US20170369997A1 - Ald of metal-containing films using cyclopentadienyl compounds - Google Patents
Ald of metal-containing films using cyclopentadienyl compounds Download PDFInfo
- Publication number
- US20170369997A1 US20170369997A1 US15/700,494 US201715700494A US2017369997A1 US 20170369997 A1 US20170369997 A1 US 20170369997A1 US 201715700494 A US201715700494 A US 201715700494A US 2017369997 A1 US2017369997 A1 US 2017369997A1
- Authority
- US
- United States
- Prior art keywords
- metal
- reactant
- groups
- thin film
- metal containing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 *C1(C)N([1*])*N1[2*] Chemical compound *C1(C)N([1*])*N1[2*] 0.000 description 4
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/18—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
Definitions
- This application relates generally to processes for depositing metal containing films. Certain embodiments relate to processes for manufacturing metal containing thin films by atomic layer deposition using volatile metal containing cyclopentadienyl compounds as source materials.
- Atomic layer deposition refers to vapor deposition-type methods in which a material, typically a thin film, is deposited on a substrate from vapor phase reactants. It is based on sequential self-saturating surface reactions. ALD is described in detail, for example, in U.S. Pat. Nos. 4,058,430 and 5,711,811, incorporated herein by reference.
- the reactants also referred to as “source chemicals” or “precursors”
- source chemicals typically referred to as “source chemicals” or “precursors”
- precursors are separated from each other, typically by inert gas, to prevent gas-phase reactions and to enable the self-saturating surface reactions.
- one of the precursors self-limitingly adsorbs largely intact, without thermal decomposition, while one of the precursors strips or replaces the ligands of the adsorbed layer.
- Surplus source chemicals and reaction by-products, if any are removed from the reaction chamber by purging with an inert gas and/or evacuating the chamber before the next reactive chemical pulse is introduced.
- ALD provides controlled film growth as well as outstanding conformality.
- Various ALD recipes are possible with different reactants supplied in sequential pulses each with different functions, but the hallmark of ALD is self-limiting deposition.
- Metal containing cyclopentadienyl compounds are technologically very important and have a variety of industrially useful properties.
- One such property is the ability for these compounds to adhere to both metals and nonmetals.
- the attached cyclopentadienyl ligand(s) contribute to overall compound stability.
- metal containing compounds can be used, for example, as precursors for forming adhesion layers in various structures including semiconductors, insulators, and ferroelectrics.
- PVD physical vapor deposition
- metal containing precursors have been previously used in ALD methods, but these precursors have a tendency to incorporate impurities into the growing thin film.
- known processes utilizing metal chlorides, such as TiCl 4 , and hydrogen plasma incorporate halide impurities into the resulting thin films.
- metal chlorides such as TiCl 4
- hydrogen plasma incorporate halide impurities into the resulting thin films.
- non-halide metal precursors such as metal containing alkoxides, like Ti(OMe) 4 , where oxygen tends to remain in the film as an impurity.
- metal alkylamides have been used in the art as precursors for ALD processes.
- these compounds suffer from thermal instability such that it can be difficult to find a deposition temperature that will not cause decomposition of the precursors and will keep the thin film atoms intact, but will still keep the precursors in vapor phase and provide the activation energy for the surface reactions.
- atomic layer deposition (ALD) processes for producing metal containing thin films are provided.
- the processes preferably comprise alternately contacting a substrate in a reaction space with vapor phase pulses of at least one metal containing cyclopentadienyl precursor and at least one second reactant, such that a thin metal-containing film is formed on the substrate.
- the metal containing cyclopentadienyl precursor comprises a metal atom that is not directly bonded to a halide or oxygen atom.
- the metal atom is bonded to at least one cyclopentadienyl ligand and separately bonded to at least one ligand via nitrogen, wherein the ligands may comprise oxygenated or halogenated groups not directly bonded to the metal.
- the cyclopentadienyl precursor does not contain halide or oxygen atoms at all.
- the metal containing cyclopentadienyl precursor comprises a nitrogen-bridged ligand.
- the metal containing cyclopentadienyl precursor comprises a metal selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir, more preferably from the group consisting of Ti, Zr, Hf, Ta, W, Nb, and Mo.
- the metal containing cyclopentadienyl precursor comprises a metal with a trivalent oxidation state.
- ALD processes for forming an elemental metal thin film are provided.
- the processes preferably comprise alternately contacting a substrate with a metal containing cyclopentadienyl precursor as described above and a second reactant such that an elemental metal thin film is formed on the substrate.
- the second reactant is selected from hydrogen or hydrogen plasma. The cycles are repeated until a thin film of the desired thickness has been deposited.
- ALD processes for forming a metal nitride thin film are provided.
- the processes preferably comprise alternately contacting a substrate with a metal containing cyclopentadienyl reactant as provided above and a second nitrogen containing reactant such that a metal nitride thin film is formed on the substrate.
- the second reactant is selected from NH 3 , N 2 plasma, N 2 /H 2 plasma, hydrazine, and/or hydrazine derivatives.
- an atomic layer deposition process for forming a metal carbide thin film comprises alternately contacting a substrate with a metal containing cyclopentadienyl precursor as provided above and second carbon containing reactant such that a metal carbide thin film is formed on the substrate.
- the carbon source is a hydrocarbon such as an alkane, alkene, and/or alkyne.
- the carbon containing compound preferably comprises a central atom selected from group B, Al, Ga, In, Si, Ge, Sn, P, As, or S.
- multicomponent thin films are deposited by atomic layer deposition processes.
- the processes preferably comprise at least two growth sub-cycles with the first sub-cycle comprising contacting a substrate with alternate and sequential vapor phase pulses of a first metal precursor and a first reactant, and then a second sub-cycle comprising contacting the substrate with alternate and sequential vapor phase pulses of a second metal precursor and a second reactant.
- the second metal precursor is different from the first metal precursor.
- the second metal precursor may comprise a different metal from the first metal precursor.
- the second reactant is different from the first reactant.
- the first and second reactants may contribute different species, such as N, C, or O to the growing film.
- the metal precursor is a metal containing cyclopentadienyl precursor as described above.
- the sub-cycles may be repeated in equivalent numbers. However, in some embodiments the ratio of the sub-cycles is varied to achieve the desired film composition, as will be apparent to the skilled artisan.
- a multicomponent thin film comprises at least one elemental metal layer whereby at least one of the growth sub-cycles comprises contacting a substrate with alternate and sequential vapor phase pulses of a metal containing cyclopentadienyl precursor and a reactant.
- the reactant is selected from hydrogen and hydrogen plasma.
- a multicomponent thin film comprising at least one metal nitride layer is deposited by atomic layer deposition type processes.
- the processes preferably comprise at least one sub-cycle of alternating and sequential pulses of a metal containing cyclopentadienyl precursor and a nitrogen containing reactant.
- the nitrogen containing material is selected from the group consisting of NH 3 , N 2 plasma, N 2 /H 2 plasma, hydrazine, and hydrazine derivatives.
- a multicomponent thin film comprising at least one metal carbide layer is deposited by atomic layer deposition type processes.
- the processes preferably comprise at least one sub-cycle of alternating and sequential pulses of a metal containing cyclopentadienyl precursor and a carbon source material.
- the carbon source material is a hydrocarbon.
- the hydrocarbon is selected from alkanes, alkenes, and alkynes.
- the carbon containing compound may be one with a central atom selected from group B, Al, Ga, In, Si, Ge, Sn, P, As, or S.
- the disclosed ALD processes preferably comprise at least one sub-cycle comprising alternating and sequential pulses of a metal containing cyclopentadienyl precursor.
- the metal containing cyclopentadienyl precursor comprises at least one cyclopentadienyl ligand and a metal that is not directly bonded to a halide or oxygen atom.
- the metal precursor comprises at least one cyclopentadienyl ligand and at least one ligand that is separately bonded to the metal via nitrogen, wherein each ligand may contain oxygenated or halogenated groups not directly bonded to the metal.
- At least one chelating ligand such as a bidentate ligand, is bonded to the metal via nitrogen.
- the metal containing cyclopentadienyl precursor may comprise a nitrogen-bridged ligand. In some embodiments the precursor does not comprise any oxygen or halide atoms.
- the metal precursor is selected from (R 1 R 2 R 3 R 4 R 5 Cp) x —MR o z —(R 6 ) y .
- the metal containing cyclopentadienyl precursor may be, for example, a titanium cyclopentadienyl compound having the formulas described.
- the precursor is biscyclopentadienyl triisopropylguanidinato titanium (III).
- the substrate temperature is higher than the evaporation temperature of the precursor and lower than the decomposition temperature of the precursor.
- FIG. 1 is a flow chart showing a typical process flow according to some preferred embodiments.
- metal cyclopentadienyl compounds with the particular characteristics described herein have been found to be good metal precursors for depositing metal containing thin films by ALD because these compounds avoid many of the problems associated with the use of previously known metal precursors.
- an ALD type process generally refers to a process for depositing thin films on a substrate molecular layer by molecular layer. This controlled deposition is made possible by self-saturating chemical reactions on the substrate surface. Vapor phase reactants are conducted alternately and sequentially into a reaction chamber and contacted with a substrate located in the chamber to provide a surface reaction. Typically, a pulse of a first reactant is provided to the reaction chamber where it chemisorbs on the substrate surface in a self-limiting manner. Any excess first reactant (and reactant byproducts, if any) is then removed and a pulse of a second reactant is provided to the reaction chamber.
- the second reactant reacts with the adsorbed first reactant, also in a self-limiting manner. Excess second reactant and reaction by-products, if any, are removed from the reaction chamber. Additional reactants may be supplied in each ALD cycle, depending on the composition of the thin film being deposited. This cycle is repeated to form a metal containing thin film of desired thickness.
- the pressure and the temperature of the reaction chamber are adjusted to a range where physisorption (i.e., condensation of gases) and thermal decomposition of the precursors are avoided. Consequently, only up to one monolayer (i.e., an atomic layer or a molecular layer) of material is deposited at a time during each pulsing cycle.
- the actual growth rate of the thin film which is typically presented as A/pulsing cycle, depends, for example, on the number of available reactive surface sites on the surface and bulkiness of the reactant molecules.
- Reactant pulses are separated from each other and the reaction chamber is purged with the aid of an inactive gas (e.g. nitrogen or argon) and/or evacuated between reactant pulses to remove surplus gaseous reactants and reaction by-products from the chamber.
- an inactive gas e.g. nitrogen or argon
- ALD type processes are discussed e.g. in the Handbook of Crystal Growth 3, Thin Films and Epitaxy, Part B: Growth Mechanisms and Dynamics, Chapter 14, Atomic Layer Epitaxy, pp. 601-663, Elsevier Science B.V. 1994, the disclosure of which is incorporated herein by reference.
- a reaction space designates generally a reaction chamber, or a defined volume therein, in which the conditions can be adjusted so that deposition of a thin film is possible.
- an ALD type reactor is a reactor where the reaction space is in fluid communication with an inactive gas source and at least one, preferably at least two precursor sources such that the precursors can be pulsed into the reaction space.
- the reaction space is also preferably in fluid communication with a vacuum generator (e.g. a vacuum pump), and the temperature and pressure of the reaction space and the flow rates of gases can be adjusted to a range that makes it possible to grow thin films by ALD type processes.
- the reactor also includes the mechanism, such as valves and programming, to pulse and maintain separation between the reactants.
- PEALD plasma enhanced ALD
- thermal ALD refers to an ALD method where plasma is not used but where the substrate temperature is high enough for overcoming the energy barrier (activation energy) during collisions between the chemisorbed species on the surface and reactant molecules in the gas phase so that up to a molecular layer of thin film grows on the substrate surface during each ALD pulsing sequence or cycle.
- ALD covers both PEALD and thermal ALD.
- Metal source material and “metal precursor” are used interchangeably to designate a volatile or gaseous metal compound that can be used in an ALD process and contributes metal to a deposited film.
- multicomponent thin film covers thin films comprising at least two different metal atoms.
- metal containing thin films are deposited by ALD using metal containing cyclopentadienyl precursors.
- the metal containing cyclopentadienyl precursor comprises a metal selected from the group consisting of Ti, Zr, Hf, Ta, W, Nb, and Mo.
- the metal has a trivalent oxidation state.
- the trivalent metal is selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir.
- the metal containing cyclopentadienyl (Cp) precursor comprises at least one cyclopentadienyl ligand and does not contain halide or oxygen atoms.
- the metal precursor may contain halide or oxygen atoms not directly bonded to the metal.
- the precursor contains at least one cyclopentadienyl ligand and at least one ligand that is bonded to the metal via nitrogen, wherein each ligand may contain oxygen or halogen groups not directly bonded to the metal.
- the precursor may contain nitrogen-bridged ligands.
- Exemplary recursors can be selected from the group consisting of compounds according to Formulae I-VII as described below.
- the metal containing cyclopentadienyl compound comprises at least one ligand that is bonded to the metal via nitrogen as depicted by Formula II:
- the alkyl, alkenyl and alkynyl groups can be selected from any linear or branched alkyl, alkenyl and alkynyl groups which have 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, in particular 1 to 6 carbon atoms.
- alkyl groups include methyl; ethyl; n- and i-propyl-; n-, i- and t-butyl-; n- and isoamyl; n- and isopentyl; n- and isohexyl; and 2,3-dimethyl-2-butyl.
- alkyl groups are preferred.
- the C 1-20 , preferably C 1-10 , in particular C 1-6 , alkenyl and alkynyl groups include the corresponding groups having a corresponding degree of unsaturation.
- the metal containing cyclopentadienyl precursor is a compound having at least one cyclopentadienyl ligand and at least one chelating ligand, for example, a bidentate ligand.
- this compound is depicted by Formula III, (R 1 R 2 R 3 R 4 R 5 Cp) x —MR 0 z —(NR 1 NR 2 R) y , as follows:
- the metal containing cylcopentadienyl precursor is depicted by Formula IV, (R 1 R 2 R 3 R 4 R 5 Cp) x —MR 0 z —[(NR 1 NR 2 )CNR 3 ] y , as follows:
- the metal containing cyclopentadienyl precursor is depicted by Formula V, (R 1 R 2 R 3 R 4 R 5 Cp) x —MR 0 z —[(NR 1 NR 2 )CNR 3 R 4 ] y , as follows:
- the metal containing cyclopentadienyl precursor is biscyclopentadienyl triisopropylguanidinato titanium (III) as depicted by Formula VI:
- the metal containing cyclopentadienyl compound as described in Formulae I-VI may comprise R 0 , R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 wherein each is independently selected from
- a metal containing cyclopentadienyl compound as described may comprise modified cyclopentadienyl groups.
- the modified cyclopentadienyl groups are selected from the group consisting of Me 5 Cp, MeCp, EtCp, and Me 3 SiCp.
- the metal containing cyclopentadienyl compound may comprise an anionic or dianionic guanidinate ligand such as a triisopropylguandinate ligand.
- a gas phase pulse of first reactant, a metal containing cyclopentadienyl compound ( 100 ) is introduced into the reaction space of an ALD reactor, where it is contacted with a suitable substrate. No more than a monolayer of the metal precursor adsorbs on the substrate surface in a self-limiting manner. Excess metal precursor is removed from the reaction space by purging and/or evacuating the chamber ( 200 ).
- a gas phase pulse of a second reactant is introduced into the reaction space ( 300 ), where it reacts with the adsorbed metal precursor in a self-limiting manner.
- the second reactant will be selected based on the nature of the metal containing film being deposited.
- the second reactant may strip ligands from the adsorbed species.
- the second reactant may also contribute to the film, for example it may contribute carbon (to form a metal carbide film) or nitrogen (to form metal nitride film).
- the film may comprise a single metal species or, through the use of multiple reactants, a combination of species, for example one or more metal species, nitrogen, carbon etc . . .
- the second reactant is removed from the reaction space ( 400 ). If a thin film of a desired thickness has been formed, the process may be terminated ( 500 ). However, if additional deposition is desired, the cycle may be begun again ( 600 ). As discussed below, subsequent cycles may or may not be identical to the previous cycle.
- a metal containing thin film of the desired composition and thickness can be deposited.
- a growth rate of about from 0.1 to 1.5 ⁇ /cycle is typically achieved in ALD processes. Growth rates and suitable growth temperatures depend, in part, upon the metal precursor chosen and can be readily determined by the skilled artisan.
- an inactive gas can be used as a carrier gas during deposition.
- Inactive gas may also be used to purge the reaction chamber of excess reactant and reaction by-products, if any, between reactant pulses.
- the deposition can be carried out at normal pressure, but it is preferred to operate the process at reduced pressure.
- the pressure in the reactor is typically from about 1 to about 100 mbar, preferably from 5 to about 50 mbar.
- the reaction temperature can be varied depending, in part, on the evaporation temperature and the decomposition temperature of the precursor. In some embodiments, the range is from about 20° C. to about 500° C., preferably from about 100° C. to about 400° C., more preferably from about 200° C. to about 400° C.
- the substrate temperature is preferably low enough to keep the bonds among thin film atoms intact and to prevent thermal decomposition of the gaseous reactants. On the other hand, the substrate temperature is preferably high enough to keep the source materials in gaseous phase and avoid condensation. Further, the temperature is preferably sufficiently high to provide the activation energy for the surface reaction.
- the substrate can be of various types. Examples include, without limitation, silicon, silica, coated silicon, germanium, silicon-germanium alloys, copper metal, noble metals group (including silver, gold, platinum, palladium, rhodium, iridium and ruthenium), nitrides, such as transition nitrides, e.g. tantalum nitride TaN, carbides, such as transition carbides, e.g. tungsten carbide WC, and nitride carbides, e.g. tungsten nitride carbide WN x C y .
- the preceding thin film layer deposited on the substrate, if any, will form the substrate surface for the next thin film.
- a metal containing cyclopentadienyl compound as described above preferably one wherein the metal is not directly bonded to a halide or oxygen atom, is used to produce an elemental metal thin film.
- the metal precursor may be selected from compounds according to Formulae I-VI as described above.
- the elemental metal thin film is deposited by alternately and sequentially contacting the substrate with the metal containing cyclopentadienyl compound and a second reactant to deposit an elemental metal thin film.
- the second reactant is hydrogen or hydrogen plasma.
- the metal precursor is a titanium cyclopentadienyl compound.
- a metal containing cyclopentadienyl precursor as described above preferably wherein the metal is not directly bonded to a halide or oxygen atom, can be used to produce a metal nitride thin film.
- the metal precursor may be selected from compounds according to Formulae I-VI as described above.
- the metal containing cyclopentadienyl reactant is provided to the reaction space alternately and sequentially with a nitrogen source material.
- the nitrogen source material may be selected from the group consisting of NH 3 , N 2 plasma, N 2 /H 2 plasma, hydrazine, and/or hydrazine derivatives.
- a titanium nitride thin film is deposited.
- a metal containing cyclopentadienyl precursor as provided above, preferably wherein the metal is not directly bonded to a halide or oxygen atom, can also be used in conjunction with a carbon compound to produce a metal carbide thin film.
- the metal precursor is selected from compounds according to Formulae I-VI as described above and is provided alternately and sequentially with a second carbon-contributing reactant in an ALD process.
- the carbon compound is a hydrocarbon.
- the hydrocarbon is selected from alkanes, alkenes, and alkynes.
- the carbon containing compound is one with a central atom selected from group B, Al, Ga, In, Si, Ge, Sn, P, As, or S.
- the metal containing precursor is a titanium cyclopentadienyl compound and the metal carbide thin film is a titanium carbide thin film.
- each additional metal source material can be introduced to the ALD process.
- each additional metal source material is provided in a separate pulse, with each cycle comprising feeding a vapor phase pulse of an additional metal source material, removing excess additional metal source material, providing a vapor phase pulse of a reactant, and removing excess reactant.
- the same said reactant may be provided after each of the two or more different metal source material, or different reactants (e.g., reducing agents, carbon sources, and/or nitrogen sources) may be used to react with different metal precursors.
- the number of cycles for each metal precursor may be equivalent or may be different, depending on the composition of the film that is desired.
- a multicomponent thin film is deposited by ALD processes with at least two growth sub-cycles comprising a first sub-cycle involving feeding a vapor phase pulse of a first metal containing precursor, removing excess first metal containing precursor, providing a vapor phase pulse of a first reactant, removing excess first reactant; then a second sub-cycle involving feeding a vapor phase pulse of a second metal containing precursor, removing excess second metal containing precursor, providing a vapor phase pulse of a second reactant, and then removing excess second reactant.
- a third, fourth, fifth etc . . . metal compound is used, typically in additional sub-cycles. The ratio of subcycles can be selected depending on the desired thin film composition. At least one sub-cycle deposits a different material from another sub-cycle.
- a metal containing cyclopentadienyl precursor as described above is used a the metal containing precursor in at least one subcycle.
- ALD processes for producing a multicomponent thin film comprise at least one elemental metal sub-cycle.
- the processes preferably comprise contacting a substrate with alternate and sequential vapor phase pulses of a metal precursor and a reactant.
- the first reactant may be selected from hydrogen or hydrogen plasma.
- the metal precursor is preferably a metal containing cyclopentadienyl compound as described above.
- the metal containing cyclopentadienyl may be, for example, selected from the compounds having Formulae I-VI as described.
- ALD processes for producing a multicomponent thin film comprise at least one metal nitride sub-cycle.
- the processes preferably comprise contacting a substrate with alternate and sequential vapor phase pulses of a metal precursor and a reactant.
- the metal precursor is preferably a metal containing cyclopentadienyl compound as described above.
- the nitrogen containing material is selected from the group consisting of NH 3 , N 2 plasma, N 2 /H 2 plasma, hydrazine, and/or hydrazine derivatives.
- the metal containing cyclopentadienyl may be selected from the compounds having Formulae I-VI as described.
- multicomponent thin film deposition processes comprising at least one metal carbide sub-cycle are conducted by atomic layer deposition type processes. These sub-cycles preferably comprise contacting a substrate with alternate and sequential vapor phase pulses of a metal precursor and a carbon source material, where the metal precursor is preferably a metal containing cyclopentadienyl compound as described above.
- the carbon source material is a hydrocarbon, preferably a hydrocarbon selected from alkanes, alkenes, and alkynes.
- the carbon containing compound is one with a central atom selected from group B, Al, Ga, In, Si, Ge, Sn, P, As, or S.
- the metal containing cyclopentadienyl may be selected from the compounds having Formulae I-VI as described.
- a pulse of an additional metal precursor is the second source material provided after the first metal precursor in the same deposition cycle.
- a first reactant is then provided to convert the two metals into the desired type of thin film. Additional metal precursors may also be provided prior to provision of a reactant. In other embodiments, a reactant is provided after each metal source precursor, as discussed above.
- the additional metal compound is provided in each ALD cycle. That is, a pulse of the second metal compound is provided for each pulse of the first metal precursor.
- the second metal compound is provided intermittently in a selected ratio to the first metal precursor pulses in the deposition process.
- at least one of the metal precursors, for the disclosed ALD processes is a metal containing cyclopentadienyl compound as described above, such as a titanium cyclopentadienyl compound.
- the initial ALD cycle may be started with any of the phases described above. However, one of skill in the art will recognize that if the initial ALD cycle does not begin with the metal source phase, at least two ALD cycles will typically need to be completed to begin deposition of the desired thin film. As is well-known in the art, typically less than a monolayer of a material is deposited in each ALD cycle due, in part, to steric hindrance and the availability of reactive sites on the substrate surface.
- At least one of the additional metal precursors can be metal compounds comprising a single metal or complex metal compounds comprising two or more metals.
- the metal compounds comprise at least one metal selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir.
- at least one metal is a trivalent metal.
- the suitability of each metal compound for use in the ALD processes disclosed herein has to be considered.
- the properties of the compounds can be found, e.g., in N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 1 st edition, Pergamon Press, 1986.
- the suitability of any particular compound can readily be determined by a skilled artisan.
- the novel thin film deposition processes will find extensive application as semiconductors, insulators and ferroelectrics.
- the films formed according to preferred methods may define, e.g., diffusion barriers in integrated circuits, metal gates in transistors, or metal electrodes in capacitor structures.
- metal nitride films may serve as top/bottom electrodes for MIM/MIS capacitors, such as eDRAM, DRAM, RF decoupling, and planar and 3-D capacitors.
- metal carbide films can be formed as a component of an integrated circuit, such as, e.g., a conductive diffusion barrier forming a part of a line in a dual damascene structure, a metal gate electrode, such as an NMOS gate electrode, or an anti-reflective coating.
- the metal carbide film may form a part of hard coating on a substrate to protect against mechanical wear, or may be used as a component of a corrosion protection layer.
- the metal carbide film can be, e.g., used as part of a chemical reaction catalyst or as an etch stop barrier.
- the metal containing cyclopentadienyl precursors described herein for use in ALD processes not only lack many of the problems associated with thermal instability, but also provides for better film uniformity by avoiding oxygen and halide contamination.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 15/602,514, filed on May 23, 2017, which is a continuation of U.S. application Ser. No. 15/363,998, filed Nov. 29, 2016 and issued as U.S. Pat. No. 9,670,582, which is a continuation of U.S. application Ser. No. 15/006,532, filed Jan. 26, 2016 and issued as U.S. Pat. No. 9,677,175, which is a continuation of U.S. application Ser. No. 14/311,154, filed Jun. 20, 2014 and issued as U.S. Pat. No. 9,273,391, which is a continuation of U.S. application Ser. No. 11/588,595 filed Oct. 27, 2006 and issued as U.S. Pat. No. 8,795,771, each of which is hereby incorporated by reference in its entirety.
- This application relates generally to processes for depositing metal containing films. Certain embodiments relate to processes for manufacturing metal containing thin films by atomic layer deposition using volatile metal containing cyclopentadienyl compounds as source materials.
- Atomic layer deposition (“ALD”) refers to vapor deposition-type methods in which a material, typically a thin film, is deposited on a substrate from vapor phase reactants. It is based on sequential self-saturating surface reactions. ALD is described in detail, for example, in U.S. Pat. Nos. 4,058,430 and 5,711,811, incorporated herein by reference.
- According to the principles of ALD, the reactants (also referred to as “source chemicals” or “precursors”) are separated from each other, typically by inert gas, to prevent gas-phase reactions and to enable the self-saturating surface reactions. Typically, one of the precursors self-limitingly adsorbs largely intact, without thermal decomposition, while one of the precursors strips or replaces the ligands of the adsorbed layer. Surplus source chemicals and reaction by-products, if any, are removed from the reaction chamber by purging with an inert gas and/or evacuating the chamber before the next reactive chemical pulse is introduced. ALD provides controlled film growth as well as outstanding conformality. Various ALD recipes are possible with different reactants supplied in sequential pulses each with different functions, but the hallmark of ALD is self-limiting deposition.
- Metal containing cyclopentadienyl compounds are technologically very important and have a variety of industrially useful properties. One such property is the ability for these compounds to adhere to both metals and nonmetals. Furthermore, without being bound to any theory, it is believed that the attached cyclopentadienyl ligand(s) contribute to overall compound stability. As a result, metal containing compounds can be used, for example, as precursors for forming adhesion layers in various structures including semiconductors, insulators, and ferroelectrics.
- Metal containing films have previously been manufactured by physical vapor deposition (PVD) methods. These processes are well-known in the art. However, the PVD process has a number of drawbacks. For example, the PVD process is difficult or impossible to use for depositing thin film layers on complicated surfaces such as microelectronic surfaces with deep trenches and holes. In contrast, ALD processes can provide films of uniform quality and thickness.
- Several different metal containing precursors have been previously used in ALD methods, but these precursors have a tendency to incorporate impurities into the growing thin film. For example, known processes utilizing metal chlorides, such as TiCl4, and hydrogen plasma incorporate halide impurities into the resulting thin films. Similar concerns arise for known non-halide metal precursors such as metal containing alkoxides, like Ti(OMe)4, where oxygen tends to remain in the film as an impurity.
- As an alternative to the halide and oxide precursors, metal alkylamides, have been used in the art as precursors for ALD processes. However, these compounds suffer from thermal instability such that it can be difficult to find a deposition temperature that will not cause decomposition of the precursors and will keep the thin film atoms intact, but will still keep the precursors in vapor phase and provide the activation energy for the surface reactions.
- In one aspect of the invention, atomic layer deposition (ALD) processes for producing metal containing thin films are provided. The processes preferably comprise alternately contacting a substrate in a reaction space with vapor phase pulses of at least one metal containing cyclopentadienyl precursor and at least one second reactant, such that a thin metal-containing film is formed on the substrate. In some embodiments, the metal containing cyclopentadienyl precursor comprises a metal atom that is not directly bonded to a halide or oxygen atom. In further embodiments, the metal atom is bonded to at least one cyclopentadienyl ligand and separately bonded to at least one ligand via nitrogen, wherein the ligands may comprise oxygenated or halogenated groups not directly bonded to the metal. In other embodiments the cyclopentadienyl precursor does not contain halide or oxygen atoms at all. In yet other embodiments, the metal containing cyclopentadienyl precursor comprises a nitrogen-bridged ligand.
- In preferred embodiments, the metal containing cyclopentadienyl precursor comprises a metal selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir, more preferably from the group consisting of Ti, Zr, Hf, Ta, W, Nb, and Mo. In some embodiments, the metal containing cyclopentadienyl precursor comprises a metal with a trivalent oxidation state.
- In another aspect of the invention, ALD processes for forming an elemental metal thin film are provided. The processes preferably comprise alternately contacting a substrate with a metal containing cyclopentadienyl precursor as described above and a second reactant such that an elemental metal thin film is formed on the substrate. In some embodiments, the second reactant is selected from hydrogen or hydrogen plasma. The cycles are repeated until a thin film of the desired thickness has been deposited.
- In another aspect of the invention, ALD processes for forming a metal nitride thin film are provided. The processes preferably comprise alternately contacting a substrate with a metal containing cyclopentadienyl reactant as provided above and a second nitrogen containing reactant such that a metal nitride thin film is formed on the substrate. In some embodiments, the second reactant is selected from NH3, N2 plasma, N2/H2 plasma, hydrazine, and/or hydrazine derivatives.
- In another aspect of the invention, an atomic layer deposition process for forming a metal carbide thin film comprises alternately contacting a substrate with a metal containing cyclopentadienyl precursor as provided above and second carbon containing reactant such that a metal carbide thin film is formed on the substrate. In some embodiments, the carbon source is a hydrocarbon such as an alkane, alkene, and/or alkyne. In other embodiments, the carbon containing compound preferably comprises a central atom selected from group B, Al, Ga, In, Si, Ge, Sn, P, As, or S.
- In another aspect, multicomponent thin films are deposited by atomic layer deposition processes. The processes preferably comprise at least two growth sub-cycles with the first sub-cycle comprising contacting a substrate with alternate and sequential vapor phase pulses of a first metal precursor and a first reactant, and then a second sub-cycle comprising contacting the substrate with alternate and sequential vapor phase pulses of a second metal precursor and a second reactant. In some embodiments the second metal precursor is different from the first metal precursor. For example, the second metal precursor may comprise a different metal from the first metal precursor. In other embodiments the second reactant is different from the first reactant. For example, the first and second reactants may contribute different species, such as N, C, or O to the growing film. In at least one of the growth sub-cycles the metal precursor is a metal containing cyclopentadienyl precursor as described above. The sub-cycles may be repeated in equivalent numbers. However, in some embodiments the ratio of the sub-cycles is varied to achieve the desired film composition, as will be apparent to the skilled artisan.
- In another aspect, a multicomponent thin film comprises at least one elemental metal layer whereby at least one of the growth sub-cycles comprises contacting a substrate with alternate and sequential vapor phase pulses of a metal containing cyclopentadienyl precursor and a reactant. In some embodiments, the reactant is selected from hydrogen and hydrogen plasma.
- In another aspect, a multicomponent thin film comprising at least one metal nitride layer is deposited by atomic layer deposition type processes. The processes preferably comprise at least one sub-cycle of alternating and sequential pulses of a metal containing cyclopentadienyl precursor and a nitrogen containing reactant. In some embodiments the nitrogen containing material is selected from the group consisting of NH3, N2 plasma, N2/H2 plasma, hydrazine, and hydrazine derivatives.
- In another aspect, a multicomponent thin film comprising at least one metal carbide layer is deposited by atomic layer deposition type processes. The processes preferably comprise at least one sub-cycle of alternating and sequential pulses of a metal containing cyclopentadienyl precursor and a carbon source material. In some embodiments the carbon source material is a hydrocarbon. In other embodiments, the hydrocarbon is selected from alkanes, alkenes, and alkynes. The carbon containing compound may be one with a central atom selected from group B, Al, Ga, In, Si, Ge, Sn, P, As, or S.
- The disclosed ALD processes preferably comprise at least one sub-cycle comprising alternating and sequential pulses of a metal containing cyclopentadienyl precursor. Preferably, the metal containing cyclopentadienyl precursor comprises at least one cyclopentadienyl ligand and a metal that is not directly bonded to a halide or oxygen atom. Alternatively, the metal precursor comprises at least one cyclopentadienyl ligand and at least one ligand that is separately bonded to the metal via nitrogen, wherein each ligand may contain oxygenated or halogenated groups not directly bonded to the metal. In some preferable embodiments, at least one chelating ligand, such as a bidentate ligand, is bonded to the metal via nitrogen. Additionally, the metal containing cyclopentadienyl precursor may comprise a nitrogen-bridged ligand. In some embodiments the precursor does not comprise any oxygen or halide atoms.
- Preferably, the metal precursor is selected from (R1R2R3R4R5Cp)x—MRo z—(R6)y. (R1R2R3R4R5Cp)x—MR0 z—(NR1R2)y, (R1R2R3R4R5Cp)x—MR0 z—(NR1NR2R)y, and (R1R2R3R4R5Cp)x—MR0 z—[(NR1NR2)CNR3]y, (R1R2R3R4R5Cp)x—MR0 z—[(NR1NR2)CNR3R4]y. The metal containing cyclopentadienyl precursor may be, for example, a titanium cyclopentadienyl compound having the formulas described. In some embodiments the precursor is biscyclopentadienyl triisopropylguanidinato titanium (III).
- Preferably the substrate temperature is higher than the evaporation temperature of the precursor and lower than the decomposition temperature of the precursor.
-
FIG. 1 is a flow chart showing a typical process flow according to some preferred embodiments. - Stable metal containing precursors that have thermal stability yet avoid possible contamination problems are desirable for ALD processes. As discussed below, metal cyclopentadienyl compounds with the particular characteristics described herein have been found to be good metal precursors for depositing metal containing thin films by ALD because these compounds avoid many of the problems associated with the use of previously known metal precursors.
- In context of the present invention, “an ALD type process” generally refers to a process for depositing thin films on a substrate molecular layer by molecular layer. This controlled deposition is made possible by self-saturating chemical reactions on the substrate surface. Vapor phase reactants are conducted alternately and sequentially into a reaction chamber and contacted with a substrate located in the chamber to provide a surface reaction. Typically, a pulse of a first reactant is provided to the reaction chamber where it chemisorbs on the substrate surface in a self-limiting manner. Any excess first reactant (and reactant byproducts, if any) is then removed and a pulse of a second reactant is provided to the reaction chamber. The second reactant reacts with the adsorbed first reactant, also in a self-limiting manner. Excess second reactant and reaction by-products, if any, are removed from the reaction chamber. Additional reactants may be supplied in each ALD cycle, depending on the composition of the thin film being deposited. This cycle is repeated to form a metal containing thin film of desired thickness.
- The pressure and the temperature of the reaction chamber are adjusted to a range where physisorption (i.e., condensation of gases) and thermal decomposition of the precursors are avoided. Consequently, only up to one monolayer (i.e., an atomic layer or a molecular layer) of material is deposited at a time during each pulsing cycle. The actual growth rate of the thin film, which is typically presented as A/pulsing cycle, depends, for example, on the number of available reactive surface sites on the surface and bulkiness of the reactant molecules.
- Gas phase reactions between precursors and any undesired reactions with reaction by-products, if any, are preferably inhibited or prevented to maintain self-limiting behavior and minimize contamination. Reactant pulses are separated from each other and the reaction chamber is purged with the aid of an inactive gas (e.g. nitrogen or argon) and/or evacuated between reactant pulses to remove surplus gaseous reactants and reaction by-products from the chamber. The principles of ALD type processes are discussed e.g. in the Handbook of Crystal Growth 3, Thin Films and Epitaxy, Part B: Growth Mechanisms and Dynamics, Chapter 14, Atomic Layer Epitaxy, pp. 601-663, Elsevier Science B.V. 1994, the disclosure of which is incorporated herein by reference.
- An extensive description of ALD precursors and ALD-grown materials can be found in the Handbook of Thin Film Materials, Vol. 1: Deposition and Processing of Thin Films, Chapter 2 “Atomic Layer Deposition”, pp. 103-159, Academic Press 2002, incorporated by reference herein.
- In the context of the present application “a reaction space” designates generally a reaction chamber, or a defined volume therein, in which the conditions can be adjusted so that deposition of a thin film is possible.
- In the context of the present application, “an ALD type reactor” is a reactor where the reaction space is in fluid communication with an inactive gas source and at least one, preferably at least two precursor sources such that the precursors can be pulsed into the reaction space. The reaction space is also preferably in fluid communication with a vacuum generator (e.g. a vacuum pump), and the temperature and pressure of the reaction space and the flow rates of gases can be adjusted to a range that makes it possible to grow thin films by ALD type processes. The reactor also includes the mechanism, such as valves and programming, to pulse and maintain separation between the reactants.
- As is well known in the art, there are a number of variations of the basic ALD method, including PEALD (plasma enhanced ALD) in which plasma is used for activating reactants. Conventional ALD or thermal ALD refers to an ALD method where plasma is not used but where the substrate temperature is high enough for overcoming the energy barrier (activation energy) during collisions between the chemisorbed species on the surface and reactant molecules in the gas phase so that up to a molecular layer of thin film grows on the substrate surface during each ALD pulsing sequence or cycle. As used herein, the term “ALD” covers both PEALD and thermal ALD.
- “Metal source material” and “metal precursor” are used interchangeably to designate a volatile or gaseous metal compound that can be used in an ALD process and contributes metal to a deposited film.
- The term “multicomponent thin film” covers thin films comprising at least two different metal atoms.
- According to preferred embodiments, metal containing thin films are deposited by ALD using metal containing cyclopentadienyl precursors. In some embodiments, the metal containing cyclopentadienyl precursor comprises a metal selected from the group consisting of Ti, Zr, Hf, Ta, W, Nb, and Mo. In other embodiments, the metal has a trivalent oxidation state. In further embodiments, the trivalent metal is selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir.
- Preferably, the metal containing cyclopentadienyl (Cp) precursor comprises at least one cyclopentadienyl ligand and does not contain halide or oxygen atoms. However, in other embodiments the metal precursor may contain halide or oxygen atoms not directly bonded to the metal. In still other embodiments the precursor contains at least one cyclopentadienyl ligand and at least one ligand that is bonded to the metal via nitrogen, wherein each ligand may contain oxygen or halogen groups not directly bonded to the metal. In some embodiments, the precursor may contain nitrogen-bridged ligands. Exemplary recursors can be selected from the group consisting of compounds according to Formulae I-VII as described below.
- The general formula for a metal precursor comprising at least one cyclopentadienyl ligand can be written according to Formula I:
-
(R1R2R3R4R5Cp)x—MR0 z—(R6)y (I) - wherein M is a metal preferably selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir;
- wherein each R1, R2, R3, R4, R5, and R0 is independently selected from:
- i. hydrogen;
- ii. linear and branched C1-C20 alkyl, alkenyl and alkynyl groups, which are independently substituted or unsubstituted;
- iii. carbocyclic groups, such as aryl, preferably phenyl, cyclopentadienyl, alkylaryl, and halogenated carbocyclic groups; and
- iv. heterocyclic groups;
- wherein R6 is independently selected from:
- i. hydrogen;
- ii. linear and branched C1-C20 alkyl, alkenyl and alkynyl groups, which are independently substituted or unsubstituted;
- iii. carbocyclic groups, such as aryl, preferably phenyl, cyclopentadienyl, alkylaryl, and halogenated carbocyclic groups;
- iv. heterocyclic groups; and
- v. NR1R2; and
- wherein both x and y are ≧1 and z≧0.
- In some embodiments, the metal containing cyclopentadienyl compound comprises at least one ligand that is bonded to the metal via nitrogen as depicted by Formula II:
-
(R1R2R3R4R5Cp)x—MR0 z—(NR1R2)y (II) - wherein M is a metal preferably selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir;
- wherein each R1, R2, R3, R4, R5, and R0 is independently selected from:
- i. hydrogen;
- ii. linear and branched C1-C20 alkyl, alkenyl and alkynyl groups, which are independently substituted or unsubstituted;
- iii. carbocyclic groups, such as aryl, preferably phenyl, cyclopentadienyl, alkylaryl, and halogenated carbocyclic groups; and
- iv. heterocyclic groups; and
- wherein both x and y are ≧1 and z≧0.
- In Formula II, the alkyl, alkenyl and alkynyl groups can be selected from any linear or branched alkyl, alkenyl and alkynyl groups which have 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, in particular 1 to 6 carbon atoms. Examples of such alkyl groups include methyl; ethyl; n- and i-propyl-; n-, i- and t-butyl-; n- and isoamyl; n- and isopentyl; n- and isohexyl; and 2,3-dimethyl-2-butyl. In some embodiments, alkyl groups are preferred. In other embodiments, the C1-20, preferably C1-10, in particular C1-6, alkenyl and alkynyl groups include the corresponding groups having a corresponding degree of unsaturation.
- Preferably, the metal containing cyclopentadienyl precursor is a compound having at least one cyclopentadienyl ligand and at least one chelating ligand, for example, a bidentate ligand. In some embodiments, this compound is depicted by Formula III, (R1R2R3R4R5Cp)x—MR0 z—(NR1NR2R)y, as follows:
- wherein M is a metal preferably selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir;
- wherein R can be any linear and branched C1-C20 alkyl, alkenyl and alkynyl groups, which are independently substituted or unsubstituted and R can be bonded to two bridging nitrogen atoms any point of alkyl, alkenyl and alkynyl groups;
- wherein each R1, R2, R3, R4, R5, and R0 is independently selected from:
- i. hydrogen;
- ii. linear and branched C1-C20 alkyl, alkenyl and alkynyl groups, which are independently substituted or unsubstituted;
- iii. carbocyclic groups, such as aryl, preferably phenyl, cyclopentadienyl, alkylaryl, and halogenated carbocyclic groups; and
- iv. heterocyclic groups; and
- wherein both x and y are ≧1 and z≧0.
- In other preferable embodiments, the metal containing cylcopentadienyl precursor is depicted by Formula IV, (R1R2R3R4R5Cp)x—MR0 z—[(NR1NR2)CNR3]y, as follows:
- wherein M is a metal, preferably selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir;
- wherein each R1, R2, R3, R4, R5, and R0 is independently selected from
- i. hydrogen;
- ii. linear and branched C1-C20 alkyl, alkenyl and alkynyl groups, which are independently substituted or unsubstituted;
- iii. carbocyclic groups, such as aryl, preferably phenyl, cyclopentadienyl, alkylaryl, and halogenated carbocyclic groups; and
- iv. heterocyclic groups; and
- wherein both x and y are ≧1 and z≧0.
- In further preferable embodiments, the metal containing cyclopentadienyl precursor is depicted by Formula V, (R1R2R3R4R5Cp)x—MR0 z—[(NR1NR2)CNR3R4]y, as follows:
-
- wherein M is a metal, preferably selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir;
- wherein each R1, R2, R3, R4, R5, and R0 is independently selected from:
- i. hydrogen;
- ii. linear and branched C1-C20 alkyl, alkenyl and alkynyl groups, which are independently substituted or unsubstituted;
- iii. carbocyclic groups, such as aryl, preferably phenyl, cyclopentadienyl, alkylaryl, and halogenated carbocyclic groups; and
- iv. heterocyclic groups; and
- wherein both x and y are ≧1 and z≧0.
- In a particular example, the metal containing cyclopentadienyl precursor is biscyclopentadienyl triisopropylguanidinato titanium (III) as depicted by Formula VI:
- In further embodiments, the metal containing cyclopentadienyl compound as described in Formulae I-VI may comprise R0, R1, R2, R3, R4, R5, and R6 wherein each is independently selected from
-
- i. hydrogen;
- ii. linear and branched C1-C20 alkyl, alkenyl and alkynyl groups, which are independently substituted or unsubstituted;
- iii. carbocyclic groups, such as aryl, preferably phenyl, cyclopentadienyl, and alkylaryl; and
- iv. heterocyclic groups
- Optionally, a metal containing cyclopentadienyl compound as described may comprise modified cyclopentadienyl groups. In some embodiments, the modified cyclopentadienyl groups are selected from the group consisting of Me5Cp, MeCp, EtCp, and Me3SiCp. In further embodiments, the metal containing cyclopentadienyl compound may comprise an anionic or dianionic guanidinate ligand such as a triisopropylguandinate ligand.
- As illustrated in
FIG. 1 , in a preferred ALD type process, a gas phase pulse of first reactant, a metal containing cyclopentadienyl compound (100) is introduced into the reaction space of an ALD reactor, where it is contacted with a suitable substrate. No more than a monolayer of the metal precursor adsorbs on the substrate surface in a self-limiting manner. Excess metal precursor is removed from the reaction space by purging and/or evacuating the chamber (200). - Subsequently, a gas phase pulse of a second reactant is introduced into the reaction space (300), where it reacts with the adsorbed metal precursor in a self-limiting manner. The second reactant will be selected based on the nature of the metal containing film being deposited. For forming a metal containing film, the second reactant may strip ligands from the adsorbed species. In the case of a compound film the second reactant may also contribute to the film, for example it may contribute carbon (to form a metal carbide film) or nitrogen (to form metal nitride film). Thus, the film may comprise a single metal species or, through the use of multiple reactants, a combination of species, for example one or more metal species, nitrogen, carbon etc . . .
- After sufficient time for it to react with the adsorbed first reactant, the second reactant is removed from the reaction space (400). If a thin film of a desired thickness has been formed, the process may be terminated (500). However, if additional deposition is desired, the cycle may be begun again (600). As discussed below, subsequent cycles may or may not be identical to the previous cycle.
- By alternating the provision of the metal precursor and the second reactant, a metal containing thin film of the desired composition and thickness can be deposited. A growth rate of about from 0.1 to 1.5 Å/cycle is typically achieved in ALD processes. Growth rates and suitable growth temperatures depend, in part, upon the metal precursor chosen and can be readily determined by the skilled artisan.
- Optionally, an inactive gas can be used as a carrier gas during deposition. Inactive gas may also be used to purge the reaction chamber of excess reactant and reaction by-products, if any, between reactant pulses.
- The deposition can be carried out at normal pressure, but it is preferred to operate the process at reduced pressure. Thus, the pressure in the reactor is typically from about 1 to about 100 mbar, preferably from 5 to about 50 mbar.
- The reaction temperature can be varied depending, in part, on the evaporation temperature and the decomposition temperature of the precursor. In some embodiments, the range is from about 20° C. to about 500° C., preferably from about 100° C. to about 400° C., more preferably from about 200° C. to about 400° C. The substrate temperature is preferably low enough to keep the bonds among thin film atoms intact and to prevent thermal decomposition of the gaseous reactants. On the other hand, the substrate temperature is preferably high enough to keep the source materials in gaseous phase and avoid condensation. Further, the temperature is preferably sufficiently high to provide the activation energy for the surface reaction.
- The substrate can be of various types. Examples include, without limitation, silicon, silica, coated silicon, germanium, silicon-germanium alloys, copper metal, noble metals group (including silver, gold, platinum, palladium, rhodium, iridium and ruthenium), nitrides, such as transition nitrides, e.g. tantalum nitride TaN, carbides, such as transition carbides, e.g. tungsten carbide WC, and nitride carbides, e.g. tungsten nitride carbide WNxCy. The preceding thin film layer deposited on the substrate, if any, will form the substrate surface for the next thin film.
- According to some embodiments, a metal containing cyclopentadienyl compound as described above, preferably one wherein the metal is not directly bonded to a halide or oxygen atom, is used to produce an elemental metal thin film. The metal precursor may be selected from compounds according to Formulae I-VI as described above. In some embodiments, the elemental metal thin film is deposited by alternately and sequentially contacting the substrate with the metal containing cyclopentadienyl compound and a second reactant to deposit an elemental metal thin film. In some embodiments, the second reactant is hydrogen or hydrogen plasma. In some particular embodiments, the metal precursor is a titanium cyclopentadienyl compound.
- According to the preferred embodiments, a metal containing cyclopentadienyl precursor as described above, preferably wherein the metal is not directly bonded to a halide or oxygen atom, can be used to produce a metal nitride thin film. The metal precursor may be selected from compounds according to Formulae I-VI as described above. The metal containing cyclopentadienyl reactant is provided to the reaction space alternately and sequentially with a nitrogen source material. In some such embodiments the nitrogen source material may be selected from the group consisting of NH3, N2 plasma, N2/H2 plasma, hydrazine, and/or hydrazine derivatives. In some particular embodiments a titanium nitride thin film is deposited.
- A metal containing cyclopentadienyl precursor as provided above, preferably wherein the metal is not directly bonded to a halide or oxygen atom, can also be used in conjunction with a carbon compound to produce a metal carbide thin film. Preferably the metal precursor is selected from compounds according to Formulae I-VI as described above and is provided alternately and sequentially with a second carbon-contributing reactant in an ALD process. In some embodiments, the carbon compound is a hydrocarbon. In some such embodiments the hydrocarbon is selected from alkanes, alkenes, and alkynes. Additionally, in some embodiments, the carbon containing compound is one with a central atom selected from group B, Al, Ga, In, Si, Ge, Sn, P, As, or S. In some particular embodiments, the metal containing precursor is a titanium cyclopentadienyl compound and the metal carbide thin film is a titanium carbide thin film.
- In order to produce multicomponent thin films, at least one additional metal source material can be introduced to the ALD process. In some preferred embodiments, each additional metal source material is provided in a separate pulse, with each cycle comprising feeding a vapor phase pulse of an additional metal source material, removing excess additional metal source material, providing a vapor phase pulse of a reactant, and removing excess reactant. The same said reactant may be provided after each of the two or more different metal source material, or different reactants (e.g., reducing agents, carbon sources, and/or nitrogen sources) may be used to react with different metal precursors. The number of cycles for each metal precursor may be equivalent or may be different, depending on the composition of the film that is desired.
- In other embodiments, a multicomponent thin film is deposited by ALD processes with at least two growth sub-cycles comprising a first sub-cycle involving feeding a vapor phase pulse of a first metal containing precursor, removing excess first metal containing precursor, providing a vapor phase pulse of a first reactant, removing excess first reactant; then a second sub-cycle involving feeding a vapor phase pulse of a second metal containing precursor, removing excess second metal containing precursor, providing a vapor phase pulse of a second reactant, and then removing excess second reactant. In some embodiments, a third, fourth, fifth etc . . . metal compound is used, typically in additional sub-cycles. The ratio of subcycles can be selected depending on the desired thin film composition. At least one sub-cycle deposits a different material from another sub-cycle. A metal containing cyclopentadienyl precursor as described above is used a the metal containing precursor in at least one subcycle.
- In some embodiments, ALD processes for producing a multicomponent thin film comprise at least one elemental metal sub-cycle. The processes preferably comprise contacting a substrate with alternate and sequential vapor phase pulses of a metal precursor and a reactant. The first reactant may be selected from hydrogen or hydrogen plasma. The metal precursor is preferably a metal containing cyclopentadienyl compound as described above. The metal containing cyclopentadienyl may be, for example, selected from the compounds having Formulae I-VI as described.
- In other embodiments, ALD processes for producing a multicomponent thin film comprise at least one metal nitride sub-cycle. The processes preferably comprise contacting a substrate with alternate and sequential vapor phase pulses of a metal precursor and a reactant. In some embodiments the metal precursor is preferably a metal containing cyclopentadienyl compound as described above. In some embodiments the nitrogen containing material is selected from the group consisting of NH3, N2 plasma, N2/H2 plasma, hydrazine, and/or hydrazine derivatives. In some embodiments, the metal containing cyclopentadienyl may be selected from the compounds having Formulae I-VI as described.
- In another embodiment, multicomponent thin film deposition processes comprising at least one metal carbide sub-cycle are conducted by atomic layer deposition type processes. These sub-cycles preferably comprise contacting a substrate with alternate and sequential vapor phase pulses of a metal precursor and a carbon source material, where the metal precursor is preferably a metal containing cyclopentadienyl compound as described above. In some embodiments, the carbon source material is a hydrocarbon, preferably a hydrocarbon selected from alkanes, alkenes, and alkynes. Additionally, in further embodiments, the carbon containing compound is one with a central atom selected from group B, Al, Ga, In, Si, Ge, Sn, P, As, or S. Additionally, the metal containing cyclopentadienyl may be selected from the compounds having Formulae I-VI as described.
- In other embodiments, a pulse of an additional metal precursor is the second source material provided after the first metal precursor in the same deposition cycle. A first reactant is then provided to convert the two metals into the desired type of thin film. Additional metal precursors may also be provided prior to provision of a reactant. In other embodiments, a reactant is provided after each metal source precursor, as discussed above.
- In addition, in some embodiments, the additional metal compound is provided in each ALD cycle. That is, a pulse of the second metal compound is provided for each pulse of the first metal precursor. However, in other embodiments, the second metal compound is provided intermittently in a selected ratio to the first metal precursor pulses in the deposition process. Preferably, at least one of the metal precursors, for the disclosed ALD processes, is a metal containing cyclopentadienyl compound as described above, such as a titanium cyclopentadienyl compound.
- Although referred to as the “first” reactant or metal precursor, the “second,” and “third” etc., these labels are for convenience and do not indicate the actual order of the metal source materials or reactants. Thus, the initial ALD cycle may be started with any of the phases described above. However, one of skill in the art will recognize that if the initial ALD cycle does not begin with the metal source phase, at least two ALD cycles will typically need to be completed to begin deposition of the desired thin film. As is well-known in the art, typically less than a monolayer of a material is deposited in each ALD cycle due, in part, to steric hindrance and the availability of reactive sites on the substrate surface.
- At least one of the additional metal precursors can be metal compounds comprising a single metal or complex metal compounds comprising two or more metals. In some embodiments, the metal compounds comprise at least one metal selected from the group consisting of Al, Ga, In, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh, La, Hf, Ta, W, Re, Os, and Ir. In other embodiments at least one metal is a trivalent metal.
- Since the properties of the metal compounds vary, the suitability of each metal compound for use in the ALD processes disclosed herein has to be considered. The properties of the compounds can be found, e.g., in N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 1st edition, Pergamon Press, 1986. The suitability of any particular compound can readily be determined by a skilled artisan.
- The novel thin film deposition processes will find extensive application as semiconductors, insulators and ferroelectrics. For example, the films formed according to preferred methods may define, e.g., diffusion barriers in integrated circuits, metal gates in transistors, or metal electrodes in capacitor structures. In some embodiments, metal nitride films may serve as top/bottom electrodes for MIM/MIS capacitors, such as eDRAM, DRAM, RF decoupling, and planar and 3-D capacitors.
- In other embodiments, metal carbide films can be formed as a component of an integrated circuit, such as, e.g., a conductive diffusion barrier forming a part of a line in a dual damascene structure, a metal gate electrode, such as an NMOS gate electrode, or an anti-reflective coating. In other embodiments, the metal carbide film may form a part of hard coating on a substrate to protect against mechanical wear, or may be used as a component of a corrosion protection layer. In still other embodiments, the metal carbide film can be, e.g., used as part of a chemical reaction catalyst or as an etch stop barrier.
- The metal containing cyclopentadienyl precursors described herein for use in ALD processes not only lack many of the problems associated with thermal instability, but also provides for better film uniformity by avoiding oxygen and halide contamination.
- Although the foregoing invention has been described in terms of certain preferred embodiments, other embodiments will be apparent to those of ordinary skill in the art. Additionally, other combinations, omissions, substitutions and modification will be apparent to the skilled artisan, in view of the disclosure herein. Accordingly, the present invention is not intended to be limited by the recitation of the preferred embodiments, but is instead to be defined by reference to the appended claims.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/700,494 US9850575B1 (en) | 2006-10-27 | 2017-09-11 | ALD of metal-containing films using cyclopentadienly compounds |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/588,595 US8795771B2 (en) | 2006-10-27 | 2006-10-27 | ALD of metal-containing films using cyclopentadienyl compounds |
US14/311,154 US9273391B2 (en) | 2006-10-27 | 2014-06-20 | ALD of zirconium-containing films using cyclopentadienyl compounds |
US15/006,532 US9677175B2 (en) | 2006-10-27 | 2016-01-26 | ALD of metal-containing films using cyclopentadienyl compounds |
US15/363,998 US9670582B2 (en) | 2006-10-27 | 2016-11-29 | ALD of metal-containing films using cyclopentadienyl compounds |
US15/602,514 US10294563B2 (en) | 2006-10-27 | 2017-05-23 | ALD of hafnium-containing films using cyclopentadienyl compounds |
US15/700,494 US9850575B1 (en) | 2006-10-27 | 2017-09-11 | ALD of metal-containing films using cyclopentadienly compounds |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/602,514 Continuation US10294563B2 (en) | 2006-10-27 | 2017-05-23 | ALD of hafnium-containing films using cyclopentadienyl compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
US9850575B1 US9850575B1 (en) | 2017-12-26 |
US20170369997A1 true US20170369997A1 (en) | 2017-12-28 |
Family
ID=39330532
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/588,595 Active 2027-03-26 US8795771B2 (en) | 2006-10-27 | 2006-10-27 | ALD of metal-containing films using cyclopentadienyl compounds |
US14/311,154 Active 2026-11-09 US9273391B2 (en) | 2006-10-27 | 2014-06-20 | ALD of zirconium-containing films using cyclopentadienyl compounds |
US15/006,532 Active US9677175B2 (en) | 2006-10-27 | 2016-01-26 | ALD of metal-containing films using cyclopentadienyl compounds |
US15/363,998 Active US9670582B2 (en) | 2006-10-27 | 2016-11-29 | ALD of metal-containing films using cyclopentadienyl compounds |
US15/602,514 Active US10294563B2 (en) | 2006-10-27 | 2017-05-23 | ALD of hafnium-containing films using cyclopentadienyl compounds |
US15/700,494 Active US9850575B1 (en) | 2006-10-27 | 2017-09-11 | ALD of metal-containing films using cyclopentadienly compounds |
US16/411,964 Active 2026-11-13 US11155919B2 (en) | 2006-10-27 | 2019-05-14 | ALD of metal-containing films using cyclopentadienyl compounds |
US17/448,787 Abandoned US20220178027A1 (en) | 2006-10-27 | 2021-09-24 | Ald of metal-containing films using cyclopentadienyl compounds |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/588,595 Active 2027-03-26 US8795771B2 (en) | 2006-10-27 | 2006-10-27 | ALD of metal-containing films using cyclopentadienyl compounds |
US14/311,154 Active 2026-11-09 US9273391B2 (en) | 2006-10-27 | 2014-06-20 | ALD of zirconium-containing films using cyclopentadienyl compounds |
US15/006,532 Active US9677175B2 (en) | 2006-10-27 | 2016-01-26 | ALD of metal-containing films using cyclopentadienyl compounds |
US15/363,998 Active US9670582B2 (en) | 2006-10-27 | 2016-11-29 | ALD of metal-containing films using cyclopentadienyl compounds |
US15/602,514 Active US10294563B2 (en) | 2006-10-27 | 2017-05-23 | ALD of hafnium-containing films using cyclopentadienyl compounds |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/411,964 Active 2026-11-13 US11155919B2 (en) | 2006-10-27 | 2019-05-14 | ALD of metal-containing films using cyclopentadienyl compounds |
US17/448,787 Abandoned US20220178027A1 (en) | 2006-10-27 | 2021-09-24 | Ald of metal-containing films using cyclopentadienyl compounds |
Country Status (1)
Country | Link |
---|---|
US (8) | US8795771B2 (en) |
Families Citing this family (354)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI117979B (en) * | 2000-04-14 | 2007-05-15 | Asm Int | Process for making oxide thin films |
US7605469B2 (en) * | 2004-06-30 | 2009-10-20 | Intel Corporation | Atomic layer deposited tantalum containing adhesion layer |
CN101460657A (en) | 2006-06-02 | 2009-06-17 | 乔治洛德方法研究和开发液化空气有限公司 | Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing |
EP1916253A1 (en) * | 2006-10-26 | 2008-04-30 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | New group V metal containing precursors and their use for metal containing film deposition |
US20090035946A1 (en) * | 2007-07-31 | 2009-02-05 | Asm International N.V. | In situ deposition of different metal-containing films using cyclopentadienyl metal precursors |
EP2257561B1 (en) | 2008-02-27 | 2017-11-08 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ald) process |
JP5551681B2 (en) | 2008-04-16 | 2014-07-16 | エーエスエム アメリカ インコーポレイテッド | Atomic layer deposition of metal carbide films using aluminum hydrocarbon compounds |
US8383525B2 (en) * | 2008-04-25 | 2013-02-26 | Asm America, Inc. | Plasma-enhanced deposition process for forming a metal oxide thin film and related structures |
US7666474B2 (en) * | 2008-05-07 | 2010-02-23 | Asm America, Inc. | Plasma-enhanced pulsed deposition of metal carbide films |
US20120156373A1 (en) | 2008-06-05 | 2012-06-21 | American Air Liquide, Inc. | Preparation of cerium-containing precursors and deposition of cerium-containing films |
KR101660052B1 (en) * | 2008-06-05 | 2016-09-26 | 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 | Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films |
KR101584390B1 (en) * | 2008-07-24 | 2016-01-11 | 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 | Heteroleptic cyclopentadienyl transition metal precursors for deposition of transition metal-containing films |
WO2010012595A1 (en) * | 2008-08-01 | 2010-02-04 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method of forming a tantalum-containing layer on a substrate |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
KR20120042971A (en) | 2009-07-14 | 2012-05-03 | 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 | Deposition of group iv metal-containing films at high temperature |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
CN102712662A (en) | 2009-08-14 | 2012-10-03 | 乔治洛德方法研究和开发液化空气有限公司 | Hafnium- and zirconium-containing precursors and methods of using the same |
US20110206862A1 (en) * | 2010-02-03 | 2011-08-25 | L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude | Titanium Nitride Film Deposition by Vapor Deposition Using Cyclopentadienyl Alkylamino Titanium Precursors |
JP5675458B2 (en) * | 2011-03-25 | 2015-02-25 | 東京エレクトロン株式会社 | Film forming method, film forming apparatus, and storage medium |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
JP5971248B2 (en) * | 2011-07-21 | 2016-08-17 | Jsr株式会社 | Method for manufacturing a substrate including a metal body |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
KR101929224B1 (en) * | 2012-03-14 | 2018-12-14 | 삼성전자주식회사 | A method of fabricating a semiconductor device |
US9349583B2 (en) * | 2012-03-14 | 2016-05-24 | Samsung Electronis Co., Ltd. | Method of fabricating semiconductor device |
US9714464B2 (en) | 2012-06-11 | 2017-07-25 | Wayne State University | Precursors for atomic layer deposition |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
SG11201501107XA (en) * | 2012-11-19 | 2015-07-30 | Adeka Corp | Method for producing thin film containing molybdenum, thin film-forming starting material, and molybdenum imide compound |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9099301B1 (en) | 2013-12-18 | 2015-08-04 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Preparation of lanthanum-containing precursors and deposition of lanthanum-containing films |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US20170018425A1 (en) * | 2014-03-12 | 2017-01-19 | L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude | Heteroleptic diazadienyl group 4 transition metal-containing compounds for vapor deposition of group 4 transition metal-containing films |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
KR102344660B1 (en) | 2015-05-27 | 2021-12-29 | 에이에스엠 아이피 홀딩 비.브이. | Synthesis and use of precursors for ald of molybdenum or tungsten containing thin films |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10913754B2 (en) | 2015-07-07 | 2021-02-09 | Samsung Electronics Co., Ltd. | Lanthanum compound and methods of forming thin film and integrated circuit device using the lanthanum compound |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
KR102424961B1 (en) | 2015-07-07 | 2022-07-25 | 삼성전자주식회사 | Lanthanum compound, method of synthesis of lanthanum compound, lanthanum precursor composition, and methods of forming thin film and integrated circuit device |
JP6163524B2 (en) * | 2015-09-30 | 2017-07-12 | 株式会社日立国際電気 | Semiconductor device manufacturing method, substrate processing apparatus, and program |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10023462B2 (en) | 2015-11-30 | 2018-07-17 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Niobium-Nitride film forming compositions and vapor deposition of Niobium-Nitride films |
KR102442621B1 (en) * | 2015-11-30 | 2022-09-13 | 삼성전자주식회사 | Methods of forming thin film and integrated circuit device using niobium compound |
US9790591B2 (en) | 2015-11-30 | 2017-10-17 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Titanium-containing film forming compositions for vapor deposition of titanium-containing films |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10358407B2 (en) | 2016-10-12 | 2019-07-23 | Asm Ip Holding B.V. | Synthesis and use of precursors for vapor deposition of tungsten containing thin films |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
US10619242B2 (en) | 2016-12-02 | 2020-04-14 | Asm Ip Holding B.V. | Atomic layer deposition of rhenium containing thin films |
KR102762543B1 (en) | 2016-12-14 | 2025-02-05 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) * | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
USD876504S1 (en) | 2017-04-03 | 2020-02-25 | Asm Ip Holding B.V. | Exhaust flow control ring for semiconductor deposition apparatus |
KR102457289B1 (en) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
JP7245521B2 (en) * | 2017-07-18 | 2023-03-24 | 株式会社高純度化学研究所 | Atomic layer deposition method for thin metal films |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
TWI815813B (en) | 2017-08-04 | 2023-09-21 | 荷蘭商Asm智慧財產控股公司 | Showerhead assembly for distributing a gas within a reaction chamber |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102401446B1 (en) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
JP7032781B2 (en) * | 2017-09-20 | 2022-03-09 | 株式会社高純度化学研究所 | Atomic layer deposition method for thin films containing gallium |
KR102630301B1 (en) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
KR102443047B1 (en) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
KR102597978B1 (en) | 2017-11-27 | 2023-11-06 | 에이에스엠 아이피 홀딩 비.브이. | Storage device for storing wafer cassettes for use with batch furnaces |
JP7206265B2 (en) | 2017-11-27 | 2023-01-17 | エーエスエム アイピー ホールディング ビー.ブイ. | Equipment with a clean mini-environment |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
WO2019142055A2 (en) | 2018-01-19 | 2019-07-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
EP3737779A1 (en) | 2018-02-14 | 2020-11-18 | ASM IP Holding B.V. | A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102501472B1 (en) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method |
KR102600229B1 (en) | 2018-04-09 | 2023-11-10 | 에이에스엠 아이피 홀딩 비.브이. | Substrate supporting device, substrate processing apparatus including the same and substrate processing method |
KR102709511B1 (en) | 2018-05-08 | 2024-09-24 | 에이에스엠 아이피 홀딩 비.브이. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
TWI816783B (en) | 2018-05-11 | 2023-10-01 | 荷蘭商Asm 智慧財產控股公司 | Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
WO2020003000A1 (en) | 2018-06-27 | 2020-01-02 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (en) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (en) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | Substrate holding apparatus, system comprising the same and method of using the same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR102748291B1 (en) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (en) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and system for forming device structures using selective deposition of gallium nitride - Patents.com |
TWI866480B (en) | 2019-01-17 | 2024-12-11 | 荷蘭商Asm Ip 私人控股有限公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
KR102727227B1 (en) | 2019-01-22 | 2024-11-07 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for forming topologically selective films of silicon oxide |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
JP7603377B2 (en) | 2019-02-20 | 2024-12-20 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and apparatus for filling recesses formed in a substrate surface - Patents.com |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
TWI845607B (en) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
JP7240903B2 (en) * | 2019-03-05 | 2023-03-16 | レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Indium compound and method for forming indium-containing film using said indium compound |
KR102782593B1 (en) | 2019-03-08 | 2025-03-14 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
KR102762833B1 (en) | 2019-03-08 | 2025-02-04 | 에이에스엠 아이피 홀딩 비.브이. | STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
KR20200116033A (en) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | Door opener and substrate processing apparatus provided therewith |
KR102809999B1 (en) | 2019-04-01 | 2025-05-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP7598201B2 (en) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
JP7612342B2 (en) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system including a gas detector |
KR20200141931A (en) | 2019-06-10 | 2020-12-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for cleaning quartz epitaxial chambers |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
TWI851767B (en) | 2019-07-29 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR20210015655A (en) | 2019-07-30 | 2021-02-10 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
KR20210018759A (en) | 2019-08-05 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | Liquid level sensor for a chemical source vessel |
CN112342526A (en) | 2019-08-09 | 2021-02-09 | Asm Ip私人控股有限公司 | Heater assembly including cooling device and method of using same |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR102806450B1 (en) | 2019-09-04 | 2025-05-12 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR102733104B1 (en) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
TWI846966B (en) | 2019-10-10 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
KR20210065848A (en) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885693B (en) | 2019-11-29 | 2025-06-10 | Asmip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
JP2021097227A (en) | 2019-12-17 | 2021-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method of forming vanadium nitride layer and structure including vanadium nitride layer |
KR20210080214A (en) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate and related semiconductor structures |
TW202140135A (en) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Gas supply assembly and valve plate assembly |
KR20210089079A (en) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | Channeled lift pin |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (en) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming high aspect ratio features |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
TWI871421B (en) | 2020-02-03 | 2025-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Devices and structures including a vanadium or indium layer and methods and systems for forming the same |
TW202146882A (en) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
TWI865725B (en) | 2020-02-10 | 2024-12-11 | 荷蘭商Asm Ip私人控股有限公司 | Deposition of hafnium oxide within a high aspect ratio hole |
KR20210103956A (en) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
KR20210113043A (en) | 2020-03-04 | 2021-09-15 | 에이에스엠 아이피 홀딩 비.브이. | Alignment fixture for a reactor system |
KR20210116249A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | lockout tagout assembly and system and method of using same |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
CN113394086A (en) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | Method for producing a layer structure having a target topological profile |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
KR102755229B1 (en) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210130646A (en) | 2020-04-21 | 2021-11-01 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
JP2021172585A (en) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | Methods and equipment for stabilizing vanadium compounds |
JP2021172884A (en) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method of forming vanadium nitride-containing layer and structure comprising vanadium nitride-containing layer |
TW202208671A (en) | 2020-04-24 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods of forming structures including vanadium boride and vanadium phosphide layers |
TW202146831A (en) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Vertical batch furnace assembly, and method for cooling vertical batch furnace |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
KR102783898B1 (en) | 2020-04-29 | 2025-03-18 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
JP2021177545A (en) | 2020-05-04 | 2021-11-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing system for processing substrates |
KR102788543B1 (en) | 2020-05-13 | 2025-03-27 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
TW202147383A (en) | 2020-05-19 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR102795476B1 (en) | 2020-05-21 | 2025-04-11 | 에이에스엠 아이피 홀딩 비.브이. | Structures including multiple carbon layers and methods of forming and using same |
KR20210145079A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Flange and apparatus for processing substrates |
KR102702526B1 (en) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus for depositing thin films using hydrogen peroxide |
TWI876048B (en) | 2020-05-29 | 2025-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
KR102623858B1 (en) * | 2020-06-04 | 2024-01-10 | 삼성전자주식회사 | Material for fabricating thin film, method for fabricating thin film using the same, and fabricating equipment for thin film using the same |
TW202204667A (en) | 2020-06-11 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Atomic layer deposition and etching of transition metal dichalcogenide thin films |
TW202208659A (en) | 2020-06-16 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for depositing boron containing silicon germanium layers |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
TWI873359B (en) | 2020-06-30 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
TW202202649A (en) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR20220010438A (en) | 2020-07-17 | 2022-01-25 | 에이에스엠 아이피 홀딩 비.브이. | Structures and methods for use in photolithography |
KR20220011093A (en) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for depositing molybdenum layers |
KR20220011092A (en) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming structures including transition metal layers |
TW202219303A (en) | 2020-07-27 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | Thin film deposition process |
US11859283B2 (en) * | 2020-07-28 | 2024-01-02 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Heteroalkylcyclopentadienyl indium-containing precursors and processes of using the same for deposition of indium-containing layers |
KR20220021863A (en) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
TW202228863A (en) | 2020-08-25 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for cleaning a substrate, method for selectively depositing, and reaction system |
TWI874701B (en) | 2020-08-26 | 2025-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming metal silicon oxide layer and metal silicon oxynitride layer |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
TW202217045A (en) | 2020-09-10 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing gap filing fluids and related systems and devices |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
KR20220036866A (en) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | Silicon oxide deposition method |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
TW202218049A (en) | 2020-09-25 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing method |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
KR20220050048A (en) | 2020-10-15 | 2022-04-22 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-cat |
TW202217037A (en) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202229620A (en) | 2020-11-12 | 2022-08-01 | 特文特大學 | Deposition system, method for controlling reaction condition, method for depositing |
TW202229795A (en) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | A substrate processing apparatus with an injector |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
KR20220076343A (en) | 2020-11-30 | 2022-06-08 | 에이에스엠 아이피 홀딩 비.브이. | an injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
TW202233884A (en) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures for threshold voltage control |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202232639A (en) | 2020-12-18 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Wafer processing apparatus with a rotatable table |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
TW202226899A (en) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Plasma treatment device having matching box |
TW202242184A (en) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel |
US20220298635A1 (en) * | 2021-03-16 | 2022-09-22 | Wayne State University | Thermal ald of metal thin films |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
KR20220158601A (en) * | 2021-05-24 | 2022-12-01 | 에스케이트리켐 주식회사 | Metal precursor compound for forming semiconductor film and metal-containing film prepared by using the same |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI117944B (en) * | 1999-10-15 | 2007-04-30 | Asm Int | Process for making transition metal nitride thin films |
US6482262B1 (en) * | 1959-10-10 | 2002-11-19 | Asm Microchemistry Oy | Deposition of transition metal carbides |
SE393967B (en) * | 1974-11-29 | 1977-05-31 | Sateko Oy | PROCEDURE AND PERFORMANCE OF LAYING BETWEEN THE STORAGE IN A LABOR PACKAGE |
US5130172A (en) * | 1988-10-21 | 1992-07-14 | The Regents Of The University Of California | Low temperature organometallic deposition of metals |
US5453494A (en) * | 1990-07-06 | 1995-09-26 | Advanced Technology Materials, Inc. | Metal complex source reagents for MOCVD |
US5149596A (en) * | 1990-10-05 | 1992-09-22 | The United States Of America As Represented By The United States Department Of Energy | Vapor deposition of thin films |
DE4202889C2 (en) * | 1992-02-01 | 1994-12-15 | Solvay Deutschland | Process for the deposition of layers containing a metal of the first transition metal series or aluminum and 1,3-diketiminato metal compounds |
JPH05311445A (en) * | 1992-05-12 | 1993-11-22 | Kawasaki Steel Corp | Production of tin film |
US6244977B1 (en) * | 1996-09-16 | 2001-06-12 | Spalding Sports Worldwide, Inc. | Golf ball comprising a metal mantle with a cellular or liquid core |
US6428623B2 (en) * | 1993-05-14 | 2002-08-06 | Micron Technology, Inc. | Chemical vapor deposition apparatus with liquid feed |
FI97731C (en) * | 1994-11-28 | 1997-02-10 | Mikrokemia Oy | Method and apparatus for making thin films |
US20060219157A1 (en) * | 2001-06-28 | 2006-10-05 | Antti Rahtu | Oxide films containing titanium |
FI108375B (en) * | 1998-09-11 | 2002-01-15 | Asm Microchemistry Oy | Still for producing insulating oxide thin films |
US6780704B1 (en) * | 1999-12-03 | 2004-08-24 | Asm International Nv | Conformal thin films over textured capacitor electrodes |
FI117979B (en) * | 2000-04-14 | 2007-05-15 | Asm Int | Process for making oxide thin films |
US6984591B1 (en) * | 2000-04-20 | 2006-01-10 | International Business Machines Corporation | Precursor source mixtures |
US7476420B2 (en) * | 2000-10-23 | 2009-01-13 | Asm International N.V. | Process for producing metal oxide films at low temperatures |
US6586792B2 (en) * | 2001-03-15 | 2003-07-01 | Micron Technology, Inc. | Structures, methods, and systems for ferroelectric memory transistors |
DE10136400B4 (en) * | 2001-07-26 | 2006-01-05 | Infineon Technologies Ag | Method for producing a metal carbide layer and method for producing a trench capacitor |
JP4921652B2 (en) * | 2001-08-03 | 2012-04-25 | エイエスエム インターナショナル エヌ.ヴェー. | Method for depositing yttrium oxide and lanthanum oxide thin films |
US7045430B2 (en) * | 2002-05-02 | 2006-05-16 | Micron Technology Inc. | Atomic layer-deposited LaAlO3 films for gate dielectrics |
US6797337B2 (en) * | 2002-08-19 | 2004-09-28 | Micron Technology, Inc. | Method for delivering precursors |
US7713592B2 (en) * | 2003-02-04 | 2010-05-11 | Tegal Corporation | Nanolayer deposition process |
US7198820B2 (en) * | 2003-02-06 | 2007-04-03 | Planar Systems, Inc. | Deposition of carbon- and transition metal-containing thin films |
US7618681B2 (en) * | 2003-10-28 | 2009-11-17 | Asm International N.V. | Process for producing bismuth-containing oxide films |
US7906393B2 (en) * | 2004-01-28 | 2011-03-15 | Micron Technology, Inc. | Methods for forming small-scale capacitor structures |
US7098150B2 (en) * | 2004-03-05 | 2006-08-29 | Air Liquide America L.P. | Method for novel deposition of high-k MSiON dielectric films |
DE102004018145A1 (en) * | 2004-04-08 | 2005-10-27 | Basf Ag | Use of metallocene complexes of metals of the 4th subgroup of the periodic table as triplet emitters in organic light emitting diodes (OLEDs) |
US7300873B2 (en) * | 2004-08-13 | 2007-11-27 | Micron Technology, Inc. | Systems and methods for forming metal-containing layers using vapor deposition processes |
US7205422B2 (en) * | 2004-12-30 | 2007-04-17 | Air Products And Chemicals, Inc. | Volatile metal β-ketoiminate and metal β-diiminate complexes |
GB2432363B (en) | 2005-11-16 | 2010-06-23 | Epichem Ltd | Hafnocene and zirconocene precursors, and use thereof in atomic layer deposition |
CN101460657A (en) | 2006-06-02 | 2009-06-17 | 乔治洛德方法研究和开发液化空气有限公司 | Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing |
EP1887102B1 (en) * | 2006-08-08 | 2020-04-08 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Precursors having open ligands for ruthenium containing films deposition |
JP2010539710A (en) | 2007-09-14 | 2010-12-16 | シグマ−アルドリッチ・カンパニー | Thin film preparation method by atomic layer growth using hafnium precursor and zirconium precursor |
EP2707375A4 (en) * | 2011-05-13 | 2015-01-07 | Greenct Canada | GROUP 11 MONOMETALLIC PRECURSOR COMPOUNDS AND USE THEREOF IN METAL DEPOSITION |
-
2006
- 2006-10-27 US US11/588,595 patent/US8795771B2/en active Active
-
2014
- 2014-06-20 US US14/311,154 patent/US9273391B2/en active Active
-
2016
- 2016-01-26 US US15/006,532 patent/US9677175B2/en active Active
- 2016-11-29 US US15/363,998 patent/US9670582B2/en active Active
-
2017
- 2017-05-23 US US15/602,514 patent/US10294563B2/en active Active
- 2017-09-11 US US15/700,494 patent/US9850575B1/en active Active
-
2019
- 2019-05-14 US US16/411,964 patent/US11155919B2/en active Active
-
2021
- 2021-09-24 US US17/448,787 patent/US20220178027A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20150017348A1 (en) | 2015-01-15 |
US20170081762A1 (en) | 2017-03-23 |
US9850575B1 (en) | 2017-12-26 |
US20080102205A1 (en) | 2008-05-01 |
US9677175B2 (en) | 2017-06-13 |
US8795771B2 (en) | 2014-08-05 |
US9273391B2 (en) | 2016-03-01 |
US20220178027A1 (en) | 2022-06-09 |
US9670582B2 (en) | 2017-06-06 |
US11155919B2 (en) | 2021-10-26 |
US20170362709A1 (en) | 2017-12-21 |
US20200024738A1 (en) | 2020-01-23 |
US20160230277A1 (en) | 2016-08-11 |
US10294563B2 (en) | 2019-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220178027A1 (en) | Ald of metal-containing films using cyclopentadienyl compounds | |
US7611751B2 (en) | Vapor deposition of metal carbide films | |
US7618681B2 (en) | Process for producing bismuth-containing oxide films | |
US9169557B2 (en) | Process for producing oxide films | |
US7208413B2 (en) | Formation of boride barrier layers using chemisorption techniques | |
US10875774B2 (en) | Tritertbutyl aluminum reactants for vapor deposition | |
EP2307589B1 (en) | Method for deposition of transition metal-containing films using heteroleptic cyclopentadienyl transition metal precursors | |
EP1907354A2 (en) | Unsymmetrical ligand sources, reduced symmetry metal-containing compounds, and systems and methods including same | |
KR101157701B1 (en) | Deposition of metal films on diffusion layers by atomic layer deposition and organometallic precursor complexes therefor | |
KR20160122396A (en) | Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby | |
WO2002063677A2 (en) | Formation of a tantalum-nitride layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.) |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ASM MICROCHEMISTRY OY, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARRY, SEAN T.;WASSLEN, YAMILE A.M.;RAHTU, ANTTI H.;SIGNING DATES FROM 20070123 TO 20070216;REEL/FRAME:056754/0232 Owner name: ASM IP HOLDING B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASM MICROCHEMISTRY OY;REEL/FRAME:056754/0239 Effective date: 20140909 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |