+

US20170302241A1 - Management of broadcast audio loudness - Google Patents

Management of broadcast audio loudness Download PDF

Info

Publication number
US20170302241A1
US20170302241A1 US15/636,840 US201715636840A US2017302241A1 US 20170302241 A1 US20170302241 A1 US 20170302241A1 US 201715636840 A US201715636840 A US 201715636840A US 2017302241 A1 US2017302241 A1 US 2017302241A1
Authority
US
United States
Prior art keywords
loudness
junction
value
gain
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/636,840
Other versions
US10027303B2 (en
Inventor
Michael James Knee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grass Valley Ltd
Original Assignee
Snell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB1220426.9A external-priority patent/GB2510323B/en
Application filed by Snell Ltd filed Critical Snell Ltd
Priority to US15/636,840 priority Critical patent/US10027303B2/en
Publication of US20170302241A1 publication Critical patent/US20170302241A1/en
Assigned to Snell Advanced Media Limited reassignment Snell Advanced Media Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SNELL, MAURICE, KNEE, MICHAEL JAMES
Application granted granted Critical
Publication of US10027303B2 publication Critical patent/US10027303B2/en
Assigned to GRASS VALLEY LIMITED reassignment GRASS VALLEY LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: Snell Advanced Media Limited
Assigned to SNELL LIMITED reassignment SNELL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLGAN, DANIEL
Assigned to Snell Advanced Media Limited reassignment Snell Advanced Media Limited CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SNELL LIMITED
Assigned to MGG INVESTMENT GROUP LP, AS COLLATERAL AGENT reassignment MGG INVESTMENT GROUP LP, AS COLLATERAL AGENT GRANT OF SECURITY INTEREST - PATENTS Assignors: GRASS VALLEY CANADA, GRASS VALLEY LIMITED, Grass Valley USA, LLC
Assigned to Grass Valley USA, LLC, GRASS VALLEY LIMITED, GRASS VALLEY CANADA reassignment Grass Valley USA, LLC TERMINATION AND RELEASE OF PATENT SECURITY AGREEMENT Assignors: MGG INVESTMENT GROUP LP
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/32Automatic control in amplifiers having semiconductor devices the control being dependent upon ambient noise level or sound level
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3005Automatic control in amplifiers having semiconductor devices in amplifiers suitable for low-frequencies, e.g. audio amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/34Muting amplifier when no signal is present
    • H03G3/341Muting when no signals or only weak signals are present
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/34Muting amplifier when no signal is present
    • H03G3/348Muting in response to a mechanical action or to power supply variations, e.g. during tuning; Click removal circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G9/00Combinations of two or more types of control, e.g. gain control and tone control
    • H03G9/005Combinations of two or more types of control, e.g. gain control and tone control of digital or coded signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G9/00Combinations of two or more types of control, e.g. gain control and tone control
    • H03G9/02Combinations of two or more types of control, e.g. gain control and tone control in untuned amplifiers
    • H03G9/025Combinations of two or more types of control, e.g. gain control and tone control in untuned amplifiers frequency-dependent volume compression or expansion, e.g. multiple-band systems

Definitions

  • This invention concerns the management of broadcast audio loudness.
  • the first is the emergence and standardization of reliable methods of measuring, controlling and logging subjective loudness. These methods are described in ITU Standard BS-1770, “Algorithms to measure audio programme loudness and true-peak audio level” and EBU Recommendation R128, “Loudness normalisation and permitted maximum level of audio signals”.
  • the second development is the political will of broadcast industry regulators to introduce rules, and in some cases legislation, to control the relative loudness of programmes and commercials, for example in the CALM (Commercial Advertisement Loudness Mitigation) Act introduced by the FCC in the U.S. Such rules impose limits on the relative loudness of commercials and the programmes they accompany.
  • the invention consists in a method and apparatus for controlling loudness during a junction between different types of broadcast content, in particular a junction between programme and commercial or promotional content, in order to reduce the adverse effects of an abrupt increase in perceived loudness.
  • the time of the junction is identified in advance, a representative loudness value is obtained for a period leading up to the junction, and a time-varying gain control is applied to the content following the junction in order to bring its loudness smoothly from the representative value to its original value.
  • representative loudness values for content before and after the junction are read from a playout automation system, and a time-varying gain control is applied before and after the junction in order to bring the loudness smoothly from the first representative value to the second representative value.
  • a continuous measurement of a representative loudness value is obtained, and a time-varying gain control is applied to the content following the junction in order to bring its loudness smoothly from the representative value sampled near the time of the junction to its original value.
  • the present invention also consists in one aspect in method for controlling loudness during a junction between different types of broadcast content, such as a junction between programme and commercial or promotional content, the method comprising the steps of obtaining a first representative loudness value before the junction; obtaining a second representative loudness value after the junction; and applying a time-varying gain control to the content before and/or after the junction in order to smooth its loudness value across the junction
  • the loudness at or near each junction is gradually adjusted in order to reduce the abruptness of the transition while respecting both the artistic intentions of the programme maker and the need for commercials to have high impact.
  • FIG. 1 is a block diagram illustrating a first embodiment
  • FIG. 2 is a timeline useful in understanding the operation of the embodiment of FIG. 1 ;
  • FIG. 3 is a block diagram illustrating a second embodiment
  • FIG. 4 is a timeline useful in understanding the operation of the embodiment of FIG. 3 ;
  • FIG. 5 is a block diagram illustrating a third embodiment
  • broadcast is used in general sense and is intended to cover the delivery of content in a wide variety of forms, including streaming via the Internet.
  • FIG. 1 A first embodiment of the invention is illustrated in FIG. 1 .
  • This embodiment may be used in the case of live broadcasting where the loudness of the programme is not known in advance, but the loudness of the commercial in the period following the junction has a known value C.
  • an automation system ( 101 ) controls the playout of a broadcast audio signal ( 102 ).
  • a junction in the audio signal ( 102 ) between programme and commercial occurs at time t 0 .
  • time t 1 which is a known, fixed period before the junction, the automation system ( 101 ) sends a trigger signal ( 103 ) to a loudness measurement device ( 104 ), instructing it to begin loudness measurement.
  • a suitable period (t 0 -t 1 ) might be 15 seconds.
  • the loudness measurement device ( 104 ) stops capturing data for loudness measurement and calculates an average or other representative loudness value P ( 105 ) of the input signal ( 102 ) over the period (t 2 -t 1 ).
  • a suitable short period (t 0 -t 2 ) might be 0.25 seconds, so that in this example the average loudness would be calculated over a period of 14.75 seconds.
  • the average loudness P ( 105 ) is passed to a gain profile generator ( 106 ) which also receives the commercial loudness value C ( 107 ) from the automation system ( 101 ).
  • the output ( 108 ) of the gain profile generator ( 106 ) has a default value of unity.
  • the gain profile generator ( 106 ) performs the following operations. If P is greater than or equal to the commercial loudness value C ( 107 ), no further action is taken and the output ( 108 ) of the gain profile generator ( 106 ) remains at unity. If, however, P ⁇ C, then the gain profile generator ( 106 ) generates a ramp signal which has a value G ⁇ 1 from time t 2 to time t 0 , followed by a value g(t) which increases steadily from G to 1 from time t 0 to a later time t 3 , after which the output remains at 1. A suitable choice for t 3 would be 5 seconds after time t 0 .
  • the output ( 108 ) of the gain profile generator ( 106 ) is applied to a multiplier ( 109 ) which acts on a delayed version ( 110 ) of the input signal ( 102 ) to produce the output of the system ( 111 ).
  • the delay ( 112 ) compensates for the typically very short latencies of the loudness measurement device ( 104 ) and of the gain profile calculator ( 106 ).
  • FIG. 2 shows time-plots of loudness ( 201 ) at the input to the system, shown by a bold line, loudness ( 202 ) at the output of the system, shown by a dotted line where it differs from the input loudness, and the gain g(t) ( 203 ) applied by the system.
  • the loudness of the programme Before time t 2 the loudness of the programme is unaffected, the gain remaining at 1. Between t 1 and t 2 the loudness of the programme is measured; its average value P is shown on the graph ( 204 ). At time t 2 the gain is adjusted to the value G and the programme loudness is reduced for a short period.
  • the content switches to the commercial and its loudness is reduced from C to P.
  • the gain is gradually increased from G to 1 and the loudness is gradually increased from P to C.
  • the invention has thus achieved a smooth transition in loudness across the junction.
  • the input loudness of the commercial up to time t 3 has been shown at a constant value of C to ease explanation, but the principles of the invention would apply equally in the case that the loudness of the commercial varied between t 0 and t 3 . In that case the output loudness of the commercial would gradually approach its input loudness.
  • This variation may be used when the commercial cannot be analysed in advance.
  • an assumption is made that the commercial begins at its maximum permissible loudness, which we denote Cmax.
  • This value is used in place of a known loudness value provided by the automation system.
  • an automation system ( 301 ) controls the playout of a broadcast audio signal ( 302 ).
  • a junction in the audio signal ( 302 ) from programme to commercial occurs at time t 0 .
  • the automation system ( 301 ) sends a trigger signal ( 303 ) to a gain profile generator ( 306 ).
  • a suitable period (t 0 -t 4 ) would be 5.25 seconds.
  • the gain profile generator starts by steadily increasing the gain, reaching a value of G2 at time t 2 already defined, and which then reduces the gain abruptly to G3 so as to avoid a jump in loudness.
  • the gain profile generator generates a steadily increasing gain control signal, reaching a value of 1 at time t 3 .
  • FIG. 4 shows time-plots of loudness ( 401 ) at the input to the system, shown by a bold line, loudness ( 402 ) at the output of the system, shown by a dotted line where it differs from the input loudness, and the gain g(t) ( 403 ) applied by the system.
  • the loudness of the programme is unaffected, the gain remaining at 1.
  • the content switches to the commercial and its loudness is reduced from C to (P+C)/2.
  • the gain is gradually increased from G3 to 1 and the loudness is gradually increased from (P+C)/2 to C.
  • the input loudness of the programme from time t 4 and the input loudness of the commercial up to time t 3 have been shown at constant values of P and C respectively to ease explanation, but the principles of the invention would apply equally in the case that the loudness of the content varied between t 4 and t 3 . In that case the output loudness of the programme would gradually depart from its input loudness and the output loudness of the commercial would gradually approach its input loudness.
  • the target loudness at the junction is C instead of (P+C)/2.
  • the gain is increased smoothly over a time period before the junction from its original value to C/P times its original value. In this case, there would be no need for a gradual restoration of the gain value after the junction; the gain in this case would in fact be abruptly restored to its original value.
  • the target loudness at the junction is (1 ⁇ A)P+AC
  • the gain is smoothly increased prior to the junction to (1 ⁇ A+AC/P) times its original value
  • the gain is smoothly decreased after the junction from ((1 ⁇ A)P/C+A) times its original value.
  • the value of A may be a user input and—in a particular content delivery channel—may remain constant over significant periods of time. But, the value of A may also change dynamically with for example programme content and/or with the contractual relationship underlying a commercial. Variations in the value of A may be under the control of an automation system. Where appropriate, values of A (or information required by the automation system in the selection of a value for A) may be carried in metadata associated with the programme and/or the commercial.
  • a playout system ( 501 ) which need not in this case be under the control of a full automation system, plays out broadcast audio ( 502 ).
  • the audio signal is applied to a rolling loudness measurement unit ( 504 ), which continually updates an average or other representative loudness value for the previous 15 seconds or other fixed period.
  • the playout system ( 501 ) emits a trigger ( 503 ) at the junction between the programme and the commercial.
  • the rolling loudness measurement unit ( 505 ) samples the current loudness value ( 505 ) and applies it to the gain profile generator ( 506 ), which also receives the trigger ( 503 ) and a fixed commercial loudness value ( 507 ) which may be a user input.
  • the operation of the gain profile generator ( 506 ), delay ( 512 ) and multiplier ( 509 ) are then as described in the first embodiment.
  • the target loudness and gain profile calculations would then be performed in the same manner as in the second embodiment.
  • Other configurations are possible without departing from the scope of the invention.
  • the information about junction timing, interval lengths, representative loudness levels and loudness measurement periods may be obtained in various combinations from a playout automation system, metadata accompanying the signals and user input.
  • the variation of gain with time may be linear, as assumed in the foregoing descriptions, or may have some other smoothly varying characteristic.
  • the overall impact of the gain variation may be reduced in order to effect a compromise between the achievement of smooth loudness variations and the requirement to preserve the intentions of the content producers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

To control loudness during a junction between different types of broadcast content, such as a junction between programme and commercial or promotional content, representative loudness values for content respectively before (P) and after (C) the junction are received from a playout automation system. A time-varying gain control is applied before and after the junction in order to smooth loudness around the junction. The audio gain is smoothly increased prior to the junction to a gain (P+C)/2P times higher than the original gain value. Then, the gain is reduced shortly before the junction to a value (P+C)/2C times lower than the original gain value. After the junction, the gain is returned smoothly to the original value.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of and claims priority from U.S. patent application Ser. No. 15/153,910 filed May 13, 2016 which is a divisional application of and claims priority to U.S. patent application Ser. No. 14/078,640 filed Nov. 13, 2013 which claims the benefit of Great Britain Application No. GB 1220426.9, filed Nov. 13, 2012, the entire disclosure of which is hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • This invention concerns the management of broadcast audio loudness.
  • BACKGROUND OF THE INVENTION
  • The management of the subjective loudness of broadcast audio signals, both in radio and television, has been important since the early days of broadcasting. While the viewer or listener invariably has control over the overall volume level of the content they are observing, it is important for the broadcaster to manage the variations in perceived loudness over the course of a programming schedule to meet the requirements of intelligibility, comfort, impact and artistic expression. These requirements can come into conflict. For example, classical music may require a high dynamic range in order that the listener may appreciate the contrasts between solo instruments playing quiet passages and the full orchestra, complete with percussion, reaching a climax in the piece. However, the limitations of a particular transmission channel and listening environment often require a lower dynamic range, to prevent either the quiet passages being inaudible or the loud passages being distorted. The technique of compression (not to be confused with bandwidth or bit rate reduction) has long been used to adapt the dynamic range to the conditions of the channel or listening environment. In the move from analogue to digital broadcasting, and with the increasing quality of home amplification and loudspeaker systems, compression has become less desirable.
  • Another significant area of conflict in the management of loudness concerns the relative perceived loudness of programme content and commercials or promotional content. In a film or television drama, the director achieves significant artistic impact through the dramatic use of contrasts between quiet and loud scenes. In order to accommodate both, the average loudness of such a programme may be quite low. Conversely, in a television commercial, the director's goal is to maximize impact over the short duration of the commercial, a goal which is often achieved by making the commercial loud. In the days of analogue broadcasting, when compression was applied quite strongly, the subjective discrepancy between the loudness of programmes and commercials was not a significant problem. In digital broadcasting, however, this discrepancy has become a significant source of annoyance for viewers and listeners.
  • Two developments have helped to overcome this problem. The first is the emergence and standardization of reliable methods of measuring, controlling and logging subjective loudness. These methods are described in ITU Standard BS-1770, “Algorithms to measure audio programme loudness and true-peak audio level” and EBU Recommendation R128, “Loudness normalisation and permitted maximum level of audio signals”. The second development is the political will of broadcast industry regulators to introduce rules, and in some cases legislation, to control the relative loudness of programmes and commercials, for example in the CALM (Commercial Advertisement Loudness Mitigation) Act introduced by the FCC in the U.S. Such rules impose limits on the relative loudness of commercials and the programmes they accompany.
  • These developments have led to a significant improvement in the overall comfort of viewers and listeners as concerns audio loudness. However, the inventors have recognized that there remains the potential for annoyance at the junctions between programmes and commercials, even when legal and contractual requirements for average loudness have been met. A typical scenario is when a fast-action drama ends with a relatively silent scene. An abrupt transition from such a scene to a loud commercial can cause considerable annoyance to the observer. An equivalent transition within a programme is not so much of a problem because it will have been introduced for artistic effect.
  • It is the object of this invention to provide, for both live and pre-recorded broadcasting, a method and apparatus for mitigating the effect of abrupt loudness transitions at junctions between programmes and commercials or promotional content.
  • SUMMARY OF THE INVENTION
  • The invention consists in a method and apparatus for controlling loudness during a junction between different types of broadcast content, in particular a junction between programme and commercial or promotional content, in order to reduce the adverse effects of an abrupt increase in perceived loudness.
  • In a first embodiment of the invention, the time of the junction is identified in advance, a representative loudness value is obtained for a period leading up to the junction, and a time-varying gain control is applied to the content following the junction in order to bring its loudness smoothly from the representative value to its original value.
  • In a second embodiment, representative loudness values for content before and after the junction are read from a playout automation system, and a time-varying gain control is applied before and after the junction in order to bring the loudness smoothly from the first representative value to the second representative value.
  • In a third embodiment of the invention, a continuous measurement of a representative loudness value is obtained, and a time-varying gain control is applied to the content following the junction in order to bring its loudness smoothly from the representative value sampled near the time of the junction to its original value.
  • The present invention also consists in one aspect in method for controlling loudness during a junction between different types of broadcast content, such as a junction between programme and commercial or promotional content, the method comprising the steps of obtaining a first representative loudness value before the junction; obtaining a second representative loudness value after the junction; and applying a time-varying gain control to the content before and/or after the junction in order to smooth its loudness value across the junction
  • So, in some embodiments of the invention, in response to information provided by a broadcast automation system, the loudness at or near each junction is gradually adjusted in order to reduce the abruptness of the transition while respecting both the artistic intentions of the programme maker and the need for commercials to have high impact.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be described by way of example with reference to the accompanying drawings, in which:
  • FIG. 1 is a block diagram illustrating a first embodiment;
  • FIG. 2 is a timeline useful in understanding the operation of the embodiment of FIG. 1;
  • FIG. 3 is a block diagram illustrating a second embodiment;
  • FIG. 4 is a timeline useful in understanding the operation of the embodiment of FIG. 3;
  • FIG. 5 is a block diagram illustrating a third embodiment;
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • In the description that follows, the content prior to the junction will be referred to as the “programme” and the content after the junction the “commercial” without precluding other types of broadcast content on either side of the junction. The term “broadcast” is used in general sense and is intended to cover the delivery of content in a wide variety of forms, including streaming via the Internet.
  • A first embodiment of the invention is illustrated in FIG. 1. This embodiment may be used in the case of live broadcasting where the loudness of the programme is not known in advance, but the loudness of the commercial in the period following the junction has a known value C. In this embodiment, an automation system (101) controls the playout of a broadcast audio signal (102). Suppose a junction in the audio signal (102) between programme and commercial occurs at time t0. At time t1, which is a known, fixed period before the junction, the automation system (101) sends a trigger signal (103) to a loudness measurement device (104), instructing it to begin loudness measurement. A suitable period (t0-t1) might be 15 seconds. At time t2, a much shorter period before the junction, the loudness measurement device (104) stops capturing data for loudness measurement and calculates an average or other representative loudness value P (105) of the input signal (102) over the period (t2-t1). A suitable short period (t0-t2) might be 0.25 seconds, so that in this example the average loudness would be calculated over a period of 14.75 seconds. The average loudness P (105) is passed to a gain profile generator (106) which also receives the commercial loudness value C (107) from the automation system (101). The output (108) of the gain profile generator (106) has a default value of unity. The gain profile generator (106) performs the following operations. If P is greater than or equal to the commercial loudness value C (107), no further action is taken and the output (108) of the gain profile generator (106) remains at unity. If, however, P<C, then the gain profile generator (106) generates a ramp signal which has a value G<1 from time t2 to time t0, followed by a value g(t) which increases steadily from G to 1 from time t0 to a later time t3, after which the output remains at 1. A suitable choice for t3 would be 5 seconds after time t0. The output (108) of the gain profile generator (106) is applied to a multiplier (109) which acts on a delayed version (110) of the input signal (102) to produce the output of the system (111). The delay (112) compensates for the typically very short latencies of the loudness measurement device (104) and of the gain profile calculator (106). The value of G is chosen such that when a gain G is applied to a signal of loudness C then the output loudness will be P. If loudness is expressed in the linear domain, then G=P/C.
  • The effect of the first embodiment will now be described with reference to FIG. 2, which shows time-plots of loudness (201) at the input to the system, shown by a bold line, loudness (202) at the output of the system, shown by a dotted line where it differs from the input loudness, and the gain g(t) (203) applied by the system. Before time t2 the loudness of the programme is unaffected, the gain remaining at 1. Between t1 and t2 the loudness of the programme is measured; its average value P is shown on the graph (204). At time t2 the gain is adjusted to the value G and the programme loudness is reduced for a short period. At time t0 the content switches to the commercial and its loudness is reduced from C to P. Between t0 and t3 the gain is gradually increased from G to 1 and the loudness is gradually increased from P to C. The invention has thus achieved a smooth transition in loudness across the junction. In this example, the input loudness of the commercial up to time t3 has been shown at a constant value of C to ease explanation, but the principles of the invention would apply equally in the case that the loudness of the commercial varied between t0 and t3. In that case the output loudness of the commercial would gradually approach its input loudness.
  • A variation of the first embodiment of the invention will now be described. This variation may be used when the commercial cannot be analysed in advance. In this case, an assumption is made that the commercial begins at its maximum permissible loudness, which we denote Cmax. This value is used in place of a known loudness value provided by the automation system.
  • A second embodiment of the invention will now be described. This embodiment may be used when the programme is pre-recorded and information about its loudness is known in advance. Referring to FIG. 3, an automation system (301) controls the playout of a broadcast audio signal (302). As already described, a junction in the audio signal (302) from programme to commercial occurs at time t0. At time t4, which is a known, fixed period before the junction, the automation system (301) sends a trigger signal (303) to a gain profile generator (306). A suitable period (t0-t4) would be 5.25 seconds. Starting at time t4 and ending at time t3 already defined, the gain profile generator generates a gain control signal (308) which starts by steadily increasing the gain, reaching a value of G2 at time t2 already defined, and which then reduces the gain abruptly to G3 so as to avoid a jump in loudness. At time t0, the moment of the junction, the gain profile generator generates a steadily increasing gain control signal, reaching a value of 1 at time t3. We now describe how G2 and G3 are calculated, using the simplifying assumptions that time periods t2-t4 and t3-t0 are equal and that the loudness is expressed as a linear quantity. The aim is to take the loudness smoothly from P to C, so there is a target loudness value of (P+C)/2 at the junction. This leads to a gain value before the junction of G2=(P+C)/2P, and a gain value after the junction of G3=(P+C)/2C.
  • The effect of the second embodiment will now be described with reference to FIG. 4, which shows time-plots of loudness (401) at the input to the system, shown by a bold line, loudness (402) at the output of the system, shown by a dotted line where it differs from the input loudness, and the gain g(t) (403) applied by the system. Before time t4 the loudness of the programme is unaffected, the gain remaining at 1. Between t4 and t2 the gain is steadily increased from 1 to G2=(P+C)/2P. At time t2 the gain is switched to the value G3=(P+C)/2C. At time t0 the content switches to the commercial and its loudness is reduced from C to (P+C)/2. Between t0 and t3 the gain is gradually increased from G3 to 1 and the loudness is gradually increased from (P+C)/2 to C. In this example, the input loudness of the programme from time t4 and the input loudness of the commercial up to time t3 have been shown at constant values of P and C respectively to ease explanation, but the principles of the invention would apply equally in the case that the loudness of the content varied between t4 and t3. In that case the output loudness of the programme would gradually depart from its input loudness and the output loudness of the commercial would gradually approach its input loudness.
  • In certain applications, it may be preferable to leave the loudness of the commercial unchanged and to smooth the loudness value across the junction by varying gain only during the programme. In this case, the target loudness at the junction is C instead of (P+C)/2. To achieve this, the gain is increased smoothly over a time period before the junction from its original value to C/P times its original value. In this case, there would be no need for a gradual restoration of the gain value after the junction; the gain in this case would in fact be abruptly restored to its original value.
  • More generally, it is possible to define a relative importance A of preserving the loudness of the commercial. If A=1, so that preserving commercial loudness is of overriding importance, perhaps for contractual reasons, then we have the situation described above. If A=0.5, so that it is equally important to preserve commercial loudness as it is to preserve programme loudness, then we have the situation illustrated in FIG. 4. Conversely, if A=0, so that preserving programme loudness is of overriding importance, then we have the situation generally as illustrated in FIG. 2. Of course, the arrangement of FIGS. 1 and 2 was described above in a context in which the loudness of the programme was not known in advance. What is being suggested in this variation is that even in a situation in which the programme loudness is known in advance, a choice can be made (through setting a value A=0) not to vary the loudness of the programme.
  • In general, the target loudness at the junction is (1−A)P+AC, the gain is smoothly increased prior to the junction to (1−A+AC/P) times its original value, and the gain is smoothly decreased after the junction from ((1−A)P/C+A) times its original value.
  • The value of A may be a user input and—in a particular content delivery channel—may remain constant over significant periods of time. But, the value of A may also change dynamically with for example programme content and/or with the contractual relationship underlying a commercial. Variations in the value of A may be under the control of an automation system. Where appropriate, values of A (or information required by the automation system in the selection of a value for A) may be carried in metadata associated with the programme and/or the commercial.
  • A third embodiment of the invention will now be described. This embodiment may be used when no advance information is available either about the loudness of content or the timing of a junction. The following description is given with reference to FIG. 5. A playout system (501), which need not in this case be under the control of a full automation system, plays out broadcast audio (502). The audio signal is applied to a rolling loudness measurement unit (504), which continually updates an average or other representative loudness value for the previous 15 seconds or other fixed period. The playout system (501) emits a trigger (503) at the junction between the programme and the commercial. On receipt of the trigger (503), the rolling loudness measurement unit (505) samples the current loudness value (505) and applies it to the gain profile generator (506), which also receives the trigger (503) and a fixed commercial loudness value (507) which may be a user input. The operation of the gain profile generator (506), delay (512) and multiplier (509) are then as described in the first embodiment.
  • As in the second embodiment, it may also be desirable to define a relative importance A of preserving the loudness of the commercial, even though that value may be a user input. The target loudness and gain profile calculations would then be performed in the same manner as in the second embodiment. Other configurations are possible without departing from the scope of the invention. In particular, the information about junction timing, interval lengths, representative loudness levels and loudness measurement periods may be obtained in various combinations from a playout automation system, metadata accompanying the signals and user input. The variation of gain with time may be linear, as assumed in the foregoing descriptions, or may have some other smoothly varying characteristic.
  • The overall impact of the gain variation may be reduced in order to effect a compromise between the achievement of smooth loudness variations and the requirement to preserve the intentions of the content producers.
  • In this case, there would defined a relative importance S of effecting a smooth loudness transition. If S=1, we have the situation where the transition is as smooth as possible, so that the target loudness values on each side of the junction are equal, as described in the above embodiments. If S=0, we have the “null” case where no gain variation is carried out and the full abruptness of the jump is preserved. In general, the target loudness just before the junction will be P+SA(C−P) and the target loudness just after the junction will be C+S(1−A)(P−C). So the gain is smoothly increased prior to the junction to (1+SA(C−P)/P) times its original value and is smoothly decreased after the junction from (1+S(1−A)(P−C)/C) times its original value. Control of the value of S may be organised as described above for the value of A.

Claims (6)

1. A method for controlling loudness during a junction between different types of broadcast content, such as a junction between programme and commercial or promotional content, the method comprising the steps in an audio processor of:
obtaining at said audio processor a first representative loudness value P before the junction;
obtaining at said audio processor a second representative loudness value C after the junction in which the second representative loudness value is received from a playout automation system; and
applying a time-varying gain control to the content using said audio processor in order to smooth its loudness value across the junction.
where the audio gain applied to the content has an original gain value; and
the audio gain applied to the content is smoothly increased prior to the junction to a gain (1+SA(C−P)/P) times higher than the original gain value and is smoothly decreased after the junction from (1+S(1−A)(P−C)/C) times its original value
where A is a variable parameter between 0 and 1 representing the relative importance of preserving the loudness before and after the junction
S is a variable parameter greater than 0 and less than or equal to 1 representing the relative importance of smoothing loudness values and preserving original loudness values.
2. A method according to claim 1, in which the first representative loudness value P is measured over a predefined period before the junction.
3. A method according to claim 1, in which the first representative loudness value P is measured continuously to provide a rolling loudness value.
4. A method according to claim 1, in which the first representative loudness P value is received from a playout automation system.
5. A method according to claim 1, in which the time-varying gain control is applied to the content after the junction.
6. A non-transitory computer readable medium containing programming instructions for instruction for causing a programmable apparatus to implement a method for controlling loudness during a junction between different types of broadcast content, such as a junction between programme and commercial or promotional content, the method comprising the steps of:
obtaining at said audio processor a first representative loudness value P before the junction;
obtaining at said audio processor a second representative loudness value C after the junction in which the second representative loudness value is received from a playout automation system; and
applying a time-varying gain control to the content using said audio processor in order to smooth its loudness value across the junction.
where the audio gain applied to the content has an original gain value; and the audio gain applied to the content is smoothly increased prior to the junction to a gain (1+SA(C−P)/P) times higher than the original gain value and is smoothly decreased after the junction from (1+S(1−A)(P−C)/C) times its original value
where A is a variable parameter between 0 and 1 representing the relative importance of preserving the loudness before and after the junction
S is a variable parameter greater than 0 and less than or equal to 1 representing the relative importance of smoothing loudness values and preserving original loudness values.
US15/636,840 2012-11-13 2017-06-29 Management of broadcast audio loudness Expired - Fee Related US10027303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/636,840 US10027303B2 (en) 2012-11-13 2017-06-29 Management of broadcast audio loudness

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1220426.9 2012-11-13
GB1220426.9A GB2510323B (en) 2012-11-13 2012-11-13 Management of broadcast audio loudness
US14/078,640 US9344052B2 (en) 2012-11-13 2013-11-13 Management of broadcast audio loudness
US15/153,910 US20160254794A1 (en) 2012-11-13 2016-05-13 Management of broadcast audio loudness
US15/636,840 US10027303B2 (en) 2012-11-13 2017-06-29 Management of broadcast audio loudness

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/153,910 Continuation-In-Part US20160254794A1 (en) 2012-11-13 2016-05-13 Management of broadcast audio loudness

Publications (2)

Publication Number Publication Date
US20170302241A1 true US20170302241A1 (en) 2017-10-19
US10027303B2 US10027303B2 (en) 2018-07-17

Family

ID=60038567

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/636,840 Expired - Fee Related US10027303B2 (en) 2012-11-13 2017-06-29 Management of broadcast audio loudness

Country Status (1)

Country Link
US (1) US10027303B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170324993A1 (en) * 2014-11-17 2017-11-09 Nec Corporation Video processing system, transmission device, and video processing method
US20210311697A1 (en) * 2018-11-16 2021-10-07 Roku, Inc. Detection of Volume Adjustments During Media Replacement Events Using Loudness Level Profiles

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052571A (en) * 1975-11-07 1977-10-04 National Research Development Corporation Hearing aid with amplitude compression achieved by clipping a modulated signal
US4292467A (en) * 1977-10-07 1981-09-29 Transcale A.B. Control for audio receiver
US5666384A (en) * 1995-07-26 1997-09-09 Motorola, Inc. Method and apparatus for mitigating noise in an output signal of an audio automatic gain control circuit
US20070076905A1 (en) * 2003-12-25 2007-04-05 Yamaha Corporation Audio output apparatus
US20070177743A1 (en) * 2004-04-08 2007-08-02 Koninklijke Philips Electronics, N.V. Audio level control
US7277550B1 (en) * 2003-06-24 2007-10-02 Creative Technology Ltd. Enhancing audio signals by nonlinear spectral operations
US20080089524A1 (en) * 2006-09-25 2008-04-17 Yamaha Corporation Audio Signal Processing System
US20090062943A1 (en) * 2007-08-27 2009-03-05 Sony Computer Entertainment Inc. Methods and apparatus for automatically controlling the sound level based on the content
US20090074209A1 (en) * 2007-08-16 2009-03-19 Jeffrey Thompson Audio Processing for Compressed Digital Television
US20090097665A1 (en) * 2006-12-18 2009-04-16 L Esperance Andre Sound volume automatic adjustment method and system
US20090116665A1 (en) * 2007-11-07 2009-05-07 Red Lion 49 Limited Compressing the Level of an Audio Signal
US20090290728A1 (en) * 2008-05-26 2009-11-26 Berg Paul G Dynamic contoured-sound/subwoofer-synthesis audio system
US20090290721A1 (en) * 2008-02-29 2009-11-26 Personics Holdings Inc. Method and System for Automatic Level Reduction
US20100166225A1 (en) * 2008-12-26 2010-07-01 Hideaki Watanabe Signal processing apparatus, signal processing method and program
US20100198377A1 (en) * 2006-10-20 2010-08-05 Alan Jeffrey Seefeldt Audio Dynamics Processing Using A Reset
US20100217413A1 (en) * 2009-02-12 2010-08-26 Seiler Brock Maxwell Multi-channel audio vibratory entertainment system
US20100272290A1 (en) * 2009-04-17 2010-10-28 Carroll Timothy J Loudness consistency at program boundaries
US20110150242A1 (en) * 2009-12-17 2011-06-23 Stmicroelectronics Asia Pacific Pte Ltd. Adaptive loudness levelling for digital audio signals
US20120328115A1 (en) * 2010-03-10 2012-12-27 Dolby International Ab System for combining loudness measurements in a single playback mode
US20130272543A1 (en) * 2012-04-12 2013-10-17 Srs Labs, Inc. System for adjusting loudness of audio signals in real time
US20140016791A1 (en) * 2012-07-12 2014-01-16 Dts, Inc. Loudness control with noise detection and loudness drop detection
US20140093100A1 (en) * 2012-09-28 2014-04-03 Samsung Electronics Co. Ltd. User terminal apparatus, electronic device, and method for controlling the same
US8744855B1 (en) * 2010-08-09 2014-06-03 Amazon Technologies, Inc. Determining reading levels of electronic books
US8965774B2 (en) * 2011-08-23 2015-02-24 Apple Inc. Automatic detection of audio compression parameters
US20150205576A1 (en) * 2010-05-28 2015-07-23 Echostar Techonogies L.L.C. Apparatus, systems and methods for limiting output volume of a media presentation device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1286478B1 (en) 1996-12-02 1998-07-08 Sgs Thomson Microelectronics METHOD OF ADJUSTING THE VOLUME AND SOUND SENSATION IN AN AUDIO DEVICE
WO2003039152A2 (en) 2001-10-31 2003-05-08 Goldpocket Interactive System and method for itv data automation via a broadcast traffic and scheduling system
US7319764B1 (en) 2003-01-06 2008-01-15 Apple Inc. Method and apparatus for controlling volume
US20050251273A1 (en) 2004-05-05 2005-11-10 Motorola, Inc. Dynamic audio control circuit and method
CN1981433A (en) 2004-06-30 2007-06-13 皇家飞利浦电子股份有限公司 Method of and system for automatically adjusting the loudness of an audio signal
US7995775B2 (en) 2006-07-14 2011-08-09 Broadcom Corporation Automatic volume control for audio signals
US8275153B2 (en) 2007-04-16 2012-09-25 Evertz Microsystems Ltd. System and method for generating an audio gain control signal
TWI429301B (en) 2008-05-05 2014-03-01 Mstar Semiconductor Inc Volume control device and method
WO2010005034A1 (en) 2008-07-11 2010-01-14 クラリオン株式会社 Acoustic processing device
JP5236006B2 (en) 2008-10-17 2013-07-17 シャープ株式会社 Audio signal adjustment apparatus and audio signal adjustment method
JP5120288B2 (en) 2009-02-16 2013-01-16 ソニー株式会社 Volume correction device, volume correction method, volume correction program, and electronic device
CA2864137A1 (en) 2012-02-27 2013-09-06 Linear Acoustic, Inc. Automatic control of audio processing based on at least one of playout automation information and broadcast traffic information

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052571A (en) * 1975-11-07 1977-10-04 National Research Development Corporation Hearing aid with amplitude compression achieved by clipping a modulated signal
US4292467A (en) * 1977-10-07 1981-09-29 Transcale A.B. Control for audio receiver
US5666384A (en) * 1995-07-26 1997-09-09 Motorola, Inc. Method and apparatus for mitigating noise in an output signal of an audio automatic gain control circuit
US7277550B1 (en) * 2003-06-24 2007-10-02 Creative Technology Ltd. Enhancing audio signals by nonlinear spectral operations
US20070076905A1 (en) * 2003-12-25 2007-04-05 Yamaha Corporation Audio output apparatus
US20070177743A1 (en) * 2004-04-08 2007-08-02 Koninklijke Philips Electronics, N.V. Audio level control
US20080089524A1 (en) * 2006-09-25 2008-04-17 Yamaha Corporation Audio Signal Processing System
US20100198377A1 (en) * 2006-10-20 2010-08-05 Alan Jeffrey Seefeldt Audio Dynamics Processing Using A Reset
US20090097665A1 (en) * 2006-12-18 2009-04-16 L Esperance Andre Sound volume automatic adjustment method and system
US20090074209A1 (en) * 2007-08-16 2009-03-19 Jeffrey Thompson Audio Processing for Compressed Digital Television
US20090062943A1 (en) * 2007-08-27 2009-03-05 Sony Computer Entertainment Inc. Methods and apparatus for automatically controlling the sound level based on the content
US20090116665A1 (en) * 2007-11-07 2009-05-07 Red Lion 49 Limited Compressing the Level of an Audio Signal
US20090290721A1 (en) * 2008-02-29 2009-11-26 Personics Holdings Inc. Method and System for Automatic Level Reduction
US20090290728A1 (en) * 2008-05-26 2009-11-26 Berg Paul G Dynamic contoured-sound/subwoofer-synthesis audio system
US20100166225A1 (en) * 2008-12-26 2010-07-01 Hideaki Watanabe Signal processing apparatus, signal processing method and program
US20100217413A1 (en) * 2009-02-12 2010-08-26 Seiler Brock Maxwell Multi-channel audio vibratory entertainment system
US20100272290A1 (en) * 2009-04-17 2010-10-28 Carroll Timothy J Loudness consistency at program boundaries
US20110150242A1 (en) * 2009-12-17 2011-06-23 Stmicroelectronics Asia Pacific Pte Ltd. Adaptive loudness levelling for digital audio signals
US20120328115A1 (en) * 2010-03-10 2012-12-27 Dolby International Ab System for combining loudness measurements in a single playback mode
US20150205576A1 (en) * 2010-05-28 2015-07-23 Echostar Techonogies L.L.C. Apparatus, systems and methods for limiting output volume of a media presentation device
US8744855B1 (en) * 2010-08-09 2014-06-03 Amazon Technologies, Inc. Determining reading levels of electronic books
US8965774B2 (en) * 2011-08-23 2015-02-24 Apple Inc. Automatic detection of audio compression parameters
US20130272543A1 (en) * 2012-04-12 2013-10-17 Srs Labs, Inc. System for adjusting loudness of audio signals in real time
US20140016791A1 (en) * 2012-07-12 2014-01-16 Dts, Inc. Loudness control with noise detection and loudness drop detection
US20140093100A1 (en) * 2012-09-28 2014-04-03 Samsung Electronics Co. Ltd. User terminal apparatus, electronic device, and method for controlling the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170324993A1 (en) * 2014-11-17 2017-11-09 Nec Corporation Video processing system, transmission device, and video processing method
US20210311697A1 (en) * 2018-11-16 2021-10-07 Roku, Inc. Detection of Volume Adjustments During Media Replacement Events Using Loudness Level Profiles
US11556304B2 (en) * 2018-11-16 2023-01-17 Roku, Inc. Detection of volume adjustments during media replacement events using loudness level profiles

Also Published As

Publication number Publication date
US10027303B2 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
TWI600273B (en) System and method for adjusting loudness of audio signals in real time
US10355657B1 (en) Loudness level and range processing
JP7595968B2 (en) Audio signal processing method and device for controlling loudness level
EP3540733B1 (en) Metadata for loudness and dynamic range control
US9578436B2 (en) Content-aware audio modes
US9991861B2 (en) System and method for controlled dynamics adaptation for musical content
US20100286988A1 (en) Hybrid Permanent/Reversible Dynamic Range Control System
JP7636025B2 (en) Transmission-agnostic presentation-based program loudness
US10686420B2 (en) Audio signal processing method and apparatus for controlling loudness level
CN113257274A (en) Efficient DRC profile transmission
US20160254794A1 (en) Management of broadcast audio loudness
Mason et al. Adaptive audio reproduction using personalized compression
WO2015144243A1 (en) Image display device with automatic sound enhancement function
US10027303B2 (en) Management of broadcast audio loudness
US12248731B2 (en) Deferred loudness adjustment for dynamic range control
US20210400355A1 (en) Audio device with learning and adaptive quiet mode capabilities
EP2838196A1 (en) System and method for controlled dynamics adaptation for musical content
WO2019185251A1 (en) Operation method for a display device with automatic sound enhancement function
JP2010003335A (en) Audio reproducing device, audio reproducing method, and program

Legal Events

Date Code Title Description
AS Assignment

Owner name: SNELL ADVANCED MEDIA LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNEE, MICHAEL JAMES;SNELL, MAURICE;SIGNING DATES FROM 20171025 TO 20171108;REEL/FRAME:044264/0759

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: GRASS VALLEY LIMITED, GREAT BRITAIN

Free format text: CHANGE OF NAME;ASSIGNOR:SNELL ADVANCED MEDIA LIMITED;REEL/FRAME:052127/0795

Effective date: 20181101

AS Assignment

Owner name: SNELL LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COLGAN, DANIEL;REEL/FRAME:052454/0721

Effective date: 20140314

Owner name: SNELL ADVANCED MEDIA LIMITED, UNITED KINGDOM

Free format text: CHANGE OF NAME;ASSIGNOR:SNELL LIMITED;REEL/FRAME:052454/0819

Effective date: 20160622

AS Assignment

Owner name: MGG INVESTMENT GROUP LP, AS COLLATERAL AGENT, NEW YORK

Free format text: GRANT OF SECURITY INTEREST - PATENTS;ASSIGNORS:GRASS VALLEY USA, LLC;GRASS VALLEY CANADA;GRASS VALLEY LIMITED;REEL/FRAME:053122/0666

Effective date: 20200702

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20220717

AS Assignment

Owner name: GRASS VALLEY LIMITED, UNITED KINGDOM

Free format text: TERMINATION AND RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:MGG INVESTMENT GROUP LP;REEL/FRAME:066867/0336

Effective date: 20240320

Owner name: GRASS VALLEY CANADA, CANADA

Free format text: TERMINATION AND RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:MGG INVESTMENT GROUP LP;REEL/FRAME:066867/0336

Effective date: 20240320

Owner name: GRASS VALLEY USA, LLC, CALIFORNIA

Free format text: TERMINATION AND RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:MGG INVESTMENT GROUP LP;REEL/FRAME:066867/0336

Effective date: 20240320

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载