US20180000705A1 - Shampoo Compositions Comprising a Chelant - Google Patents
Shampoo Compositions Comprising a Chelant Download PDFInfo
- Publication number
- US20180000705A1 US20180000705A1 US15/630,411 US201715630411A US2018000705A1 US 20180000705 A1 US20180000705 A1 US 20180000705A1 US 201715630411 A US201715630411 A US 201715630411A US 2018000705 A1 US2018000705 A1 US 2018000705A1
- Authority
- US
- United States
- Prior art keywords
- shampoo composition
- shampoo
- chelants
- hair
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002453 shampoo Substances 0.000 title claims abstract description 181
- 239000000203 mixture Substances 0.000 title claims abstract description 159
- 239000013522 chelant Substances 0.000 title abstract description 64
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 64
- 229910052802 copper Inorganic materials 0.000 claims abstract description 63
- 239000010949 copper Substances 0.000 claims abstract description 63
- 239000004094 surface-active agent Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 17
- -1 2-hydroxypropyl Chemical group 0.000 claims description 55
- 239000003945 anionic surfactant Substances 0.000 claims description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N 2-propanol Substances CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 11
- 230000008021 deposition Effects 0.000 claims description 9
- 239000008365 aqueous carrier Substances 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- ZAXCZCOUDLENMH-UHFFFAOYSA-N 3,3,3-tetramine Chemical compound NCCCNCCCNCCCN ZAXCZCOUDLENMH-UHFFFAOYSA-N 0.000 claims description 6
- 239000002280 amphoteric surfactant Substances 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 5
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 claims description 5
- MBYLVOKEDDQJDY-UHFFFAOYSA-N tris(2-aminoethyl)amine Chemical compound NCCN(CCN)CCN MBYLVOKEDDQJDY-UHFFFAOYSA-N 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 claims description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000001841 imino group Chemical group [H]N=* 0.000 claims description 3
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 claims description 3
- 239000003093 cationic surfactant Substances 0.000 claims description 2
- 239000002736 nonionic surfactant Substances 0.000 claims description 2
- 150000002191 fatty alcohols Chemical class 0.000 claims 1
- 238000011282 treatment Methods 0.000 description 60
- 229920001296 polysiloxane Polymers 0.000 description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 23
- 229960001124 trientine Drugs 0.000 description 21
- 239000000839 emulsion Substances 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 17
- 239000011734 sodium Substances 0.000 description 14
- 229910052708 sodium Inorganic materials 0.000 description 14
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 13
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 12
- 239000002202 Polyethylene glycol Substances 0.000 description 12
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical compound CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- 229940100484 5-chloro-2-methyl-4-isothiazolin-3-one Drugs 0.000 description 11
- 125000002091 cationic group Chemical group 0.000 description 11
- DHNRXBZYEKSXIM-UHFFFAOYSA-N chloromethylisothiazolinone Chemical compound CN1SC(Cl)=CC1=O DHNRXBZYEKSXIM-UHFFFAOYSA-N 0.000 description 11
- 230000003750 conditioning effect Effects 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 239000012153 distilled water Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 9
- 235000010234 sodium benzoate Nutrition 0.000 description 9
- 239000004299 sodium benzoate Substances 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 9
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 8
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 8
- SFNALCNOMXIBKG-UHFFFAOYSA-N ethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCO SFNALCNOMXIBKG-UHFFFAOYSA-N 0.000 description 8
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 8
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 8
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 8
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 7
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 7
- 238000011835 investigation Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000006254 rheological additive Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 description 6
- 238000009499 grossing Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 6
- 239000002304 perfume Substances 0.000 description 6
- 230000008439 repair process Effects 0.000 description 6
- 229940057950 sodium laureth sulfate Drugs 0.000 description 6
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 6
- 244000303965 Cyamopsis psoralioides Species 0.000 description 5
- 229920013750 conditioning polymer Polymers 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 229960004592 isopropanol Drugs 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- OVBJJZOQPCKUOR-UHFFFAOYSA-L EDTA disodium salt dihydrate Chemical compound O.O.[Na+].[Na+].[O-]C(=O)C[NH+](CC([O-])=O)CC[NH+](CC([O-])=O)CC([O-])=O OVBJJZOQPCKUOR-UHFFFAOYSA-L 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical compound OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 4
- 229910006069 SO3H Inorganic materials 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- 229960000541 cetyl alcohol Drugs 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- LIFHMKCDDVTICL-UHFFFAOYSA-N 6-(chloromethyl)phenanthridine Chemical compound C1=CC=C2C(CCl)=NC3=CC=CC=C3C2=C1 LIFHMKCDDVTICL-UHFFFAOYSA-N 0.000 description 3
- UIEOWUNWDUASFC-UHFFFAOYSA-N CN([Y])CN(C)[Y] Chemical compound CN([Y])CN(C)[Y] UIEOWUNWDUASFC-UHFFFAOYSA-N 0.000 description 3
- 208000001840 Dandruff Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 235000019445 benzyl alcohol Nutrition 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 229940008099 dimethicone Drugs 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 3
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000013500 performance material Substances 0.000 description 3
- 150000003460 sulfonic acids Chemical class 0.000 description 3
- 239000002888 zwitterionic surfactant Substances 0.000 description 3
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000005233 alkylalcohol group Chemical group 0.000 description 2
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 2
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 229920003118 cationic copolymer Polymers 0.000 description 2
- 229920006317 cationic polymer Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- QVBODZPPYSSMEL-UHFFFAOYSA-N dodecyl sulfate;2-hydroxyethylazanium Chemical compound NCCO.CCCCCCCCCCCCOS(O)(=O)=O QVBODZPPYSSMEL-UHFFFAOYSA-N 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 229940100608 glycol distearate Drugs 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229940069822 monoethanolamine lauryl sulfate Drugs 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- ONQDVAFWWYYXHM-UHFFFAOYSA-M potassium lauryl sulfate Chemical compound [K+].CCCCCCCCCCCCOS([O-])(=O)=O ONQDVAFWWYYXHM-UHFFFAOYSA-M 0.000 description 2
- 229940116985 potassium lauryl sulfate Drugs 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000013557 residual solvent Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 210000004761 scalp Anatomy 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- DIORMHZUUKOISG-UHFFFAOYSA-N sulfoformic acid Chemical compound OC(=O)S(O)(=O)=O DIORMHZUUKOISG-UHFFFAOYSA-N 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- 0 *[Si]1(*)CCCO1 Chemical compound *[Si]1(*)CCCO1 0.000 description 1
- NKJOXAZJBOMXID-UHFFFAOYSA-N 1,1'-Oxybisoctane Chemical compound CCCCCCCCOCCCCCCCC NKJOXAZJBOMXID-UHFFFAOYSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- WGYZMNBUZFHYRX-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-ol Chemical compound COCC(C)OCC(C)O WGYZMNBUZFHYRX-UHFFFAOYSA-N 0.000 description 1
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical compound CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 1
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 1
- FDCJDKXCCYFOCV-UHFFFAOYSA-N 1-hexadecoxyhexadecane Chemical compound CCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCC FDCJDKXCCYFOCV-UHFFFAOYSA-N 0.000 description 1
- HBXWUCXDUUJDRB-UHFFFAOYSA-N 1-octadecoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCC HBXWUCXDUUJDRB-UHFFFAOYSA-N 0.000 description 1
- CSHOPPGMNYULAD-UHFFFAOYSA-N 1-tridecoxytridecane Chemical compound CCCCCCCCCCCCCOCCCCCCCCCCCCC CSHOPPGMNYULAD-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- CYPKANIKIWLVMF-UHFFFAOYSA-N 2-[(2-oxo-3,4-dihydro-1h-quinolin-5-yl)oxy]acetic acid Chemical compound N1C(=O)CCC2=C1C=CC=C2OCC(=O)O CYPKANIKIWLVMF-UHFFFAOYSA-N 0.000 description 1
- SJBOEHIKNDEHHO-UHFFFAOYSA-N 2-[2-aminoethyl(carboxymethyl)amino]acetic acid Chemical compound NCCN(CC(O)=O)CC(O)=O SJBOEHIKNDEHHO-UHFFFAOYSA-N 0.000 description 1
- XWSGEVNYFYKXCP-UHFFFAOYSA-N 2-[carboxymethyl(methyl)amino]acetic acid Chemical compound OC(=O)CN(C)CC(O)=O XWSGEVNYFYKXCP-UHFFFAOYSA-N 0.000 description 1
- AQFJPHAVWFBQQY-UHFFFAOYSA-N 2-[carboxymethyl(propyl)amino]acetic acid Chemical compound CCCN(CC(O)=O)CC(O)=O AQFJPHAVWFBQQY-UHFFFAOYSA-N 0.000 description 1
- BMYCCWYAFNPAQC-UHFFFAOYSA-N 2-[dodecyl(methyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCN(C)CC(O)=O BMYCCWYAFNPAQC-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- CTIFKKWVNGEOBU-UHFFFAOYSA-N 2-hexadecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O CTIFKKWVNGEOBU-UHFFFAOYSA-N 0.000 description 1
- OYINQIKIQCNQOX-UHFFFAOYSA-M 2-hydroxybutyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCC(O)C[N+](C)(C)C OYINQIKIQCNQOX-UHFFFAOYSA-M 0.000 description 1
- QWHHBVWZZLQUIH-UHFFFAOYSA-N 2-octylbenzenesulfonic acid Chemical compound CCCCCCCCC1=CC=CC=C1S(O)(=O)=O QWHHBVWZZLQUIH-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- JGPXFAXKGUUURS-UHFFFAOYSA-N CC(O)CN(CCN(CC(C)O)CC(C)O)CC(C)O.CC(O)CN(CCN(CC(C)O)CC(C)O)CCN(CC(C)O)CC(C)O.NCCCCCNCCCCCNCCN.NCCCCCNCCN.NCCN(CCN)CCN.NCCNCCCCCNCCN Chemical compound CC(O)CN(CCN(CC(C)O)CC(C)O)CC(C)O.CC(O)CN(CCN(CC(C)O)CC(C)O)CCN(CC(C)O)CC(C)O.NCCCCCNCCCCCNCCN.NCCCCCNCCN.NCCN(CCN)CCN.NCCNCCCCCNCCN JGPXFAXKGUUURS-UHFFFAOYSA-N 0.000 description 1
- HXFHUDRZCXZWHT-UHFFFAOYSA-N CCCN(CC(=O)O)CC(=O)O.CN(CC(=O)O)CC(=O)O.NCCN(CC(=O)O)CC(=O)O.O=C(O)CCCC(=O)O.O=C(O)CN(CC(=O)O)CC(=O)O.O=C(O)CN(CCO)CC(=O)O Chemical compound CCCN(CC(=O)O)CC(=O)O.CN(CC(=O)O)CC(=O)O.NCCN(CC(=O)O)CC(=O)O.O=C(O)CCCC(=O)O.O=C(O)CN(CC(=O)O)CC(=O)O.O=C(O)CN(CCO)CC(=O)O HXFHUDRZCXZWHT-UHFFFAOYSA-N 0.000 description 1
- MRVHZQZLWVRFFS-UHFFFAOYSA-N COC(=O)CN(C)[Y] Chemical compound COC(=O)CN(C)[Y] MRVHZQZLWVRFFS-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- APQVZCXFIQTXBS-UHFFFAOYSA-N NCCCCCCCCCCCN.OCCN(CCO)CCN(CCO)CCN(CCO)CCN(CCO)CCN(CCO)CCO Chemical compound NCCCCCCCCCCCN.OCCN(CCO)CCN(CCO)CCN(CCO)CCN(CCO)CCN(CCO)CCO APQVZCXFIQTXBS-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 229920013822 aminosilicone Polymers 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000000559 atomic spectroscopy Methods 0.000 description 1
- FMBMJZOGMAKBLM-UHFFFAOYSA-N azane;sulfo dodecanoate Chemical compound [NH4+].CCCCCCCCCCCC(=O)OS([O-])(=O)=O FMBMJZOGMAKBLM-UHFFFAOYSA-N 0.000 description 1
- YSJGOMATDFSEED-UHFFFAOYSA-M behentrimonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)C YSJGOMATDFSEED-UHFFFAOYSA-M 0.000 description 1
- 229940075506 behentrimonium chloride Drugs 0.000 description 1
- 229940095077 behentrimonium methosulfate Drugs 0.000 description 1
- MKHVZQXYWACUQC-UHFFFAOYSA-N bis(2-hydroxyethyl)azanium;dodecyl sulfate Chemical compound OCCNCCO.CCCCCCCCCCCCOS(O)(=O)=O MKHVZQXYWACUQC-UHFFFAOYSA-N 0.000 description 1
- 229960003431 cetrimonium Drugs 0.000 description 1
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 1
- 229940096362 cocoamphoacetate Drugs 0.000 description 1
- 229940047648 cocoamphodiacetate Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000008406 cosmetic ingredient Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- ZCPCLAPUXMZUCD-UHFFFAOYSA-M dihexadecyl(dimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCC ZCPCLAPUXMZUCD-UHFFFAOYSA-M 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- QKQCPXJIOJLHAL-UHFFFAOYSA-L disodium;2-[2-(carboxylatomethoxy)ethyl-[2-(dodecanoylamino)ethyl]amino]acetate Chemical compound [Na+].[Na+].CCCCCCCCCCCC(=O)NCCN(CC([O-])=O)CCOCC([O-])=O QKQCPXJIOJLHAL-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- WSDISUOETYTPRL-UHFFFAOYSA-N dmdm hydantoin Chemical compound CC1(C)N(CO)C(=O)N(CO)C1=O WSDISUOETYTPRL-UHFFFAOYSA-N 0.000 description 1
- QIVLQXGSQSFTIF-UHFFFAOYSA-M docosyl(trimethyl)azanium;methyl sulfate Chemical compound COS([O-])(=O)=O.CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)C QIVLQXGSQSFTIF-UHFFFAOYSA-M 0.000 description 1
- CRBREIOFEDVXGE-UHFFFAOYSA-N dodecoxybenzene Chemical compound CCCCCCCCCCCCOC1=CC=CC=C1 CRBREIOFEDVXGE-UHFFFAOYSA-N 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000008387 emulsifying waxe Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 230000037308 hair color Effects 0.000 description 1
- 230000003699 hair surface Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- MGIYRDNGCNKGJU-UHFFFAOYSA-N isothiazolinone Chemical compound O=C1C=CSN1 MGIYRDNGCNKGJU-UHFFFAOYSA-N 0.000 description 1
- 229940071188 lauroamphodiacetate Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000002535 lyotropic effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- KKXWPVVBVWBKBL-UHFFFAOYSA-N n,n-diethylethanamine;dodecyl hydrogen sulfate Chemical compound CC[NH+](CC)CC.CCCCCCCCCCCCOS([O-])(=O)=O KKXWPVVBVWBKBL-UHFFFAOYSA-N 0.000 description 1
- 229940049292 n-(3-(dimethylamino)propyl)octadecanamide Drugs 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- BOUCRWJEKAGKKG-UHFFFAOYSA-N n-[3-(diethylaminomethyl)-4-hydroxyphenyl]acetamide Chemical compound CCN(CC)CC1=CC(NC(C)=O)=CC=C1O BOUCRWJEKAGKKG-UHFFFAOYSA-N 0.000 description 1
- WWVIUVHFPSALDO-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCCN(C)C WWVIUVHFPSALDO-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- GSGDTSDELPUTKU-UHFFFAOYSA-N nonoxybenzene Chemical compound CCCCCCCCCOC1=CC=CC=C1 GSGDTSDELPUTKU-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QDYGCAOQFANHSG-UHFFFAOYSA-N octadecoxybenzene Chemical compound CCCCCCCCCCCCCCCCCCOC1=CC=CC=C1 QDYGCAOQFANHSG-UHFFFAOYSA-N 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- WLGDAKIJYPIYLR-UHFFFAOYSA-N octane-1-sulfonic acid Chemical compound CCCCCCCCS(O)(=O)=O WLGDAKIJYPIYLR-UHFFFAOYSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- 229940089994 ppg-2 methyl ether Drugs 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229940032044 quaternium-18 Drugs 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229940079776 sodium cocoyl isethionate Drugs 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 1
- 229940045885 sodium lauroyl sarcosinate Drugs 0.000 description 1
- 229940079862 sodium lauryl sarcosinate Drugs 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- DUXXGJTXFHUORE-UHFFFAOYSA-M sodium;4-tridecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCCC1=CC=C(S([O-])(=O)=O)C=C1 DUXXGJTXFHUORE-UHFFFAOYSA-M 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 229940077400 trideceth-12 Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/41—Amines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/44—Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/46—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
- A61K8/463—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/002—Preparations for repairing the hair, e.g. hair cure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/02—Preparations for cleaning the hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/51—Chelating agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/59—Mixtures
- A61K2800/592—Mixtures of compounds complementing their respective functions
- A61K2800/5922—At least two compounds being classified in the same subclass of A61K8/18
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/59—Mixtures
- A61K2800/596—Mixtures of surface active compounds
Definitions
- Described herein are shampoo compositions comprising a detersive surfactant, a chelant, and a carrier, wherein the shampoo composition inhibits both deposition/penetration of copper salts and other transition metal salts in the hair and removes such salts from hair fiber.
- a method of cleansing hair with such shampoo compositions is also described herein.
- Described herein is a shampoo composition
- a shampoo composition comprising:
- fluid includes liquids and gels.
- log x refers to the common (or decadic) logarithm of x.
- mixtures is meant to include a simple combination of materials and any compounds that may result from their combination.
- component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
- compositions, methods, uses, kits, and processes of the shampoo composition described herein can comprise, consist of, and consist essentially of the elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein.
- the terms “include,” “includes,” and “including,” are meant to be non-limiting and are understood to mean “comprise,” “comprises,” and “comprising,” respectively.
- substantially free from or “substantially free of” as used herein means less than about 1%, or less than about 0.8%, or less than about 0.5%, or less than about 0.3%, or about 0%, by total weight of the composition.
- “Hair,” as used herein, means mammalian hair including scalp hair, facial hair and body hair, particularly on hair on the human head and scalp.
- Cosmetically acceptable means that the compositions, formulations or components described are suitable for use in contact with human keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like. All compositions described herein which have the purpose of being directly applied to keratinous tissue are limited to those being cosmetically acceptable.
- Derivatives includes but is not limited to, amide, ether, ester, amino, carboxyl, acetyl, acid, and/or alcohol derivatives of a given compound.
- Polymer means a chemical formed from the polymerisation of two or more monomers, which may be the same or different.
- the term “polymer” as used herein shall include all materials made by the polymerisation of monomers as well as natural polymers. Polymers made from only one type of monomer are called homopolymers. A polymer comprises at least two monomers. Polymers made from two or more different types of monomers are called copolymers. The distribution of the different monomers can be calculated statistically or block-wise—both possibilities are suitable for the shampoo composition. Except if stated otherwise, the term “polymer” used herein includes any type of polymer including homopolymers and copolymers.
- charge density means the ratio of the number of positive charges on a monomeric unit of which a polymer is comprised to the M.Wt. of said monomeric unit. The charge density multiplied by the polymer M.Wt. determines the number of positively charged sites on a given polymer chain.
- charge density is measured using standard elemental analysis of percentage nitrogen known to one skilled in the art. This value of percentage nitrogen, corrected for total protein analysis, can then be used to calculate the number or equivalence of positive charges per gram of polymer.
- the charge density is a function of the monomers used in the synthesis.
- Standard NMR techniques know to one skilled in the art would be used to confirm that ratio of cationic and non-ionic monomers in the polymer. This would then be used to calculate the number or equivalence of positive charges per gram of polymer. Once these values are know, the charge density is reported in milliequivalence (meq) per gram of cationic polymer.
- log P is the n-octanol/water partition coefficients of the material.
- component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
- a shampoo composition comprising (a) from about 0.005% to about 5% of one or more chelants; (b) from about 2% to about 50% of one or more detersive surfactants, by weight of the shampoo composition; (c) from about 75% to about 98% of an aqueous carrier, by weight of the shampoo composition, wherein the shampoo composition has a pH of about 3 to about 8, and wherein the shampoo inhibits copper deposition on hair and facilitates the removal of copper deposited on hair.
- the shampoo composition also delivers consumer desired shampooing in addition to inhibiting the deposition of copper (i.e. from the water used to rinse) on the hair.
- the shampoo composition comprises from about 0.005% to about 5%, alternatively from about 0.01% to about 3%, alternatively from about 0.01% to about 1%, alternatively from about 0.01% to about 0.5%, alternatively from about 0.01% to about 0.1%, and alternatively from about 0.025% to about 0.05% of one or more chelants by weight of the shampoo composition, wherein the one or more chelants have a molecular structure as follows:
- the relative affinity of a chelant at a specified pH for Cu +2 can be assessed by its Stability Constant.
- the Stability Constant of a metal chelant interaction is defined as:
- [ML] is the concentration of metal ligand complex at equilibrium
- [M] is the concentration of free metal ion
- [L] is the concentration of free ligand in a fully deprotonated form
- K ML is the stability constant for the metal chelant complex.
- the one or more chelants for use in the shampoo composition may be selected from the group consisting of triethylenetetramine, tetraethylenepenatmine, pentaethylenehexamine, tris(2-aminoethyl)amine, ethylenedinitrilotetrapropan-2-ol, 1,1′,1′′-[[2-hydroxypropyl)imino]bis(2,1-ethanediylnitrilo)]tetrakis-2-propanol, tetraethylenepentaamine-(1-EO), 1,5,9,13-tetraazatridecane, and mixtures thereof.
- Table 1 provides relevant properties and performance of the one or more copper chelants described herein. Details on determination of copper removing performance is described in the Examples section.
- the log of the formation constant log K ML of its complex with copper can be higher than 6, alternatively higher than 8, alternatively higher than 9, alternatively higher than 10, alternatively higher than 12, alternatively higher than 14, alternatively higher than 16, alternatively higher than 17, alternatively higher than 18, and alternatively higher than 20.
- the log of the formation constant log K ML of its complex with copper can be from about 6 to about 28, alternatively from about 8 to about 27, alternatively from about 9 to about 26, alternatively from about 10 to about 25, alternatively from about 12 to about 24, alternatively from about 14 to about 24, alternatively from about 16 to about 24, alternatively from about 17 to about 24, alternatively from about 18 to about 24, and alternatively from about 20 to about 23.
- the log P value of the one or more chelants can be from about ⁇ 5 to about 2, alternatively from about ⁇ 4 to about 1, alternatively from about ⁇ 3.5 to about 0, and alternatively from about ⁇ 2.9 to about ⁇ 2.5.
- the molecular weight of the one or more chelants can be from about 50 to about 500, alternatively from about 75 to about 400, alternatively from about 100 to about 350, alternatively from about 125 to about 325, alternatively from about 140 to about 300, alternatively from about 140 to about 200.
- the copper removing performance of the shampoo composition is determined by treating hair with clarifying shampoo containing the corresponding chelant for 20 cycles and comparing the copper content of the hair compared to the same treatment using shampoo without the chelant.
- chelants that can be used to reduce copper content of hair have the following general structure:
- M is hydrogen or a metal ion; p is 1 or 2; q is 1 or 2; and X is selected from the group containing hydrogen, methyl, ethyl, propyl, —CH 2 CH 2 OH, —CH 2 CH(CH 3 )OH), —CH 2 CH 2 NH 2 , —CH 2 CH(CH 3 )NH 2 , —CH 2 COOM, or —CH 2 CH 2 SH, and —CH 2 CH(CH 3 )SH).
- Non-limiting examples include iminodiacetic acid, N-(2-hydroxyethyl)iminodiacetic acid, N-methyliminodiacetic acid, N-(2-aminoethyl)iminodiacetic acid, N-propyliminodiacetic acid, and nitrilotriacetic acid.
- the shampoo composition comprises from about 2% to about 50%, alternatively from about 5% to about 25%, alternatively from about 7% to about 22%, alternatively from about 9% to about 18%, and alternatively from about 11% to about 15% of one or more detersive surfactants by weight of the shampoo composition.
- concentration of the detersive surfactant component in the shampoo composition should be sufficient to provide the desired cleaning and lather performance.
- the one or more detersive surfactants can be selected from the group consisting of anionic surfactants, amphoteric or zwitterionic surfactants, or mixtures thereof.
- the one or more detersive surfactants can also be selected from the group consisting of anionic surfactants, cationic surfactants, non-ionic surfactants, amphoteric surfactants, and mixtures thereof.
- detersive surfactants are set forth in U.S. Pat. No. 6,649,155; U.S. Patent Application Publication No. 2008/0317698; and U.S. Patent Application Publication No. 2008/0206355, which are incorporated herein by reference in their entirety.
- Anionic surfactants suitable for use in the compositions are the alkyl and alkyl ether sulfates.
- Other suitable anionic surfactants are the water-soluble salts of organic, sulfuric acid reaction products.
- Still other suitable anionic surfactants are the reaction products of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide.
- Other similar anionic surfactants are described in U.S. Pat. Nos. 2,486,921; 2,486,922; and 2,396,278, which are incorporated herein by reference in their entirety.
- Exemplary anionic surfactants for use in the shampoo composition include ammonium lauryl sulfate, ammonium laureth sulfate, triethylamine lauryl sulfate, triethylamine laureth sulfate, triethanolamine lauryl sulfate, triethanolamine laureth sulfate, monoethanolamine lauryl sulfate, monoethanolamine laureth sulfate, diethanolamine lauryl sulfate, diethanolamine laureth sulfate, lauric monoglyceride sodium sulfate, sodium lauryl sulfate, sodium laureth sulfate, potassium lauryl sulfate, potassium laureth sulfate, sodium lauryl sarcosinate, sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, ammonium cocoyl sulfate, ammonium la
- Suitable amphoteric or zwitterionic surfactants for use in the shampoo composition include those which are known for use in shampoo or other personal care cleansing. Concentrations of such amphoteric surfactants range from about 0.5 wt % to about 20 wt %, and from about 1 wt % to about 10 wt %. Non limiting examples of suitable zwitterionic or amphoteric surfactants are described in U.S. Pat. Nos. 5,104,646 and 5,106,609, which are incorporated herein by reference in their entirety.
- Amphoteric detersive surfactants suitable for use in the shampoo composition include those surfactants broadly described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate, or phosphonate.
- Exemplary amphoteric detersive surfactants for use in the present shampoo composition include cocoamphoacetate, cocoamphodiacetate, lauroamphoacetate, lauroamphodiacetate, and mixtures thereof.
- Zwitterionic detersive surfactants suitable for use in the shampoo composition include those surfactants broadly described as derivatives of aliphatic quaternaryammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate or phosphonate.
- zwitterionics such as betaines are selected.
- Non limiting examples of other anionic, zwitterionic, amphoteric or optional additional surfactants suitable for use in the shampoo composition are described in McCutcheon's, Emulsifiers and Detergents, 1989 Annual, published by M. C. Publishing Co., and U.S. Pat. Nos. 3,929,678, 2,658,072; 2,438,091; 2,528,378, which are incorporated herein by reference in their entirety.
- the shampoo composition may also comprise a cationic conditioning polymer, an aqueous carrier, and other additional ingredients described herein.
- the shampoo composition described herein may comprise one or more cationic conditioning polymers.
- This polymer may be selected from the group consisting of (a) a cationic guar polymer, (b) a cationic non-guar polymer, (c) a cationic tapioca polymer, (d) a cationic copolymer of acrylamide monomers and cationic monomers, (e) a synthetic, non-crosslinked, cationic polymer, which forms lyotropic liquid crystals upon combination with the detersive surfactant, and (f) mixtures thereof.
- the shampoo composition further comprises from about 75% to about 98%, alternatively from about 80% to about 98% of a cosmetically acceptable carrier, by weight of the shampoo composition.
- the carrier can be an aqueous carrier.
- the amount and chemistry of the carrier is selected according to the compatibility with other components and other desired characteristic of the product.
- the carrier is selected from the group consisting of: water and water solutions of lower alkyl alcohols.
- Lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, such as ethanol and/or isopropanol.
- the cosmetically acceptable carrier is a cosmetically acceptable aqueous carrier and is present at a level of from about 20% to about 95%, or from about 60% to about 85%.
- the pH of the shampoo composition can be from about pH 3 to about pH 8, alternatively from about pH 4 to about pH 7, and alternatively from about pH 5 to about pH 6.
- the shampoo composition may further comprise one or more benefit agents.
- benefit agents include, but are not limited to, silicone emulsions, anti-dandruff actives, perfume microcapsules, gel networks, colorants, particles, and other insoluble skin or hair conditioning agents such as skin silicones, natural oils such as sun flower oil or castor oil.
- silicone emulsions suitable for use herein include emulsions of insoluble polysiloxanes prepared in accordance with the descriptions provided in U.S. Pat. No. 4,476,282 and U.S. Patent Application Publication No. 2007/0276087. Accordingly, insoluble polysiloxanes referred to herein for the purpose of the invention include polysiloxanes such as alpha, omega hydroxy-terminated polysiloxanes or alpha, omega alkoxy-terminated polysiloxanes having a molecular weight within the range from about 50,000 to about 500,000 g/mol.
- insoluble polysiloxane means that the water solubility of the polysiloxane is less than 0.05 wt %. In another embodiment, the water solubility of the polysiloxane is less than 0.02 wt %, or less than 0.01 wt %, or less than 0.001 wt %. According to an embodiment, the insoluble polysiloxane is present in the shampoo composition in an amount within the range from about 0.1 wt % to about 3 wt %, based on the total weight of the composition.
- the insoluble polysiloxane can be present in an amount within the range from about 0.2 wt % to about 2.5 wt %, or from about 0.4 wt % to about 2.0 wt %, or from about 0.5 wt % to about 1.5 wt %, based on the total weight of the composition.
- the insoluble polysiloxane used herein include alpha, omega hydroxy- or alkoxy-terminated polysiloxanes having a general formula I:
- n is an integer
- R is a substituted or unsubstituted C 1 to C 10 alkyl or aryl
- R 1 is a hydrogen or a substituted or unsubstituted C 1 to C 10 alkyl or aryl.
- R and R 1 may be independently selected from alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tertpentyl, hexyl such as n-hexyl, heptyl such as n-heptyl, octyl such as n-octyl and isooctyl such as 2,2,4-trimethyl-pentyl, nonyl such as n-nonyl, decyl such as n-decyl, dodecyl such as n-dodecyl, octadecyl such as n-octadecyl; or aryl groups such as phenyl, naphthyl, anthryl and phenanthryl
- the insoluble polysiloxane has an average molecular weight within the range from about 50,000 to about 500,000 g/mol.
- the insoluble polysiloxane may have an average molecular weight within the range from about 60,000 to about 400,000; from about 75,000 to about 300,000; from about 100,000 to about 200,000; or the average molecular weight may be about 150,000 g/mol.
- dimethiconol may include significant quantities of cyclic polysiloxanes, such as octamethylcyclotetrasiloxane (D4) and decamethylcyclotetrasiloxane (D5).
- the amount of D4 is less than about 2.0%, or less than about 1.5%, or less than about 1.0%, or less than about 0.5%, based on the total weight of all polysiloxanes.
- the amount of D5 is less than about 0.5%, or less than about 0.4%, or less than about 0.3%, or less than about 0.2%, based on the total weight of all polysiloxanes.
- the emulsion has a viscosity up to about 500,000 cPs.
- the viscosity may be within the range from about 75,000 to about 300,000, from about 100,000 to about 200,000, or about 150,000 cPs.
- the insoluble polysiloxane has an average particle size within the range from about 30 nm to about 10 micron.
- the average particle size may be within the range from about 40 nm to about 5 micron, from about 50 nm to about 1 micron, from about 75 nm to about 500 nm, or about 100 nm, for example.
- the average molecular weight of the insoluble polysiloxane, the viscosity of the silicone emulsion, and the size of the particle comprising the insoluble polysiloxane are determined by methods commonly used by those skilled in the art, such as the methods disclosed in Smith, A. L. The Analytical Chemistry of Silicones , John Wiley & Sons, Inc.: New York, 1991.
- the viscosity of the silicone emulsion can be measured at 30° C. with a Brookfield viscosimeter with spindle 6 at 2.5 rpm.
- the emulsion further includes an anionic surfactant that participates in providing high internal phase viscosity emulsions having particle sizes in the range from about 30 nm to about 10 micron.
- the anionic surfactant is selected from organic sulfonic acids. Most common sulfonic acids used in the present process are alkylaryl sulfonic acid; alkylaryl polyoxyethylene sulphonic acid; alkyl sulfonic acid; and alkyl polyoxyethylene sulfonic acid. General formulas of the sulfonic acids are as shown below:
- R 2 which may differ, is a monovalent hydrocarbon radical having at least 6 carbon atoms.
- R 2 include hexyl, octyl, decyl, dodecyl, cetyl, stearyl, myristyl, and oleyl.
- ‘m’ is an integer from 1 to 25.
- anionic surfactants include but are not limited to octylbenzene sulfonic acid; dodecylbenzene sulfonic acid; cetylbenzene sulfonic acid; alpha-octyl sulfonic acid; alpha-dodecyl sulfonic acid; alpha-cetyl sulfonic acid; polyoxyethylene octylbenzene sulfonic acid; polyoxyethylene dodecylbenzene sulfonic acid; polyoxyethylene cetylbenzene sulfonic acid; polyoxyethylene octyl sulfonic acid; polyoxyethylene dodecyl sulfonic acid; and polyoxyethylene cetyl sulfonic acid.
- 1 to 15% anionic surfactant is used in the emulsion process.
- 3-10% anionic surfactant can be used to obtain an optimum result.
- the silicone emulsion may further include an additional emulsifier together with the anionic surfactant, which along with the controlled temperature of emulsification and polymerization, facilitates making the emulsion in a simple and faster way.
- Non-ionic emulsifiers having a hydrophilic lipophilic balance (HLB) value of 10 to 19 are suitable and include polyoxyalkylene alkyl ether, polyoxyalkylene alkylphenyl ethers and polyoxyalkylene sorbitan esters.
- Some useful emulsifiers having an HLB value of 10 to 19 include, but are not limited to, polyethylene glycol octyl ether; polyethylene glycol lauryl ether; polyethylene glycol tridecyl ether; polyethylene glycol cetyl ether; polyethylene glycol stearyl ether; polyethylene glycol nonylphenyl ether; polyethylene glycol dodecylphenyl ether; polyethylene glycol cetylphenyl ether; polyethylene glycol stearylphenyl ether; polyethylene glycol sorbitan monostearate; and polyethylene glycol sorbitan monooleate.
- composition may further comprise an anti-dandruff active, which may be an anti-dandruff active particulate.
- the shampoo composition can also additionally comprise any suitable optional ingredients as desired.
- optional ingredients should be physically and chemically compatible with the components of the composition, and should not otherwise unduly impair product stability, aesthetics, or performance.
- CTFA Cosmetic Ingredient Handbook Tenth Edition (published by the Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C.) (2004) (hereinafter “CTFA”), describes a wide variety of nonlimiting materials that can be added to the composition herein.
- a method of making a shampoo composition comprising a detersive surfactant, a cationic conditioning polymer, a chelant, and a carrier.
- the method includes (i) combining the detersive surfactant and the cationic conditioning polymer in suitable carrier, and (ii) combining a chelant and a carrier composition that includes a product of step (i) to form the shampoo composition.
- the shampoo composition has a viscosity of 4,000 cP to 20,000 cP, or from about 6,000 cP to about 12,000 cP, or from about 8,000 cP to about 11,000 cP, measured at 26.6° C. with a Brookfield R/S Plus Rheometer at 2 s ⁇ 1 .
- cP means centipoises.
- Also described herein is a method of inhibiting copper deposition on hair and facilitating the removal of copper deposited on hair comprising applying to the hair a shampomo composition described herein and rinsing the shampoo composition from the hair.
- Inhibition of copper deposition on hair and facilitation of the removal of copper deposited on hair may also be achieved by applying a leave-on treatment to the hair after rinsing the conditioner from the hair.
- the leave-on treatment may deliver consumer desired conditioning in addition to inhibiting the deposition of copper (i.e. from the water used to rinse) on the hair.
- the leave-on treatment described herein may comprise from about 0.025% to about 0.50%, alternatively from about 0.05% to about 0.25% of one or more chelants described herein, by weight of the leave-on treatment.
- the leave-on treatment may also comprise one or more rheology modifiers and an aqueous carrier.
- the shampoo composition can be prepared by conventional formulation and mixing techniques. It will be appreciated that other modifications of the shampoo composition within the skill of those in the hair care formulation art can be undertaken without departing from the spirit and scope of this invention. All parts, percentages, and ratios herein are by weight unless otherwise specified. Some components may come from suppliers as dilute solutions. The amount stated reflects the weight percent of the active material, unless otherwise specified.
- All testing are performed on colored hair switches (see Method of Measurement of Copper on Hair below) weighing approximately 4.0 grams and having a length of approximately 6 inches.
- the hair switches are commercially available from IHIP (International Hair Importers).
- Three hair switches per shampoo composition are used. An amount of 0.20 g of shampoo is spread via a syringe onto separate hair switch. That is, the dosage is 0.10 g of shampoo per g of hair.
- Each application consists of adding shampoo to the hair, milking for 30 seconds followed by rinsing for 30 seconds. Shampoo is then reapplied (0.1 g/g), milked for 30 seconds and rinsed for 30 seconds.
- test method is used to assess the ability of the compositions and regimens to remove copper from the hair and to inhibit copper deposition onto the hair.
- Hair switches are colored once with an oxidative hair colorant. An extra blonde shade is used for the testing.
- the hair switches are washed for 10 or 20 repeat wash cycles in tap water containing 7 grains per gallon water hardness (Ca/Mg) and 0.06 ⁇ g/g copper ions.
- Each wash cycle consists of two applications of 0.1 g/g a shampoo to the hair switches.
- Each application consists of adding shampoo to the hair, milking for 30 secs followed by rinsing for 30 secs.
- Shampoo is then reapplied 0.1 g/g, milked for 30 secs, rinsed for 30 secs and then dried in a heat box (60° C.) until dry.
- Samples of 100 mg of hair are digested overnight with 2 ml of high purity concentrated nitric acid.
- the digestive mixture also contains 150 ⁇ L of 100 ⁇ g/g Yttrium internal standard (Inorganic Ventures, Christianburg, Va., USA).
- samples are heated to 70-80° C. for one hour, cooled to room temperature and diluted to 15 mL with deionized water.
- Copper content of the hair switches is determined by inductively coupled plasma atomic spectroscopy (ICP-OES)). For each leg, 3 different samples are analyzed.
- the shampoo composition described herein is generally prepared by conventional methods. Such methods typically involve mixing of the ingredients in one or more steps to a relatively uniform state, with or without heating, cooling, application of vacuum, and the like.
- the compositions are prepared such as to optimize stability (physical stability, chemical stability, photostability) and/or delivery of the active materials.
- the shampoo composition may be in a single phase or a single product, or the shampoo composition may be in a separate phases or separate products. If two products are used, the products may be used together, at the same time, or sequentially. Sequential use may occur in a short period of time, such as immediately after the use of one product, or it may occur over a period of hours or days.
- Control Ex. 2 Components Wt % Wt % Sodium Laureth-1 Sulfate 1 10.50 10.50 Sodium Lauryl Sulfate 2 1.50 1.50 Cocamidopropyl betaine 1.00 1.00 Sodium benzoate 0.25 0.25 Citric Acid 0.70 0.70 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone 3 Sodium chloride 1.00 1.00 Tetrasodium EDTA dihydrate 0.16 0.16 2,3-Triethylenetetramine (TETA) 0.00 0.10 Deionized water Q.S. Q.S.
- Chelant 2,3-Triethylenetetramine contributes to significant reduction of copper content on hair after 10 shampoo cycle treatments compared to treatment with shampoo composition that does not comprise the chelant.
- 2,3-Triethylenetetramine acid contributes to an effective removal of copper from hair after 20 shampoo cycles both at low and a higher pH value. Without the chelant, lower pH shows higher copper removal from hair.
- ethylenedinitrilotetrapropan-2-ol acid contributes to an effective removal of copper from hair after 20 shampoo cycles compared to the corresponding treatment with control shampoo that does not contain the chelant.
- tris-2-aminoethylamine acid contributes to an effective removal of copper from hair after 10 shampoo cycles compared to the corresponding treatment with control clarifying shampoo that does not contain the chelant.
- composition of Ex.16 Ex.17 Ex.18 Summary Control Clarifying Clarifying shampoo Clarifying shampoo Description of shampoo with simple with simple with simple surfactant, Composition surfactant and surfactant, a a Rheology Modifier Rheology Modifier Rheology Modifier and a chelant and a chelant Concentration of 0.00% 0.10% 0.10% Chelant in Shampoo Chelant used — Iminodiacetic acid N-(2- hydroxyethyl)iminodiacetic acid Shampoo pH 6.0 6.0 6.0 Shampoo cycles 20 20 20 Average final copper 84 51 56 concentration in hair (ppm) Standard deviation 6.5 2.7 1.7 Relative content of 100 61 67 Copper content on hair after treatment (versus control shampoo treatment)
- chelants having 2-aminodiacetic acid molecular structures contributes to an effective removal of copper from hair after 20 shampoo cycles compared to the corresponding treatment with control clarifying shampoo that does not contain the chelant.
- Control Ex. 21 Components Wt % Wt % Sodium Laureth-3 Sulfate 1 6.00 6.00 Sodium Lauryl Sulfate 2 9.50 9.50 Cocamidopropyl betaine 1.88 1.88 Tetrasodium EDTA dehydrate 0.16 0.16 Citric Acid (Anhydrous) 0.28 0.28 Sodium benzoate 0.25 0.25 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone 3 Sodium chloride 0.57 0.57 Hydroxypropylmethylcellulose 0.25 0.25 2,3-Triethylenetetramine (TETA) 0.0 0.10 Perfume 0.40 0.40 Distilled Water Q.S. Q.S.
- Each treatment includes cleaning with conditioning shampoo followed by a rinse-off conditioner, followed by a leave-on treatment spray (when indicated).
- Treatment v. Treatment v. Treatment AM content on hair AM AM after treatment (versus control shampoo treatment) Shampoo Ex. 21 Ex. 19(a) Ex. 23 Ex. 22
- Addition of 2,3-Triethylenetetramine in any of the products of the regimen contributes to an effective removal of copper from hair after 20 conditioning shampoo/rinse-off conditioner/leave-on treatment regimen cycles compared to the corresponding treatment with control conditioning shampoo/control rinse-off conditioner.
- the regimen where the chelant is added in the leave-on treatment is particularly effective in removing copper form hair.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Cosmetics (AREA)
Abstract
Described herein is a shampoo composition and methods of using the same, the shampoo composition including a copper chelant, a detersive surfactant, and a carrier.
Description
- Described herein are shampoo compositions comprising a detersive surfactant, a chelant, and a carrier, wherein the shampoo composition inhibits both deposition/penetration of copper salts and other transition metal salts in the hair and removes such salts from hair fiber. A method of cleansing hair with such shampoo compositions is also described herein.
- Many water sources that are used by consumers for personal care contain elevated levels of calcium and magnesium salts, as well as undesirable levels of redox metals (e.g., copper and/or iron) salts. As such, using chelants to sequester trace redox metals often proves to be ineffective because most chelants also competitively bind calcium and/or magnesium.
- It has been found that even trace quantities of copper can deposit on the hair surface and in between the cuticle layers of hair. This deposition of copper on hair is especially problematic because transition metal ions, such as copper and iron, can facilitate reduction-oxidation (redox) reactions during hair coloring treatments and during UV exposure. These reactions generate reactive oxygen species (ROS), which in turn can cause damage to the hair. In addition, they can interfere with the oxidative color formation chemistry and lead to reduced color uptake for hair colorant users.
- Accordingly, there is a need for improved shampoo compositions that can inhibit copper depositing on hair, as well as facilitate the removal of copper already deposited thereon.
- Described herein is a shampoo composition comprising:
-
- (a) from about 0.005% to about 5% of one or more chelants, by weight of the shampoo composition, wherein the one or more chelants have a molecular structure as follows:
-
- wherein n is 2 or 3; m is 1, 2, 3, or 4; and
- Y and Z are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, pentyl, —CH2CH2OH, —CH2CH(CH3)OH), —CH2CH2NH2, —CH2CH(CH3)NH2, and combinations thereof;
- and wherein the one or more chelants comprise:
- (1) log of the formation constant log KML of its complex with copper is higher than 6;
- (2) log P value is from about −5 to about 2; and
- (3) molecular weight of from about 50 to about 500;
- (b) from about 2% to about 50% of one or more detersive surfactants, by weight of the shampoo composition; and
- (c) from about 75% to about 98% of an aqueous carrier, by weight of the shampoo composition;
wherein the shampoo composition has a pH of about 3 to about 8.
- wherein n is 2 or 3; m is 1, 2, 3, or 4; and
- While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the shampoo composition described herein will be better understood from the following description.
- As used herein, the term “fluid” includes liquids and gels.
- As used herein, the term “log x” refers to the common (or decadic) logarithm of x.
- As used herein, the articles including “a” and “an” when used in a claim, are understood to mean one or more of what is claimed or described.
- All percentages are by weight of the total composition, unless stated otherwise. All ratios are weight ratios, unless specifically stated otherwise. All ranges are inclusive and combinable. The number of significant digits conveys neither a limitation on the indicated amounts nor on the accuracy of the measurements. The term “molecular weight” or “M.Wt.” as used herein refers to the weight average molecular weight unless otherwise stated. “QS” means sufficient quantity for 100%.
- As used herein, “mixtures” is meant to include a simple combination of materials and any compounds that may result from their combination.
- All numerical amounts are understood to be modified by the word “about” unless otherwise specifically indicated. Unless otherwise indicated, all measurements are understood to be made at 25° C. and at ambient conditions, where “ambient conditions” means conditions under about one atmosphere of pressure and at about 50% relative humidity. All such weights percents (wt %) as they pertain to listed ingredients are based on the active level and do not include carriers or by-products that may be included in commercially available materials, unless otherwise specified.
- Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
- Herein, “comprising” means that other steps and other ingredients which do not affect the end result can be added. This term encompasses the terms “consisting of” and “consisting essentially of”. The compositions, methods, uses, kits, and processes of the shampoo composition described herein can comprise, consist of, and consist essentially of the elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein. As used herein, the terms “include,” “includes,” and “including,” are meant to be non-limiting and are understood to mean “comprise,” “comprises,” and “comprising,” respectively.
- The term “substantially free from” or “substantially free of” as used herein means less than about 1%, or less than about 0.8%, or less than about 0.5%, or less than about 0.3%, or about 0%, by total weight of the composition.
- “Hair,” as used herein, means mammalian hair including scalp hair, facial hair and body hair, particularly on hair on the human head and scalp.
- “Cosmetically acceptable,” as used herein, means that the compositions, formulations or components described are suitable for use in contact with human keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like. All compositions described herein which have the purpose of being directly applied to keratinous tissue are limited to those being cosmetically acceptable.
- “Derivatives,” as used herein, includes but is not limited to, amide, ether, ester, amino, carboxyl, acetyl, acid, and/or alcohol derivatives of a given compound.
- “Polymer,” as used herein, means a chemical formed from the polymerisation of two or more monomers, which may be the same or different. The term “polymer” as used herein shall include all materials made by the polymerisation of monomers as well as natural polymers. Polymers made from only one type of monomer are called homopolymers. A polymer comprises at least two monomers. Polymers made from two or more different types of monomers are called copolymers. The distribution of the different monomers can be calculated statistically or block-wise—both possibilities are suitable for the shampoo composition. Except if stated otherwise, the term “polymer” used herein includes any type of polymer including homopolymers and copolymers.
- The term “charge density” as used herein, means the ratio of the number of positive charges on a monomeric unit of which a polymer is comprised to the M.Wt. of said monomeric unit. The charge density multiplied by the polymer M.Wt. determines the number of positively charged sites on a given polymer chain. For cationic guars, charge density is measured using standard elemental analysis of percentage nitrogen known to one skilled in the art. This value of percentage nitrogen, corrected for total protein analysis, can then be used to calculate the number or equivalence of positive charges per gram of polymer. For the cationic copolymers, the charge density is a function of the monomers used in the synthesis. Standard NMR techniques know to one skilled in the art would be used to confirm that ratio of cationic and non-ionic monomers in the polymer. This would then be used to calculate the number or equivalence of positive charges per gram of polymer. Once these values are know, the charge density is reported in milliequivalence (meq) per gram of cationic polymer.
- The term log P is the n-octanol/water partition coefficients of the material.
- All percentages, parts and ratios are based upon the total weight of the compositions of the present invention, unless otherwise specified. All such weights as they pertain to listed ingredients are based on the active level and, therefore, do not include carriers or by-products that may be included in commercially available materials.
- Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
- It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
- Described herein is a shampoo composition comprising (a) from about 0.005% to about 5% of one or more chelants; (b) from about 2% to about 50% of one or more detersive surfactants, by weight of the shampoo composition; (c) from about 75% to about 98% of an aqueous carrier, by weight of the shampoo composition, wherein the shampoo composition has a pH of about 3 to about 8, and wherein the shampoo inhibits copper deposition on hair and facilitates the removal of copper deposited on hair. The shampoo composition also delivers consumer desired shampooing in addition to inhibiting the deposition of copper (i.e. from the water used to rinse) on the hair.
- A. Chelants
- The shampoo composition comprises from about 0.005% to about 5%, alternatively from about 0.01% to about 3%, alternatively from about 0.01% to about 1%, alternatively from about 0.01% to about 0.5%, alternatively from about 0.01% to about 0.1%, and alternatively from about 0.025% to about 0.05% of one or more chelants by weight of the shampoo composition, wherein the one or more chelants have a molecular structure as follows:
-
- wherein n is 2 or 3; m is 1, 2, 3, or 4; and
- Y and Z are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, pentyl, —CH2CH2OH, —CH2CH(CH3)OH), —CH2CH2NH2, —CH2CH(CH3)NH2, and combinations thereof;
- and wherein the one or more chelants comprise:
- (1) log of the formation constant log KML of its complex with copper is higher than 6;
- (2) log P value is from about −5 to about 2; and
- (3) molecular weight of from about 50 to about 500.
- The relative affinity of a chelant at a specified pH for Cu+2 can be assessed by its Stability Constant. The Stability Constant of a metal chelant interaction is defined as:
-
- where:
[ML] is the concentration of metal ligand complex at equilibrium;
[M] is the concentration of free metal ion;
[L] is the concentration of free ligand in a fully deprotonated form; and
KML is the stability constant for the metal chelant complex. - The stability constants of chelant-metal ion complexes are well documented in the literature for commonly used chelants (see, for example, Arthur Martell & Robert M Smith, Critically Selected Stability Constants of Metal Complexes Database, Version 3.0 and above, incorporated herein by reference). When not documented the constants can be measured using various analytical methods (see “Metal Complexes in Aqueous Solutions”, Martel and Hancock, edition Modem Inorganic Chemistry, p. 226-228, incorporated herein by reference).
- It has been found that effective chelants need to have a high affinity for copper in order to preferentially bind copper found in hair. However, it has been found that also important to efficacy is the ability for the chelant to penetrate inside the hair fibers rapidly during the shampoo lathering process (which typically lasts between 30 seconds and 1 minute). The copper to be removed is inside the hair and the chelant needs to penetrate inside hair and form a strong copper-chelant complex. This copper-chelant complex needs to be water soluble and thus easily removed during the rinsing process. To be able to do this, two additional parameters have been shown to be important for chelant efficacy. These are log P, the octanol/water partitioning coefficient, and the molecular weight of the chelant. Both are related to the ability of the chelant to penetrate into hair and also form a water soluble copper-chelant complex
- The one or more chelants for use in the shampoo composition may be selected from the group consisting of triethylenetetramine, tetraethylenepenatmine, pentaethylenehexamine, tris(2-aminoethyl)amine, ethylenedinitrilotetrapropan-2-ol, 1,1′,1″-[[2-hydroxypropyl)imino]bis(2,1-ethanediylnitrilo)]tetrakis-2-propanol, tetraethylenepentaamine-(1-EO), 1,5,9,13-tetraazatridecane, and mixtures thereof.
- Table 1 provides relevant properties and performance of the one or more copper chelants described herein. Details on determination of copper removing performance is described in the Examples section.
-
TABLE 1 Properties of representative chelants Copper Removing Log Performance KML Log Chelant from Shampoo Cu P MW 2,3-Triethylenetetramine (TETA) 70% 20.1 −2.3 146 2,4-Tetraethylenepentamine 60% 22.8 −2.7 189 (TEPA) Pentaethylenehexamine (PEHA) 55% −3.1 232 Tris(2-aminoethyl)amine (tren) 45% 18.8 −2.2 146 Ethylenedinitrilotetrapropan-2-ol 30% 9.8 −0.2 292 (EDTP) 1,1,1″,1″′[(2- No data −0.2 394 hydroxypropyl)imino] bis(2,1- collected ethanediylnitrilo)]tetrakis-2- Propanol (Pentrol) Tetraethylenepentaamine-(1-EO) No data −2.9 498 collected 1,5,9,13-Tetraazatridecane 15% 17.1 −2.1 188 (Thermine) - The log of the formation constant log KML of its complex with copper can be higher than 6, alternatively higher than 8, alternatively higher than 9, alternatively higher than 10, alternatively higher than 12, alternatively higher than 14, alternatively higher than 16, alternatively higher than 17, alternatively higher than 18, and alternatively higher than 20. The log of the formation constant log KML of its complex with copper can be from about 6 to about 28, alternatively from about 8 to about 27, alternatively from about 9 to about 26, alternatively from about 10 to about 25, alternatively from about 12 to about 24, alternatively from about 14 to about 24, alternatively from about 16 to about 24, alternatively from about 17 to about 24, alternatively from about 18 to about 24, and alternatively from about 20 to about 23.
- The log P value of the one or more chelants can be from about −5 to about 2, alternatively from about −4 to about 1, alternatively from about −3.5 to about 0, and alternatively from about −2.9 to about −2.5.
- The molecular weight of the one or more chelants can be from about 50 to about 500, alternatively from about 75 to about 400, alternatively from about 100 to about 350, alternatively from about 125 to about 325, alternatively from about 140 to about 300, alternatively from about 140 to about 200.
- The copper removing performance of the shampoo composition is determined by treating hair with clarifying shampoo containing the corresponding chelant for 20 cycles and comparing the copper content of the hair compared to the same treatment using shampoo without the chelant.
- Other chelants that can be used to reduce copper content of hair have the following general structure:
- wherein M is hydrogen or a metal ion;
p is 1 or 2;
q is 1 or 2; and
X is selected from the group containing hydrogen, methyl, ethyl, propyl, —CH2CH2OH, —CH2CH(CH3)OH), —CH2CH2NH2, —CH2CH(CH3)NH2, —CH2COOM, or —CH2CH2SH, and —CH2CH(CH3)SH). - Non-limiting examples include iminodiacetic acid, N-(2-hydroxyethyl)iminodiacetic acid, N-methyliminodiacetic acid, N-(2-aminoethyl)iminodiacetic acid, N-propyliminodiacetic acid, and nitrilotriacetic acid.
- It is found that treatment with shampoo composition containing 0.1 wt % iminodiacetic acid reduces copper by 40% and shampoo composition containing 0.1 wt % N-(2-hydroxyethyl)iminodiacetic acid reduces copper by 30% after 20 cleaning cycles compared to comparative treatment with shampoo that does not contain the chelant.
- B. Detersive Surfactant
- The shampoo composition comprises from about 2% to about 50%, alternatively from about 5% to about 25%, alternatively from about 7% to about 22%, alternatively from about 9% to about 18%, and alternatively from about 11% to about 15% of one or more detersive surfactants by weight of the shampoo composition. The concentration of the detersive surfactant component in the shampoo composition should be sufficient to provide the desired cleaning and lather performance.
- The one or more detersive surfactants can be selected from the group consisting of anionic surfactants, amphoteric or zwitterionic surfactants, or mixtures thereof. The one or more detersive surfactants can also be selected from the group consisting of anionic surfactants, cationic surfactants, non-ionic surfactants, amphoteric surfactants, and mixtures thereof. Various examples and descriptions of detersive surfactants are set forth in U.S. Pat. No. 6,649,155; U.S. Patent Application Publication No. 2008/0317698; and U.S. Patent Application Publication No. 2008/0206355, which are incorporated herein by reference in their entirety.
- Anionic surfactants suitable for use in the compositions are the alkyl and alkyl ether sulfates. Other suitable anionic surfactants are the water-soluble salts of organic, sulfuric acid reaction products. Still other suitable anionic surfactants are the reaction products of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide. Other similar anionic surfactants are described in U.S. Pat. Nos. 2,486,921; 2,486,922; and 2,396,278, which are incorporated herein by reference in their entirety.
- Exemplary anionic surfactants for use in the shampoo composition include ammonium lauryl sulfate, ammonium laureth sulfate, triethylamine lauryl sulfate, triethylamine laureth sulfate, triethanolamine lauryl sulfate, triethanolamine laureth sulfate, monoethanolamine lauryl sulfate, monoethanolamine laureth sulfate, diethanolamine lauryl sulfate, diethanolamine laureth sulfate, lauric monoglyceride sodium sulfate, sodium lauryl sulfate, sodium laureth sulfate, potassium lauryl sulfate, potassium laureth sulfate, sodium lauryl sarcosinate, sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, ammonium cocoyl sulfate, ammonium lauroyl sulfate, sodium cocoyl sulfate, sodium lauroyl sulfate, potassium cocoyl sulfate, potassium lauryl sulfate, triethanolamine lauryl sulfate, triethanolamine lauryl sulfate, monoethanolamine cocoyl sulfate, monoethanolamine lauryl sulfate, sodium tridecyl benzene sulfonate, sodium dodecyl benzene sulfonate, sodium cocoyl isethionate and combinations thereof. In a further embodiment, the anionic surfactant is sodium lauryl sulfate or sodium laureth sulfate.
- Suitable amphoteric or zwitterionic surfactants for use in the shampoo composition include those which are known for use in shampoo or other personal care cleansing. Concentrations of such amphoteric surfactants range from about 0.5 wt % to about 20 wt %, and from about 1 wt % to about 10 wt %. Non limiting examples of suitable zwitterionic or amphoteric surfactants are described in U.S. Pat. Nos. 5,104,646 and 5,106,609, which are incorporated herein by reference in their entirety.
- Amphoteric detersive surfactants suitable for use in the shampoo composition include those surfactants broadly described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate, or phosphonate. Exemplary amphoteric detersive surfactants for use in the present shampoo composition include cocoamphoacetate, cocoamphodiacetate, lauroamphoacetate, lauroamphodiacetate, and mixtures thereof.
- Zwitterionic detersive surfactants suitable for use in the shampoo composition include those surfactants broadly described as derivatives of aliphatic quaternaryammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate or phosphonate. In another embodiment, zwitterionics such as betaines are selected.
- Non limiting examples of other anionic, zwitterionic, amphoteric or optional additional surfactants suitable for use in the shampoo composition are described in McCutcheon's, Emulsifiers and Detergents, 1989 Annual, published by M. C. Publishing Co., and U.S. Pat. Nos. 3,929,678, 2,658,072; 2,438,091; 2,528,378, which are incorporated herein by reference in their entirety.
- The shampoo composition may also comprise a cationic conditioning polymer, an aqueous carrier, and other additional ingredients described herein.
- C. Cationic Conditioning Polymers
- The shampoo composition described herein may comprise one or more cationic conditioning polymers. This polymer may be selected from the group consisting of (a) a cationic guar polymer, (b) a cationic non-guar polymer, (c) a cationic tapioca polymer, (d) a cationic copolymer of acrylamide monomers and cationic monomers, (e) a synthetic, non-crosslinked, cationic polymer, which forms lyotropic liquid crystals upon combination with the detersive surfactant, and (f) mixtures thereof.
- D. Carrier
- The shampoo composition further comprises from about 75% to about 98%, alternatively from about 80% to about 98% of a cosmetically acceptable carrier, by weight of the shampoo composition. The carrier can be an aqueous carrier. The amount and chemistry of the carrier is selected according to the compatibility with other components and other desired characteristic of the product. In an embodiment, the carrier is selected from the group consisting of: water and water solutions of lower alkyl alcohols. Lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, such as ethanol and/or isopropanol. In an embodiment, the cosmetically acceptable carrier is a cosmetically acceptable aqueous carrier and is present at a level of from about 20% to about 95%, or from about 60% to about 85%.
- The pH of the shampoo composition can be from about pH 3 to about pH 8, alternatively from about pH 4 to about pH 7, and alternatively from about pH 5 to about pH 6.
- E. Benefit Agent
- The shampoo composition may further comprise one or more benefit agents. Exemplary benefit agents include, but are not limited to, silicone emulsions, anti-dandruff actives, perfume microcapsules, gel networks, colorants, particles, and other insoluble skin or hair conditioning agents such as skin silicones, natural oils such as sun flower oil or castor oil.
- (1). Silicone Emulsion
- The silicone emulsions suitable for use herein include emulsions of insoluble polysiloxanes prepared in accordance with the descriptions provided in U.S. Pat. No. 4,476,282 and U.S. Patent Application Publication No. 2007/0276087. Accordingly, insoluble polysiloxanes referred to herein for the purpose of the invention include polysiloxanes such as alpha, omega hydroxy-terminated polysiloxanes or alpha, omega alkoxy-terminated polysiloxanes having a molecular weight within the range from about 50,000 to about 500,000 g/mol. As used herein, “insoluble polysiloxane” means that the water solubility of the polysiloxane is less than 0.05 wt %. In another embodiment, the water solubility of the polysiloxane is less than 0.02 wt %, or less than 0.01 wt %, or less than 0.001 wt %. According to an embodiment, the insoluble polysiloxane is present in the shampoo composition in an amount within the range from about 0.1 wt % to about 3 wt %, based on the total weight of the composition. For example, the insoluble polysiloxane can be present in an amount within the range from about 0.2 wt % to about 2.5 wt %, or from about 0.4 wt % to about 2.0 wt %, or from about 0.5 wt % to about 1.5 wt %, based on the total weight of the composition.
- According to one aspect of the silicone emulsion, the insoluble polysiloxane used herein include alpha, omega hydroxy- or alkoxy-terminated polysiloxanes having a general formula I:
-
R1[O—SiR2]n—OR1, - wherein ‘n’ is an integer, R is a substituted or unsubstituted C1 to C10 alkyl or aryl, and R1 is a hydrogen or a substituted or unsubstituted C1 to C10 alkyl or aryl. Non-limiting examples of R and R1 may be independently selected from alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tertpentyl, hexyl such as n-hexyl, heptyl such as n-heptyl, octyl such as n-octyl and isooctyl such as 2,2,4-trimethyl-pentyl, nonyl such as n-nonyl, decyl such as n-decyl, dodecyl such as n-dodecyl, octadecyl such as n-octadecyl; or aryl groups such as phenyl, naphthyl, anthryl and phenanthryl. In an embodiment, the insoluble polysiloxane has a general formula H—[O—SiR2]n—OH.
- According to another aspect of the silicone emulsion, the insoluble polysiloxane has an average molecular weight within the range from about 50,000 to about 500,000 g/mol. For example, the insoluble polysiloxane may have an average molecular weight within the range from about 60,000 to about 400,000; from about 75,000 to about 300,000; from about 100,000 to about 200,000; or the average molecular weight may be about 150,000 g/mol.
- According to another aspect of the silicon emulsion, total content of a cyclic polysiloxane having a general formula:
- wherein R is as defined above, and wherein m is 4 or 5, is present in the silicone emulsion in an amount less than about 2.5 wt % based on the total weight of all polysiloxanes. For example, dimethiconol may include significant quantities of cyclic polysiloxanes, such as octamethylcyclotetrasiloxane (D4) and decamethylcyclotetrasiloxane (D5). In an embodiment, the amount of D4 is less than about 2.0%, or less than about 1.5%, or less than about 1.0%, or less than about 0.5%, based on the total weight of all polysiloxanes. In an embodiment, the amount of D5 is less than about 0.5%, or less than about 0.4%, or less than about 0.3%, or less than about 0.2%, based on the total weight of all polysiloxanes.
- According to yet another aspect of the silicone emulsion, the emulsion has a viscosity up to about 500,000 cPs. For example, the viscosity may be within the range from about 75,000 to about 300,000, from about 100,000 to about 200,000, or about 150,000 cPs.
- According to yet another aspect of the silicone emulsion, the insoluble polysiloxane has an average particle size within the range from about 30 nm to about 10 micron. The average particle size may be within the range from about 40 nm to about 5 micron, from about 50 nm to about 1 micron, from about 75 nm to about 500 nm, or about 100 nm, for example.
- The average molecular weight of the insoluble polysiloxane, the viscosity of the silicone emulsion, and the size of the particle comprising the insoluble polysiloxane are determined by methods commonly used by those skilled in the art, such as the methods disclosed in Smith, A. L. The Analytical Chemistry of Silicones, John Wiley & Sons, Inc.: New York, 1991. For example, the viscosity of the silicone emulsion can be measured at 30° C. with a Brookfield viscosimeter with spindle 6 at 2.5 rpm.
- According to another aspect of the silicone emulsion, the emulsion further includes an anionic surfactant that participates in providing high internal phase viscosity emulsions having particle sizes in the range from about 30 nm to about 10 micron. The anionic surfactant is selected from organic sulfonic acids. Most common sulfonic acids used in the present process are alkylaryl sulfonic acid; alkylaryl polyoxyethylene sulphonic acid; alkyl sulfonic acid; and alkyl polyoxyethylene sulfonic acid. General formulas of the sulfonic acids are as shown below:
-
R2C6H4SO3H (II) -
R2C6H4O(C2H4O)mSO3H (III) -
R2SO3H (IV) -
R2O(C2H4O)mSO3H (IV) - Where R2, which may differ, is a monovalent hydrocarbon radical having at least 6 carbon atoms. Non-limiting examples of R2 include hexyl, octyl, decyl, dodecyl, cetyl, stearyl, myristyl, and oleyl. ‘m’ is an integer from 1 to 25. Exemplary anionic surfactants include but are not limited to octylbenzene sulfonic acid; dodecylbenzene sulfonic acid; cetylbenzene sulfonic acid; alpha-octyl sulfonic acid; alpha-dodecyl sulfonic acid; alpha-cetyl sulfonic acid; polyoxyethylene octylbenzene sulfonic acid; polyoxyethylene dodecylbenzene sulfonic acid; polyoxyethylene cetylbenzene sulfonic acid; polyoxyethylene octyl sulfonic acid; polyoxyethylene dodecyl sulfonic acid; and polyoxyethylene cetyl sulfonic acid. Generally, 1 to 15% anionic surfactant is used in the emulsion process. For example, 3-10% anionic surfactant can be used to obtain an optimum result.
- The silicone emulsion may further include an additional emulsifier together with the anionic surfactant, which along with the controlled temperature of emulsification and polymerization, facilitates making the emulsion in a simple and faster way. Non-ionic emulsifiers having a hydrophilic lipophilic balance (HLB) value of 10 to 19 are suitable and include polyoxyalkylene alkyl ether, polyoxyalkylene alkylphenyl ethers and polyoxyalkylene sorbitan esters. Some useful emulsifiers having an HLB value of 10 to 19 include, but are not limited to, polyethylene glycol octyl ether; polyethylene glycol lauryl ether; polyethylene glycol tridecyl ether; polyethylene glycol cetyl ether; polyethylene glycol stearyl ether; polyethylene glycol nonylphenyl ether; polyethylene glycol dodecylphenyl ether; polyethylene glycol cetylphenyl ether; polyethylene glycol stearylphenyl ether; polyethylene glycol sorbitan monostearate; and polyethylene glycol sorbitan monooleate.
- In accordance with another embodiment, the composition may further comprise an anti-dandruff active, which may be an anti-dandruff active particulate.
- F. Other components
- The shampoo composition can also additionally comprise any suitable optional ingredients as desired. Such optional ingredients should be physically and chemically compatible with the components of the composition, and should not otherwise unduly impair product stability, aesthetics, or performance. The CTFA Cosmetic Ingredient Handbook, Tenth Edition (published by the Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C.) (2004) (hereinafter “CTFA”), describes a wide variety of nonlimiting materials that can be added to the composition herein.
- In accordance with another embodiment of the invention, a method of making a shampoo composition comprising a detersive surfactant, a cationic conditioning polymer, a chelant, and a carrier is provided. The method includes (i) combining the detersive surfactant and the cationic conditioning polymer in suitable carrier, and (ii) combining a chelant and a carrier composition that includes a product of step (i) to form the shampoo composition.
- In an embodiment, the shampoo composition has a viscosity of 4,000 cP to 20,000 cP, or from about 6,000 cP to about 12,000 cP, or from about 8,000 cP to about 11,000 cP, measured at 26.6° C. with a Brookfield R/S Plus Rheometer at 2 s−1. cP means centipoises.
- Also described herein is a method of inhibiting copper deposition on hair and facilitating the removal of copper deposited on hair comprising applying to the hair a shampomo composition described herein and rinsing the shampoo composition from the hair.
- Inhibition of copper deposition on hair and facilitation of the removal of copper deposited on hair may also be achieved by applying a leave-on treatment to the hair after rinsing the conditioner from the hair. The leave-on treatment may deliver consumer desired conditioning in addition to inhibiting the deposition of copper (i.e. from the water used to rinse) on the hair. The leave-on treatment described herein may comprise from about 0.025% to about 0.50%, alternatively from about 0.05% to about 0.25% of one or more chelants described herein, by weight of the leave-on treatment. The leave-on treatment may also comprise one or more rheology modifiers and an aqueous carrier.
- The shampoo composition can be prepared by conventional formulation and mixing techniques. It will be appreciated that other modifications of the shampoo composition within the skill of those in the hair care formulation art can be undertaken without departing from the spirit and scope of this invention. All parts, percentages, and ratios herein are by weight unless otherwise specified. Some components may come from suppliers as dilute solutions. The amount stated reflects the weight percent of the active material, unless otherwise specified.
- All testing are performed on colored hair switches (see Method of Measurement of Copper on Hair below) weighing approximately 4.0 grams and having a length of approximately 6 inches. The hair switches are commercially available from IHIP (International Hair Importers). Three hair switches per shampoo composition are used. An amount of 0.20 g of shampoo is spread via a syringe onto separate hair switch. That is, the dosage is 0.10 g of shampoo per g of hair. Each application consists of adding shampoo to the hair, milking for 30 seconds followed by rinsing for 30 seconds. Shampoo is then reapplied (0.1 g/g), milked for 30 seconds and rinsed for 30 seconds. Excess water is squeezed from the hair switches and left to air dry or treated with a rinse-off conditioner and/or a leave-on treatment composition. This protocol is repeated for a number of times/cycles (as indicated in the tables below, which describe the details of hair treatments).
- The following test method is used to assess the ability of the compositions and regimens to remove copper from the hair and to inhibit copper deposition onto the hair.
- Hair switches are colored once with an oxidative hair colorant. An extra blonde shade is used for the testing. The hair switches are washed for 10 or 20 repeat wash cycles in tap water containing 7 grains per gallon water hardness (Ca/Mg) and 0.06 μg/g copper ions. Each wash cycle consists of two applications of 0.1 g/g a shampoo to the hair switches. Each application consists of adding shampoo to the hair, milking for 30 secs followed by rinsing for 30 secs. Shampoo is then reapplied 0.1 g/g, milked for 30 secs, rinsed for 30 secs and then dried in a heat box (60° C.) until dry.
- Samples of 100 mg of hair are digested overnight with 2 ml of high purity concentrated nitric acid. The digestive mixture also contains 150 μL of 100 μg/g Yttrium internal standard (Inorganic Ventures, Christianburg, Va., USA). Following digestion, samples are heated to 70-80° C. for one hour, cooled to room temperature and diluted to 15 mL with deionized water. Copper content of the hair switches is determined by inductively coupled plasma atomic spectroscopy (ICP-OES)). For each leg, 3 different samples are analyzed.
- The following are non-limiting examples of the shampoo composition described herein. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the shampoo composition, as many variations thereof are possible without departing from the spirit and scope of the shampoo composition, which would be recognized by one of ordinary skill in the art.
- The shampoo composition described herein is generally prepared by conventional methods. Such methods typically involve mixing of the ingredients in one or more steps to a relatively uniform state, with or without heating, cooling, application of vacuum, and the like. The compositions are prepared such as to optimize stability (physical stability, chemical stability, photostability) and/or delivery of the active materials. The shampoo composition may be in a single phase or a single product, or the shampoo composition may be in a separate phases or separate products. If two products are used, the products may be used together, at the same time, or sequentially. Sequential use may occur in a short period of time, such as immediately after the use of one product, or it may occur over a period of hours or days.
- In order to minimize the variability of the resulting copper content on hair that is related to (a) lot-to-lot viariability due to hair switches and (b) day-to-day variability of the water used during shampoo and conditioner treatments, a single lot of hair switches is used for each experimental series and a separate control experiment/treatment is run for each experimental series (see below).
- Investigation of treatments with clarifying shampoos containing simple surfactants and 2,3-Triethylenetetramine.
-
Ex. 1 Control Ex. 2 Components Wt % Wt % Sodium Laureth-1 Sulfate1 10.50 10.50 Sodium Lauryl Sulfate2 1.50 1.50 Cocamidopropyl betaine 1.00 1.00 Sodium benzoate 0.25 0.25 Citric Acid 0.70 0.70 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone3 Sodium chloride 1.00 1.00 Tetrasodium EDTA dihydrate 0.16 0.16 2,3-Triethylenetetramine (TETA) 0.00 0.10 Deionized water Q.S. Q.S. pH adjusted to 6.0 6.0 1Sodium laureth-3-sulfate available from BASF as Standapol ES-3 (28 wt. % active). 2Sodium Lauryl Sulfate available from BASF as Standapol WAQ-LC (29 wt. % active). 3Kathon CG available from Dow (1.5 wt % active). -
-
Composition of Ex. 1 Ex. 2 Summary Description of Control Clarifying Clarifying shampoo Composition shampoo with with simple simple surfactant surfactant and chelant Concentration of Chelant in 0.0% 0.10% Shampoo Chelant used — 2,3- Triethylenetetramine Shampoo pH 6.0 6.0 Shampoo cycles 10 10 Average final copper 84 33 concentration in hair (ppm) Standard deviation 4.2 1.1 Relative content of Copper 100 33 content on hair after treatment (versus control shampoo treatment) - Chelant 2,3-Triethylenetetramine contributes to significant reduction of copper content on hair after 10 shampoo cycle treatments compared to treatment with shampoo composition that does not comprise the chelant.
- Investigation of treatments with clarifying shampoos containing simple surfactants and 2,3-Triethylenetetramine in two different pH values.
-
Ex. 3 Ex. 4 Control Control Ex. 5 Ex. 6 Components Wt % Wt % Wt % Wt % Sodium Laureth-1 Sulfate1 10.50 10.50 10.50 10.50 Sodium Lauryl Sulfate2 1.50 1.50 1.50 1.50 Cocamidopropyl betaine 1.00 1.00 1.00 1.00 Sodium benzoate 0.25 0.25 0.25 0.25 Citric Acid 0.70 1.00 0.70 1.00 Methylchloroisothiazolinone/ 0.0005 0.0005 0.0005 0.0005 Methylisothiazolinone3 Sodium chloride 1.00 1.00 1.00 1.00 Tetrasodium EDTA dihydrate 0.16 0.16 0.16 0.16 2,3-Triethylenetetramine 0.00 0.00 0.10 0.10 Deionized water Q.S. Q.S. Q.S. Q.S. to 100 to 100 to 100 to 100 pH adjusted to 6.0 4.25 6.0 4.25 1Sodium laureth-3-sulfate available from BASF as Standapol ES-3 (28 wt. % active). 2Sodium Lauryl Sulfate available from BASF as Standapol WAQ-LC (29 wt. % active). 3Kathon CG available from Dow (1.5 wt % active). -
-
Composition of Ex. 3 Ex. 4 Ex. 5 Ex. 6 Summary Control Control Clarifying Clarifying Description of Clarifying Clarifying shampoo shampoo Composition shampoo shampoo with simple with simple with simple with simple surfactant surfactant surfactant surfactant and chelant and chelant Concentration 0.0% 0.0% 0.10% 0.10% of Chelant in Shampoo Chelant used — — 2,3- 2,3- Triethylene- Triethylene- tetramine tetramine Shampoo pH 6.0 4.25 6.0 4.25 Shampoo 20 20 20 20 cycles Average final 92 62 34 36 copper concentration in hair (ppm) Standard 11 4.8 3.1 3.6 deviation Relative 100.0 67 v. 39 v. 37 v. content of Control Control Control Copper content on hair after treatment (versus control shampoo treatment) - The presence of 2,3-Triethylenetetramine acid contributes to an effective removal of copper from hair after 20 shampoo cycles both at low and a higher pH value. Without the chelant, lower pH shows higher copper removal from hair.
- Investigation of treatments with clarifying shampoos containing simple surfactants (pH=6) and various chelants described herein.
-
Ex. 7 Control Ex. 8 Ex. 9 Ex. 10 Ex. 11 Components Wt % Wt % Wt % Wt % Wt % Sodium Laureth-1 10.50 10.50 10.50 10.50 10.50 Sulfate1 Sodium Lauryl 1.50 1.50 1.50 1.50 1.50 Sulfate2 Cocamidopropyl betaine 1.00 1.00 1.00 1.00 1.00 Sodium benzoate 0.25 0.25 0.25 0.25 0.25 Citric Acid 0.70 0.70 0.70 1.00 1.00 Methylchloro- 0.0005 0.0005 0.0005 0.0005 0.0005 isothiazolinone/ Methyl- isothiazolinone3 Sodium chloride 1.00 1.00 1.00 1.00 1.00 Tetrasodium EDTA 0.16 0.16 0.16 0.16 0.16 dihydrate 2,3-Triethylenetetramine 0.00 0.10 0.00 0.00 0.00 Tetraethylenepentamine 0.00 0.00 0.10 0.00 0.00 Tris(2-aminoethyl)amine 0.00 0.00 0.00 0.00 0.00 Pentaethylenehexamine 0.00 0.00 0.00 0.00 0.10 Deionized water Q.S. Q.S. Q.S. Q.S. Q.S. to 100 to 100 to 100 to 100 to 100 pH adjusted to 6.0 6.0 6.0 6.0 6.0 1Sodium laureth-3-sulfate available from BASF as Standapol ES-3 (28 wt. % active). 2Sodium Lauryl Sulfate available from BASF as Standapol WAQ-LC (29 wt. % active). 3Kathon CG available from Dow (1.5 wt % active). -
-
Composition of Ex. 7 Ex. 8 Ex. 9 Ex. 10 Ex. 11 Summary Control Clarifying shampoo Clarifying shampoo Clarifying shampoo Clarifying shampoo Description of Clarifying with simple with simple surfactant with simple surfactant with simple surfactant Composition shampoo with surfactant and and chelant and chelant and chelant simple surfactant chelant Concentration of 0.0% 0.10% 0.10% 0.10% 0.10% Chelant in Shampoo Chelant used — 2,3- Tetraethylenepentamine Tris(2- Pentaethylenehexamine Triethylenetetramine aminoethyl)amine Chelant Class — Class III Class III Shampoo pH 6.0 6.0 6.0 6.0 6.0 Shampoo cycles 20 20 20 20 20 Average final copper 115 37 49 62 53 concentration in hair (ppm) Standard deviation 14 2.8 2.7 3.8 10.5 Relative content of 100 32 43 54 46 Copper content on hair after treatment (versus control shampoo treatment) - All chelants from Class III evaluated in a 20 cycle cleaning treatment using a clarifying shampoo containing simple surfactants shows reduction of copper hair content compared to the control shampoo treatment. 2,3-Triethylenetetramine and Tetraethylenepentamine show more effective treatments.
- Investigation of treatments with clarifying shampoos containing simple surfactants (pH=6) and ethylenedinitrilotetrapropan-2-ol chelant.
-
Ex. 12 Control Ex. 13 Components Wt % Wt % Sodium Laureth-1 Sulfate1 10.50 10.50 Sodium Lauryl Sulfate2 1.50 1.50 Cocamidopropyl betaine 1.00 1.00 Sodium benzoate 0.25 0.25 Citric Acid 0.70 0.70 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone3 Sodium chloride 1.00 1.00 Tetrasodium EDTA dihydrate 0.16 0.16 Ethylenedinitrilotetrapropan-2-ol 0.00 0.40 Deionized water Q.S. to 100 Q.S. to 100 pH adjusted to 6.0 6.0 1Sodium laureth-3-sulfate available from BASF as Standapol ES-3 (28 wt. % active). 2Sodium Lauryl Sulfate available from BASF as Standapol WAQ-LC (29 wt. % active). 3Kathon CG available from Dow (1.5 wt % active). -
-
Composition of Ex.12 Ex.13 Summary Control Clarifying Clarifying shampoo Description of shampoo with simple with simple Composition surfactant surfactant and chelant Concentration of 0.00% 0.40% Chelant in Shampoo Chelant used — Ethylenedinitrilotetrapropan- 2-ol Shampoo pH 6.0 6.0 Shampoo cycles 20 20 Average final copper 70 50 concentration in hair (ppm) Standard deviation 2.6 0.4 Relative content of 100 71 Copper content on hair after treatment (versus control shampoo treatment) - The presence of ethylenedinitrilotetrapropan-2-ol acid (at a concentration of 0.40 wt %) contributes to an effective removal of copper from hair after 20 shampoo cycles compared to the corresponding treatment with control shampoo that does not contain the chelant.
- Investigation of treatments with clarifying shampoos containing simple surfactants, a rheology modifier and tris-2-aminoethylamine
-
Ex. 14 Control Ex. 15 Components Wt % Wt % Sodium Laureth-3 Sulfate1 6.00 6.00 Sodium Lauryl Sulfate2 9.50 9.50 Cocamidopropyl betaine 1.88 1.88 Tetrasodium EDTA dihydrate 0.16 0.16 Citric Acid (Anhydrous) 0.28 0.28 Sodium benzoate 0.25 0.25 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone3 Sodium chloride 0.57 0.57 Hydroxypropylmethylcellulose 0.25 0.25 Tris-2-aminoethylamine 0.00 0.10 Perfume 0.40 0.40 Distilled Water Q.S. Q.S. 1Sodium laureth-3-sulfate available from BASF as Standapol ES-3 (28 wt. % active). 2Sodium Lauryl Sulfate available from BASF as Standapol WAQ-LC (29 wt. % active). 3Kathon CG available from Dow (1.5 wt % active). -
-
Composition of Ex.14 Ex.15 Summary Control Clarifying Clarifying shampoo with Description of shampoo with simple simple surfactant, a Composition surfactant and Rheology Rheology Modifier and a Modifier chelant Concentration of 0.00% 0.10% Chelant in Shampoo Chelant used — Tris-2-aminoethylamine Shampoo pH 6.0 6.0 Shampoo cycles 10 10 Average final copper 94 62 concentration in hair (ppm) Standard deviation 15 9.5 Relative content of 100 66 Copper content on hair after treatment (versus control shampoo treatment) - The presence of tris-2-aminoethylamine acid contributes to an effective removal of copper from hair after 10 shampoo cycles compared to the corresponding treatment with control clarifying shampoo that does not contain the chelant.
- Investigation of treatments with clarifying shampoos containing simple surfactants, a rheology modifier and chelants having 2-aminodiacetic acid molecular structures.
-
Ex. 16 Control Ex. 17 Ex. 18 Components Wt % Wt % Wt % Sodium Laureth-3 Sulfate1 6.00 6.00 6.00 Sodium Lauryl Sulfate2 9.50 9.50 9.50 Cocamidopropyl betaine 1.88 1.88 1.88 Tetrasodium EDTA dihydrate 0.16 0.16 0.16 Citric Acid (Anhydrous) 0.28 0.28 0.28 Sodium benzoate 0.25 0.25 0.25 Methylchloroisothiazolinone/ 0.0005 0.0005 0.0005 Methylisothiazolinone3 Sodium chloride 0.57 0.57 0.57 Hydroxypropylmethylcellulose 0.25 0.25 0.25 Iminodiacetic acid 0.00 0.10 0.00 N-(2-hydroxyethyl)iminodiacetic acid 0.00 0.00 0.10 Perfume 0.40 0.40 0.40 Distilled Water Q.S. Q.S. Q.S. 1Sodium laureth-3-sulfate available from BASF as Standapol ES-3 (28 wt. % active). 2Sodium Lauryl Sulfate available from BASF as Standapol WAQ-LC (29 wt. % active). 3Kathon CG available from Dow (1.5 wt % active). -
-
Composition of Ex.16 Ex.17 Ex.18 Summary Control Clarifying Clarifying shampoo Clarifying shampoo Description of shampoo with simple with simple with simple surfactant, Composition surfactant and surfactant, a a Rheology Modifier Rheology Modifier Rheology Modifier and a chelant and a chelant Concentration of 0.00% 0.10% 0.10% Chelant in Shampoo Chelant used — Iminodiacetic acid N-(2- hydroxyethyl)iminodiacetic acid Shampoo pH 6.0 6.0 6.0 Shampoo cycles 20 20 20 Average final copper 84 51 56 concentration in hair (ppm) Standard deviation 6.5 2.7 1.7 Relative content of 100 61 67 Copper content on hair after treatment (versus control shampoo treatment) - The presence of chelants having 2-aminodiacetic acid molecular structures contributes to an effective removal of copper from hair after 20 shampoo cycles compared to the corresponding treatment with control clarifying shampoo that does not contain the chelant.
- Investigation of treatments using shampoos and rinse-off conditioner and leave-on treatments containing 2,3-Triethylenetetramine chelant.
-
-
Ex. 19 Control Ex. 20 Components Wt % Wt % Sodium Laureth-3 Sulfate1 6.10 6.10 Sodium Lauryl Sulfate2 4.00 4.00 Cocoamide MEA3 0.90 0.90 Guar hydroxypropyltrimonium chloride4 0.25 0.25 Glycol distearate 1.50 1.50 Dimethicone5 1.00 1.00 Tetrasodium EDTA dihydrate 0.16 0.16 Citric Acid (Anhydrous) 0.18 0.18 Sodium benzoate 0.27 0.27 Methylchloroisothiazolinone/ 0.0006 0.0006 Methylisothiazolinone6 Sodium chloride 0.20 0.20 Hydrochloric acid (6N) 0.06 0.06 2,3-Triethylenetetramine (TETA) 0.00 0.10 Perfume 0.40 0.40 Distilled Water Q.S. Q.S. 1Sodium laureth-3-sulfate available from BASF as Standapol ES-3 (28 wt. % active). 2Sodium Lauryl Sulfate available from BASF as Standapol WAQ-LC (29 wt. % active). 3Cocamide MEA available from BASF as Comperlan CMEA (85 wt. % active). 4Jaguar C-500 available from Ashland. 5Silicone oil with viscosity of 330.000 cP 6Kathon CG available from Dow (1.5 wt % active). -
-
Ex. 19(a) Control Ex. 21 Components Wt % Wt % Sodium Laureth-3 Sulfate1 6.00 6.00 Sodium Lauryl Sulfate2 9.50 9.50 Cocamidopropyl betaine 1.88 1.88 Tetrasodium EDTA dehydrate 0.16 0.16 Citric Acid (Anhydrous) 0.28 0.28 Sodium benzoate 0.25 0.25 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone3 Sodium chloride 0.57 0.57 Hydroxypropylmethylcellulose 0.25 0.25 2,3-Triethylenetetramine (TETA) 0.0 0.10 Perfume 0.40 0.40 Distilled Water Q.S. Q.S. 1Sodium laureth-3-sulfate available from BASF as Standapol ES-3 (28 wt. % active). 2Sodium Lauryl Sulfate available from BASF as Standapol WAQ-LC (29 wt. % active). 3Kathon CG available from Dow (1.5 wt % active). -
-
Ex. 22 Control Ex. 23 Components Wt % Wt % Ammonium lauryl sulfate 16.00 16.00 Cocoamide MEA1 0.8 0.8 Cetyl alcohol 0.9 0.9 Polyquatemium-102 0.5 0.5 Polyethylene glycol 7M3 0.10 0.10 Dimethicone4 2.00 2.00 Glycol distearate 1.50 1.50 Sodium benzoate 0.25 0.25 Disodium EDTA 0.13 0.13 Citric acid 0.04 0.04 Sodium citrate dehydrate 0.45 0.45 Sodium chloride 0.03 0.03 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone5 Perfume 0.50 0.50 2,3-Triethylenetetramine (TETA) 0.00 0.10 Distilled Water Q.S. Q.S. 1Cocamide MEA available from BASF as Comperlan CMEA (85 wt. % active). 2Quaternized hydroxyethyl cellulose avaliable from Dow Unival LR30M. 3Available by Dow. 4Silicone oil with viscosity of 330.000 cP. 5Kathon CG available from Dow (1.5 wt % active). -
-
Ex. 24 Control Ex. 25 Components Wt % Wt % Stearyl alcohol 2.32 2.32 Cetyl alcohol 0.93 0.93 Dicetyldimonium chloride 0.34 0.34 Behentrimonium methosulfate 1.16 1.16 Propylene glycol 0.16 0.16 Isopropyl alcohol 0.28 0.28 Disodium EDTA Dihydrate 0.13 0.13 Terminal amodimethicone1 0.75 0.75 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone2 Benzyl alcohol 0.40 0.40 2,3-Triethylenetetramine (TETA) 0.00 0.10 Distilled Water Q.S. Q.S. 1Terminal amodimethicone with visc. Of 10,000 cP at 25° C. is available by Momentive Performance Materials. 2Kathon CG available from Dow (1.5 wt % active) -
-
Ex. 25(a) Control Ex. 26 Components Wt % Wt % Hydroxypropyl guar1 0.35 0.35 DTDMAC (Quaternium-182) 0.75 0.75 Stearamidopropyldimethylamine 1.00 1.00 Glyceryl monostearate 0.25 0.25 Emulsifying wax NF (Polywax NF) 0.50 0.50 Cetyl alcohol 1.20 1.20 Stearyl alcohol 0.80 0.80 Oleyl alcohol 0.25 0.25 Citric acid 0.13 0.13 EDTA 0.10 0.10 Terminal amodimethicone3 0.50 0.50 2,3-Triethylenetetramine (TETA) 0.00 0.10 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone4 Benzyl alcohol 0.4 0.4 Distilled Water Q.S. Q.S. 1Jaguar HP-105 supplied by Rhodia 2Diatallowdimethylammonium chloride 3Terminal amodimethicone with visc. Of 10,000 cP at 25° C. is available by Momentive Performance Materials. 4Kathon CG available from Dow (1.5 wt % active). -
-
EX. 27 Control EX. 28 Components Wt % Wt % Behentrimonium chloride 2.28 2.28 Stearyl alcohol 4.64 4.64 Cetyl alcohol 0.93 0.93 Isopropyl alcohol 0.57 0.57 Disodium EDTA Dihydrate 0.13 0.13 Dimethicone1 4.20 4.20 Sodium hydroxide 0.02 0.02 Methylchloroisothiazolinone/ 0.0005 0.0005 Methylisothiazolinone2 Benzyl alcohol 0.40 0.40 2,3-Triethylenetetramine 0.00 0.10 Distilled Water Q.S. Q.S. 1Mixture of silicone gum and silicone oil XF49-B1747 available from Momentive Performance Materials. 2Kathon CG available from Dow (1.5 wt % active). -
-
Ex. 29 Components Wt % Amodimethicone and Cetrimonium 0.35 chloride and Trideceth-121 Polyquatemium-112 0.75 PEG-40 Hydrogenated castor oil 0.50 PPG-2 Methyl ether 0.5 DMDM Hydantoin 0.20 Disodium EDTA 0.14 Poysorbate 80 0.12 Aminomethyl propanol 0.1 Citric acid anhydrous 0.08 2,3-Triethylenetetramine 0.10 Distilled Water Q.S. 1Siameter MEM-0949 Emulsion available from Dow Corning; it contains 35% aminosilicone 2Copolymer of vinylpyrrolidone and quaternized dimethylaminoethyl methacrylate; Gafquat 755 NH available by Ashland - Each treatment (regimen) includes cleaning with conditioning shampoo followed by a rinse-off conditioner, followed by a leave-on treatment spray (when indicated).
-
Shampoo Ex. 19 Control Ex. 20 Ex. 19 Control Ex. 19 Control Composition Conditioning SH Conditioning Conditioning Conditioning SH (SH) SH SH Smoothing Ex. 24 Control Ex. 24 Control Ex. 25 Ex. 24 Control Rinse-off Smoothing ROC Smoothing Smoothing Smoothing ROC conditioner ROC ROC composition (ROC) Leave-on No LOT No LOT No LOT Ex. 29 treatment LOT composition (LOT) Summary SH Control SH w/ chelant SH Control SH Control Description of ROC Control ROC Control ROC w/ chelant ROC Control Composition No LOT No LOT No LOT LOT w/ chelant Concentration 0% in SH 0.1% in SH 0% in SH 0% in SH of Chelant 0% in ROC 0% in ROC 0.1% in ROC 0% in ROC No LOT No LOT No LOT 0.1% in LOT Chelant used — 2,3- 2,3- 2,3- Triethylenetetramine Triethylenetetramine Triethylenetetramine Cycles 20 20 20 20 Average final 84 30 25 43 copper concentration in hair (ppm) Standard 5.6 2.1 1.7 0.2 deviation Relative content 100 36 30 51 of Copper v. Treatment v. Treatment v. Treatment AM content on hair AM AM after treatment (versus control shampoo treatment) Shampoo Ex. 21 Ex. 19(a) Ex. 23 Ex. 22 Control Composition Clarifying SH Control Repair SH Repair SH (SH) Clarifying SH Rinse-off Ex. 25(a) Control Ex. 26 Ex. 27 Control Ex. 28 conditioner Volumizing ROC Volumizing Repair ROC Repair ROC composition ROC (ROC) Leave-on No LOT No LOT No LOT No LOT treatment composition (LOT) Summary SH w/chelant SH Control SH w/ chelant SH Control Description of ROC Control ROC w/ chelant ROC Control ROC w/ chelant Composition No LOT No LOT No LOT Concentration 0.1% in SH 0% in SH 0.1% in SH 0.1% in SH of Chelant 0% in ROC 0.1% in ROC 0% in ROC 0% in ROC No LOT No LOT No LOT No LOT Chelant used — 2,3- 2,3- 2,3- Triethylenetetramine Triethylenetetramine Triethylenetetramine Cycles 20 20 20 20 Average final 32 28 35 26 copper concentration in hair (ppm) Standard 1.6 3.4 4.5 0.7 deviation Relative content 35 30 38 28 of Copper v. Treatment v. Treatment v. Treatment v. Treatment AM content on hair AM AM AM after treatment (versus control shampoo treatment) - Addition of 2,3-Triethylenetetramine in any of the products of the regimen contributes to an effective removal of copper from hair after 20 conditioning shampoo/rinse-off conditioner/leave-on treatment regimen cycles compared to the corresponding treatment with control conditioning shampoo/control rinse-off conditioner. The regimen where the chelant is added in the leave-on treatment is particularly effective in removing copper form hair.
- The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
- Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
- While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Claims (20)
1. A shampoo composition comprising:
(a) from about 0.005% to about 5% of one or more chelants, by weight of the shampoo composition, wherein the one or more chelants have a molecular structure as follows:
wherein n is 2 or 3; m is 1, 2, 3, or 4; and
Y and Z are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, pentyl, —CH2CH2OH, —CH2CH(CH3)OH), —CH2CH2NH2, —CH2CH(CH3)NH2, and combinations thereof;
and wherein the one or more chelants comprise:
(1) log of the formation constant log KML of its complex with copper is higher than 6;
(2) log P value is from about −5 to about 2; and
(3) molecular weight of from about 50 to about 500;
(b) from about 2% to about 50% of one or more detersive surfactants, by weight of the shampoo composition; and
(c) from about 75% to about 98% of an aqueous carrier, by weight of the shampoo composition;
wherein the shampoo composition has a pH of about 3 to about 8.
2. The shampoo composition of claim 1 , wherein the detersive surfactant is selected from the group consisting of anionic surfactants, cationic surfactants, non-ionic surfactants, amphoteric surfactants, and mixtures thereof.
3. The shampoo composition of claim 1 , wherein the shampoo composition comprises from about 5% to about 25% of the detersive surfactant by weight of the shampoo composition.
4. The shampoo composition of claim 1 , wherein the shampoo composition comprises from about 7% to about 22% of the detersive surfactant by weight of the shampoo composition.
5. The shampoo composition of claim 1 , wherein the shampoo composition comprises from about 9% to about 18% of the detersive surfactant by weight of the shampoo composition.
6. The shampoo composition of claim 1 , wherein the shampoo composition comprises from about 11% to about 15% of the detersive surfactant by weight of the shampoo composition.
7. The shampoo composition of claim 1 , wherein the log P value of the one or more chelants is from about −4 to about 1.
8. The shampoo composition of claim 1 , wherein the log P value of the one or more chelants is from about −3 to about 0.
9. The shampoo composition of claim 1 , wherein the molecular weight of the one or more chelants is from about 75 to about 400.
10. The shampoo composition of claim 1 , wherein the molecular weight of the one or more chelants is from about 100 to about 350.
11. The shampoo composition of claim 1 , wherein the molecular weight of the one or more chelants is from about 125 to about 325.
12. The shampoo composition of claim 1 , wherein the molecular weight of the one or more chelants is from about 140 to about 300.
13. The shampoo composition of claim 1 , further comprising a gel network, wherein the gel network comprises a fatty alcohol and a surfactant.
14. The shampoo composition of claim 1 , wherein the shampoo composition comprises from about 0.01% to about 3% of the one or more chelants.
15. The shampoo composition of claim 1 , wherein the shampoo composition comprises from about 0.01% to about 1% of the one or more chelants.
16. The shampoo composition of claim 1 , wherein the shampoo composition comprises from about 0.01% to about 0.5% of the one or more chelants.
17. The shampoo composition of claim 1 , wherein the shampoo composition comprises from about 0.01% to about 0.1% of the one or more chelants.
18. The shampoo composition of claim 1 , wherein the shampoo composition comprises from about 0.025% to about 0.05% of the one or more chelants.
19. The shampoo composition of claim 1 , wherein the one or more chelants are selected from the group consisting of 2,3-triethylenetetramine, tetraethylenepentamine, 2,4-tetraethylenepentamine, pentaethylenehexamine, tris(2-aminoethyl)amine, ethylenedinitrilotetrapropan-2-ol, 1,1′,1″,1′″ [(2-hydroxypropyl)imino]bis(2,1ethanediylnitrilo)]tetrakis-2-propanol, tetraethylenepentaamine-(1-EO), 1,5,9,13-Tetraazatridecane, and mixtures thereof.
20. A method of inhibiting copper deposition on hair and facilitating the removal of copper deposited on hair comprising:
a. applying to the hair the shampoo composition of claim 1 ; and
b. rinsing the shampoo composition from the hair.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/630,411 US20180000705A1 (en) | 2016-06-30 | 2017-06-22 | Shampoo Compositions Comprising a Chelant |
US16/515,821 US11166894B2 (en) | 2016-06-30 | 2019-07-18 | Shampoo compositions comprising a chelant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662356943P | 2016-06-30 | 2016-06-30 | |
US15/630,411 US20180000705A1 (en) | 2016-06-30 | 2017-06-22 | Shampoo Compositions Comprising a Chelant |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/515,821 Continuation US11166894B2 (en) | 2016-06-30 | 2019-07-18 | Shampoo compositions comprising a chelant |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180000705A1 true US20180000705A1 (en) | 2018-01-04 |
Family
ID=59270174
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/630,411 Abandoned US20180000705A1 (en) | 2016-06-30 | 2017-06-22 | Shampoo Compositions Comprising a Chelant |
US16/515,821 Active US11166894B2 (en) | 2016-06-30 | 2019-07-18 | Shampoo compositions comprising a chelant |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/515,821 Active US11166894B2 (en) | 2016-06-30 | 2019-07-18 | Shampoo compositions comprising a chelant |
Country Status (6)
Country | Link |
---|---|
US (2) | US20180000705A1 (en) |
EP (1) | EP3478257A1 (en) |
JP (1) | JP2019518053A (en) |
CN (1) | CN109310603A (en) |
MX (1) | MX2018015497A (en) |
WO (1) | WO2018005256A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10973744B2 (en) | 2016-06-30 | 2021-04-13 | The Procter And Gamble Company | Conditioner composition comprising a chelant |
US11166894B2 (en) | 2016-06-30 | 2021-11-09 | The Procter And Gamble Company | Shampoo compositions comprising a chelant |
US11246816B2 (en) | 2016-06-30 | 2022-02-15 | The Procter And Gamble Company | Shampoo compositions comprising a chelant |
US11274266B2 (en) | 2018-08-24 | 2022-03-15 | The Procter & Gamble Company | Treatment compositions comprising a surfactant system and an oligoamine |
US11279901B2 (en) | 2018-08-24 | 2022-03-22 | The Procter & Gamble Company | Treatment compositions comprising low levels of an oligoamine |
US11458085B2 (en) | 2016-06-30 | 2022-10-04 | The Procter And Gamble Company | Hair care compositions for calcium chelation |
US11786447B2 (en) | 2016-06-30 | 2023-10-17 | The Procter & Gamble Company | Conditioner composition comprising a chelant |
Family Cites Families (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE406221A (en) | 1933-11-15 | |||
US2438091A (en) | 1943-09-06 | 1948-03-16 | American Cyanamid Co | Aspartic acid esters and their preparation |
BE498391A (en) | 1944-10-16 | |||
BE498392A (en) | 1945-11-09 | |||
US2528378A (en) | 1947-09-20 | 1950-10-31 | John J Mccabe Jr | Metal salts of substituted quaternary hydroxy cycloimidinic acid metal alcoholates and process for preparation of same |
US2658072A (en) | 1951-05-17 | 1953-11-03 | Monsanto Chemicals | Process of preparing amine sulfonates and products obtained thereof |
US3940482A (en) * | 1971-04-21 | 1976-02-24 | Colgate-Palmolive Company | Solubilization of the zinc salt of 1-hydroxy-2-pyridinethione |
US4185106A (en) | 1972-07-11 | 1980-01-22 | Hoechst Aktiengesellschaft | Pyridones as antidandruff agents |
DE2437090A1 (en) | 1974-08-01 | 1976-02-19 | Hoechst Ag | CLEANING SUPPLIES |
US4089945A (en) | 1975-06-30 | 1978-05-16 | The Procter & Gamble Company | Antidandruff shampoos containing metallic cation complex to reduce in-use sulfide odor |
US4321156A (en) | 1977-03-30 | 1982-03-23 | S. C. Johnson & Son, Inc. | Shampoo composition |
CA1147262A (en) * | 1980-12-02 | 1983-05-31 | Irving R. Schmolka | Hydroxyalkylated alkylene diamine in acid beauty aid composition |
JPS57109711A (en) | 1980-12-26 | 1982-07-08 | Lion Corp | Hair cosmetic |
US4412943A (en) | 1981-02-23 | 1983-11-01 | Kao Soap Co., Ltd. | Liquid detergent composition |
DE3216585C2 (en) | 1982-05-04 | 1984-07-26 | Th. Goldschmidt Ag, 4300 Essen | Process for the production of finely divided, stable O / W emulsions of organopolysiloxanes |
US4822604A (en) * | 1985-05-20 | 1989-04-18 | S. C. Johnson & Son, Inc. | Local treatment of dandruff, seborrheic dermatitis, and psoriasis |
DE3602746A1 (en) | 1986-01-30 | 1987-08-06 | Wella Ag | HAIR TREATMENT AND METHOD FOR IMPROVING THE CONDITION OF THE HAIR |
JPS63150213A (en) | 1986-12-15 | 1988-06-22 | Kao Corp | Shampoo composition |
US4749507A (en) * | 1987-02-12 | 1988-06-07 | Clairol, Incorporated | Process for removing hair dyes from hair and skin, and product for carrying out the process |
US5104646A (en) | 1989-08-07 | 1992-04-14 | The Procter & Gamble Company | Vehicle systems for use in cosmetic compositions |
US5106609A (en) | 1990-05-01 | 1992-04-21 | The Procter & Gamble Company | Vehicle systems for use in cosmetic compositions |
US5100657A (en) | 1990-05-01 | 1992-03-31 | The Procter & Gamble Company | Clean conditioning compositions for hair |
CA2125691C (en) | 1991-12-13 | 2003-04-08 | Frederick K. Ault | Compositions and methods for removing minerals from hair |
JP2665292B2 (en) | 1992-03-18 | 1997-10-22 | ホーユー株式会社 | Hair cosmetics |
GB9210768D0 (en) | 1992-05-20 | 1992-07-08 | Unilever Plc | Cosmetic composition |
JP2587755B2 (en) | 1992-07-22 | 1997-03-05 | 花王株式会社 | Detergent composition |
US5306489A (en) | 1992-07-24 | 1994-04-26 | Revlon Consumer Products Corporation | Hair care products containing N-alkoxyalkylamides |
JPH07258698A (en) | 1994-03-22 | 1995-10-09 | Sunstar Inc | Fluid soap composition |
GB2288812B (en) | 1994-04-26 | 1998-08-26 | Procter & Gamble | Cleansing compositions |
JP3526327B2 (en) | 1994-10-04 | 2004-05-10 | 花王株式会社 | Rinse composition |
US5635167A (en) | 1994-12-28 | 1997-06-03 | L'avante Garde, Inc. | Removal of minerals from human hair and animal keratin fibers |
JPH09183996A (en) | 1995-12-28 | 1997-07-15 | Kose Corp | Detergent composition |
US6579891B1 (en) | 1995-12-29 | 2003-06-17 | Novactyl, Inc. | Agent and method for prevention and treatment of cancer in animals |
JPH09291024A (en) | 1996-04-24 | 1997-11-11 | Lion Corp | Bathing agent composition |
US5847003A (en) | 1996-06-04 | 1998-12-08 | Avon Products, Inc. | Oxa acids and related compounds for treating skin conditions |
GB9615633D0 (en) | 1996-07-25 | 1996-09-04 | Procter & Gamble | Shampoo compositions |
WO1998004233A1 (en) | 1996-07-31 | 1998-02-05 | The Procter & Gamble Company | Conditioning shampoo compositions comprising polyalkoxylated polyalkyleneamine |
FR2753378B1 (en) | 1996-09-17 | 1998-11-20 | Oreal | USE IN A COMPOSITION AS A TYROSINASE STIMULATOR OF AT LEAST ONE PYRIMIDINE 3-OXIDE DERIVATIVE, SUBSTITUTED IN 6 |
DE19650102A1 (en) | 1996-12-03 | 1998-06-04 | Basf Ag | Use of bis (dicarboxylic acid) diaminoalkylene derivatives as biodegradable complexing agents for alkaline earth and heavy metal ions |
US6432147B1 (en) | 1996-12-23 | 2002-08-13 | The Procter & Gamble Company | Hair coloring compositions |
JPH11139941A (en) | 1997-11-06 | 1999-05-25 | Hoyu Co Ltd | Hair-treating agent composition |
JPH11180836A (en) | 1997-12-19 | 1999-07-06 | Ajinomoto Co Inc | Hair cosmetic |
JP3807846B2 (en) | 1998-03-20 | 2006-08-09 | 株式会社資生堂 | Acid dye cleaning composition |
US6908608B1 (en) | 1998-11-02 | 2005-06-21 | Ciba Specialty Chemical Corporation | Stabilization of body-care and household products |
CN1250191C (en) | 1998-11-02 | 2006-04-12 | 西巴特殊化学品控股有限公司 | Stabilization of body-care and household products |
JP3208382B2 (en) | 1998-12-28 | 2001-09-10 | 花王株式会社 | Hair cleanser |
JP3208381B2 (en) | 1998-12-28 | 2001-09-10 | 花王株式会社 | Hair cosmetics |
GB9913765D0 (en) | 1999-06-14 | 1999-08-11 | Procter & Gamble | Hair care compoaitions |
GB9913764D0 (en) | 1999-06-14 | 1999-08-11 | Procter & Gamble | Hair care compositions |
US6544500B1 (en) | 1999-02-28 | 2003-04-08 | The Procter & Gamble Company | Hair care compositions |
GB9913762D0 (en) | 1999-06-14 | 1999-08-11 | Procter & Gamble | Hair care compositions |
US6432394B2 (en) | 1999-04-19 | 2002-08-13 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc | Hair conditioning compositions comprising one or more dibasic amino acids |
EP1046390A1 (en) | 1999-04-20 | 2000-10-25 | Calgon Corporation | Compositions and methods for cleaning and removing contaminants from hair |
US6649155B1 (en) | 1999-05-03 | 2003-11-18 | The Procter & Gamble Company | Anti-dandruff and conditioning shampoos containing certain cationic polymers |
DE60040464D1 (en) | 1999-05-26 | 2008-11-20 | Rhodia | BLOCK POLYMERS, COMPOSITIONS AND METHOD FOR USE IN FOAM, DETERGENT, SHOWER CLEANER AND COAGULATING AGENT |
US6495498B2 (en) | 1999-05-27 | 2002-12-17 | Johnson & Johnson Consumer Companies, Inc. | Detergent compositions with enhanced depositing, conditioning and softness capabilities |
US6861397B2 (en) | 1999-06-23 | 2005-03-01 | The Dial Corporation | Compositions having enhanced deposition of a topically active compound on a surface |
GB9917452D0 (en) | 1999-07-23 | 1999-09-29 | Unilever Plc | Method of hair treatment using organic amino compounds |
GB9917453D0 (en) | 1999-07-23 | 1999-09-29 | Unilever Plc | Method of hair treatment using organic amino compounds |
DE19943597A1 (en) | 1999-09-11 | 2001-03-15 | Henkel Kgaa | Use of basic amino acids as hair protection in hair treatment products |
US6287547B1 (en) | 1999-10-12 | 2001-09-11 | Sanyo Chemical Industries, Ltd. | Hair treatment composition |
JP3371098B2 (en) | 1999-11-04 | 2003-01-27 | 花王株式会社 | Detergent composition |
US6365143B1 (en) * | 2000-04-03 | 2002-04-02 | Larry D. Lundmark | Cleansing composition and method for removing chemically bound residues and mineral deposits from hair |
IT1318571B1 (en) | 2000-06-09 | 2003-08-27 | Farmaka Srl | COSMETIC COMPOSITIONS FOR THE CARE OF HAIR AND HAIR. |
US6602493B2 (en) | 2001-02-15 | 2003-08-05 | Avlon Industries, Inc. | Hair relaxer system and method therefor |
US20040123402A1 (en) | 2001-03-20 | 2004-07-01 | The Procter & Gamble Company | Oxidizing compositions comprising a chelant and a conditioning agent and methods of treating hair |
US7186275B2 (en) | 2001-03-20 | 2007-03-06 | The Procter & Gamble Company | Compositions suitable for the treatment of hair comprising chelants and methods for reducing oxidative hair damage |
JP4229236B2 (en) | 2001-04-23 | 2009-02-25 | エムジーピー イングリーディエンツ アイエヌシー. | Method for preparing hydrolyzed jojoba protein and formulation comprising hydrolyzed jojoba protein |
US6927196B2 (en) | 2001-09-13 | 2005-08-09 | The Procter & Gamble Company | Transparent concentrated hair conditioning composition |
US20030134772A1 (en) * | 2001-10-19 | 2003-07-17 | Dykstra Robert Richard | Benefit agent delivery systems |
DE10163052A1 (en) | 2001-12-21 | 2003-07-17 | Henkel Kgaa | Restructuring and finishing of keratin fibers |
US7186274B2 (en) | 2002-04-08 | 2007-03-06 | L'oreal | Method for treating human keratin fibers with organomodified metallic particles |
US8119168B2 (en) | 2002-04-22 | 2012-02-21 | The Procter & Gamble Company | Personal care compositions comprising a zinc containing material in an aqueous surfactant composition |
AU2003218279A1 (en) | 2002-04-22 | 2003-11-03 | The Procter & Gamble Company | Use of materials having zinc ionophoric behavior |
GB0209485D0 (en) | 2002-04-25 | 2002-06-05 | Procter & Gamble | Durable fiber treatment composition |
DE60332012D1 (en) | 2002-05-02 | 2010-05-20 | Basf Se | STABILIZED BODY CARE AND BUDGET PRODUCTS |
US6743434B1 (en) | 2002-05-14 | 2004-06-01 | Larry D. Lundmark | Carbonic emulsion skin care compositions and method for removing chemically bound residues and mineral deposits from hair |
US20080206355A1 (en) | 2002-06-04 | 2008-08-28 | The Procter & Gamble Company | Composition comprising a particulate zinc material, a pyrithione or a polyvalent metal salt of a pyrithione and a synthetic cationic polymer |
DE10232780A1 (en) | 2002-07-18 | 2004-02-12 | Basf Ag | Co-surfactants based on aldehydes |
JP4046570B2 (en) | 2002-07-31 | 2008-02-13 | ポーラ化成工業株式会社 | Hair cosmetics |
US7547454B2 (en) | 2002-11-07 | 2009-06-16 | Shyam K Gupta | Hydroxy acid complexes for antiaging and skin renovation |
DE10259199A1 (en) | 2002-12-16 | 2004-06-24 | Henkel Kgaa | Composition useful in treating keratin fibers or as a textile finish or detergent comprises a polymerizable phenolic, arylamine, enol and/or enamine substrate and a polyphenoloxidase |
EP1466592A1 (en) | 2003-04-07 | 2004-10-13 | Kao Corporation | Cleansing compositions |
FR2853529B3 (en) | 2003-04-08 | 2005-07-01 | Sephytal | VITALIZING SHAMPOO FOR HAIR |
FR2853530B3 (en) | 2003-04-08 | 2005-07-01 | Sephytal | REPAIR SHAMPOO FOR HAIR |
FR2853531B3 (en) | 2003-04-08 | 2008-10-03 | Sephytal | AFTER SHAMPOO COMPOSITION FOR HAIR |
JP4050676B2 (en) | 2003-08-22 | 2008-02-20 | 花王株式会社 | Cleaning fee |
US20050095215A1 (en) | 2003-11-03 | 2005-05-05 | Popp Karl F. | Antimicrobial shampoo compositions |
US20050239723A1 (en) | 2004-04-27 | 2005-10-27 | Amin Avinash N | Compositions and methods useful for treatment of acne |
US7045493B2 (en) | 2004-07-09 | 2006-05-16 | Arkema Inc. | Stabilized thickened hydrogen peroxide containing compositions |
JP2006160708A (en) | 2004-12-10 | 2006-06-22 | Shiseido Co Ltd | Multilayer-type hair cosmetic |
DE602004028031D1 (en) | 2004-12-16 | 2010-08-19 | Kpss Kao Gmbh | cleaning supplies |
US7745382B2 (en) | 2005-01-18 | 2010-06-29 | Bestline International Research Inc. | Synthetic lubricant additive with micro lubrication technology to be used with a broad range of synthetic or miner host lubricants from automotive, trucking, marine, heavy industry to turbines including, gas, jet and steam |
US8022020B2 (en) | 2005-01-18 | 2011-09-20 | Bestline International Research, Inc. | Universal synthetic penetrating lubricant, method and product-by-process |
KR100915430B1 (en) | 2005-02-02 | 2009-09-03 | 와커 헤미 아게 | Manufacture of stable low particle size organopolysiloxane emulsion |
DE102005013438A1 (en) | 2005-03-21 | 2006-09-28 | Henkel Kgaa | Hair treatment kit, useful in cosmetic product e.g. hair shampoo, comprises a compartment containing a complex binder; and a color compartment for coloring the keratin fibers (preferably human hairs) |
DE102005063096A1 (en) | 2005-12-30 | 2007-07-05 | Henkel Kgaa | Cosmetic agent, useful for protecting skin and hair before resoiling, cleaning skin and hair and restructuring the keratin fibers, preferably in human hair, comprises an hyperbranched polyester and/or polyester amide |
JP2007329425A (en) | 2006-06-09 | 2007-12-20 | Elpida Memory Inc | Automatic wiring method of semiconductor integrated circuit, program and recording medium |
US20080057015A1 (en) | 2006-08-30 | 2008-03-06 | Oblong John E | Hair care compositions, methods, and articles of commerce that can help maintain a longer lasting hair style appearance |
GB0617191D0 (en) | 2006-08-31 | 2006-10-11 | York Pharma Plc | Improvements in pharmaceutical compositions |
US8673274B2 (en) | 2006-12-15 | 2014-03-18 | The Procter & Gamble Company | Composition comprising pyrithione or a polyvalent metal salt of a pyrithione and furametpyr |
JP4865574B2 (en) | 2007-01-15 | 2012-02-01 | ホーユー株式会社 | Hair treatment composition and hair treatment method |
US8349300B2 (en) | 2007-04-19 | 2013-01-08 | The Procter & Gamble Company | Personal care compositions containing at least two cationic polymers and an anionic surfactant |
WO2008136000A2 (en) * | 2007-05-07 | 2008-11-13 | Technion Research & Development Foundation Ltd. | Compositions, articles and methods for preventing or reducing tobacco-associated damage |
JP5530588B2 (en) | 2007-06-14 | 2014-06-25 | ホーユー株式会社 | Hair elasticity improver |
US20090074700A1 (en) * | 2007-09-14 | 2009-03-19 | L'oreal | Compositions and methods for imparting shine onto hair |
EP2067467A3 (en) * | 2007-09-14 | 2012-12-12 | L'Oréal | Compositions and methods for treating keratinous substrates |
US20090071493A1 (en) * | 2007-09-14 | 2009-03-19 | L'oreal | Compositions and methods for conditioning hair |
US20090092561A1 (en) | 2007-10-09 | 2009-04-09 | Lupia Joseph A | Body-care and household products and compositions comprising specific sulfur-containing compounds |
CN102824280A (en) | 2007-11-05 | 2012-12-19 | 宝洁公司 | Oxidizing hair colourant compositions |
KR100929956B1 (en) | 2008-01-11 | 2009-12-04 | 주식회사 엘지생활건강 | Now Hair Conditioning Compositions With Persistence |
BRPI0908173A2 (en) | 2008-02-21 | 2016-12-06 | Basf Se | personal care composition and method for manufacturing a personal care antimicrobial composition or formulation |
KR20100089329A (en) | 2009-02-03 | 2010-08-12 | 삼성전자주식회사 | Display apparatus and method of manufacturing the same |
US8637489B2 (en) | 2009-02-09 | 2014-01-28 | L'oreal | Clear carrier compositions for lipophilic compounds, and method of treating keratinous substrates using such compositions |
GB2468715A (en) * | 2009-03-20 | 2010-09-22 | Patrick Lehane | Varying composition of an agent according to geographical location |
EP2246036A1 (en) | 2009-04-27 | 2010-11-03 | KPSS-Kao Professional Salon Services GmbH | Aqueous cleansing composition |
EP2246033A1 (en) | 2009-04-27 | 2010-11-03 | KPSS-Kao Professional Salon Services GmbH | Conditioning composition for hair |
ITMI20091075A1 (en) | 2009-06-17 | 2010-12-17 | Valetudo Srl | PHARMACEUTICAL AND COSMETIC COMPOSITIONS INCLUDING LACTOFERRINA CICLOPIROX ETHYTHRONIC ACID |
JP5515517B2 (en) | 2009-08-27 | 2014-06-11 | ライオン株式会社 | Hair cosmetics |
WO2011100660A1 (en) | 2010-02-12 | 2011-08-18 | Rhodia Operations | Compositions with freeze thaw stability |
GB201011905D0 (en) | 2010-07-15 | 2010-09-01 | Unilever Plc | Benefit delivery particle,process for preparing said particle,compositions comprising said particles and a method for treating substrates |
GB201013355D0 (en) | 2010-08-09 | 2010-09-22 | Lehane Patrick | Improved cleaning and conditioning agents |
WO2012021472A2 (en) | 2010-08-09 | 2012-02-16 | L'oreal S. A. | Compositions and methods for sealing the surface of keratinous substrates |
DE102011079664A1 (en) | 2011-07-22 | 2012-04-26 | Henkel Kgaa | Composition useful e.g. for treating skin and keratin fibers, caring and conditioning of skin and/or keratin fibers and restructuring keratin fibers, comprises oil obtained from seeds of cape chestnut, surfactants and aqueous carrier |
WO2013026656A1 (en) | 2011-08-24 | 2013-02-28 | Unilever Plc | Benefit agent delivery particles comprising dextran |
DE102011090030A1 (en) | 2011-12-28 | 2013-07-04 | Evonik Industries Ag | Aqueous hair and skin cleansing compositions containing biosurfactants |
CA2860244C (en) | 2012-01-09 | 2017-08-08 | The Procter & Gamble Company | Hair care compositions |
US8942481B2 (en) | 2012-03-11 | 2015-01-27 | Universidad De Santiago De Compostela | Three dimensional CMOS image processor for feature detection |
US20130333715A1 (en) | 2012-06-19 | 2013-12-19 | The Procter & Gamble Company | Shampoo compositions and methods of making same |
US20140079660A1 (en) | 2012-09-20 | 2014-03-20 | Kao Corporation | Cleansing composition for skin or hair |
CN105163709B (en) | 2013-05-09 | 2018-07-17 | 宝洁公司 | Include the hair-care conditioning composition of histidine |
US9198849B2 (en) | 2013-07-03 | 2015-12-01 | The Procter & Gamble Company | Shampoo composition comprising low viscosity emulsified silicone polymers |
US20150030644A1 (en) | 2013-07-26 | 2015-01-29 | The Procter & Gamble Company | Amino Silicone Nanoemulsion |
US9701929B2 (en) | 2013-07-29 | 2017-07-11 | The Procter & Gamble Company | Consumer product compositions comprising organopolysiloxane emulsions |
EP3049050B1 (en) | 2013-09-27 | 2018-10-24 | The Procter and Gamble Company | Hair conditioning compositions comprising low viscosity emulsified silicone polymers |
US20150182431A1 (en) | 2013-12-31 | 2015-07-02 | Sytheon Ltd | Compositions and Methods for Treatment of Hair with Reduced Hair Damage |
US9586063B2 (en) | 2014-04-25 | 2017-03-07 | The Procter & Gamble Company | Method of inhibiting copper deposition on hair |
US9642788B2 (en) | 2014-04-25 | 2017-05-09 | The Procter & Gamble Company | Shampoo composition comprising gel matrix and histidine |
EP3165965B1 (en) | 2014-07-15 | 2018-10-10 | Tokyo Ohka Kogyo Co., Ltd. | Photosensitive composition and compound |
JP6901969B2 (en) | 2014-12-17 | 2021-07-14 | ノクセル・コーポレーション | How to control the deposition of copper on the hair |
US20180000715A1 (en) | 2016-06-30 | 2018-01-04 | The Procter & Gamble Company | Hair Care Compositions For Calcium Chelation |
US11246816B2 (en) | 2016-06-30 | 2022-02-15 | The Procter And Gamble Company | Shampoo compositions comprising a chelant |
US20180000705A1 (en) | 2016-06-30 | 2018-01-04 | The Procter & Gamble Company | Shampoo Compositions Comprising a Chelant |
US20180000706A1 (en) | 2016-06-30 | 2018-01-04 | The Procter & Gamble Company | Conditioner Composition Comprising a Chelant |
US11786447B2 (en) | 2016-06-30 | 2023-10-17 | The Procter & Gamble Company | Conditioner composition comprising a chelant |
-
2017
- 2017-06-22 US US15/630,411 patent/US20180000705A1/en not_active Abandoned
- 2017-06-23 MX MX2018015497A patent/MX2018015497A/en unknown
- 2017-06-23 JP JP2018565764A patent/JP2019518053A/en active Pending
- 2017-06-23 CN CN201780034823.8A patent/CN109310603A/en not_active Withdrawn
- 2017-06-23 WO PCT/US2017/038897 patent/WO2018005256A1/en unknown
- 2017-06-23 EP EP17734949.5A patent/EP3478257A1/en not_active Withdrawn
-
2019
- 2019-07-18 US US16/515,821 patent/US11166894B2/en active Active
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10973744B2 (en) | 2016-06-30 | 2021-04-13 | The Procter And Gamble Company | Conditioner composition comprising a chelant |
US11166894B2 (en) | 2016-06-30 | 2021-11-09 | The Procter And Gamble Company | Shampoo compositions comprising a chelant |
US11246816B2 (en) | 2016-06-30 | 2022-02-15 | The Procter And Gamble Company | Shampoo compositions comprising a chelant |
US11458085B2 (en) | 2016-06-30 | 2022-10-04 | The Procter And Gamble Company | Hair care compositions for calcium chelation |
US11786447B2 (en) | 2016-06-30 | 2023-10-17 | The Procter & Gamble Company | Conditioner composition comprising a chelant |
US11274266B2 (en) | 2018-08-24 | 2022-03-15 | The Procter & Gamble Company | Treatment compositions comprising a surfactant system and an oligoamine |
US11279901B2 (en) | 2018-08-24 | 2022-03-22 | The Procter & Gamble Company | Treatment compositions comprising low levels of an oligoamine |
US12180437B2 (en) | 2018-08-24 | 2024-12-31 | The Procter & Gamble Company | Treatment compositions comprising a surfactant system and an oligoamine |
US12195702B2 (en) | 2018-08-24 | 2025-01-14 | The Procter & Gamble Company | Treatment compositions comprising low levels of an oligoamine |
Also Published As
Publication number | Publication date |
---|---|
US11166894B2 (en) | 2021-11-09 |
WO2018005256A1 (en) | 2018-01-04 |
CN109310603A (en) | 2019-02-05 |
MX2018015497A (en) | 2019-06-06 |
US20190336426A1 (en) | 2019-11-07 |
JP2019518053A (en) | 2019-06-27 |
EP3478257A1 (en) | 2019-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11166894B2 (en) | Shampoo compositions comprising a chelant | |
US11246816B2 (en) | Shampoo compositions comprising a chelant | |
EP0651632B2 (en) | Hair cosmetic composition | |
US10973744B2 (en) | Conditioner composition comprising a chelant | |
US10835469B2 (en) | Method of inhibiting copper deposition on hair | |
EP3134066B1 (en) | Method of inhibiting copper deposition on hair | |
US10568820B2 (en) | Method of inhibiting copper deposition on hair | |
EP2895141B1 (en) | Hair care polymer | |
MX2014008328A (en) | Hair care compositions. | |
US10143644B2 (en) | Composition comprising an anionic-ampholytic polymer association | |
JP6440835B2 (en) | Method for reducing crimp using a composition containing crosslinkable silicone | |
US9839601B2 (en) | Method of frizz reduction using a composition comprising a crosslinkable silicone | |
US6620410B1 (en) | Hair care compositions and protection from ultraviolet radiation | |
US20230346668A1 (en) | Hair treatment composition | |
EP3052197A1 (en) | Performance-enhanced hair treatment composition | |
JPH04230615A (en) | Hair cosmetic | |
US12140539B2 (en) | Method for determining rinse properties | |
JPH06192045A (en) | Hair cosmetic | |
WO2024061814A1 (en) | Conditioner with improved manageability | |
DE10151592A1 (en) | Hair washing agent with fixing capability comprises a nonionic, anionic or amphoteric wash-active surfactant, a silicone-acrylate graft copolymer, a thickener and water | |
WO2015048965A1 (en) | Hair treatment agents containing oligopeptides and hyaluronic acid esters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE PROCTER & GAMBLE COMPANY, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARSH, JENNIFER MARY;KELLY, CASEY PATRICK;SIVIK, MARK ROBERT;SIGNING DATES FROM 20170613 TO 20170614;REEL/FRAME:043508/0595 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |