US20170233505A1 - Process for ethylene polymerization with improved ethylene feed system - Google Patents
Process for ethylene polymerization with improved ethylene feed system Download PDFInfo
- Publication number
- US20170233505A1 US20170233505A1 US15/502,376 US201515502376A US2017233505A1 US 20170233505 A1 US20170233505 A1 US 20170233505A1 US 201515502376 A US201515502376 A US 201515502376A US 2017233505 A1 US2017233505 A1 US 2017233505A1
- Authority
- US
- United States
- Prior art keywords
- reactor
- ethylene
- slurry
- injection nozzles
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 title claims abstract description 90
- 239000005977 Ethylene Substances 0.000 title claims abstract description 90
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000002347 injection Methods 0.000 claims abstract description 127
- 239000007924 injection Substances 0.000 claims abstract description 127
- 239000002002 slurry Substances 0.000 claims abstract description 57
- -1 polyethylene Polymers 0.000 claims abstract description 26
- 239000004698 Polyethylene Substances 0.000 claims abstract description 19
- 229920000573 polyethylene Polymers 0.000 claims abstract description 19
- 238000002156 mixing Methods 0.000 claims abstract description 15
- 230000001939 inductive effect Effects 0.000 claims abstract description 6
- 239000004711 α-olefin Substances 0.000 claims abstract description 6
- 230000000379 polymerizing effect Effects 0.000 claims abstract description 5
- 238000002360 preparation method Methods 0.000 claims abstract description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 description 24
- 239000010936 titanium Substances 0.000 description 24
- 239000000460 chlorine Substances 0.000 description 13
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 11
- 239000003085 diluting agent Substances 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical class 0.000 description 6
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 150000002681 magnesium compounds Chemical class 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 150000003609 titanium compounds Chemical class 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical class [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000002140 halogenating effect Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000001282 iso-butane Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical class [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 2
- 235000011147 magnesium chloride Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- ORYGRKHDLWYTKX-UHFFFAOYSA-N trihexylalumane Chemical compound CCCCCC[Al](CCCCCC)CCCCCC ORYGRKHDLWYTKX-UHFFFAOYSA-N 0.000 description 2
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- 150000003682 vanadium compounds Chemical class 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- XPVATDCOZDHQNL-UHFFFAOYSA-N CC(C)(C)[Mg]C(C)(C)C Chemical compound CC(C)(C)[Mg]C(C)(C)C XPVATDCOZDHQNL-UHFFFAOYSA-N 0.000 description 1
- SPXDYPYJHCSREL-UHFFFAOYSA-N CCC(C)[Mg]C(C)CC Chemical compound CCC(C)[Mg]C(C)CC SPXDYPYJHCSREL-UHFFFAOYSA-N 0.000 description 1
- RGPSRYWDFHAWOT-UHFFFAOYSA-N CCCCCCCC[Mg]CCCC Chemical compound CCCCCCCC[Mg]CCCC RGPSRYWDFHAWOT-UHFFFAOYSA-N 0.000 description 1
- UNCRKDFOOFDWDK-UHFFFAOYSA-N CCCCC[Mg]CCCCC Chemical compound CCCCC[Mg]CCCCC UNCRKDFOOFDWDK-UHFFFAOYSA-N 0.000 description 1
- SZFAGBCMFACZNH-UHFFFAOYSA-N CCCCOCCCCCCCCO[Mg] Chemical compound CCCCOCCCCCCCCO[Mg] SZFAGBCMFACZNH-UHFFFAOYSA-N 0.000 description 1
- DVEYKVBKFNEEAE-UHFFFAOYSA-N CCCCOCCO[Mg] Chemical compound CCCCOCCO[Mg] DVEYKVBKFNEEAE-UHFFFAOYSA-N 0.000 description 1
- ABXKXVWOKXSBNR-UHFFFAOYSA-N CCC[Mg]CCC Chemical compound CCC[Mg]CCC ABXKXVWOKXSBNR-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910003910 SiCl4 Inorganic materials 0.000 description 1
- 229910010062 TiCl3 Inorganic materials 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- OJDYQXBKQIDTEC-UHFFFAOYSA-M [Cl-].CC(C)CC[Mg+] Chemical compound [Cl-].CC(C)CC[Mg+] OJDYQXBKQIDTEC-UHFFFAOYSA-M 0.000 description 1
- OHLJPYMGJFINNA-UHFFFAOYSA-M [Cl-].CCCCC[Mg+] Chemical compound [Cl-].CCCCC[Mg+] OHLJPYMGJFINNA-UHFFFAOYSA-M 0.000 description 1
- CDKFWIMBZAUBRS-UHFFFAOYSA-M [I-].CC[Mg+] Chemical compound [I-].CC[Mg+] CDKFWIMBZAUBRS-UHFFFAOYSA-M 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- RTKCPZYOLXPARI-UHFFFAOYSA-N magnesium;2-methylpropan-2-olate Chemical compound [Mg+2].CC(C)(C)[O-].CC(C)(C)[O-] RTKCPZYOLXPARI-UHFFFAOYSA-N 0.000 description 1
- UKZCGMDMXDLAGZ-UHFFFAOYSA-M magnesium;2-methylpropane;bromide Chemical compound [Mg+2].[Br-].C[C-](C)C UKZCGMDMXDLAGZ-UHFFFAOYSA-M 0.000 description 1
- CQRPUKWAZPZXTO-UHFFFAOYSA-M magnesium;2-methylpropane;chloride Chemical compound [Mg+2].[Cl-].C[C-](C)C CQRPUKWAZPZXTO-UHFFFAOYSA-M 0.000 description 1
- WRYKIHMRDIOPSI-UHFFFAOYSA-N magnesium;benzene Chemical compound [Mg+2].C1=CC=[C-]C=C1.C1=CC=[C-]C=C1 WRYKIHMRDIOPSI-UHFFFAOYSA-N 0.000 description 1
- IWCVDCOJSPWGRW-UHFFFAOYSA-M magnesium;benzene;chloride Chemical compound [Mg+2].[Cl-].C1=CC=[C-]C=C1 IWCVDCOJSPWGRW-UHFFFAOYSA-M 0.000 description 1
- HFTSQAKJLBPKBD-UHFFFAOYSA-N magnesium;butan-1-olate Chemical compound [Mg+2].CCCC[O-].CCCC[O-] HFTSQAKJLBPKBD-UHFFFAOYSA-N 0.000 description 1
- JOIKLQRONIZCBW-UHFFFAOYSA-N magnesium;butan-1-olate;butan-2-olate Chemical compound [Mg+2].CCCC[O-].CCC(C)[O-] JOIKLQRONIZCBW-UHFFFAOYSA-N 0.000 description 1
- XLQMOUZWUAUZJX-UHFFFAOYSA-N magnesium;butan-2-olate Chemical compound [Mg+2].CCC(C)[O-].CCC(C)[O-] XLQMOUZWUAUZJX-UHFFFAOYSA-N 0.000 description 1
- KJJBSBKRXUVBMX-UHFFFAOYSA-N magnesium;butane Chemical compound [Mg+2].CCC[CH2-].CCC[CH2-] KJJBSBKRXUVBMX-UHFFFAOYSA-N 0.000 description 1
- LWLPYZUDBNFNAH-UHFFFAOYSA-M magnesium;butane;bromide Chemical compound [Mg+2].[Br-].CCC[CH2-] LWLPYZUDBNFNAH-UHFFFAOYSA-M 0.000 description 1
- WSHFRLGXCNEKRX-UHFFFAOYSA-M magnesium;butane;bromide Chemical compound [Mg+2].[Br-].CC[CH-]C WSHFRLGXCNEKRX-UHFFFAOYSA-M 0.000 description 1
- VCTCXZDCRFISFF-UHFFFAOYSA-N magnesium;butane;butane Chemical compound [Mg+2].CCC[CH2-].CC[CH-]C VCTCXZDCRFISFF-UHFFFAOYSA-N 0.000 description 1
- QUXHCILOWRXCEO-UHFFFAOYSA-M magnesium;butane;chloride Chemical compound [Mg+2].[Cl-].CCC[CH2-] QUXHCILOWRXCEO-UHFFFAOYSA-M 0.000 description 1
- YNLPNVNWHDKDMN-UHFFFAOYSA-M magnesium;butane;chloride Chemical compound [Mg+2].[Cl-].CC[CH-]C YNLPNVNWHDKDMN-UHFFFAOYSA-M 0.000 description 1
- YHNWUQFTJNJVNU-UHFFFAOYSA-N magnesium;butane;ethane Chemical compound [Mg+2].[CH2-]C.CCC[CH2-] YHNWUQFTJNJVNU-UHFFFAOYSA-N 0.000 description 1
- CCERQOYLJJULMD-UHFFFAOYSA-M magnesium;carbanide;chloride Chemical compound [CH3-].[Mg+2].[Cl-] CCERQOYLJJULMD-UHFFFAOYSA-M 0.000 description 1
- DLPASUVGCQPFFO-UHFFFAOYSA-N magnesium;ethane Chemical compound [Mg+2].[CH2-]C.[CH2-]C DLPASUVGCQPFFO-UHFFFAOYSA-N 0.000 description 1
- FRIJBUGBVQZNTB-UHFFFAOYSA-M magnesium;ethane;bromide Chemical compound [Mg+2].[Br-].[CH2-]C FRIJBUGBVQZNTB-UHFFFAOYSA-M 0.000 description 1
- YCCXQARVHOPWFJ-UHFFFAOYSA-M magnesium;ethane;chloride Chemical compound [Mg+2].[Cl-].[CH2-]C YCCXQARVHOPWFJ-UHFFFAOYSA-M 0.000 description 1
- XDKQUSKHRIUJEO-UHFFFAOYSA-N magnesium;ethanolate Chemical compound [Mg+2].CC[O-].CC[O-] XDKQUSKHRIUJEO-UHFFFAOYSA-N 0.000 description 1
- GBRJQTLHXWRDOV-UHFFFAOYSA-M magnesium;hexane;chloride Chemical compound [Mg+2].[Cl-].CCCCC[CH2-] GBRJQTLHXWRDOV-UHFFFAOYSA-M 0.000 description 1
- HQDAZWQQKSJCTM-UHFFFAOYSA-M magnesium;octane;chloride Chemical compound [Mg+2].[Cl-].CCCCCCC[CH2-] HQDAZWQQKSJCTM-UHFFFAOYSA-M 0.000 description 1
- WRZMOWGAWMKGIT-UHFFFAOYSA-N magnesium;pentan-1-olate Chemical compound [Mg+2].CCCCC[O-].CCCCC[O-] WRZMOWGAWMKGIT-UHFFFAOYSA-N 0.000 description 1
- WNJYXPXGUGOGBO-UHFFFAOYSA-N magnesium;propan-1-olate Chemical compound CCCO[Mg]OCCC WNJYXPXGUGOGBO-UHFFFAOYSA-N 0.000 description 1
- ORPJQHHQRCLVIC-UHFFFAOYSA-N magnesium;propan-2-olate Chemical compound CC(C)O[Mg]OC(C)C ORPJQHHQRCLVIC-UHFFFAOYSA-N 0.000 description 1
- DQZLQYHGCKLKGU-UHFFFAOYSA-N magnesium;propane Chemical compound [Mg+2].C[CH-]C.C[CH-]C DQZLQYHGCKLKGU-UHFFFAOYSA-N 0.000 description 1
- UGVPKMAWLOMPRS-UHFFFAOYSA-M magnesium;propane;bromide Chemical compound [Mg+2].[Br-].CC[CH2-] UGVPKMAWLOMPRS-UHFFFAOYSA-M 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- ZKUUVVYMPUDTGJ-UHFFFAOYSA-N methyl 5-hydroxy-4-methoxy-2-nitrobenzoate Chemical compound COC(=O)C1=CC(O)=C(OC)C=C1[N+]([O-])=O ZKUUVVYMPUDTGJ-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- ANRQGKOBLBYXFM-UHFFFAOYSA-M phenylmagnesium bromide Chemical compound Br[Mg]C1=CC=CC=C1 ANRQGKOBLBYXFM-UHFFFAOYSA-M 0.000 description 1
- 239000011990 phillips catalyst Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/233—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/11—Stirrers characterised by the configuration of the stirrers
- B01F27/112—Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
- B01F27/1125—Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/11—Stirrers characterised by the configuration of the stirrers
- B01F27/19—Stirrers with two or more mixing elements mounted in sequence on the same axis
- B01F27/191—Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/91—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/7179—Feed mechanisms characterised by the means for feeding the components to the mixer using sprayers, nozzles or jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
- B01J19/0066—Stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/1868—Stationary reactors having moving elements inside resulting in a loop-type movement
- B01J19/1875—Stationary reactors having moving elements inside resulting in a loop-type movement internally, i.e. the mixture circulating inside the vessel such that the upwards stream is separated physically from the downwards stream(s)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/001—Feed or outlet devices as such, e.g. feeding tubes
- B01J4/002—Nozzle-type elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
- B01J8/22—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
- B01J8/224—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
- B01J8/22—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
- B01J8/224—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
- B01J8/226—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement internally, i.e. the particles rotate within the vessel
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/01—Processes of polymerisation characterised by special features of the polymerisation apparatus used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/18—Suspension polymerisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0422—Numerical values of angles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0431—Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/0481—Numerical speed values
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00893—Feeding means for the reactants
- B01J2208/00902—Nozzle-type feeding elements
Definitions
- the present disclosure relates to a process for ethylene polymerization.
- the present disclosure relates to an ethylene slurry polymerization process having reduced fouling through an improved ethylene feed system.
- Various processes can be used to produce polyethylene, including gas phase processes, solution processes, and slurry processes.
- ethylene slurry polymerization processes diluents such as hexane or isobutane may be used to dissolve the ethylene monomer, comonomers and hydrogen, and the monomer(s) are polymerized with a catalyst.
- the polymer product formed is present as a slurry of polyethylene particles suspended in the liquid medium.
- the reactors can be operated in parallel or in series, and the types and amounts of monomer and conditions can be varied in each reactor to produce a variety of polyethylene materials, including unimodal or multimodal polyethylene material.
- Such multimodal compositions are used in a variety of applications; e.g., WO 2012/069400 A1 discloses trimodal polyethylene compositions for blow moldings.
- a potential challenge encountered using continuous stirred tank reactors in ethylene slurry polymerization systems is the fouling that can occur on the reactor internals.
- ethylene monomer is introduced into the reactor in gaseous form and dissolves in the diluent.
- the solid catalyst component is dosed into the reactor and is suspended in the diluent.
- polyethylene is formed.
- the reaction occurs throughout the reactor, including near the interior reactor surfaces and reactor internals, and the area around the ethylene inlet nozzles since the local concentration of ethylene is at its highest at the discharge of the inlet nozzle.
- the ethylene feed in many such reactions, would immediately dissolve and be mixed so as to form a uniform concentration in the diluent in contact with uniformly distributed catalyst particles.
- solid polyethylene can deleteriously adhere to interior reactor surfaces and reactor internals. If such adhesion is ongoing, the accumulated material can form solid lumps and interfere with reactor performance. Ultimately, if not remedied, this process of fouling may lead to a unit shutdown for cleaning.
- the present disclosure provides processes for ethylene slurry polymerization using an ethylene distribution system.
- the disclosure provides processes for the preparation of polyethylene by polymerizing in a slurry ethylene and optionally one or more C 3 to C 10 alpha-olefins at a temperature from 60-95° C. and a pressure from 0.15-3 MPa, where the polymerization is carried out in a cylindrical polymerization reactor having a cylindrical reactor wall, a bottom reactor head and a top reactor head, where the reactor has an inner diameter D and is equipped with an agitator for mixing the contents of the reactor and inducing a flow of the slurry.
- the ethylene is fed into the reactor by an ethylene injection system comprising one or more injection nozzles which project through the bottom reactor head or through the reactor wall and extend from 0.02-0.5 times the inner diameter D into the reactor and wherein the ethylene exits the injection nozzle with an exit velocity from 10-200 m/s.
- the injection nozzles projecting through the bottom reactor head or through the reactor wall have a direction into the reactor, a sloped ethylene outlet with an outlet tip and an outlet base, and an angle between the direction of the injection nozzle and the line connecting the outlet tip and the outer base of from 20-80°.
- the slope of the ethylene outlet is oriented in a way with respect to the flow of the slurry that the outlet tip is in an upstream position and the outlet base is in a downstream position with respect to the flow of the slurry.
- the agitator comprises a motor, a vertical rotating shaft, which may be centrally located in the reactor, and one or more stages of agitator blades attached to the rotating shaft; and wherein the agitator induces primarily a vertical flow of the slurry in a circular cross-section around the agitator shaft.
- the vertical flow of the slurry in the circular cross-section is a downward flow.
- the one or more injection nozzles project through the bottom reactor head and extend vertically from 0.04-0.2 times the inner diameter D into the reactor, and the horizontal distance from the center of the reactor to the outlet of the injection nozzles is from 0.1-0.45 times the inner diameter D.
- the ethylene injection system comprises at least two injection nozzles, and all injection nozzles are arranged on a circular line around the reactor center.
- the injection nozzles are uniformly distributed on the circular line.
- the one or more injection nozzles project through the cylindrical reactor wall at a wall passing point positioned in the lower two thirds of the reactor and extend from 0.02-0.48 times the inner diameter D into the reactor.
- the injection nozzles are inclined downward.
- the horizontal angle between the direction of the injection nozzle and the horizontal is of from 5-60°.
- the flow of the slurry in the polymerization reactor has a circular component, and the injection nozzles are inclined towards the downstream direction of the circular flow.
- the radial angle between the direction of the injection nozzle and a line running from the wall passing point to the center of the reactor is from 5-60°.
- the outlets of the injection nozzles are located at a position below the agitator.
- the wall passing points are arranged at the same height of the reactor and uniformly distributed around the reactor.
- the reactor is one of a multi-reactor polymerization system.
- FIG. 1 depicts a side view of an ethylene feed injection nozzle.
- FIG. 2 depicts a side view of an ethylene slurry polymerization reactor with a bottom feed ethylene injection system.
- FIG. 3 depicts a top view of an ethylene slurry polymerization reactor with a bottom feed ethylene injection system.
- FIG. 4 depicts a side view of an ethylene slurry polymerization reactor with a side feed ethylene injection system.
- FIG. 5 depicts a top view of an ethylene slurry polymerization reactor with a side feed ethylene injection system.
- the process of the present disclosure for producing polyethylene includes the slurry polymerization of ethylene and optionally one or more C 3 to C 10 alpha-olefins as comonomers in the presence of an ethylene polymerization catalyst, a diluent, such as hexane or isobutane, and optionally hydrogen.
- the polymerization may proceed in a suspension of particulate polyethylene in a suspension medium comprising the diluent, unreacted ethylene and optionally one or more comonomers.
- Polyethylene polymers obtained by the process described in the present disclosure can be ethylene homopolymers or copolymers of ethylene containing up to 40 wt. %, and from 0.1 to 10 wt.
- the comonomers may be chosen from propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and mixtures thereof.
- the slurry polymerization may occur at reactor temperatures from 60-95° C., from 65-90° C., and from 70-85° C., and at reactor pressures from 0.15-3 MPa, from 0.2-2 MPa, and from 0.25-1.5 MPa.
- the polyethylene polymers produced by the polymerization process may be high density polyethylene (HDPE) resins having a density in a range from 0.935-0.970 g/cm 3 .
- the density is in a range from 0.940-0.970 g/cm 3 and from 0.945-0.965 g/cm 3 .
- the density is measured according to DIN EN ISO 1183-1:2004, Method A (Immersion) with compression molded plaques of 2 mm thickness prepared with a defined thermal history: pressed at 180° C., 20 MPa for 8 min with subsequent crystallization in boiling water for 30 min.
- the polyethylene polymers produced by the polymerization process may have a melt index (MI 21.6 ) from 1-300 dg/min, from 1.5-50 dg/min, or and from 2 dg/min to 35 dg/min.
- MI 21.6 is measured according to DIN EN ISO 1133:2005, condition G at a temperature of 190° C. under a load of 21.6 kg.
- the polymerization can be carried out using customary ethylene polymerization catalysts, e.g., the polymerization can be carried out using Phillips catalysts based on chromium oxide, using titanium-based Ziegler-type catalysts, i.e., Ziegler-catalysts or Ziegler-Natta-catalysts, or using single-site catalysts.
- single-site catalysts are catalysts based on chemically uniform transition metal coordination compounds.
- the single-site catalysts may be those comprising bulky sigma- or pi-bonded organic ligands, e.g.
- catalysts based on mono-Cp complexes catalysts based on bis-Cp complexes, which may be designated as metallocene catalysts, or catalysts based on late transition metal complexes, including iron-bis(imine) complexes.
- metallocene catalysts catalysts based on bis-Cp complexes
- catalysts based on late transition metal complexes including iron-bis(imine) complexes.
- mixtures of two or more of these catalysts for the polymerization of olefins. Such mixed catalysts are often designated as hybrid catalysts.
- the catalysts may be of the Ziegler type and may comprise a compound of titanium or vanadium, a compound of magnesium and optionally a particulate inorganic oxide as a support.
- the titanium compounds may be selected from the halides or alkoxides of trivalent or tetravalent titanium, with titanium alkoxy halogen compounds or mixtures of various titanium compounds.
- titanium compounds are TiBr 3 , TiBr 4 , TiCl 3 , TiCl 4 , Ti(OCH 3 )Cl 3 , Ti(OC 2 H 5 )Cl 3 , Ti(O-i-C 3 H 7 )Cl 3 , Ti(O-n-C 4 H 9 )Cl 3 , Ti(OC 2 H 5 )Br 3 , Ti(O-n-C 4 H 9 )Br 3 , Ti(OCH 3 ) 2 Cl 2 , Ti(OC 2 H 5 ) 2 Cl 2 , Ti(O-n-C 4 H 9 ) 2 Cl 2 , Ti(OC 2 H 5 ) 2 Br 2 , Ti(OCH 3 ) 3 Cl, Ti(OC 2 H 5 ) 3 Cl, Ti(O-n-C 4 H 9 ) 3 Cl,
- the titanium compounds may comprise chlorine as the halogen.
- the titanium halides may comprise only halogen in addition to titanium or may be titanium chlorides or may be titanium tetrachloride.
- the vanadium compounds may be vanadium halides, vanadium oxyhalides, vanadium alkoxides or vanadium acetylacetonates. In an embodiment, the vanadium compounds are in the oxidation states 3 to 5.
- At least one compound of magnesium may be used.
- These compounds may be halogen-comprising magnesium compounds such as magnesium halides including chlorides or bromides, and magnesium compounds from which the magnesium halides can be obtained in a customary way, e.g., by reaction with halogenating agents.
- the halogens are selected from chlorine, bromine, iodine and fluorine, as well as mixtures of two or more of these halogens.
- Possible halogen-containing magnesium compounds are magnesium chlorides or magnesium bromides.
- Magnesium compounds from which the halides can be obtained are, for example, magnesium alkyls, magnesium aryls, magnesium alkoxy compounds, magnesium aryloxy compounds and Grignard compounds.
- the halogenating agents may be, for example, halogens, hydrogen halides, SiCl 4 and CCl 4 . In an embodiment, chlorine or hydrogen chloride is the halogenating agent.
- halogen-free compounds of magnesium are diethylmagnesium, di-n-propylmagnesium, diisopropylmagnesium, di-n-butylmagnesium, di-sec-butylmagnesium, di-tert-butylmagnesium, diamylmagnesium, n-butylethylmagnesium, n-butyl-sec-butylmagnesium, n-butyloctylmagnesium, diphenylmagnesium, diethoxymagnesium, di-n-propyloxymagnesium, diisopropyloxymagnesium, di-n-butyloxymagnesium, di-sec-butyloxymagnesium, di-tert-butyloxymagnesium, diamyloxymagnesium, n-butyloxyethoxymagnesium, n-butyloxy-sec-butyloxymagnesium, n-butyloxyoctyloxymag
- Grignard compounds are methylmagnesium chloride, ethylmagnesium chloride, ethylmagnesium bromide, ethylmagnesium iodide, n-propylmagnesium chloride, n-propylmagnesium bromide, n-butylmagnesium chloride, n-butylmagnesium bromide, sec-butylmagnesium chloride, sec-butylmagnesium bromide, tert-butylmagnesium chloride, tert-butylmagnesium bromide, hexylmagnesium chloride, octylmagnesium chloride, amylmagnesium chloride, isoamylmagnesium chloride, phenylmagnesium chloride and phenylmagnesium bromide.
- the magnesium compounds for producing the particulate solids may be, apart from magnesium dichloride and magnesium dibromide, the di(C i -C 10 -alkyl)magnesium compounds.
- the Ziegler-type catalyst comprises a transition metal selected from titanium, zirconium, vanadium, and chromium.
- the Ziegler-type catalyst may be added to the slurry reactor by first mixing the catalyst with the diluent, such as hexane, in a mixing tank to form a slurry which may be subsequently pumped.
- a positive displacement pump such as a membrane pump may be used to transfer the catalyst slurry to the slurry polymerization reactor.
- Catalysts of the Ziegler type may be used for polymerization in the presence of a cocatalyst. Accordingly, the slurry polymerization of the present disclosure may be carried out in the presence of a cocatalyst.
- cocatalysts are organometallic compounds of metals of Groups 1, 2, 12, 13 or 14 of the Periodic Table of Elements, such as organometallic compounds of metals of Group 13 and organoaluminum compounds.
- the organoaluminum compounds may be selected from aluminum alkyls such as trialkylaluminum compounds, trimethylaluminum (TMA), triethylaluminum (TEAL), tri-isobutylaluminum (TIBAL), and tri-n-hexylaluminum (TNHAL).
- TMA trimethylaluminum
- TEAL triethylaluminum
- TIBAL tri-isobutylaluminum
- THCAL tri-n-hexylaluminum
- the aluminum alkyl is TEAL.
- the cocatalyst(s) may be miscible with the diluent and comprised in the suspension medium.
- the cocatalyst can be added to the slurry reactor.
- the cocatalyst is added by first mixing the cocatalyst with the diluent, such as hexane or isobutane, in a mixing tank.
- a positive displacement pump such as a membrane pump may be used to transfer the cocatalyst to the slurry polymerization reactor.
- the process of the present disclosure is carried out in at least one polymerization reactor. It may include a polymerization in a stand-alone polymerization reactor or it may include a polymerization in one polymerization reactor of a multi-reactor system. Such multi-reactor systems may be operated in parallel or in series. It is possible to operate two, three or more polymerization reactors in parallel. In an embodiment, the polymerization reactors of the multi-reactor system are operated in series; i.e. the reactors are arranged as a cascade. Such a series may include two or three reactors operating in series.
- the process of the present disclosure is carried out in a cylindrical polymerization reactor which comprises a cylindrical reactor wall, a bottom reactor head connected to the cylindrical reactor wall at a bottom tangent and a top reactor head connected to the cylindrical reactor wall at a top tangent.
- the cylindrical polymerization reactor has an inner diameter D which corresponds to the inner diameter of the cylindrical reactor wall and a height H which is the distance from the bottom tangent to the top tangent measured along the central axis of the cylindrical polymerization reactor.
- the reactor may have a height/diameter ratio (H/D) of from 1.5-4 and a height/diameter ratio (H/D) of from 2.5-3.5.
- the reactor is equipped with an agitator for mixing the contents of the reactor and inducing a flow of the slurry.
- the agitator is arranged centrally in the reactor and may comprise a motor located on the top reactor head, a rotating shaft extending along the reactor's central axis and one or more stages of agitator blades. There may be 2-6 stages of agitator blades attached to the rotating shaft including 4-5 stages of agitator blades. A stage of agitator blades may comprise several agitator blades such as 2-4 blades.
- the motor rotates the agitator shaft and the attached agitator blades.
- the rotation of the blades induces primarily a vertical flow of the slurry in a circular cross-section around the agitator shaft.
- This vertical flow of the slurry may be a downward flow.
- This flow changes direction, and flows first outward toward the reactor wall and then back upward to the top, changes direction again and then back to the center of the polymerization reactor.
- the rotation of the agitator also results in a secondary flow pattern of slurry in the reactor. This secondary flow is a circular flow in the direction of rotation of the agitator.
- the polymerization reactor may be equipped with one or more baffles.
- the ethylene is fed into the polymerization reactor by an ethylene injection system comprising one or more injection nozzles, which project through the bottom reactor head or through the reactor wall and extend from 0.02-0.5 times the inner diameter D into the reactor.
- the length by which the injection nozzles extend into the reactor is the distance from the point where the injection nozzle center line exits the injection nozzle at its ethylene outlet to the point where the injection nozzle center line passes the inner surface of the reactor wall or the inner surface of the bottom reactor head.
- the ethylene is provided to the injection nozzles from the outside of the reactor, passes the reactor wall at the wall passing points of the injection nozzles and exits the injection nozzles through the outlets of the injection nozzles arranged within the polymerization reactors.
- the injection nozzles may be straight pipes of an inner diameter D N and have a defined direction into the reactor.
- the direction of the injection nozzles corresponds to the direction of the injection nozzle center lines.
- the ethylene is fed to the reactor with an ethylene exit velocity of from 10-200 m/s, including from 25-150 m/s.
- the desired ethylene exit velocity is achieved by designing diameter D N of the one or more injection nozzles in an appropriate way so that the targeted ethylene flow rate to the slurry polymerization results in the desired ethylene exit velocity.
- the relatively high exit velocity provides high differential speed with respect to the circulating reactor contents, and higher turbulence, which provides improved mixing.
- the end of the injection nozzle as arranged within the polymerization reactor i.e. the ethylene outlet of the injection nozzle
- the slope may be arranged such that the angle between the direction of the injection nozzle and the line connecting the outlet tip and the outlet base, i.e. the angle between the injection nozzle center line and the line connecting the outlet tip and the outlet base, is from about 20-80°, including from about 30° to 60°.
- the slope of the ethylene outlet may be oriented in such a way with respect to the flow of the slurry that the outlet tip is in an upstream position and the outlet base is in a downstream position with respect to the flow of the slurry.
- the point where the injection nozzle center line exits the injection nozzle is the point where the center line meets the line connecting the outlet tip and the outlet base.
- FIG. 1 illustrates an embodiment of an injection nozzle of the present disclosure.
- Injection nozzle 110 projects through reactor wall 101 , which can be either the wall of the reactor bottom head or the cylindrical side wall of the reactor, and has an outlet 111 which has an outlet tip 112 and an outlet base 113 .
- Angle a is the angle between line 114 connecting outlet tip 112 and outlet base 113 and center line 115 of injection nozzle 110 .
- Angle a may be from 20-80°.
- Distance 116 is the extension of injection nozzle 110 into the polymerization reactor.
- ethylene is provided from below and exits the injection nozzle through outlet 111 .
- the slurry flows in direction 130 corresponding to a flow from an upstream point 131 to a downstream point 132 .
- the slope of the ethylene outlet 111 as defined by line 114 is oriented in a way with respect to the flow of the slurry that the outlet tip 112 is in an upstream position and the outlet base 113 is in a downstream position with respect to direction 130 of the flow of slurry.
- the one or more injection nozzles project through the bottom reactor head.
- the injection nozzles extend vertically from 0.04-0.2 times the inner diameter D into the reactor, including from 0.07-0.15 times the inner diameter D into the reactor, and the horizontal distance from the center of the reactor to the outlet of the injection nozzles is from 0.1-0.45 times the inner diameter D, or from 0.2-0.4 times the inner diameter D. Consequently, the outlets of the injection nozzles are located below the agitator at positions where the downward flow of the slurry induced by the agitator has changed direction and flows primarily outward towards the reactor wall.
- the outlets of sloped injection nozzles are oriented in a way that the outlet tips are positioned in the direction of the reactor center and the outlet bases are positioned in the direction of the reactor walls.
- all injection nozzles may be arranged on a circular line around the reactor center.
- the injection nozzles may be uniformly distributed on the circular line and have uniform spacing, so that with two nozzles there is 180 degrees of spacing between the nozzles; when there are three nozzles, there is 120 degrees of spacing between the nozzles; and when there are four nozzles, there is 90 degrees of spacing between the nozzles.
- FIGS. 2 and 3 illustrate an embodiment in which two injection nozzles project through the bottom reactor head.
- Reactor 100 includes a cylindrical reactor wall 102 that extends from a bottom tangent 103 to a top tangent 104 ; a bottom reactor head 105 connected to the cylindrical reactor wall 102 at the bottom tangent 103 ; a top reactor head 106 connected to the cylindrical reactor wall 104 at the top tangent 104 ; and an agitator 120 for mixing the contents of the reactor 100 .
- the agitator 120 has a motor 121 , a rotating shaft 122 which is centrally located in the reactor 100 , extending along the reactor's central axis and is driven by motor 121 in a direction of rotation 123 , and three stages of agitator blades 124 attached to the rotating shaft 122 .
- the reactor has a height, H, measured along its central axis from the bottom tangent 103 to the top tangent 104 , and an inner diameter D.
- the blades of agitator stages 124 convey the contents of the reactor 100 in a primary flow pattern 133 with a flow vector 133 a initially oriented downward along the central axis of the reactor 100 to the bottom head 105 , where it changes direction and flows first outward toward the reactor wall 102 and then back upward to the top head 106 , changes direction again and then back to the impeller(s) 103 .
- the rotation of the blades of stages 124 also result in a secondary flow pattern 134 in the reactor.
- the secondary flow 134 is a circular motion in the direction of rotation 123 of the rotating shaft 122 .
- the reactor 100 also contains an ethylene injection system for feeding ethylene into the reactor 100 .
- An embodiment shown in FIG. 2 has two injection nozzles 110 that project inward through the bottom reactor head 105 .
- the injection nozzles 110 have sloped ethylene outlets 111 which are oriented in a way that the outlet tips are positioned in a direction toward the reactor center and the outlet bases are positioned in a direction toward the reactor wall.
- the diameter of injection nozzles 110 is adapted to maintain an ethylene exit velocity from 10-200 m/s.
- FIG. 3 is a top view of reactor 100 shown in FIG. 2 .
- the depicted agitator stage 124 has four agitator blades attached to rotating shaft 122 .
- the rotation of the agitator blades of stages 124 defines a circular cross-section 125 .
- the two ethylene outlets 111 of the two injection nozzles used in the embodiment shown in FIG. 3 have the same distance from the center of the reactor and thus also from rotating shaft 122 and are accordingly positioned on circle 117 .
- the one or more injection nozzles project through the cylindrical reactor wall.
- the injection nozzles extend from 0.02-0.48 times the inner diameter D into the reactor, such as from 0.1-0.4 times the inner diameter D into the reactor, and the injection nozzles project through the wall at a wall passing point positioned in the lower two third of the reactor; i.e., a point with a distance of not more than H*2/3 from the bottom tangent which connects the cylindrical reactor wall and the bottom tangent.
- the wall passing point, at which the injection nozzles projects through the cylindrical reactor wall is positioned at a point in the lower half of the reactor, i.e.
- the wall passing point is positioned in the lower third of the reactor, i.e., a point with a distance of not more than H/3 from the bottom tangent.
- the injection nozzles projecting through the cylindrical reactor wall may incline downward.
- the horizontal angle between the direction of the injection nozzle and the horizontal i.e. the angle between the center line of the injection nozzle and the horizontal
- the injection nozzles projecting through the cylindrical reactor wall may also have a radial deviation such that the center line of the injection nozzles is not passing through the reactor center. This deviation may be towards the downstream direction of the circular flow of the slurry which can be induced as a secondary flow pattern by the rotation of the agitator.
- Injection nozzles not directed to the reactor center may have a radial angle between the direction of the injection nozzle, i.e.
- the outlets of the injection nozzles may be arranged at a height which differs from the height of a stage of agitator blades attached to the agitator shaft.
- the outlets of the injection nozzles may be arranged below at least one stage of the agitator blades, and the outlets of the injection nozzles may be located at a position below the agitator, i.e. below all stages of the agitator blades. Consequently, the outlets of the injection nozzles may be located at positions where the primary flow pattern is a downward flow of the slurry with an additional, smaller, circular flow. Accordingly, the outlets of sloped injection nozzles may be arranged in a way that the outlet tip is in upstream position with respect to the primary flow pattern.
- the injection nozzles projecting through the cylindrical reactor wall may be positioned in a way that all wall-passing points are arranged at the same height of the reactor.
- the injection nozzles are uniformly distributed around the reactor and have uniform spacing, so that with two nozzles there is a 180 degree spacing between the nozzles; when there are three nozzles, there is a 120 degree spacing between the nozzles; and when there are four nozzles, there is a 90 degree spacing between the nozzles. Orienting the nozzles in this way prevents solids from entering the nozzles if solids settle in the reactor, as well as maximizing the number of nozzles that can be installed relative to an installation on the bottom of the reactor. Higher numbers of nozzles provide even more improved mixing and distribution of the ethylene.
- FIGS. 4 and 5 illustrate an embodiment in which two injection nozzles project through the cylindrical reactor wall.
- the reactor shown in FIGS. 4 and 5 is identical to that depicted in FIGS. 2 and 3 and is agitated in the same manner.
- the ethylene injection system for feeding ethylene into the reactor 100 shown in FIG. 4 has two injection nozzles 110 that project inward through the cylindrical reactor wall 102 at wall passing points 118 positioned at the same height in the lower third of the reactor.
- the injection nozzles 110 may incline downward with a horizontal angle ⁇ between the center lines 115 and the horizontal 135 .
- angle ⁇ may be from about 5-60°.
- the ethylene outlets 111 of the injection nozzles 110 are located at a position below the agitator 120 , i.e. below all stages of agitator blades 124 .
- Distances 119 are the horizontal distances of the outlets of the injection nozzles to the center of the reactor.
- the injection nozzles 110 have sloped ethylene outlets 111 which are oriented in a way that the outlet tips are positioned in an upward position corresponding to the primarily downward flow in the circular cross-section defined by the rotation of the agitator blades.
- the diameter of injection nozzles 110 is adapted to maintain an ethylene exit velocity from about 10-200 m/s.
- FIG. 5 is a top view of reactor 100 shown in FIG. 4 .
- the two injection nozzles 110 may have a tangential deviation towards the downstream direction of the circular flow of the slurry 134 for which the tangential deviation has a radial angle ⁇ between the center lines 115 of the injection nozzle 110 and a line 136 running from the wall passing point 118 to the center of the reactor thus to rotating shaft 122 .
- angle ⁇ may be from 5-60°.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Description
- The present disclosure relates to a process for ethylene polymerization. In some embodiments, the present disclosure relates to an ethylene slurry polymerization process having reduced fouling through an improved ethylene feed system.
- Various processes can be used to produce polyethylene, including gas phase processes, solution processes, and slurry processes. In ethylene slurry polymerization processes, diluents such as hexane or isobutane may be used to dissolve the ethylene monomer, comonomers and hydrogen, and the monomer(s) are polymerized with a catalyst. Following polymerization, the polymer product formed is present as a slurry of polyethylene particles suspended in the liquid medium.
- In typical multi-reactor cascade processes, shown e.g., in WO 2005/077992 A1 and WO 2012/028591 A1, the reactors can be operated in parallel or in series, and the types and amounts of monomer and conditions can be varied in each reactor to produce a variety of polyethylene materials, including unimodal or multimodal polyethylene material. Such multimodal compositions are used in a variety of applications; e.g., WO 2012/069400 A1 discloses trimodal polyethylene compositions for blow moldings.
- A potential challenge encountered using continuous stirred tank reactors in ethylene slurry polymerization systems is the fouling that can occur on the reactor internals. For instance, ethylene monomer is introduced into the reactor in gaseous form and dissolves in the diluent. The solid catalyst component is dosed into the reactor and is suspended in the diluent. When the dissolved ethylene comes into contact with the catalyst particles, polyethylene is formed. The reaction occurs throughout the reactor, including near the interior reactor surfaces and reactor internals, and the area around the ethylene inlet nozzles since the local concentration of ethylene is at its highest at the discharge of the inlet nozzle. The ethylene feed, in many such reactions, would immediately dissolve and be mixed so as to form a uniform concentration in the diluent in contact with uniformly distributed catalyst particles. However, if dissolution of the ethylene and mixing of the reactor contents is not adequate, solid polyethylene can deleteriously adhere to interior reactor surfaces and reactor internals. If such adhesion is ongoing, the accumulated material can form solid lumps and interfere with reactor performance. Ultimately, if not remedied, this process of fouling may lead to a unit shutdown for cleaning.
- Conventional systems have fed the ethylene through a nozzle without a length of pipe in the bottom of the reactor. The ethylene entered the reactor directly at the reactor wall, which led to fouling around this nozzle due to the very high concentration of ethylene and in the suspension. Fouling also occurred inside the nozzle itself. Due to low velocities of ethylene at the exit of the nozzle, catalyst-containing suspension would migrate into the nozzle and react with the ethylene to form polyethylene particles. To prevent total plugging of the nozzle, the nozzle would have to be cleaned frequently.
- Therefore, a continuing need exists for ethylene slurry polymerization processes having improved performance through more efficient ethylene dissolution and mixing, resulting in reduced internal reactor fouling.
- The present disclosure provides processes for ethylene slurry polymerization using an ethylene distribution system.
- The disclosure provides processes for the preparation of polyethylene by polymerizing in a slurry ethylene and optionally one or more C3 to C10 alpha-olefins at a temperature from 60-95° C. and a pressure from 0.15-3 MPa, where the polymerization is carried out in a cylindrical polymerization reactor having a cylindrical reactor wall, a bottom reactor head and a top reactor head, where the reactor has an inner diameter D and is equipped with an agitator for mixing the contents of the reactor and inducing a flow of the slurry. In some embodiments, the ethylene is fed into the reactor by an ethylene injection system comprising one or more injection nozzles which project through the bottom reactor head or through the reactor wall and extend from 0.02-0.5 times the inner diameter D into the reactor and wherein the ethylene exits the injection nozzle with an exit velocity from 10-200 m/s.
- In some embodiments, the injection nozzles projecting through the bottom reactor head or through the reactor wall have a direction into the reactor, a sloped ethylene outlet with an outlet tip and an outlet base, and an angle between the direction of the injection nozzle and the line connecting the outlet tip and the outer base of from 20-80°. In certain embodiments, the slope of the ethylene outlet is oriented in a way with respect to the flow of the slurry that the outlet tip is in an upstream position and the outlet base is in a downstream position with respect to the flow of the slurry.
- In some embodiments, the agitator comprises a motor, a vertical rotating shaft, which may be centrally located in the reactor, and one or more stages of agitator blades attached to the rotating shaft; and wherein the agitator induces primarily a vertical flow of the slurry in a circular cross-section around the agitator shaft.
- In some embodiments, the vertical flow of the slurry in the circular cross-section is a downward flow.
- In some embodiments, the one or more injection nozzles project through the bottom reactor head and extend vertically from 0.04-0.2 times the inner diameter D into the reactor, and the horizontal distance from the center of the reactor to the outlet of the injection nozzles is from 0.1-0.45 times the inner diameter D.
- In some embodiments, the ethylene injection system comprises at least two injection nozzles, and all injection nozzles are arranged on a circular line around the reactor center.
- In some embodiments, the injection nozzles are uniformly distributed on the circular line.
- In some embodiments, the one or more injection nozzles project through the cylindrical reactor wall at a wall passing point positioned in the lower two thirds of the reactor and extend from 0.02-0.48 times the inner diameter D into the reactor.
- In some embodiments, the injection nozzles are inclined downward.
- In some embodiments, the horizontal angle between the direction of the injection nozzle and the horizontal is of from 5-60°.
- In some embodiments, the flow of the slurry in the polymerization reactor has a circular component, and the injection nozzles are inclined towards the downstream direction of the circular flow.
- In some embodiments, the radial angle between the direction of the injection nozzle and a line running from the wall passing point to the center of the reactor is from 5-60°.
- In some embodiments, the outlets of the injection nozzles are located at a position below the agitator.
- In some embodiments, the wall passing points are arranged at the same height of the reactor and uniformly distributed around the reactor.
- In some embodiments, the reactor is one of a multi-reactor polymerization system.
-
FIG. 1 depicts a side view of an ethylene feed injection nozzle. -
FIG. 2 depicts a side view of an ethylene slurry polymerization reactor with a bottom feed ethylene injection system. -
FIG. 3 depicts a top view of an ethylene slurry polymerization reactor with a bottom feed ethylene injection system. -
FIG. 4 depicts a side view of an ethylene slurry polymerization reactor with a side feed ethylene injection system. -
FIG. 5 depicts a top view of an ethylene slurry polymerization reactor with a side feed ethylene injection system. - In some embodiments, the process of the present disclosure for producing polyethylene includes the slurry polymerization of ethylene and optionally one or more C3 to C10 alpha-olefins as comonomers in the presence of an ethylene polymerization catalyst, a diluent, such as hexane or isobutane, and optionally hydrogen. The polymerization may proceed in a suspension of particulate polyethylene in a suspension medium comprising the diluent, unreacted ethylene and optionally one or more comonomers. Polyethylene polymers obtained by the process described in the present disclosure can be ethylene homopolymers or copolymers of ethylene containing up to 40 wt. %, and from 0.1 to 10 wt. % of recurring units derived from C3-C10-1-alkenes. The comonomers may be chosen from propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and mixtures thereof. The slurry polymerization may occur at reactor temperatures from 60-95° C., from 65-90° C., and from 70-85° C., and at reactor pressures from 0.15-3 MPa, from 0.2-2 MPa, and from 0.25-1.5 MPa.
- The polyethylene polymers produced by the polymerization process may be high density polyethylene (HDPE) resins having a density in a range from 0.935-0.970 g/cm3. Alternatively, the density is in a range from 0.940-0.970 g/cm3 and from 0.945-0.965 g/cm3. The density is measured according to DIN EN ISO 1183-1:2004, Method A (Immersion) with compression molded plaques of 2 mm thickness prepared with a defined thermal history: pressed at 180° C., 20 MPa for 8 min with subsequent crystallization in boiling water for 30 min.
- The polyethylene polymers produced by the polymerization process may have a melt index (MI21.6) from 1-300 dg/min, from 1.5-50 dg/min, or and from 2 dg/min to 35 dg/min. The MI21.6 is measured according to DIN EN ISO 1133:2005, condition G at a temperature of 190° C. under a load of 21.6 kg.
- The polymerization can be carried out using customary ethylene polymerization catalysts, e.g., the polymerization can be carried out using Phillips catalysts based on chromium oxide, using titanium-based Ziegler-type catalysts, i.e., Ziegler-catalysts or Ziegler-Natta-catalysts, or using single-site catalysts. For the purposes of the present disclosure, single-site catalysts are catalysts based on chemically uniform transition metal coordination compounds. The single-site catalysts may be those comprising bulky sigma- or pi-bonded organic ligands, e.g. catalysts based on mono-Cp complexes, catalysts based on bis-Cp complexes, which may be designated as metallocene catalysts, or catalysts based on late transition metal complexes, including iron-bis(imine) complexes. Furthermore, it is also possible to use mixtures of two or more of these catalysts for the polymerization of olefins. Such mixed catalysts are often designated as hybrid catalysts.
- The catalysts may be of the Ziegler type and may comprise a compound of titanium or vanadium, a compound of magnesium and optionally a particulate inorganic oxide as a support.
- The titanium compounds may be selected from the halides or alkoxides of trivalent or tetravalent titanium, with titanium alkoxy halogen compounds or mixtures of various titanium compounds. Examples of titanium compounds are TiBr3, TiBr4, TiCl3, TiCl4, Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(O-i-C3H7)Cl3, Ti(O-n-C4H9)Cl3, Ti(OC2H5)Br3, Ti(O-n-C4H9)Br3, Ti(OCH3)2Cl2, Ti(OC2H5)2Cl2, Ti(O-n-C4H9)2Cl2, Ti(OC2H5)2Br2, Ti(OCH3)3Cl, Ti(OC2H5)3Cl, Ti(O-n-C4H9)3Cl, Ti(OC2H5)3Br, Ti(OCH3)4, Ti(OC2H5)4 and Ti(O-n-C4H9)4. In an embodiment of the preset disclosure, the titanium compounds may comprise chlorine as the halogen. In an embodiment, the titanium halides may comprise only halogen in addition to titanium or may be titanium chlorides or may be titanium tetrachloride. The vanadium compounds may be vanadium halides, vanadium oxyhalides, vanadium alkoxides or vanadium acetylacetonates. In an embodiment, the vanadium compounds are in the oxidation states 3 to 5.
- In the production of the solid component, at least one compound of magnesium may be used. These compounds may be halogen-comprising magnesium compounds such as magnesium halides including chlorides or bromides, and magnesium compounds from which the magnesium halides can be obtained in a customary way, e.g., by reaction with halogenating agents. In an embodiment of the preset disclosure, the halogens are selected from chlorine, bromine, iodine and fluorine, as well as mixtures of two or more of these halogens.
- Possible halogen-containing magnesium compounds are magnesium chlorides or magnesium bromides. Magnesium compounds from which the halides can be obtained are, for example, magnesium alkyls, magnesium aryls, magnesium alkoxy compounds, magnesium aryloxy compounds and Grignard compounds. The halogenating agents may be, for example, halogens, hydrogen halides, SiCl4 and CCl4. In an embodiment, chlorine or hydrogen chloride is the halogenating agent.
- Examples of, halogen-free compounds of magnesium are diethylmagnesium, di-n-propylmagnesium, diisopropylmagnesium, di-n-butylmagnesium, di-sec-butylmagnesium, di-tert-butylmagnesium, diamylmagnesium, n-butylethylmagnesium, n-butyl-sec-butylmagnesium, n-butyloctylmagnesium, diphenylmagnesium, diethoxymagnesium, di-n-propyloxymagnesium, diisopropyloxymagnesium, di-n-butyloxymagnesium, di-sec-butyloxymagnesium, di-tert-butyloxymagnesium, diamyloxymagnesium, n-butyloxyethoxymagnesium, n-butyloxy-sec-butyloxymagnesium, n-butyloxyoctyloxymagnesium and diphenoxymagnesium.
- Examples of Grignard compounds are methylmagnesium chloride, ethylmagnesium chloride, ethylmagnesium bromide, ethylmagnesium iodide, n-propylmagnesium chloride, n-propylmagnesium bromide, n-butylmagnesium chloride, n-butylmagnesium bromide, sec-butylmagnesium chloride, sec-butylmagnesium bromide, tert-butylmagnesium chloride, tert-butylmagnesium bromide, hexylmagnesium chloride, octylmagnesium chloride, amylmagnesium chloride, isoamylmagnesium chloride, phenylmagnesium chloride and phenylmagnesium bromide.
- The magnesium compounds for producing the particulate solids may be, apart from magnesium dichloride and magnesium dibromide, the di(Ci-C10-alkyl)magnesium compounds. In one embodiment, the Ziegler-type catalyst comprises a transition metal selected from titanium, zirconium, vanadium, and chromium.
- The Ziegler-type catalyst may be added to the slurry reactor by first mixing the catalyst with the diluent, such as hexane, in a mixing tank to form a slurry which may be subsequently pumped. A positive displacement pump, such as a membrane pump may be used to transfer the catalyst slurry to the slurry polymerization reactor.
- Catalysts of the Ziegler type may be used for polymerization in the presence of a cocatalyst. Accordingly, the slurry polymerization of the present disclosure may be carried out in the presence of a cocatalyst. In an embodiment, cocatalysts are organometallic compounds of metals of Groups 1, 2, 12, 13 or 14 of the Periodic Table of Elements, such as organometallic compounds of metals of Group 13 and organoaluminum compounds. The organoaluminum compounds may be selected from aluminum alkyls such as trialkylaluminum compounds, trimethylaluminum (TMA), triethylaluminum (TEAL), tri-isobutylaluminum (TIBAL), and tri-n-hexylaluminum (TNHAL). In an embodiment of the present disclosure, the aluminum alkyl is TEAL. The cocatalyst(s) may be miscible with the diluent and comprised in the suspension medium.
- The cocatalyst can be added to the slurry reactor. In an embodiment, the cocatalyst is added by first mixing the cocatalyst with the diluent, such as hexane or isobutane, in a mixing tank. A positive displacement pump, such as a membrane pump may be used to transfer the cocatalyst to the slurry polymerization reactor.
- The process of the present disclosure is carried out in at least one polymerization reactor. It may include a polymerization in a stand-alone polymerization reactor or it may include a polymerization in one polymerization reactor of a multi-reactor system. Such multi-reactor systems may be operated in parallel or in series. It is possible to operate two, three or more polymerization reactors in parallel. In an embodiment, the polymerization reactors of the multi-reactor system are operated in series; i.e. the reactors are arranged as a cascade. Such a series may include two or three reactors operating in series.
- The process of the present disclosure is carried out in a cylindrical polymerization reactor which comprises a cylindrical reactor wall, a bottom reactor head connected to the cylindrical reactor wall at a bottom tangent and a top reactor head connected to the cylindrical reactor wall at a top tangent. The cylindrical polymerization reactor has an inner diameter D which corresponds to the inner diameter of the cylindrical reactor wall and a height H which is the distance from the bottom tangent to the top tangent measured along the central axis of the cylindrical polymerization reactor. The reactor may have a height/diameter ratio (H/D) of from 1.5-4 and a height/diameter ratio (H/D) of from 2.5-3.5.
- The reactor is equipped with an agitator for mixing the contents of the reactor and inducing a flow of the slurry. In an embodiment of the present disclosure, the agitator is arranged centrally in the reactor and may comprise a motor located on the top reactor head, a rotating shaft extending along the reactor's central axis and one or more stages of agitator blades. There may be 2-6 stages of agitator blades attached to the rotating shaft including 4-5 stages of agitator blades. A stage of agitator blades may comprise several agitator blades such as 2-4 blades.
- In an embodiment, the motor rotates the agitator shaft and the attached agitator blades. The rotation of the blades induces primarily a vertical flow of the slurry in a circular cross-section around the agitator shaft. This vertical flow of the slurry may be a downward flow. At the bottom head, this flow changes direction, and flows first outward toward the reactor wall and then back upward to the top, changes direction again and then back to the center of the polymerization reactor. The rotation of the agitator also results in a secondary flow pattern of slurry in the reactor. This secondary flow is a circular flow in the direction of rotation of the agitator. To control this circular flow, the polymerization reactor may be equipped with one or more baffles.
- According to the process of the present disclosure, the ethylene is fed into the polymerization reactor by an ethylene injection system comprising one or more injection nozzles, which project through the bottom reactor head or through the reactor wall and extend from 0.02-0.5 times the inner diameter D into the reactor. The length by which the injection nozzles extend into the reactor is the distance from the point where the injection nozzle center line exits the injection nozzle at its ethylene outlet to the point where the injection nozzle center line passes the inner surface of the reactor wall or the inner surface of the bottom reactor head.
- The ethylene is provided to the injection nozzles from the outside of the reactor, passes the reactor wall at the wall passing points of the injection nozzles and exits the injection nozzles through the outlets of the injection nozzles arranged within the polymerization reactors. The injection nozzles may be straight pipes of an inner diameter DN and have a defined direction into the reactor. The direction of the injection nozzles corresponds to the direction of the injection nozzle center lines. According to the present disclosure, the ethylene is fed to the reactor with an ethylene exit velocity of from 10-200 m/s, including from 25-150 m/s. The desired ethylene exit velocity is achieved by designing diameter DN of the one or more injection nozzles in an appropriate way so that the targeted ethylene flow rate to the slurry polymerization results in the desired ethylene exit velocity. The relatively high exit velocity provides high differential speed with respect to the circulating reactor contents, and higher turbulence, which provides improved mixing.
- In an embodiment of the present disclosure, the end of the injection nozzle as arranged within the polymerization reactor, i.e. the ethylene outlet of the injection nozzle, is sloped and has an outlet tip and an outlet base. The slope may be arranged such that the angle between the direction of the injection nozzle and the line connecting the outlet tip and the outlet base, i.e. the angle between the injection nozzle center line and the line connecting the outlet tip and the outlet base, is from about 20-80°, including from about 30° to 60°. The slope of the ethylene outlet may be oriented in such a way with respect to the flow of the slurry that the outlet tip is in an upstream position and the outlet base is in a downstream position with respect to the flow of the slurry. Orientation of the nozzle in this manner minimizes migration of slurry into the nozzle to reduce or prevent fouling. For injection nozzles having a sloped ethylene outlet, the point where the injection nozzle center line exits the injection nozzle is the point where the center line meets the line connecting the outlet tip and the outlet base.
-
FIG. 1 illustrates an embodiment of an injection nozzle of the present disclosure.Injection nozzle 110 projects throughreactor wall 101, which can be either the wall of the reactor bottom head or the cylindrical side wall of the reactor, and has anoutlet 111 which has anoutlet tip 112 and anoutlet base 113. Angle a is the angle betweenline 114 connectingoutlet tip 112 andoutlet base 113 andcenter line 115 ofinjection nozzle 110. Angle a may be from 20-80°.Distance 116 is the extension ofinjection nozzle 110 into the polymerization reactor. - For
injection nozzle 110 shown inFIG. 1 , ethylene is provided from below and exits the injection nozzle throughoutlet 111. The slurry flows indirection 130 corresponding to a flow from anupstream point 131 to adownstream point 132. According to the embodiment shown inFIG. 1 , the slope of theethylene outlet 111 as defined byline 114 is oriented in a way with respect to the flow of the slurry that theoutlet tip 112 is in an upstream position and theoutlet base 113 is in a downstream position with respect todirection 130 of the flow of slurry. - In an embodiment of the present disclosure, the one or more injection nozzles project through the bottom reactor head. In this embodiment the injection nozzles extend vertically from 0.04-0.2 times the inner diameter D into the reactor, including from 0.07-0.15 times the inner diameter D into the reactor, and the horizontal distance from the center of the reactor to the outlet of the injection nozzles is from 0.1-0.45 times the inner diameter D, or from 0.2-0.4 times the inner diameter D. Consequently, the outlets of the injection nozzles are located below the agitator at positions where the downward flow of the slurry induced by the agitator has changed direction and flows primarily outward towards the reactor wall. Accordingly, the outlets of sloped injection nozzles are oriented in a way that the outlet tips are positioned in the direction of the reactor center and the outlet bases are positioned in the direction of the reactor walls. When the ethylene injection system comprises two or more injection nozzles, all injection nozzles may be arranged on a circular line around the reactor center. The injection nozzles may be uniformly distributed on the circular line and have uniform spacing, so that with two nozzles there is 180 degrees of spacing between the nozzles; when there are three nozzles, there is 120 degrees of spacing between the nozzles; and when there are four nozzles, there is 90 degrees of spacing between the nozzles.
-
FIGS. 2 and 3 illustrate an embodiment in which two injection nozzles project through the bottom reactor head. -
Reactor 100, as shown inFIG. 2 , includes acylindrical reactor wall 102 that extends from abottom tangent 103 to atop tangent 104; abottom reactor head 105 connected to thecylindrical reactor wall 102 at thebottom tangent 103; atop reactor head 106 connected to thecylindrical reactor wall 104 at thetop tangent 104; and anagitator 120 for mixing the contents of thereactor 100. Theagitator 120 has amotor 121, arotating shaft 122 which is centrally located in thereactor 100, extending along the reactor's central axis and is driven bymotor 121 in a direction ofrotation 123, and three stages ofagitator blades 124 attached to therotating shaft 122. The reactor has a height, H, measured along its central axis from thebottom tangent 103 to thetop tangent 104, and an inner diameter D. - The blades of agitator stages 124 convey the contents of the
reactor 100 in aprimary flow pattern 133 with aflow vector 133 a initially oriented downward along the central axis of thereactor 100 to thebottom head 105, where it changes direction and flows first outward toward thereactor wall 102 and then back upward to thetop head 106, changes direction again and then back to the impeller(s) 103. The rotation of the blades ofstages 124 also result in asecondary flow pattern 134 in the reactor. Thesecondary flow 134 is a circular motion in the direction ofrotation 123 of therotating shaft 122. - The
reactor 100 also contains an ethylene injection system for feeding ethylene into thereactor 100. An embodiment shown inFIG. 2 has twoinjection nozzles 110 that project inward through thebottom reactor head 105. The injection nozzles 110 have slopedethylene outlets 111 which are oriented in a way that the outlet tips are positioned in a direction toward the reactor center and the outlet bases are positioned in a direction toward the reactor wall. In some embodiments, the diameter ofinjection nozzles 110 is adapted to maintain an ethylene exit velocity from 10-200 m/s. -
FIG. 3 is a top view ofreactor 100 shown inFIG. 2 . The depictedagitator stage 124 has four agitator blades attached torotating shaft 122. The rotation of the agitator blades ofstages 124 defines acircular cross-section 125. The twoethylene outlets 111 of the two injection nozzles used in the embodiment shown inFIG. 3 have the same distance from the center of the reactor and thus also fromrotating shaft 122 and are accordingly positioned oncircle 117. - In another embodiment of the present disclosure, the one or more injection nozzles project through the cylindrical reactor wall. In this embodiment, the injection nozzles extend from 0.02-0.48 times the inner diameter D into the reactor, such as from 0.1-0.4 times the inner diameter D into the reactor, and the injection nozzles project through the wall at a wall passing point positioned in the lower two third of the reactor; i.e., a point with a distance of not more than H*2/3 from the bottom tangent which connects the cylindrical reactor wall and the bottom tangent. In some embodiments, the wall passing point, at which the injection nozzles projects through the cylindrical reactor wall, is positioned at a point in the lower half of the reactor, i.e. at a point with a distance of not more than H/2 from the bottom tangent, alternatively the wall passing point is positioned in the lower third of the reactor, i.e., a point with a distance of not more than H/3 from the bottom tangent.
- The injection nozzles projecting through the cylindrical reactor wall may incline downward. For inclining injection nozzles, the horizontal angle between the direction of the injection nozzle and the horizontal, i.e. the angle between the center line of the injection nozzle and the horizontal, ma be from 5-60°, from 7.5-45°, and from 10-30°. The injection nozzles projecting through the cylindrical reactor wall may also have a radial deviation such that the center line of the injection nozzles is not passing through the reactor center. This deviation may be towards the downstream direction of the circular flow of the slurry which can be induced as a secondary flow pattern by the rotation of the agitator. Injection nozzles not directed to the reactor center may have a radial angle between the direction of the injection nozzle, i.e. the center line of the injection nozzle, and a line running from the wall passing point to the center of the reactor, of from 5-60°, from 7.5-45°, and from 10-30°. The outlets of the injection nozzles may be arranged at a height which differs from the height of a stage of agitator blades attached to the agitator shaft. The outlets of the injection nozzles may be arranged below at least one stage of the agitator blades, and the outlets of the injection nozzles may be located at a position below the agitator, i.e. below all stages of the agitator blades. Consequently, the outlets of the injection nozzles may be located at positions where the primary flow pattern is a downward flow of the slurry with an additional, smaller, circular flow. Accordingly, the outlets of sloped injection nozzles may be arranged in a way that the outlet tip is in upstream position with respect to the primary flow pattern.
- The injection nozzles projecting through the cylindrical reactor wall may be positioned in a way that all wall-passing points are arranged at the same height of the reactor. In an embodiment, the injection nozzles are uniformly distributed around the reactor and have uniform spacing, so that with two nozzles there is a 180 degree spacing between the nozzles; when there are three nozzles, there is a 120 degree spacing between the nozzles; and when there are four nozzles, there is a 90 degree spacing between the nozzles. Orienting the nozzles in this way prevents solids from entering the nozzles if solids settle in the reactor, as well as maximizing the number of nozzles that can be installed relative to an installation on the bottom of the reactor. Higher numbers of nozzles provide even more improved mixing and distribution of the ethylene.
-
FIGS. 4 and 5 illustrate an embodiment in which two injection nozzles project through the cylindrical reactor wall. The reactor shown inFIGS. 4 and 5 is identical to that depicted inFIGS. 2 and 3 and is agitated in the same manner. - The ethylene injection system for feeding ethylene into the
reactor 100 shown inFIG. 4 has twoinjection nozzles 110 that project inward through thecylindrical reactor wall 102 atwall passing points 118 positioned at the same height in the lower third of the reactor. The injection nozzles 110 may incline downward with a horizontal angle β between thecenter lines 115 and the horizontal 135. When injection nozzles 110 incline downward, angle β may be from about 5-60°. Theethylene outlets 111 of theinjection nozzles 110 are located at a position below theagitator 120, i.e. below all stages ofagitator blades 124.Distances 119 are the horizontal distances of the outlets of the injection nozzles to the center of the reactor. The injection nozzles 110 have slopedethylene outlets 111 which are oriented in a way that the outlet tips are positioned in an upward position corresponding to the primarily downward flow in the circular cross-section defined by the rotation of the agitator blades. The diameter ofinjection nozzles 110 is adapted to maintain an ethylene exit velocity from about 10-200 m/s. -
FIG. 5 is a top view ofreactor 100 shown inFIG. 4 . The twoinjection nozzles 110 may have a tangential deviation towards the downstream direction of the circular flow of theslurry 134 for which the tangential deviation has a radial angle γ between thecenter lines 115 of theinjection nozzle 110 and a line 136 running from thewall passing point 118 to the center of the reactor thus torotating shaft 122. When injection nozzles 110 have a tangential deviation, angle γ may be from 5-60°. - While multiple embodiments are disclosed, still other embodiments will become apparent to those skilled in the art from the following detailed description. As will be apparent, certain embodiments, as disclosed herein, are capable of modifications in various obvious aspects, all without departing from the spirit and scope of the claims as presented herein. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14180180.3 | 2014-08-07 | ||
EP14180180 | 2014-08-07 | ||
EP14180180 | 2014-08-07 | ||
PCT/EP2015/068171 WO2016020482A1 (en) | 2014-08-07 | 2015-08-06 | Process for ethylene polymerization with improved ethylene feed system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170233505A1 true US20170233505A1 (en) | 2017-08-17 |
US9738735B1 US9738735B1 (en) | 2017-08-22 |
Family
ID=51298584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/502,376 Active US9738735B1 (en) | 2014-08-07 | 2015-08-06 | Process for ethylene polymerization with improved ethylene feed system |
Country Status (9)
Country | Link |
---|---|
US (1) | US9738735B1 (en) |
EP (1) | EP3177652B1 (en) |
JP (1) | JP6297205B2 (en) |
KR (1) | KR101769311B1 (en) |
CN (1) | CN106573208B (en) |
BR (1) | BR112017001502B1 (en) |
RU (1) | RU2658836C1 (en) |
SA (1) | SA517380816B1 (en) |
WO (1) | WO2016020482A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111659322A (en) * | 2019-03-06 | 2020-09-15 | 浙江佳汇新材料有限公司 | Device and process for preparing 1,1,1, 3-tetrachloropropane |
EP3974052A1 (en) * | 2020-09-23 | 2022-03-30 | Basell Polyolefine GmbH | Vessel system |
US11833479B2 (en) | 2020-03-26 | 2023-12-05 | Chevron Phillips Chemical Company Lp | Catalyst slurry mixing process and system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102256402B1 (en) * | 2018-10-15 | 2021-05-25 | 한화솔루션 주식회사 | Batch reactor |
KR20200078221A (en) * | 2018-12-21 | 2020-07-01 | 한화솔루션 주식회사 | Batch reactor |
CN110527008B (en) * | 2019-08-12 | 2020-10-30 | 浙江大学 | A kind of method that utilizes microbubble to prepare ethylene polymer |
JP7608608B2 (en) * | 2020-12-09 | 2025-01-06 | バーゼル・ポリオレフィン・ゲーエムベーハー | Reactor for olefin gas phase polymerization |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9524038D0 (en) | 1995-11-23 | 1996-01-24 | Bp Chem Int Ltd | Nozzle |
TW526209B (en) * | 1999-10-21 | 2003-04-01 | Asahi Chemical Ind | Method for producing an olefin homopolymer or an olefin copolymer |
CN100427515C (en) * | 2000-12-04 | 2008-10-22 | 尤尼威蒂恩技术有限责任公司 | Polimerization process |
JP4307705B2 (en) * | 2000-12-19 | 2009-08-05 | 三井化学株式会社 | Polymerization apparatus and raw material gas supply method in polymerization apparatus |
DE102004006817A1 (en) | 2004-02-11 | 2005-09-01 | Basell Polyolefine Gmbh | Continuous production of polyolefins with a bi- or multimodal molecular weight distribution comprises suspension polymerization in a series of reactors with liquid and gas recycle |
EP1577003A1 (en) * | 2004-03-15 | 2005-09-21 | Borealis Technology Oy | Method and apparatus for producing polymers |
KR100646249B1 (en) * | 2004-04-08 | 2006-11-23 | 주식회사 엘지화학 | Polyethylene for water supply pipe with excellent processability and pressure resistance characteristics using hybrid supported metallocene catalyst and its manufacturing method |
CA2571340C (en) * | 2004-06-25 | 2011-01-25 | Exxonmobil Chemical Patents Inc. | Polymerization processes using hydrofluorocarbons |
JP5308797B2 (en) * | 2007-12-11 | 2013-10-09 | 住友化学株式会社 | Olefin polymerization reaction apparatus, polyolefin production system, and polyolefin production method |
JP5545800B2 (en) * | 2009-06-08 | 2014-07-09 | 住友化学株式会社 | Jet-fluidized bed type olefin polymerization reactor, polyolefin production system, and polyolefin production method |
JP5684286B2 (en) * | 2010-01-14 | 2015-03-11 | リスト ホールディング アーゲー | Depressurized volatile separator |
WO2011136492A2 (en) | 2010-04-30 | 2011-11-03 | 대림산업 주식회사 | Gas-phase polymerization of alpha-olefins |
CN102336849B (en) * | 2011-07-05 | 2013-03-20 | 中国石油化工股份有限公司 | Olefin polymerization reactor |
-
2015
- 2015-08-06 JP JP2017505075A patent/JP6297205B2/en active Active
- 2015-08-06 BR BR112017001502-1A patent/BR112017001502B1/en active IP Right Grant
- 2015-08-06 RU RU2017104788A patent/RU2658836C1/en active
- 2015-08-06 WO PCT/EP2015/068171 patent/WO2016020482A1/en active Application Filing
- 2015-08-06 KR KR1020177004791A patent/KR101769311B1/en active Active
- 2015-08-06 EP EP15747811.6A patent/EP3177652B1/en active Active
- 2015-08-06 CN CN201580041558.7A patent/CN106573208B/en active Active
- 2015-08-06 US US15/502,376 patent/US9738735B1/en active Active
-
2017
- 2017-01-30 SA SA517380816A patent/SA517380816B1/en unknown
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111659322A (en) * | 2019-03-06 | 2020-09-15 | 浙江佳汇新材料有限公司 | Device and process for preparing 1,1,1, 3-tetrachloropropane |
US11833479B2 (en) | 2020-03-26 | 2023-12-05 | Chevron Phillips Chemical Company Lp | Catalyst slurry mixing process and system |
EP3974052A1 (en) * | 2020-09-23 | 2022-03-30 | Basell Polyolefine GmbH | Vessel system |
WO2022063752A1 (en) * | 2020-09-23 | 2022-03-31 | Basell Polyolefine Gmbh | Vessel system for pre activating a solid catalys and method thereof |
Also Published As
Publication number | Publication date |
---|---|
BR112017001502B1 (en) | 2021-12-28 |
WO2016020482A1 (en) | 2016-02-11 |
US9738735B1 (en) | 2017-08-22 |
JP6297205B2 (en) | 2018-03-20 |
EP3177652B1 (en) | 2017-12-20 |
KR101769311B1 (en) | 2017-08-18 |
CN106573208A (en) | 2017-04-19 |
RU2658836C1 (en) | 2018-06-25 |
CN106573208B (en) | 2017-12-05 |
SA517380816B1 (en) | 2020-04-01 |
KR20170029629A (en) | 2017-03-15 |
JP2017521541A (en) | 2017-08-03 |
BR112017001502A2 (en) | 2017-12-05 |
EP3177652A1 (en) | 2017-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9738735B1 (en) | Process for ethylene polymerization with improved ethylene feed system | |
EP3145632B1 (en) | Process for ethylene polymerization with improved slurry pump performance | |
EP3161016B1 (en) | Ethylene polymerization process having improved heat exchanger performance | |
US8557932B2 (en) | Process for the preparation of a multimodal polyolefin polymer with improved hydrogen removal | |
EP2788393B1 (en) | Multistage process for the polymerization of olefins | |
US9790303B2 (en) | Process for controlling an ethylene polymerization process | |
KR101841383B1 (en) | Methods for controlling aluminum alkyl feed to a slurry polymerization process | |
US20230364574A1 (en) | Vessel system for pre activating a solid catalyst and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASELL POLYOLEFINE GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUEHL, REINHARD;PRANG, HARALD;CARVAJAL, RODRIGO;AND OTHERS;SIGNING DATES FROM 20151113 TO 20151123;REEL/FRAME:041195/0403 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |