+

US20170286764A1 - Content-based detection and three dimensional geometric reconstruction of objects in image and video data - Google Patents

Content-based detection and three dimensional geometric reconstruction of objects in image and video data Download PDF

Info

Publication number
US20170286764A1
US20170286764A1 US15/234,969 US201615234969A US2017286764A1 US 20170286764 A1 US20170286764 A1 US 20170286764A1 US 201615234969 A US201615234969 A US 201615234969A US 2017286764 A1 US2017286764 A1 US 2017286764A1
Authority
US
United States
Prior art keywords
image
digital image
computer
edges
identifying features
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/234,969
Other versions
US9779296B1 (en
Inventor
Jiyong Ma
Stephen Michael Thompson
Jan W. Amtrup
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungsten Automation Corp
Original Assignee
Kofax Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/234,969 priority Critical patent/US9779296B1/en
Application filed by Kofax Inc filed Critical Kofax Inc
Assigned to KOFAX, INC. reassignment KOFAX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MA, JIYONG, AMTRUP, JAN W., THOMPSON, STEPHEN MICHAEL
Priority to PCT/US2017/025553 priority patent/WO2017173368A1/en
Priority to EP17776847.0A priority patent/EP3436865A4/en
Application granted granted Critical
Publication of US9779296B1 publication Critical patent/US9779296B1/en
Publication of US20170286764A1 publication Critical patent/US20170286764A1/en
Assigned to CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT reassignment CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOFAX, INC., PSIGEN SOFTWARE, INC.
Assigned to JPMORGAN CHASE BANK, N.A. AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A. AS COLLATERAL AGENT FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: KOFAX, INC., PSIGEN SOFTWARE, INC.
Assigned to TUNGSTEN AUTOMATION CORPORATION reassignment TUNGSTEN AUTOMATION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOFAX, INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • G06K9/00463
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • G06K9/00483
    • G06T5/002
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • G06T7/0081
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/40Document-oriented image-based pattern recognition
    • G06V30/41Analysis of document content
    • G06V30/414Extracting the geometrical structure, e.g. layout tree; Block segmentation, e.g. bounding boxes for graphics or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/40Document-oriented image-based pattern recognition
    • G06V30/41Analysis of document content
    • G06V30/418Document matching, e.g. of document images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20104Interactive definition of region of interest [ROI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30176Document
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components

Definitions

  • the present invention relates to digital image data capture and processing, and more particularly to detecting objects depicted in image and/or video data based on internally-represented features (content) as opposed to edges.
  • the present invention also relates to reconstructing objects in a three-dimensional coordinate space so as to rectify image artifacts caused by distortional effects inherent to capturing image and/or video data using a camera.
  • Digital images having depicted therein a document such as a letter, a check, a bill, an invoice, a credit card, a driver license, a passport, a social security card, etc. have conventionally been captured and processed using a scanner or multifunction peripheral coupled to a computer workstation such as a laptop or desktop computer.
  • a scanner or multifunction peripheral coupled to a computer workstation such as a laptop or desktop computer.
  • a major challenge in transitioning conventional document capture and processing techniques is the limited processing power and image resolution achievable using hardware currently available in mobile devices. These limitations present a significant challenge because it is impossible or impractical to process images captured at resolutions typically much lower than achievable by a conventional scanner. As a result, conventional scanner-based processing algorithms typically perform poorly on digital images captured using a mobile device.
  • a still further challenge is presented by the nature of mobile capture components (e.g. cameras on mobile phones, tablets, etc.). Where conventional scanners are capable of faithfully representing the physical document in a digital image, critically maintaining aspect ratio, dimensions, and shape of the physical document in the digital image, mobile capture components are frequently incapable of producing such results.
  • mobile capture components e.g. cameras on mobile phones, tablets, etc.
  • images of documents captured by a camera present a new line of processing issues not encountered when dealing with images captured by a scanner. This is in part due to the inherent differences in the way the document image is acquired, as well as the way the devices are constructed.
  • the way that some scanners work is to use a transport mechanism that creates a relative movement between paper and a linear array of sensors. These sensors create pixel values of the document as it moves by, and the sequence of these captured pixel values forms an image. Accordingly, there is generally a horizontal or vertical consistency up to the noise in the sensor itself, and it is the same sensor that provides all the pixels in the line.
  • cameras have many more sensors in a nonlinear array, e.g., typically arranged in a rectangle. Thus, all of these individual sensors are independent, and render image data that is not typically of horizontal or vertical consistency.
  • cameras introduce a projective effect that is a function of the angle at which the picture is taken. For example, with a linear array like in a scanner, even if the transport of the paper is not perfectly orthogonal to the alignment of sensors and some skew is introduced, there is no projective effect like in a camera. Additionally, with camera capture, nonlinear distortions may be introduced because of the camera optics.
  • Distortions and blur are particularly challenging when attempting to detect objects represented in video data, as the camera typically moves with respect to the object during the capture operation, and video data are typically characterized by a relatively low resolution compared to still images captured using a mobile device. Moreover, the motion of the camera may be erratic and occur within three dimensions, meaning the horizontal and/or vertical consistency associated with linear motion in a conventional scanner is not present in video data captured using mobile devices. Accordingly, reconstructing an object to correct for distortions, e.g. due to changing camera angle and/or position, within a three-dimensional space is a significant challenge.
  • a computer-implemented method of detecting an object depicted in a digital image includes: detecting a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and projecting a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • a computer program product for detecting an object depicted in a digital image includes a computer readable medium having stored thereon computer readable program instructions configured to cause a processor, upon execution thereof, to: detect, using the processor, a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and project, using the processor, a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • a system for detecting an object depicted in a digital image includes a processor and logic embodied with and/or executable by the processor.
  • the logic is configured to cause the processor, upon execution thereof, to: detect a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and project a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • FIG. 1 illustrates a network architecture, in accordance with one embodiment.
  • FIG. 2 shows a representative hardware environment that may be associated with the servers and/or clients of FIG. 1 , in accordance with one embodiment.
  • FIG. 3A is a digital image of a document including a plurality of designated feature zones, according to one embodiment.
  • FIG. 3B is a digital image of a document including a plurality of designated identifying features, according to one embodiment.
  • FIG. 3C is a digital image of a document including an extended set of the plurality of designated identifying features, according to another embodiment.
  • FIG. 4A depicts a mapping between matching distinctive features of a reference image and test image of a driver license, according to one embodiment.
  • FIG. 4B depicts a mapping between matching distinctive features of a reference image and test image of a driver license, according to another embodiment where the test and reference images depict the driver license at different rotational orientations.
  • FIG. 4C depicts a mapping between matching distinctive features of a reference image and test image of a credit card, according to one embodiment.
  • FIG. 5 is a simplified schematic of a credit card having edges thereof projected based on internal features of the credit card, according to one embodiment.
  • FIG. 6A is a simplified schematic showing a coordinate system for measuring capture angle, according to one embodiment.
  • FIG. 6B depicts an exemplary schematic of a rectangular object captured using a capture angle normal to the object, according to one embodiment.
  • FIG. 6C depicts an exemplary schematic of a rectangular object captured using a capture angle slightly skewed with respect to the object, according to one embodiment.
  • FIG. 6D depicts an exemplary schematic of a rectangular object captured using a capture angle significantly skewed with respect to the object, according to one embodiment.
  • FIG. 7 is a flowchart of a method for detecting objects depicted in digital images based on internal features of the object, according to one embodiment.
  • FIG. 8 is a flowchart of a method for reconstructing objects depicted in digital images based on internal features of the object, according to one embodiment.
  • the present application refers to image processing.
  • the present application discloses systems, methods, and computer program products configured to detect and reconstruct objects depicted in digital images from a non-rectangular shape to a substantially rectangular shape, or preferably a rectangular shape. Even more preferably, this is accomplished based on evaluating the internal features of the object(s) rather than detecting object edges and reconstructing a particular shape based on edge contours.
  • a computer-implemented method of detecting an object depicted in a digital image includes: detecting a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and projecting a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • a computer program product for detecting an object depicted in a digital image includes a computer readable medium having stored thereon computer readable program instructions configured to cause a processor, upon execution thereof, to: detect, using the processor, a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and project, using the processor, a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • a system for detecting an object depicted in a digital image includes a processor and logic embodied with and/or executable by the processor.
  • the logic is configured to cause the processor, upon execution thereof, to: detect a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and project a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • a “quadrilateral” is a four-sided figure where (1) each side is linear, and (2) adjacent sides form vertices at the intersection thereof. Exemplary quadrilaterals are depicted in FIGS. 6C and 6D below, according to two illustrative embodiments.
  • a “parallelogram” is a special type of quadrilateral, i.e. a four-sided figure where (1) each side is linear, (2) opposite sides are parallel, and (3) adjacent sides are not necessarily perpendicular, such that vertices at the intersection of adjacent sides form angles having values that are not necessarily 90°.
  • a “rectangle” or “rectangular shape” is a special type of quadrilateral, which is defined as a four-sided figure, where (1) each side is linear, (2) opposite sides are parallel, and (3) adjacent sides are perpendicular, such that an interior angle formed at the vertex between each pair of adjacent sides is a right-angle, i.e. a 90° angle.
  • An exemplary rectangle is depicted in FIG. 6B , according to one illustrative embodiment.
  • satisfies the relationship: 85° ⁇ 95°) at either (a) a vertex between two adjacent sides, (b) a vertex between a projection of the predominantly linear portion of one side and an adjacent side, or (c) a vertex between a projection of the predominantly linear portion of one side and a projection of the predominantly linear portion of an adjacent side.
  • a “non-rectangular shape” as referred to herein includes any shape that is not either a “rectangular shape” or a “substantially rectangular shape” as defined above.
  • a “non-rectangular shape” is a “tetragon,” which as referred to herein is a four-sided figure, where: (1) each side is characterized in whole or in part by an equation selected from a chosen class of functions (e.g. selected from a class of polynomials preferably ranging from zeroth order to fifth order, more preferably first order to third order polynomials, and even more preferably first order to second order polynomials), and (2) adjacent sides of the figure form vertices at the intersection thereof.
  • a chosen class of functions e.g. selected from a class of polynomials preferably ranging from zeroth order to fifth order, more preferably first order to third order polynomials, and even more preferably first order to second order polynomials
  • Images are preferably digital images captured by cameras, especially cameras of mobile devices.
  • a mobile device is any device capable of receiving data without having power supplied via a physical connection (e.g. wire, cord, cable, etc.) and capable of receiving data without a physical data connection (e.g. wire, cord, cable, etc.).
  • Mobile devices within the scope of the present disclosures include exemplary devices such as a mobile telephone, smartphone, tablet, personal digital assistant, iPod®, iPad®, BLACKBERRY® device, etc.
  • the presently disclosed mobile image processing algorithms can be applied, sometimes with certain modifications, to images coming from scanners and multifunction peripherals (MFPs).
  • images processed using the presently disclosed processing algorithms may be further processed using conventional scanner processing algorithms, in some approaches.
  • an image may be captured by a camera of a mobile device.
  • the term “camera” should be broadly interpreted to include any type of device capable of capturing an image of a physical object external to the device, such as a piece of paper.
  • the term “camera” does not encompass a peripheral scanner or multifunction device. Any type of camera may be used. Preferred embodiments may use cameras having a higher resolution, e.g. 8 MP or more, ideally 12 MP or more.
  • the image may be captured in color, grayscale, black and white, or with any other known optical effect.
  • image as referred to herein is meant to encompass any type of data corresponding to the output of the camera, including raw data, processed data, etc.
  • various embodiments of the invention discussed herein are implemented using the Internet as a means of communicating among a plurality of computer systems.
  • One skilled in the art will recognize that the present invention is not limited to the use of the Internet as a communication medium and that alternative methods of the invention may accommodate the use of a private intranet, a Local Area Network (LAN), a Wide Area Network (WAN) or other means of communication.
  • LAN Local Area Network
  • WAN Wide Area Network
  • various combinations of wired, wireless (e.g., radio frequency) and optical communication links may be utilized.
  • the program environment in which one embodiment of the invention may be executed illustratively incorporates one or more general-purpose computers or special-purpose devices such hand-held computers. Details of such devices (e.g., processor, memory, data storage, input and output devices) are well known and are omitted for the sake of clarity.
  • the techniques of the present invention might be implemented using a variety of technologies.
  • the methods described herein may be implemented in software running on a computer system, or implemented in hardware utilizing one or more processors and logic (hardware and/or software) for performing operations of the method, application specific integrated circuits, programmable logic devices such as Field Programmable Gate Arrays (FPGAs), and/or various combinations thereof.
  • FPGAs Field Programmable Gate Arrays
  • methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium such as a physical (e.g., non-transitory) computer-readable medium.
  • a storage medium such as a physical (e.g., non-transitory) computer-readable medium.
  • specific embodiments of the invention may employ object-oriented software programming concepts, the invention is not so limited and is easily adapted to employ other forms of directing the operation of a computer.
  • the invention can also be provided in the form of a computer program product comprising a computer readable storage or signal medium having computer code thereon, which may be executed by a computing device (e.g., a processor) and/or system.
  • a computer readable storage medium can include any medium capable of storing computer code thereon for use by a computing device or system, including optical media such as read only and writeable CD and DVD, magnetic memory or medium (e.g., hard disk drive, tape), semiconductor memory (e.g., FLASH memory and other portable memory cards, etc.), firmware encoded in a chip, etc.
  • a computer readable signal medium is one that does not fit within the aforementioned storage medium class.
  • illustrative computer readable signal media communicate or otherwise transfer transitory signals within a system, between systems e.g., via a physical or virtual network, etc.
  • FIG. 1 illustrates an architecture 100 , in accordance with one embodiment.
  • a plurality of remote networks 102 are provided including a first remote network 104 and a second remote network 106 .
  • a gateway 101 may be coupled between the remote networks 102 and a proximate network 108 .
  • the networks 104 , 106 may each take any form including, but not limited to a LAN, a WAN such as the Internet, public switched telephone network (PSTN), internal telephone network, etc.
  • PSTN public switched telephone network
  • the gateway 101 serves as an entrance point from the remote networks 102 to the proximate network 108 .
  • the gateway 101 may function as a router, which is capable of directing a given packet of data that arrives at the gateway 101 , and a switch, which furnishes the actual path in and out of the gateway 101 for a given packet.
  • At least one data server 114 coupled to the proximate network 108 , and which is accessible from the remote networks 102 via the gateway 101 .
  • the data server(s) 114 may include any type of computing device/groupware. Coupled to each data server 114 is a plurality of user devices 116 .
  • Such user devices 116 may include a desktop computer, laptop computer, hand-held computer, printer or any other type of logic. It should be noted that a user device 111 may also be directly coupled to any of the networks, in one embodiment.
  • a peripheral 120 or series of peripherals 120 may be coupled to one or more of the networks 104 , 106 , 108 .
  • databases, servers, and/or additional components may be utilized with, or integrated into, any type of network element coupled to the networks 104 , 106 , 108 .
  • a network element may refer to any component of a network.
  • methods and systems described herein may be implemented with and/or on virtual systems and/or systems which emulate one or more other systems, such as a UNIX system which emulates a MAC OS environment, a UNIX system which virtually hosts a MICROSOFT WINDOWS environment, a MICROSOFT WINDOWS system which emulates a MAC OS environment, etc.
  • This virtualization and/or emulation may be enhanced through the use of VMWARE software, in some embodiments.
  • one or more networks 104 , 106 , 108 may represent a cluster of systems commonly referred to as a “cloud.”
  • cloud computing shared resources, such as processing power, peripherals, software, data processing and/or storage, servers, etc., are provided to any system in the cloud, preferably in an on-demand relationship, thereby allowing access and distribution of services across many computing systems.
  • Cloud computing typically involves an Internet or other high speed connection (e.g., 4G LTE, fiber optic, etc.) between the systems operating in the cloud, but other techniques of connecting the systems may also be used.
  • FIG. 1 illustrates an architecture 100 , in accordance with one embodiment.
  • a plurality of remote networks 102 are provided including a first remote network 104 and a second remote network 106 .
  • a gateway 101 may be coupled between the remote networks 102 and a proximate network 108 .
  • the networks 104 , 106 may each take any form including, but not limited to a LAN, a WAN such as the Internet, public switched telephone network (PSTN), internal telephone network, etc.
  • PSTN public switched telephone network
  • the gateway 101 serves as an entrance point from the remote networks 102 to the proximate network 108 .
  • the gateway 101 may function as a router, which is capable of directing a given packet of data that arrives at the gateway 101 , and a switch, which furnishes the actual path in and out of the gateway 101 for a given packet.
  • At least one data server 114 coupled to the proximate network 108 , and which is accessible from the remote networks 102 via the gateway 101 .
  • the data server(s) 114 may include any type of computing device/groupware. Coupled to each data server 114 is a plurality of user devices 116 .
  • Such user devices 116 may include a desktop computer, lap-top computer, hand-held computer, printer or any other type of logic. It should be noted that a user device 111 may also be directly coupled to any of the networks, in one embodiment.
  • a peripheral 120 or series of peripherals 120 may be coupled to one or more of the networks 104 , 106 , 108 . It should be noted that databases and/or additional components may be utilized with, or integrated into, any type of network element coupled to the networks 104 , 106 , 108 . In the context of the present description, a network element may refer to any component of a network.
  • methods and systems described herein may be implemented with and/or on virtual systems and/or systems which emulate one or more other systems, such as a UNIX system which emulates a MAC OS environment, a UNIX system which virtually hosts a MICROSOFT WINDOWS environment, a MICROSOFT WINDOWS system which emulates a MAC OS environment, etc.
  • This virtualization and/or emulation may be enhanced through the use of VMWARE software, in some embodiments.
  • one or more networks 104 , 106 , 108 may represent a cluster of systems commonly referred to as a “cloud.”
  • cloud computing shared resources, such as processing power, peripherals, software, data processing and/or storage, servers, etc., are provided to any system in the cloud, preferably in an on-demand relationship, thereby allowing access and distribution of services across many computing systems.
  • Cloud computing typically involves an Internet or other high speed connection (e.g., 4G LTE, fiber optic, etc.) between the systems operating in the cloud, but other techniques of connecting the systems may also be used.
  • FIG. 2 shows a representative hardware environment associated with a user device 116 and/or server 114 of FIG. 1 , in accordance with one embodiment.
  • Such figure illustrates a typical hardware configuration of a workstation having a central processing unit 210 , such as a microprocessor, and a number of other units interconnected via a system bus 212 .
  • a central processing unit 210 such as a microprocessor
  • the workstation shown in FIG. 2 includes a Random Access Memory (RAM) 214 , Read Only Memory (ROM) 216 , an I/O adapter 218 for connecting peripheral devices such as disk storage units 220 to the bus 212 , a user interface adapter 222 for connecting a keyboard 224 , a mouse 226 , a speaker 228 , a microphone 232 , and/or other user interface devices such as a touch screen and a digital camera (not shown) to the bus 212 , communication adapter 234 for connecting the workstation to a communication network 235 (e.g., a data processing network) and a display adapter 236 for connecting the bus 212 to a display device 238 .
  • a communication network 235 e.g., a data processing network
  • display adapter 236 for connecting the bus 212 to a display device 238 .
  • the workstation may have resident thereon an operating system such as the Microsoft Windows® Operating System (OS), a MAC OS, a UNIX OS, etc. It will be appreciated that a preferred embodiment may also be implemented on platforms and operating systems other than those mentioned.
  • OS Microsoft Windows® Operating System
  • a preferred embodiment may be written using JAVA, XML, C, and/or C++ language, or other programming languages, along with an object oriented programming methodology.
  • Object oriented programming (OOP) which has become increasingly used to develop complex applications, may be used.
  • An application may be installed on the mobile device, e.g., stored in a nonvolatile memory of the device.
  • the application includes instructions to perform processing of an image on the mobile device.
  • the application includes instructions to send the image to one or more non-mobile devices, e.g. a remote server such as a network server, a remote workstation, a cloud computing environment, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
  • the application may include instructions to decide whether to perform some or all processing on the mobile device and/or send the image to the remote site. Examples of how an image may be processed are presented in more detail below.
  • a remote server may have higher processing power, more capabilities, more processing algorithms, etc.
  • the mobile device may have no image processing capability associated with the application, other than that required to send the image to the remote server.
  • the remote server may have no image processing capability relevant to the platforms presented herein, other than that required to receive the processed image from the remote server. Accordingly, the image may be processed partially or entirely on the mobile device, and/or partially or entirely on a remote server, and/or partially or entirely in a cloud, and/or partially or entirely in any part of the overall architecture in between. Moreover, some processing steps may be duplicated on different devices.
  • Which device performs which parts of the processing may be defined by a user, may be predetermined, may be determined on the fly, etc. Moreover, some processing steps may be re-performed, e.g., upon receiving a request from the user. Accordingly, the raw image data, partially processed image data, or fully processed image data may be transmitted from the mobile device, e.g., using a wireless data network, to a remote system. Image data as processed at a remote system may be returned to the mobile device for output and/or further processing.
  • the image may be partitioned, and the processing of the various parts may be allocated to various devices, e.g., 1 ⁇ 2 to the mobile device and 1 ⁇ 2 to the remote server, after which the processed halves are combined.
  • selection of which device performs the processing may be based at least in part on a relative speed of processing locally on the mobile device vs. communication with the server.
  • a library of processing functions may be present, and the application on the mobile device or the application on a remote server simply makes calls to this library, and essentially the meaning of the calls defines what kind of processing to perform. The device then performs that processing and outputs the processed image, perhaps with some corresponding metadata.
  • the camera can be considered an area sensor that captures images, where the images may have any number of projective effects, and sometimes non-linear effects.
  • the image may be processed to correct for such effects.
  • the position and boundaries of the document(s) in the image may be found during the processing, e.g., the boundaries of one or more actual pages of paper in the background surrounding the page(s). Because of the mobile nature of various embodiments, the sheet of paper may be lying on just about anything.
  • the non-uniformity of the background of the surface on which the piece of paper may be positioned for capture by the camera presents one challenge, and the non-linear and projective effects present additional challenges.
  • Various embodiments overcome these challenges, as will soon become apparent.
  • an application on the mobile device may be initiated, e.g., in response to a user request to open the application. For example, a user-selection of an icon representing the application may be detected.
  • a user authentication may be requested and/or performed. For example, a user ID and password, or any other authentication information, may be requested and/or received from the user.
  • various tasks may be enabled via a graphical user interface of the application. For example, a list of tasks may be presented. In such case, a selection of one of the tasks by the user may be detected, and additional options may be presented to the user, a predefined task may be initiated, the camera may be initiated, etc.
  • An image may be captured by the camera of the mobile device, preferably upon receiving some type of user input such as detecting a tap on a screen of the mobile device, depression of a button on the mobile device, a voice command, a gesture, etc.
  • Another possible scenario may involve some level of analysis of sequential frames, e.g. from a video stream. Sequential frame analysis may be followed by a switch to capturing a single high-resolution image frame, which may be triggered automatically or by a user, in some approaches.
  • the trigger may be based on information received from one or more mobile device sensors.
  • an accelerometer in or coupled to the mobile device may indicate a stability of the camera, and the application may analyze low-resolution video frame(s) for presence of an object of interest. If an object is detected, the application may perform a focusing operation and acquire a high-resolution image of the detected object. Either the low- or high-resolution image may be further processed, but preferred embodiments utilize the high-resolution image for subsequent processing.
  • object type identification may facilitate determining whether or not to switch to single frame mode and/or capture a high-resolution image for processing.
  • edges may be detected based on locating one or more lines (e.g. four lines intersecting to form corners of a substantially rectangular object such as a document) of pixels characterized by a sharp transition in pixel intensity between the background and foreground.
  • the presently disclosed inventive concepts include using features of the object other than the edges, e.g. content depicted within a document, to serve as identifying characteristics from which object detection may be accomplished. While the present descriptions set forth several exemplary embodiments of object detection primarily with reference to features of documents, it should be understood that these concepts are equally applicable to nearly any type of object, and the techniques discussed herein may be utilized to detect nearly any type of object for which a suitable set of identifying features are present across various exemplars of that object type.
  • the detected object is a document, e.g. a form, a passport, a driver license, a credit card, a business card, a check, a receipt etc.
  • identifying features should be present across various (preferably all) exemplars of a particular document type
  • content that is common to documents of that type may serve as a suitable identifying feature.
  • edges of the detected object may be cut off, obscured, or otherwise not identifiable within the image.
  • the presently disclosed inventive concepts offer the particular advantage that detection of objects may be accomplished independent of whether object edges are identifiable within the image data. Accordingly, the presently disclosed inventive concepts effectuate an improvement to systems configured for object recognition/detection within image data.
  • reference content when the object or document is known to depict particular content in a particular location, e.g. a barcode, MICR characters for a check, MRZ characters on passports and certain types of identifying documents, etc., then these reference content may be employed to facilitate detecting the object within image and/or video data.
  • reference content position and/or content is defined by some sort of standard.
  • content such as internal lines, symbols (e.g. small images like icons which preferably contain rich texture information, for instance, for a fingerprint, the ridge pattern, especially, the cross points of two lines, etc.), text characters, etc. which appears on substantially all documents of a particular type is eligible for use as an identifying feature.
  • content may also be referred to as “boilerplate content.”
  • Boilerplate content may be determined manually, e.g. based on a user defining particular feature zones within a reference image, in some approaches. For instance, a user may define particular regions such as those designated in FIG. 3A by dashed-line bounding boxes. In a particularly preferred approach, the particular regions defined by the user may include a subset of the regions shown in FIG. 3A , most preferably those regions exhibiting a shading within the bounding box (e.g. for a California driver license, state name “CALIFORNIA,” expiration date “EXP,” first name “FN,” last name “LN,” date of birth “DOB,” sex “SEX,” height “HGT,” eye color “EYES,” weight “WGT,” and document discriminator “DD” field designators).
  • a California driver license state name “CALIFORNIA,” expiration date “EXP,” first name “FN,” last name “LN,” date of birth “DOB,” sex “SEX,” height “HGT,” eye color “EYES,” weight “
  • the feature zones may include boilerplate text, e.g. regions 302 and/or non-textual identifying features such as logos, lines, intersecting lines, shapes, holograms, designs, drawings, etc. such as represented in region 304 of FIG. 3A , according to one embodiment.
  • Variable content may therefore be understood as any content that is not boilerplate content, and commonly includes text and photographic features of a document. According to preferred embodiments, content-based detection and reconstruction of objects within image data as disclosed herein is based on boilerplate content, and not based on variable content.
  • FIG. 3A is a driver license
  • any equivalent text, especially field designators, may be utilized.
  • a region depicting a name of the issuing entity may be a suitable feature zone, or a region depicting a logo corresponding to the issuing entity, a portion of the card background, a portion of the card depicting a chip (e.g. for a smartcard, an EMV or other equivalent chip), etc. as would be understood by a person having ordinary skill in the art upon reading the present descriptions.
  • suitable feature zones may include field designators such as the “MEMO” region of the check, Payee designator “PAY TO THE ORDER OF,” boilerplate text such as bank name or address, etc.
  • a region including borders of the bounding box designating the numerical payment amount for the check may be a suitable feature zone, in more embodiments.
  • identification documents such as government-issued IDs including social security cards, driver licenses, passports, etc.
  • feature zones may include field designators that appear on the respective type of identification document, may include text such as the document title (e.g. “United States of America,” “Passport,” “Social Security,” etc.), may include a seal, watermark, logo, hologram, symbol, etc. depicted on the identifying document, or other suitable static information depicted on a same location and in a same manner on documents of the same type.
  • field designators are exemplary feature zones suitable for locating identifying features, as well as lines (particularly intersecting lines or lines forming a vertex), boxes, etc. as would be understood by a person having ordinary skill in the art upon reading the present descriptions.
  • the feature zones defined by the user are defined within a reference image, i.e. an image representing the object according to a preferred or desired capture angle, zoom level, object orientation, and most preferably omitting background textures.
  • a reference image i.e. an image representing the object according to a preferred or desired capture angle, zoom level, object orientation, and most preferably omitting background textures.
  • defining the feature zones in a reference image significantly reduces the amount of training data necessary to accomplish efficient, accurate, and precise object detection and three-dimensional reconstruction. Indeed, it is possible to utilize a single training example such as shown in FIG. 3A in various embodiments. Reconstruction shall be discussed in further detail below.
  • a feature vector-based approach is preferably implemented.
  • a feature vector is a n-dimensional vector representing characteristics of a pixel within digital image and/or video data.
  • the feature vector may include information representative of the pixel intensity in one or more color channels, pixel brightness, etc. as would be understood by a person having ordinary skill in the art upon reading the present descriptions.
  • identifying features are characterized by a pixel in a small window of pixels (e.g. 8 ⁇ 8, 15 ⁇ 15, or other suitable value which may be configured based on image resolution) exhibiting a sharp transition in intensity.
  • the identifying features may be determined based on analyzing the feature vectors of pixels in the small window, also referred to herein as a “patch.” Frequently, these patches are located in regions including connected components (e.g. characters, lines, etc.) exhibiting a bend or intersection, e.g. as illustrated in FIG. 3B via identifying features 306 (white dots).
  • identifying features and/or feature zones may also be determined automatically without departing from the scope of the presently disclosed inventive concepts, but it should be noted that such approaches generally require significantly more training examples than approaches in which feature zones are defined manually in a reference image. Automatically identifying feature zones may also result in a series of identifying features 306 as shown in FIG. 3B , in some approaches.
  • automatically identifying feature zones may include one or more of the following features and/or operations.
  • the algorithm of selecting feature points involves two passes.
  • the first pass of the algorithm includes: pair matching, designation of matching points; determining the set of most frequently used matching points; and selecting the best image index.
  • Designating matching points may involve denoting the set of matching points appearing in image c 1 as S k , i.e., the set S k includes the set of points in image c 1 that match to their corresponding points in image c k . Designating matching points may also involve denoting the set of matching points in image c k that correspond to the matching points in S k as the set T k .
  • the first pass of the automatic feature identification algorithm may also include denoting the selected most commonly used points for image c k , as m k .
  • FIG. 3B shows exemplary points 306 automatically selected by implementing the above algorithm, according to one embodiment.
  • the above algorithm may generate feature point sets that are more conservative, which means that although the precision may be high, the recall may be low. Low recall can be problematic when attempting to match images with a small number of identifying features, superimposed against a particularly complex background, etc. as would be understood by a person having ordinary skill in the art upon reading the present disclosures. Accordingly, in some approaches the automatic feature discovery process may include a second pass aimed at increasing recall of feature point selection.
  • the second pass may proceed as follows.
  • the set m 1 by adding more selected feature points in image c1.
  • the added features may be characterized by a frequency less than the frequency threshold mentioned above with regard to the first pass, in some embodiments.
  • the points in the set m k belongs to image c k .
  • For each m k (k 2 . . . 10), find the corresponding matching points in c 1 .
  • the final extended set of selected feature points for image c 1 may be defined as the union of m 1 , v 2 , v 3 . . . and v 10 .
  • the extended set of selected feature points is shown in FIG. 3C , according to one embodiment. Compared with FIG. 3B , the result shown in FIG. 3C contains more feature points, reflecting the improved recall of the second pass.
  • automatic feature zone discovery may be characterized by a systematic bias when operating on cropped images.
  • layout When observing the layout of text zones or texture zones in different cropped images of the same object, or objects in the same category, there are often variations in layout. There are about 4% to 7% relative changes in locations between different images. The reason for these variations was not only varying angles or 3D distortions, but also due to error inherent to the manufacturing process. In other words, the locations of particular features often are printed at different positions, so that even a scanned image of two different objects of the same type could exhibit some shift in feature location and/or appearance.
  • the generated models may contain systematic bias.
  • the bias may be estimated by the mean value of point shifts in different pair images. For instance, if c 1 is the best selected image. The average value of point shift between each pair image (c 1 , c 2 ), (c 1 , c 3 ) . . . (c 1 , c 10 ) is estimated as the bias. Using this approach, it is possible to account for bias inherent in the automatic feature zone discovery process as described herein.
  • Feature vectors may be defined using a suitable algorithm, and in one embodiment a Binary Robust Independent Elementary Feature (BRIEF) is one suitable method to define a feature vector or descriptor for a pixel in an image.
  • BRIEF uses grayscale image data as input, but in various embodiments other color depth input image data, and/or other feature vector defining techniques, may be utilized without departing from the scope of the present descriptions.
  • the first step in this algorithm is to remove noise from the input image. This may be accomplished using a low-pass filter to remove high frequency noise, in one approach.
  • the second step is the selection of a set of pixel pairs in the image patch around a pixel.
  • pixel pairs may include immediately adjacent pixels in one or more of four cardinal directions (up, down, left, and right) and/or diagonally adjacent pixels.
  • the third step is the comparison of image intensities of each pixel pair. For instance, for a pair of pixels (p, q), if the intensity at pixel p is less than that at pixel q, the comparison result is 1. Otherwise, the result of the comparison is 0.
  • These comparison operations are applied to all selected pixel pairs, and a feature vector for this image patch is generated by concatenating these 0/1 values in a string.
  • the patch feature vector can have a length of 128, 256, 512, etc. in various approaches and depending on the nature of the comparison operations.
  • the feature vector of the patch has a length of 256, e.g. for a patch comprising a square 8 pixels long on each side and in which four comparisons are performed for each pixel in the patch (left, right, upper and lower neighbor pixels).
  • a patch descriptor is a representation of a feature vector at a pixel in an image.
  • the shape of a patch around a pixel is usually square or rectangular, but any suitable shape may be employed in various contexts or applications, without departing from the scope of the presently disclosed inventive concepts.
  • each element in a feature vector descriptive of the patch is either 1 or 0, in which case the descriptor is a binary descriptor.
  • Binary descriptors can be represented by a string of values, or a “descriptor string.”
  • a descriptor string is analogous to a word in natural language. It can also be called a “visual word.”
  • an image is analogous to a document which is characterized by including a particular set of visual words. These visual words include features that are helpful for tasks such as image alignment and image recognition. For instance, for image alignment, if there are distinctive visual words in two images, aligning the images based on matching the visual words is easier than attempting to align the images de novo.
  • the distance between two descriptor strings can be measured by an edit distance or a Hamming distance, in alternative embodiments. Determining distance is a useful indicator of whether two different images, e.g. a reference image and a test image, depict similar content at particular positions. Thus, two images with very small distance between descriptor strings corresponding to identifying features of the respective images are likely to match, especially if the spatial distribution of the proximate identifying features is preserved between the images.
  • patch orientations are important to generate patch descriptors which are invariant to image rotations. Accordingly, in preferred approaches the feature vector, e.g. BRIEF descriptors, are enhanced with patch orientations which can be estimated using patch momentum. Patch momentum may be analyzed using any suitable technique that would be understood by a person having ordinary skill in the art upon reading the present disclosures.
  • an “oriented Features from Accelerated Segment Test (FAST) and rotated BRIEF” (ORB) algorithm may be employed to enhance descriptors with orientation information. After getting the patch orientations, each descriptor is normalized by rotating the image patch with the estimated rotation angle.
  • FAST Accelerated Segment Test
  • ORB rotated BRIEF
  • the image includes one or more identifying features 306 , which are characterized by a sharp transition in pixel intensity within a patch. Accordingly, the position of these identifying features 306 (which may also be considered distinctive visual words or key points) is determined.
  • Key point selection includes finding pixels in an image that have distinctive visual features. These pixels with distinctive features are at positions where image intensities change rapidly, such as corners, stars, etc. Theoretically speaking, every pixel in an image can be selected as a key point. However, there may be millions of pixels in an image, and using all pixels in image matching is very computationally intensive, without providing a corresponding improvement to accuracy. Therefore, distinctive pixels, which are characterized by being in a patch exhibiting a rapid change in pixel intensity, are a suitable set of identifying features with which to accurately match images while maintaining reasonable computational efficiency.
  • a FAST Features from Accelerated Segment Test
  • image descriptors that are described in the previous sections are not scale invariant. Therefore, the scale of a training image and a testing image should be the same in order to find the best match.
  • a priori knowledge regarding the physical size of the object and image resolution may be available. In such embodiments, it is possible and advantageous to estimate the DPI in the reference image.
  • a high resolution (e.g. 1920 ⁇ 1080 or greater, 200 DPI or greater) training image may produce too many key points which will slow down image matching process.
  • an appropriate reduced DPI level of image/video data is used, in some approaches. Accordingly, for high resolution training images, it is beneficial to scale down to a smaller image resolution, e.g. with a specific DPI level.
  • the reduced DPI level is 180 in one embodiment determined to function well in matching images of driver licenses, credit cards, business cards, and other similar documents.
  • the DPI of an object to be detected or matched is generally not known.
  • the range of resolution values may be quantized with a set of values, in some approaches. For instance, if the resolution range is in a search interval (a, b), where a and b are minimum and maximum DPI values respectively, then the interval (a, b) are divided into a set of sub intervals.
  • the test image is scaled down to a set of images with different, but all reduced, resolutions, and each re-scaled image is matched to the training image. The best match found indicates the appropriate downscaling level.
  • the detail of a matching algorithm is as follows. For each resolution in the search interval: a test image is scaled down to the resolution used in the reference image. A brute-force matching approach may be employed to identify the matching points between the reference image and test image. The key points in the reference image are matched against some, or preferably all, key points identified in the testing image. First, the best match for each key point both in the reference image and test image is identified by comparing the distance ratio of the two best candidate matches. When the distance ratio is larger than a predetermined threshold, the match is identified as an outlier.
  • a symmetrical matching test may be applied to further identify other potential remaining outliers.
  • the symmetrical matching test if the match between key points in the reference image and test image is unique (i.e. the key points in the reference and test image match one another, but do not match any other key points in the corresponding image), then the key points will be kept. If a match between corresponding key point(s) in the reference image and test image is not unique, those key points will be removed.
  • an outlier identification algorithm such as a Random Sample Consensus (RANSAC) algorithm is applied to further remove outliers.
  • RANSAC Random Sample Consensus
  • RANSAC is a learning technique to estimate parameters of a model by random sampling of observed data.
  • the model is a homograph transformation of a 3 by 3 matrix.
  • the RANSAC algorithm to estimate the homograph transformation is as follows. First, randomly select four key points in a testing image, and randomly select four key points in a reference image. Second, estimate a homograph transform with the above four key point pairs using a four-point algorithm, e.g. as described below regarding image reconstruction. Third, apply the homograph transformation to all key points in the reference and testing images. The inlier key points are identified if they match the model well, otherwise the key points will be identified as outliers. In various embodiments, more than four points may be selected for this purpose, but preferably four points are utilized to minimize computational overhead while enabling efficient, effective matching.
  • the foregoing three-step process is repeated in an iterative fashion to re-sample the key points and estimate a new homograph transform.
  • the number of iterations performed may be in a range from about 10 2 -10 3 iterations.
  • the matching process selects the reference image with the maximum number of matching points as the best match, and an affine or homograph transform is estimated with the best match to reconstruct the image and/or video data in a three-dimensional coordinate system.
  • Image reconstruction mechanics are discussed in further detail below.
  • mappings of key points between a reference image 400 and test image 410 are shown, according to two embodiments, in FIGS. 4A-4B , with mapping lines 402 indicating the correspondence of key points between the two images.
  • FIG. 4C depicts a similar reference/test image pair, showing a credit or debit card and exemplary corresponding key points therein, according to another embodiment.
  • the presently disclosed inventive concepts can detect objects depicted in image and/or video data even when the edges of the object are obscured or missing from the image, or when a complex background is present in the image or video data.
  • the presently disclosed inventive concepts advantageously allow the estimation of object edge/border locations based on the transform.
  • the edge locations determined from the reference image data it is possible to estimate the locations of corresponding edges/borders in the test image via the transform, which defines the point-to-point correspondence between the object as oriented in the test image and a corresponding reference image orientation within the same coordinate system.
  • estimating the edge locations involves evaluating the transform of the document plane shown in test image 410 to the document plane shown in the reference image 400 (or vice versa), and extrapolating edge positions based on the transform.
  • FIG. 4C shows a similar mapping of key points between a reference image 400 and test image 410 of a credit card.
  • a reference image 400 shows a similar mapping of key points between a reference image 400 and test image 410 of a credit card.
  • the presently disclosed inventive concepts are broadly applicable to various different types of objects and identifying features, constrained only by the ability to obtain and identify appropriate identifying features in a suitable reference image or set of reference images. Those having ordinary skill in the art will appreciate the scope to which these inventive concepts may be applied upon reading the instant disclosures.
  • the presently disclosed inventive concepts may include transforming and cropping the test image to form a cropped, reconstructed image based on the test image, the cropped, reconstructed image depicting the object according to a same perspective and cropping of the object as represented in the reference image perspective.
  • preferred embodiments may include functionality configured to refine the projected location of object edges. For example, considering the results depicted in FIGS. 4 A- 4 C and 5 , a skilled artisan will understand that the projected edges achieved in these exemplary embodiments are not as accurate as may be desired.
  • an object 500 such as a credit card or other document is depicted in a test image, and edge locations 502 are projected based on the foregoing content-based approach.
  • the projected edge locations 502 do not accurately correspond to the actual edges of the object 500 .
  • Conventional edge detection shall be understood to include any technique for detecting edges based on detecting transitions between an image background 504 and image foreground (e.g. object 500 ) as shown in FIG. 5 .
  • conventional edge detection may include any technique or functionality as described in U.S. Pat. No. 8,855,375 to Macciola, et al.
  • the predetermined amount may be represented by a threshold ⁇ , which may be a predefined number of pixels, a percentage of an expected aspect ratio, etc. in various embodiments. In some approaches, the amount may be different for each dimension of the image and/or object, e.g. for flat objects a predetermined height threshold ⁇ H and/or predetermined width threshold ⁇ W may be used.
  • ⁇ H and ⁇ W may be determined experimentally, and need not be equal in various embodiments. For instance, ⁇ H and ⁇ W may independently be absolute thresholds or relative thresholds, and may be characterized by different values.
  • a further validation may be performed on the image and/or video data by classifying the cropped, reconstructed image.
  • Classification may be performed using any technique suitable in the art, preferably a classification technique as described in U.S. patent application Ser. No. 13/802,226 (filed Mar. 13, 2013). If the classification result returns the appropriate object type, then the image matching and transform operations are likely to have been correctly achieved, whereas if a different object type is returned from classification, then the transform and/or cropping result are likely erroneous. Accordingly, the presently disclosed inventive concepts may leverage classification as a confidence measure to evaluate the image matching and reconstruction techniques discussed herein.
  • a method 700 for detecting objects depicted in digital images based on internal features of the object includes operations as depicted in FIG. 7 .
  • the method 700 may be performed in any suitable environment, including those depicted in FIGS. 1-2 and may operate on inputs and/or produce outputs as depicted in FIGS. 3A-5 , in various approaches.
  • method 700 includes operation 702 , in which a plurality of identifying features of the object are detected.
  • the identifying features are located internally with respect to the object, such that each identifying feature is, corresponds to, or represents a part of the object other than object edges, boundaries between the object and image background, or other equivalent transition between the object and image background.
  • the presently disclosed inventive content-based object recognition techniques are based exclusively on the content of the object, and/or are performed exclusive of traditional edge detection, border detection, or other similar conventional recognition techniques known in the art.
  • the method 700 also includes operation 704 , where a location of one or more edges of the object are projected, the projection being based at least in part on the plurality of identifying features.
  • the method 700 may include any number of additional and/or alternative features as described herein in any suitable combination, permutation, selection thereof as would be appreciated by a skilled artisan as suitable for performing content-based object detection, upon reading the instant disclosures.
  • method 700 may additionally or alternatively include detecting the plurality of identifying features based on analyzing a plurality of feature vectors each corresponding to pixels within a patch of the digital image.
  • the analysis may be performed in order to determine whether the patch includes a sharp transition in intensity, in preferred approaches.
  • the analysis may optionally involve determining a position of some or all of the plurality of identifying features, or position determination may be performed separately from feature vector analysis, in various embodiments.
  • detecting the plurality of identifying features involves automatic feature zone discovery.
  • the automatic feature zone discovery may be a multi-pass procedure.
  • Method 700 may also include identifying a plurality of distinctive pixels within the plurality of identifying features of the object. Distinctive pixels are preferably characterized by having or embodying distinct visual features of the object.
  • method 700 also includes matching the digital image depicting the object to one of a plurality of reference images each depicting a known object type.
  • the reference images are more preferably images used to train the recognition/detection engine to identify specific identifying features that are particularly suitable for detecting and/or reconstructing objects of the known object type in various types of images and/or imaging circumstances (e.g. different angles, distances, resolutions, lighting conditions, color depths, etc. in various embodiments).
  • the matching procedure may involve determining whether the object includes distinctive pixels that correspond to distinctive pixels present in one or more of the plurality of reference images.
  • the method 700 may also include designating as an outlier a candidate match between a distinctive pixel in the digital image and one or more candidate corresponding distinctive pixels present in one of the plurality of reference images.
  • the outlier is preferably designated in response to determining a distance ratio is greater than a predetermined distance ratio threshold.
  • the distance ratio may be a ratio describing: a first distance between the distinctive pixel in the digital image and a first of the one or more candidate corresponding distinctive pixels; and a second distance between the distinctive pixel in the digital image and a second of the one or more candidate corresponding distinctive pixels.
  • method 700 includes designating as an outlier a candidate match between a distinctive pixel in the digital image and a candidate corresponding distinctive pixel present in one of the plurality of reference images in response to determining the candidate match is not unique.
  • Uniqueness may be determined according to a symmetrical matching test, in preferred approaches and as described in greater detail hereinabove.
  • employing reconstruction as set forth herein, particularly with respect to method 700 carries the advantage of being able to detect and recognize objects in images where at least one edge of the object is either obscured or missing from the digital image.
  • the presently disclosed inventive concepts represent an improvement to image processing machines and the image processing field since conventional image detection and image processing/correction techniques are based on detecting the edges of objects and making appropriate corrections based on characteristics of the object and/or object edges (e.g. location within image, dimensions such as particularly aspect ratio, curvature, length, etc.).
  • image data where edges are missing, obscured, or otherwise not represented at least in part, such conventional techniques lack the requisite input information to perform the intended image processing/correction.
  • the method 700 may include cropping the digital image based at least in part on the projected location of the one or more edges of the object.
  • the cropped digital image preferably depicts a portion of a background of the digital image surrounding the object; and in such approaches method 700 may include detecting one or more transitions between the background and the object within the cropped digital image.
  • the method 700 may optionally involve classifying the object depicted within the cropped digital image.
  • classification may operate as a type of orthogonal validation procedure or confidence measure for determining whether image recognition and/or reconstruction was performed correctly by implementing the techniques described herein.
  • a reconstructed image of an object is classified and results in a determination that the object depicted in the reconstructed image is a same type of object represented in/by the reference image used to reconstruct the object, then it is likely the reconstruction was performed correctly, or at least optimally under the circumstances of the image data.
  • method 700 in one embodiment may include: attempting to detect the object within the digital image using a plurality of predetermined object detection models each corresponding to a known object type; and determining a classification of the object based on a result of attempting to detect the object within the digital image using the plurality of predetermined object detection models.
  • the classification of the object is the known object type corresponding to one of the object detection models for which the attempt to detect the object within the digital image was successful.
  • the method 700 may include: generating a plurality of scaled images based on the digital image, each scaled image being characterized by a different resolution; extracting one or more feature vectors from each scaled image; and matching one or more of the scaled images to one of a plurality of reference images.
  • Each reference image depicts a known object type and being characterized by a known resolution.
  • method 700 may be combined and used to advantage in any permutation with the various image reconstruction techniques and features such as presented with respect to method 800 .
  • Reconstructing image and/or video data as described herein essentially includes transforming the representation of the detected object as depicted in the captured image and/or video data into a representation of the object as it would appear if viewed from an angle normal to a particular surface of the object.
  • this includes reconstructing the object representation to reflect a face of the flat object as viewed from an angle normal to that face.
  • a known geometry e.g. a particular polygon, circle, ellipsoid, etc.
  • reconstruction preferably includes transforming the object as represented in captured image and/or video data to represent a same or similar object type as represented in one or more reference images captured from a particular angle with respect to the object.
  • reference images may also be employed to facilitate reconstruction of flat objects in various embodiments and without departing from the scope of the presently disclosed inventive concepts.
  • the reconstructed representation substantially represents the actual dimensions, aspect ratio, etc. of the object captured in the digital image when viewed from a particular perspective (e.g. at an angle normal to the object, such as would be the capture angle if scanning a document in a traditional flatbed scanner, multifunction device, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions).
  • FIGS. 6A-6D Various capture angles, and the associated projective effects are demonstrated schematically in FIGS. 6A-6D .
  • the reconstruction may include applying an algorithm such as a four-point algorithm to the image data.
  • perspective correction may include constructing a 3D transformation based at least in part on the spatial distribution of features represented in the image and/or video data.
  • a planar homography/projective transform is a non-singular linear relation between two planes.
  • the homography transform defines a linear mapping of four randomly selected pixels/positions between the captured image and the reference image.
  • the calculation of the camera parameters may utilize an estimation of the homography transform H, such as shown in Equation (1), in some approaches.
  • the (x, y) coordinates and (X, Y) coordinates depicted in Equation 1 correspond to coordinates of respective points in the captured image plane and the reference image.
  • the Z coordinate may be set to 0, corresponding to an assumption that the object depicted in each lies along a single (e.g. X-Y) plane with zero thickness.
  • Equation (1) may be written as shown in Equation (2) below.
  • Equation (3) In order to eliminate a scaling factor, in one embodiment it is possible to calculate the cross product of each term of Equation (2), as shown in Equation (3):
  • Equation (3) may be written as shown below in Equation (4).
  • Equation (5) the matrix product HP i ′ may be expressed as in Equation (5).
  • Equation 5 h mT is the transpose of the m th row of H (e.g. h 1T is the transpose of the first row of H, h 2T is the transpose of the second row of H, etc.). Accordingly, it is possible to rework Equation (4) as:
  • Equation (6) may be reformulated as shown below in Equation (7):
  • Equation (7) provides two linearly independent equations.
  • the two first rows are preferably used for solving H.
  • the homography H may be defined using 8 parameters plus a homogeneous scaling factor (which may be viewed as a free 9 th parameter). In such embodiments, at least 4 point-correspondences providing 8 equations may be used to compute the homography. In practice, and according to one exemplary embodiment, a larger number of correspondences is preferably employed so that an over-determined linear system is obtained, resulting in a more robust result (e.g. lower error in relative pixel-position).
  • the first two rows correspond to the first feature point, as indicated by the subscript value of coordinates X, Y, x, y—in this case the subscript value is 1.
  • the second two rows correspond to the second feature point, as indicated by the subscript value 2, the last two rows correspond to the n th feature point.
  • n is 4, and the feature points are the four randomly selected features identified within the captured image and corresponding point of the reference image.
  • SVD Singular Value Decomposition
  • the matrix C is different from the typical matrix utilized in an eight-point algorithm to estimate the essential matrix when two or more cameras are used, such as conventionally performed for stereoscopic machine vision. More specifically, while the elements conventionally used in eight-point algorithm consist of feature points projected on two camera planes, the elements in the presently described matrix C consist of feature points projected on only a single camera plane and the corresponding feature points on 3D objects.
  • the coordinates of point-correspondences may preferably be normalized. This may be accomplished, for example, using a technique known as the normalized Direct Linear Transformation (DLT) algorithm.
  • DLT Direct Linear Transformation
  • Equation 1 may be used to compute each pixel position (x, y) for a given value of (X, Y).
  • the challenge involves computing (X, Y) when the values of (x, y) are given or known a priori.
  • (x, y) and (X, Y) are symmetrical (i.e.
  • Equation 1 when the values of (x, y) and (X, Y) are switched, the validity of Equation 1 holds true).
  • the “inverse” homography matrix may be estimated, and this “inverse” homography matrix may be used to reconstruct 3D (i.e. “reference” or “real-world”) coordinates of an object given the corresponding 2D coordinates of the object as depicted in the captured image, e.g. in the camera view.
  • Various embodiments may additionally and/or alternatively include utilizing the foregoing data, calculations, results, and/or concepts to derive further useful information regarding the captured image, object, etc. For example, in various embodiments it is possible to determine the distance between the captured object and the capture device, the pitch and/or roll angle of the capture device, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
  • Equation 1 After (X, Y) values are estimated, the expression in Equation 1 may be described as follows:
  • the focal depth also known as the distance between each point (X,Y,Z) in the 3D (i.e. “reference” or “real world”) coordinate system and the capture device, may be computed using Equation 9 above.
  • (Xc, Yc, Zc) are the coordinates relative to camera coordinate system, which are derived by rotating a point (X,Y,Z) in the world coordinate system with rotation matrix R, and a translation vector of t, where t is a constant independent of (X, Y). Note that the value of Zc is the same as the value of ⁇ , as previously estimated using equation 9.
  • is a constant and A is the intrinsic camera parameter matrix, defined as:
  • the matrix A can be estimated as follows:
  • the yaw, pitch and roll (denoted by the ⁇ , ⁇ and ⁇ respectively) are also known as Euler's angles, which are defined as the rotation angles around z, y, and x axes respectively, in one embodiment.
  • the rotation matrix R in Equation 10 can be denoted as:
  • each r is an element of the matrix R.
  • the roll in one embodiment, may be estimated by the following equation (e.g. when r 33 is not equal to zero):
  • the pitch may be estimated by the following equation:
  • the yaw may be estimated by the following equation (e.g. when r 11 is nonzero)
  • the value of E may be determined in whole or in part based on limited computer word length, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions), this corresponds to the degenerate of rotation matrix R, special formulae are used to estimate the values of yaw, pitch and roll.
  • a camera's intrinsic parameters e.g. focal length, scale factors of (u, v) in image plane.
  • the requirements of this algorithm may be summarized as follows: 1) The camera's focal length for the captured image can be provided and accessed by an API call of the device (for instance, an android device provides an API call to get focal length information for the captured image); 2) The scale factors of dx and dy are estimated by the algorithm in the equations 12.1 and 12.2.
  • Equation 18 is equivalent to Equation 1, except (u, v) in Equation 18 replaces the (x, y) term in Equation 1.
  • Equation 18 may be expressed as:
  • H ⁇ ( 1 / L u 1 / L v 1 ) ⁇ H ⁇ ( L x L y 1 ) ( 20 )
  • dx, dy are scaling factors of the camera, which are estimated.
  • K A ⁇ 1 ⁇ tilde over ( ⁇ tilde over (H) ⁇ ) ⁇
  • Equations (29) and (30) may be used to estimate the document size along X and Y coordinates.
  • the scaling factor may remain unknown, using this approach.
  • Equations (29) and (30) may also be used to estimate the aspect ratio of the object as:
  • the idea of the algorithm is simply that one can calculate the object coordinates of the document corresponding to the tetragon found in the picture (up to scale, rotation, and shift) for any relative pitch-roll combination.
  • This calculated tetragon in object coordinates is characterized by 90-degree angles when the correct values of pitch and roll are used, and the deviation can be characterized by the sum of squares of the four angle differences. This criterion is useful because it is smooth and effectively penalizes individual large deviations.
  • a gradient descent procedure based on this criterion can find a good pitch-roll pair in a matter of milliseconds. This has been experimentally verified for instances where the tetragon in the picture was correctly determined.
  • This approach uses yaw equal zero and an arbitrary fixed value of the distance to the object because changes in these values only add an additional orthogonal transform of the object coordinates.
  • the approach also uses the known focal distance of the camera in the calculations of the coordinate transform, but if all four corners have been found and there are three independent angles, then the same criterion and a slightly more complex gradient descent procedure can be used to estimate the focal distance in addition to pitch and roll—this may be useful for server-based processing, when incoming pictures may or may not have any information about what camera they were taken with.
  • arbitrary points on the left and right sides closer to the top of the image frame can be designated as top-left and top-right corners.
  • the best estimated pitch-roll will create equally bogus top-left and top-right corners in the object coordinates, but the document will still be correctly rectangularized.
  • the direction of a missing (e.g. top) side of the document can be reconstructed since it should be substantially parallel to the opposite (e.g. bottom) side, and orthogonal to adjacent (e.g. left and/or right) side(s).
  • the remaining question is where to place the missing side in the context of the image as a whole, and if the aspect ratio is known then the offset of the missing side can be nicely estimated, and if not, then it can be pushed to the edge of the frame, just not to lose any data.
  • This variation of the algorithm can resolve an important user case when the picture contains only a part of the document along one of its sides, for example, the bottom of an invoice containing a deposit slip. In a situation like this the bottom, left and right sides of the document can be correctly determined and used to estimate pitch and roll; these angles together with the focal distance can be used to rectangularize the visible part of the document.
  • the foregoing techniques for addressing missing, obscured, etc. edges in the image data may additionally and/or alternatively employ a relaxed cropping and subsequent use of conventional edge detection as described above with reference to FIG. 5 .
  • the relaxed cropping techniques may not be suitable to locate the edges and projection as described above may be the sole suitable mechanism for estimating the location of edges.
  • using internally represented content rather than corner or edge positions as key points allows projection of edge locations in a broader range of applications, and in a more robust manner than conventional edge detection.
  • a method 800 for reconstructing objects depicted in digital images based on internal features of the object includes operations as depicted in FIG. 8 .
  • the method 800 may be performed in any suitable environment, including those depicted in FIGS. 1-2 and may operate on inputs and/or produce outputs as depicted in FIGS. 3A-5 , in various approaches.
  • method 800 includes operation 802 , in which a plurality of identifying features of the object are detected.
  • the identifying features are located internally with respect to the object, such that each identifying feature is, corresponds to, or represents a part of the object other than object edges, boundaries between the object and image background, or other equivalent transition between the object and image background.
  • the presently disclosed inventive image reconstruction techniques are based exclusively on the content of the object, and/or are performed exclusive of traditional edge detection, border detection, or other similar conventional recognition techniques known in the art.
  • the method 800 also includes operation 804 , where the digital image of the object is reconstructed within a three dimensional coordinate space based at least in part on some or all of the plurality of identifying features.
  • the portion of the image depicting the object may be reconstructed, or the entire image may be reconstructed, based on identifying feature(s)
  • the method 800 may include any number of additional and/or alternative features as described herein in any suitable combination, permutation, selection thereof as would be appreciated by a skilled artisan as suitable for performing content-based object detection, upon reading the instant disclosures.
  • method 800 may additionally or alternatively include reconstructing the digital image of the object based on transforming the object to represent dimensions of the object as viewed from an angle normal to the object.
  • reconstruction effectively corrects perspective distortions, skew, warping or “fishbowl” effects, and other artifacts common to images captured using cameras and mobile devices.
  • reconstructing the digital image of the object is based on four of the plurality of identifying features, and employs a four-point algorithm as described in further detail elsewhere herein.
  • the four of the plurality of identifying features are randomly selected from among the plurality of identifying features.
  • reconstruction may involve an iterative process whereby multiple sets of four or more randomly selected identifying features are used to, e.g. iteratively, estimate transform parameters and reconstruct the digital image.
  • reconstructing the digital image of the object may be based at least in part on applying a four-point algorithm to at least some of the plurality of identifying features of the object, in certain aspects.
  • Reconstructing the digital image of the object may additionally and/or alternatively involve estimating a homography transform H.
  • each point correspondence p i P i ′ corresponds to a position p i of one of the plurality of identifying features of the object, and a respective position P i ′ of a corresponding identifying feature of the reconstructed digital image of the object.
  • Estimating H may also include normalizing coordinates of some or all of the point correspondences.
  • estimating the homography transform H may include an iterative process.
  • each iteration of the iterative process preferably includes: randomly selecting four key points; using a four point algorithm to estimate an i th homography transform H i based on the four key points; and applying the estimated i th homography transform H i to a set of corresponding key points.
  • Each key point corresponds to one of the plurality of identifying features of the object, and in some embodiments may be one of the plurality of identifying features of the object.
  • the set of corresponding key points preferably is in the form of a plurality of point correspondences, each point correspondence including: a key point other than the four randomly selected key points; and a corresponding key point from a reference image corresponding to the digital image.
  • the “other” key points also correspond to one of the plurality of identifying features of the object.
  • each point correspondence includes two key points in preferred embodiments: a key point from the test image and a corresponding key point from the reference image.
  • the degree of correspondence between point correspondences may reflect the fitness of the homography transform, in some approaches.
  • method 800 may include evaluating fitness of the homography transform (or multiple homography transforms generated in multiple iterations of the aforementioned process).
  • the evaluation may include determining one or more outlier key points from among each set of corresponding key points; identifying, from among all sets of corresponding key points, the set of corresponding key points having a lowest number of outlier key points; defining a set of inlier key points from among the set of corresponding key points having the lowest number of outlier key points; and estimating the homography transform H based on the set of inlier key points.
  • the set of inlier key points exclude the outlier key points determined for the respective set of corresponding key points.
  • determining the one or more outlier key points from among each set of corresponding key points may involve: determining whether each of the plurality of point correspondences fits a transformation model corresponding to the estimated i th homography transform H i ; and, for each of the plurality of point correspondences, either: designating the other key point of the point correspondence as an outlier key point in response to determining the point correspondence does not fit the transformation model; or designating the other key point of the point correspondence as an inlier key point in response to determining the point correspondence does fit the transformation model.
  • boilerplate content may include any type of such content as described hereinabove.
  • employing reconstruction as set forth herein, particularly with respect to method 800 carries the advantage of being able to reconstruct objects and/or images where at least one edge of the object is either obscured or missing from the digital image.
  • the presently disclosed inventive concepts represent an improvement to image processing machines and the image processing field since conventional image recognition and image processing/correction techniques are based on detecting the edges of objects and making appropriate corrections based on characteristics of the object and/or object edges (e.g. location within image, dimensions such as particularly aspect ratio, curvature, length, etc.).
  • image data where edges are missing, obscured, or otherwise not represented at least in part, such conventional techniques lack the requisite input information to perform the intended image processing/correction.
  • similar advantages are conveyed in the context of image recognition and method 700 , which enables recognition of objects even where all edges of the object may be missing or obscured in the digital image data since recognition is based on features internal to the object.
  • method 800 may include cropping the reconstructed digital image of the object based at least in part on a projected location of one or more edges of the object within the reconstructed digital image.
  • the projected location of the one or more edges of the object is preferably based at least in part on an estimated homography transform H.
  • method 800 may include classifying the reconstructed digital image of the object.
  • classification may operate as a type of orthogonal validation procedure or confidence measure for determining whether image recognition and/or reconstruction was performed correctly by implementing the techniques described herein.
  • a reconstructed image of an object is classified and results in a determination that the object depicted in the reconstructed image is a same type of object represented in/by the reference image used to reconstruct the object, then it is likely the reconstruction was performed correctly, or at least optimally under the circumstances of the image data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Image Processing (AREA)

Abstract

Systems, computer program products, and techniques for detecting objects depicted in digital image data are disclosed, according to various exemplary embodiments. The inventive concepts uniquely utilize internal features to accomplish object detection, thereby avoiding reliance on detecting object edges and/or transitions between the object and other portions of the digital image data, e.g. background textures or other objects. The inventive concepts thus provide an improvement over conventional object detection since objects may be detected even when edges are obscured or not depicted in the digital image data. In one aspect, a computer-implemented method of detecting an object depicted in a digital image includes: detecting a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and projecting a location of one or more edges of the object based at least in part on the plurality of identifying features.

Description

    PRIORITY CLAIM
  • The present application claims priority to U.S. Provisional Patent Application No. 62/317,360 (filed Apr. 1, 2016).
  • RELATED APPLICATIONS
  • This application is related to copending U.S. patent application Ser. No. 15/157,325 (filed March May 17, 2016); Ser. No. 14/818,196 (filed Aug. 4, 2015); Ser. No. 14/981,759 (filed Dec. 28, 2015); and Ser. No. 14/932,902 (filed Nov. 4, 2015), each of which are herein incorporated by reference.
  • FIELD OF INVENTION
  • The present invention relates to digital image data capture and processing, and more particularly to detecting objects depicted in image and/or video data based on internally-represented features (content) as opposed to edges. The present invention also relates to reconstructing objects in a three-dimensional coordinate space so as to rectify image artifacts caused by distortional effects inherent to capturing image and/or video data using a camera.
  • BACKGROUND OF THE INVENTION
  • Digital images having depicted therein a document such as a letter, a check, a bill, an invoice, a credit card, a driver license, a passport, a social security card, etc. have conventionally been captured and processed using a scanner or multifunction peripheral coupled to a computer workstation such as a laptop or desktop computer. Methods and systems capable of performing such capture and processing are well known in the art and well adapted to the tasks for which they are employed.
  • However, in an era where day-to-day activities, computing, and business are increasingly performed using mobile devices, it would be greatly beneficial to provide analogous document capture and processing systems and methods for deployment and use on mobile platforms, such as smart phones, digital cameras, tablet computers, etc.
  • A major challenge in transitioning conventional document capture and processing techniques is the limited processing power and image resolution achievable using hardware currently available in mobile devices. These limitations present a significant challenge because it is impossible or impractical to process images captured at resolutions typically much lower than achievable by a conventional scanner. As a result, conventional scanner-based processing algorithms typically perform poorly on digital images captured using a mobile device.
  • In addition, the limited processing and memory available on mobile devices makes conventional image processing algorithms employed for scanners prohibitively expensive in terms of computational cost. Attempting to process a conventional scanner-based image processing algorithm takes far too much time to be a practical application on modern mobile platforms.
  • A still further challenge is presented by the nature of mobile capture components (e.g. cameras on mobile phones, tablets, etc.). Where conventional scanners are capable of faithfully representing the physical document in a digital image, critically maintaining aspect ratio, dimensions, and shape of the physical document in the digital image, mobile capture components are frequently incapable of producing such results.
  • Specifically, images of documents captured by a camera present a new line of processing issues not encountered when dealing with images captured by a scanner. This is in part due to the inherent differences in the way the document image is acquired, as well as the way the devices are constructed. The way that some scanners work is to use a transport mechanism that creates a relative movement between paper and a linear array of sensors. These sensors create pixel values of the document as it moves by, and the sequence of these captured pixel values forms an image. Accordingly, there is generally a horizontal or vertical consistency up to the noise in the sensor itself, and it is the same sensor that provides all the pixels in the line.
  • In contrast, cameras have many more sensors in a nonlinear array, e.g., typically arranged in a rectangle. Thus, all of these individual sensors are independent, and render image data that is not typically of horizontal or vertical consistency. In addition, cameras introduce a projective effect that is a function of the angle at which the picture is taken. For example, with a linear array like in a scanner, even if the transport of the paper is not perfectly orthogonal to the alignment of sensors and some skew is introduced, there is no projective effect like in a camera. Additionally, with camera capture, nonlinear distortions may be introduced because of the camera optics.
  • Distortions and blur are particularly challenging when attempting to detect objects represented in video data, as the camera typically moves with respect to the object during the capture operation, and video data are typically characterized by a relatively low resolution compared to still images captured using a mobile device. Moreover, the motion of the camera may be erratic and occur within three dimensions, meaning the horizontal and/or vertical consistency associated with linear motion in a conventional scanner is not present in video data captured using mobile devices. Accordingly, reconstructing an object to correct for distortions, e.g. due to changing camera angle and/or position, within a three-dimensional space is a significant challenge.
  • Further still, as mobile applications increasingly rely on or leverage image data to provide useful services to customers, e.g. mobile banking, shopping, applying for services such as loans, opening accounts, authenticating identity, acquiring or renewing licenses, etc., capturing relevant information within image data is a desirable capability. However, often the detection of objects within the mobile image data is a challenging task, particularly where the object's edges may be missing, obscured, etc. within the captured image/video data. Since conventional detection techniques rely on detecting objects by locating edges of the object (i.e. boundaries between the object, typically referred to as the image “foreground” and the background of the image or video), missing or obscured object edges present an additional obstacle to consistent and accurate object detection.
  • In view of the challenges presented above, it would be beneficial to provide an image capture and processing algorithm and applications thereof that compensate for and/or correct problems associated with using a mobile device to capture and/or detect objects within image and/or video data, and reconstruct such objects within a three-dimensional coordinate space.
  • SUMMARY OF THE INVENTION
  • According to one embodiment, a computer-implemented method of detecting an object depicted in a digital image includes: detecting a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and projecting a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • According to another embodiment, a computer program product for detecting an object depicted in a digital image includes a computer readable medium having stored thereon computer readable program instructions configured to cause a processor, upon execution thereof, to: detect, using the processor, a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and project, using the processor, a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • According to yet another embodiment, a system for detecting an object depicted in a digital image includes a processor and logic embodied with and/or executable by the processor. The logic is configured to cause the processor, upon execution thereof, to: detect a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and project a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • Other aspects and embodiments of the invention will be appreciated based on reviewing the following descriptions in full detail.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a network architecture, in accordance with one embodiment.
  • FIG. 2 shows a representative hardware environment that may be associated with the servers and/or clients of FIG. 1, in accordance with one embodiment.
  • FIG. 3A is a digital image of a document including a plurality of designated feature zones, according to one embodiment.
  • FIG. 3B is a digital image of a document including a plurality of designated identifying features, according to one embodiment.
  • FIG. 3C is a digital image of a document including an extended set of the plurality of designated identifying features, according to another embodiment.
  • FIG. 4A depicts a mapping between matching distinctive features of a reference image and test image of a driver license, according to one embodiment.
  • FIG. 4B depicts a mapping between matching distinctive features of a reference image and test image of a driver license, according to another embodiment where the test and reference images depict the driver license at different rotational orientations.
  • FIG. 4C depicts a mapping between matching distinctive features of a reference image and test image of a credit card, according to one embodiment.
  • FIG. 5 is a simplified schematic of a credit card having edges thereof projected based on internal features of the credit card, according to one embodiment.
  • FIG. 6A is a simplified schematic showing a coordinate system for measuring capture angle, according to one embodiment.
  • FIG. 6B depicts an exemplary schematic of a rectangular object captured using a capture angle normal to the object, according to one embodiment.
  • FIG. 6C depicts an exemplary schematic of a rectangular object captured using a capture angle slightly skewed with respect to the object, according to one embodiment.
  • FIG. 6D depicts an exemplary schematic of a rectangular object captured using a capture angle significantly skewed with respect to the object, according to one embodiment.
  • FIG. 7 is a flowchart of a method for detecting objects depicted in digital images based on internal features of the object, according to one embodiment.
  • FIG. 8 is a flowchart of a method for reconstructing objects depicted in digital images based on internal features of the object, according to one embodiment.
  • DETAILED DESCRIPTION
  • The following description is made for the purpose of illustrating the general principles of the present invention and is not meant to limit the inventive concepts claimed herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations.
  • Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.
  • It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless otherwise specified.
  • The present application refers to image processing. In particular, the present application discloses systems, methods, and computer program products configured to detect and reconstruct objects depicted in digital images from a non-rectangular shape to a substantially rectangular shape, or preferably a rectangular shape. Even more preferably, this is accomplished based on evaluating the internal features of the object(s) rather than detecting object edges and reconstructing a particular shape based on edge contours.
  • According to one embodiment, a computer-implemented method of detecting an object depicted in a digital image includes: detecting a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and projecting a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • According to another embodiment, a computer program product for detecting an object depicted in a digital image includes a computer readable medium having stored thereon computer readable program instructions configured to cause a processor, upon execution thereof, to: detect, using the processor, a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and project, using the processor, a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • According to yet another embodiment, a system for detecting an object depicted in a digital image includes a processor and logic embodied with and/or executable by the processor. The logic is configured to cause the processor, upon execution thereof, to: detect a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and project a location of one or more edges of the object based at least in part on the plurality of identifying features.
  • The following definitions will be useful in understanding the inventive concepts described herein, according to various embodiments. The following definitions are to be considered exemplary, and are offered for purposes of illustration to provide additional clarity to the present disclosures, but should not be deemed limiting on the scope of the inventive concepts disclosed herein.
  • As referred to henceforth, a “quadrilateral” is a four-sided figure where (1) each side is linear, and (2) adjacent sides form vertices at the intersection thereof. Exemplary quadrilaterals are depicted in FIGS. 6C and 6D below, according to two illustrative embodiments.
  • A “parallelogram” is a special type of quadrilateral, i.e. a four-sided figure where (1) each side is linear, (2) opposite sides are parallel, and (3) adjacent sides are not necessarily perpendicular, such that vertices at the intersection of adjacent sides form angles having values that are not necessarily 90°.
  • A “rectangle” or “rectangular shape” is a special type of quadrilateral, which is defined as a four-sided figure, where (1) each side is linear, (2) opposite sides are parallel, and (3) adjacent sides are perpendicular, such that an interior angle formed at the vertex between each pair of adjacent sides is a right-angle, i.e. a 90° angle. An exemplary rectangle is depicted in FIG. 6B, according to one illustrative embodiment.
  • Moreover, as referred-to herein “rectangles” and “rectangular shapes” are considered to include “substantially rectangular shapes”, which are defined as a four-sided shape where (1) each side is predominantly linear (e.g. at least 90%, 95%, or 99% of each side's length, in various embodiments, is characterized by a first-order polynomial (such as y=mx+b), (2) each pair of adjacent sides form an interior angle having a value θ, where θ is approximately 90° (e.g. θ satisfies the relationship: 85°≦θ≦95°) at either (a) a vertex between two adjacent sides, (b) a vertex between a projection of the predominantly linear portion of one side and an adjacent side, or (c) a vertex between a projection of the predominantly linear portion of one side and a projection of the predominantly linear portion of an adjacent side.
  • A “non-rectangular shape” as referred to herein includes any shape that is not either a “rectangular shape” or a “substantially rectangular shape” as defined above. In preferred embodiments, a “non-rectangular shape” is a “tetragon,” which as referred to herein is a four-sided figure, where: (1) each side is characterized in whole or in part by an equation selected from a chosen class of functions (e.g. selected from a class of polynomials preferably ranging from zeroth order to fifth order, more preferably first order to third order polynomials, and even more preferably first order to second order polynomials), and (2) adjacent sides of the figure form vertices at the intersection thereof.
  • Images (e.g. pictures, figures, graphical schematics, single frames of movies, videos, films, clips, etc.) are preferably digital images captured by cameras, especially cameras of mobile devices. As understood herein, a mobile device is any device capable of receiving data without having power supplied via a physical connection (e.g. wire, cord, cable, etc.) and capable of receiving data without a physical data connection (e.g. wire, cord, cable, etc.). Mobile devices within the scope of the present disclosures include exemplary devices such as a mobile telephone, smartphone, tablet, personal digital assistant, iPod®, iPad®, BLACKBERRY® device, etc.
  • However, as it will become apparent from the descriptions of various functionalities, the presently disclosed mobile image processing algorithms can be applied, sometimes with certain modifications, to images coming from scanners and multifunction peripherals (MFPs). Similarly, images processed using the presently disclosed processing algorithms may be further processed using conventional scanner processing algorithms, in some approaches.
  • Of course, the various embodiments set forth herein may be implemented utilizing hardware, software, or any desired combination thereof. For that matter, any type of logic may be utilized which is capable of implementing the various functionality set forth herein.
  • One benefit of using a mobile device is that with a data plan, image processing and information processing based on captured images can be done in a much more convenient, streamlined and integrated way than previous methods that relied on presence of a scanner. However, the use of mobile devices as document(s) capture and/or processing devices has heretofore been considered unfeasible for a variety of reasons.
  • In one approach, an image may be captured by a camera of a mobile device. The term “camera” should be broadly interpreted to include any type of device capable of capturing an image of a physical object external to the device, such as a piece of paper. The term “camera” does not encompass a peripheral scanner or multifunction device. Any type of camera may be used. Preferred embodiments may use cameras having a higher resolution, e.g. 8 MP or more, ideally 12 MP or more. The image may be captured in color, grayscale, black and white, or with any other known optical effect. The term “image” as referred to herein is meant to encompass any type of data corresponding to the output of the camera, including raw data, processed data, etc.
  • The description herein is presented to enable any person skilled in the art to make and use the invention and is provided in the context of particular applications of the invention and their requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
  • General Computing and Networking Concepts
  • In particular, various embodiments of the invention discussed herein are implemented using the Internet as a means of communicating among a plurality of computer systems. One skilled in the art will recognize that the present invention is not limited to the use of the Internet as a communication medium and that alternative methods of the invention may accommodate the use of a private intranet, a Local Area Network (LAN), a Wide Area Network (WAN) or other means of communication. In addition, various combinations of wired, wireless (e.g., radio frequency) and optical communication links may be utilized.
  • The program environment in which one embodiment of the invention may be executed illustratively incorporates one or more general-purpose computers or special-purpose devices such hand-held computers. Details of such devices (e.g., processor, memory, data storage, input and output devices) are well known and are omitted for the sake of clarity.
  • It should also be understood that the techniques of the present invention might be implemented using a variety of technologies. For example, the methods described herein may be implemented in software running on a computer system, or implemented in hardware utilizing one or more processors and logic (hardware and/or software) for performing operations of the method, application specific integrated circuits, programmable logic devices such as Field Programmable Gate Arrays (FPGAs), and/or various combinations thereof. In one illustrative approach, methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium such as a physical (e.g., non-transitory) computer-readable medium. In addition, although specific embodiments of the invention may employ object-oriented software programming concepts, the invention is not so limited and is easily adapted to employ other forms of directing the operation of a computer.
  • The invention can also be provided in the form of a computer program product comprising a computer readable storage or signal medium having computer code thereon, which may be executed by a computing device (e.g., a processor) and/or system. A computer readable storage medium can include any medium capable of storing computer code thereon for use by a computing device or system, including optical media such as read only and writeable CD and DVD, magnetic memory or medium (e.g., hard disk drive, tape), semiconductor memory (e.g., FLASH memory and other portable memory cards, etc.), firmware encoded in a chip, etc.
  • A computer readable signal medium is one that does not fit within the aforementioned storage medium class. For example, illustrative computer readable signal media communicate or otherwise transfer transitory signals within a system, between systems e.g., via a physical or virtual network, etc.
  • FIG. 1 illustrates an architecture 100, in accordance with one embodiment. As shown in FIG. 1, a plurality of remote networks 102 are provided including a first remote network 104 and a second remote network 106. A gateway 101 may be coupled between the remote networks 102 and a proximate network 108. In the context of the present network architecture 100, the networks 104, 106 may each take any form including, but not limited to a LAN, a WAN such as the Internet, public switched telephone network (PSTN), internal telephone network, etc.
  • In use, the gateway 101 serves as an entrance point from the remote networks 102 to the proximate network 108. As such, the gateway 101 may function as a router, which is capable of directing a given packet of data that arrives at the gateway 101, and a switch, which furnishes the actual path in and out of the gateway 101 for a given packet.
  • Further included is at least one data server 114 coupled to the proximate network 108, and which is accessible from the remote networks 102 via the gateway 101. It should be noted that the data server(s) 114 may include any type of computing device/groupware. Coupled to each data server 114 is a plurality of user devices 116. Such user devices 116 may include a desktop computer, laptop computer, hand-held computer, printer or any other type of logic. It should be noted that a user device 111 may also be directly coupled to any of the networks, in one embodiment.
  • A peripheral 120 or series of peripherals 120, e.g. facsimile machines, printers, networked storage units, etc., may be coupled to one or more of the networks 104, 106, 108. It should be noted that databases, servers, and/or additional components may be utilized with, or integrated into, any type of network element coupled to the networks 104, 106, 108. In the context of the present description, a network element may refer to any component of a network.
  • According to some approaches, methods and systems described herein may be implemented with and/or on virtual systems and/or systems which emulate one or more other systems, such as a UNIX system which emulates a MAC OS environment, a UNIX system which virtually hosts a MICROSOFT WINDOWS environment, a MICROSOFT WINDOWS system which emulates a MAC OS environment, etc. This virtualization and/or emulation may be enhanced through the use of VMWARE software, in some embodiments.
  • In more approaches, one or more networks 104, 106, 108, may represent a cluster of systems commonly referred to as a “cloud.” In cloud computing, shared resources, such as processing power, peripherals, software, data processing and/or storage, servers, etc., are provided to any system in the cloud, preferably in an on-demand relationship, thereby allowing access and distribution of services across many computing systems. Cloud computing typically involves an Internet or other high speed connection (e.g., 4G LTE, fiber optic, etc.) between the systems operating in the cloud, but other techniques of connecting the systems may also be used.
  • FIG. 1 illustrates an architecture 100, in accordance with one embodiment. As shown in FIG. 1, a plurality of remote networks 102 are provided including a first remote network 104 and a second remote network 106. A gateway 101 may be coupled between the remote networks 102 and a proximate network 108. In the context of the present architecture 100, the networks 104, 106 may each take any form including, but not limited to a LAN, a WAN such as the Internet, public switched telephone network (PSTN), internal telephone network, etc.
  • In use, the gateway 101 serves as an entrance point from the remote networks 102 to the proximate network 108. As such, the gateway 101 may function as a router, which is capable of directing a given packet of data that arrives at the gateway 101, and a switch, which furnishes the actual path in and out of the gateway 101 for a given packet.
  • Further included is at least one data server 114 coupled to the proximate network 108, and which is accessible from the remote networks 102 via the gateway 101. It should be noted that the data server(s) 114 may include any type of computing device/groupware. Coupled to each data server 114 is a plurality of user devices 116. Such user devices 116 may include a desktop computer, lap-top computer, hand-held computer, printer or any other type of logic. It should be noted that a user device 111 may also be directly coupled to any of the networks, in one embodiment.
  • A peripheral 120 or series of peripherals 120, e.g., facsimile machines, printers, networked and/or local storage units or systems, etc., may be coupled to one or more of the networks 104, 106, 108. It should be noted that databases and/or additional components may be utilized with, or integrated into, any type of network element coupled to the networks 104, 106, 108. In the context of the present description, a network element may refer to any component of a network.
  • According to some approaches, methods and systems described herein may be implemented with and/or on virtual systems and/or systems which emulate one or more other systems, such as a UNIX system which emulates a MAC OS environment, a UNIX system which virtually hosts a MICROSOFT WINDOWS environment, a MICROSOFT WINDOWS system which emulates a MAC OS environment, etc. This virtualization and/or emulation may be enhanced through the use of VMWARE software, in some embodiments.
  • In more approaches, one or more networks 104, 106, 108, may represent a cluster of systems commonly referred to as a “cloud.” In cloud computing, shared resources, such as processing power, peripherals, software, data processing and/or storage, servers, etc., are provided to any system in the cloud, preferably in an on-demand relationship, thereby allowing access and distribution of services across many computing systems. Cloud computing typically involves an Internet or other high speed connection (e.g., 4G LTE, fiber optic, etc.) between the systems operating in the cloud, but other techniques of connecting the systems may also be used.
  • FIG. 2 shows a representative hardware environment associated with a user device 116 and/or server 114 of FIG. 1, in accordance with one embodiment. Such figure illustrates a typical hardware configuration of a workstation having a central processing unit 210, such as a microprocessor, and a number of other units interconnected via a system bus 212.
  • The workstation shown in FIG. 2 includes a Random Access Memory (RAM) 214, Read Only Memory (ROM) 216, an I/O adapter 218 for connecting peripheral devices such as disk storage units 220 to the bus 212, a user interface adapter 222 for connecting a keyboard 224, a mouse 226, a speaker 228, a microphone 232, and/or other user interface devices such as a touch screen and a digital camera (not shown) to the bus 212, communication adapter 234 for connecting the workstation to a communication network 235 (e.g., a data processing network) and a display adapter 236 for connecting the bus 212 to a display device 238.
  • The workstation may have resident thereon an operating system such as the Microsoft Windows® Operating System (OS), a MAC OS, a UNIX OS, etc. It will be appreciated that a preferred embodiment may also be implemented on platforms and operating systems other than those mentioned. A preferred embodiment may be written using JAVA, XML, C, and/or C++ language, or other programming languages, along with an object oriented programming methodology. Object oriented programming (OOP), which has become increasingly used to develop complex applications, may be used.
  • Mobile Image Capture
  • Various embodiments of a Mobile Image Capture and Processing algorithm, as well as several mobile applications configured to facilitate use of such algorithmic processing within the scope of the present disclosures are described below. It is to be appreciated that each section below describes functionalities that may be employed in any combination with those disclosed in other sections, including any or up to all the functionalities described herein. Moreover, functionalities of the processing algorithm embodiments as well as the mobile application embodiments may be combined and/or distributed in any manner across a variety of computing resources and/or systems, in several approaches.
  • An application may be installed on the mobile device, e.g., stored in a nonvolatile memory of the device. In one approach, the application includes instructions to perform processing of an image on the mobile device. In another approach, the application includes instructions to send the image to one or more non-mobile devices, e.g. a remote server such as a network server, a remote workstation, a cloud computing environment, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions. In yet another approach, the application may include instructions to decide whether to perform some or all processing on the mobile device and/or send the image to the remote site. Examples of how an image may be processed are presented in more detail below.
  • In one embodiment, there may be no difference between the processing that may be performed on the mobile device and a remote server, other than speed of processing, constraints on memory available, etc. Moreover, there may be some or no difference between various user interfaces presented on a mobile device, e.g. as part of a mobile application, and corresponding user interfaces presented on a display in communication with the non-mobile device.
  • In other embodiments, a remote server may have higher processing power, more capabilities, more processing algorithms, etc. In yet further embodiments, the mobile device may have no image processing capability associated with the application, other than that required to send the image to the remote server. In yet another embodiment, the remote server may have no image processing capability relevant to the platforms presented herein, other than that required to receive the processed image from the remote server. Accordingly, the image may be processed partially or entirely on the mobile device, and/or partially or entirely on a remote server, and/or partially or entirely in a cloud, and/or partially or entirely in any part of the overall architecture in between. Moreover, some processing steps may be duplicated on different devices.
  • Which device performs which parts of the processing may be defined by a user, may be predetermined, may be determined on the fly, etc. Moreover, some processing steps may be re-performed, e.g., upon receiving a request from the user. Accordingly, the raw image data, partially processed image data, or fully processed image data may be transmitted from the mobile device, e.g., using a wireless data network, to a remote system. Image data as processed at a remote system may be returned to the mobile device for output and/or further processing.
  • In a further approach, the image may be partitioned, and the processing of the various parts may be allocated to various devices, e.g., ½ to the mobile device and ½ to the remote server, after which the processed halves are combined.
  • In one embodiment, selection of which device performs the processing may be based at least in part on a relative speed of processing locally on the mobile device vs. communication with the server.
  • In one approach, a library of processing functions may be present, and the application on the mobile device or the application on a remote server simply makes calls to this library, and essentially the meaning of the calls defines what kind of processing to perform. The device then performs that processing and outputs the processed image, perhaps with some corresponding metadata.
  • Any type of image processing known in the art and/or as newly presented herein may be performed in any combination in various embodiments.
  • Referring now to illustrative image processing, the camera can be considered an area sensor that captures images, where the images may have any number of projective effects, and sometimes non-linear effects. The image may be processed to correct for such effects. Moreover, the position and boundaries of the document(s) in the image may be found during the processing, e.g., the boundaries of one or more actual pages of paper in the background surrounding the page(s). Because of the mobile nature of various embodiments, the sheet of paper may be lying on just about anything. This complicates image analysis in comparison to processing images of documents produced using a scanner, because scanner background properties are constant and typically known, whereas mobile capture backgrounds may vary almost infinitely according to the location of the document and the corresponding surrounding textures captured in the image background, as well as because of variable lighting conditions.
  • Accordingly, the non-uniformity of the background of the surface on which the piece of paper may be positioned for capture by the camera presents one challenge, and the non-linear and projective effects present additional challenges. Various embodiments overcome these challenges, as will soon become apparent.
  • In one exemplary mode of operation, an application on the mobile device may be initiated, e.g., in response to a user request to open the application. For example, a user-selection of an icon representing the application may be detected.
  • In some approaches, a user authentication may be requested and/or performed. For example, a user ID and password, or any other authentication information, may be requested and/or received from the user.
  • In further approaches, various tasks may be enabled via a graphical user interface of the application. For example, a list of tasks may be presented. In such case, a selection of one of the tasks by the user may be detected, and additional options may be presented to the user, a predefined task may be initiated, the camera may be initiated, etc.
  • Content-Based Object Detection
  • An image may be captured by the camera of the mobile device, preferably upon receiving some type of user input such as detecting a tap on a screen of the mobile device, depression of a button on the mobile device, a voice command, a gesture, etc. Another possible scenario may involve some level of analysis of sequential frames, e.g. from a video stream. Sequential frame analysis may be followed by a switch to capturing a single high-resolution image frame, which may be triggered automatically or by a user, in some approaches. Moreover, the trigger may be based on information received from one or more mobile device sensors. For example, in one embodiment an accelerometer in or coupled to the mobile device may indicate a stability of the camera, and the application may analyze low-resolution video frame(s) for presence of an object of interest. If an object is detected, the application may perform a focusing operation and acquire a high-resolution image of the detected object. Either the low- or high-resolution image may be further processed, but preferred embodiments utilize the high-resolution image for subsequent processing.
  • In more approaches, switching to single frame mode as discussed above may be unnecessary, particularly for smaller objects, in particular documents such as business cards, receipts, credit cards, identification documents such as driver licenses and passports, etc. To increase processing rate and reduce consumption of processing resources, object type identification may facilitate determining whether or not to switch to single frame mode and/or capture a high-resolution image for processing.
  • As noted above, conventional techniques for detecting objects in image and/or video data generally rely on detecting the edges of the object, i.e. transitions between the background and foreground (which depicts the object) of the image or video data. For instance, edges may be detected based on locating one or more lines (e.g. four lines intersecting to form corners of a substantially rectangular object such as a document) of pixels characterized by a sharp transition in pixel intensity between the background and foreground.
  • However, where edges are missing or obscured, the conventional edge detection approach is not reasonably accurate or consistent in detecting objects within image and/or video data. Similar challenges exist in images where the object for which detection is desired is set against a complex background (e.g. a photograph or environmental scene) since detecting sharp transitions in intensity is likely to generate many false positive predictions of the location of the object. Accordingly, a new approach is presented via the inventive concepts disclosed herein, and this inventive approach advantageously does not rely on detecting object edges to accomplish object detection within the image and/or video data.
  • In particular, the presently disclosed inventive concepts include using features of the object other than the edges, e.g. content depicted within a document, to serve as identifying characteristics from which object detection may be accomplished. While the present descriptions set forth several exemplary embodiments of object detection primarily with reference to features of documents, it should be understood that these concepts are equally applicable to nearly any type of object, and the techniques discussed herein may be utilized to detect nearly any type of object for which a suitable set of identifying features are present across various exemplars of that object type.
  • Turning now to exemplary embodiments in which the detected object is a document, e.g. a form, a passport, a driver license, a credit card, a business card, a check, a receipt etc., and consistent with the notion that identifying features should be present across various (preferably all) exemplars of a particular document type, content that is common to documents of that type may serve as a suitable identifying feature. In some approaches, edges of the detected object may be cut off, obscured, or otherwise not identifiable within the image. Indeed, the presently disclosed inventive concepts offer the particular advantage that detection of objects may be accomplished independent of whether object edges are identifiable within the image data. Accordingly, the presently disclosed inventive concepts effectuate an improvement to systems configured for object recognition/detection within image data.
  • In some approaches, when the object or document is known to depict particular content in a particular location, e.g. a barcode, MICR characters for a check, MRZ characters on passports and certain types of identifying documents, etc., then these reference content may be employed to facilitate detecting the object within image and/or video data. In many cases, reference content position and/or content is defined by some sort of standard. In various embodiments, it is accordingly advantageous to leverage a priori knowledge regarding the location, size, orientation, etc. of reference content within an image to project the location of document edges based on the reference content as depicted in the image and/or video data.
  • However, not all objects include such reference content. Accordingly, in more embodiments, content such as internal lines, symbols (e.g. small images like icons which preferably contain rich texture information, for instance, for a fingerprint, the ridge pattern, especially, the cross points of two lines, etc.), text characters, etc. which appears on substantially all documents of a particular type is eligible for use as an identifying feature. According to the present descriptions, such content may also be referred to as “boilerplate content.”
  • Boilerplate content may be determined manually, e.g. based on a user defining particular feature zones within a reference image, in some approaches. For instance, a user may define particular regions such as those designated in FIG. 3A by dashed-line bounding boxes. In a particularly preferred approach, the particular regions defined by the user may include a subset of the regions shown in FIG. 3A, most preferably those regions exhibiting a shading within the bounding box (e.g. for a California driver license, state name “CALIFORNIA,” expiration date “EXP,” first name “FN,” last name “LN,” date of birth “DOB,” sex “SEX,” height “HGT,” eye color “EYES,” weight “WGT,” and document discriminator “DD” field designators). In various approaches, the feature zones may include boilerplate text, e.g. regions 302 and/or non-textual identifying features such as logos, lines, intersecting lines, shapes, holograms, designs, drawings, etc. such as represented in region 304 of FIG. 3A, according to one embodiment.
  • Upon reading the present descriptions, skilled artisans will appreciate that the portions of the document obscured by white rectangles are redactions to protect sensitive information, and should not be considered feature zones within the scope of the presently disclosed inventive concepts. Indeed, by way of contrast to the boilerplate content referenced and shown above, the content redacted from FIG. 3A varies from driver license to driver license, and therefore is not suitable for designating or locating identifying features common to all (or most) driver licenses for a particular state.
  • Variable content may therefore be understood as any content that is not boilerplate content, and commonly includes text and photographic features of a document. According to preferred embodiments, content-based detection and reconstruction of objects within image data as disclosed herein is based on boilerplate content, and not based on variable content.
  • Although the exemplary embodiment shown in FIG. 3A is a driver license, this is merely illustrative of the type of feature zones that may be designated by a user for purposes of locating and leveraging identifying features as described herein. In other document types, any equivalent text, especially field designators, may be utilized.
  • For instance on credit or debit cards a region depicting a name of the issuing entity (e.g. VISA, Bank of America, etc.) may be a suitable feature zone, or a region depicting a logo corresponding to the issuing entity, a portion of the card background, a portion of the card depicting a chip (e.g. for a smartcard, an EMV or other equivalent chip), etc. as would be understood by a person having ordinary skill in the art upon reading the present descriptions.
  • For checks, suitable feature zones may include field designators such as the “MEMO” region of the check, Payee designator “PAY TO THE ORDER OF,” boilerplate text such as bank name or address, etc. Similarly, a region including borders of the bounding box designating the numerical payment amount for the check may be a suitable feature zone, in more embodiments.
  • Similarly, for identification documents such as government-issued IDs including social security cards, driver licenses, passports, etc. feature zones may include field designators that appear on the respective type of identification document, may include text such as the document title (e.g. “United States of America,” “Passport,” “Social Security,” etc.), may include a seal, watermark, logo, hologram, symbol, etc. depicted on the identifying document, or other suitable static information depicted on a same location and in a same manner on documents of the same type.
  • For forms, again field designators are exemplary feature zones suitable for locating identifying features, as well as lines (particularly intersecting lines or lines forming a vertex), boxes, etc. as would be understood by a person having ordinary skill in the art upon reading the present descriptions.
  • Preferably, the feature zones defined by the user are defined within a reference image, i.e. an image representing the object according to a preferred or desired capture angle, zoom level, object orientation, and most preferably omitting background textures. Advantageously, defining the feature zones in a reference image significantly reduces the amount of training data necessary to accomplish efficient, accurate, and precise object detection and three-dimensional reconstruction. Indeed, it is possible to utilize a single training example such as shown in FIG. 3A in various embodiments. Reconstruction shall be discussed in further detail below.
  • To determine identifying features within the feature zones, or within the image as a whole, a feature vector-based approach is preferably implemented. As understood herein, a feature vector is a n-dimensional vector representing characteristics of a pixel within digital image and/or video data. The feature vector may include information representative of the pixel intensity in one or more color channels, pixel brightness, etc. as would be understood by a person having ordinary skill in the art upon reading the present descriptions.
  • Preferably, identifying features are characterized by a pixel in a small window of pixels (e.g. 8×8, 15×15, or other suitable value which may be configured based on image resolution) exhibiting a sharp transition in intensity. The identifying features may be determined based on analyzing the feature vectors of pixels in the small window, also referred to herein as a “patch.” Frequently, these patches are located in regions including connected components (e.g. characters, lines, etc.) exhibiting a bend or intersection, e.g. as illustrated in FIG. 3B via identifying features 306 (white dots).
  • Of course, identifying features and/or feature zones may also be determined automatically without departing from the scope of the presently disclosed inventive concepts, but it should be noted that such approaches generally require significantly more training examples than approaches in which feature zones are defined manually in a reference image. Automatically identifying feature zones may also result in a series of identifying features 306 as shown in FIG. 3B, in some approaches.
  • The aim of automatic feature zone discovery is to find feature points without manually labeling. For instance, in one exemplary embodiment automatically identifying feature zones may include one or more of the following features and/or operations.
  • In one approach, the algorithm of selecting feature points involves two passes. The first pass of the algorithm includes: pair matching, designation of matching points; determining the set of most frequently used matching points; and selecting the best image index.
  • Pair matching may involve assuming a set of cropped images, for instance, assume a set of ten cropped images denoted by c1, c2, c3, . . . c10, where at least one image is a reference image. From the assumed set, form a set of image pairs preferably including the reference as one of the images in each image pair. For instance if c1 is used as the reference image, image pairs may include (c1, c2), (c1, c3) (c1, c10). In addition, for each pair (c1, ck) (k=2 . . . 10) pair matching includes finding matching key points between the images, e.g. as described above.
  • Designating matching points may involve denoting the set of matching points appearing in image c1 as Sk, i.e., the set Sk includes the set of points in image c1 that match to their corresponding points in image ck. Designating matching points may also involve denoting the set of matching points in image ck that correspond to the matching points in Sk as the set Tk.
  • Finding the most frequently used points Sk (k=2, 3 . . . 10) may, in turn, include the following. For each point in {Sk}(k=2, 3 . . . 10), compute the frequency with which the point is used in {Sk}. If the frequency is above a threshold, for example, 35%, the point is labeled as a “most frequently used” point. In this way, the set of “most frequently used” points in image c1 may be determined, and this set of points is preferably used as the “automatically selected” feature points in image c1. The first pass of the automatic feature identification algorithm may also include denoting the selected most commonly used points for image ck, as mk.
  • Selecting the best image, in various approaches, may include determining the image with the best image index, i.e. the image exhibiting the maximum value of mk (k=1, 2 . . . 10) among images c1, c2, . . . c10.
  • FIG. 3B shows exemplary points 306 automatically selected by implementing the above algorithm, according to one embodiment.
  • However, in some approaches the above algorithm may generate feature point sets that are more conservative, which means that although the precision may be high, the recall may be low. Low recall can be problematic when attempting to match images with a small number of identifying features, superimposed against a particularly complex background, etc. as would be understood by a person having ordinary skill in the art upon reading the present disclosures. Accordingly, in some approaches the automatic feature discovery process may include a second pass aimed at increasing recall of feature point selection.
  • In a preferred embodiment, the second pass may proceed as follows. Without loss of any generality, suppose that the best image index is 1, that m1 has the maximum value among different values of mk (k=1, 2 . . . 10), and that this image index represents an undesirably low recall rate. Accordingly, to improve recall, extend the set m1 by adding more selected feature points in image c1. The added features may be characterized by a frequency less than the frequency threshold mentioned above with regard to the first pass, in some embodiments.
  • Note that the points in the set mk belongs to image ck. For each mk (k=2 . . . 10), find the corresponding matching points in c1. Denote as the set of corresponding feature point as vk for each mk where (k=2, 3 . . . 10). The final extended set of selected feature points for image c1 may be defined as the union of m1, v2, v3 . . . and v10. The extended set of selected feature points is shown in FIG. 3C, according to one embodiment. Compared with FIG. 3B, the result shown in FIG. 3C contains more feature points, reflecting the improved recall of the second pass.
  • It should be noted that, in some approaches, automatic feature zone discovery may be characterized by a systematic bias when operating on cropped images. When observing the layout of text zones or texture zones in different cropped images of the same object, or objects in the same category, there are often variations in layout. There are about 4% to 7% relative changes in locations between different images. The reason for these variations was not only varying angles or 3D distortions, but also due to error inherent to the manufacturing process. In other words, the locations of particular features often are printed at different positions, so that even a scanned image of two different objects of the same type could exhibit some shift in feature location and/or appearance.
  • The above problem means the generated models may contain systematic bias. In preferred approaches, it is therefore advantageous to implement an algorithm to compensate for such bias. For instance, the bias may be estimated by the mean value of point shifts in different pair images. For instance, if c1 is the best selected image. The average value of point shift between each pair image (c1, c2), (c1, c3) . . . (c1, c10) is estimated as the bias. Using this approach, it is possible to account for bias inherent in the automatic feature zone discovery process as described herein.
  • Feature vectors may be defined using a suitable algorithm, and in one embodiment a Binary Robust Independent Elementary Feature (BRIEF) is one suitable method to define a feature vector or descriptor for a pixel in an image. BRIEF uses grayscale image data as input, but in various embodiments other color depth input image data, and/or other feature vector defining techniques, may be utilized without departing from the scope of the present descriptions.
  • In one embodiment, the first step in this algorithm is to remove noise from the input image. This may be accomplished using a low-pass filter to remove high frequency noise, in one approach.
  • The second step is the selection of a set of pixel pairs in the image patch around a pixel. For instance, in various approaches pixel pairs may include immediately adjacent pixels in one or more of four cardinal directions (up, down, left, and right) and/or diagonally adjacent pixels.
  • The third step is the comparison of image intensities of each pixel pair. For instance, for a pair of pixels (p, q), if the intensity at pixel p is less than that at pixel q, the comparison result is 1. Otherwise, the result of the comparison is 0. These comparison operations are applied to all selected pixel pairs, and a feature vector for this image patch is generated by concatenating these 0/1 values in a string.
  • Assuming a patch comprising 64 pixels, the patch feature vector can have a length of 128, 256, 512, etc. in various approaches and depending on the nature of the comparison operations. In a preferred embodiment, the feature vector of the patch has a length of 256, e.g. for a patch comprising a square 8 pixels long on each side and in which four comparisons are performed for each pixel in the patch (left, right, upper and lower neighbor pixels).
  • A patch descriptor is a representation of a feature vector at a pixel in an image. The shape of a patch around a pixel is usually square or rectangular, but any suitable shape may be employed in various contexts or applications, without departing from the scope of the presently disclosed inventive concepts.
  • In some embodiments, and as noted above the value of each element in a feature vector descriptive of the patch is either 1 or 0, in which case the descriptor is a binary descriptor. Binary descriptors can be represented by a string of values, or a “descriptor string.”
  • As described herein, a descriptor string is analogous to a word in natural language. It can also be called a “visual word.” Similarly, an image is analogous to a document which is characterized by including a particular set of visual words. These visual words include features that are helpful for tasks such as image alignment and image recognition. For instance, for image alignment, if there are distinctive visual words in two images, aligning the images based on matching the visual words is easier than attempting to align the images de novo.
  • The distance between two descriptor strings can be measured by an edit distance or a Hamming distance, in alternative embodiments. Determining distance is a useful indicator of whether two different images, e.g. a reference image and a test image, depict similar content at particular positions. Thus, two images with very small distance between descriptor strings corresponding to identifying features of the respective images are likely to match, especially if the spatial distribution of the proximate identifying features is preserved between the images.
  • In the original implementation of a BRIEF descriptor algorithm for defining patch feature vectors, there are no patch orientations, which means that the descriptor is not rotation invariant. However, patch orientations are important to generate patch descriptors which are invariant to image rotations. Accordingly, in preferred approaches the feature vector, e.g. BRIEF descriptors, are enhanced with patch orientations which can be estimated using patch momentum. Patch momentum may be analyzed using any suitable technique that would be understood by a person having ordinary skill in the art upon reading the present disclosures.
  • In one embodiment, an “oriented Features from Accelerated Segment Test (FAST) and rotated BRIEF” (ORB) algorithm may be employed to enhance descriptors with orientation information. After getting the patch orientations, each descriptor is normalized by rotating the image patch with the estimated rotation angle.
  • As noted above regarding FIGS. 3A-3C, in preferred approaches the image includes one or more identifying features 306, which are characterized by a sharp transition in pixel intensity within a patch. Accordingly, the position of these identifying features 306 (which may also be considered distinctive visual words or key points) is determined.
  • Key point selection includes finding pixels in an image that have distinctive visual features. These pixels with distinctive features are at positions where image intensities change rapidly, such as corners, stars, etc. Theoretically speaking, every pixel in an image can be selected as a key point. However, there may be millions of pixels in an image, and using all pixels in image matching is very computationally intensive, without providing a corresponding improvement to accuracy. Therefore, distinctive pixels, which are characterized by being in a patch exhibiting a rapid change in pixel intensity, are a suitable set of identifying features with which to accurately match images while maintaining reasonable computational efficiency. In one embodiment, a FAST (Features from Accelerated Segment Test) algorithm may be implemented to select key points in image data and/or video data.
  • In various approaches, image descriptors that are described in the previous sections are not scale invariant. Therefore, the scale of a training image and a testing image should be the same in order to find the best match. For a reference image, a priori knowledge regarding the physical size of the object and image resolution may be available. In such embodiments, it is possible and advantageous to estimate the DPI in the reference image. Notably, in some approaches using a high resolution (e.g. 1920×1080 or greater, 200 DPI or greater) training image may produce too many key points which will slow down image matching process.
  • In order to optimize the matching time and accuracy, an appropriate reduced DPI level of image/video data is used, in some approaches. Accordingly, for high resolution training images, it is beneficial to scale down to a smaller image resolution, e.g. with a specific DPI level. For instance, the reduced DPI level is 180 in one embodiment determined to function well in matching images of driver licenses, credit cards, business cards, and other similar documents.
  • For a test image, the DPI of an object to be detected or matched is generally not known. In order to account for this potential variation, it is useful to define a range that the actual image/video data resolution may reasonably fall within. In one embodiment, this may be accomplished substantially as follows. The range of resolution values may be quantized with a set of values, in some approaches. For instance, if the resolution range is in a search interval (a, b), where a and b are minimum and maximum DPI values respectively, then the interval (a, b) are divided into a set of sub intervals. The test image is scaled down to a set of images with different, but all reduced, resolutions, and each re-scaled image is matched to the training image. The best match found indicates the appropriate downscaling level.
  • The detail of a matching algorithm, according to one embodiment, is as follows. For each resolution in the search interval: a test image is scaled down to the resolution used in the reference image. A brute-force matching approach may be employed to identify the matching points between the reference image and test image. The key points in the reference image are matched against some, or preferably all, key points identified in the testing image. First, the best match for each key point both in the reference image and test image is identified by comparing the distance ratio of the two best candidate matches. When the distance ratio is larger than a predetermined threshold, the match is identified as an outlier.
  • After distance ratio testing, in some embodiments a symmetrical matching test may be applied to further identify other potential remaining outliers. In the symmetrical matching test, if the match between key points in the reference image and test image is unique (i.e. the key points in the reference and test image match one another, but do not match any other key points in the corresponding image), then the key points will be kept. If a match between corresponding key point(s) in the reference image and test image is not unique, those key points will be removed.
  • After performing brute-forced matching, there are still potential outliers in the remaining matches. Accordingly, an outlier identification algorithm such as a Random Sample Consensus (RANSAC) algorithm is applied to further remove outliers. The details of RANSAC algorithm are summarized below. In one embodiment implementing the RANSAC algorithm, the best match is found, and the number of matching key points is recorded.
  • RANSAC is a learning technique to estimate parameters of a model by random sampling of observed data. For plane image matching tasks, such as documents, the model is a homograph transformation of a 3 by 3 matrix.
  • In one embodiment, the RANSAC algorithm to estimate the homograph transformation is as follows. First, randomly select four key points in a testing image, and randomly select four key points in a reference image. Second, estimate a homograph transform with the above four key point pairs using a four-point algorithm, e.g. as described below regarding image reconstruction. Third, apply the homograph transformation to all key points in the reference and testing images. The inlier key points are identified if they match the model well, otherwise the key points will be identified as outliers. In various embodiments, more than four points may be selected for this purpose, but preferably four points are utilized to minimize computational overhead while enabling efficient, effective matching.
  • The foregoing three-step process is repeated in an iterative fashion to re-sample the key points and estimate a new homograph transform. In one embodiment, the number of iterations performed may be in a range from about 102-103 iterations. After the iterative identification of key points is complete, the largest inlier set is retained, and an affine or homograph transform is re-estimated based on the retained inlier set.
  • After removing outliers, the matching process selects the reference image with the maximum number of matching points as the best match, and an affine or homograph transform is estimated with the best match to reconstruct the image and/or video data in a three-dimensional coordinate system. Image reconstruction mechanics are discussed in further detail below.
  • Exemplary mappings of key points between a reference image 400 and test image 410 are shown, according to two embodiments, in FIGS. 4A-4B, with mapping lines 402 indicating the correspondence of key points between the two images. FIG. 4C depicts a similar reference/test image pair, showing a credit or debit card and exemplary corresponding key points therein, according to another embodiment.
  • Advantageously, by identifying internal key points and mapping key points located in a test image 410 to corresponding key points in a reference image 400, the presently disclosed inventive concepts can detect objects depicted in image and/or video data even when the edges of the object are obscured or missing from the image, or when a complex background is present in the image or video data.
  • Once an appropriate transform is estimated, the presently disclosed inventive concepts advantageously allow the estimation of object edge/border locations based on the transform. In brief, based on the edge locations determined from the reference image data, it is possible to estimate the locations of corresponding edges/borders in the test image via the transform, which defines the point-to-point correspondence between the object as oriented in the test image and a corresponding reference image orientation within the same coordinate system. According to the embodiment shown in FIGS. 4A and 4B, estimating the edge locations involves evaluating the transform of the document plane shown in test image 410 to the document plane shown in the reference image 400 (or vice versa), and extrapolating edge positions based on the transform.
  • FIG. 4C shows a similar mapping of key points between a reference image 400 and test image 410 of a credit card. In the particular case of credit cards, and especially credit cards including an IC chip, it is possible to identify key points within the region of the card including the IC chip, and estimate transform(s) and/or border locations using these regions as the sole source of key points, in various embodiments. Accordingly, the presently disclosed inventive concepts are broadly applicable to various different types of objects and identifying features, constrained only by the ability to obtain and identify appropriate identifying features in a suitable reference image or set of reference images. Those having ordinary skill in the art will appreciate the scope to which these inventive concepts may be applied upon reading the instant disclosures.
  • Based on the transform, and the projected object edges, the presently disclosed inventive concepts may include transforming and cropping the test image to form a cropped, reconstructed image based on the test image, the cropped, reconstructed image depicting the object according to a same perspective and cropping of the object as represented in the reference image perspective.
  • In addition, preferred embodiments may include functionality configured to refine the projected location of object edges. For example, considering the results depicted in FIGS. 4A-4C and 5, a skilled artisan will understand that the projected edges achieved in these exemplary embodiments are not as accurate as may be desired.
  • As shown in FIG. 5, an object 500 such as a credit card or other document is depicted in a test image, and edge locations 502 are projected based on the foregoing content-based approach. However, the projected edge locations 502 do not accurately correspond to the actual edges of the object 500. Accordingly, it may be advantageous, in some approaches, rather than cropping directly according to the projected edge locations 502, to crop in a manner so as to leave a predetermined amount of background texture depicted in the cropped image, and subsequently perform conventional edge detection. Conventional edge detection shall be understood to include any technique for detecting edges based on detecting transitions between an image background 504 and image foreground (e.g. object 500) as shown in FIG. 5. For example, in preferred approaches conventional edge detection may include any technique or functionality as described in U.S. Pat. No. 8,855,375 to Macciola, et al.
  • The predetermined amount may be represented by a threshold ∂, which may be a predefined number of pixels, a percentage of an expected aspect ratio, etc. in various embodiments. In some approaches, the amount may be different for each dimension of the image and/or object, e.g. for flat objects a predetermined height threshold ∂H and/or predetermined width threshold ∂W may be used. ∂H and ∂W may be determined experimentally, and need not be equal in various embodiments. For instance, ∂H and ∂W may independently be absolute thresholds or relative thresholds, and may be characterized by different values.
  • In this way, one obtains an image where the document is prominent in the view and the edges reside within some known margin. Now it is possible to employ normal or specialized edge detection techniques, which may include searching for the edge only within the margin. In “normal” techniques, the threshold for detection can be less stringent than typically employed when searching for edges using only a conventional approach, without content-based detection augmentation. For instance, in “normal” techniques the contrast difference required to identify an edge may be less than the difference required without content-based detection augmentation. In “specialized” techniques, one could allow for increased tolerance regarding existence of gaps in the edge than would normally be prudent when searching an entire image (e.g. as would be present in FIG. 4A).
  • In various approaches, a further validation may be performed on the image and/or video data by classifying the cropped, reconstructed image. Classification may be performed using any technique suitable in the art, preferably a classification technique as described in U.S. patent application Ser. No. 13/802,226 (filed Mar. 13, 2013). If the classification result returns the appropriate object type, then the image matching and transform operations are likely to have been correctly achieved, whereas if a different object type is returned from classification, then the transform and/or cropping result are likely erroneous. Accordingly, the presently disclosed inventive concepts may leverage classification as a confidence measure to evaluate the image matching and reconstruction techniques discussed herein.
  • As described herein, according to one embodiment a method 700 for detecting objects depicted in digital images based on internal features of the object includes operations as depicted in FIG. 7. As will be understood by a person having ordinary skill in the art upon reading the present descriptions, the method 700 may be performed in any suitable environment, including those depicted in FIGS. 1-2 and may operate on inputs and/or produce outputs as depicted in FIGS. 3A-5, in various approaches.
  • As shown in FIG. 7, method 700 includes operation 702, in which a plurality of identifying features of the object are detected. Notably, the identifying features are located internally with respect to the object, such that each identifying feature is, corresponds to, or represents a part of the object other than object edges, boundaries between the object and image background, or other equivalent transition between the object and image background. In this manner, and according to various embodiments the presently disclosed inventive content-based object recognition techniques are based exclusively on the content of the object, and/or are performed exclusive of traditional edge detection, border detection, or other similar conventional recognition techniques known in the art.
  • The method 700 also includes operation 704, where a location of one or more edges of the object are projected, the projection being based at least in part on the plurality of identifying features.
  • Of course, the method 700 may include any number of additional and/or alternative features as described herein in any suitable combination, permutation, selection thereof as would be appreciated by a skilled artisan as suitable for performing content-based object detection, upon reading the instant disclosures.
  • For instance, in one embodiment, method 700 may additionally or alternatively include detecting the plurality of identifying features based on analyzing a plurality of feature vectors each corresponding to pixels within a patch of the digital image. The analysis may be performed in order to determine whether the patch includes a sharp transition in intensity, in preferred approaches. The analysis may optionally involve determining a position of some or all of the plurality of identifying features, or position determination may be performed separately from feature vector analysis, in various embodiments.
  • Optionally, in one embodiment detecting the plurality of identifying features involves automatic feature zone discovery. The automatic feature zone discovery may be a multi-pass procedure.
  • Method 700 may also include identifying a plurality of distinctive pixels within the plurality of identifying features of the object. Distinctive pixels are preferably characterized by having or embodying distinct visual features of the object.
  • In a preferred approach, method 700 also includes matching the digital image depicting the object to one of a plurality of reference images each depicting a known object type. The reference images are more preferably images used to train the recognition/detection engine to identify specific identifying features that are particularly suitable for detecting and/or reconstructing objects of the known object type in various types of images and/or imaging circumstances (e.g. different angles, distances, resolutions, lighting conditions, color depths, etc. in various embodiments). Accordingly, the matching procedure may involve determining whether the object includes distinctive pixels that correspond to distinctive pixels present in one or more of the plurality of reference images.
  • The method 700 may also include designating as an outlier a candidate match between a distinctive pixel in the digital image and one or more candidate corresponding distinctive pixels present in one of the plurality of reference images. The outlier is preferably designated in response to determining a distance ratio is greater than a predetermined distance ratio threshold. Moreover, the distance ratio may be a ratio describing: a first distance between the distinctive pixel in the digital image and a first of the one or more candidate corresponding distinctive pixels; and a second distance between the distinctive pixel in the digital image and a second of the one or more candidate corresponding distinctive pixels.
  • In more embodiments, method 700 includes designating as an outlier a candidate match between a distinctive pixel in the digital image and a candidate corresponding distinctive pixel present in one of the plurality of reference images in response to determining the candidate match is not unique. Uniqueness may be determined according to a symmetrical matching test, in preferred approaches and as described in greater detail hereinabove.
  • Notably, employing reconstruction as set forth herein, particularly with respect to method 700, carries the advantage of being able to detect and recognize objects in images where at least one edge of the object is either obscured or missing from the digital image. Thus, the presently disclosed inventive concepts represent an improvement to image processing machines and the image processing field since conventional image detection and image processing/correction techniques are based on detecting the edges of objects and making appropriate corrections based on characteristics of the object and/or object edges (e.g. location within image, dimensions such as particularly aspect ratio, curvature, length, etc.). In image data where edges are missing, obscured, or otherwise not represented at least in part, such conventional techniques lack the requisite input information to perform the intended image processing/correction.
  • In some approaches, the method 700 may include cropping the digital image based at least in part on the projected location of the one or more edges of the object. The cropped digital image preferably depicts a portion of a background of the digital image surrounding the object; and in such approaches method 700 may include detecting one or more transitions between the background and the object within the cropped digital image.
  • The method 700 may optionally involve classifying the object depicted within the cropped digital image. As described in further detail elsewhere herein, classification may operate as a type of orthogonal validation procedure or confidence measure for determining whether image recognition and/or reconstruction was performed correctly by implementing the techniques described herein. In brief, if a reconstructed image of an object is classified and results in a determination that the object depicted in the reconstructed image is a same type of object represented in/by the reference image used to reconstruct the object, then it is likely the reconstruction was performed correctly, or at least optimally under the circumstances of the image data.
  • With continuing reference to classification, method 700 in one embodiment may include: attempting to detect the object within the digital image using a plurality of predetermined object detection models each corresponding to a known object type; and determining a classification of the object based on a result of attempting to detect the object within the digital image using the plurality of predetermined object detection models. The classification of the object is the known object type corresponding to one of the object detection models for which the attempt to detect the object within the digital image was successful.
  • The method 700, in additional aspects, may include: generating a plurality of scaled images based on the digital image, each scaled image being characterized by a different resolution; extracting one or more feature vectors from each scaled image; and matching one or more of the scaled images to one of a plurality of reference images. Each reference image depicts a known object type and being characterized by a known resolution.
  • Of course, in various embodiments and as described in greater detail below, the techniques and features of method 700 may be combined and used to advantage in any permutation with the various image reconstruction techniques and features such as presented with respect to method 800.
  • Content-Based Image Reconstruction
  • Reconstructing image and/or video data as described herein essentially includes transforming the representation of the detected object as depicted in the captured image and/or video data into a representation of the object as it would appear if viewed from an angle normal to a particular surface of the object. In the case of documents, or other flat objects, this includes reconstructing the object representation to reflect a face of the flat object as viewed from an angle normal to that face. For such flat objects, if the object is characterized by a known geometry (e.g. a particular polygon, circle, ellipsoid, etc.) then a priori knowledge regarding the geometric characteristics of the known geometry may be leveraged to facilitate reconstruction
  • For other objects having three-dimensional geometries, and/or flat objects having non-standard geometries, reconstruction preferably includes transforming the object as represented in captured image and/or video data to represent a same or similar object type as represented in one or more reference images captured from a particular angle with respect to the object. Of course, reference images may also be employed to facilitate reconstruction of flat objects in various embodiments and without departing from the scope of the presently disclosed inventive concepts.
  • Accordingly, in preferred approaches the reconstructed representation substantially represents the actual dimensions, aspect ratio, etc. of the object captured in the digital image when viewed from a particular perspective (e.g. at an angle normal to the object, such as would be the capture angle if scanning a document in a traditional flatbed scanner, multifunction device, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions).
  • Various capture angles, and the associated projective effects are demonstrated schematically in FIGS. 6A-6D.
  • In some approaches, the reconstruction may include applying an algorithm such as a four-point algorithm to the image data.
  • In one embodiment, perspective correction may include constructing a 3D transformation based at least in part on the spatial distribution of features represented in the image and/or video data.
  • A planar homography/projective transform is a non-singular linear relation between two planes. In this case, the homography transform defines a linear mapping of four randomly selected pixels/positions between the captured image and the reference image.
  • The calculation of the camera parameters may utilize an estimation of the homography transform H, such as shown in Equation (1), in some approaches.
  • λ ( x y 1 ) = ( h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ) homography H ( X Y 1 ) , ( 1 ) λ ( x y 1 ) = ( h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ) homography H ( X Y 1 ) , ( 1 )
  • As depicted above in Equation (1):
      • λ is the focal depth of position (X,Y,Z) in the “reference” or “real-world” coordinate system, (e.g. a coordinate system derived from a reference image,). Put another way, λ may be considered the linear distance between a point (X,Y,Z) in the reference coordinate system and the capture device;
      • (x, y, z) are the coordinates of a given pixel position in the captured image; and
      • H is a (3×3) matrix having elements hij, where, i and j define the corresponding row and column index, respectively.
  • In one approach, the (x, y) coordinates and (X, Y) coordinates depicted in Equation 1 correspond to coordinates of respective points in the captured image plane and the reference image. In some approaches, the Z coordinate may be set to 0, corresponding to an assumption that the object depicted in each lies along a single (e.g. X-Y) plane with zero thickness. In one embodiment, it is possible to omit the z value in Equation 1 from the above calculations because it does not necessarily play any role in determining the homography matrix.
  • Thus, the homography H can be estimated by detecting four point-correspondences pi
    Figure US20170286764A1-20171005-P00001
    Pi′ with pi=(xi, yi, 1)T being the position of a randomly selected feature in the captured image plane; and Pi′=(Xi, Yi, 1)T being the coordinates of the corresponding position in the reference image, where i is point index value with range from 1 to n in the following discussion. Using the previously introduced notation, Equation (1) may be written as shown in Equation (2) below.

  • λp i =HP i′,  (2)

  • λp i =HP i′,  (2)
  • In order to eliminate a scaling factor, in one embodiment it is possible to calculate the cross product of each term of Equation (2), as shown in Equation (3):

  • p i×(λp i)=(HP i′),  (3)

  • p i×(λp i)=(HP i′),  (3)
  • Since pi×pi=03, Equation (3) may be written as shown below in Equation (4).

  • p i ×HP i′=03,  (4)

  • p i ×HP i′=03,  (4)
  • Thus, the matrix product HPi′ may be expressed as in Equation (5).
  • HP i = [ h 1 T P i h 2 T P i h 3 T P i ] , ( 5 ) HP i = [ h 1 T P i h 2 T P i h 3 T P i ] , ( 5 )
  • According to Equation 5, hmT is the transpose of the mth row of H (e.g. h1T is the transpose of the first row of H, h2T is the transpose of the second row of H, etc.). Accordingly, it is possible to rework Equation (4) as:
  • p i × HP i = ( x i y i 1 ) × [ h 1 T P i h 2 T P i h 3 T P i ] = [ y i h 3 T P i - h 2 T P i h 1 T P i - x i h 3 T P i x i h 2 T P i - y i h 1 T P i ] = 0 3 , ( 6 ) p i × HP i = ( x i y i 1 ) × [ h 1 T P i h 2 T P i h 3 T P i ] = [ y i h 3 T P i - h 2 T P i h 1 T P i - x i h 3 T P i x i h 2 T P i - y i h 1 T P i ] = 0 3 , ( 6 )
  • Notably, Equation (6) is linear in hmT and hmT Pi′=Pi T hm. Thus, Equation (6) may be reformulated as shown below in Equation (7):
  • [ 0 3 T - P i T y i P i T P i T 0 3 T - x i P i T - y i P i T x i P i T 0 3 T ] [ h 1 h 2 h 3 ] = 0 9 , ( 7 ) [ 0 3 T - P i T y i P i T P i T 0 3 T - x i P i T - y i P i T x i P i T 0 3 T ] [ h 1 h 2 h 3 ] = 0 9 , ( 7 )
  • Note that the rows of the matrix shown in Equation (7) are not linearly independent. For example, in one embodiment the third row is the sum of times −xi the first row and −yi times the second row. Thus, for each point-correspondence, Equation (7) provides two linearly independent equations. The two first rows are preferably used for solving H.
  • Because the homography transform is written using homogeneous coordinates, in one embodiment the homography H may be defined using 8 parameters plus a homogeneous scaling factor (which may be viewed as a free 9th parameter). In such embodiments, at least 4 point-correspondences providing 8 equations may be used to compute the homography. In practice, and according to one exemplary embodiment, a larger number of correspondences is preferably employed so that an over-determined linear system is obtained, resulting in a more robust result (e.g. lower error in relative pixel-position). By rewriting H in a vector form as h=[h11,h12,h13,h21,h22,h23,h31,h32,h33]T, n pairs of point-correspondences enable the construction of a 2n×9 linear system, which is expressed by Equation (8)
  • ( 0 0 0 - X 1 - Y 1 - 1 y 1 X 1 y 1 X 1 y 1 X 1 Y 1 1 0 0 0 - x 1 X 1 - x 1 Y 1 - x 1 0 0 0 - X 2 - Y 2 - 1 y 2 X 2 y 2 X 2 y 2 X 2 Y 2 1 0 0 0 - x 2 X 2 - x 2 Y 2 - x 2 0 0 0 - X n - Y n - 1 y n X n y n X n y n X n Y n 1 0 0 0 - x n X n - x n Y n - x n ) c ( h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ) = 0 9 , ( 8 ) ( 0 0 0 - X 1 - Y 1 - 1 y 1 X 1 y 1 X 1 y 1 X 1 Y 1 1 0 0 0 - x 1 X 1 - x 1 Y 1 - x 1 0 0 0 - X 2 - Y 2 - 1 y 2 X 2 y 2 X 2 y 2 X 2 Y 2 1 0 0 0 - x 2 X 2 - x 2 Y 2 - x 2 0 0 0 - X n - Y n - 1 y n X n y n X n y n X n Y n 1 0 0 0 - x n X n - x n Y n - x n ) c ( h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ) = 0 9 , ( 8 )
  • As shown in Equation 8, the first two rows correspond to the first feature point, as indicated by the subscript value of coordinates X, Y, x, y—in this case the subscript value is 1. The second two rows correspond to the second feature point, as indicated by the subscript value 2, the last two rows correspond to the nth feature point. For a four-point algorithm, n is 4, and the feature points are the four randomly selected features identified within the captured image and corresponding point of the reference image.
  • In one approach, solving this linear system involves the calculation of a Singular Value Decomposition (SVD). Such an SVD corresponds to reworking the matrix to the form of the matrix product C=UDVT, where the solution h corresponds to the eigenvector of the smallest eigenvalue of matrix C, which in one embodiment may be located at the last column of the matrix V when the eigenvalues are sorted in descendant order.
  • It is worth noting that the matrix C is different from the typical matrix utilized in an eight-point algorithm to estimate the essential matrix when two or more cameras are used, such as conventionally performed for stereoscopic machine vision. More specifically, while the elements conventionally used in eight-point algorithm consist of feature points projected on two camera planes, the elements in the presently described matrix C consist of feature points projected on only a single camera plane and the corresponding feature points on 3D objects.
  • In one embodiment, to avoid numerical instabilities, the coordinates of point-correspondences may preferably be normalized. This may be accomplished, for example, using a technique known as the normalized Direct Linear Transformation (DLT) algorithm. For example, in one embodiment, after the homography matrix is estimated, Equation 1 may be used to compute each pixel position (x, y) for a given value of (X, Y). In practical applications the challenge involves computing (X, Y) when the values of (x, y) are given or known a priori. As shown in Equation 1, and in preferred embodiments, (x, y) and (X, Y) are symmetrical (i.e. when the values of (x, y) and (X, Y) are switched, the validity of Equation 1 holds true). In this case, the “inverse” homography matrix may be estimated, and this “inverse” homography matrix may be used to reconstruct 3D (i.e. “reference” or “real-world”) coordinates of an object given the corresponding 2D coordinates of the object as depicted in the captured image, e.g. in the camera view.
  • Based on the foregoing, it is possible to implement the presently described four-point algorithm (as well as any equivalent variation and/or modification thereof that would be appreciated by a skilled artisan upon reading these descriptions) which may be utilized in various embodiments to efficiently and effectively reconstruct digital images characterized by at least some perspective distortion into corrected digital images exempting any such perspective distortion, where the corrected image is characterized by a pixel location error of about 5 pixels or less.
  • Various embodiments may additionally and/or alternatively include utilizing the foregoing data, calculations, results, and/or concepts to derive further useful information regarding the captured image, object, etc. For example, in various embodiments it is possible to determine the distance between the captured object and the capture device, the pitch and/or roll angle of the capture device, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions.
  • After (X, Y) values are estimated, the expression in Equation 1 may be described as follows:

  • λ=h 31 X+h 32 Y+h 33  (9)
  • Accordingly, in one embodiment the focal depth, also known as the distance between each point (X,Y,Z) in the 3D (i.e. “reference” or “real world”) coordinate system and the capture device, may be computed using Equation 9 above.
  • Determining a Rotation Matrix of the Object.
  • After estimating the position of the 3D object (X, Y) and λ, for each pixel in the captured image. Note that (X, Y) are the coordinates in the world coordinate system, while λ, is the distance to the point (X, Y) in the camera coordinate system. If the 3D object is assumed to be a rigid body, it is appropriate to use the algorithm disclosed herein to estimate the rotation matrix from the world coordinate system to the camera coordinate system. The following equation holds for rotation and translation of the point (X, Y, 0):
  • ( X c Y c Z c ) = R ( X Y 0 ) + t ( 10 )
  • where (Xc, Yc, Zc) are the coordinates relative to camera coordinate system, which are derived by rotating a point (X,Y,Z) in the world coordinate system with rotation matrix R, and a translation vector of t, where t is a constant independent of (X, Y). Note that the value of Zc is the same as the value of λ, as previously estimated using equation 9.
  • Considering the relationships of homography matrix H and intrinsic camera parameter matrix A and r1, r2, where r1, r2 are the first and second column vectors respectively, reveals the following relationship:

  • H=σA(r 1 ,r 2 ,t)  (11)
  • where σ is a constant and A is the intrinsic camera parameter matrix, defined as:
  • A = ( a c d b e 1 ) ( 12 )
  • where a and b are scaling factors which comprise of the camera focal length information, a=f/dx, and b=f/dy, where f is the focal length, while dx, dy are scaling factors of the image; c is the skew parameter about two image axes, and (d, e) are the coordinates of the corresponding principal point.
  • After estimation of homography matrix H, the matrix A can be estimated as follows:
  • a = w / B 11 ; ( 12.1 ) b = wB 11 ( B 11 B 22 - B 12 2 ) ; ( 12.2 ) c = - B 12 a 2 b / w ; d = vv 0 b - B 13 a 2 / w ; ( 12.3 ) v = - B 12 a 2 b / w ; ( 12.4 ) e = ( B 12 B 13 - B 11 B 23 ) / ( B 11 B 22 - B 12 2 ) ; ( 12.5 ) w = B 33 - ( B 13 2 + e ( B 12 B 13 - B 11 B 23 ) ) / B 11 . ( 12.6 )
  • In the above relationships, the unknown parameters are Bij. These values are estimated by the following equations:
  • ( v 12 t ( v 11 - v 22 ) t ) G = 0 , ( 12.7 )
  • where G is the solution of the above equation, alternatively expressed as:

  • G=(B 11 ,B 12 ,B 22 ,B 13 ,B 23 ,B 33)t,  (12.8)

  • where v ij=(h i1 h j1 ,h i1 h j2 +h i2 h j1 ,h i2 h j2 ,h i3 h j1 +h i1 h j3 ,h i3 h j2 +h i2 h j3 ,h i3 h j3)t  (12.9)
  • Note that in a conventional four-points algorithm, since it is possible to accurately estimate scaling factors a, b, the skew factor c is assumed to be zero, which means that one may ignore camera's skew distortion. It is further useful, in one embodiment, to assume that d and e have zero values (d=0, e=0).
  • From equation (11), B=(r1 r2 t), where σ−1 A−1H=B. Utilizing this relationship enables a new approach to estimate r1, r2 from the equation C (r1 r2 0) where the first and second column vectors of C are the first and second column vectors of B, and the third column vector of C is 0.
  • First, decompose matrix C with SVD (Singular Value Decomposition) method, C=UΣVt, where U is 3 by 3 orthogonal matrix, where V is 3 by 3 orthogonal matrix. Then r1 and r2 are estimated by the following equation:

  • (r 1 r 20)=U(0 W)  (13)
  • where W is a 2 by 3 matrix whose first and second row vectors are the first and second row vectors of Vt respectively. In the above computation, assume σ is 1. This scaling factor does not influence the value of U and W and therefore does not influence the estimation of r1 and r2. After r1, r2 are estimated (e.g. using Equation 13), it is useful to leverage the fact that R is a rotation matrix to estimate r3, which is the cross product of r1 and r2 with a sign to be determined (either 1 or −1). There are two possible solutions of R. In one example using a right-hand coordinate system, the r3 value is the cross-product value of r1 and r2.
  • Determining Yaw, Pitch, and Roll from a Rotation Matrix.
  • The yaw, pitch and roll (denoted by the α, β and γ respectively) are also known as Euler's angles, which are defined as the rotation angles around z, y, and x axes respectively, in one embodiment. According to this approach, the rotation matrix R in Equation 10 can be denoted as:
  • R = ( r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ) ( 14 )
  • where each r is an element of the matrix R.
  • It is often convenient to determine the α, β and γ parameters directly from a given rotation matrix R. The roll, in one embodiment, may be estimated by the following equation (e.g. when r33 is not equal to zero):

  • γ=a tan 2(r 32 ,r 33)  (15)
  • Similarly, in another approach the pitch may be estimated by the following equation:

  • β=a tan 2(−r 31,√{square root over (r 11 2 +r 21 2)})  (16)
  • In still more approaches, the yaw may be estimated by the following equation (e.g. when r11 is nonzero)

  • α=a tan 2(r 21 ,r 11)  (17)
  • Notably, in some approaches when r11, r33 or √{square root over (r11 2+r21 2)} are near in value to zero (e.g. 0<r11<ε, 0<r33<ε, or 0<√{square root over (r11 2+r21 2)}<ε, where the value ε is set to a reasonable value for considering the numerical stability, such as 0<ε≦0.01, in one embodiment, and ε=0.0001 in a particularly preferred embodiment. In general, the value of E may be determined in whole or in part based on limited computer word length, etc. as would be understood by one having ordinary skill in the art upon reading the present descriptions), this corresponds to the degenerate of rotation matrix R, special formulae are used to estimate the values of yaw, pitch and roll.
  • Estimating Distance Between Object and Capture Device
  • In still more embodiments, it is possible to estimate the distance between an object and a capture device even without the knowledge of the object size, using information such as a camera's intrinsic parameters (e.g. focal length, scale factors of (u, v) in image plane).
  • The requirements of this algorithm, in one approach, may be summarized as follows: 1) The camera's focal length for the captured image can be provided and accessed by an API call of the device (for instance, an android device provides an API call to get focal length information for the captured image); 2) The scale factors of dx and dy are estimated by the algorithm in the equations 12.1 and 12.2.
  • This enables estimation of the scale factors dx, dy for a particular type of device, and does not require estimating scale factors for each device individually. For instance, in one exemplary embodiment utilizing an Apple iPhone® 4 smartphone, it is possible, using the algorithm presented above, to estimate the scale factors using an object with a known size. The two scaling factors may thereafter be assumed to be identical for the same device type.
  • The algorithm to estimate object distance to camera, according to one illustrative approach, is described as follows: normalize (u, v), (X, Y) in the equation below
  • λ ( u v 1 ) = H ( X Y 1 ) ( 18 )
  • Note that Equation 18 is equivalent to Equation 1, except (u, v) in Equation 18 replaces the (x, y) term in Equation 1.
  • Suppose that ũ=u/Lu, {tilde over (v)}=v/Lv; {tilde over (x)}=X/LX; {tilde over (y)}=Y/LY; where Lu, Lv are image size in coordinates u and v and LX, LY are the object size to be determined. Then Equation 18 may be expressed as:
  • λ ( u ~ v ~ 1 ) = H ~ ( x ~ y ~ 1 ) , ( 19 )
  • where
  • H ~ = ( 1 / L u 1 / L v 1 ) H ( L x L y 1 ) ( 20 )
  • Normalized homography matrix {tilde over (H)} can be estimated by equation (20). Note that from equation 11, the following may be determined:

  • H=σA(r 1 r 2 t)  (21)
  • and the intrinsic parameter matrix of the camera is assumed with the following simple form:
  • A = ( f / dx c d f / dy e 1 ) ( 22 )
  • where f is the camera focal length, dx, dy are scaling factors of the camera, which are estimated.
  • From equations (19), (20) and (21), thus:
  • σ A ( r 1 r 2 t ) ( L x L y 1 ) = H ~ ~ ( 23 )
  • where H ~ ~ = ( L u L v 1 ) H ~
  • Because A is known, from equation (23) the following may be determined:
  • σ ( r 1 r 2 t ) ( L x L y 1 ) = A - 1 H ~ ~ ( 24 )
  • Denote K=A−1 {tilde over ({tilde over (H)})}, K=(k1, k2, k3), from equation (24) the following may be determined:

  • σr 1 L x =k 1  (25)

  • σr 2 L y =k 2  (26)

  • σt=k 3  (27)
  • because tin equation (27) is the translation vector of the object relative to camera. The L2 norm (Euclidean norm) of t is as follows:

  • t∥=∥k 3∥/ν  (28)
  • is the distance of left-top corner of the object to the camera.
  • Because ∥r1∥=∥r2∥=1, from equation (8) and (9), the following may be determined

  • L x =∥k 1∥/σ  (29)

  • L y =∥k 2∥/σ  (30)
  • Equations (29) and (30) may be used to estimate the document size along X and Y coordinates. The scaling factor may remain unknown, using this approach.
  • Note that the algorithm to estimate rotation matrix described above does not need the scaling factor σ. Rather, in some approaches it is suitable to assume σ=1. In such cases, it is possible to estimate roll, pitch, and yaw with the algorithm presented above. Equations (29) and (30) may also be used to estimate the aspect ratio of the object as:

  • aspectratio=L x /L y =∥k 1 ∥/∥k 2∥  (31)
  • Estimation of Pitch and Roll from Assumed Rectangle.
  • In practice the most common case is the camera capture of rectangular documents, such as sheets of paper of standard sizes, business cards, driver and other licenses, etc. Since the focal distance of the camera does not change, and since the knowledge of the yaw is irrelevant for the discussed types of document image processing, it is necessary only to determine roll and pitch of the camera relative to the plane of the document in order to rectangularize the corresponding image of the document.
  • The idea of the algorithm is simply that one can calculate the object coordinates of the document corresponding to the tetragon found in the picture (up to scale, rotation, and shift) for any relative pitch-roll combination. This calculated tetragon in object coordinates is characterized by 90-degree angles when the correct values of pitch and roll are used, and the deviation can be characterized by the sum of squares of the four angle differences. This criterion is useful because it is smooth and effectively penalizes individual large deviations.
  • A gradient descent procedure based on this criterion can find a good pitch-roll pair in a matter of milliseconds. This has been experimentally verified for instances where the tetragon in the picture was correctly determined. This approach uses yaw equal zero and an arbitrary fixed value of the distance to the object because changes in these values only add an additional orthogonal transform of the object coordinates. The approach also uses the known focal distance of the camera in the calculations of the coordinate transform, but if all four corners have been found and there are three independent angles, then the same criterion and a slightly more complex gradient descent procedure can be used to estimate the focal distance in addition to pitch and roll—this may be useful for server-based processing, when incoming pictures may or may not have any information about what camera they were taken with.
  • Interestingly, when the page detection is wrong, even the optimal pitch-roll pair leaves sizeable residual angle errors (of 1 degree or more), or, at least, if the page was just cropped-in parallel to itself, the aspect ratio derived from the found object coordinates does not match the real one.
  • Additionally, it is possible to apply this algorithm even when a location of one of the detected sides of the document is suspect or missing entirely (e.g. that side of the document is partially or completely obstructed, not depicted, or is blurred beyond recognition, etc.). In order to accomplish the desired result it is useful to modify the above defined criterion to use only two angles, for example those adjacent to the bottom side, in a gradient descent procedure. In this manner, the algorithm may still be utilized to estimate pitch and roll from a picture tetragon with bogus and/or undetectable top-left and top-right corners.
  • In one example, arbitrary points on the left and right sides closer to the top of the image frame can be designated as top-left and top-right corners. The best estimated pitch-roll will create equally bogus top-left and top-right corners in the object coordinates, but the document will still be correctly rectangularized. The direction of a missing (e.g. top) side of the document can be reconstructed since it should be substantially parallel to the opposite (e.g. bottom) side, and orthogonal to adjacent (e.g. left and/or right) side(s).
  • The remaining question is where to place the missing side in the context of the image as a whole, and if the aspect ratio is known then the offset of the missing side can be nicely estimated, and if not, then it can be pushed to the edge of the frame, just not to lose any data. This variation of the algorithm can resolve an important user case when the picture contains only a part of the document along one of its sides, for example, the bottom of an invoice containing a deposit slip. In a situation like this the bottom, left and right sides of the document can be correctly determined and used to estimate pitch and roll; these angles together with the focal distance can be used to rectangularize the visible part of the document.
  • In more approaches, the foregoing techniques for addressing missing, obscured, etc. edges in the image data may additionally and/or alternatively employ a relaxed cropping and subsequent use of conventional edge detection as described above with reference to FIG. 5. Of course, if the edge is completely missing from the image and/or video data, then the relaxed cropping techniques may not be suitable to locate the edges and projection as described above may be the sole suitable mechanism for estimating the location of edges. However, in the context of the present disclosures, using internally represented content rather than corner or edge positions as key points allows projection of edge locations in a broader range of applications, and in a more robust manner than conventional edge detection.
  • As described herein, according to one embodiment a method 800 for reconstructing objects depicted in digital images based on internal features of the object includes operations as depicted in FIG. 8. As will be understood by a person having ordinary skill in the art upon reading the present descriptions, the method 800 may be performed in any suitable environment, including those depicted in FIGS. 1-2 and may operate on inputs and/or produce outputs as depicted in FIGS. 3A-5, in various approaches.
  • As shown in FIG. 8, method 800 includes operation 802, in which a plurality of identifying features of the object are detected. Notably, the identifying features are located internally with respect to the object, such that each identifying feature is, corresponds to, or represents a part of the object other than object edges, boundaries between the object and image background, or other equivalent transition between the object and image background. In this manner, and according to various embodiments the presently disclosed inventive image reconstruction techniques are based exclusively on the content of the object, and/or are performed exclusive of traditional edge detection, border detection, or other similar conventional recognition techniques known in the art.
  • The method 800 also includes operation 804, where the digital image of the object is reconstructed within a three dimensional coordinate space based at least in part on some or all of the plurality of identifying features. In various embodiments, the portion of the image depicting the object may be reconstructed, or the entire image may be reconstructed, based on identifying feature(s)
  • Of course, the method 800 may include any number of additional and/or alternative features as described herein in any suitable combination, permutation, selection thereof as would be appreciated by a skilled artisan as suitable for performing content-based object detection, upon reading the instant disclosures.
  • For instance, in one embodiment, method 800 may additionally or alternatively include reconstructing the digital image of the object based on transforming the object to represent dimensions of the object as viewed from an angle normal to the object. As such, reconstruction effectively corrects perspective distortions, skew, warping or “fishbowl” effects, and other artifacts common to images captured using cameras and mobile devices.
  • Optionally, in one embodiment reconstructing the digital image of the object is based on four of the plurality of identifying features, and employs a four-point algorithm as described in further detail elsewhere herein. In such embodiments, preferably the four of the plurality of identifying features are randomly selected from among the plurality of identifying features. In some approaches, and as described in greater detail below, reconstruction may involve an iterative process whereby multiple sets of four or more randomly selected identifying features are used to, e.g. iteratively, estimate transform parameters and reconstruct the digital image. Accordingly, reconstructing the digital image of the object may be based at least in part on applying a four-point algorithm to at least some of the plurality of identifying features of the object, in certain aspects.
  • Reconstructing the digital image of the object may additionally and/or alternatively involve estimating a homography transform H. In one approach, estimating H comprises detecting one or more point correspondences pi
    Figure US20170286764A1-20171005-P00001
    Pi′ with pi=(xi, yi, 1)T as discussed above. Optionally, but preferably, each point correspondence pi
    Figure US20170286764A1-20171005-P00001
    Pi′ corresponds to a position pi of one of the plurality of identifying features of the object, and a respective position Pi′ of a corresponding identifying feature of the reconstructed digital image of the object. Estimating H may also include normalizing coordinates of some or all of the point correspondences.
  • As noted above, estimating the homography transform H may include an iterative process. In such embodiments, each iteration of the iterative process preferably includes: randomly selecting four key points; using a four point algorithm to estimate an ith homography transform Hi based on the four key points; and applying the estimated ith homography transform Hi to a set of corresponding key points. Each key point corresponds to one of the plurality of identifying features of the object, and in some embodiments may be one of the plurality of identifying features of the object. The set of corresponding key points preferably is in the form of a plurality of point correspondences, each point correspondence including: a key point other than the four randomly selected key points; and a corresponding key point from a reference image corresponding to the digital image. The “other” key points also correspond to one of the plurality of identifying features of the object. Thus, each point correspondence includes two key points in preferred embodiments: a key point from the test image and a corresponding key point from the reference image. The degree of correspondence between point correspondences may reflect the fitness of the homography transform, in some approaches.
  • Thus, in some approaches method 800 may include evaluating fitness of the homography transform (or multiple homography transforms generated in multiple iterations of the aforementioned process). The evaluation may include determining one or more outlier key points from among each set of corresponding key points; identifying, from among all sets of corresponding key points, the set of corresponding key points having a lowest number of outlier key points; defining a set of inlier key points from among the set of corresponding key points having the lowest number of outlier key points; and estimating the homography transform H based on the set of inlier key points. Preferably, the set of inlier key points exclude the outlier key points determined for the respective set of corresponding key points.
  • Furthermore, determining the one or more outlier key points from among each set of corresponding key points may involve: determining whether each of the plurality of point correspondences fits a transformation model corresponding to the estimated ith homography transform Hi; and, for each of the plurality of point correspondences, either: designating the other key point of the point correspondence as an outlier key point in response to determining the point correspondence does not fit the transformation model; or designating the other key point of the point correspondence as an inlier key point in response to determining the point correspondence does fit the transformation model.
  • In several approaches, particularly preferred in the case of objects such as documents and especially standard documents such as forms, templates, identification documents, financial documents, medical documents, insurance documents, etc. as would be understood by a skilled artisan upon reading the instant descriptions, the plurality of identifying features correspond to boilerplate content of the object. In various approaches, boilerplate content may include any type of such content as described hereinabove.
  • Notably, employing reconstruction as set forth herein, particularly with respect to method 800, carries the advantage of being able to reconstruct objects and/or images where at least one edge of the object is either obscured or missing from the digital image. Thus, the presently disclosed inventive concepts represent an improvement to image processing machines and the image processing field since conventional image recognition and image processing/correction techniques are based on detecting the edges of objects and making appropriate corrections based on characteristics of the object and/or object edges (e.g. location within image, dimensions such as particularly aspect ratio, curvature, length, etc.). In image data where edges are missing, obscured, or otherwise not represented at least in part, such conventional techniques lack the requisite input information to perform the intended image processing/correction. It should be understood that similar advantages are conveyed in the context of image recognition and method 700, which enables recognition of objects even where all edges of the object may be missing or obscured in the digital image data since recognition is based on features internal to the object.
  • In more embodiments, method 800 may include cropping the reconstructed digital image of the object based at least in part on a projected location of one or more edges of the object within the reconstructed digital image. The projected location of the one or more edges of the object is preferably based at least in part on an estimated homography transform H.
  • In still more embodiments, method 800 may include classifying the reconstructed digital image of the object. As described in further detail elsewhere herein, classification may operate as a type of orthogonal validation procedure or confidence measure for determining whether image recognition and/or reconstruction was performed correctly by implementing the techniques described herein. In brief, if a reconstructed image of an object is classified and results in a determination that the object depicted in the reconstructed image is a same type of object represented in/by the reference image used to reconstruct the object, then it is likely the reconstruction was performed correctly, or at least optimally under the circumstances of the image data.
  • The foregoing descriptions of methods 700 and 800 should be understood as provided by way of example to illustrate the inventive concepts disclosed herein, without limitation. In other approaches, the techniques disclosed herein may be implemented as a system, e.g. a processor and logic configured to cause the processor to perform operations as set forth with respect to methods 700 and/or 800, as well as a computer program product, e.g. a computer readable medium having stored thereon computer readable program instructions configured to cause a processor, upon execution thereof, to perform operations as set forth with respect to methods 700 and/or 800. Any of the foregoing embodiments may be employed without departing from the scope of the instant descriptions.
  • In addition, it should be understood that in various approaches it is advantageous to combine features, operations, techniques, etc. disclosed individually with respect to content based detection and content based recognition as described herein. Accordingly, the foregoing exemplary embodiments and descriptions should be understood as modular, and may be combined in any suitable permutation, combination, selection, etc. as would be understood by a person having ordinary skill in the art reading the present disclosure. In particular, leveraging a four-point algorithm and estimating homography transforms to facilitate content-based recognition and content-based reconstruction of image data are especially advantageous in preferred embodiments.
  • While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of an embodiment of the present invention should not be limited by any of the above-described exemplary embodiments.

Claims (22)

1. A computer-implemented method of detecting an object depicted in a digital image, the method comprising:
detecting, using a hardware processor, a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and
projecting, using the hardware processor, a location of one or more edges of the object based at least in part on the plurality of identifying features; and
outputting the projected location of the one or more edges of the object to at least one of: a display of a computer, and a non-transitory computer readable medium.
2. The computer-implemented method as recited in claim 1, wherein detecting the plurality of identifying features comprises analyzing a plurality of feature vectors each corresponding to pixels within a patch of the digital image to determine whether the patch includes a sharp transition in intensity.
3. The computer-implemented method as recited in claim 1,
wherein detecting the plurality of identifying features comprises automatic feature zone discovery; and
wherein automatic feature zone discovery comprises:
matching a plurality of pixels in the digital image to a plurality of corresponding pixels in a plurality of reference images to form a set of matching pairs, each matching pair including one pixel from the digital image and one pixel from one of the plurality of reference images; and
determining a subset of the matching pairs exhibiting a frequency within the set of matching pairs that is greater than a predetermined frequency threshold.
4. The computer-implemented method as recited in claim 1, comprising transforming the digital image to display the projected location of the one or more edges of the object.
5. The computer-implemented method as recited in claim 1, wherein the plurality of identifying features comprise boilerplate content.
6. The computer-implemented method as recited in claim 1, comprising identifying a plurality of distinctive pixels within the plurality of identifying features of the object, wherein the distinctive pixels are located at positions within the digital image characterized by a sharp transition in intensity.
7. (canceled)
8. The computer-implemented method as recited in claim 1, comprising matching the digital image depicting the object to one of a plurality of reference images each depicting a known object type, wherein the matching comprises determining whether the object includes distinctive pixels that correspond to distinctive pixels present in one or more of the plurality of reference images.
9. The computer-implemented method as recited in claim 1, comprising:
matching the digital image depicting the object to one of a plurality of reference images each depicting a known object type; and
designating as an outlier a candidate match between a distinctive pixel in the digital image and one or more candidate corresponding distinctive pixels present in one of the plurality of reference images;
wherein the outlier is designated in response to determining a distance ratio is greater than a predetermined distance ratio threshold, wherein the distance ratio is a ratio describing:
a first distance between the distinctive pixel in the digital image and a first of the one or more candidate corresponding distinctive pixels; and
a second distance between the distinctive pixel in the digital image and a second of the one or more candidate corresponding distinctive pixels.
10. The computer-implemented method as recited in claim 1, comprising:
matching the digital image depicting the object to one of a plurality of reference images each depicting a known object type; and
designating as an outlier a candidate match between a distinctive pixel in the digital image and a candidate corresponding distinctive pixel present in one of the plurality of reference images in response to determining the candidate match is not unique.
11. The computer-implemented method as recited in claim 1, wherein at least a portion of one or more edges of the object for which the location is projected is missing in the digital image.
12. The computer-implemented method as recited in claim 1, wherein projecting the location of the one or more edges of the object is based on a mapping of key points within some or all of the plurality of identifying features to key points of a reference image depicting an object belonging to a same class as the object depicted in the digital image.
13. The computer-implemented method as recited in claim 1, comprising cropping the digital image based at least in part on the projected location of the one or more edges of the object;
wherein the cropped digital image depicts a portion of a background of the digital image surrounding the object; and
wherein the method comprises detecting one or more transitions between the background and the object within the cropped digital image.
14. The computer-implemented method as recited in claim 1, comprising:
cropping the digital image based at least in part on the projected location of the one or more edges of the object; and
classifying the object depicted within the cropped digital image.
15. The computer-implemented method as recited in claim 1, comprising:
generating a plurality of scaled images based on the digital image, each scaled image being characterized by a different resolution;
extracting one or more feature vectors from each scaled image; and
matching one or more of the scaled images to one of a plurality of reference images, each reference image depicting a known object type and being characterized by a known resolution.
16. The computer-implemented method as recited in claim 1, comprising:
attempting to detect the object within the digital image using a plurality of predetermined object detection models each corresponding to a known object type; and
determining a classification of the object based on a result of attempting to detect the object within the digital image using the plurality of predetermined object detection models; and
wherein the classification of the object is determined to be the known object type corresponding to one of the object detection models for which the attempt to detect the object within the digital image was successful.
17. (canceled)
18. A computer program product for detecting an object depicted in a digital image, comprising a non-transitory computer readable medium having stored thereon computer readable program instructions configured to cause a processor, upon execution thereof, to:
generate, using the processor, a plurality of scaled images based on the digital image, each scaled image being characterized by a different resolution;
extract, using the processor, one or more feature vectors from each scaled image;
match, using the processor, one or more of the scaled images to one of a plurality of reference images based on the one or more feature vectors, each reference image depicting a known object type and being characterized by a known resolution;
detect, using the processor, a plurality of identifying features of the object within the scaled image matched to the one of the plurality of reference images, wherein the plurality of identifying features are located internally with respect to the object;
and
project, using the processor, a location of one or more edges of the object based at least in part on the plurality of identifying features.
19. The computer program product as recited in claim 18, comprising computer readable program instructions configured to cause the processor, upon execution thereof, to: match the digital image depicting the object to one of a plurality of reference images each depicting a known object type.
20. A system for detecting an object depicted in a digital image, comprising a processor and logic embodied with and/or executable by the processor, the logic being configured to cause the processor, upon execution thereof, to:
detect a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and
project a location of one or more edges of the object based at least in part on the plurality of identifying features, wherein at least portions of at least one of the one or more edges of the object displayed in the digital image are missing from the digital image.
21. The computer-implemented method as recited in claim 4, wherein at least portions of at least one of the one or more edges displayed in the transformed digital image are missing from the digital image.
22. The computer-implemented method as recited in claim 4, wherein the digital image is characterized by a complex background comprising a plurality of sharp intensity transitions not corresponding to edges of the object.
US15/234,969 2016-04-01 2016-08-11 Content-based detection and three dimensional geometric reconstruction of objects in image and video data Active US9779296B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/234,969 US9779296B1 (en) 2016-04-01 2016-08-11 Content-based detection and three dimensional geometric reconstruction of objects in image and video data
PCT/US2017/025553 WO2017173368A1 (en) 2016-04-01 2017-03-31 Content-based detection and three dimensional geometric reconstruction of objects in image and video data
EP17776847.0A EP3436865A4 (en) 2016-04-01 2017-03-31 CONTENT BASED DETECTION AND THREE-DIMENSIONAL GEOMETRIC RECONSTRUCTION OF OBJECTS IN IMAGE AND VIDEO DATA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662317360P 2016-04-01 2016-04-01
US15/234,969 US9779296B1 (en) 2016-04-01 2016-08-11 Content-based detection and three dimensional geometric reconstruction of objects in image and video data

Publications (2)

Publication Number Publication Date
US9779296B1 US9779296B1 (en) 2017-10-03
US20170286764A1 true US20170286764A1 (en) 2017-10-05

Family

ID=59929329

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/234,969 Active US9779296B1 (en) 2016-04-01 2016-08-11 Content-based detection and three dimensional geometric reconstruction of objects in image and video data

Country Status (1)

Country Link
US (1) US9779296B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9934433B2 (en) 2009-02-10 2018-04-03 Kofax, Inc. Global geographic information retrieval, validation, and normalization
US9996741B2 (en) 2013-03-13 2018-06-12 Kofax, Inc. Systems and methods for classifying objects in digital images captured using mobile devices
US10108860B2 (en) 2013-11-15 2018-10-23 Kofax, Inc. Systems and methods for generating composite images of long documents using mobile video data
US10146803B2 (en) 2013-04-23 2018-12-04 Kofax, Inc Smart mobile application development platform
US10146795B2 (en) 2012-01-12 2018-12-04 Kofax, Inc. Systems and methods for mobile image capture and processing
US10242285B2 (en) 2015-07-20 2019-03-26 Kofax, Inc. Iterative recognition-guided thresholding and data extraction
WO2019241265A1 (en) * 2018-06-12 2019-12-19 ID Metrics Group Incorporated Digital image generation through an active lighting system
RU2715515C2 (en) * 2018-03-30 2020-02-28 Акционерное общество "Лаборатория Касперского" System and method of detecting image containing identification document
US10657600B2 (en) 2012-01-12 2020-05-19 Kofax, Inc. Systems and methods for mobile image capture and processing
US10699146B2 (en) 2014-10-30 2020-06-30 Kofax, Inc. Mobile document detection and orientation based on reference object characteristics
US10803350B2 (en) 2017-11-30 2020-10-13 Kofax, Inc. Object detection and image cropping using a multi-detector approach
US10838067B2 (en) * 2017-01-17 2020-11-17 Aptiv Technologies Limited Object detection system
WO2022023890A1 (en) * 2020-07-29 2022-02-03 3M Innovative Properties Company Systems and methods for managing digital notes

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9208536B2 (en) 2013-09-27 2015-12-08 Kofax, Inc. Systems and methods for three dimensional geometric reconstruction of captured image data
US10127636B2 (en) * 2013-09-27 2018-11-13 Kofax, Inc. Content-based detection and three dimensional geometric reconstruction of objects in image and video data
US10783615B2 (en) * 2013-03-13 2020-09-22 Kofax, Inc. Content-based object detection, 3D reconstruction, and data extraction from digital images
US11620733B2 (en) * 2013-03-13 2023-04-04 Kofax, Inc. Content-based object detection, 3D reconstruction, and data extraction from digital images
EP3136290A1 (en) * 2015-08-28 2017-03-01 Thomson Licensing Method and device for determining the shape of an object represented in an image, corresponding computer program product and computer readable medium
JP6333871B2 (en) * 2016-02-25 2018-05-30 ファナック株式会社 Image processing apparatus for displaying an object detected from an input image
WO2017197092A1 (en) * 2016-05-13 2017-11-16 Chevron U.S.A. Inc. System and method for 3d restoration of complex subsurface models
US10192221B2 (en) * 2017-03-10 2019-01-29 Capital One Services, Llc Systems and methods for image capture vector format lasering engine
US11430028B1 (en) * 2017-11-30 2022-08-30 United Services Automobile Association (Usaa) Directed information assistance systems and methods
US10339374B1 (en) 2018-08-20 2019-07-02 Capital One Services, Llc Detecting a fragmented object in an image
EP3867866A1 (en) * 2018-10-15 2021-08-25 3M Innovative Properties Company Automated inspection for sheet parts of arbitrary shape from manufactured film
US11436853B1 (en) * 2019-03-25 2022-09-06 Idemia Identity & Security USA LLC Document authentication
US11127130B1 (en) * 2019-04-09 2021-09-21 Samsara Inc. Machine vision system and interactive graphical user interfaces related thereto
CN112750164B (en) * 2021-01-21 2023-04-18 脸萌有限公司 Lightweight positioning model construction method, positioning method and electronic equipment
CN112883922B (en) * 2021-03-23 2022-08-30 合肥工业大学 Sign language identification method based on CNN-BiGRU neural network fusion
JP2022169874A (en) * 2021-04-28 2022-11-10 株式会社Pfu Image processing apparatus, image processing method, and program
US12205294B2 (en) * 2022-03-07 2025-01-21 Onfido Ltd. Methods and systems for authentication of a physical document

Family Cites Families (626)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1660102A (en) 1923-06-04 1928-02-21 William H Smyth High-speed tracklaying tractor
US3069654A (en) 1960-03-25 1962-12-18 Paul V C Hough Method and means for recognizing complex patterns
US3696599A (en) 1971-07-16 1972-10-10 Us Navy Cable fairing system
US4558461A (en) 1983-06-17 1985-12-10 Litton Systems, Inc. Text line bounding system
US4836026A (en) 1984-06-01 1989-06-06 Science Applications International Corporation Ultrasonic imaging system
US4651287A (en) 1984-06-14 1987-03-17 Tsao Sherman H Digital image processing algorithm for output devices with discrete halftone gray scale capability
US4656665A (en) 1985-01-15 1987-04-07 International Business Machines Corporation Thresholding technique for graphics images using histogram analysis
DE3716787A1 (en) 1986-05-19 1987-11-26 Ricoh Kk CHARACTER RECOGNITION METHOD
US4992863A (en) 1987-12-22 1991-02-12 Minolta Camera Kabushiki Kaisha Colored image reading apparatus
US5101448A (en) 1988-08-24 1992-03-31 Hitachi, Ltd. Method and apparatus for processing a document by utilizing an image
JPH02311083A (en) 1989-05-26 1990-12-26 Ricoh Co Ltd Original reader
US5159667A (en) 1989-05-31 1992-10-27 Borrey Roland G Document identification by characteristics matching
JP2940960B2 (en) 1989-10-31 1999-08-25 株式会社日立製作所 Image tilt detection method and correction method, and image information processing apparatus
US5020112A (en) 1989-10-31 1991-05-28 At&T Bell Laboratories Image recognition method using two-dimensional stochastic grammars
US5063604A (en) 1989-11-08 1991-11-05 Transitions Research Corporation Method and means for recognizing patterns represented in logarithmic polar coordinates
IT1237803B (en) 1989-12-21 1993-06-17 Temav Spa PROCESS FOR THE PREPARATION OF FINE NITRIDE ALUMINUM POWDERS
US5344132A (en) 1990-01-16 1994-09-06 Digital Image Systems Image based document processing and information management system and apparatus
JP2708263B2 (en) 1990-06-22 1998-02-04 富士写真フイルム株式会社 Image reading device
JPH0488489A (en) 1990-08-01 1992-03-23 Internatl Business Mach Corp <Ibm> Character recognizing device and method using generalized half conversion
JPH04287290A (en) 1990-11-20 1992-10-12 Imra America Inc Hough transformation picture processor
KR930010845B1 (en) 1990-12-31 1993-11-12 주식회사 금성사 Graphic and character auto-separating method of video signal
JPH04270565A (en) 1991-02-20 1992-09-25 Fuji Xerox Co Ltd Picture compression system
US5313527A (en) 1991-06-07 1994-05-17 Paragraph International Method and apparatus for recognizing cursive writing from sequential input information
US5293429A (en) 1991-08-06 1994-03-08 Ricoh Company, Ltd. System and method for automatically classifying heterogeneous business forms
US5680525A (en) 1991-08-08 1997-10-21 Hitachi, Ltd. Three-dimensional graphic system with an editor for generating a textrue mapping image
DE69228741T2 (en) 1991-10-02 1999-09-02 Fujitsu Ltd. METHOD FOR DETERMINING THE LOCAL ORIENTATION OF A CONTOUR SEGMENT AND FOR DETERMINING LINES AND CORNERS
US5321770A (en) 1991-11-19 1994-06-14 Xerox Corporation Method for determining boundaries of words in text
JP3191057B2 (en) 1991-11-22 2001-07-23 株式会社日立製作所 Method and apparatus for processing encoded image data
US5359673A (en) 1991-12-27 1994-10-25 Xerox Corporation Method and apparatus for converting bitmap image documents to editable coded data using a standard notation to record document recognition ambiguities
DE9202508U1 (en) 1992-02-27 1992-04-09 Georg Karl geka-brush GmbH, 8809 Bechhofen Tooth cleaning brush
US5317646A (en) 1992-03-24 1994-05-31 Xerox Corporation Automated method for creating templates in a forms recognition and processing system
DE4310727C2 (en) 1992-04-06 1996-07-11 Hell Ag Linotype Method and device for analyzing image templates
US5268967A (en) 1992-06-29 1993-12-07 Eastman Kodak Company Method for automatic foreground and background detection in digital radiographic images
US5596655A (en) 1992-08-18 1997-01-21 Hewlett-Packard Company Method for finding and classifying scanned information
US5594815A (en) 1992-10-19 1997-01-14 Fast; Bruce B. OCR image preprocessing method for image enhancement of scanned documents
US5848184A (en) 1993-03-15 1998-12-08 Unisys Corporation Document page analyzer and method
JPH06274680A (en) 1993-03-17 1994-09-30 Hitachi Ltd Method and system recognizing document
US6002489A (en) 1993-04-02 1999-12-14 Fujitsu Limited Product catalog having image evaluation chart
JPH06314339A (en) 1993-04-27 1994-11-08 Honda Motor Co Ltd Image rectilinear component extracting device
US5602964A (en) 1993-05-21 1997-02-11 Autometric, Incorporated Automata networks and methods for obtaining optimized dynamically reconfigurable computational architectures and controls
US7082426B2 (en) 1993-06-18 2006-07-25 Cnet Networks, Inc. Content aggregation method and apparatus for an on-line product catalog
US5353673A (en) 1993-09-07 1994-10-11 Lynch John H Brass-wind musical instrument mouthpiece with radially asymmetric lip restrictor
JP2720924B2 (en) 1993-09-21 1998-03-04 富士ゼロックス株式会社 Image signal encoding device
US6219773B1 (en) 1993-10-18 2001-04-17 Via-Cyrix, Inc. System and method of retiring misaligned write operands from a write buffer
EP0654746B1 (en) 1993-11-24 2003-02-12 Canon Kabushiki Kaisha Form identification and processing system
US5546474A (en) 1993-12-21 1996-08-13 Hewlett-Packard Company Detection of photo regions in digital images
US5671463A (en) 1993-12-28 1997-09-23 Minolta Co., Ltd. Image forming apparatus capable of forming a plurality of images from different originals on a single copy sheet
US5473742A (en) 1994-02-22 1995-12-05 Paragraph International Method and apparatus for representing image data using polynomial approximation method and iterative transformation-reparametrization technique
US5699244A (en) 1994-03-07 1997-12-16 Monsanto Company Hand-held GUI PDA with GPS/DGPS receiver for collecting agronomic and GPS position data
JP3163215B2 (en) 1994-03-07 2001-05-08 日本電信電話株式会社 Line extraction Hough transform image processing device
JP3311135B2 (en) 1994-03-23 2002-08-05 積水化学工業株式会社 Inspection range recognition method
EP0677818B1 (en) 1994-04-15 2000-05-10 Canon Kabushiki Kaisha Image pre-processor for character recognition system
US5652663A (en) 1994-07-29 1997-07-29 Polaroid Corporation Preview buffer for electronic scanner
US5563723A (en) 1994-08-31 1996-10-08 Eastman Kodak Company Method of calibration of image scanner signal processing circuits
US5757963A (en) 1994-09-30 1998-05-26 Xerox Corporation Method and apparatus for complex column segmentation by major white region pattern matching
JP3494326B2 (en) 1994-10-19 2004-02-09 ミノルタ株式会社 Image forming device
US5696611A (en) 1994-11-08 1997-12-09 Matsushita Graphic Communication Systems, Inc. Color picture processing apparatus for reproducing a color picture having a smoothly changed gradation
EP0723247B1 (en) 1995-01-17 1998-07-29 Eastman Kodak Company Document image assessment system and method
US5822454A (en) 1995-04-10 1998-10-13 Rebus Technology, Inc. System and method for automatic page registration and automatic zone detection during forms processing
US5857029A (en) 1995-06-05 1999-01-05 United Parcel Service Of America, Inc. Method and apparatus for non-contact signature imaging
DK71495A (en) 1995-06-22 1996-12-23 Purup Prepress As Digital image correction method and apparatus
JPH0962826A (en) 1995-08-22 1997-03-07 Fuji Photo Film Co Ltd Picture reader
US5781665A (en) 1995-08-28 1998-07-14 Pitney Bowes Inc. Apparatus and method for cropping an image
CA2184561C (en) 1995-09-12 2001-05-29 Yasuyuki Michimoto Object detecting apparatus in which the position of a planar object is estimated by using hough transform
EP0870246B1 (en) 1995-09-25 2007-06-06 Adobe Systems Incorporated Optimum access to electronic documents
US6532077B1 (en) 1995-10-04 2003-03-11 Canon Kabushiki Kaisha Image processing system
JPH09116720A (en) 1995-10-20 1997-05-02 Matsushita Graphic Commun Syst Inc Ocr facsimile equipment and communication system therefor
US6009196A (en) 1995-11-28 1999-12-28 Xerox Corporation Method for classifying non-running text in an image
US5987172A (en) 1995-12-06 1999-11-16 Cognex Corp. Edge peak contour tracker
US6009191A (en) 1996-02-15 1999-12-28 Intel Corporation Computer implemented method for compressing 48-bit pixels to 16-bit pixels
US5923763A (en) 1996-03-21 1999-07-13 Walker Asset Management Limited Partnership Method and apparatus for secure document timestamping
US5937084A (en) 1996-05-22 1999-08-10 Ncr Corporation Knowledge-based document analysis system
US8204293B2 (en) 2007-03-09 2012-06-19 Cummins-Allison Corp. Document imaging and processing system
US5956468A (en) 1996-07-12 1999-09-21 Seiko Epson Corporation Document segmentation system
SE510310C2 (en) 1996-07-19 1999-05-10 Ericsson Telefon Ab L M Method and apparatus for motion estimation and segmentation
US6038348A (en) 1996-07-24 2000-03-14 Oak Technology, Inc. Pixel image enhancement system and method
US5696805A (en) 1996-09-17 1997-12-09 Eastman Kodak Company Apparatus and method for identifying specific bone regions in digital X-ray images
JP3685421B2 (en) 1996-09-18 2005-08-17 富士写真フイルム株式会社 Image processing device
JPH10117262A (en) 1996-10-09 1998-05-06 Fuji Photo Film Co Ltd Image processor
JP2940496B2 (en) 1996-11-05 1999-08-25 日本電気株式会社 Pattern matching encoding apparatus and method
US6104840A (en) 1996-11-08 2000-08-15 Ricoh Company, Ltd. Method and system for generating a composite image from partially overlapping adjacent images taken along a plurality of axes
US6512848B2 (en) 1996-11-18 2003-01-28 Canon Kabushiki Kaisha Page analysis system
JP3748141B2 (en) 1996-12-26 2006-02-22 株式会社東芝 Image forming apparatus
US6098065A (en) 1997-02-13 2000-08-01 Nortel Networks Corporation Associative search engine
DE69836447T2 (en) 1997-02-19 2007-09-13 Canon K.K. Scanning device and control method therefor as well as image input system
JP2927350B2 (en) 1997-03-27 1999-07-28 株式会社モノリス Multi-resolution filter processing method and image matching method using the method
SE511242C2 (en) 1997-04-01 1999-08-30 Readsoft Ab Method and apparatus for automatic data capture of forms
US6154217A (en) 1997-04-15 2000-11-28 Software Architects, Inc. Gamut restriction of color image
US6005958A (en) 1997-04-23 1999-12-21 Automotive Systems Laboratory, Inc. Occupant type and position detection system
US6067385A (en) 1997-05-07 2000-05-23 Ricoh Company Limited System for aligning document images when scanned in duplex mode
US6433896B1 (en) 1997-06-10 2002-08-13 Minolta Co., Ltd. Image processing apparatus
KR100420819B1 (en) 1997-06-25 2004-04-17 마쯔시다덴기산교 가부시키가이샤 Method for displaying luminous gradation
JP3877385B2 (en) 1997-07-04 2007-02-07 大日本スクリーン製造株式会社 Image processing parameter determination apparatus and method
JP3061019B2 (en) 1997-08-04 2000-07-10 トヨタ自動車株式会社 Internal combustion engine
US5953388A (en) 1997-08-18 1999-09-14 George Mason University Method and apparatus for processing data from a tomographic imaging system
JP3891654B2 (en) 1997-08-20 2007-03-14 株式会社東芝 Image forming apparatus
US6005968A (en) 1997-08-29 1999-12-21 X-Rite, Incorporated Scanner calibration and correction techniques using scaled lightness values
JPH1178112A (en) 1997-09-09 1999-03-23 Konica Corp Image forming system and image forming method
JPH1186021A (en) 1997-09-09 1999-03-30 Fuji Photo Film Co Ltd Image processor
US6011595A (en) 1997-09-19 2000-01-04 Eastman Kodak Company Method for segmenting a digital image into a foreground region and a key color region
JPH1191169A (en) 1997-09-19 1999-04-06 Fuji Photo Film Co Ltd Image processing apparatus
US6480624B1 (en) 1997-09-30 2002-11-12 Minolta Co., Ltd. Color discrimination apparatus and method
JP3608920B2 (en) 1997-10-14 2005-01-12 株式会社ミツトヨ Non-contact image measurement system
US6434620B1 (en) 1998-08-27 2002-08-13 Alacritech, Inc. TCP/IP offload network interface device
US5867264A (en) 1997-10-15 1999-02-02 Pacific Advanced Technology Apparatus for image multispectral sensing employing addressable spatial mask
US6243722B1 (en) 1997-11-24 2001-06-05 International Business Machines Corporation Method and system for a network-based document review tool utilizing comment classification
US6222613B1 (en) 1998-02-10 2001-04-24 Konica Corporation Image processing method and apparatus
DE19809790B4 (en) 1998-03-09 2005-12-22 Daimlerchrysler Ag Method for determining a twist structure in the surface of a precision-machined cylindrical workpiece
JPH11261821A (en) 1998-03-12 1999-09-24 Fuji Photo Film Co Ltd Image processing method
US6426806B2 (en) 1998-03-31 2002-07-30 Canon Kabushiki Kaisha Routing scanned documents with scanned control sheets
US6327581B1 (en) 1998-04-06 2001-12-04 Microsoft Corporation Methods and apparatus for building a support vector machine classifier
JP3457562B2 (en) 1998-04-06 2003-10-20 富士写真フイルム株式会社 Image processing apparatus and method
US7194471B1 (en) 1998-04-10 2007-03-20 Ricoh Company, Ltd. Document classification system and method for classifying a document according to contents of the document
US6393147B2 (en) 1998-04-13 2002-05-21 Intel Corporation Color region based recognition of unidentified objects
US8955743B1 (en) 1998-04-17 2015-02-17 Diebold Self-Service Systems Division Of Diebold, Incorporated Automated banking machine with remote user assistance
US7318051B2 (en) 2001-05-18 2008-01-08 Health Discovery Corporation Methods for feature selection in a learning machine
US6789069B1 (en) 1998-05-01 2004-09-07 Biowulf Technologies Llc Method for enhancing knowledge discovered from biological data using a learning machine
US7617163B2 (en) 1998-05-01 2009-11-10 Health Discovery Corporation Kernels and kernel methods for spectral data
JPH11328408A (en) 1998-05-12 1999-11-30 Advantest Corp Device for processing data and information storage medium
US6748109B1 (en) 1998-06-16 2004-06-08 Fuji Photo Film Co., Ltd Digital laboratory system for processing photographic images
US6161130A (en) 1998-06-23 2000-12-12 Microsoft Corporation Technique which utilizes a probabilistic classifier to detect "junk" e-mail by automatically updating a training and re-training the classifier based on the updated training set
US6192360B1 (en) 1998-06-23 2001-02-20 Microsoft Corporation Methods and apparatus for classifying text and for building a text classifier
EP0967792B1 (en) 1998-06-26 2011-08-03 Sony Corporation Printer having image correcting capability
US7253836B1 (en) 1998-06-30 2007-08-07 Nikon Corporation Digital camera, storage medium for image signal processing, carrier wave and electronic camera
US6456738B1 (en) 1998-07-16 2002-09-24 Ricoh Company, Ltd. Method of and system for extracting predetermined elements from input document based upon model which is adaptively modified according to variable amount in the input document
FR2781475B1 (en) 1998-07-23 2000-09-08 Alsthom Cge Alcatel USE OF A POROUS GRAPHITE CRUCIBLE TO PROCESS SILICA PELLETS
US6219158B1 (en) 1998-07-31 2001-04-17 Hewlett-Packard Company Method and apparatus for a dynamically variable scanner, copier or facsimile secondary reflective surface
US6385346B1 (en) 1998-08-04 2002-05-07 Sharp Laboratories Of America, Inc. Method of display and control of adjustable parameters for a digital scanner device
US6292168B1 (en) 1998-08-13 2001-09-18 Xerox Corporation Period-based bit conversion method and apparatus for digital image processing
JP2000067065A (en) 1998-08-20 2000-03-03 Ricoh Co Ltd Method for identifying document image and record medium
US6373507B1 (en) 1998-09-14 2002-04-16 Microsoft Corporation Computer-implemented image acquistion system
US7017108B1 (en) 1998-09-15 2006-03-21 Canon Kabushiki Kaisha Method and apparatus for reproducing a linear document having non-linear referential links
US6263122B1 (en) 1998-09-23 2001-07-17 Hewlett Packard Company System and method for manipulating regions in a scanned image
US6223223B1 (en) 1998-09-30 2001-04-24 Hewlett-Packard Company Network scanner contention handling method
US6575367B1 (en) 1998-11-05 2003-06-10 Welch Allyn Data Collection, Inc. Image data binarization methods enabling optical reader to read fine print indicia
US6370277B1 (en) 1998-12-07 2002-04-09 Kofax Image Products, Inc. Virtual rescanning: a method for interactive document image quality enhancement
US6480304B1 (en) 1998-12-09 2002-11-12 Scansoft, Inc. Scanning system and method
US6396599B1 (en) 1998-12-21 2002-05-28 Eastman Kodak Company Method and apparatus for modifying a portion of an image in accordance with colorimetric parameters
US6765685B1 (en) 1999-01-22 2004-07-20 Ricoh Company, Ltd. Printing electronic documents with automatically interleaved separation sheets
US7003719B1 (en) 1999-01-25 2006-02-21 West Publishing Company, Dba West Group System, method, and software for inserting hyperlinks into documents
US6614930B1 (en) 1999-01-28 2003-09-02 Koninklijke Philips Electronics N.V. Video stream classifiable symbol isolation method and system
JP2000227316A (en) 1999-02-04 2000-08-15 Keyence Corp Inspection device
US6646765B1 (en) 1999-02-19 2003-11-11 Hewlett-Packard Development Company, L.P. Selective document scanning method and apparatus
JP2000251012A (en) 1999-03-01 2000-09-14 Hitachi Ltd Form processing method and system
EP1049030A1 (en) 1999-04-28 2000-11-02 SER Systeme AG Produkte und Anwendungen der Datenverarbeitung Classification method and apparatus
US6590676B1 (en) 1999-05-18 2003-07-08 Electronics For Imaging, Inc. Image reconstruction architecture
EP1054331A3 (en) 1999-05-21 2003-11-12 Hewlett-Packard Company, A Delaware Corporation System and method for storing and retrieving document data
JP4453119B2 (en) 1999-06-08 2010-04-21 ソニー株式会社 Camera calibration apparatus and method, image processing apparatus and method, program providing medium, and camera
JP2000354144A (en) 1999-06-11 2000-12-19 Ricoh Co Ltd Document reader
JP4626007B2 (en) 1999-06-14 2011-02-02 株式会社ニコン Image processing method, machine-readable recording medium storing image processing program, and image processing apparatus
US7051274B1 (en) 1999-06-24 2006-05-23 Microsoft Corporation Scalable computing system for managing annotations
JP4114279B2 (en) 1999-06-25 2008-07-09 コニカミノルタビジネステクノロジーズ株式会社 Image processing device
US6501855B1 (en) 1999-07-20 2002-12-31 Parascript, Llc Manual-search restriction on documents not having an ASCII index
IL131092A (en) 1999-07-25 2006-08-01 Orbotech Ltd Optical inspection system
US6628808B1 (en) 1999-07-28 2003-09-30 Datacard Corporation Apparatus and method for verifying a scanned image
US6628416B1 (en) 1999-10-13 2003-09-30 Umax Data Systems, Inc. Method and user interface for performing a scan operation for a scanner coupled to a computer system
JP3501031B2 (en) 1999-08-24 2004-02-23 日本電気株式会社 Image region determination device, image region determination method, and storage medium storing program thereof
JP3587506B2 (en) 1999-08-30 2004-11-10 富士重工業株式会社 Stereo camera adjustment device
US6633857B1 (en) 1999-09-04 2003-10-14 Microsoft Corporation Relevance vector machine
US6601026B2 (en) 1999-09-17 2003-07-29 Discern Communications, Inc. Information retrieval by natural language querying
US7123292B1 (en) 1999-09-29 2006-10-17 Xerox Corporation Mosaicing images with an offset lens
JP2001103255A (en) 1999-09-30 2001-04-13 Minolta Co Ltd Image processing system
US6839466B2 (en) 1999-10-04 2005-01-04 Xerox Corporation Detecting overlapping images in an automatic image segmentation device with the presence of severe bleeding
US7430066B2 (en) 1999-10-13 2008-09-30 Transpacific Ip, Ltd. Method and user interface for performing an automatic scan operation for a scanner coupled to a computer system
JP4377494B2 (en) 1999-10-22 2009-12-02 東芝テック株式会社 Information input device
JP4094789B2 (en) 1999-11-26 2008-06-04 富士通株式会社 Image processing apparatus and image processing method
US6751349B2 (en) 1999-11-30 2004-06-15 Fuji Photo Film Co., Ltd. Image processing system
US7735721B1 (en) 1999-11-30 2010-06-15 Diebold Self-Service Systems Division Of Diebold, Incorporated Method of evaluating checks deposited into a cash dispensing automated banking machine
US7337389B1 (en) 1999-12-07 2008-02-26 Microsoft Corporation System and method for annotating an electronic document independently of its content
US6665425B1 (en) 1999-12-16 2003-12-16 Xerox Corporation Systems and methods for automated image quality based diagnostics and remediation of document processing systems
US20010027420A1 (en) 1999-12-21 2001-10-04 Miroslav Boublik Method and apparatus for capturing transaction data
US6724916B1 (en) 2000-01-05 2004-04-20 The United States Of America As Represented By The Secretary Of The Navy Composite hough transform for multitarget multisensor tracking
US6778684B1 (en) 2000-01-20 2004-08-17 Xerox Corporation Systems and methods for checking image/document quality
JP2001218047A (en) 2000-02-04 2001-08-10 Fuji Photo Film Co Ltd Picture processor
EP1128659A1 (en) 2000-02-24 2001-08-29 Xerox Corporation Graphical user interface for previewing captured image data of double sided or bound documents
US6859909B1 (en) 2000-03-07 2005-02-22 Microsoft Corporation System and method for annotating web-based documents
US6643413B1 (en) 2000-03-27 2003-11-04 Microsoft Corporation Manifold mosaic hopping for image-based rendering
US6757081B1 (en) 2000-04-07 2004-06-29 Hewlett-Packard Development Company, L.P. Methods and apparatus for analyzing and image and for controlling a scanner
SE0001312D0 (en) 2000-04-10 2000-04-10 Abb Ab Industrial robot
US6337925B1 (en) 2000-05-08 2002-01-08 Adobe Systems Incorporated Method for determining a border in a complex scene with applications to image masking
US20020030831A1 (en) 2000-05-10 2002-03-14 Fuji Photo Film Co., Ltd. Image correction method
US6469801B1 (en) 2000-05-17 2002-10-22 Heidelberger Druckmaschinen Ag Scanner with prepress scaling mode
US6763515B1 (en) 2000-06-05 2004-07-13 National Instruments Corporation System and method for automatically generating a graphical program to perform an image processing algorithm
US6701009B1 (en) 2000-06-06 2004-03-02 Sharp Laboratories Of America, Inc. Method of separated color foreground and background pixel improvement
US20030120653A1 (en) 2000-07-05 2003-06-26 Sean Brady Trainable internet search engine and methods of using
JP4023075B2 (en) 2000-07-10 2007-12-19 富士ゼロックス株式会社 Image acquisition device
US6463430B1 (en) 2000-07-10 2002-10-08 Mohomine, Inc. Devices and methods for generating and managing a database
JP4171574B2 (en) 2000-07-21 2008-10-22 富士フイルム株式会社 Image processing condition determining apparatus and image processing condition determining program storage medium
AU2001283004A1 (en) 2000-07-24 2002-02-05 Vivcom, Inc. System and method for indexing, searching, identifying, and editing portions of electronic multimedia files
US6675159B1 (en) 2000-07-27 2004-01-06 Science Applic Int Corp Concept-based search and retrieval system
CA2417663C (en) 2000-07-28 2008-09-30 Raf Technology, Inc. Orthogonal technology for multi-line character recognition
US6850653B2 (en) 2000-08-08 2005-02-01 Canon Kabushiki Kaisha Image reading system, image reading setting determination apparatus, reading setting determination method, recording medium, and program
US6901170B1 (en) 2000-09-05 2005-05-31 Fuji Xerox Co., Ltd. Image processing device and recording medium
JP3720740B2 (en) 2000-09-12 2005-11-30 キヤノン株式会社 Distributed printing system, distributed printing control method, storage medium, and program
US7002700B1 (en) 2000-09-14 2006-02-21 Electronics For Imaging, Inc. Method and system for merging scan files into a color workflow
US7738706B2 (en) 2000-09-22 2010-06-15 Sri International Method and apparatus for recognition of symbols in images of three-dimensional scenes
DE10047219A1 (en) 2000-09-23 2002-06-06 Adolf Wuerth Gmbh & Co Kg cleat
JP4472847B2 (en) 2000-09-28 2010-06-02 キヤノン電子株式会社 Image processing apparatus and control method thereof, image input apparatus and control method thereof, and storage medium
US6621595B1 (en) 2000-11-01 2003-09-16 Hewlett-Packard Development Company, L.P. System and method for enhancing scanned document images for color printing
US20050060162A1 (en) 2000-11-10 2005-03-17 Farhad Mohit Systems and methods for automatic identification and hyperlinking of words or other data items and for information retrieval using hyperlinked words or data items
US7043080B1 (en) 2000-11-21 2006-05-09 Sharp Laboratories Of America, Inc. Methods and systems for text detection in mixed-context documents using local geometric signatures
US6788308B2 (en) 2000-11-29 2004-09-07 Tvgateway,Llc System and method for improving the readability of text
EP1211594A3 (en) 2000-11-30 2006-05-24 Canon Kabushiki Kaisha Apparatus and method for controlling user interface
US6921220B2 (en) 2000-12-19 2005-07-26 Canon Kabushiki Kaisha Image processing system, data processing apparatus, data processing method, computer program and storage medium
US6826311B2 (en) 2001-01-04 2004-11-30 Microsoft Corporation Hough transform supporting methods and arrangements
US7266768B2 (en) 2001-01-09 2007-09-04 Sharp Laboratories Of America, Inc. Systems and methods for manipulating electronic information using a three-dimensional iconic representation
US6522791B2 (en) 2001-01-23 2003-02-18 Xerox Corporation Dynamic user interface with scanned image improvement assist
US6882983B2 (en) 2001-02-05 2005-04-19 Notiva Corporation Method and system for processing transactions
US6950555B2 (en) 2001-02-16 2005-09-27 Parascript Llc Holistic-analytical recognition of handwritten text
JP2002247371A (en) 2001-02-21 2002-08-30 Ricoh Co Ltd Image processor and recording medium having recorded image processing program
US6944602B2 (en) 2001-03-01 2005-09-13 Health Discovery Corporation Spectral kernels for learning machines
US7864369B2 (en) 2001-03-19 2011-01-04 Dmetrix, Inc. Large-area imaging by concatenation with array microscope
JP2002300386A (en) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd Image processing method
US7145699B2 (en) 2001-03-30 2006-12-05 Sharp Laboratories Of America, Inc. System and method for digital document alignment
US20020165717A1 (en) 2001-04-06 2002-11-07 Solmer Robert P. Efficient method for information extraction
US6658147B2 (en) 2001-04-16 2003-12-02 Parascript Llc Reshaping freehand drawn lines and shapes in an electronic document
JP3824209B2 (en) 2001-04-18 2006-09-20 三菱電機株式会社 Automatic document divider
US7023447B2 (en) 2001-05-02 2006-04-04 Eastman Kodak Company Block sampling based method and apparatus for texture synthesis
US7006707B2 (en) 2001-05-03 2006-02-28 Adobe Systems Incorporated Projecting images onto a surface
US6944357B2 (en) 2001-05-24 2005-09-13 Microsoft Corporation System and process for automatically determining optimal image compression methods for reducing file size
WO2002099720A1 (en) 2001-06-01 2002-12-12 American Express Travel Related Services Company, Inc. System and method for global automated address verification
US20030030638A1 (en) 2001-06-07 2003-02-13 Karl Astrom Method and apparatus for extracting information from a target area within a two-dimensional graphical object in an image
FR2825817B1 (en) 2001-06-07 2003-09-19 Commissariat Energie Atomique IMAGE PROCESSING METHOD FOR THE AUTOMATIC EXTRACTION OF SEMANTIC ELEMENTS
US7403313B2 (en) 2001-09-27 2008-07-22 Transpacific Ip, Ltd. Automatic scanning parameter setting device and method
US7154622B2 (en) 2001-06-27 2006-12-26 Sharp Laboratories Of America, Inc. Method of routing and processing document images sent using a digital scanner and transceiver
US6584339B2 (en) 2001-06-27 2003-06-24 Vanderbilt University Method and apparatus for collecting and processing physical space data for use while performing image-guided surgery
US7013047B2 (en) 2001-06-28 2006-03-14 National Instruments Corporation System and method for performing edge detection in an image
US7298903B2 (en) 2001-06-28 2007-11-20 Microsoft Corporation Method and system for separating text and drawings in digital ink
WO2003017150A2 (en) 2001-08-13 2003-02-27 Accenture Global Services Gmbh A computer system for managing accounting data
US7506062B2 (en) 2001-08-30 2009-03-17 Xerox Corporation Scanner-initiated network-based image input scanning
US20030044012A1 (en) 2001-08-31 2003-03-06 Sharp Laboratories Of America, Inc. System and method for using a profile to encrypt documents in a digital scanner
JP5002099B2 (en) 2001-08-31 2012-08-15 株式会社東芝 Magnetic resonance imaging system
JP4564693B2 (en) 2001-09-14 2010-10-20 キヤノン株式会社 Document processing apparatus and method
US7515313B2 (en) 2001-09-20 2009-04-07 Stone Cheng Method and system for scanning with one-scan-and-done feature
US6732046B1 (en) 2001-10-03 2004-05-04 Navigation Technologies Corp. Application of the hough transform to modeling the horizontal component of road geometry and computing heading and curvature
US7430002B2 (en) 2001-10-03 2008-09-30 Micron Technology, Inc. Digital imaging system and method for adjusting image-capturing parameters using image comparisons
US6922487B2 (en) 2001-11-02 2005-07-26 Xerox Corporation Method and apparatus for capturing text images
US6667774B2 (en) 2001-11-02 2003-12-23 Imatte, Inc. Method and apparatus for the automatic generation of subject to background transition area boundary lines and subject shadow retention
US6898316B2 (en) 2001-11-09 2005-05-24 Arcsoft, Inc. Multiple image area detection in a digital image
US6944616B2 (en) 2001-11-28 2005-09-13 Pavilion Technologies, Inc. System and method for historical database training of support vector machines
EP1317133A1 (en) 2001-12-03 2003-06-04 Kofax Image Products, Inc. Virtual rescanning a method for interactive document image quality enhancement
US7937281B2 (en) 2001-12-07 2011-05-03 Accenture Global Services Limited Accelerated process improvement framework
US7286177B2 (en) 2001-12-19 2007-10-23 Nokia Corporation Digital camera
US7053953B2 (en) 2001-12-21 2006-05-30 Eastman Kodak Company Method and camera system for blurring portions of a verification image to show out of focus areas in a captured archival image
JP2003196357A (en) 2001-12-27 2003-07-11 Hitachi Software Eng Co Ltd Method and system of document filing
US7346215B2 (en) 2001-12-31 2008-03-18 Transpacific Ip, Ltd. Apparatus and method for capturing a document
US7054036B2 (en) 2002-01-25 2006-05-30 Kabushiki Kaisha Toshiba Image processing method and image forming apparatus
US20030142328A1 (en) 2002-01-31 2003-07-31 Mcdaniel Stanley Eugene Evaluation of image processing operations
JP3891408B2 (en) 2002-02-08 2007-03-14 株式会社リコー Image correction apparatus, program, storage medium, and image correction method
US7362354B2 (en) 2002-02-12 2008-04-22 Hewlett-Packard Development Company, L.P. Method and system for assessing the photo quality of a captured image in a digital still camera
CA2476895A1 (en) 2002-02-19 2003-08-28 Digimarc Corporation Security methods employing drivers licenses and other documents
US6985631B2 (en) 2002-02-20 2006-01-10 Hewlett-Packard Development Company, L.P. Systems and methods for automatically detecting a corner in a digitally captured image
US7020320B2 (en) 2002-03-06 2006-03-28 Parascript, Llc Extracting text written on a check
US7107285B2 (en) 2002-03-16 2006-09-12 Questerra Corporation Method, system, and program for an improved enterprise spatial system
EP1529272A1 (en) 2002-04-05 2005-05-11 Unbounded Access Ltd. Networked accessibility enhancer system
JP4185699B2 (en) 2002-04-12 2008-11-26 日立オムロンターミナルソリューションズ株式会社 Form reading system, form reading method and program therefor
US20030210428A1 (en) 2002-05-07 2003-11-13 Alex Bevlin Non-OCR method for capture of computer filled-in forms
WO2003100631A1 (en) 2002-05-23 2003-12-04 Phochron, Inc. System and method for digital content processing and distribution
US7636455B2 (en) 2002-06-04 2009-12-22 Raytheon Company Digital image edge detection and road network tracking method and system
US7409092B2 (en) 2002-06-20 2008-08-05 Hrl Laboratories, Llc Method and apparatus for the surveillance of objects in images
US7197158B2 (en) 2002-06-28 2007-03-27 Microsoft Corporation Generation of metadata for acquired images
US7209599B2 (en) 2002-07-12 2007-04-24 Hewlett-Packard Development Company, L.P. System and method for scanned image bleedthrough processing
US6999625B1 (en) 2002-07-12 2006-02-14 The United States Of America As Represented By The Secretary Of The Navy Feature-based detection and context discriminate classification for digital images
JP2004054640A (en) 2002-07-19 2004-02-19 Sharp Corp Method for distributing image information, image information distribution system, center device, terminal device, scanner device, computer program, and recording medium
US7031525B2 (en) 2002-07-30 2006-04-18 Mitsubishi Electric Research Laboratories, Inc. Edge detection based on background change
US7365881B2 (en) 2002-08-19 2008-04-29 Eastman Kodak Company Halftone dot-growth technique based on morphological filtering
US7123387B2 (en) 2002-08-23 2006-10-17 Chung-Wei Cheng Image scanning method
US20040083119A1 (en) 2002-09-04 2004-04-29 Schunder Lawrence V. System and method for implementing a vendor contract management system
JP3741090B2 (en) 2002-09-09 2006-02-01 コニカミノルタビジネステクノロジーズ株式会社 Image processing device
US7260561B1 (en) 2003-11-10 2007-08-21 Zxibix, Inc. System and method to facilitate user thinking about an arbitrary problem with output and interface to external components and resources
US20040090458A1 (en) 2002-11-12 2004-05-13 Yu John Chung Wah Method and apparatus for previewing GUI design and providing screen-to-source association
DE10253903A1 (en) 2002-11-19 2004-06-17 OCé PRINTING SYSTEMS GMBH Method, arrangement and computer software for printing a release sheet using an electrophotographic printer or copier
US20050057780A1 (en) 2002-11-19 2005-03-17 Canon Denshi Kabushiki Kaisha Network scanning system
FR2847344B1 (en) 2002-11-20 2005-02-25 Framatome Anp PROBE FOR CONTROLLING AN INTERNAL WALL OF A CONDUIT
KR100446538B1 (en) 2002-11-21 2004-09-01 삼성전자주식회사 On-line digital picture processing system for digital camera rental system
US7386527B2 (en) 2002-12-06 2008-06-10 Kofax, Inc. Effective multi-class support vector machine classification
AU2003303208A1 (en) 2002-12-16 2004-07-14 King Pharmaceuticals, Inc. Methods and dosage forms for reducing heart attacks in a hypertensive individual with a diuretic or a diuretic and an ace inhibitor combination
US7181082B2 (en) 2002-12-18 2007-02-20 Sharp Laboratories Of America, Inc. Blur detection system
WO2004061702A1 (en) 2002-12-26 2004-07-22 The Trustees Of Columbia University In The City Of New York Ordered data compression system and methods
US20070128899A1 (en) 2003-01-12 2007-06-07 Yaron Mayer System and method for improving the efficiency, comfort, and/or reliability in Operating Systems, such as for example Windows
US7174043B2 (en) 2003-02-25 2007-02-06 Evernote Corp. On-line handwriting recognizer
US20040169889A1 (en) 2003-02-27 2004-09-02 Toshiba Tec Kabushiki Kaisha Image processing apparatus and controller apparatus using thereof
US20040169873A1 (en) 2003-02-28 2004-09-02 Xerox Corporation Automatic determination of custom parameters based on scanned image data
US7765155B2 (en) 2003-03-13 2010-07-27 International Business Machines Corporation Invoice processing approval and storage system method and apparatus
US6729733B1 (en) 2003-03-21 2004-05-04 Mitsubishi Electric Research Laboratories, Inc. Method for determining a largest inscribed rectangular image within a union of projected quadrilateral images
US7639392B2 (en) 2003-03-28 2009-12-29 Infoprint Solutions Company, Llc Methods, systems, and media to enhance image processing in a color reprographic system
US7665061B2 (en) 2003-04-08 2010-02-16 Microsoft Corporation Code builders
US7251777B1 (en) 2003-04-16 2007-07-31 Hypervision, Ltd. Method and system for automated structuring of textual documents
US7406183B2 (en) 2003-04-28 2008-07-29 International Business Machines Corporation System and method of sorting document images based on image quality
US7327374B2 (en) 2003-04-30 2008-02-05 Byong Mok Oh Structure-preserving clone brush
US20040223640A1 (en) 2003-05-09 2004-11-11 Bovyrin Alexander V. Stereo matching using segmentation of image columns
JP4864295B2 (en) 2003-06-02 2012-02-01 富士フイルム株式会社 Image display system, image display apparatus, and program
US20040245334A1 (en) 2003-06-06 2004-12-09 Sikorski Steven Maurice Inverted terminal presentation scanner and holder
CN1998013A (en) 2003-06-09 2007-07-11 格林莱恩系统公司 System and method for risk detection, reporting and infrastructure
US7389516B2 (en) 2003-06-19 2008-06-17 Microsoft Corporation System and method for facilitating interaction between a computer and a network scanner
JP4289040B2 (en) 2003-06-26 2009-07-01 富士ゼロックス株式会社 Image processing apparatus and method
US20040263639A1 (en) 2003-06-26 2004-12-30 Vladimir Sadovsky System and method for intelligent image acquisition
US7616233B2 (en) 2003-06-26 2009-11-10 Fotonation Vision Limited Perfecting of digital image capture parameters within acquisition devices using face detection
JP2005018678A (en) 2003-06-30 2005-01-20 Casio Comput Co Ltd Form data input processing device, form data input processing method and program
US7362892B2 (en) 2003-07-02 2008-04-22 Lockheed Martin Corporation Self-optimizing classifier
WO2005010727A2 (en) 2003-07-23 2005-02-03 Praedea Solutions, Inc. Extracting data from semi-structured text documents
US20050030602A1 (en) 2003-08-06 2005-02-10 Gregson Daniel P. Scan templates
US20050050060A1 (en) 2003-08-27 2005-03-03 Gerard Damm Data structure for range-specified algorithms
US8937731B2 (en) 2003-09-01 2015-01-20 Konica Minolta Business Technologies, Inc. Image processing apparatus for receiving a request relating to image processing from an external source and executing the received request
JP3951990B2 (en) 2003-09-05 2007-08-01 ブラザー工業株式会社 Wireless station, program, and operation control method
JP4725057B2 (en) 2003-09-09 2011-07-13 セイコーエプソン株式会社 Generation of image quality adjustment information and image quality adjustment using image quality adjustment information
JP2005085173A (en) 2003-09-10 2005-03-31 Toshiba Corp Data management system
US7797381B2 (en) 2003-09-19 2010-09-14 International Business Machines Corporation Methods and apparatus for information hyperchain management for on-demand business collaboration
US7844109B2 (en) 2003-09-24 2010-11-30 Canon Kabushiki Kaisha Image processing method and apparatus
US20050080844A1 (en) 2003-10-10 2005-04-14 Sridhar Dathathraya System and method for managing scan destination profiles
JP4139760B2 (en) 2003-10-10 2008-08-27 富士フイルム株式会社 Image processing method and apparatus, and image processing program
EP1530357A1 (en) 2003-11-06 2005-05-11 Ricoh Company, Ltd. Method, computer program, and apparatus for detecting specific information included in image data of original image with accuracy, and computer readable storing medium storing the program
US20050193325A1 (en) 2003-11-12 2005-09-01 Epstein David L. Mobile content engine with enhanced features
US7553095B2 (en) 2003-11-27 2009-06-30 Konica Minolta Business Technologies, Inc. Print data transmitting apparatus, image forming system, printing condition setting method and printer driver program
JP4347677B2 (en) 2003-12-08 2009-10-21 富士フイルム株式会社 Form OCR program, method and apparatus
US8693043B2 (en) 2003-12-19 2014-04-08 Kofax, Inc. Automatic document separation
US7184929B2 (en) 2004-01-28 2007-02-27 Microsoft Corporation Exponential priors for maximum entropy models
US9229540B2 (en) 2004-01-30 2016-01-05 Electronic Scripting Products, Inc. Deriving input from six degrees of freedom interfaces
US7298897B1 (en) 2004-02-11 2007-11-20 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optimal binarization of gray-scaled digital images via fuzzy reasoning
US7379587B2 (en) 2004-02-12 2008-05-27 Xerox Corporation Systems and methods for identifying regions within an image having similar continuity values
US7812860B2 (en) 2004-04-01 2010-10-12 Exbiblio B.V. Handheld device for capturing text from both a document printed on paper and a document displayed on a dynamic display device
US7636479B2 (en) 2004-02-24 2009-12-22 Trw Automotive U.S. Llc Method and apparatus for controlling classification and classification switching in a vision system
JP2005267457A (en) 2004-03-19 2005-09-29 Casio Comput Co Ltd Image processing apparatus, photographing apparatus, image processing method, and program
FR2868185B1 (en) 2004-03-23 2006-06-30 Realeyes3D Sa METHOD FOR EXTRACTING RAW DATA FROM IMAGE RESULTING FROM SHOOTING
US9008447B2 (en) 2004-04-01 2015-04-14 Google Inc. Method and system for character recognition
JP5238249B2 (en) 2004-04-01 2013-07-17 グーグル インコーポレイテッド Acquiring data from rendered documents using handheld devices
US7990556B2 (en) 2004-12-03 2011-08-02 Google Inc. Association of a portable scanner with input/output and storage devices
US7505056B2 (en) 2004-04-02 2009-03-17 K-Nfb Reading Technology, Inc. Mode processing in portable reading machine
TWI240067B (en) 2004-04-06 2005-09-21 Sunplus Technology Co Ltd Rapid color recognition method
US7366705B2 (en) 2004-04-15 2008-04-29 Microsoft Corporation Clustering based text classification
US20050246262A1 (en) 2004-04-29 2005-11-03 Aggarwal Charu C Enabling interoperability between participants in a network
JP3800227B2 (en) 2004-05-17 2006-07-26 コニカミノルタビジネステクノロジーズ株式会社 Image forming apparatus, information processing method and information processing program used therefor
US7430059B2 (en) 2004-05-24 2008-09-30 Xerox Corporation Systems, methods and graphical user interfaces for interactively previewing a scanned document
MY140267A (en) 2004-05-26 2009-12-31 Guardian Technologies International Inc System and method for identifying objects of interest in image data
WO2005116866A1 (en) 2004-05-28 2005-12-08 Agency For Science, Technology And Research Method and system for word sequence processing
US7272261B2 (en) 2004-06-04 2007-09-18 Xerox Corporation Method and system for classifying scanned-media
US20050273453A1 (en) 2004-06-05 2005-12-08 National Background Data, Llc Systems, apparatus and methods for performing criminal background investigations
US7392426B2 (en) 2004-06-15 2008-06-24 Honeywell International Inc. Redundant processing architecture for single fault tolerance
US20060219773A1 (en) 2004-06-18 2006-10-05 Richardson Joseph L System and method for correcting data in financial documents
JP2006031379A (en) 2004-07-15 2006-02-02 Sony Corp Information presentation apparatus and information presentation method
US7339585B2 (en) 2004-07-19 2008-03-04 Pie Medical Imaging B.V. Method and apparatus for visualization of biological structures with use of 3D position information from segmentation results
US20060023271A1 (en) 2004-07-30 2006-02-02 Boay Yoke P Scanner with color profile matching mechanism
WO2006015379A2 (en) 2004-08-02 2006-02-09 Cornell Research Foundation, Inc. Electron spin resonance microscope for imaging with micron resolution
US7515772B2 (en) 2004-08-21 2009-04-07 Xerox Corp Document registration and skew detection system
US7299407B2 (en) 2004-08-24 2007-11-20 International Business Machines Corporation Marking and annotating electronic documents
US7643665B2 (en) 2004-08-31 2010-01-05 Semiconductor Insights Inc. Method of design analysis of existing integrated circuits
WO2006036442A2 (en) 2004-08-31 2006-04-06 Gopalakrishnan Kumar Method and system for providing information services relevant to visual imagery
EP1789920A1 (en) 2004-09-02 2007-05-30 Koninklijke Philips Electronics N.V. Feature weighted medical object contouring using distance coordinates
US20070118794A1 (en) 2004-09-08 2007-05-24 Josef Hollander Shared annotation system and method
US7739127B1 (en) 2004-09-23 2010-06-15 Stephen Don Hall Automated system for filing prescription drug claims
US9530050B1 (en) 2007-07-11 2016-12-27 Ricoh Co., Ltd. Document annotation sharing
US8332401B2 (en) 2004-10-01 2012-12-11 Ricoh Co., Ltd Method and system for position-based image matching in a mixed media environment
US7991778B2 (en) 2005-08-23 2011-08-02 Ricoh Co., Ltd. Triggering actions with captured input in a mixed media environment
US7639387B2 (en) 2005-08-23 2009-12-29 Ricoh Co., Ltd. Authoring tools using a mixed media environment
US8005831B2 (en) 2005-08-23 2011-08-23 Ricoh Co., Ltd. System and methods for creation and use of a mixed media environment with geographic location information
US20060089907A1 (en) 2004-10-22 2006-04-27 Klaus Kohlmaier Invoice verification process
US7464066B2 (en) 2004-10-26 2008-12-09 Applied Intelligence Solutions, Llc Multi-dimensional, expert behavior-emulation system
US7492943B2 (en) 2004-10-29 2009-02-17 George Mason Intellectual Properties, Inc. Open set recognition using transduction
US20060095374A1 (en) 2004-11-01 2006-05-04 Jp Morgan Chase System and method for supply chain financing
US20060095372A1 (en) 2004-11-01 2006-05-04 Sap Aktiengesellschaft System and method for management and verification of invoices
KR100653886B1 (en) 2004-11-05 2006-12-05 주식회사 칼라짚미디어 Mixed code and mixed code encoding method and apparatus
US7782384B2 (en) 2004-11-05 2010-08-24 Kelly Douglas J Digital camera having system for digital image composition and related method
US20060112340A1 (en) 2004-11-22 2006-05-25 Julia Mohr Portal page conversion and annotation
JP4345651B2 (en) 2004-11-29 2009-10-14 セイコーエプソン株式会社 Image information evaluation method, image information evaluation program, and image information evaluation apparatus
US7428331B2 (en) 2004-11-30 2008-09-23 Seiko Epson Corporation Page background estimation using color, texture and edge features
GB0426523D0 (en) 2004-12-02 2005-01-05 British Telecomm Video processing
JP2006190259A (en) 2004-12-06 2006-07-20 Canon Inc Shake determining device, image processor, control method and program of the same
US7742641B2 (en) 2004-12-06 2010-06-22 Honda Motor Co., Ltd. Confidence weighted classifier combination for multi-modal identification
US7168614B2 (en) 2004-12-10 2007-01-30 Mitek Systems, Inc. System and method for check fraud detection using signature validation
US7201323B2 (en) 2004-12-10 2007-04-10 Mitek Systems, Inc. System and method for check fraud detection using signature validation
US7249717B2 (en) 2004-12-10 2007-07-31 Mitek Systems, Inc. System and method for check fraud detection using signature validation
JP4460528B2 (en) 2004-12-14 2010-05-12 本田技研工業株式会社 IDENTIFICATION OBJECT IDENTIFICATION DEVICE AND ROBOT HAVING THE SAME
KR100670003B1 (en) 2004-12-28 2007-01-19 삼성전자주식회사 Apparatus and method for detecting flat region of image using adaptive threshold
JP2008526150A (en) 2004-12-28 2008-07-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for peer-to-peer instant messaging
KR100729280B1 (en) 2005-01-08 2007-06-15 아이리텍 잉크 Iris Identification System and Method using Mobile Device with Stereo Camera
WO2006077481A1 (en) 2005-01-19 2006-07-27 Truecontext Corporation Policy-driven mobile forms applications
US20060164682A1 (en) 2005-01-25 2006-07-27 Dspv, Ltd. System and method of improving the legibility and applicability of document pictures using form based image enhancement
JP2006209588A (en) 2005-01-31 2006-08-10 Casio Electronics Co Ltd Voucher document issuing device and voucher document information database device
US20060195491A1 (en) 2005-02-11 2006-08-31 Lexmark International, Inc. System and method of importing documents into a document management system
GB0503970D0 (en) 2005-02-25 2005-04-06 Firstondemand Ltd Method and apparatus for authentication of invoices
US7487438B1 (en) 2005-03-08 2009-02-03 Pegasus Imaging Corporation Method and apparatus for recognizing a digitized form, extracting information from a filled-in form, and generating a corrected filled-in form
US7822880B2 (en) 2005-03-10 2010-10-26 Konica Minolta Systems Laboratory, Inc. User interfaces for peripheral configuration
US20070002348A1 (en) 2005-03-15 2007-01-04 Kabushiki Kaisha Toshiba Method and apparatus for producing images by using finely optimized image processing parameters
US9769354B2 (en) 2005-03-24 2017-09-19 Kofax, Inc. Systems and methods of processing scanned data
US7545529B2 (en) 2005-03-24 2009-06-09 Kofax, Inc. Systems and methods of accessing random access cache for rescanning
US9137417B2 (en) 2005-03-24 2015-09-15 Kofax, Inc. Systems and methods for processing video data
US8749839B2 (en) 2005-03-24 2014-06-10 Kofax, Inc. Systems and methods of processing scanned data
US7570816B2 (en) 2005-03-31 2009-08-04 Microsoft Corporation Systems and methods for detecting text
US7412425B2 (en) 2005-04-14 2008-08-12 Honda Motor Co., Ltd. Partially supervised machine learning of data classification based on local-neighborhood Laplacian Eigenmaps
CN101238456A (en) 2005-04-18 2008-08-06 捷讯研究有限公司 System and method for enabling assisted visual development of workflow for application tasks
JP2006301835A (en) 2005-04-19 2006-11-02 Fuji Xerox Co Ltd Transaction document management method and system
US7941744B2 (en) 2005-04-25 2011-05-10 Adp, Inc. System and method for electronic document generation and delivery
AU2005201758B2 (en) 2005-04-27 2008-12-18 Canon Kabushiki Kaisha Method of learning associations between documents and data sets
US7760956B2 (en) 2005-05-12 2010-07-20 Hewlett-Packard Development Company, L.P. System and method for producing a page using frames of a video stream
US20060256392A1 (en) 2005-05-13 2006-11-16 Microsoft Corporation Scanning systems and methods
US7636883B2 (en) 2005-05-18 2009-12-22 International Business Machines Corporation User form based automated and guided data collection
JP4561474B2 (en) 2005-05-24 2010-10-13 株式会社日立製作所 Electronic document storage system
US20060282762A1 (en) 2005-06-10 2006-12-14 Oracle International Corporation Collaborative document review system
US20060282463A1 (en) 2005-06-10 2006-12-14 Lexmark International, Inc. Virtual coversheet association application
US7957018B2 (en) 2005-06-10 2011-06-07 Lexmark International, Inc. Coversheet manager application
US20060288015A1 (en) 2005-06-15 2006-12-21 Schirripa Steven R Electronic content classification
JP4756930B2 (en) 2005-06-23 2011-08-24 キヤノン株式会社 Document management system, document management method, image forming apparatus, and information processing apparatus
US7937264B2 (en) 2005-06-30 2011-05-03 Microsoft Corporation Leveraging unlabeled data with a probabilistic graphical model
US20070002375A1 (en) 2005-06-30 2007-01-04 Lexmark International, Inc. Segmenting and aligning a plurality of cards in a multi-card image
US7515767B2 (en) 2005-07-01 2009-04-07 Flir Systems, Inc. Image correction across multiple spectral regimes
US20070035780A1 (en) 2005-08-02 2007-02-15 Kabushiki Kaisha Toshiba System and method for defining characteristic data of a scanned document
JP4525519B2 (en) 2005-08-18 2010-08-18 日本電信電話株式会社 Quadrilateral evaluation method, apparatus and program
KR100947002B1 (en) 2005-08-25 2010-03-11 가부시키가이샤 리코 Image processing method and apparatus, digital camera, and recording medium recording image processing program
US8643892B2 (en) 2005-08-29 2014-02-04 Xerox Corporation User configured page chromaticity determination and splitting method
US7801382B2 (en) 2005-09-22 2010-09-21 Compressus, Inc. Method and apparatus for adjustable image compression
US7450740B2 (en) 2005-09-28 2008-11-11 Facedouble, Inc. Image classification and information retrieval over wireless digital networks and the internet
US7831107B2 (en) 2005-10-17 2010-11-09 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program
US8176004B2 (en) 2005-10-24 2012-05-08 Capsilon Corporation Systems and methods for intelligent paperless document management
US7495784B2 (en) 2005-11-14 2009-02-24 Kabushiki Kiasha Toshiba Printer with print order calculation based on print creation time and process ratio
KR100664421B1 (en) 2006-01-10 2007-01-03 주식회사 인지소프트 Handheld terminal and business card recognition method for business card recognition using equipped camera
WO2007082534A1 (en) 2006-01-17 2007-07-26 Flemming Ast Mobile unit with camera and optical character recognition, optionally for conversion of imaged text into comprehensible speech
US7720206B2 (en) 2006-01-18 2010-05-18 Teoco Corporation System and method for intelligent data extraction for telecommunications invoices
US7639897B2 (en) 2006-01-24 2009-12-29 Hewlett-Packard Development Company, L.P. Method and apparatus for composing a panoramic photograph
US7738730B2 (en) 2006-01-25 2010-06-15 Atalasoft, Inc. Method of image analysis using sparse hough transform
US8385647B2 (en) 2006-01-25 2013-02-26 Kofax, Inc. Method of image analysis using sparse Hough transform
JP4341629B2 (en) 2006-01-27 2009-10-07 カシオ計算機株式会社 Imaging apparatus, image processing method, and program
WO2007097431A1 (en) 2006-02-23 2007-08-30 Matsushita Electric Industrial Co., Ltd. Image correction device, method, program, integrated circuit, and system
US20070204162A1 (en) 2006-02-24 2007-08-30 Rodriguez Tony F Safeguarding private information through digital watermarking
US7657091B2 (en) 2006-03-06 2010-02-02 Mitek Systems, Inc. Method for automatic removal of text from a signature area
US7562060B2 (en) 2006-03-31 2009-07-14 Yahoo! Inc. Large scale semi-supervised linear support vector machines
US8775277B2 (en) 2006-04-21 2014-07-08 International Business Machines Corporation Method, system, and program product for electronically validating invoices
US8136114B1 (en) 2006-04-21 2012-03-13 Sprint Communications Company L.P. Business process management system having dynamic task assignment
TWI311679B (en) 2006-04-28 2009-07-01 Primax Electronics Ltd A method of evaluating minimum sampling steps of auto focus
US8213687B2 (en) 2006-04-28 2012-07-03 Hewlett-Packard Development Company, L.P. Image processing methods, image processing systems, and articles of manufacture
US20070260588A1 (en) 2006-05-08 2007-11-08 International Business Machines Corporation Selective, contextual review for documents
JP2007306259A (en) 2006-05-10 2007-11-22 Sony Corp Setting screen display controller, server device, image processing system, printer, imaging apparatus, display device, setting screen display control method, program, and data structure
WO2007140237A2 (en) 2006-05-24 2007-12-06 170 Systems, Inc. System for and method of providing a user interface for a computer-based software application
US7787695B2 (en) 2006-06-06 2010-08-31 Mitek Systems, Inc. Method for applying a signature simplicity analysis for improving the accuracy of signature validation
US20080005081A1 (en) 2006-06-28 2008-01-03 Sun Microsystems, Inc. Method and apparatus for searching and resource discovery in a distributed enterprise system
US7626612B2 (en) 2006-06-30 2009-12-01 Motorola, Inc. Methods and devices for video correction of still camera motion
US7761391B2 (en) 2006-07-12 2010-07-20 Kofax, Inc. Methods and systems for improved transductive maximum entropy discrimination classification
US7958067B2 (en) 2006-07-12 2011-06-07 Kofax, Inc. Data classification methods using machine learning techniques
US7937345B2 (en) 2006-07-12 2011-05-03 Kofax, Inc. Data classification methods using machine learning techniques
WO2008008142A2 (en) 2006-07-12 2008-01-17 Kofax Image Products, Inc. Machine learning techniques and transductive data classification
US20080086432A1 (en) 2006-07-12 2008-04-10 Schmidtler Mauritius A R Data classification methods using machine learning techniques
US8073263B2 (en) 2006-07-31 2011-12-06 Ricoh Co., Ltd. Multi-classifier selection and monitoring for MMR-based image recognition
JP4172512B2 (en) 2006-08-30 2008-10-29 船井電機株式会社 Panorama imaging device
US20080235766A1 (en) 2006-09-01 2008-09-25 Wallos Robert Apparatus and method for document certification
JP2008134683A (en) 2006-11-27 2008-06-12 Fuji Xerox Co Ltd Image processor and image processing program
US8081227B1 (en) 2006-11-30 2011-12-20 Adobe Systems Incorporated Image quality visual indicator
US20080133388A1 (en) 2006-12-01 2008-06-05 Sergey Alekseev Invoice exception management
US7416131B2 (en) 2006-12-13 2008-08-26 Bottom Line Technologies (De), Inc. Electronic transaction processing server with automated transaction evaluation
US20080147561A1 (en) 2006-12-18 2008-06-19 Pitney Bowes Incorporated Image based invoice payment with digital signature verification
EP2102240A2 (en) 2007-01-05 2009-09-23 Novozymes A/S Overexpression of the chaperone bip in a heterokaryon
US20080177643A1 (en) 2007-01-22 2008-07-24 Matthews Clifton W System and method for invoice management
US7899247B2 (en) 2007-01-24 2011-03-01 Samsung Electronics Co., Ltd. Apparatus and method of segmenting an image according to a cost function and/or feature vector and/or receiving a signal representing the segmented image in an image coding and/or decoding system
US7673799B2 (en) 2007-01-26 2010-03-09 Magtek, Inc. Card reader for use with web based transactions
US20080183576A1 (en) 2007-01-30 2008-07-31 Sang Hun Kim Mobile service system and method using two-dimensional coupon code
EP1956517A1 (en) 2007-02-07 2008-08-13 WinBooks s.a. Computer assisted method for processing accounting operations and software product for implementing such method
US8320683B2 (en) 2007-02-13 2012-11-27 Sharp Kabushiki Kaisha Image processing method, image processing apparatus, image reading apparatus, and image forming apparatus
US20080201617A1 (en) 2007-02-16 2008-08-21 Brother Kogyo Kabushiki Kaisha Network device and network system
JP4123299B1 (en) 2007-02-21 2008-07-23 富士ゼロックス株式会社 Image processing apparatus and image processing program
JP4877013B2 (en) 2007-03-30 2012-02-15 ブラザー工業株式会社 Scanner
US8244031B2 (en) 2007-04-13 2012-08-14 Kofax, Inc. System and method for identifying and classifying color regions from a digital image
US8279465B2 (en) 2007-05-01 2012-10-02 Kofax, Inc. Systems and methods for routing facsimiles based on content
EP2143041A4 (en) 2007-05-01 2011-05-25 Compulink Man Ct Inc Photo-document segmentation method and system
KR101157654B1 (en) 2007-05-21 2012-06-18 삼성전자주식회사 Method for transmitting email in image forming apparatus and image forming apparatus capable of transmitting email
US7894689B2 (en) 2007-05-31 2011-02-22 Seiko Epson Corporation Image stitching
JP2009014836A (en) 2007-07-02 2009-01-22 Canon Inc Active matrix type display and driving method therefor
JP4363468B2 (en) 2007-07-12 2009-11-11 ソニー株式会社 Imaging apparatus, imaging method, and video signal processing program
WO2009018445A1 (en) 2007-08-01 2009-02-05 Yeda Research & Development Co. Ltd. Multiscale edge detection and fiber enhancement using differences of oriented means
US8503797B2 (en) 2007-09-05 2013-08-06 The Neat Company, Inc. Automatic document classification using lexical and physical features
US7825963B2 (en) 2007-09-19 2010-11-02 Nokia Corporation Method and system for capturing an image from video
US9811849B2 (en) 2007-09-28 2017-11-07 Great-Circle Technologies, Inc. Contextual execution of automated workflows
US8094976B2 (en) 2007-10-03 2012-01-10 Esker, Inc. One-screen reconciliation of business document image data, optical character recognition extracted data, and enterprise resource planning data
US8244062B2 (en) 2007-10-22 2012-08-14 Hewlett-Packard Development Company, L.P. Correction of distortion in captured images
US7655685B2 (en) 2007-11-02 2010-02-02 Jenrin Discovery, Inc. Cannabinoid receptor antagonists/inverse agonists useful for treating metabolic disorders, including obesity and diabetes
US7809721B2 (en) 2007-11-16 2010-10-05 Iac Search & Media, Inc. Ranking of objects using semantic and nonsemantic features in a system and method for conducting a search
US8732155B2 (en) 2007-11-16 2014-05-20 Iac Search & Media, Inc. Categorization in a system and method for conducting a search
US8194965B2 (en) 2007-11-19 2012-06-05 Parascript, Llc Method and system of providing a probability distribution to aid the detection of tumors in mammogram images
US8311296B2 (en) 2007-11-21 2012-11-13 Parascript, Llc Voting in mammography processing
US8035641B1 (en) 2007-11-28 2011-10-11 Adobe Systems Incorporated Fast depth of field simulation
US8103048B2 (en) 2007-12-04 2012-01-24 Mcafee, Inc. Detection of spam images
US8194933B2 (en) 2007-12-12 2012-06-05 3M Innovative Properties Company Identification and verification of an unknown document according to an eigen image process
US8150547B2 (en) 2007-12-21 2012-04-03 Bell and Howell, LLC. Method and system to provide address services with a document processing system
US8483473B2 (en) 2008-01-18 2013-07-09 Mitek Systems, Inc. Systems and methods for obtaining financial offers using mobile image capture
US8577118B2 (en) 2008-01-18 2013-11-05 Mitek Systems Systems for mobile image capture and remittance processing
US20130297353A1 (en) 2008-01-18 2013-11-07 Mitek Systems Systems and methods for filing insurance claims using mobile imaging
US10528925B2 (en) 2008-01-18 2020-01-07 Mitek Systems, Inc. Systems and methods for mobile automated clearing house enrollment
US8582862B2 (en) 2010-05-12 2013-11-12 Mitek Systems Mobile image quality assurance in mobile document image processing applications
US8379914B2 (en) 2008-01-18 2013-02-19 Mitek Systems, Inc. Systems and methods for mobile image capture and remittance processing
US9298979B2 (en) 2008-01-18 2016-03-29 Mitek Systems, Inc. Systems and methods for mobile image capture and content processing of driver's licenses
US9292737B2 (en) 2008-01-18 2016-03-22 Mitek Systems, Inc. Systems and methods for classifying payment documents during mobile image processing
US7953268B2 (en) 2008-01-18 2011-05-31 Mitek Systems, Inc. Methods for mobile image capture and processing of documents
US20090204530A1 (en) 2008-01-31 2009-08-13 Payscan America, Inc. Bar coded monetary transaction system and method
RU2460187C2 (en) 2008-02-01 2012-08-27 Рокстек Аб Transition frame with inbuilt pressing device
US7992087B1 (en) 2008-02-27 2011-08-02 Adobe Systems Incorporated Document mapped-object placement upon background change
US9082080B2 (en) 2008-03-05 2015-07-14 Kofax, Inc. Systems and methods for organizing data sets
US20090324025A1 (en) 2008-04-15 2009-12-31 Sony Ericsson Mobile Communicatoins AB Physical Access Control Using Dynamic Inputs from a Portable Communications Device
US8135656B2 (en) 2008-04-22 2012-03-13 Xerox Corporation Online management service for identification documents which prompts a user for a category of an official document
US20090285445A1 (en) 2008-05-15 2009-11-19 Sony Ericsson Mobile Communications Ab System and Method of Translating Road Signs
US7949167B2 (en) 2008-06-12 2011-05-24 Siemens Medical Solutions Usa, Inc. Automatic learning of image features to predict disease
KR20100000671A (en) 2008-06-25 2010-01-06 삼성전자주식회사 Method for image processing
US8154611B2 (en) 2008-07-17 2012-04-10 The Boeing Company Methods and systems for improving resolution of a digitally stabilized image
US8520979B2 (en) 2008-08-19 2013-08-27 Digimarc Corporation Methods and systems for content processing
JP4623388B2 (en) 2008-09-08 2011-02-02 ソニー株式会社 Image processing apparatus and method, and program
US9177218B2 (en) 2008-09-08 2015-11-03 Kofax, Inc. System and method, and computer program product for detecting an edge in scan data
WO2010030056A1 (en) 2008-09-10 2010-03-18 Bionet Co., Ltd Automatic contour detection method for ultrasonic diagnosis appartus
JP2010098728A (en) 2008-09-19 2010-04-30 Sanyo Electric Co Ltd Projection type video display, and display system
US9037513B2 (en) 2008-09-30 2015-05-19 Apple Inc. System and method for providing electronic event tickets
WO2010048760A1 (en) 2008-10-31 2010-05-06 中兴通讯股份有限公司 Method and apparatus for authentication processing of mobile terminal
US8189965B2 (en) 2008-11-17 2012-05-29 Image Trends, Inc. Image processing handheld scanner system, method, and computer readable medium
US8306327B2 (en) 2008-12-30 2012-11-06 International Business Machines Corporation Adaptive partial character recognition
US8345981B2 (en) 2009-02-10 2013-01-01 Kofax, Inc. Systems, methods, and computer program products for determining document validity
US8879846B2 (en) 2009-02-10 2014-11-04 Kofax, Inc. Systems, methods and computer program products for processing financial documents
US8958605B2 (en) 2009-02-10 2015-02-17 Kofax, Inc. Systems, methods and computer program products for determining document validity
US9576272B2 (en) 2009-02-10 2017-02-21 Kofax, Inc. Systems, methods and computer program products for determining document validity
US8774516B2 (en) 2009-02-10 2014-07-08 Kofax, Inc. Systems, methods and computer program products for determining document validity
US8406480B2 (en) 2009-02-17 2013-03-26 International Business Machines Corporation Visual credential verification
WO2010096193A2 (en) 2009-02-18 2010-08-26 Exbiblio B.V. Identifying a document by performing spectral analysis on the contents of the document
US8265422B1 (en) 2009-02-20 2012-09-11 Adobe Systems Incorporated Method and apparatus for removing general lens distortion from images
JP4725657B2 (en) 2009-02-26 2011-07-13 ブラザー工業株式会社 Image composition output program, image composition output device, and image composition output system
US8498486B2 (en) 2009-03-12 2013-07-30 Qualcomm Incorporated Response to detection of blur in an image
US20100280859A1 (en) 2009-04-30 2010-11-04 Bank Of America Corporation Future checks integration
RS51531B (en) 2009-05-29 2011-06-30 Vlatacom D.O.O. Handheld portable device for travel an id document verification, biometric data reading and identification of persons using those documents
US20100331043A1 (en) 2009-06-23 2010-12-30 K-Nfb Reading Technology, Inc. Document and image processing
US8478052B1 (en) 2009-07-17 2013-07-02 Google Inc. Image classification
JP5397059B2 (en) 2009-07-17 2014-01-22 ソニー株式会社 Image processing apparatus and method, program, and recording medium
JP4772894B2 (en) 2009-08-03 2011-09-14 シャープ株式会社 Image output device, portable terminal device, captured image processing system, image output method, program, and recording medium
JP4856263B2 (en) 2009-08-07 2012-01-18 シャープ株式会社 Captured image processing system, image output method, program, and recording medium
US8655733B2 (en) 2009-08-27 2014-02-18 Microsoft Corporation Payment workflow extensibility for point-of-sale applications
CN101639760A (en) 2009-08-27 2010-02-03 上海合合信息科技发展有限公司 Input method and input system of contact information
US9779386B2 (en) 2009-08-31 2017-10-03 Thomson Reuters Global Resources Method and system for implementing workflows and managing staff and engagements
US8819172B2 (en) 2010-11-04 2014-08-26 Digimarc Corporation Smartphone-based methods and systems
KR101611440B1 (en) 2009-11-16 2016-04-11 삼성전자주식회사 Method and apparatus for processing image
US8406554B1 (en) 2009-12-02 2013-03-26 Jadavpur University Image binarization based on grey membership parameters of pixels
US20120019614A1 (en) 2009-12-11 2012-01-26 Tessera Technologies Ireland Limited Variable Stereo Base for (3D) Panorama Creation on Handheld Device
US8532419B2 (en) 2010-01-13 2013-09-10 iParse, LLC Automatic image capture
US20110249905A1 (en) 2010-01-15 2011-10-13 Copanion, Inc. Systems and methods for automatically extracting data from electronic documents including tables
US8600173B2 (en) 2010-01-27 2013-12-03 Dst Technologies, Inc. Contextualization of machine indeterminable information based on machine determinable information
JP5426422B2 (en) 2010-02-10 2014-02-26 株式会社Pfu Image processing apparatus, image processing method, and image processing program
KR101630688B1 (en) 2010-02-17 2016-06-16 삼성전자주식회사 Apparatus for motion estimation and method thereof and image processing apparatus
US8433775B2 (en) 2010-03-31 2013-04-30 Bank Of America Corporation Integration of different mobile device types with a business infrastructure
US8515208B2 (en) 2010-04-05 2013-08-20 Kofax, Inc. Method for document to template alignment
US8595234B2 (en) 2010-05-17 2013-11-26 Wal-Mart Stores, Inc. Processing data feeds
US8600167B2 (en) 2010-05-21 2013-12-03 Hand Held Products, Inc. System for capturing a document in an image signal
US9047531B2 (en) 2010-05-21 2015-06-02 Hand Held Products, Inc. Interactive user interface for capturing a document in an image signal
WO2011149558A2 (en) 2010-05-28 2011-12-01 Abelow Daniel H Reality alternate
US8745488B1 (en) 2010-06-30 2014-06-03 Patrick Wong System and a method for web-based editing of documents online with an editing interface and concurrent display to webpages and print documents
US8548201B2 (en) 2010-09-02 2013-10-01 Electronics And Telecommunications Research Institute Apparatus and method for recognizing identifier of vehicle
US20120077476A1 (en) 2010-09-23 2012-03-29 Theodore G. Paraskevakos System and method for utilizing mobile telephones to combat crime
US20120092329A1 (en) 2010-10-13 2012-04-19 Qualcomm Incorporated Text-based 3d augmented reality
US9282238B2 (en) 2010-10-29 2016-03-08 Hewlett-Packard Development Company, L.P. Camera system for determining pose quality and providing feedback to a user
US20120116957A1 (en) 2010-11-04 2012-05-10 Bank Of America Corporation System and method for populating a list of transaction participants
US8995012B2 (en) 2010-11-05 2015-03-31 Rdm Corporation System for mobile image capture and processing of financial documents
US8744196B2 (en) 2010-11-26 2014-06-03 Hewlett-Packard Development Company, L.P. Automatic recognition of images
US8754988B2 (en) 2010-12-22 2014-06-17 Tektronix, Inc. Blur detection with local sharpness map
US20120194692A1 (en) 2011-01-31 2012-08-02 Hand Held Products, Inc. Terminal operative for display of electronic record
US8675953B1 (en) 2011-02-02 2014-03-18 Intuit Inc. Calculating an object size using images
US8811711B2 (en) 2011-03-08 2014-08-19 Bank Of America Corporation Recognizing financial document images
JP2012191486A (en) 2011-03-11 2012-10-04 Sony Corp Image composing apparatus, image composing method, and program
US8533595B2 (en) 2011-04-19 2013-09-10 Autodesk, Inc Hierarchical display and navigation of document revision histories
US9342886B2 (en) 2011-04-29 2016-05-17 Qualcomm Incorporated Devices, methods, and apparatuses for homography evaluation involving a mobile device
US8751317B2 (en) 2011-05-12 2014-06-10 Koin, Inc. Enabling a merchant's storefront POS (point of sale) system to accept a payment transaction verified by SMS messaging with buyer's mobile phone
US20120293607A1 (en) 2011-05-17 2012-11-22 Apple Inc. Panorama Processing
US20120300020A1 (en) 2011-05-27 2012-11-29 Qualcomm Incorporated Real-time self-localization from panoramic images
US20120308139A1 (en) 2011-05-31 2012-12-06 Verizon Patent And Licensing Inc. Method and system for facilitating subscriber services using mobile imaging
US9400806B2 (en) 2011-06-08 2016-07-26 Hewlett-Packard Development Company, L.P. Image triggered transactions
US9418304B2 (en) 2011-06-29 2016-08-16 Qualcomm Incorporated System and method for recognizing text information in object
US20130027757A1 (en) 2011-07-29 2013-01-31 Qualcomm Incorporated Mobile fax machine with image stitching and degradation removal processing
US8559766B2 (en) 2011-08-16 2013-10-15 iParse, LLC Automatic image capture
US8813111B2 (en) 2011-08-22 2014-08-19 Xerox Corporation Photograph-based game
US8660943B1 (en) 2011-08-31 2014-02-25 Btpatent Llc Methods and systems for financial transactions
US8525883B2 (en) 2011-09-02 2013-09-03 Sharp Laboratories Of America, Inc. Methods, systems and apparatus for automatic video quality assessment
CN102982396B (en) 2011-09-06 2017-12-26 Sap欧洲公司 Universal process modeling framework
US9710821B2 (en) 2011-09-15 2017-07-18 Stephan HEATH Systems and methods for mobile and online payment systems for purchases related to mobile and online promotions or offers provided using impressions tracking and analysis, location information, 2D and 3D mapping, mobile mapping, social media, and user behavior and
US8768834B2 (en) 2011-09-20 2014-07-01 E2Interactive, Inc. Digital exchange and mobile wallet for digital currency
US9123005B2 (en) 2011-10-11 2015-09-01 Mobiwork, Llc Method and system to define implement and enforce workflow of a mobile workforce
US10810218B2 (en) 2011-10-14 2020-10-20 Transunion, Llc System and method for matching of database records based on similarities to search queries
EP2587745A1 (en) 2011-10-26 2013-05-01 Swisscom AG A method and system of obtaining contact information for a person or an entity
US9087262B2 (en) 2011-11-10 2015-07-21 Fuji Xerox Co., Ltd. Sharpness estimation in document and scene images
US8701166B2 (en) 2011-12-09 2014-04-15 Blackberry Limited Secure authentication
US9058515B1 (en) 2012-01-12 2015-06-16 Kofax, Inc. Systems and methods for identification document processing and business workflow integration
US9275281B2 (en) 2012-01-12 2016-03-01 Kofax, Inc. Mobile image capture, processing, and electronic form generation
US9483794B2 (en) 2012-01-12 2016-11-01 Kofax, Inc. Systems and methods for identification document processing and business workflow integration
US11321772B2 (en) 2012-01-12 2022-05-03 Kofax, Inc. Systems and methods for identification document processing and business workflow integration
US9165188B2 (en) 2012-01-12 2015-10-20 Kofax, Inc. Systems and methods for mobile image capture and processing
US9058580B1 (en) 2012-01-12 2015-06-16 Kofax, Inc. Systems and methods for identification document processing and business workflow integration
US20170111532A1 (en) 2012-01-12 2017-04-20 Kofax, Inc. Real-time processing of video streams captured using mobile devices
TWI588778B (en) 2012-01-17 2017-06-21 國立臺灣科技大學 Activity recognition method
US20130198358A1 (en) 2012-01-30 2013-08-01 DoDat Process Technology, LLC Distributive on-demand administrative tasking apparatuses, methods and systems
JP5914045B2 (en) 2012-02-28 2016-05-11 キヤノン株式会社 Image processing apparatus, image processing method, and program
US8990112B2 (en) 2012-03-01 2015-03-24 Ricoh Company, Ltd. Expense report system with receipt image processing
JP5734902B2 (en) 2012-03-19 2015-06-17 株式会社東芝 Construction process management system and management method thereof
US20130268430A1 (en) 2012-04-05 2013-10-10 Ziftit, Inc. Method and apparatus for dynamic gift card processing
US20130268378A1 (en) 2012-04-06 2013-10-10 Microsoft Corporation Transaction validation between a mobile communication device and a terminal using location data
US20130271579A1 (en) 2012-04-14 2013-10-17 Younian Wang Mobile Stereo Device: Stereo Imaging, Measurement and 3D Scene Reconstruction with Mobile Devices such as Tablet Computers and Smart Phones
US8639621B1 (en) 2012-04-25 2014-01-28 Wells Fargo Bank, N.A. System and method for a mobile wallet
US9916514B2 (en) 2012-06-11 2018-03-13 Amazon Technologies, Inc. Text recognition driven functionality
US8441548B1 (en) 2012-06-15 2013-05-14 Google Inc. Facial image quality assessment
US9064316B2 (en) * 2012-06-28 2015-06-23 Lexmark International, Inc. Methods of content-based image identification
US8781229B2 (en) 2012-06-29 2014-07-15 Palo Alto Research Center Incorporated System and method for localizing data fields on structured and semi-structured forms
US9092773B2 (en) 2012-06-30 2015-07-28 At&T Intellectual Property I, L.P. Generating and categorizing transaction records
US20140012754A1 (en) 2012-07-06 2014-01-09 Bank Of America Corporation Financial document processing system
US8705836B2 (en) 2012-08-06 2014-04-22 A2iA S.A. Systems and methods for recognizing information in objects using a mobile device
US8817339B2 (en) 2012-08-22 2014-08-26 Top Image Systems Ltd. Handheld device document imaging
US9928406B2 (en) 2012-10-01 2018-03-27 The Regents Of The University Of California Unified face representation for individual recognition in surveillance videos and vehicle logo super-resolution system
US20140181691A1 (en) * 2012-12-20 2014-06-26 Rajesh Poornachandran Sharing of selected content for data collection
US9208536B2 (en) 2013-09-27 2015-12-08 Kofax, Inc. Systems and methods for three dimensional geometric reconstruction of captured image data
US9355312B2 (en) 2013-03-13 2016-05-31 Kofax, Inc. Systems and methods for classifying objects in digital images captured using mobile devices
US10140511B2 (en) 2013-03-13 2018-11-27 Kofax, Inc. Building classification and extraction models based on electronic forms
JP2016517587A (en) 2013-03-13 2016-06-16 コファックス, インコーポレイテッド Classification of objects in digital images captured using mobile devices
US10127636B2 (en) * 2013-09-27 2018-11-13 Kofax, Inc. Content-based detection and three dimensional geometric reconstruction of objects in image and video data
US9384566B2 (en) 2013-03-14 2016-07-05 Wisconsin Alumni Research Foundation System and method for simulataneous image artifact reduction and tomographic reconstruction
GB2500823B (en) 2013-03-28 2014-02-26 Paycasso Verify Ltd Method, system and computer program for comparing images
US20140316841A1 (en) 2013-04-23 2014-10-23 Kofax, Inc. Location-based workflows and services
WO2014179752A1 (en) 2013-05-03 2014-11-06 Kofax, Inc. Systems and methods for detecting and classifying objects in video captured using mobile devices
RU2541353C2 (en) 2013-06-19 2015-02-10 Общество с ограниченной ответственностью "Аби Девелопмент" Automatic capture of document with given proportions
US20150006362A1 (en) * 2013-06-28 2015-01-01 Google Inc. Extracting card data using card art
US8805125B1 (en) * 2013-06-28 2014-08-12 Google Inc. Comparing extracted card data using continuous scanning
US10769362B2 (en) 2013-08-02 2020-09-08 Symbol Technologies, Llc Method and apparatus for capturing and extracting content from documents on a mobile device
US10140257B2 (en) * 2013-08-02 2018-11-27 Symbol Technologies, Llc Method and apparatus for capturing and processing content from context sensitive documents on a mobile device
US20150120564A1 (en) 2013-10-29 2015-04-30 Bank Of America Corporation Check memo line data lift
JP2016538783A (en) 2013-11-15 2016-12-08 コファックス, インコーポレイテッド System and method for generating a composite image of a long document using mobile video data
US20150161765A1 (en) 2013-12-06 2015-06-11 Emc Corporation Scaling mobile check photos to physical dimensions
US9251431B2 (en) * 2014-05-30 2016-02-02 Apple Inc. Object-of-interest detection and recognition with split, full-resolution image processing pipeline
US9342830B2 (en) * 2014-07-15 2016-05-17 Google Inc. Classifying open-loop and closed-loop payment cards based on optical character recognition
US20160034775A1 (en) * 2014-08-02 2016-02-04 General Vault, LLC Methods and apparatus for bounded image data analysis and notification mechanism
US9760788B2 (en) 2014-10-30 2017-09-12 Kofax, Inc. Mobile document detection and orientation based on reference object characteristics
US10242285B2 (en) 2015-07-20 2019-03-26 Kofax, Inc. Iterative recognition-guided thresholding and data extraction
US10467465B2 (en) 2015-07-20 2019-11-05 Kofax, Inc. Range and/or polarity-based thresholding for improved data extraction

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9934433B2 (en) 2009-02-10 2018-04-03 Kofax, Inc. Global geographic information retrieval, validation, and normalization
US10657600B2 (en) 2012-01-12 2020-05-19 Kofax, Inc. Systems and methods for mobile image capture and processing
US10146795B2 (en) 2012-01-12 2018-12-04 Kofax, Inc. Systems and methods for mobile image capture and processing
US9996741B2 (en) 2013-03-13 2018-06-12 Kofax, Inc. Systems and methods for classifying objects in digital images captured using mobile devices
US10146803B2 (en) 2013-04-23 2018-12-04 Kofax, Inc Smart mobile application development platform
US10108860B2 (en) 2013-11-15 2018-10-23 Kofax, Inc. Systems and methods for generating composite images of long documents using mobile video data
US10699146B2 (en) 2014-10-30 2020-06-30 Kofax, Inc. Mobile document detection and orientation based on reference object characteristics
US10242285B2 (en) 2015-07-20 2019-03-26 Kofax, Inc. Iterative recognition-guided thresholding and data extraction
US10838067B2 (en) * 2017-01-17 2020-11-17 Aptiv Technologies Limited Object detection system
US11062176B2 (en) 2017-11-30 2021-07-13 Kofax, Inc. Object detection and image cropping using a multi-detector approach
US10803350B2 (en) 2017-11-30 2020-10-13 Kofax, Inc. Object detection and image cropping using a multi-detector approach
RU2715515C2 (en) * 2018-03-30 2020-02-28 Акционерное общество "Лаборатория Касперского" System and method of detecting image containing identification document
US10867170B2 (en) 2018-03-30 2020-12-15 AO Kaspersky Lab System and method of identifying an image containing an identification document
WO2019241265A1 (en) * 2018-06-12 2019-12-19 ID Metrics Group Incorporated Digital image generation through an active lighting system
US11195047B2 (en) 2018-06-12 2021-12-07 ID Metrics Group Incorporated Digital image generation through an active lighting system
WO2022023890A1 (en) * 2020-07-29 2022-02-03 3M Innovative Properties Company Systems and methods for managing digital notes
US20230259270A1 (en) * 2020-07-29 2023-08-17 3M Innovative Properties Company Systems and methods for managing digital notes
US12141430B2 (en) * 2020-07-29 2024-11-12 3M Innovative Properties Company Systems and methods for managing digital notes

Also Published As

Publication number Publication date
US9779296B1 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
US11481878B2 (en) Content-based detection and three dimensional geometric reconstruction of objects in image and video data
US11818303B2 (en) Content-based object detection, 3D reconstruction, and data extraction from digital images
US11620733B2 (en) Content-based object detection, 3D reconstruction, and data extraction from digital images
US9779296B1 (en) Content-based detection and three dimensional geometric reconstruction of objects in image and video data
US10699146B2 (en) Mobile document detection and orientation based on reference object characteristics
US9946954B2 (en) Determining distance between an object and a capture device based on captured image data
US10885644B2 (en) Detecting specified image identifiers on objects
US9275281B2 (en) Mobile image capture, processing, and electronic form generation
US20210064900A1 (en) Id verification with a mobile device
US9754164B2 (en) Systems and methods for classifying objects in digital images captured using mobile devices
Dubská et al. Real-time precise detection of regular grids and matrix codes
EP3436865A1 (en) Content-based detection and three dimensional geometric reconstruction of objects in image and video data
Günay Yılmaz et al. Face presentation attack detection performances of facial regions with multi-block LBP features
Tan et al. An intelligent threats solution for object detection and resource perspective rectification of distorted anomaly identification card images in cloud environments
CN113516599B (en) Image correction method, device and server
CN119090568A (en) Store authenticity verification method, device, storage medium and computer equipment
WO2017015401A1 (en) Mobile image capture, processing, and electronic form generation

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOFAX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MA, JIYONG;THOMPSON, STEPHEN MICHAEL;AMTRUP, JAN W.;SIGNING DATES FROM 20160808 TO 20160809;REEL/FRAME:041205/0328

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:KOFAX, INC.;PSIGEN SOFTWARE, INC.;REEL/FRAME:060768/0159

Effective date: 20220720

Owner name: JPMORGAN CHASE BANK, N.A. AS COLLATERAL AGENT, NEW YORK

Free format text: FIRST LIEN INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:KOFAX, INC.;PSIGEN SOFTWARE, INC.;REEL/FRAME:060757/0565

Effective date: 20220720

AS Assignment

Owner name: TUNGSTEN AUTOMATION CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOFAX, INC.;REEL/FRAME:067428/0392

Effective date: 20240507

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载