US20170365336A1 - Data sensing apparatus - Google Patents
Data sensing apparatus Download PDFInfo
- Publication number
- US20170365336A1 US20170365336A1 US15/185,037 US201615185037A US2017365336A1 US 20170365336 A1 US20170365336 A1 US 20170365336A1 US 201615185037 A US201615185037 A US 201615185037A US 2017365336 A1 US2017365336 A1 US 2017365336A1
- Authority
- US
- United States
- Prior art keywords
- coupled
- current
- transistor
- memory cell
- sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1673—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
- G11C2013/0045—Read using current through the cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
- G11C2013/005—Read using potential difference applied between cell electrodes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
- G11C2013/0054—Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell
Definitions
- the invention relates to a data sensing apparatus for a memory apparatus. Particularly, the invention relates to the data sensing apparatus for providing an adjustable reference voltage for sensing read-out data of the memory apparatus.
- RRAM resistive random access memory
- a data sensing apparatus for the RRAM provides a sensing reference voltage with a constant voltage level.
- a sensing reference current can be generated according to the sensing reference voltage, and a sense amplifier of data sensing apparatus can sense the sensing reference current and a read-out current from a selected RRAM cell to obtain a read-out data. Since a RRAM margin read accuracy depends on a sensing reference voltage bias condition, such as that, the margin read are good during a first current range of the read-out current but fail during a second current range of the read-out current by using the sensing reference voltage with the constant voltage level.
- the invention is directed to a plurality of data sensing apparatus, which provides dynamic sensing reference voltage to clamp a selected memory cell reading voltage.
- the invention provides a data sensing apparatus adapted for sensing read-out data of a memory apparatus.
- the data sensing apparatus includes a sensing reference voltage generator, a sensing reference current generator, and a sense amplifier.
- the sensing reference voltage generator receives a reference voltage, generates a reference current according to the reference voltage and a control signal, and generates a sensing reference voltage according to the reference current.
- the sensing reference current generator is coupled to the sensing reference voltage generator, receives the sensing reference voltage, and generates a sensing reference current according to the sensing reference voltage and the control signal.
- the sense amplifier has a first input end being coupled to the sensing reference current generator and a second input end being coupled to a selected memory cell of the memory apparatus.
- the sense amplifier receives the sensing reference current and a read-out current from the selected memory cell, and senses a current difference between the reference current and the read-out current to generate the read-out data.
- the invention provides another data sensing apparatus adapted for sensing read-out data of a memory apparatus.
- the data sensing apparatus includes an operation amplifier, a first transistor, a second transistor, a variable resistor, a sense amplifier and a third transistor.
- the operation amplifier has a first input end receiving a reference voltage, and an output end for providing a sensing reference voltage.
- the first transistor has a first transistor receiving a power voltage, a second end being coupled to a control end of the first transistor.
- the second transistor has a first end coupled to the second end of the first transistor, a control end directly receiving the sensing reference voltage, and a second end coupled to a second input end of the operation amplifier.
- the variable resistor is coupled between the second end of the second transistor and a reference ground, wherein a resistance of the variable resistor is detennined according to a control signal, and a sensing reference current is generated according to the sensing reference voltage and the resistance of the variable resistor.
- the sense amplifier has a first input end coupled to the second end of the first transistor for receiving the sensing reference current, and an output end for generating a read-out data.
- the third transistor has a first end coupled to a second input end of the sense amplifier, and a control end directly receiving the sensing reference voltage, and a second end coupled to a selected memory cell.
- the sensing reference voltage can be dynamically adjusted, and the sensing reference voltage is self-adjusted to bias at a sensing reference current level at margin read and set verify/reset verify read levels for the memory apparatus. Furthermore, in present disclosure, the reference current and the sensing reference current are generated according to two matched circuit. Such as that, the margin read accuracy of the memory apparatus can be ensured.
- FIG. 1 illustrates a schematic plot of a data sensing apparatus according to an embodiment of present disclosure.
- FIG. 2 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure.
- FIG. 3 illustrate a schematic diagram of a data sensing apparatus according to another embodiment of present disclosure.
- FIG. 4 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure.
- FIG. 5 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure.
- FIG. 1 illustrates a schematic plot of a data sensing apparatus according to an embodiment of present disclosure.
- the data sensing apparatus 100 is used to sense read-out data of a memory apparatus.
- the data sensing apparatus 100 includes a sensing reference voltage generator 110 , a sensing reference current generator 120 , and a sense amplifier SA.
- the sensing reference voltage generator 110 receives a reference voltage VREF, generates a reference current according to the reference voltage VREF and a control signal OPT, and generates a sensing reference voltage VSAREF according to the reference current.
- the sensing reference current generator 120 is coupled to the sensing reference voltage generator 110 .
- the sensing reference current generator 120 receives the sensing reference voltage VSAREF and generates a sensing reference current ISAREF according to the sensing reference voltage VSAREF and the control signal OPT.
- the sense amplifier SA has a first input end and a second input end, the first input end is coupled to the sensing reference current generator 120 for receiving the sensing reference current ISAREF, and the second input end is coupled to a selected memory cell SMC for receiving a read-out current from the selected memory cell SMC.
- SA senses a current difference between the sensing reference current ISAREF and the read-out current to generate the read-out data SAOUT.
- a voltage level of the sensing reference voltage VSAREF is not constant in present embodiment.
- the voltage level of the sensing reference voltage VSAREF is determined according to the reference current generated by the sensing reference voltage generator 110 , and a current level the reference current of the sensing reference voltage generator 110 may be determined according to the control signal OPT.
- the sensing reference voltage VSAREF is transported to the sensing reference current generator 120 , and the sensing reference current generator 120 is biased by the sensing reference voltage VSAREF for generating the sensing reference current ISAREF according to the control signal OPT.
- the control signal OPT provided to the sensing reference voltage generator 110 and the sensing reference current generator 120 are the same, and circuit schemes for generating the reference current and the sensing reference current ISAREF are the same. That is, the sensing reference voltage VSAREF is self-adjusted, and the sensing reference current ISAREF can be good tracking with a margin read reference current. A better margin read cross all read-out current range may be obtained.
- the sense amplifier SA may be coupled to the selected memory cell SMC through transistors TN 1 and TN 2 .
- the transistor TN 1 is coupled between the second input end of the sense amplifier SA and the transistor TN 2 , and the transistor TN 1 is controlled by the sensing reference voltage VSAREF.
- the transistor TN 2 is coupled between the transistor TN 1 and the selected memory cell SMC, and is controlled by a selecting signal YMUX.
- the transistor TN 2 is turned on by the selecting signal YMUX, and the read-out current may be transported to the second input end of the sense amplifier SA.
- a transistor TP 1 is coupled between a power voltage VDD and the second input end of the sense amplifier SA. Control end and second end of the transistor TP 1 are connected together, and a first end of the transistor TP 1 receives the power voltage VDD.
- the selected memory cell SMC may be a resistive memory cell (ReRAM), and the selected memory cell SMC may include a resistor R 1 and a transistor TC 1 which is controlled by a word line signal WL ( 1 T 1 R memory cell).
- the selected memory cell SMC is not limited to the 1T1R memory cell, the selected memory cell SMC also can be any type resistive memory cell known by a person skilled in the art.
- the selected memory cell SMC may be, such as 1R (one resistor), 1D1R (one diode and one resistor), 1S1R (one selector and one resistor), 1BJT1R (one bipolar transistor and one resistor), or complementary resistive switching (CRS) memory cell.
- the selected memory cell SMC may also be any other type of resistive memory cell, such as phase-change memory (PCM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FRAM), or conductive-bridging random access memory (CBRAM) cell.
- PCM phase-change memory
- MRAM magnetoresistive random access memory
- FRAM ferroelectric random access memory
- CBRAM conductive-bridging random access memory
- the selected memory cell SMC may also not resistive memory cell.
- the selected memory cell SMC may also be any other type non-volatile memory cell.
- FIG. 2 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure.
- the data sensing apparatus 200 includes a sensing reference voltage generator 210 , a sensing reference current generator 220 , and a sense amplifier SA.
- the sensing reference voltage generator 210 includes an operation amplifier OP 1 , transistors M 21 -M 23 , and a variable resistor 211 .
- the operation amplifier OP 1 has a negative input end receiving a reference voltage VREF, and a positive input end coupled to a diode D 1 formed by the transistor M 22 .
- An output end of the operation amplifier OP 1 is coupled to a control end of the transistor M 21 .
- a first end of the transistor M 21 receives the power voltage VDD, and a second end of the transistor M 21 is coupled to an anode of the diode D 1 .
- the anode of the diode D 1 generates the sensing reference voltage VSAREF.
- a cathode of the diode D 1 is coupled to the transistor M 23 , a second end of the transistor M 23 is coupled to the variable resistor 211 , and a control end of the transistor M 23 receives a dummy selecting signal DYMUX.
- the variable resistor 211 includes switches SW 11 -SW 14 and resistors R 11 -R 14 .
- the switches SW 11 -SW 14 are coupled in series between the transistor M 23 and a reference ground GND, and the resistors R 11 -R 14 are also coupled in series between the transistor M 23 and the reference ground GND.
- the switches SW 11 -SW 14 are respectively coupled to the resistors R 11 -R 14 in parallel, and the switches SW 11 -SW 14 are respectively controlled by a plurality bits of the control signal OPT ⁇ 0 >-OPT ⁇ 3 >.
- the switches SW 11 -SW 14 are implemented by N-type transistors.
- On or off statuses of the switches SW 11 -SW 14 are used to determine a resistance of the variable resistor 211 . For example, if all of the switches SW 11 -SW 14 are cut-off, the resistance of the variable resistor 211 equals to a summation of resistances of the resistors R 11 -R 14 . If the switches SW 11 -SW 12 are turned on, and the switches SW 13 -SW 14 are cut-off, the resistance of the variable resistor 211 equals to a summation of resistances of the resistors R 13 -R 14 .
- the sensing reference current generator 220 includes transistors M 24 -M 26 and a variable resistor 221 .
- a first end of the transistor M 24 receives the power voltage VDD, and a second end and control end are coupled together to the first end of the transistor M 25 and a first input end of the sense amplifier SA.
- a second end of the transistor M 25 is coupled to the transistor M 26 and a control end of the transistor M 25 receives the sensing reference voltage VSAREF.
- the transistor M 26 is coupled between the transistor M 25 and the variable resistor 221 , and controlled by the dummy selecting signal DYMUX. Circuit configurations of the variable resistors 211 and 221 are similar.
- the variable resistors 221 includes switches SW 21 -SW 24 and resistors R 21 -R 24 .
- the switches SW 21 -SW 24 are coupled in series between the transistor M 26 and the reference ground GND, and the resistors R 21 -R 24 are also coupled in series between the transistor M 26 and the reference ground GND.
- the switches SW 21 -SW 24 are respectively coupled to the resistors R 21 -R 24 in parallel, and the switches SW 21 -SW 24 are respectively controlled by the plurality bits of the control signal OPT ⁇ 0 >-OPT ⁇ 3 >.
- the resistances of the resistors R 11 -R 14 respectively equal to the resistances of the resistors R 21 -R 24 , and the resistance provided by the variable resistor 211 and the resistance provided by the variable resistor 212 may be the same.
- the cathode of the diode D 1 is biased at the reference voltage VREF by the operation amplifier OP 1 , and the reference current IREF is generated by dividing the reference voltage VREF by the resistance of the variable resistor 211 (the transistor M 23 is turned on).
- the reference current IREF may be received by the diode D 1
- the sensing reference voltage VSAREF may be generated at the anode of the diode D 1 .
- the voltage level of the sensing reference voltage VSAREF can be adjusted by changing on or off status of at least one of the switches SW 11 -SW 14 .
- the sensing reference voltage VSAREF is provided to bias the transistor M 25 , and the transistor M 25 may provide a bias voltage at second end thereof accordingly.
- the sensing reference current ISAREF may be generated according to the bias voltage and the resistance of the variable resistor 221 .
- the sensing reference voltage VSAREF of present disclosure can be adjusted dynamically, and the sensing reference current ISAREF can be adjusted accordingly to create margin read current steps or set or reset verify current levels.
- the transistors M 23 and M 26 are provided for circuit matching with the transistor TN 2 , and the transistors M 23 , M 26 and TN 2 may be turned on during a same time period.
- FIG. 3 illustrate a schematic diagram of a data sensing apparatus according to another embodiment of present disclosure.
- the data sensing apparatus 300 includes a sensing reference voltage generator 310 , a sensing reference current generator 320 , and a sense amplifier SA.
- each of the resistors R 31 -R 34 and R 41 -R 44 may be implemented by one or more unit resistors RU.
- each of the resistors R 31 and R 41 is implemented by four unit resistors RU coupled in parallel; each of the resistors R 32 and R 42 is implemented by two unit resistors RU coupled in parallel; each of the resistors R 33 and R 43 is implemented by one unit resistor RU; and each of the resistors R 34 and R 44 is implemented by two unit resistors RU coupled in series, wherein resistances of all of the unit resistors are the same. That is, a ratio between resistances of the resistors R 31 -R 34 may be 1:2:4:8, and a ratio between resistances of the resistors R 41 -R 44 may be 1:2:4:8.
- the unit resistor RU may be a poly resistor, a heavy fonning resistive random access memory (RRAM) cell, a non ial set or reset RRAM cell, or a traditional non-volatile memory (NVM) cell.
- RRAM resistive random access memory
- NVM non-volatile memory
- variable resistors 311 and 321 may respectively select one of the resistors R 31 -R 34 and one of the resistors R 41 -R 44 to provide the resistances of the variable resistors 311 and 321 . That is, a plurality of margin current read steps, or set or reset verify levels can be created.
- FIG. 4 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure.
- the data sensing apparatus 400 includes a sensing reference voltage generator 410 , a sensing reference current generator 420 , and a sense amplifier SA.
- the sensing reference voltage generator 410 includes an operation amplifier OP 2 , transistors M 41 -M 43 , and variable current generator 411 .
- the operation amplifier OP 2 has a negative input end receiving a reference voltage VREF, and a positive input end coupled to a diode D 2 formed by the transistor M 42 .
- An output end of the operation amplifier OP 2 is coupled to a control end of the transistor M 41 .
- a first end of the transistor M 41 receives the power voltage VDD, and a second end of the transistor M 41 is coupled to an anode of the diode D 2 .
- the anode of the diode D 2 generates the sensing reference voltage VSAREF by receiving a reference current IREF which is generated by the variable current generator 411 .
- a cathode of the diode D 2 is coupled to the transistor M 43 , a second end of the transistor M 43 is coupled to the variable current generator 411 , and a control end of the transistor M 43 receives a dummy selecting signal DYMUX.
- the variable current generator 411 is coupled between the transistor M 43 and the reference ground GND.
- the variable current generator 411 include a plurality of current sources CS 41 -CS 43 and a plurality of switches SW 41 -SW 43 .
- the current sources CS 41 -CS 43 are respectively coupled to the switches SW 41 -SW 43 in series, and the current sources CS 41 -CS 43 and the switches SW 41 -SW 43 may be respectively implemented by a plurality of transistors.
- the switches SW 41 -SW 43 are respectively controlled by a plurality of bits of control signal OPT ⁇ 0 >-OPT ⁇ 2 >. On or off statuses of the switches SW 41 -SW 43 are used to determine a current level of the reference current IREF. For example, if only the switch SW 41 is turned on, the current level of the reference current IREF equals to a current level of the current source CS 41 ; if only the switch SW 42 is turned on, the current level of the reference current IREF equals to a current level of the current source CS 42 ; and if only the switch SW 43 is turned on, the current level of the reference current IREF equals to a current level of the current source CS 43 .
- the sensing reference current generator 420 includes transistors M 44 -M 46 and a variable current generator 421 .
- a first end of the transistor M 44 receives the power voltage VDD, and a second end and control end of the transistor M 44 are coupled together to the first end of the transistor M 45 and a first input end of the sense amplifier SA.
- a second end of the transistor M 45 is coupled to the transistor M 46 and a control end of the transistor M 45 receives the sensing reference voltage VSAREF.
- the transistor M 46 is coupled between the transistor M 45 and the variable current generator 421 , and controlled by the dummy selecting signal DYMUX. Circuit configurations of the variable resistors 411 and 421 are similar.
- the variable current generator 421 includes switches SW 51 -SW 53 and current sources CS 51 -CS 53 .
- the switches SW 51 -SW 53 are respectively coupled to the current sources CS 51 -CS 53 in series between the transistor M 45 and the reference ground GND, and the switches SW 51 -SW 53 are respectively controlled by the plurality bits of the control signal OPT ⁇ 0 >-OPT ⁇ 2 >.
- the switches SW 51 -SW 53 are respectively controlled by the plurality of bits of control signal OPT ⁇ 0 >-OPT ⁇ 2 >. On or off statuses of the switches SW 51 -SW 53 are used to determine a current level of a sensing reference current ISAREF.
- the sense amplifier SA receives the sensing reference current ISAREF and a read-out current from the selected memory cell SMC, and obtains a read-out data SAOUT by sensing a current difference between the sensing reference current ISAREF and the read-out current.
- the current sources CS 41 -CS 43 and CS 51 -CS 53 respectively generates a plurality currents by minoring an input current.
- the input current may be provided by an input current generator 430 .
- the input current generator 430 includes a current source ECS 1 and transistors ET 1 and ET 2 .
- the current source ECS 1 receives the power voltage VDD and provides the input current to the transistor ET 1 .
- a first end and a control end of the transistor ET 1 are coupled together to receive the input current generated by the current source ECS 1 .
- a second end of the transistor ET 1 is coupled to the transistor ET 2 .
- the transistor ET 2 is coupled between the transistor ET 1 and the reference ground GND, and is controlled by an enable signal EN to be turned on or cut off.
- current levels of the currents respectively provided by the current sources CS 41 -CS 43 may be different, and a ratio of the current levels provided by the current sources CS 41 -CS 43 may be 1:2:4.
- current levels of the currents respectively provided by the current sources CS 51 -CS 53 may be different, and a ratio of the current levels provided by the current sources CS 51 -CS 53 may be 1:2:4.
- the current levels provided by the current sources CS 41 and CS 51 may equal to the current level of the input current.
- FIG. 5 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure.
- the data sensing apparatus 500 includes an operation amplifier OP 3 , transistors M 51 -M 53 , a variable resistor 510 , and a sense amplifier SA.
- the operation amplifier OP 3 has a first input end for receiving a reference voltage VREF, and an output end for providing a sensing reference voltage VSAREF.
- the transistor M 51 has a first end for receiving a power voltage VDD, a second end being coupled to a control end thereof
- the transistor M 52 has a first end being coupled to the second end of the transistor M 51 , a control end for directly receiving the sensing reference voltage VSAREF, and a second end being coupled to a second input end of the operation amplifier OP 3 and a first end of the third transistor M 53 .
- the transistor M 53 has a control end directly receiving a selecting signal DYMUX, and a second end being coupled to the variable resistor 510 .
- the variable resistor 510 is coupled between the second end of the transistor M 53 and a reference ground GND, wherein a resistance of the variable resistor 510 is determined according to a plurality of bits of a control signal OPT ⁇ 0 >-OPT ⁇ 3 >, and a sensing reference current ISAREF is generated according to the sensing reference voltage VSAREF and the resistance of the variable resistor 510 .
- the sense amplifier SA has a first input end being coupled to the second end of the transistor M 51 for sensing the sensing reference current ISAREF, and an output end for generating a read-out data SAOUT. Furthermore, a second input end of the sense amplifier SA is coupled to the selected memory cell SMC through transistors TN 1 and TN 2 .
- a control end of the transistor TN 1 directly receives the sensing reference voltage VSAREF, and a read-out current from the selected memory cell SMC can be transported through the transistor TN 1 , and the read-out current can be sensed by a second input end of the sense amplifier SA.
- the variable resistor 510 includes a plurality of switches SWA 1 -SWA 4 and a plurality of resistors R 51 -R 54 .
- the switches SWA 1 -SWA 4 are coupled in series between the transistor M 53 and the reference ground GND.
- the resistors R 51 -R 54 are coupled in series between the transistor M 53 and the reference ground GND.
- the switches SWA 1 -SWA 4 are respectively coupled to resistors R 51 -R 54 in parallel.
- Each of the resistors R 51 -R 54 may be implemented by one or more unit resistors RU.
- the resistor R 51 is implemented by four unit resistors RU coupled in parallel;
- the resistor R 52 is implemented by two unit resistors RU coupled in parallel;
- the resistor R 53 is implemented by one unit resistor RU;
- the resistor R 54 is implemented by two unit resistors RU coupled in series. All of the unit resistors RU in FIG. 5 are the same, and a ratio of the resistances of the resistors R 51 -R 54 is 1:2:4:8.
- a resistance of the variable resistor 510 can be determined by tuning off at least one of the switches SWA 1 -SWA 4 , and a current level of the sensing reference current ISAREF can be generated according to the sensing reference voltage VSAREF.
- the sensing reference current ISAREF can be adjusted to create margin read current steps or set or reset verify current levels.
- the present disclosure provides the sensing reference voltage generator generates the sensing reference voltage, and the sensing reference voltage can be dynamically adjusted, and the sensing reference voltage is self-adjusted to bias at a sensing reference current level at margin read and set verify/reset verify read levels for the memory apparatus. Such as that, the margin read accuracy of the memory apparatus can be ensured.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Memories (AREA)
- Read Only Memory (AREA)
Abstract
A data sensing apparatus adapted for sensing read-out data of a memory apparatus includes a sensing reference voltage generator, a sensing reference current generator, and a sense amplifier. The sensing reference voltage generator receives a reference voltage, generates a reference current according to the reference voltage and a control signal, and generates a sensing reference voltage according to the reference current. The sensing reference current generator receives the sensing reference voltage, and generates a sensing reference current according to the sensing reference voltage and the control signal. The sense amplifier receives the sensing reference current and a read-out current from the selected memory cell, and senses a current difference between the sensing reference current and the read-out current to generate the read-out data.
Description
- The invention relates to a data sensing apparatus for a memory apparatus. Particularly, the invention relates to the data sensing apparatus for providing an adjustable reference voltage for sensing read-out data of the memory apparatus.
- In recently years, non-volatile memory apparatuses are getting important in electronic products. Correspondingly, a resistive random access memory (RRAM) apparatus is provided.
- In conventional art, a data sensing apparatus for the RRAM provides a sensing reference voltage with a constant voltage level. A sensing reference current can be generated according to the sensing reference voltage, and a sense amplifier of data sensing apparatus can sense the sensing reference current and a read-out current from a selected RRAM cell to obtain a read-out data. Since a RRAM margin read accuracy depends on a sensing reference voltage bias condition, such as that, the margin read are good during a first current range of the read-out current but fail during a second current range of the read-out current by using the sensing reference voltage with the constant voltage level.
- The invention is directed to a plurality of data sensing apparatus, which provides dynamic sensing reference voltage to clamp a selected memory cell reading voltage.
- The invention provides a data sensing apparatus adapted for sensing read-out data of a memory apparatus. The data sensing apparatus includes a sensing reference voltage generator, a sensing reference current generator, and a sense amplifier. The sensing reference voltage generator receives a reference voltage, generates a reference current according to the reference voltage and a control signal, and generates a sensing reference voltage according to the reference current. The sensing reference current generator is coupled to the sensing reference voltage generator, receives the sensing reference voltage, and generates a sensing reference current according to the sensing reference voltage and the control signal. The sense amplifier has a first input end being coupled to the sensing reference current generator and a second input end being coupled to a selected memory cell of the memory apparatus. The sense amplifier receives the sensing reference current and a read-out current from the selected memory cell, and senses a current difference between the reference current and the read-out current to generate the read-out data.
- The invention provides another data sensing apparatus adapted for sensing read-out data of a memory apparatus. The data sensing apparatus includes an operation amplifier, a first transistor, a second transistor, a variable resistor, a sense amplifier and a third transistor. The operation amplifier has a first input end receiving a reference voltage, and an output end for providing a sensing reference voltage. The first transistor has a first transistor receiving a power voltage, a second end being coupled to a control end of the first transistor. The second transistor has a first end coupled to the second end of the first transistor, a control end directly receiving the sensing reference voltage, and a second end coupled to a second input end of the operation amplifier. The variable resistor is coupled between the second end of the second transistor and a reference ground, wherein a resistance of the variable resistor is detennined according to a control signal, and a sensing reference current is generated according to the sensing reference voltage and the resistance of the variable resistor. The sense amplifier has a first input end coupled to the second end of the first transistor for receiving the sensing reference current, and an output end for generating a read-out data. The third transistor has a first end coupled to a second input end of the sense amplifier, and a control end directly receiving the sensing reference voltage, and a second end coupled to a selected memory cell.
- According to the above descriptions, the sensing reference voltage can be dynamically adjusted, and the sensing reference voltage is self-adjusted to bias at a sensing reference current level at margin read and set verify/reset verify read levels for the memory apparatus. Furthermore, in present disclosure, the reference current and the sensing reference current are generated according to two matched circuit. Such as that, the margin read accuracy of the memory apparatus can be ensured.
- In order to make the aforementioned and other features and advantages of the invention comprehensible, several exemplary embodiments accompanied with figures are described in detail below.
- The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
-
FIG. 1 illustrates a schematic plot of a data sensing apparatus according to an embodiment of present disclosure. -
FIG. 2 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure. -
FIG. 3 illustrate a schematic diagram of a data sensing apparatus according to another embodiment of present disclosure. -
FIG. 4 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure. -
FIG. 5 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure. - Referring to
FIG. 1 ,FIG. 1 illustrates a schematic plot of a data sensing apparatus according to an embodiment of present disclosure. Thedata sensing apparatus 100 is used to sense read-out data of a memory apparatus. Thedata sensing apparatus 100 includes a sensingreference voltage generator 110, a sensingreference current generator 120, and a sense amplifier SA. The sensingreference voltage generator 110 receives a reference voltage VREF, generates a reference current according to the reference voltage VREF and a control signal OPT, and generates a sensing reference voltage VSAREF according to the reference current. The sensing referencecurrent generator 120 is coupled to the sensingreference voltage generator 110. The sensingreference current generator 120 receives the sensing reference voltage VSAREF and generates a sensing reference current ISAREF according to the sensing reference voltage VSAREF and the control signal OPT. The sense amplifier SA has a first input end and a second input end, the first input end is coupled to the sensingreference current generator 120 for receiving the sensing reference current ISAREF, and the second input end is coupled to a selected memory cell SMC for receiving a read-out current from the selected memory cell SMC. The sense amplifier - SA senses a current difference between the sensing reference current ISAREF and the read-out current to generate the read-out data SAOUT.
- It should be noted here, a voltage level of the sensing reference voltage VSAREF is not constant in present embodiment. The voltage level of the sensing reference voltage VSAREF is determined according to the reference current generated by the sensing
reference voltage generator 110, and a current level the reference current of the sensingreference voltage generator 110 may be determined according to the control signal OPT. Furthermore, the sensing reference voltage VSAREF is transported to the sensingreference current generator 120, and the sensingreference current generator 120 is biased by the sensing reference voltage VSAREF for generating the sensing reference current ISAREF according to the control signal OPT. - The control signal OPT provided to the sensing
reference voltage generator 110 and the sensingreference current generator 120 are the same, and circuit schemes for generating the reference current and the sensing reference current ISAREF are the same. That is, the sensing reference voltage VSAREF is self-adjusted, and the sensing reference current ISAREF can be good tracking with a margin read reference current. A better margin read cross all read-out current range may be obtained. - In additional, the sense amplifier SA may be coupled to the selected memory cell SMC through transistors TN1 and TN2. The transistor TN1 is coupled between the second input end of the sense amplifier SA and the transistor TN2, and the transistor TN1 is controlled by the sensing reference voltage VSAREF. The transistor TN2 is coupled between the transistor TN1 and the selected memory cell SMC, and is controlled by a selecting signal YMUX. When the selected memory cell SMC is selected for data read operation, the transistor TN2 is turned on by the selecting signal YMUX, and the read-out current may be transported to the second input end of the sense amplifier SA. Moreover, a transistor TP1 is coupled between a power voltage VDD and the second input end of the sense amplifier SA. Control end and second end of the transistor TP1 are connected together, and a first end of the transistor TP1 receives the power voltage VDD.
- In this embodiment, the selected memory cell SMC may be a resistive memory cell (ReRAM), and the selected memory cell SMC may include a resistor R1 and a transistor TC1 which is controlled by a word line signal WL (1T1R memory cell). Of course, the selected memory cell SMC is not limited to the 1T1R memory cell, the selected memory cell SMC also can be any type resistive memory cell known by a person skilled in the art. The selected memory cell SMC may be, such as 1R (one resistor), 1D1R (one diode and one resistor), 1S1R (one selector and one resistor), 1BJT1R (one bipolar transistor and one resistor), or complementary resistive switching (CRS) memory cell.
- Furthermore, in another embodiments, the selected memory cell SMC may also be any other type of resistive memory cell, such as phase-change memory (PCM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FRAM), or conductive-bridging random access memory (CBRAM) cell.
- Besides, the selected memory cell SMC may also not resistive memory cell. In some embodiment, the selected memory cell SMC may also be any other type non-volatile memory cell.
- Referring to
FIG. 2 ,FIG. 2 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure. Thedata sensing apparatus 200 includes a sensingreference voltage generator 210, a sensing referencecurrent generator 220, and a sense amplifier SA. The sensingreference voltage generator 210 includes an operation amplifier OP1, transistors M21-M23, and avariable resistor 211. The operation amplifier OP1 has a negative input end receiving a reference voltage VREF, and a positive input end coupled to a diode D1 formed by the transistor M22. An output end of the operation amplifier OP1 is coupled to a control end of the transistor M21. A first end of the transistor M21 receives the power voltage VDD, and a second end of the transistor M21 is coupled to an anode of the diode D1. The anode of the diode D1 generates the sensing reference voltage VSAREF. A cathode of the diode D1 is coupled to the transistor M23, a second end of the transistor M23 is coupled to thevariable resistor 211, and a control end of the transistor M23 receives a dummy selecting signal DYMUX. Thevariable resistor 211 includes switches SW11-SW14 and resistors R11-R14. The switches SW11-SW14 are coupled in series between the transistor M23 and a reference ground GND, and the resistors R11-R14 are also coupled in series between the transistor M23 and the reference ground GND. The switches SW11-SW14 are respectively coupled to the resistors R11-R14 in parallel, and the switches SW11-SW14 are respectively controlled by a plurality bits of the control signal OPT<0>-OPT<3>. Wherein, the switches SW11-SW14 are implemented by N-type transistors. - On or off statuses of the switches SW11-SW14 are used to determine a resistance of the
variable resistor 211. For example, if all of the switches SW11-SW14 are cut-off, the resistance of thevariable resistor 211 equals to a summation of resistances of the resistors R11-R14. If the switches SW11-SW12 are turned on, and the switches SW13-SW14 are cut-off, the resistance of thevariable resistor 211 equals to a summation of resistances of the resistors R13-R14. - On the other hand, the sensing reference
current generator 220 includes transistors M24-M26 and avariable resistor 221. A first end of the transistor M24 receives the power voltage VDD, and a second end and control end are coupled together to the first end of the transistor M25 and a first input end of the sense amplifier SA. A second end of the transistor M25 is coupled to the transistor M26 and a control end of the transistor M25 receives the sensing reference voltage VSAREF. The transistor M26 is coupled between the transistor M25 and thevariable resistor 221, and controlled by the dummy selecting signal DYMUX. Circuit configurations of thevariable resistors variable resistors 221 includes switches SW21-SW24 and resistors R21-R24. The switches SW21-SW24 are coupled in series between the transistor M26 and the reference ground GND, and the resistors R21-R24 are also coupled in series between the transistor M26 and the reference ground GND. The switches SW21-SW24 are respectively coupled to the resistors R21-R24 in parallel, and the switches SW21-SW24 are respectively controlled by the plurality bits of the control signal OPT<0>-OPT<3>. - In this embodiment, the resistances of the resistors R11-R14 respectively equal to the resistances of the resistors R21-R24, and the resistance provided by the
variable resistor 211 and the resistance provided by the variable resistor 212 may be the same. - In detail operation of the
data sensing apparatus 210, the cathode of the diode D1 is biased at the reference voltage VREF by the operation amplifier OP1, and the reference current IREF is generated by dividing the reference voltage VREF by the resistance of the variable resistor 211 (the transistor M23 is turned on). Such as that, the reference current IREF may be received by the diode D1, and the sensing reference voltage VSAREF may be generated at the anode of the diode D1. It can be easily seen, the voltage level of the sensing reference voltage VSAREF can be adjusted by changing on or off status of at least one of the switches SW11-SW14. - The sensing reference voltage VSAREF is provided to bias the transistor M25, and the transistor M25 may provide a bias voltage at second end thereof accordingly. Such as that, the sensing reference current ISAREF may be generated according to the bias voltage and the resistance of the
variable resistor 221. - That is, the sensing reference voltage VSAREF of present disclosure can be adjusted dynamically, and the sensing reference current ISAREF can be adjusted accordingly to create margin read current steps or set or reset verify current levels.
- Additional, in
FIG. 2 , the transistors M23 and M26 are provided for circuit matching with the transistor TN2, and the transistors M23, M26 and TN2 may be turned on during a same time period. - Referring to
FIG. 3 ,FIG. 3 illustrate a schematic diagram of a data sensing apparatus according to another embodiment of present disclosure. Thedata sensing apparatus 300 includes a sensingreference voltage generator 310, a sensing referencecurrent generator 320, and a sense amplifier SA. Different from thedata sensing apparatus 200, each of the resistors R31-R34 and R41-R44 may be implemented by one or more unit resistors RU. In detail, each of the resistors R31 and R41 is implemented by four unit resistors RU coupled in parallel; each of the resistors R32 and R42 is implemented by two unit resistors RU coupled in parallel; each of the resistors R33 and R43 is implemented by one unit resistor RU; and each of the resistors R34 and R44 is implemented by two unit resistors RU coupled in series, wherein resistances of all of the unit resistors are the same. That is, a ratio between resistances of the resistors R31-R34 may be 1:2:4:8, and a ratio between resistances of the resistors R41-R44 may be 1:2:4:8. - The unit resistor RU may be a poly resistor, a heavy fonning resistive random access memory (RRAM) cell, a non ial set or reset RRAM cell, or a traditional non-volatile memory (NVM) cell.
- In this embodiment, the
variable resistors variable resistors - Referring to
FIG. 4 ,FIG. 4 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure. Thedata sensing apparatus 400 includes a sensingreference voltage generator 410, a sensing referencecurrent generator 420, and a sense amplifier SA. The sensingreference voltage generator 410 includes an operation amplifier OP2, transistors M41-M43, and variablecurrent generator 411. The operation amplifier OP2 has a negative input end receiving a reference voltage VREF, and a positive input end coupled to a diode D2 formed by the transistor M42. An output end of the operation amplifier OP2 is coupled to a control end of the transistor M41. A first end of the transistor M41 receives the power voltage VDD, and a second end of the transistor M41 is coupled to an anode of the diode D2. The anode of the diode D2 generates the sensing reference voltage VSAREF by receiving a reference current IREF which is generated by the variablecurrent generator 411. A cathode of the diode D2 is coupled to the transistor M43, a second end of the transistor M43 is coupled to the variablecurrent generator 411, and a control end of the transistor M43 receives a dummy selecting signal DYMUX. The variablecurrent generator 411 is coupled between the transistor M43 and the reference ground GND. The variablecurrent generator 411 include a plurality of current sources CS41-CS43 and a plurality of switches SW41-SW43. The current sources CS41-CS43 are respectively coupled to the switches SW41-SW43 in series, and the current sources CS41-CS43 and the switches SW41-SW43 may be respectively implemented by a plurality of transistors. - The switches SW41-SW43 are respectively controlled by a plurality of bits of control signal OPT<0>-OPT<2>. On or off statuses of the switches SW41-SW43 are used to determine a current level of the reference current IREF. For example, if only the switch SW41 is turned on, the current level of the reference current IREF equals to a current level of the current source CS41; if only the switch SW42 is turned on, the current level of the reference current IREF equals to a current level of the current source CS42; and if only the switch SW43 is turned on, the current level of the reference current IREF equals to a current level of the current source CS43.
- On the other hand, the sensing reference
current generator 420 includes transistors M44-M46 and a variablecurrent generator 421. A first end of the transistor M44 receives the power voltage VDD, and a second end and control end of the transistor M44 are coupled together to the first end of the transistor M45 and a first input end of the sense amplifier SA. A second end of the transistor M45 is coupled to the transistor M46 and a control end of the transistor M45 receives the sensing reference voltage VSAREF. The transistor M46 is coupled between the transistor M45 and the variablecurrent generator 421, and controlled by the dummy selecting signal DYMUX. Circuit configurations of thevariable resistors current generator 421 includes switches SW51-SW53 and current sources CS51-CS53. The switches SW51-SW53 are respectively coupled to the current sources CS51-CS53 in series between the transistor M45 and the reference ground GND, and the switches SW51-SW53 are respectively controlled by the plurality bits of the control signal OPT<0>-OPT<2>. - The switches SW51-SW53 are respectively controlled by the plurality of bits of control signal OPT<0>-OPT<2>. On or off statuses of the switches SW51-SW53 are used to determine a current level of a sensing reference current ISAREF.
- The sense amplifier SA receives the sensing reference current ISAREF and a read-out current from the selected memory cell SMC, and obtains a read-out data SAOUT by sensing a current difference between the sensing reference current ISAREF and the read-out current.
- It should be noted here, the current sources CS41-CS43 and CS51-CS53 respectively generates a plurality currents by minoring an input current. The input current may be provided by an input
current generator 430. The inputcurrent generator 430 includes a current source ECS1 and transistors ET1 and ET2. The current source ECS1 receives the power voltage VDD and provides the input current to the transistor ET1. A first end and a control end of the transistor ET1 are coupled together to receive the input current generated by the current source ECS1. A second end of the transistor ET1 is coupled to the transistor ET2. The transistor ET2 is coupled between the transistor ET1 and the reference ground GND, and is controlled by an enable signal EN to be turned on or cut off. - In some embodiment, current levels of the currents respectively provided by the current sources CS41-CS43 may be different, and a ratio of the current levels provided by the current sources CS41-CS43 may be 1:2:4. Also, current levels of the currents respectively provided by the current sources CS51-CS53 may be different, and a ratio of the current levels provided by the current sources CS51-CS53 may be 1:2:4. Wherein, the current levels provided by the current sources CS41 and CS51 may equal to the current level of the input current.
- Referring to
FIG. 5 ,FIG. 5 illustrates a schematic plot of a data sensing apparatus according to another embodiment of present disclosure. Thedata sensing apparatus 500 includes an operation amplifier OP3, transistors M51-M53, avariable resistor 510, and a sense amplifier SA. The operation amplifier OP3 has a first input end for receiving a reference voltage VREF, and an output end for providing a sensing reference voltage VSAREF. The transistor M51 has a first end for receiving a power voltage VDD, a second end being coupled to a control end thereof The transistor M52 has a first end being coupled to the second end of the transistor M51, a control end for directly receiving the sensing reference voltage VSAREF, and a second end being coupled to a second input end of the operation amplifier OP3 and a first end of the third transistor M53. The transistor M53 has a control end directly receiving a selecting signal DYMUX, and a second end being coupled to thevariable resistor 510. Thevariable resistor 510 is coupled between the second end of the transistor M53 and a reference ground GND, wherein a resistance of thevariable resistor 510 is determined according to a plurality of bits of a control signal OPT<0>-OPT<3>, and a sensing reference current ISAREF is generated according to the sensing reference voltage VSAREF and the resistance of thevariable resistor 510. The sense amplifier SA has a first input end being coupled to the second end of the transistor M51 for sensing the sensing reference current ISAREF, and an output end for generating a read-out data SAOUT. Furthermore, a second input end of the sense amplifier SA is coupled to the selected memory cell SMC through transistors TN1 and TN2. A control end of the transistor TN1 directly receives the sensing reference voltage VSAREF, and a read-out current from the selected memory cell SMC can be transported through the transistor TN1, and the read-out current can be sensed by a second input end of the sense amplifier SA. - The
variable resistor 510 includes a plurality of switches SWA1-SWA4 and a plurality of resistors R51-R54. The switches SWA1-SWA4 are coupled in series between the transistor M53 and the reference ground GND. The resistors R51-R54 are coupled in series between the transistor M53 and the reference ground GND. The switches SWA1-SWA4 are respectively coupled to resistors R51-R54 in parallel. - Each of the resistors R51-R54 may be implemented by one or more unit resistors RU. In this embodiment, the resistor R51 is implemented by four unit resistors RU coupled in parallel; the resistor R52 is implemented by two unit resistors RU coupled in parallel; the resistor R53 is implemented by one unit resistor RU; and the resistor R54 is implemented by two unit resistors RU coupled in series. All of the unit resistors RU in
FIG. 5 are the same, and a ratio of the resistances of the resistors R51-R54 is 1:2:4:8. - A resistance of the
variable resistor 510 can be determined by tuning off at least one of the switches SWA1-SWA4, and a current level of the sensing reference current ISAREF can be generated according to the sensing reference voltage VSAREF. - That is, the sensing reference current ISAREF can be adjusted to create margin read current steps or set or reset verify current levels.
- In summary, the present disclosure provides the sensing reference voltage generator generates the sensing reference voltage, and the sensing reference voltage can be dynamically adjusted, and the sensing reference voltage is self-adjusted to bias at a sensing reference current level at margin read and set verify/reset verify read levels for the memory apparatus. Such as that, the margin read accuracy of the memory apparatus can be ensured.
- It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Claims (18)
1. A data sensing apparatus, being configured to sense read-out data of a memory apparatus, comprising:
a sensing reference voltage generator, receiving a reference voltage, generating a reference current according to the reference voltage and a control signal, and generating a sensing reference voltage according to the reference current;
a sensing reference current generator, coupled to the sensing reference voltage generator, receiving the sensing reference voltage, and generating a sensing reference current according to the sensing reference voltage and the control signal; and
a sense amplifier, having a first input end being coupled to the sensing reference current generator and a second input end being coupled to a selected memory cell of the memory apparatus, receiving the sensing reference current and a read-out current from the selected memory cell, and sensing a current difference between the sensing reference current and the read-out current to generate the read-out data,.
wherein the sensing reference voltage generator comprises:
an operation amplifier, having a first input end receiving the reference voltage;
a first transistor, having a first end receiving a power voltage, a control end coupled to an output end of the operation amplifier;
a diode, having an anode being coupled to a second end of the first transistor, a cathode coupled to a second end of the operation amplifier, wherein the sensing reference voltage is generated at the anode of the diode; and
a first variable resistor, coupled between the cathode of the diode and a reference ground, wherein a resistance of the first variable resistor is determined by the control signal,
wherein the first variable resistor comprises:
a plurality of switches and a plurality of resistors, wherein the switches are coupled in series between the cathode of the diode and the reference ground, the resistors are coupled in series between the cathode of the diode and the reference ground, and the switches are respectively coupled to the resistors in parallel,
wherein, the switches are respectively controlled by a plurality of bits of the control signal.
2. (canceled)
3. (canceled)
4. The data sensing apparatus as claimed in claim 1 , wherein the sensing reference current generator comprises:
a second transistor, having a first end receiving the power voltage, and a second end coupled to a control end;
a third transistor, having a first end coupled to the second end of the second transistor, a control end receiving the sensing reference voltage; and
a second variable resistor, coupled between a second end of the third transistor and the reference ground, wherein a resistance of the second variable resistor is determined by the control signal, and the resistances of the first and second variable resistors are substantially equaled.
5. The data sensing apparatus as claimed in claim 4 , wherein the second variable resistor comprises:
a plurality of switches and a plurality of resistors, wherein the switches are coupled in series between the second end of the third transistor and the reference ground, the resistors are coupled in series between the second end of the third transistor and the reference ground, and the switches are respectively coupled to the resistors in parallel,
wherein, the switches are respectively controlled by a plurality of bits of the control signal.
6. The data sensing apparatus as claimed in claim 1 , wherein the sensing reference voltage generator comprises:
an operation amplifier, having a first input end receiving the reference voltage;
a first transistor, having a first end receiving a power voltage, a control end coupled to an output end of the operation amplifier;
a diode, having an anode being coupled to a second end of the first transistor, a cathode coupled to a second end of the operation amplifier, wherein the sensing reference voltage is generated at the anode of the diode; and
a first variable current generator, coupled between the cathode of the diode and a reference ground, wherein the first variable current generator generates the reference current according to the control signal and an input current.
7. The data sensing apparatus as claimed in claim 6 , wherein the first variable current generator comprises:
a plurality of switches; and
a plurality of current sources,
wherein the switches are respectively coupled to the current sources in series between the cathode of the diode and the reference ground, the current sources respectively generate a plurality of current by mirroring the input current, and the switches are respectively controlled by a plurality bits of the control signal.
8. The data sensing apparatus as claimed in claim 6 , wherein the sensing reference current generator comprises:
a second transistor, having a first end receiving the power voltage, and a second end coupled to a control end;
a third transistor, having a first end coupled to the second end of the second transistor, a control end receiving the sensing reference voltage; and
a second variable current generator, coupled between a second end of the third transistor and the reference ground, wherein the second variable current generator generates the sensing reference current according to the control signal and the input current,
wherein current values of the reference current and the sensing reference current are substantially equaled.
9. The data sensing apparatus as claimed in claim 8 , wherein the second variable current generator comprises:
a plurality of switches; and
a plurality of current sources,
wherein the switches are respectively coupled to the current sources in series between the second end of the third transistor and the reference ground, the current sources respectively generate a plurality of current by mirroring the input current, and the switches are respectively controlled by a plurality bits of the control signal.
10. The data sensing apparatus as claimed in claim 6 , further comprising:
an input current generator, coupled to the reference current generator and the sensing reference current generator, wherein the input current generator comprises:
a current source;
a second transistor, having a first end coupled to the current source, and a control end coupled to the first end of the second transistor, wherein the input current is generated at the control end of the second transistor; and
an enable switch, coupled between a second end of the second transistor and the reference ground, and being controlled by an enable signal.
11. The data sensing apparatus as claimed in claim 1 , wherein the selected memory cell is a non-volatile memory cell.
12. The data sensing apparatus as claimed in claim 1 , wherein the selected memory cell is a resistive memory cell, a phase-change memory cell, a magnetoresistive random access memory cell, a ferroelectric random access memory, or a conductive-bridging random access memory cell.
13. The data sensing apparatus as claimed in claim 12 , wherein if the selected memory cell is the resistive memory cell, the selected memory cell is a one resistor memory cell, a one diode and one resistor memory cell, a one selector and one resistor memory cell, a one bipolar transistor and one resistor memory cell, or a complementary resistive switching memory cell.
14. A data sensing apparatus, comprising:
an operation amplifier, having a first input end receiving a reference voltage, and an output end for providing a sensing reference voltage;
a first transistor, having a first end receiving a power voltage, a second end coupled to a control end of the first transistor;
a second transistor, having a first end coupled to the second end of the first transistor, a control end directly receiving the sensing reference voltage, and a second end coupled to a second input end of the operation amplifier;
a variable resistor, wherein a first end of the variable resistor is coupled to the second end of the second transistor and a second end of the variable resistor is coupled to a reference ground, wherein a resistance of the variable resistor is detennined according to a control signal, and a sensing reference current is generated according to the sensing reference voltage and the resistance of the variable resistor;
a sense amplifier, having a first input end coupled to the second end of the first transistor for sensing the sensing reference current, a second input end coupled to a selected memory cell for sensing a read-out current from the selected memory cell, and an output end for generating a read-out data; and
a third transistor, having a first end coupled to a second input end of the sense amplifier, and a control end directly receiving the sensing reference voltage, and a second end coupled to a selected memory cell,
wherein the variable resistor comprises:
a plurality of switches and a plurality of resistors, wherein the switches are coupled in series between the second end of the second transistor and the reference ground, the resistors are coupled in series between the second end of the second transistor and the reference ground, and the switches are respectively coupled to the resistors in parallel,
wherein, the switches are respectively controlled by a plurality of bits of the control signal.
15. (canceled)
16. The data sensing apparatus as claimed in claim 14 , wherein the selected memory cell is a non-volatile memory cell.
17. The data sensing apparatus as claimed in claim 14 , wherein the selected memory cell is a resistive memory cell, a phase-change memory cell, a magnetoresistive random access memory cell, a ferroelectric random access memory, or a conductive-bridging random access memory cell.
18. The data sensing apparatus as claimed in claim 17 , wherein if the selected memory cell is the resistive memory cell, the selected memory cell is a one resistor memory cell, a one diode and one resistor memory cell, a one selector and one resistor memory cell, a one bipolar transistor and one resistor memory cell, or a complementary resistive switching memory cell.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/185,037 US9859000B1 (en) | 2016-06-17 | 2016-06-17 | Apparatus for providing adjustable reference voltage for sensing read-out data for memory |
TW105143149A TWI611412B (en) | 2016-06-17 | 2016-12-26 | Data sensing apparatus |
CN201710069141.2A CN107527651B (en) | 2016-06-17 | 2017-02-08 | Data detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/185,037 US9859000B1 (en) | 2016-06-17 | 2016-06-17 | Apparatus for providing adjustable reference voltage for sensing read-out data for memory |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170365336A1 true US20170365336A1 (en) | 2017-12-21 |
US9859000B1 US9859000B1 (en) | 2018-01-02 |
Family
ID=60660357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/185,037 Active US9859000B1 (en) | 2016-06-17 | 2016-06-17 | Apparatus for providing adjustable reference voltage for sensing read-out data for memory |
Country Status (3)
Country | Link |
---|---|
US (1) | US9859000B1 (en) |
CN (1) | CN107527651B (en) |
TW (1) | TWI611412B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180122462A1 (en) * | 2016-10-28 | 2018-05-03 | SK Hynix Inc. | Electronic device |
US20190392880A1 (en) * | 2017-03-03 | 2019-12-26 | Sony Semiconductor Solutions Corporation | Semiconductor storage device, information processing apparatus, and reference potential setting method |
US10796772B2 (en) * | 2017-12-27 | 2020-10-06 | SK Hynix Inc. | Semiconductor memory device and method for operating the same |
CN112633485A (en) * | 2019-09-24 | 2021-04-09 | 旺宏电子股份有限公司 | Data sensing device and data sensing method thereof |
US11133064B2 (en) * | 2019-07-17 | 2021-09-28 | Stmicroelectronics S.R.L. | Latch-type sense amplifier for a non-volatile memory with reduced margin between supply voltage and bitline-selection voltage |
EP3910636A1 (en) * | 2020-05-12 | 2021-11-17 | eMemory Technology Inc. | Non-volatile memory with multi-level cell array and associated read control method |
US11209846B2 (en) * | 2019-09-12 | 2021-12-28 | Kioxia Corporation | Semiconductor device having plural power source voltage generators, and voltage supplying method |
US11495294B2 (en) * | 2020-01-31 | 2022-11-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Hybrid self-tracking reference circuit for RRAM cells |
US11615820B1 (en) | 2021-09-30 | 2023-03-28 | Stmicroelectronics S.R.L. | Regulator of a sense amplifier |
US11984162B2 (en) | 2020-01-31 | 2024-05-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Hybrid self-tracking reference circuit for RRAM cells |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102770122B1 (en) * | 2016-10-24 | 2025-02-21 | 에스케이하이닉스 주식회사 | Electronic device |
JP6501325B1 (en) * | 2018-01-30 | 2019-04-17 | ウィンボンド エレクトロニクス コーポレーション | Semiconductor memory device |
CN112259140B (en) * | 2020-09-24 | 2023-04-07 | 浙江驰拓科技有限公司 | Readout circuit and readout circuit of memory chip |
Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5487045A (en) * | 1994-09-16 | 1996-01-23 | Philips Electroics North America Corporation | Sense amplifier having variable sensing load for non-volatile memory |
US6445170B1 (en) * | 2000-10-24 | 2002-09-03 | Intel Corporation | Current source with internal variable resistance and control loop for reduced process sensitivity |
US6473343B2 (en) * | 2001-02-26 | 2002-10-29 | Mitsubishi Denki Kabushiki Kaisha | Signal amplification circuit for amplifying and sensing current difference and semiconductor memory device including same |
US20050024129A1 (en) * | 2003-07-29 | 2005-02-03 | Ji-Eun Jang | Reference voltage generating circuit for outputting multi-level reference voltage using fuse trimming |
US20060230206A1 (en) * | 2005-03-08 | 2006-10-12 | Samsung Electronics Co., Ltd. | Current mode bus interface system, method of performing a mode transition and mode control signal generator for the same |
US20070002630A1 (en) * | 2005-07-04 | 2007-01-04 | Micron Technology, Inc. | Low power multiple bit sense amplifier |
US20070081389A1 (en) * | 2005-09-26 | 2007-04-12 | Tran Hieu V | Method and apparatus for systematic and random variation and mismatch compensation for multilevel flash memory operation |
US20080218221A1 (en) * | 2007-03-09 | 2008-09-11 | Novatek Microelectronics Corp. | Analog source driving apparatus |
US20080284501A1 (en) * | 2007-05-16 | 2008-11-20 | Samsung Electronics Co., Ltd. | Reference bias circuit for compensating for process variation |
US7595684B2 (en) * | 2006-03-13 | 2009-09-29 | Kabushiki Kaisha Toshiba | Voltage generation circuit and semiconductor memory using the same |
US20090251981A1 (en) * | 2008-04-08 | 2009-10-08 | Po-Hao Huang | Memory with a fast stable sensing amplifier |
US7859906B1 (en) * | 2007-03-30 | 2010-12-28 | Cypress Semiconductor Corporation | Circuit and method to increase read margin in non-volatile memories using a differential sensing circuit |
US20110051495A1 (en) * | 2009-09-01 | 2011-03-03 | Hiroshi Ito | Nonvolatile semiconductor memory device with no decrease in read margin and method of reading the same |
US20110080101A1 (en) * | 2009-10-02 | 2011-04-07 | Optromax Electronics Co., Ltd | Electronic device |
US20120038343A1 (en) * | 2010-08-10 | 2012-02-16 | Canon Kabushiki Kaisha | Constant current source and solid imaging apparatus using the same |
US20120063195A1 (en) * | 2010-09-13 | 2012-03-15 | International Business Machines Corporation | Reconfigurable Multi-level Sensing Scheme for Semiconductor Memories |
US20120283983A1 (en) * | 2011-05-05 | 2012-11-08 | Sunplus Technology Co., Ltd. | Temperature sensing device |
US20130002352A1 (en) * | 2011-06-30 | 2013-01-03 | Industry-Academic Cooperation Foundation, Yonsei University | Sensing circuit |
US20130169259A1 (en) * | 2011-12-29 | 2013-07-04 | STMicroelectronics PVT LTD (INDIA) | System and Method for a Low Voltage Bandgap Reference |
US20130201761A1 (en) * | 2012-02-06 | 2013-08-08 | Samsung Electronics Co., Ltd. | Sense amplifier for nonvolatile semiconductor memory device |
US20130308377A1 (en) * | 2012-05-18 | 2013-11-21 | Samsung Electronics Co., Ltd. | Sensing Circuits And Phase Change Memory Devices Including The Same |
US20130307504A1 (en) * | 2012-05-21 | 2013-11-21 | Fujitsu Semiconductor Limited | Voltage generation circuit |
US20140003124A1 (en) * | 2012-06-29 | 2014-01-02 | YongSik Youn | Sense amplifier circuitry for resistive type memory |
US20140021935A1 (en) * | 2012-07-19 | 2014-01-23 | Macronix International Co., Ltd. | Voltage buffer apparatus |
US20140036596A1 (en) * | 2012-07-31 | 2014-02-06 | Winbond Electronics Corporation | Sense Amplifier for Flash Memory |
US20140084989A1 (en) * | 2012-09-24 | 2014-03-27 | Kabushiki Kaisha Toshiba | Reference voltage generating circuit |
US8723595B1 (en) * | 2013-02-19 | 2014-05-13 | Issc Technologies Corp. | Voltage generator |
US8729959B1 (en) * | 2013-08-09 | 2014-05-20 | Issc Technologies Corp. | Voltage generating apparatus |
US20140185401A1 (en) * | 2012-12-31 | 2014-07-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Sensing circuit, memory device and data detecting method |
US20140241070A1 (en) * | 2013-02-26 | 2014-08-28 | Macronix International Co., Ltd. | Reference and sensing with bit line stepping method of memory |
US8848426B2 (en) * | 2012-10-11 | 2014-09-30 | Panasonic Corporation | Cross-point variable resistance nonvolatile memory device and reading method for cross-point variable resistance nonvolatile memory device |
US8947935B2 (en) * | 2012-05-30 | 2015-02-03 | Samsung Electronics Co., Ltd. | Integrated circuit and apparatuses including the same |
US8994387B2 (en) * | 2012-11-04 | 2015-03-31 | Winbond Electronics Corp. | Semiconductor device and detection method thereof |
US20150364188A1 (en) * | 2014-06-16 | 2015-12-17 | Samsung Electronics Co., Ltd. | Memory device reading and control |
US20160027485A1 (en) * | 2014-07-28 | 2016-01-28 | Hyun-Kook PARK | Memory devices, memory systems, and related operating methods |
US20160071567A1 (en) * | 2014-09-08 | 2016-03-10 | Katsuyuki Fujita | Resistance change memory |
US20160078915A1 (en) * | 2014-09-11 | 2016-03-17 | Akira Katayama | Resistance change memory |
US9312001B1 (en) * | 2015-02-17 | 2016-04-12 | Winbond Electronics Corp. | Writing and verifying circuit for a resistive memory and method for writing and verifying a resistive memory |
US20160148678A1 (en) * | 2014-11-24 | 2016-05-26 | Hyun-Kook PARK | Cross-point memory device including multi-level cells and operating method thereof |
US9576652B1 (en) * | 2016-01-11 | 2017-02-21 | Winbond Electronics Corp. | Resistive random access memory apparatus with forward and reverse reading modes |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7286409B1 (en) * | 2006-05-09 | 2007-10-23 | Macronix International Co., Ltd. | Method and apparatus to improve nonvolatile memory data retention |
US7619464B2 (en) * | 2006-07-28 | 2009-11-17 | Freescale Semiconductor, Inc. | Current comparison based voltage bias generator for electronic data storage devices |
CN101825909B (en) * | 2009-03-03 | 2012-08-22 | 旺玖科技股份有限公司 | Voltage stabilizing circuit |
KR101868920B1 (en) * | 2011-06-09 | 2018-06-19 | 삼성전자주식회사 | Resistive memory device and therefor method of sensing margin trimming |
KR102020975B1 (en) * | 2013-07-30 | 2019-10-18 | 삼성전자주식회사 | Current sense amplifying circuit in semiconductor memory device |
US9214203B2 (en) | 2014-02-12 | 2015-12-15 | Ememory Technology Inc. | Sensing apparatus and data sensing method thereof |
US9543028B2 (en) * | 2014-09-19 | 2017-01-10 | Sandisk Technologies Llc | Word line dependent temperature compensation scheme during sensing to counteract cross-temperature effect |
-
2016
- 2016-06-17 US US15/185,037 patent/US9859000B1/en active Active
- 2016-12-26 TW TW105143149A patent/TWI611412B/en active
-
2017
- 2017-02-08 CN CN201710069141.2A patent/CN107527651B/en active Active
Patent Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5487045A (en) * | 1994-09-16 | 1996-01-23 | Philips Electroics North America Corporation | Sense amplifier having variable sensing load for non-volatile memory |
US6445170B1 (en) * | 2000-10-24 | 2002-09-03 | Intel Corporation | Current source with internal variable resistance and control loop for reduced process sensitivity |
US6473343B2 (en) * | 2001-02-26 | 2002-10-29 | Mitsubishi Denki Kabushiki Kaisha | Signal amplification circuit for amplifying and sensing current difference and semiconductor memory device including same |
US20050024129A1 (en) * | 2003-07-29 | 2005-02-03 | Ji-Eun Jang | Reference voltage generating circuit for outputting multi-level reference voltage using fuse trimming |
US20060230206A1 (en) * | 2005-03-08 | 2006-10-12 | Samsung Electronics Co., Ltd. | Current mode bus interface system, method of performing a mode transition and mode control signal generator for the same |
US20070002630A1 (en) * | 2005-07-04 | 2007-01-04 | Micron Technology, Inc. | Low power multiple bit sense amplifier |
US20070081389A1 (en) * | 2005-09-26 | 2007-04-12 | Tran Hieu V | Method and apparatus for systematic and random variation and mismatch compensation for multilevel flash memory operation |
US7595684B2 (en) * | 2006-03-13 | 2009-09-29 | Kabushiki Kaisha Toshiba | Voltage generation circuit and semiconductor memory using the same |
US20080218221A1 (en) * | 2007-03-09 | 2008-09-11 | Novatek Microelectronics Corp. | Analog source driving apparatus |
US7859906B1 (en) * | 2007-03-30 | 2010-12-28 | Cypress Semiconductor Corporation | Circuit and method to increase read margin in non-volatile memories using a differential sensing circuit |
US20080284501A1 (en) * | 2007-05-16 | 2008-11-20 | Samsung Electronics Co., Ltd. | Reference bias circuit for compensating for process variation |
US20090251981A1 (en) * | 2008-04-08 | 2009-10-08 | Po-Hao Huang | Memory with a fast stable sensing amplifier |
US20110051495A1 (en) * | 2009-09-01 | 2011-03-03 | Hiroshi Ito | Nonvolatile semiconductor memory device with no decrease in read margin and method of reading the same |
US20110080101A1 (en) * | 2009-10-02 | 2011-04-07 | Optromax Electronics Co., Ltd | Electronic device |
US20120038343A1 (en) * | 2010-08-10 | 2012-02-16 | Canon Kabushiki Kaisha | Constant current source and solid imaging apparatus using the same |
US20120063195A1 (en) * | 2010-09-13 | 2012-03-15 | International Business Machines Corporation | Reconfigurable Multi-level Sensing Scheme for Semiconductor Memories |
US20120283983A1 (en) * | 2011-05-05 | 2012-11-08 | Sunplus Technology Co., Ltd. | Temperature sensing device |
US20130002352A1 (en) * | 2011-06-30 | 2013-01-03 | Industry-Academic Cooperation Foundation, Yonsei University | Sensing circuit |
US20130169259A1 (en) * | 2011-12-29 | 2013-07-04 | STMicroelectronics PVT LTD (INDIA) | System and Method for a Low Voltage Bandgap Reference |
US20130201761A1 (en) * | 2012-02-06 | 2013-08-08 | Samsung Electronics Co., Ltd. | Sense amplifier for nonvolatile semiconductor memory device |
US20130308377A1 (en) * | 2012-05-18 | 2013-11-21 | Samsung Electronics Co., Ltd. | Sensing Circuits And Phase Change Memory Devices Including The Same |
US20130307504A1 (en) * | 2012-05-21 | 2013-11-21 | Fujitsu Semiconductor Limited | Voltage generation circuit |
US8947935B2 (en) * | 2012-05-30 | 2015-02-03 | Samsung Electronics Co., Ltd. | Integrated circuit and apparatuses including the same |
US20140003124A1 (en) * | 2012-06-29 | 2014-01-02 | YongSik Youn | Sense amplifier circuitry for resistive type memory |
US20140021935A1 (en) * | 2012-07-19 | 2014-01-23 | Macronix International Co., Ltd. | Voltage buffer apparatus |
US20140036596A1 (en) * | 2012-07-31 | 2014-02-06 | Winbond Electronics Corporation | Sense Amplifier for Flash Memory |
US20140084989A1 (en) * | 2012-09-24 | 2014-03-27 | Kabushiki Kaisha Toshiba | Reference voltage generating circuit |
US8848426B2 (en) * | 2012-10-11 | 2014-09-30 | Panasonic Corporation | Cross-point variable resistance nonvolatile memory device and reading method for cross-point variable resistance nonvolatile memory device |
US8994387B2 (en) * | 2012-11-04 | 2015-03-31 | Winbond Electronics Corp. | Semiconductor device and detection method thereof |
US20140185401A1 (en) * | 2012-12-31 | 2014-07-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Sensing circuit, memory device and data detecting method |
US8723595B1 (en) * | 2013-02-19 | 2014-05-13 | Issc Technologies Corp. | Voltage generator |
US20140241070A1 (en) * | 2013-02-26 | 2014-08-28 | Macronix International Co., Ltd. | Reference and sensing with bit line stepping method of memory |
US8729959B1 (en) * | 2013-08-09 | 2014-05-20 | Issc Technologies Corp. | Voltage generating apparatus |
US20150364188A1 (en) * | 2014-06-16 | 2015-12-17 | Samsung Electronics Co., Ltd. | Memory device reading and control |
US20160027485A1 (en) * | 2014-07-28 | 2016-01-28 | Hyun-Kook PARK | Memory devices, memory systems, and related operating methods |
US20160071567A1 (en) * | 2014-09-08 | 2016-03-10 | Katsuyuki Fujita | Resistance change memory |
US20160078915A1 (en) * | 2014-09-11 | 2016-03-17 | Akira Katayama | Resistance change memory |
US20160148678A1 (en) * | 2014-11-24 | 2016-05-26 | Hyun-Kook PARK | Cross-point memory device including multi-level cells and operating method thereof |
US9312001B1 (en) * | 2015-02-17 | 2016-04-12 | Winbond Electronics Corp. | Writing and verifying circuit for a resistive memory and method for writing and verifying a resistive memory |
US9576652B1 (en) * | 2016-01-11 | 2017-02-21 | Winbond Electronics Corp. | Resistive random access memory apparatus with forward and reverse reading modes |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11211121B2 (en) | 2016-10-28 | 2021-12-28 | SK Hynix Inc. | Resistive storage electronic device for adjusting voltage depending on temeperature |
US10482959B2 (en) * | 2016-10-28 | 2019-11-19 | SK Hynix Inc. | Electronic device with a reference resistance adjustment block |
US20180122462A1 (en) * | 2016-10-28 | 2018-05-03 | SK Hynix Inc. | Electronic device |
US20190392880A1 (en) * | 2017-03-03 | 2019-12-26 | Sony Semiconductor Solutions Corporation | Semiconductor storage device, information processing apparatus, and reference potential setting method |
US10916285B2 (en) * | 2017-03-03 | 2021-02-09 | Sony Semiconductor Solutions Corporation | Semiconductor storage device, information processing apparatus, and reference potential setting method |
US10796772B2 (en) * | 2017-12-27 | 2020-10-06 | SK Hynix Inc. | Semiconductor memory device and method for operating the same |
US11133064B2 (en) * | 2019-07-17 | 2021-09-28 | Stmicroelectronics S.R.L. | Latch-type sense amplifier for a non-volatile memory with reduced margin between supply voltage and bitline-selection voltage |
US11209846B2 (en) * | 2019-09-12 | 2021-12-28 | Kioxia Corporation | Semiconductor device having plural power source voltage generators, and voltage supplying method |
CN112633485A (en) * | 2019-09-24 | 2021-04-09 | 旺宏电子股份有限公司 | Data sensing device and data sensing method thereof |
US11495294B2 (en) * | 2020-01-31 | 2022-11-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Hybrid self-tracking reference circuit for RRAM cells |
US11984162B2 (en) | 2020-01-31 | 2024-05-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Hybrid self-tracking reference circuit for RRAM cells |
EP3910636A1 (en) * | 2020-05-12 | 2021-11-17 | eMemory Technology Inc. | Non-volatile memory with multi-level cell array and associated read control method |
US11264092B2 (en) | 2020-05-12 | 2022-03-01 | Ememory Technology Inc. | Non-volatile memory with multi-level cell array and associated read control method |
US11615820B1 (en) | 2021-09-30 | 2023-03-28 | Stmicroelectronics S.R.L. | Regulator of a sense amplifier |
Also Published As
Publication number | Publication date |
---|---|
TWI611412B (en) | 2018-01-11 |
CN107527651B (en) | 2020-07-17 |
TW201801090A (en) | 2018-01-01 |
CN107527651A (en) | 2017-12-29 |
US9859000B1 (en) | 2018-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9859000B1 (en) | Apparatus for providing adjustable reference voltage for sensing read-out data for memory | |
US11423982B2 (en) | Resistive memory device with trimmable driver and sinker and method of operations thereof | |
US10269404B2 (en) | Resistance change memory | |
KR100868105B1 (en) | Resistance memory device | |
KR100809339B1 (en) | Nonvolatile Memory Device Using Resistor and Driving Method Thereof | |
US10395730B2 (en) | Non-volatile memory device with variable readout reference | |
US9087578B2 (en) | Configurable reference current generation for non volatile memory | |
US20110182104A1 (en) | Method of implementing memristor-based multilevel memory using reference resistor array | |
US10748613B2 (en) | Memory sense amplifiers and memory verification methods | |
US11848040B2 (en) | Memory device and reference circuit thereof | |
KR20170083939A (en) | Resistive random access memory apparatus | |
JP2018156700A (en) | Nonvolatile semiconductor memory device | |
US8867265B1 (en) | Semiconductor memory apparatus | |
CN114388007A (en) | Memory device and method of operating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WINBOND ELECTRONICS CORP., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, CHI-SHUN;CHEUNG, NGATIK;RYU, DOUK-HYOUN;AND OTHERS;REEL/FRAME:038963/0036 Effective date: 20160226 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |