH | Aqueous cleansing composition |
EP2246033A1 (en) | 2009-04-27 | 2010-11-03 | KPSS-Kao Professional Salon Services GmbH | Conditioning composition for hair |
ITMI20091075A1 (en) | 2009-06-17 | 2010-12-17 | Valetudo Srl | PHARMACEUTICAL AND COSMETIC COMPOSITIONS INCLUDING LACTOFERRINA CICLOPIROX ETHYTHRONIC ACID |
JP5515517B2 (en) | 2009-08-27 | 2014-06-11 | ライオン株式会社 | Hair cosmetics |
WO2011100660A1 (en) | 2010-02-12 | 2011-08-18 | Rhodia Operations | Compositions with freeze thaw stability |
WO2012021472A2 (en) | 2010-08-09 | 2012-02-16 | L'oreal S. A. | Compositions and methods for sealing the surface of keratinous substrates |
GB201013355D0 (en) | 2010-08-09 | 2010-09-22 | Lehane Patrick | Improved cleaning and conditioning agents |
DE102011079664A1 (en) | 2011-07-22 | 2012-04-26 | Henkel Kgaa | Composition useful e.g. for treating skin and keratin fibers, caring and conditioning of skin and/or keratin fibers and restructuring keratin fibers, comprises oil obtained from seeds of cape chestnut, surfactants and aqueous carrier |
WO2013026656A1 (en) * | 2011-08-24 | 2013-02-28 | Unilever Plc | Benefit agent delivery particles comprising dextran |
DE102011090030A1 (en) | 2011-12-28 | 2013-07-04 | Evonik Industries Ag | Aqueous hair and skin cleansing compositions containing biosurfactants |
CA2860244C (en) | 2012-01-09 | 2017-08-08 | The Procter & Gamble Company | Hair care compositions |
US8942481B2 (en) | 2012-03-11 | 2015-01-27 | Universidad De Santiago De Compostela | Three dimensional CMOS image processor for feature detection |
US20130333715A1 (en) | 2012-06-19 | 2013-12-19 | The Procter & Gamble Company | Shampoo compositions and methods of making same |
US20140079660A1 (en) | 2012-09-20 | 2014-03-20 | Kao Corporation | Cleansing composition for skin or hair |
CN105163709B (en) | 2013-05-09 | 2018-07-17 | 宝洁公司 | Include the hair-care conditioning composition of histidine |
US9198849B2 (en) | 2013-07-03 | 2015-12-01 | The Procter & Gamble Company | Shampoo composition comprising low viscosity emulsified silicone polymers |
US20150030644A1 (en) | 2013-07-26 | 2015-01-29 | The Procter & Gamble Company | Amino Silicone Nanoemulsion |
US9701929B2 (en) | 2013-07-29 | 2017-07-11 | The Procter & Gamble Company | Consumer product compositions comprising organopolysiloxane emulsions |
EP3049050B1 (en) * | 2013-09-27 | 2018-10-24 | The Procter and Gamble Company | Hair conditioning compositions comprising low viscosity emulsified silicone polymers |
US20150182431A1 (en) | 2013-12-31 | 2015-07-02 | Sytheon Ltd | Compositions and Methods for Treatment of Hair with Reduced Hair Damage |
US9586063B2 (en) | 2014-04-25 | 2017-03-07 | The Procter & Gamble Company | Method of inhibiting copper deposition on hair |
US9642788B2 (en) | 2014-04-25 | 2017-05-09 | The Procter & Gamble Company | Shampoo composition comprising gel matrix and histidine |
EP3165965B1 (en) | 2014-07-15 | 2018-10-10 | Tokyo Ohka Kogyo Co., Ltd. | Photosensitive composition and compound |
JP6901969B2 (en) | 2014-12-17 | 2021-07-14 | ノクセル・コーポレーション | How to control the deposition of copper on the hair |
US11786447B2 (en) | 2016-06-30 | 2023-10-17 | The Procter & Gamble Company | Conditioner composition comprising a chelant |
US20180000705A1 (en) | 2016-06-30 | 2018-01-04 | The Procter & Gamble Company | Shampoo Compositions Comprising a Chelant |
US20180000706A1 (en) | 2016-06-30 | 2018-01-04 | The Procter & Gamble Company | Conditioner Composition Comprising a Chelant |
US20180000715A1 (en) | 2016-06-30 | 2018-01-04 | The Procter & Gamble Company | Hair Care Compositions For Calcium Chelation |
US11246816B2 (en) | 2016-06-30 | 2022-02-15 | The Procter And Gamble Company | Shampoo compositions comprising a chelant |
-
2017
- 2017-06-22 US US15/630,431 patent/US20180000706A1/en not_active Abandoned
- 2017-06-23 WO PCT/US2017/038903 patent/WO2018005261A1/en unknown
- 2017-06-23 JP JP2018565773A patent/JP2019518055A/en active Pending
- 2017-06-23 MX MX2018015495A patent/MX388498B/en unknown
- 2017-06-23 CN CN201780034339.5A patent/CN109219433A/en active Pending
- 2017-06-23 EP EP17735327.3A patent/EP3478258A1/en active Pending
-
2020
- 2020-08-05 US US16/985,902 patent/US10973744B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060287219A1 (en) * | 2001-10-19 | 2006-12-21 | Dykstra Robert R | Benefit agent delivery systems |
US20090071493A1 (en) * | 2007-09-14 | 2009-03-19 | L'oreal | Compositions and methods for conditioning hair |
US20130122070A1 (en) * | 2010-07-15 | 2013-05-16 | Stuart Anthony Barnett | Benefit delivery particle, process for preparing said particle, compositions comprising said particles and a method for treating substrates |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10973744B2 (en) | 2016-06-30 | 2021-04-13 | The Procter And Gamble Company | Conditioner composition comprising a chelant |
US11166894B2 (en) | 2016-06-30 | 2021-11-09 | The Procter And Gamble Company | Shampoo compositions comprising a chelant |
US11246816B2 (en) | 2016-06-30 | 2022-02-15 | The Procter And Gamble Company | Shampoo compositions comprising a chelant |
US11458085B2 (en) | 2016-06-30 | 2022-10-04 | The Procter And Gamble Company | Hair care compositions for calcium chelation |
US11786447B2 (en) | 2016-06-30 | 2023-10-17 | The Procter & Gamble Company | Conditioner composition comprising a chelant |
US11956047B2 (en) * | 2016-10-11 | 2024-04-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods for adapting density of demodulation reference signals |
US10749855B2 (en) | 2017-10-30 | 2020-08-18 | Vmware, Inc. | Securely managing digital assistants that access third-party applications |
US11601412B2 (en) | 2017-10-30 | 2023-03-07 | Vmware, Inc. | Securely managing digital assistants that access third-party applications |
US11274266B2 (en) | 2018-08-24 | 2022-03-15 | The Procter & Gamble Company | Treatment compositions comprising a surfactant system and an oligoamine |
US11279901B2 (en) | 2018-08-24 | 2022-03-22 | The Procter & Gamble Company | Treatment compositions comprising low levels of an oligoamine |
US12180437B2 (en) | 2018-08-24 | 2024-12-31 | The Procter & Gamble Company | Treatment compositions comprising a surfactant system and an oligoamine |
US12195702B2 (en) | 2018-08-24 | 2025-01-14 | The Procter & Gamble Company | Treatment compositions comprising low levels of an oligoamine |
Also Published As
Publication number | Publication date |
---|---|
EP3478258A1 (en) | 2019-05-08 |
MX2018015495A (en) | 2019-06-06 |
WO2018005261A1 (en) | 2018-01-04 |
JP2019518055A (en) | 2019-06-27 |
CN109219433A (en) | 2019-01-15 |
MX388498B (en) | 2025-03-20 |
US10973744B2 (en) | 2021-04-13 |
US20200360254A1 (en) | 2020-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10973744B2 (en) | Conditioner composition comprising a chelant | |
US8936798B2 (en) | Hair care compositions comprising sucrose polyesters | |
EP2994096B1 (en) | Hair care conditioning composition comprising histidine | |
US11786447B2 (en) | Conditioner composition comprising a chelant | |
CA2869961C (en) | Hair care composition comprising metathesized unsaturated polyol esters | |
US20210259939A1 (en) | Hair care conditioning composition comprising histidine | |
US9586063B2 (en) | Method of inhibiting copper deposition on hair | |
US20140335042A1 (en) | Hair care composition comprising silicone grafted starch | |
US11883513B2 (en) | Hair strengthening composition | |
US20210299014A1 (en) | Hair care composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE PROCTER & GAMBLE COMPANY, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARSH, JENNIFER MARY;KELLY, CASEY PATRICK;SIVIK, MARK ROBERT;SIGNING DATES FROM 20170613 TO 20170614;REEL/FRAME:043508/0614 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |