US20170182668A1 - Mechanism with one sensor for panel present and double sheet detection for grippers - Google Patents
Mechanism with one sensor for panel present and double sheet detection for grippers Download PDFInfo
- Publication number
- US20170182668A1 US20170182668A1 US15/388,646 US201615388646A US2017182668A1 US 20170182668 A1 US20170182668 A1 US 20170182668A1 US 201615388646 A US201615388646 A US 201615388646A US 2017182668 A1 US2017182668 A1 US 2017182668A1
- Authority
- US
- United States
- Prior art keywords
- sensor
- switch
- cam link
- pivotal
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims description 53
- 238000001514 detection method Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims description 8
- 239000012530 fluid Substances 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/02—Gripping heads and other end effectors servo-actuated
- B25J15/0206—Gripping heads and other end effectors servo-actuated comprising articulated grippers
- B25J15/022—Gripping heads and other end effectors servo-actuated comprising articulated grippers actuated by articulated links
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/02—Gripping heads and other end effectors servo-actuated
Definitions
- Grippers are mechanical devices characterized by one or more jaws that are reciprocally rotated or translated so that the working end of each jaw is moved together or apart by a motive device such as an electric motor, electric solenoid, pneumatic piston, or other fluid powered actuator.
- a motive device such as an electric motor, electric solenoid, pneumatic piston, or other fluid powered actuator.
- the jaws of the gripper are responsible for transferring the force of the gripper to a workpiece such that the workpiece may then be moved, and/or rotated from one machine work station to another.
- the loading of the workpiece can fail in one of two ways.
- the first failure mode is characterized in that no workpiece is clamped between the jaws of the gripper.
- the second failure mode is characterized in that more than one workpiece is clamped between the jaws of the gripper. Each condition is undesirable because it often causes damage to the machine or causes machine down time.
- What is needed in the art is a way to reliably use a single sensor or switch to distinguish between the condition of having a gripper properly clamped on a single workpiece, and the condition of having a gripper improperly clamped on no workpiece or on two or more workpieces.
- the following disclosure is directed to an improved sensor or switch mechanism design that converts the linear movement of a driving member to rotational motion via a pivoting linkage and a cam.
- the cam driven linkage amplifies travel of the sensing object. This allows the use of one sensor or switch to distinguish the difference between one and two or more workpieces.
- the use of one sensor or switch instead of using two sensors or switches decreases the overall cost, size, and weight of the gripper.
- a gripper and sensor or switch assembly has a gripper body, an actuator connected to or integrated with the gripper body, a driving member connected to the actuator, and at least one movable jaw operably connected to the driving member.
- a sensor or switch mechanism is connected to the gripper mechanism and has a pivotal cam link.
- the pivotal cam link has a cam slot.
- a drive pin is connected to the driving member and engaged with the cam slot. The drive pin and the cam slot are configured to convert linear reciprocal motion of the driving member to rotational motion of the pivotal cam link.
- a target is attached to or integrated with the pivotal cam link.
- a sensor or switch is positioned proximate to an arc described by the target upon rotation of the pivotal cam link.
- the pivotal cam link, the cam slot, the target, and the sensor or switch are arranged so that the pivotal cam link pivots to place the target in a first position on the arc upon the at least one movable jaw closing upon no workpiece.
- the first position results in a first output of the sensor or switch.
- the pivotal cam link, the cam slot, the target, and the sensor or switch are further arranged so that the pivotal cam link pivots to place the target in a second position on the arc upon the at least one movable jaw closing upon a single workpiece.
- the second position results in a second output of the sensor or switch.
- the pivotal cam link, the cam slot, the target, and the sensor or switch are further arranged so that the pivotal cam link pivots to place the target in a third position on the arc upon the at least one movable jaw closing upon at least two workpieces.
- the third position results in a third output of the sensor or switch.
- the first output of the sensor or switch may or may not be the same as the third output of the sensor or switch.
- a sensor or switch mechanism for a gripper mechanism.
- the gripper mechanism has a gripper body, an actuator connected to or integrated with the gripper body, a driving member connected to the actuator, and at least one movable jaw operably connected to the driving member.
- a pivotal cam link of the sensor or switch mechanism has a cam slot.
- a drive pin is connected to the driving member and engaged with the cam slot. The drive pin and the cam slot are configured to convert linear reciprocal motion of the driving member to rotational motion of the pivotal cam link.
- a target is attached to or integrated with the pivotal cam link.
- a sensor or switch is positioned proximate to an arc described by the target upon rotation of the pivotal cam link.
- the pivotal cam link, the cam slot, the target, and the sensor or switch are arranged so that the pivotal cam link pivots to place the target in a first position on the arc upon the at least one movable jaw closing upon no workpiece.
- the first position results in a first output of the sensor or switch.
- the pivotal cam link, the cam slot, the target, and the sensor or switch are further arranged so that the pivotal cam link pivots to place the target in a second position on the arc upon the at least one movable jaw closing upon a single workpiece.
- the second position results in a second output of the sensor or switch.
- the pivotal cam link, the cam slot, the target, and the sensor or switch are further arranged so that the pivotal cam link pivots to place the target in a third position on the arc upon the at least one movable jaw closing upon at least two workpieces.
- the third position results in a third output of the sensor or switch.
- the first output of the sensor or switch may or may not be the same as the third output of the sensor or switch.
- a method of sensing the number of workpieces being gripped by a gripper mechanism has a gripper body, an actuator connected to or integrated with the gripper body, a driving member connected to the actuator, and at least one movable jaw operably connected to the driving member.
- the method includes several steps.
- the first step is providing a pivotal cam link.
- the pivotal cam link has a cam slot.
- the second step is connecting a drive pin to the driving member and engaging the drive pin with the cam slot.
- the third step is configuring the drive pin and the cam slot to convert linear reciprocal motion of the driving member to rotational motion of the pivotal cam link.
- the fourth step is attaching or integrating a target with the pivotal cam link.
- the fifth step is positioning a sensor or switch proximate to an arc described by the target upon rotation of the pivotal cam link.
- the sixth step includes arranging the pivotal cam link, the cam slot, the target, and the sensor or switch so that the pivotal cam link pivots to place the target in a first position on the arc upon the at least one movable jaw closing upon no workpiece. The first position results in a first output of the sensor or switch.
- the sixth step further includes arranging the pivotal cam link, the cam slot, the target, and the sensor or switch so that the pivotal cam link pivots to place the target in a second position on the arc upon the at least one movable jaw closing upon a single workpiece. The second position results in a second output of the sensor or switch.
- the sixth step further includes arranging the pivotal cam link, the cam slot, the target, and the sensor or switch so that the pivotal cam link pivots to place the target in a third position on the arc upon the at least one movable jaw closing upon at least two workpieces.
- the third position results in a third output of the sensor or switch.
- the first output of the sensor or switch may or may not be the same as the third output of the sensor or switch.
- FIG. 1 shows an exploded isometric view of a gripper having a sensor or switch mechanism according to an embodiment of the present invention
- FIG. 2 shows a left hand view of a gripper having a sensor or switch mechanism according to an embodiment of the present invention
- FIG. 3A shows a left hand view of a gripper having a sensor or switch mechanism and holding no workpiece, according to an embodiment of the present invention
- FIG. 3B shows a left hand view of a gripper having a sensor or switch mechanism and holding a single workpiece, according to an embodiment of the present invention.
- FIG. 3C shows a left hand view of a gripper having a sensor or switch mechanism and holding more than one workpiece, according to an embodiment of the present invention.
- FIGS. 1 through 3C illustrate examples of the invention and are not inclusive of all of its embodiments.
- FIGS. 1 through 3C show a gripper with a pneumatic actuator, it is understood that other embodiments could include a gripper having an electric motor, electric solenoid, or other fluid powered actuator.
- FIGS. 1 through 3C show a gripper with pivotal jaws, it is understood that other embodiments could include a gripper having parallel slidable jaws, or jaws that move from an unclamped position to a clamped position by way of any of several mechanisms.
- FIG. 1 shows an exploded isometric view of a gripper and sensor or switch assembly 10 according to an embodiment of the present invention.
- FIG. 2 shows a left hand view of a gripper and sensor or switch assembly 10 according to an embodiment of the present invention.
- the gripper and sensor or switch assembly is made up of a gripper mechanism 20 and a sensor or switch mechanism 40 .
- the gripper mechanism 20 has a gripper body 22 which may have an integrated fluid powered actuator 24 as shown, or which may attach to an external fluid powered actuator 24 . Alternately, the gripper mechanism 20 may be actuated by another kind of actuator, such as a linear electric motor or electric solenoid (not shown).
- the gripper mechanism has an upper gripper jaw 26 and a lower gripper jaw 28 , at least one and possibly both of which are pivotally connected to the gripper body 22 by way of a pivot pin 32 .
- the upper gripper jaw 26 and the lower gripper jaw 28 may be slidably connected to or in other movably connected relationship with the gripper body 22 of the gripper mechanism 20 .
- the fluid powered actuator 24 of the gripper mechanism 20 is connected to a driver 30 , by which the fluid powered actuator 24 transmits force and motion to at least one of the upper gripper jaw 26 and the lower gripper jaw 28 , causing the upper gripper jaw 26 and/or the lower gripper jaw 28 to pivot or translate between unclamped and clamped positions.
- the sensor or switch mechanism 40 has a sensor or switch housing 42 that is attached to the gripper body 22 of the gripper mechanism 20 using two threaded switch housing mounting fasteners 44 A and 44 B.
- the pivotal cam link 60 may pivot on the same pivot pin 32 as the upper gripper jaw 26 and/or the lower gripper jaw 28 , as shown, or may pivot on a separate pivot pin from the one on which the upper gripper jaw 26 and/or the lower gripper jaw 28 pivot, which separate pivot pin may or may not be exactly coaxially placed with the one on which the upper gripper jaw 26 and/or the lower gripper jaw 28 pivot.
- a linearly reciprocating drive pin 64 engages with the driver 30 so that the linearly reciprocating drive pin 64 is constrained to move with the driver 30 as actuated by the fluid powered actuator 24 .
- the linearly reciprocating drive pin 64 passes through a clearance slot 46 in the sensor or switch housing 42 and engages a closed curved cam slot 62 in the pivotal cam link 60 by way of a roller 66 .
- the linearly reciprocating drive pin 64 reciprocates with the driver 30 and imparts a force on the pivotal cam link 60 by way of the roller 66 and the closed curved cam slot 62 .
- An extension spring 68 is connected to the sensor or switch housing 42 and to the pivotal cam link 60 by way of extension spring pins 68 A and 68 B. The extension spring 68 imparts a moment on the pivotal cam link 60 to keep the roller 66 in contact with the outer surface of the closed curved cam slot 62 .
- the closed curved cam slot 62 in the pivotal cam link 60 is shaped such that a small change in the position of the driver 30 , and therefore in the position of the upper gripper jaw 26 and/or the lower gripper jaw 28 , corresponds to a large angular displacement of the pivotal cam link 60 .
- the closed curved cam slot 62 may be partially linear and partially arcuate as shown, or may be entirely arcuate, entirely linear, and/or may involve complex geometry such as the use of arcs of incrementally or progressively varying radii.
- a target 84 is attached to a target mounting slot 86 in the pivotal cam link 60 using a threaded target mounting fastener 88 .
- the target mounting slot 86 may be curved, in which case the curved target mounting slot 86 is concentrically or approximately concentrically arranged in the pivotal cam link 60 relative to the pivot pin 32 . Alternately, the target mounting slot 86 may be straight or otherwise configured.
- a sensor or switch 80 is attached to the sensor or switch housing 42 using a threaded sensor or switch mounting fastener 82 , and is located proximate to an arc described by the target 84 as the pivotal cam link 60 pivots about pivot pin 32 . In this way, the target 84 activates the sensor or switch 80 when the upper gripper jaw 26 and/or the lower gripper jaw 28 are clamped on a single workpiece 200 .
- the curved target mounting slot 86 and threaded target mounting fastener 88 illustrated in the embodiment of the invention shown in FIGS. 1 and 2 allow circumferential position adjustment of the target 84 relative to the pivotal cam link 60 .
- a curved target flange 84 A extends from the target 84 at least partially over the end of the pivotal cam link 60 adjacent to the curved target mounting slot 86 , which end of the pivotal cam link 60 adjacent to the curved target mounting slot 86 is also concentrically or approximately concentrically arranged relative to the pivot pin 32 .
- a target projection 84 B extends outwards from the target 84 .
- a cover 100 fits over the workings of the sensor or switch mechanism 40 and is securely retained in place by way of sensor or switch housing cover mounting slots 102 and at least one threaded cover retaining fastener 104 .
- a sensor or switch lead 80 A extends from the sensor or switch 80 through the sensor or switch housing 42 , in order to provide communication from the sensor or switch 80 , and is sealed against environmental contamination using a sensor or switch lead grommet 80 B.
- FIGS. 3A, 3B, and 3C a view is shown of the gripper and sensor or switch assembly 10 having no workpiece 200 between the upper gripper jaw 26 and the lower gripper jaw 28 , having a single workpiece 200 between the upper gripper jaw 26 and the lower gripper jaw 28 , and having two or more workpieces 200 between the upper gripper jaw 26 and the lower gripper jaw 28 , respectively.
- the cover 100 is not shown in FIGS. 3A, 3B, and 3C , in order to more clearly show the functioning of the sensor or switch mechanism 40 within the sensor or switch housing 42 relative to the gripper mechanism 20 in the gripper body 22 as actuated by the fluid powered actuator 24 .
- FIG. 3A again shows the gripper mechanism 20 having no workpiece 200 between the upper gripper jaw 26 and the lower gripper jaw 28 .
- the linearly reciprocating drive pin 64 moving within the closed curved cam slot 62 rotates the pivotal cam link 60 downward about the pivot pin 32 , until the target 84 is not within range of the sensor or switch 80 .
- FIG. 3B again shows the gripper mechanism having a single workpiece 200 between the upper gripper jaw 26 and the lower gripper jaw 28 .
- the linearly reciprocating drive pin 64 moving within the closed curved cam slot 62 again rotates the pivotal cam link 60 downward.
- the linearly reciprocating drive pin 64 travels no further, so that the pivotal cam link 60 rotates no further downward about the pivot pin 32 , and the target 84 is placed within range of the sensor or switch 80 .
- FIG. 3C shows the gripper mechanism having multiple workpieces 200 between the upper gripper jaw 26 and the lower gripper jaw 28 .
- the linearly reciprocating drive pin 64 moving within the closed curved cam slot 62 again rotates the pivotal cam link 60 downward, but because the upper gripper jaw 26 and the lower gripper jaw 28 make contact with the multiple workpieces 200 before the upper gripper jaw 26 and the lower gripper jaw 28 are in their intended operating position, the linearly reciprocating drive pin 64 travels only a limited distance within the closed curved cam slot 62 .
- the target 84 therefore, does not rotate sufficiently downward to come within range of the sensor or switch 80 .
- the pivotal cam link 60 amplifies the linear motion of the linearly reciprocating drive pin 64 , in order to allow the sensor or switch 80 to better respond to the motion and relative proximity of the target 84 .
- the pivotal cam link 60 may pivot between about 10 degrees and about 15 degrees from the position in which the gripper and sensor or switch assembly 10 has no workpiece 200 between the upper gripper jaw 26 and the lower gripper jaw 28 to the position in which the gripper and sensor or switch assembly 10 has a single workpiece 200 between the upper gripper jaw 26 and the lower gripper jaw 28 .
- the pivotal cam link 60 may further pivot between about 10 degrees and about 15 degrees from the position in which the gripper and sensor or switch assembly 10 has a single workpiece 200 between the upper gripper jaw 26 and the lower gripper jaw 28 and the position in which the gripper and sensor or switch assembly 10 has two or more workpieces 200 between the upper gripper jaw 26 and the lower gripper jaw 28 .
- a single sensor or switch 80 as used in the illustrated embodiments of the present invention, is able to able to determine whether the gripper mechanism 20 is properly clamped upon a single workpiece 200 , as opposed to being engaged with no workpiece 200 , or as opposed to being improperly clamped upon two or more workpieces 200 .
- the senor or switch 80 as used in other embodiments of the present invention, may be able to distinguish between the condition of being engaged with no workpiece 200 and the condition of being improperly clamped upon two or more workpieces 200 , by determining if the target 84 is below or above the sensor or switch 80 , respectively.
- Embodiments of the present invention may therefore utilize a sensor or switch of any of various types, such as a Hall Effect, optical, capacitive, photoelectric, inductive, Doppler, laser, magnetic, radar, ultrasonic, or even an electromechanical sensor or switch.
- the sensor or switch may read an optical, magnetic, or other difference built into the target 84 above and below the target projection 84 B.
- FIGS. 1 through 3C Each of the embodiments of the gripper and sensor or switch assembly 10 illustrated in FIGS. 1 through 3C are shown with the gripper mechanism 20 as a pull-to-clamp gripper mechanism 20 . That is to say, the fluid powered actuator 24 moves away from the pivot pin 32 as the upper gripper jaw 26 and/or the lower gripper jaw 28 move from an unclamped position to a clamped position.
- the fluid powered actuator 24 moves away from the pivot pin 32 as the upper gripper jaw 26 and/or the lower gripper jaw 28 move from an unclamped position to a clamped position.
- a gripper mechanism 20 employing a push-to-clamp arrangement, in which the fluid powered actuator 24 moves toward the pivot pin 32 as the upper gripper jaw 26 and/or the lower gripper jaw 28 move from an unclamped position to a clamped position.
- the closed curved cam slot 62 may remain as illustrated, so that the target 84 is above the sensor or switch 80 when there is no workpiece 200 between the upper gripper jaw 26 and the lower gripper jaw 28 , and so that the target 84 is below the sensor or switch 80 when there are two or more workpieces 200 between the upper gripper jaw 26 and the lower gripper jaw 28 .
- the geometry of the closed curved cam slot 62 may be altered in a push-to-clamp arrangement, so that the target 84 is below the sensor or switch 80 when there is no workpiece 200 between the upper gripper jaw 26 and the lower gripper jaw 28 , and so that the target 84 is above the sensor or switch 80 when there are two or more workpieces 200 between the upper gripper jaw 26 and the lower gripper jaw 28 .
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manipulator (AREA)
Abstract
Description
- This is a non-provisional application based upon U.S. provisional patent application Ser. No. 62/387,299, entitled “MECHANISM WITH ONE SENSOR FOR PANEL PRESENT AND DOUBLE SHEET DETECTION FOR GRIPPERS”, filed Dec. 23, 2015, which is incorporated herein by reference.
- Grippers are mechanical devices characterized by one or more jaws that are reciprocally rotated or translated so that the working end of each jaw is moved together or apart by a motive device such as an electric motor, electric solenoid, pneumatic piston, or other fluid powered actuator. In many cases, the jaws of the gripper are responsible for transferring the force of the gripper to a workpiece such that the workpiece may then be moved, and/or rotated from one machine work station to another. The loading of the workpiece can fail in one of two ways. The first failure mode is characterized in that no workpiece is clamped between the jaws of the gripper. The second failure mode is characterized in that more than one workpiece is clamped between the jaws of the gripper. Each condition is undesirable because it often causes damage to the machine or causes machine down time.
- It is known to use electronic sensors or switches to produce an output to signal whether loading failure has occurred or not. Current methods sense the relationship between a sensing object connected to the linear driving member, such as a piston rod, and the body of the gripper to determine one of the two failure conditions. When the workpiece is thin, the differential between the sensing object position when the gripper is clamped on one piece and its position on two pieces is small relative to the sensing object length in the direction of travel. In this case two sensors or switches are needed. A first sensor or switch is needed to sense whether there is at least one workpiece present, and a second sensor or switch is needed to sense that there are at least two workpieces present. The use of two sensors or switches in this way disadvantageously increases the cost, size, and weight of the gripper.
- What is needed in the art is a way to reliably use a single sensor or switch to distinguish between the condition of having a gripper properly clamped on a single workpiece, and the condition of having a gripper improperly clamped on no workpiece or on two or more workpieces.
- The following disclosure is directed to an improved sensor or switch mechanism design that converts the linear movement of a driving member to rotational motion via a pivoting linkage and a cam. The cam driven linkage amplifies travel of the sensing object. This allows the use of one sensor or switch to distinguish the difference between one and two or more workpieces. The use of one sensor or switch instead of using two sensors or switches decreases the overall cost, size, and weight of the gripper.
- In accordance with one aspect of the present invention, there is provided a gripper and sensor or switch assembly. A gripper mechanism has a gripper body, an actuator connected to or integrated with the gripper body, a driving member connected to the actuator, and at least one movable jaw operably connected to the driving member. A sensor or switch mechanism is connected to the gripper mechanism and has a pivotal cam link. The pivotal cam link has a cam slot. A drive pin is connected to the driving member and engaged with the cam slot. The drive pin and the cam slot are configured to convert linear reciprocal motion of the driving member to rotational motion of the pivotal cam link. A target is attached to or integrated with the pivotal cam link. A sensor or switch is positioned proximate to an arc described by the target upon rotation of the pivotal cam link. The pivotal cam link, the cam slot, the target, and the sensor or switch are arranged so that the pivotal cam link pivots to place the target in a first position on the arc upon the at least one movable jaw closing upon no workpiece. The first position results in a first output of the sensor or switch. The pivotal cam link, the cam slot, the target, and the sensor or switch are further arranged so that the pivotal cam link pivots to place the target in a second position on the arc upon the at least one movable jaw closing upon a single workpiece. The second position results in a second output of the sensor or switch. The pivotal cam link, the cam slot, the target, and the sensor or switch are further arranged so that the pivotal cam link pivots to place the target in a third position on the arc upon the at least one movable jaw closing upon at least two workpieces. The third position results in a third output of the sensor or switch. The first output of the sensor or switch may or may not be the same as the third output of the sensor or switch.
- In accordance with another aspect of the present invention, there is provided a sensor or switch mechanism for a gripper mechanism. The gripper mechanism has a gripper body, an actuator connected to or integrated with the gripper body, a driving member connected to the actuator, and at least one movable jaw operably connected to the driving member. A pivotal cam link of the sensor or switch mechanism has a cam slot. A drive pin is connected to the driving member and engaged with the cam slot. The drive pin and the cam slot are configured to convert linear reciprocal motion of the driving member to rotational motion of the pivotal cam link. A target is attached to or integrated with the pivotal cam link. A sensor or switch is positioned proximate to an arc described by the target upon rotation of the pivotal cam link. The pivotal cam link, the cam slot, the target, and the sensor or switch are arranged so that the pivotal cam link pivots to place the target in a first position on the arc upon the at least one movable jaw closing upon no workpiece. The first position results in a first output of the sensor or switch. The pivotal cam link, the cam slot, the target, and the sensor or switch are further arranged so that the pivotal cam link pivots to place the target in a second position on the arc upon the at least one movable jaw closing upon a single workpiece. The second position results in a second output of the sensor or switch. The pivotal cam link, the cam slot, the target, and the sensor or switch are further arranged so that the pivotal cam link pivots to place the target in a third position on the arc upon the at least one movable jaw closing upon at least two workpieces. The third position results in a third output of the sensor or switch. The first output of the sensor or switch may or may not be the same as the third output of the sensor or switch.
- In accordance with yet another aspect of the present invention, there is provided a method of sensing the number of workpieces being gripped by a gripper mechanism. The gripper mechanism has a gripper body, an actuator connected to or integrated with the gripper body, a driving member connected to the actuator, and at least one movable jaw operably connected to the driving member. The method includes several steps. The first step is providing a pivotal cam link. The pivotal cam link has a cam slot. The second step is connecting a drive pin to the driving member and engaging the drive pin with the cam slot. The third step is configuring the drive pin and the cam slot to convert linear reciprocal motion of the driving member to rotational motion of the pivotal cam link. The fourth step is attaching or integrating a target with the pivotal cam link. The fifth step is positioning a sensor or switch proximate to an arc described by the target upon rotation of the pivotal cam link. The sixth step includes arranging the pivotal cam link, the cam slot, the target, and the sensor or switch so that the pivotal cam link pivots to place the target in a first position on the arc upon the at least one movable jaw closing upon no workpiece. The first position results in a first output of the sensor or switch. The sixth step further includes arranging the pivotal cam link, the cam slot, the target, and the sensor or switch so that the pivotal cam link pivots to place the target in a second position on the arc upon the at least one movable jaw closing upon a single workpiece. The second position results in a second output of the sensor or switch. The sixth step further includes arranging the pivotal cam link, the cam slot, the target, and the sensor or switch so that the pivotal cam link pivots to place the target in a third position on the arc upon the at least one movable jaw closing upon at least two workpieces. The third position results in a third output of the sensor or switch. The first output of the sensor or switch may or may not be the same as the third output of the sensor or switch. An advantage of the present invention is that it provides a way to reliably use a single sensor or switch to distinguish between the condition of having a gripper properly clamped on a single workpiece, and the condition of having a gripper improperly clamped on no workpiece or on two or more workpieces.
- The descriptions above and the function of this invention will be more clearly defined by reference to the following description of an embodiment in conjunction with the drawings included, wherein:
-
FIG. 1 shows an exploded isometric view of a gripper having a sensor or switch mechanism according to an embodiment of the present invention; -
FIG. 2 shows a left hand view of a gripper having a sensor or switch mechanism according to an embodiment of the present invention; -
FIG. 3A shows a left hand view of a gripper having a sensor or switch mechanism and holding no workpiece, according to an embodiment of the present invention; -
FIG. 3B shows a left hand view of a gripper having a sensor or switch mechanism and holding a single workpiece, according to an embodiment of the present invention; and -
FIG. 3C shows a left hand view of a gripper having a sensor or switch mechanism and holding more than one workpiece, according to an embodiment of the present invention. - Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates an embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.
- For the purpose of discussion, parts contained in the multiple views of
FIGS. 1 through 3C will be referenced individually by alphanumeric characters. The embodiments contained inFIGS. 1 through 3C illustrate examples of the invention and are not inclusive of all of its embodiments. AlthoughFIGS. 1 through 3C show a gripper with a pneumatic actuator, it is understood that other embodiments could include a gripper having an electric motor, electric solenoid, or other fluid powered actuator. AlthoughFIGS. 1 through 3C show a gripper with pivotal jaws, it is understood that other embodiments could include a gripper having parallel slidable jaws, or jaws that move from an unclamped position to a clamped position by way of any of several mechanisms. - Referring now to
FIGS. 1 and 2 ,FIG. 1 shows an exploded isometric view of a gripper and sensor or switchassembly 10 according to an embodiment of the present invention.FIG. 2 shows a left hand view of a gripper and sensor or switchassembly 10 according to an embodiment of the present invention. The gripper and sensor or switch assembly is made up of agripper mechanism 20 and a sensor orswitch mechanism 40. Thegripper mechanism 20 has agripper body 22 which may have an integrated fluid poweredactuator 24 as shown, or which may attach to an external fluid poweredactuator 24. Alternately, thegripper mechanism 20 may be actuated by another kind of actuator, such as a linear electric motor or electric solenoid (not shown). The gripper mechanism has anupper gripper jaw 26 and alower gripper jaw 28, at least one and possibly both of which are pivotally connected to thegripper body 22 by way of apivot pin 32. Alternately, theupper gripper jaw 26 and thelower gripper jaw 28 may be slidably connected to or in other movably connected relationship with thegripper body 22 of thegripper mechanism 20. The fluid poweredactuator 24 of thegripper mechanism 20 is connected to adriver 30, by which the fluid poweredactuator 24 transmits force and motion to at least one of theupper gripper jaw 26 and thelower gripper jaw 28, causing theupper gripper jaw 26 and/or thelower gripper jaw 28 to pivot or translate between unclamped and clamped positions. - The sensor or
switch mechanism 40 has a sensor or switchhousing 42 that is attached to thegripper body 22 of thegripper mechanism 20 using two threaded switchhousing mounting fasteners pivot pin 32 upon which theupper gripper jaw 26 and/orlower gripper jaw 28 pivots, according to the embodiment of thegripper mechanism 20 inFIGS. 1 and 2 , extends from thegripper body 22 through the sensor or switchhousing 42, where apivotal cam link 60 being disposed within the sensor or switchhousing 42 also pivots upon thepivot pin 32. In the embodiment of pivotally attachedupper gripper jaw 26 and/orlower gripper jaw 28, thepivotal cam link 60 may pivot on thesame pivot pin 32 as theupper gripper jaw 26 and/or thelower gripper jaw 28, as shown, or may pivot on a separate pivot pin from the one on which theupper gripper jaw 26 and/or thelower gripper jaw 28 pivot, which separate pivot pin may or may not be exactly coaxially placed with the one on which theupper gripper jaw 26 and/or thelower gripper jaw 28 pivot. A linearly reciprocatingdrive pin 64 engages with thedriver 30 so that the linearly reciprocatingdrive pin 64 is constrained to move with thedriver 30 as actuated by the fluid poweredactuator 24. The linearly reciprocatingdrive pin 64 passes through aclearance slot 46 in the sensor or switchhousing 42 and engages a closedcurved cam slot 62 in thepivotal cam link 60 by way of aroller 66. - When the
gripper mechanism 20 moves from an open position to a closed position, and vice versa, the linearly reciprocatingdrive pin 64 reciprocates with thedriver 30 and imparts a force on thepivotal cam link 60 by way of theroller 66 and the closedcurved cam slot 62. Anextension spring 68 is connected to the sensor or switchhousing 42 and to thepivotal cam link 60 by way of extension spring pins 68A and 68B. Theextension spring 68 imparts a moment on thepivotal cam link 60 to keep theroller 66 in contact with the outer surface of the closedcurved cam slot 62. The closedcurved cam slot 62 in thepivotal cam link 60 is shaped such that a small change in the position of thedriver 30, and therefore in the position of theupper gripper jaw 26 and/or thelower gripper jaw 28, corresponds to a large angular displacement of thepivotal cam link 60. The closedcurved cam slot 62 may be partially linear and partially arcuate as shown, or may be entirely arcuate, entirely linear, and/or may involve complex geometry such as the use of arcs of incrementally or progressively varying radii. - At an end of the
pivotal cam link 60 distal from thepivot pin 32, atarget 84 is attached to atarget mounting slot 86 in thepivotal cam link 60 using a threadedtarget mounting fastener 88. Thetarget mounting slot 86 may be curved, in which case the curvedtarget mounting slot 86 is concentrically or approximately concentrically arranged in thepivotal cam link 60 relative to thepivot pin 32. Alternately, thetarget mounting slot 86 may be straight or otherwise configured. A sensor or switch 80 is attached to the sensor or switchhousing 42 using a threaded sensor orswitch mounting fastener 82, and is located proximate to an arc described by thetarget 84 as thepivotal cam link 60 pivots aboutpivot pin 32. In this way, thetarget 84 activates the sensor or switch 80 when theupper gripper jaw 26 and/or thelower gripper jaw 28 are clamped on asingle workpiece 200. - The curved
target mounting slot 86 and threadedtarget mounting fastener 88 illustrated in the embodiment of the invention shown inFIGS. 1 and 2 allow circumferential position adjustment of thetarget 84 relative to thepivotal cam link 60. In order to ensure proper orientation, such as radial orientation, of thetarget 84 relative to thepivotal cam link 60, acurved target flange 84A extends from thetarget 84 at least partially over the end of thepivotal cam link 60 adjacent to the curvedtarget mounting slot 86, which end of thepivotal cam link 60 adjacent to the curvedtarget mounting slot 86 is also concentrically or approximately concentrically arranged relative to thepivot pin 32. In order to ensure a precise reading of the position of thetarget 84 relative to the sensor or switch 80, atarget projection 84B extends outwards from thetarget 84. - A cover 100 (not shown in
FIG. 2 ) fits over the workings of the sensor orswitch mechanism 40 and is securely retained in place by way of sensor or switch housingcover mounting slots 102 and at least one threadedcover retaining fastener 104. A sensor or switch lead 80A extends from the sensor or switch 80 through the sensor or switchhousing 42, in order to provide communication from the sensor or switch 80, and is sealed against environmental contamination using a sensor or switchlead grommet 80B. - Turning now to
FIGS. 3A, 3B, and 3C , a view is shown of the gripper and sensor or switchassembly 10 having noworkpiece 200 between theupper gripper jaw 26 and thelower gripper jaw 28, having asingle workpiece 200 between theupper gripper jaw 26 and thelower gripper jaw 28, and having two ormore workpieces 200 between theupper gripper jaw 26 and thelower gripper jaw 28, respectively. Thecover 100 is not shown inFIGS. 3A, 3B, and 3C , in order to more clearly show the functioning of the sensor orswitch mechanism 40 within the sensor or switchhousing 42 relative to thegripper mechanism 20 in thegripper body 22 as actuated by the fluid poweredactuator 24.FIG. 3A again shows thegripper mechanism 20 having noworkpiece 200 between theupper gripper jaw 26 and thelower gripper jaw 28. In this condition, the linearly reciprocatingdrive pin 64 moving within the closedcurved cam slot 62 rotates thepivotal cam link 60 downward about thepivot pin 32, until thetarget 84 is not within range of the sensor orswitch 80. -
FIG. 3B again shows the gripper mechanism having asingle workpiece 200 between theupper gripper jaw 26 and thelower gripper jaw 28. In this condition, the linearly reciprocatingdrive pin 64 moving within the closedcurved cam slot 62 again rotates thepivotal cam link 60 downward. However, upon contact of theupper gripper jaw 26 and thelower gripper jaw 28 with thesingle workpiece 200, the linearly reciprocatingdrive pin 64 travels no further, so that thepivotal cam link 60 rotates no further downward about thepivot pin 32, and thetarget 84 is placed within range of the sensor orswitch 80.FIG. 3C shows the gripper mechanism havingmultiple workpieces 200 between theupper gripper jaw 26 and thelower gripper jaw 28. In this condition, the linearly reciprocatingdrive pin 64 moving within the closedcurved cam slot 62 again rotates thepivotal cam link 60 downward, but because theupper gripper jaw 26 and thelower gripper jaw 28 make contact with themultiple workpieces 200 before theupper gripper jaw 26 and thelower gripper jaw 28 are in their intended operating position, the linearly reciprocatingdrive pin 64 travels only a limited distance within the closedcurved cam slot 62. Thetarget 84, therefore, does not rotate sufficiently downward to come within range of the sensor orswitch 80. - As illustrated in
FIGS. 3A, 3B, and 3C , thepivotal cam link 60 amplifies the linear motion of the linearly reciprocatingdrive pin 64, in order to allow the sensor or switch 80 to better respond to the motion and relative proximity of thetarget 84. Specifically, thepivotal cam link 60 may pivot between about 10 degrees and about 15 degrees from the position in which the gripper and sensor or switchassembly 10 has noworkpiece 200 between theupper gripper jaw 26 and thelower gripper jaw 28 to the position in which the gripper and sensor or switchassembly 10 has asingle workpiece 200 between theupper gripper jaw 26 and thelower gripper jaw 28. Thepivotal cam link 60 may further pivot between about 10 degrees and about 15 degrees from the position in which the gripper and sensor or switchassembly 10 has asingle workpiece 200 between theupper gripper jaw 26 and thelower gripper jaw 28 and the position in which the gripper and sensor or switchassembly 10 has two ormore workpieces 200 between theupper gripper jaw 26 and thelower gripper jaw 28. In this way, a single sensor or switch 80, as used in the illustrated embodiments of the present invention, is able to able to determine whether thegripper mechanism 20 is properly clamped upon asingle workpiece 200, as opposed to being engaged with noworkpiece 200, or as opposed to being improperly clamped upon two ormore workpieces 200. Further, the sensor or switch 80 as used in other embodiments of the present invention, may be able to distinguish between the condition of being engaged with noworkpiece 200 and the condition of being improperly clamped upon two ormore workpieces 200, by determining if thetarget 84 is below or above the sensor or switch 80, respectively. Embodiments of the present invention may therefore utilize a sensor or switch of any of various types, such as a Hall Effect, optical, capacitive, photoelectric, inductive, Doppler, laser, magnetic, radar, ultrasonic, or even an electromechanical sensor or switch. As a non-limiting example of a method of determining if thetarget 84 is below or above the sensor or switch 80, the sensor or switch may read an optical, magnetic, or other difference built into thetarget 84 above and below thetarget projection 84B. - Each of the embodiments of the gripper and sensor or switch
assembly 10 illustrated inFIGS. 1 through 3C are shown with thegripper mechanism 20 as a pull-to-clamp gripper mechanism 20. That is to say, the fluid poweredactuator 24 moves away from thepivot pin 32 as theupper gripper jaw 26 and/or thelower gripper jaw 28 move from an unclamped position to a clamped position. However, it is contemplated that embodiments of the present invention may be applied to agripper mechanism 20 employing a push-to-clamp arrangement, in which the fluid poweredactuator 24 moves toward thepivot pin 32 as theupper gripper jaw 26 and/or thelower gripper jaw 28 move from an unclamped position to a clamped position. In this case, the closedcurved cam slot 62 may remain as illustrated, so that thetarget 84 is above the sensor or switch 80 when there is noworkpiece 200 between theupper gripper jaw 26 and thelower gripper jaw 28, and so that thetarget 84 is below the sensor or switch 80 when there are two ormore workpieces 200 between theupper gripper jaw 26 and thelower gripper jaw 28. Alternately, the geometry of the closedcurved cam slot 62 may be altered in a push-to-clamp arrangement, so that thetarget 84 is below the sensor or switch 80 when there is noworkpiece 200 between theupper gripper jaw 26 and thelower gripper jaw 28, and so that thetarget 84 is above the sensor or switch 80 when there are two ormore workpieces 200 between theupper gripper jaw 26 and thelower gripper jaw 28. - While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and the scope of this disclosure. This application is therefore intended to cover any variations, uses, adaptations, or symmetric equivalents of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/388,646 US9694500B1 (en) | 2015-12-23 | 2016-12-22 | Mechanism with one sensor for panel present and double sheet detection for grippers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562387299P | 2015-12-23 | 2015-12-23 | |
US15/388,646 US9694500B1 (en) | 2015-12-23 | 2016-12-22 | Mechanism with one sensor for panel present and double sheet detection for grippers |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170182668A1 true US20170182668A1 (en) | 2017-06-29 |
US9694500B1 US9694500B1 (en) | 2017-07-04 |
Family
ID=57799480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/388,646 Active US9694500B1 (en) | 2015-12-23 | 2016-12-22 | Mechanism with one sensor for panel present and double sheet detection for grippers |
Country Status (5)
Country | Link |
---|---|
US (1) | US9694500B1 (en) |
EP (1) | EP3184263B1 (en) |
DE (1) | DE202016008622U1 (en) |
ES (1) | ES2982436T3 (en) |
PL (1) | PL3184263T3 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201900006668A1 (en) * | 2019-05-09 | 2020-11-09 | Gimatic S R L | Gripper for industrial manipulators equipped with sensor and method for detecting the presence of a piece between the jaws of a gripper for industrial manipulators |
IT202100002267A1 (en) * | 2021-02-03 | 2022-08-03 | Gimatic S R L | Industrial manipulator gripper equipped with a sensor and method for detecting the presence of a workpiece between the jaws of an industrial manipulator gripper |
IT202100002291A1 (en) | 2021-02-03 | 2022-08-03 | Gimatic S R L | Industrial manipulator gripper equipped with a sensor and method for detecting the presence of a workpiece between the jaws of an industrial manipulator gripper |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107433612B (en) * | 2017-09-11 | 2020-04-07 | 无锡弗沃德科技有限公司 | Totally enclosed high temperature resistant pneumatic clamp |
CN107627304B (en) * | 2017-09-30 | 2023-12-29 | 青岛海研电子有限公司 | Automatic release switch system |
US10994423B2 (en) | 2018-06-15 | 2021-05-04 | Delaware Capital Formation, Inc. | Gripper with a trident body section |
US10549431B2 (en) | 2018-06-15 | 2020-02-04 | Delaware Capital Formation, Inc. | Gripper with a trident body section |
US20220161445A1 (en) * | 2020-11-20 | 2022-05-26 | Ctrl Robot Inc. | End effector for robotic positioner |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3027155A (en) * | 1958-12-23 | 1962-03-27 | Transfer Tools Ltd | Means for releasably clamping articles |
US3482830A (en) * | 1966-04-05 | 1969-12-09 | Jack J Sendoykas | Clamp |
US3567208A (en) * | 1969-06-06 | 1971-03-02 | Leland F Blatt | Toggle action jaw type gripper |
US5503378A (en) * | 1992-10-30 | 1996-04-02 | Delaware Capital Formation, Inc. | Clamping chuck |
US6115898A (en) * | 1995-06-06 | 2000-09-12 | Btm Corporation | Force multiplying apparatus for clamping a workpiece and forming a joint therein |
US6416045B1 (en) * | 2000-07-25 | 2002-07-09 | Norgren Automotive, Inc. | Rotary clamp having predetermined adjustable clamping angles |
US6565074B1 (en) * | 2001-06-26 | 2003-05-20 | Norgren Automotive, Inc. | Rotary clamp having an adjustable pre-stop |
US6666489B2 (en) * | 2001-08-23 | 2003-12-23 | Btm Corporation | Sealed gripper apparatus |
US7021687B2 (en) * | 1998-08-04 | 2006-04-04 | Phd, Inc. | Clamp assembly |
US7837247B2 (en) * | 2006-07-18 | 2010-11-23 | Syron Engineering & Manufacturing, Llc | Gripper with central support |
US7845698B2 (en) * | 2007-03-05 | 2010-12-07 | Syron Engineering & Manufacturing, Llc | Gripper with adjustable bumper stops |
US8919844B1 (en) * | 2012-05-18 | 2014-12-30 | Norgren Automation Solutions, Llc | Gripper with actuator mounted displacement sensor |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462585A (en) | 1982-04-06 | 1984-07-31 | Metromail Corporation | Thickness adjustable material detector for gripper mechanism |
US4593948A (en) * | 1984-08-23 | 1986-06-10 | Nicky Borcea | Gripper assembly |
US5762325A (en) * | 1996-01-29 | 1998-06-09 | Isi Norgren Inc. | Power actuated gripper |
US6019409A (en) | 1997-09-23 | 2000-02-01 | Phd, Inc. | Adjustable positioning target assembly |
JP2001105332A (en) * | 1999-10-01 | 2001-04-17 | Smc Corp | Electric clamp device |
US6378855B1 (en) * | 1999-10-26 | 2002-04-30 | Btm Corporation | Locking pin clamp |
MXPA01012811A (en) * | 2001-01-18 | 2002-11-04 | Progressive Tool & Ind Co | Clamping locator. |
US6641189B2 (en) * | 2001-03-16 | 2003-11-04 | Phd, Inc. | Article sensor assembly |
ES2865050T3 (en) | 2001-03-16 | 2021-10-14 | Phd Inc | Gripper provided with a set of adjustable sensors |
US7300082B2 (en) | 2003-07-21 | 2007-11-27 | Asyst Technologies, Inc. | Active edge gripping and effector |
US7543815B2 (en) | 2005-12-28 | 2009-06-09 | Hewlett-Packard Development Company, L.P. | Grippers malfunction monitoring |
WO2008057907A1 (en) | 2006-11-01 | 2008-05-15 | Syron Engineering & Manufacturing, Llc | Gripper having inductive sensor for detecting displacement |
EP2121240B1 (en) | 2007-01-15 | 2017-05-10 | PHD, Inc. | Armover clamp assembly |
EP2331837B1 (en) | 2008-09-04 | 2013-03-13 | PHD, Inc. | Gripper with self-compensating jaw guides |
-
2016
- 2016-12-22 DE DE202016008622.8U patent/DE202016008622U1/en active Active
- 2016-12-22 US US15/388,646 patent/US9694500B1/en active Active
- 2016-12-22 EP EP16206045.3A patent/EP3184263B1/en active Active
- 2016-12-22 ES ES16206045T patent/ES2982436T3/en active Active
- 2016-12-22 PL PL16206045.3T patent/PL3184263T3/en unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3027155A (en) * | 1958-12-23 | 1962-03-27 | Transfer Tools Ltd | Means for releasably clamping articles |
US3482830A (en) * | 1966-04-05 | 1969-12-09 | Jack J Sendoykas | Clamp |
US3567208A (en) * | 1969-06-06 | 1971-03-02 | Leland F Blatt | Toggle action jaw type gripper |
US5503378A (en) * | 1992-10-30 | 1996-04-02 | Delaware Capital Formation, Inc. | Clamping chuck |
US6115898A (en) * | 1995-06-06 | 2000-09-12 | Btm Corporation | Force multiplying apparatus for clamping a workpiece and forming a joint therein |
US7021687B2 (en) * | 1998-08-04 | 2006-04-04 | Phd, Inc. | Clamp assembly |
US6416045B1 (en) * | 2000-07-25 | 2002-07-09 | Norgren Automotive, Inc. | Rotary clamp having predetermined adjustable clamping angles |
US6565074B1 (en) * | 2001-06-26 | 2003-05-20 | Norgren Automotive, Inc. | Rotary clamp having an adjustable pre-stop |
US6666489B2 (en) * | 2001-08-23 | 2003-12-23 | Btm Corporation | Sealed gripper apparatus |
US7837247B2 (en) * | 2006-07-18 | 2010-11-23 | Syron Engineering & Manufacturing, Llc | Gripper with central support |
US7845698B2 (en) * | 2007-03-05 | 2010-12-07 | Syron Engineering & Manufacturing, Llc | Gripper with adjustable bumper stops |
US8454069B2 (en) * | 2007-03-05 | 2013-06-04 | Norgren Automation Solutions, Llc | Gripper with adjustable bumper stops |
US8919844B1 (en) * | 2012-05-18 | 2014-12-30 | Norgren Automation Solutions, Llc | Gripper with actuator mounted displacement sensor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201900006668A1 (en) * | 2019-05-09 | 2020-11-09 | Gimatic S R L | Gripper for industrial manipulators equipped with sensor and method for detecting the presence of a piece between the jaws of a gripper for industrial manipulators |
WO2020225613A1 (en) * | 2019-05-09 | 2020-11-12 | GIMATIC S.r.l. | Industrial manipulator gripper provided with sensor and method for detecting the presence of a piece between the jaws of an industrial manipulator gripper |
DE112020002292T5 (en) | 2019-05-09 | 2022-04-14 | GIMATIC S.r.l. | Gripper with sensor for industrial manipulators and method for detecting the presence of a workpiece between the jaws of a gripper for industrial manipulators |
JP2022531652A (en) * | 2019-05-09 | 2022-07-08 | ジマティック エセ.エッレ.エレ. | A method for detecting the presence of a component between multiple jaws of an industrial manipulator gripper equipped with a sensor and an industrial manipulator gripper. |
JP7555954B2 (en) | 2019-05-09 | 2024-09-25 | ジマティック エセ.エッレ.エレ. | Gripper of an industrial manipulator with a sensor and method for detecting the presence of a part between the jaws of a gripper of an industrial manipulator - Patents.com |
US12246437B2 (en) | 2019-05-09 | 2025-03-11 | GIMATIC S.r.l. | Industrial manipulator gripper provided with sensor and method for detecting the presence of a piece between the jaws of an industrial manipulator gripper |
IT202100002267A1 (en) * | 2021-02-03 | 2022-08-03 | Gimatic S R L | Industrial manipulator gripper equipped with a sensor and method for detecting the presence of a workpiece between the jaws of an industrial manipulator gripper |
IT202100002291A1 (en) | 2021-02-03 | 2022-08-03 | Gimatic S R L | Industrial manipulator gripper equipped with a sensor and method for detecting the presence of a workpiece between the jaws of an industrial manipulator gripper |
Also Published As
Publication number | Publication date |
---|---|
ES2982436T3 (en) | 2024-10-16 |
US9694500B1 (en) | 2017-07-04 |
PL3184263T3 (en) | 2024-08-05 |
EP3184263B1 (en) | 2024-05-01 |
DE202016008622U1 (en) | 2018-09-17 |
EP3184263A1 (en) | 2017-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9694500B1 (en) | Mechanism with one sensor for panel present and double sheet detection for grippers | |
RU2445539C2 (en) | Device to detect drive position | |
US6505871B2 (en) | Electric gripper | |
US7975825B2 (en) | Stop module, in particular for automated machining and conveyor devices | |
US8454003B2 (en) | Clamping device | |
US8833234B2 (en) | Cylinder | |
US9188208B2 (en) | Lifting device for a packaging machine | |
US12246437B2 (en) | Industrial manipulator gripper provided with sensor and method for detecting the presence of a piece between the jaws of an industrial manipulator gripper | |
US6641189B2 (en) | Article sensor assembly | |
CN204397899U (en) | A kind of rotatable mechanical gripping for biological detection Automation workstation | |
US20090179445A1 (en) | Rotating gripper assembly utilizing stepper motors | |
EP1368161B1 (en) | Gripper provided with an adjustable sensor assembly | |
JP5938779B2 (en) | Device for operating a gripping or movement tool starting from an electric actuator | |
CN109807923B (en) | Large-stroke electric clamping jaw | |
JP2011177863A (en) | Gripping device | |
US5738483A (en) | Lift and invert mechanism | |
WO2018109841A1 (en) | Turntable | |
JP2016112661A (en) | Electric hand | |
JP5149326B2 (en) | Stopper device | |
CN208700053U (en) | Automatically it grabs and send device and its automatic catching mechanism | |
CN204214893U (en) | Fixture folding holding device | |
US20190001468A1 (en) | Device for Clamping a Part to a Tool | |
JP5592917B2 (en) | Work gripping system | |
CN217861289U (en) | Anti-misoperation type end effector and robot applied to same | |
JP5311005B2 (en) | Robot hand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PHD, INC., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FERRIER, DANIEL;REEL/FRAME:040753/0974 Effective date: 20161220 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |