US20170181800A1 - Orthopedic fixation with imagery analysis - Google Patents
Orthopedic fixation with imagery analysis Download PDFInfo
- Publication number
- US20170181800A1 US20170181800A1 US15/461,969 US201715461969A US2017181800A1 US 20170181800 A1 US20170181800 A1 US 20170181800A1 US 201715461969 A US201715461969 A US 201715461969A US 2017181800 A1 US2017181800 A1 US 2017181800A1
- Authority
- US
- United States
- Prior art keywords
- transformation matrix
- image
- fixator
- bone
- respect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000399 orthopedic effect Effects 0.000 title claims abstract description 34
- 238000004458 analytical method Methods 0.000 title abstract description 15
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 93
- 238000000034 method Methods 0.000 claims abstract description 65
- 238000003384 imaging method Methods 0.000 claims abstract description 46
- 239000011159 matrix material Substances 0.000 claims description 42
- 230000009466 transformation Effects 0.000 claims description 33
- 239000003550 marker Substances 0.000 claims description 11
- 241000238631 Hexapoda Species 0.000 claims description 3
- 230000011164 ossification Effects 0.000 claims description 3
- 210000001519 tissue Anatomy 0.000 description 11
- 208000010392 Bone Fractures Diseases 0.000 description 6
- 206010017076 Fracture Diseases 0.000 description 4
- 230000035876 healing Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 206010070918 Bone deformity Diseases 0.000 description 1
- 208000006670 Multiple fractures Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/60—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements for external osteosynthesis, e.g. distractors, contractors
- A61B17/62—Ring frames, i.e. devices extending around the bones to be positioned
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/60—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements for external osteosynthesis, e.g. distractors, contractors
- A61B17/66—Alignment, compression or distraction mechanisms
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
- A61B2090/367—Correlation of different images or relation of image positions in respect to the body creating a 3D dataset from 2D images using position information
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3966—Radiopaque markers visible in an X-ray image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
- A61B90/14—Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
Definitions
- Techniques used to treat bone fractures and/or bone deformities can include the use of external fixators, such as fixation frames, that are surgically mounted to bone segments on opposed sides of a fracture site.
- a pair of radiographic images is taken of the fixator and bone segments at the fracture site.
- the radiographic images must be orthogonal, or perpendicular with respect to each other and aligned with anatomical axes of the patient.
- Data from the images is then manipulated with orthogonal projection techniques to construct a three dimensional representation of the fixator and the bones segments that can be used in developing a treatment plan, which may for example comprise realigning the bone segments through adjustments to the fixator.
- the ability to acquire orthogonal radiographic images of a fracture site can be limited by factors beyond a surgeon's control, for instance maneuverability of the imaging apparatus, the anatomical location of a fracture or deformity, and/or pain incurred by a patient in positioning a broken limb for orthogonal imaging.
- Limiting factors such as these can introduce inaccuracies into the imaging process. These inaccuracies can have undesirable consequences such as improper alignment of bone segments during the healing process, compromised union between the bone segments, necessitating additional rounds of radiographic imaging to facilitate alignment corrections, or even necessitating additional surgical procedures.
- a method of orthopedic fixation includes attaching a fixation apparatus to first and second bone segments.
- the method further includes capturing a first image of the fixation apparatus and bone segments from a first orientation with respect to the fixation apparatus.
- the method further still includes capturing a second image of the fixation apparatus and bone segments from a second orientation with respect to the fixation apparatus that is different from the first orientation.
- the method further still includes computing first and second transformation matrices for the first and second images, respectively.
- the method further still includes utilizing the transformation matrices to reconstruct a three dimensional representation of the first and second bone segments with respect to the fixation apparatus.
- a computer-readable storage medium has computer-readable instructions stored thereon that when executed by a processor perform a method of orthopedic fixation imagery analysis.
- the method includes capturing, via an imager, first and second images of a fixation apparatus and first and second bone segments attached thereto.
- the first image is captured from a first orientation and the second image is captured from a second orientation that is different from the first orientation.
- the method further includes obtaining a plurality of imaging scene parameters.
- the method further still includes reconstructing a three dimensional representation of the first and second bone segments with respect to the fixation apparatus based upon the plurality of imaging scene parameters.
- FIG. 1 is a perspective view of a fixation assembly positioned for imaging in accordance with an embodiment
- FIG. 2 is a perspective view of an example imaging process of the fixation assembly illustrated in FIG. 1 ;
- FIG. 3 is a flow diagram illustrating an example orthopedic fixation with imagery analysis process in accordance with an embodiment.
- bodily tissues for instance first and second bone segments 102 , 104
- bodily tissues can be aligned and/or oriented to promote union or other healing between the bodily tissues.
- the alignment and/or orientation of the bodily tissues can be achieved by connecting the bodily tissues to an adjustable fixation apparatus, such as orthopedic fixator 100 .
- the orthopedic fixator can comprise an external fixation apparatus that includes a plurality of discrete fixator members that remain external to the patient's body, but that are attached to respective discreet bodily tissues, for example with minimally invasive attachment members.
- the respective bodily tissues attached thereto can be reoriented and/or otherwise brought into alignment with each other, for example to promote union between the bodily tissues during the healing process.
- the use of external orthopedic fixators in combination with the imagery analysis and positioning techniques described herein can be advantageous in applications where direct measurement and manipulation of the bodily tissues is not possible, where limited or minimally invasive access to the bodily tissues is desired, or the like.
- the fixator members can be connected to each other via adjustment members, the adjustment members configured to facilitate the spatial repositioning of the fixator members with respect to each other.
- the orthopedic fixator 100 comprises a pair of fixator members in the form of an upper fixator ring 106 and a lower fixator ring 108 .
- the fixator rings 106 , 108 can be constructed the same or differently.
- the fixator rings 106 , 108 can have diameters that are the same or different.
- the fixator rings 106 , 108 can be constructed with varying cross sectional diameters, thicknesses, etc.
- fixator members of the orthopedic fixator 100 are not limited to the illustrated upper and lower fixator rings 106 , 108 , and that the orthopedic fixator 100 can be alternatively constructed.
- additional fixator rings can be provided and interconnected with the fixator ring 106 and/or 108 .
- geometries of the fixator members are not limited to rings, and that at least one, such as all of the fixator members can be alternatively constructed using any other suitable geometry.
- the first and second bone segments 102 , 104 can be rigidly attached to the upper and lower fixator rings 106 , 108 , respectively, with attachment members that can be mounted to the fixator rings 106 , 108 .
- attachment members are provided in the form of attachment rods 110 and attachment wires 112 .
- the rods 110 and the wires 112 extend between proximal ends attached to mounting members 114 that are mounted to the fixator rings 106 , 108 , and opposed distal ends that are inserted into or otherwise secured to the bone segments 102 , 104 .
- the mounting members 114 can be removably mounted to the fixator rings 106 , 108 at predefined points along the peripheries of the fixator rings 106 , 108 , for example by disposing them into threaded apertures defined by the fixator rings. With respect to each fixator ring 106 , 108 , the mounting members 114 can be mounted to the upper surface of the ring, the lower surface of the ring, or any combination thereof.
- attachment members are not limited to the configuration of the illustrated embodiment.
- any number of attachment members such as the illustrated rods 110 and wires 112 and any others, can be used to secure the bone segments to respective fixator members as desired.
- one or more of the attachment members for instance the rods 110 and/or wires 112 , can be alternatively configured to mount directly to the fixator rings 106 , 108 , without utilizing mounting members 114 .
- the upper and lower fixator rings 106 , 108 can be connected to each other by at least one, such as a plurality of adjustment members. At least one, such as all, of the adjustment members can be configured to allow the spatial positioning of the fixator rings with respect to each other to be adjusted.
- the upper and lower fixator rings 106 , 108 are connected to each other with a plurality of adjustment members provided in the form of adjustable length struts 116 . It should be appreciated that the construction of the orthopedic fixator 100 is not limited to the six struts 116 of the illustrated embodiment, and that more or fewer struts can be used as desired.
- Each of the adjustable length struts 116 can comprise opposed upper and lower strut arms 118 , 120 .
- Each of the upper and lower strut arms 118 , 120 have proximal ends disposed in a coupling member, or sleeve 122 , and opposed distal ends that are coupled to universal joints 124 mounted to the upper and lower fixator rings 106 , 108 respectively.
- the universal joints of the illustrated embodiment are disposed in pairs spaced evenly around the peripheries of the upper and lower fixator rings 106 , 108 , but can be alternatively placed in any other locations on the fixator rings as desired.
- each strut 116 can have threads defined thereon that are configured to be received by complementary threads defined in the sleeve 122 , such that when the proximal ends of the upper and lower strut arms 118 , 120 of a strut 116 are received in a respective sleeve 122 , rotation of the sleeve 122 causes the upper and lower strut arms 118 , 120 to translate within the sleeve 122 , thus causing the strut 116 to be elongated or shortened, depending on the direction of rotation.
- the length of each strut 116 can be independently adjusted with respect to the remaining struts.
- the adjustment members are not limited to the length adjustable struts 116 of the illustrated embodiment, and that the adjustment members can be alternatively constructed as desired, for example using one or more alternative geometries, alternative length adjustment mechanisms, and the like.
- the adjustable length struts 116 and the universal joints 124 by which they are mounted to the upper and lower fixator rings 106 , 108 allow the orthopedic fixator 100 to function much like a Stewart platform, and more specifically like a distraction osteogenesis ring system, a hexapod, or a Taylor spatial frame. That is, by making length adjustments to the struts 116 , the spatial positioning of the upper and lower fixator rings 106 , 108 , and thus the bone segments 102 , 104 can be altered. For example, in the illustrated embodiment the first bone segment 102 is attached to the upper fixator ring 106 and the second bone segment 104 is attached to the lower fixator ring 108 .
- attachment of the first and second bone segments 102 , 104 to the upper and lower fixator rings 106 , 108 is not limited to the illustrated embodiment (e.g., where the central longitudinal axes L 1 , L 2 of the first and second bone segments 102 , 104 are substantially perpendicular to the respective planes of the upper and lower fixator rings 106 , 108 ), and that a surgeon has complete flexibility in aligning the first and second bone segments 102 , 104 within the upper and lower fixator rings 106 , 108 when configuring the orthopedic fixator 100 .
- the upper and lower fixator rings 106 , 108 , and thus the bone segments 102 and 104 can be repositioned with respect to each other such that their respective longitudinal axes L 1 , L 2 are substantially aligned with each other, and such that their respective fractured ends 103 , 105 abut each other, so as to promote union during the healing process.
- adjustment of the struts 116 is not limited to the length adjustments as described herein, and that the struts 116 can be differently adjusted as desired.
- adjusting the positions of the fixator members is not limited to adjusting the lengths of the length adjustable struts 116 , and that the positioning of the fixator members with respect to each other can be alternatively adjusted, for example in accordance the type and/or number of adjustment members connected to the fixation apparatus.
- fixation apparatus such as orthopedic fixator 100
- Repositioning of the fixator members of an orthopedic fixation apparatus can be used to correct displacements of angulation, translation, rotation, or any combination thereof, within bodily tissues.
- a fixation apparatus such as orthopedic fixator 100 , utilized with the techniques described herein, can correct a plurality of such displacement defects individually or simultaneously.
- the fixation apparatus is not limited to the illustrated orthopedic fixator 100 , and that the fixation apparatus can be alternatively constructed as desired.
- the fixation apparatus can include additional fixation members, can include fixation members having alternative geometries, can include more or fewer adjustment members, can include alternatively constructed adjustment members, or any combination thereof.
- FIGS. 2-3 an example orthopedic fixation with imagery analysis process, or method in accordance with an embodiment is illustrated. Steps for carrying out an example orthopedic fixation with imagery analysis method 300 are depicted in the flow chart of FIG. 3 .
- bodily tissues such as first and second bone segments 102 , 104
- an adjustable fixation apparatus such as the orthopedic fixator 100 , as described above.
- At step 304 with the orthopedic fixator 100 secured to the bone segments 102 , 104 , at least one, such as a plurality of images can be taken of the fixator 100 and the bone segments 102 , 104 .
- the images can be captured using the same or different imaging techniques.
- the images can be acquired using x-ray imaging, computer tomography, magnetic resonance imaging, ultrasound, infrared imaging, photography, fluoroscopy, visual spectrum imaging, or any combination thereof.
- the images can be captured from any position and/or orientation with respect to each other and with respect to the fixator 100 and the bone segments 102 , 104 .
- the images 126 , 128 are captured from different directions, or orientations, such that the images do not overlap.
- the image planes of the pair of images 126 , 128 are not perpendicular with respect to each other.
- the angle ⁇ between the image planes of the images 126 , 128 is not equal to 90 degrees, such that the images 126 , 128 are non-orthogonal with respect to each other.
- at least two images are taken, although capturing additional images may increase the accuracy of the method.
- the images 126 , 128 can be captured using one or more imaging sources, or imagers, for instance the x-ray imagers 130 and/or corresponding image capturing devices 127 , 129 .
- the images 126 , 128 can be x-ray images captured by a single repositionable x-ray imager 130 , or can be captured by separately positioned imagers 130 .
- the position of the image capturing devices 127 , 129 and/or the imagers 130 with respect to the space origin 135 of the three dimensional space, described in more detail below, are known.
- the imagers 130 can be manually positioned and/or oriented under the control of a surgeon, automatically positioned, for instance by a software assisted imager, or any combination thereof.
- imaging scene parameters pertaining to fixator 100 , the bone segments 102 , 104 , imager(s) 130 , and image capturing devices 127 , 129 are obtained.
- the imaging scene parameters can be used in constructing a three dimensional representation of the positioning of the bone segments 102 , 104 in the fixator 100 , as described in more detail below.
- One or more of the imaging scene parameters may be known. Imaging scene parameters that are not known can be obtained, for example by mathematically comparing the locations of fixator element representations in the two dimensional space of the x-ray images 126 , 128 to the three dimensional locations of those elements on the geometry of the fixator 100 .
- imaging scene parameters can be calculated using a pin hole or perspective camera models.
- the imaging scene parameters can be determined numerically using matrix algebra, as described in more detail below.
- the imaging scene parameters can include, but are not limited to image pixel scale factors, image pixel aspect ratio, the image sensor skew factor, the image size, the focal length, the position and orientation of the imaging source, the position of the principle point (defined as the point in the plane of a respective image 126 , 128 that is closest to the respective imager 130 ), positions and orientations of elements of the fixator 100 , the position and orientation of a respective image receiver, and the position and orientation of the imaging source's lens.
- the imaging scene parameters can be obtained by comparing the locations of representations of particular components, or fixator elements of the fixator 100 within the two dimensional spaces of the images 126 , 128 , with the corresponding locations of those same fixator elements in actual, three dimensional space.
- the fixator elements comprise components of the orthopedic fixator 100 , and preferably are components that are easy to identify in the images 126 , 128 . Points, lines, conics, or the like, or any combination thereof can be used to describe the respective geometries of the fixator elements.
- the representations of fixator elements used in the comparison could include center lines of one or more of the adjustable length struts 116 , center points of the universal joints 124 , center points of the mounting members 114 , and the like.
- the fixator elements can further include marker elements that are distinct from the above-described components of the fixator 100 .
- the marker elements can be used in the comparison, as a supplement to or in lieu of using components of the fixator 100 .
- the marker elements can be mounted to specific locations of components of the fixator 100 prior to imaging, can be imbedded within components of the fixator 100 , or any combination thereof.
- the marker elements can be configured for enhanced viewability in the images 126 , 128 when compared to the viewability of the other components of the fixator 100 .
- the marker elements may be constructed of a different material, such as a radio-opaque material, or may be constructed with geometries that readily distinguish them from other components of the fixator 100 in the images 126 , 128 .
- the marker elements can have designated geometries that correspond to their respective locations on the fixator 100 .
- fixator elements can be identified for use in the comparison.
- the identification of fixator elements and the determination of their respective locations can be performed by a surgeon, with the assistance of software, or by any combination thereof.
- the locations of the fixator elements in the two dimensional space of the images 126 , 128 are determined with respect to local origins 125 defined in the imaging planes of the images 126 , 128 .
- the local origins 125 serve as a “zero points” for determining the locations of the fixator elements in the images 126 , 128 .
- the locations of the fixator elements can be defined by their respective x and y coordinates with respect to a respective local origin 125 .
- the location of the local origin 125 within the respective image can be arbitrary so long it is in the plane of the image. Typically, the origin is located at the center of the image or at a corner of the image, such as the lower left hand corner.
- the locations of the local origins are not limited to illustrated local origins 125 , and that the local origins 125 can be alternatively defined at any other locations. It should further be appreciated that the locations of the local origins 125 can be designated by a surgeon, with the assistance of software, or by any combination thereof.
- a respective transformation matrix P can be computed for each of the images 126 , 128 .
- the transformation matrices can be utilized to map location coordinates of one or more respective fixator elements in actual three dimensional space to corresponding location coordinates of the fixator element(s) in the two dimensional space of the respective image 126 , 128 .
- the same fixator element(s) need not be used in the comparisons of both images 126 , 128 .
- a fixator element used in constructing the transformation matrix associated with image 126 can be the same or different from the fixator element used in constructing the transformation matrix associated with image 128 .
- increasing the number of fixator elements used in computing the transformation matrices can increase the accuracy method. The following equation represents this operation:
- the symbols x and y represent location coordinates, with respect to the local origin 125 , of a fixator element point in the two dimensional space of images 126 , 128 .
- the symbols X, Y and Z represent corresponding location coordinates, with respect to a space origin 135 , of the fixator element point in actual three dimensional space.
- the point corresponding to the center of the plane defined by the upper surface of the upper fixator ring 106 has been designated as the space origin 135 .
- the illustrated matrix P can be at least four elements wide and three elements tall.
- the elements of the matrix P can be computed by solving the following matrix equation:
- the vector p can contain eleven elements representing values of the matrix P.
- the following equations present arrangements of the elements in the vector p and the matrix P:
- the twelfth element p 12 of the matrix P can be set to a numerical value of one.
- the matrices A and B can be assembled using the two dimensional and three dimensional information of the fixator elements. For every point representing a respective fixator element, two rows of matrices A and B can be constructed. The following equation presents the values of the two rows added to the matrices A and B for every point of a fixator element (e.g., a center point of a respective universal joint 124 ):
- the symbols X, Y and Z represent location coordinate values of a fixator element point in actual three dimensional space relative to the space origin 135
- the symbols x and y represent location coordinate values of the corresponding fixator element point in the two dimensional space of the respective image 126 , 128 relative to local origin 125 .
- the symbols X, Y and Z represent location coordinate values of a point belonging to a line of a fixator element in actual three dimensional space relative to the space origin 135 .
- the symbols dX, dY and dZ represent gradient values of the line in actual three dimensional space.
- the symbols a, b and c represent constants defining a line in the two dimensional space of a respective image 126 , 128 .
- a, b, and c can be computed using two points belonging to a line on a respective image 126 , 128 .
- the value of b is assumed to be 1, unless the line is a vertical line, in which case the value of b is zero.
- a correlation of constants a, b and c with the respective image coordinates x and y is presented in the following equation:
- the equation (2) can be over constrained by using six or more fixator elements, for example the adjustable length struts 116 . It should be appreciated that it is not necessary for all of the fixator elements to be visible in a single one of the images 126 , 128 in order to obtain the matrix P. It should further be appreciated that if one or more of the above-described imaging scene parameters are known, the known parameters can be used to reduce the minimum number of the fixator elements required to constrain equation (2). For instance, such information could be obtained from modern imaging systems in DICOM image headers. Preferably, a singular value decomposition or least squares method can be used to solve equation (2) for values of the vector p.
- the transformation matrices can be decomposed into imaging scene parameters.
- the following equation can be used to relate the matrix P to matrices E and I:
- Matrices E and I contain imaging scene parameters.
- the following equation represents a composition of the matrix I:
- the symbols sx and sy represent values of image coordinate scale factors (e.g., pixel scale factors).
- the symbol f representing the focal length, corresponds to the value of the shortest distance between a respective imaging source 130 and the plane of a corresponding image 126 , 128 .
- the symbols tx and ty represent the coordinates of the principle point relative to the local origin 125 of the respective image 126 , 128 .
- the following equation represents the composition of the matrix E:
- the symbols o x , o y and o z represent values of the position of the fixator 100 in actual three dimensional space.
- the symbols r 1 to r 9 describe the orientation of the fixator 100 .
- These values can be assembled into a three dimensional rotational matrix R represented by the following equation:
- FIG. 2 illustrates an example three dimensional imaging scene reconstructed from the x-ray images 126 , 128 .
- x-rays are emitted from x-ray imagers 130 .
- the x-ray imagers 130 can be the same or different imagers, as described above.
- the x-rays emitted from the imagers 130 are received on by corresponding imaging devices, thus capturing the images 126 , 128 .
- the positioning of the imagers 130 with respect to the local origins 125 is known.
- the images 126 , 128 and the imaging scene parameters can be used to obtain the positions and/or orientations of the bone segments 102 , 104 in three dimensional space.
- the position and/or orientation data obtained can be used to develop a treatment plan for a patient, for example to change the orientation and/or position of the fractured first and second bone segments 102 , 104 in order to promote union between the bone segments 102 , 104 , as described in more detail below.
- the methods and techniques of orthopedic fixation with imagery analysis described herein are not limited to applications of repositioning broken bones, and that orthopedic fixation with imagery analysis can be used in any other type of fixation procedure as desired, for example lengthening of bones, correction of anatomical defects, and the like.
- bone elements comprising representations of particular portions (e.g., anatomical features) of the bone segments 102 , 104 , can be identified and their locations within the images 126 , 128 determined.
- the locations of the bone elements are determined with respect to the respective local origins 125 of images 126 , 128 .
- the identification of the bone elements and the determination of their respective locations can be performed by a surgeon, with the assistance of software, or by any combination thereof.
- the bone elements can be used in the construction of the three dimensional representation of the position and/or orientation of the bone segments 102 , 104 .
- the bone elements are easy to identify in the images 126 , 128 .
- Points, lines, conics, or the like, or any combination thereof can be used to describe the respective geometries of the bone elements.
- points 134 and 136 representing the fractured ends 103 , 105 of the bone segments 102 , 104 , respectively, are identified as bone elements in the images 126 , 128 .
- the bone elements can further include marker elements that are implanted into the bone segments 102 , 104 prior to imaging.
- the marker elements can be used as a supplement to or in lieu of the above-described bone elements identified in the images 124 , 126 .
- the marker elements can be configured for enhanced viewability in the images 126 , 128 when compared to the viewability of anatomical features of the bone segments 102 , 104 .
- the marker elements may be constructed of a radio-opaque material, or may be constructed with readily distinguishable geometries.
- a three dimensional representation 200 of the bone segments 102 , 104 can be reconstructed.
- the three dimensional representation can be constructed with or without a corresponding representation of the fixator 100 .
- pairs of ray-lines such as ray lines 138 , 140 and 142 , 144 can be constructed for the bone element points 134 , 136 , respectively.
- Each ray line connects a bone element in one of the images 126 , 128 with a respective imager 130 .
- Each pair of ray lines can be analyzed for a common intersection point, such as points 146 , 148 .
- the common intersection points 146 , 148 represent the respective positions of the bone element points 134 , 136 , in the three dimensional representation of the bone segments 102 , 104 .
- more than a pair of ray lines such as a plurality, can be constructed, for example if more than two images were captured. If the ray lines of a particular set do not intersect, a point closest to all the ray lines in the set can be used as the common intersection point.
- the positions and/or orientations of the bone segments 102 , 104 can be quantified or measured using common intersection points, for instance points 146 , 148 .
- lines representing center lines of the bone segments 102 , 104 can be constructed and can be compared to the anatomical axes of the patient.
- the distance between the fractured ends 103 , 105 of the bone segments 102 , 104 can be quantified. Using these or similar techniques, the positions and/or orientations of the bone segments 102 , 104 can be determined.
- the three dimensional representation 200 can be used to determine desired changes to the positions and/or orientations of the bone segments 102 , 104 , for instance how the bone segments 102 , 104 can be repositioned with respect to each other in order to promote union between the bone segments 102 , 104 .
- the determination of the desired changes to the positions and/or orientations of the bone segments 102 , 104 are made by a surgeon.
- lines representing the longitudinal axes L 1 , L 2 of the first and second bone segments 102 , 104 can be generated in the three dimensional representation, in order to aid in determining desired changes to the positions and/or orientations of the bone segments 102 , 104 .
- the surgeon may be aided by software, such as a computer program configured to determine the desired positions and/or orientations of the bone segments 102 , 104 .
- the desired changes to the positions and/or orientations of the bone segments 102 , 104 are defined relative to the space origin 135 .
- a treatment plan for effecting the position and/or orientation changes can be determined.
- the desired changes to the positions and/or orientations of the bone segments 102 , 104 can be effected gradually, in a series of smaller changes.
- the positions and/or orientations of the bone segments 102 , 104 can be changed by changing the positions and/or orientations of the upper and lower fixator rings 106 , 108 with respect to each other, for instance by lengthening or shortening one or more of the length adjustable struts 116 .
- the required changes to the geometry of the fixator 100 i.e., the position and/or orientation of the fixator 100
- the required changes to the geometry of the fixator 100 that can enable the desired changes to the positions and/or orientations of the bone segments 102 , 104
- the required repositioning and/or reorientation of the second bone segment 104 with respect to the first bone segment 102 can be translated to changes in the position and/or orientation of the lower fixator ring 108 with respect to the upper fixator ring 106 .
- the required changes to the geometry of the fixator can be expressed with respect to a fixator origin 145 designated for the orthopedic fixator 100 . It should be appreciated that the fixator origin 145 need not coincide with the space origin 135 , as depicted in the illustrated embodiment.
- the treatment plan can be implemented, that is the positions and/or orientations of the bone segments 102 , 104 can be altered by changing the geometry of the fixator 100 .
- Examples of computer-readable media can include computer-readable storage media and computer-readable communication media.
- Examples of computer-readable storage media include, but are not limited to, a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).
- Examples of computer-readable communication media include, but are not limited to electronic signals transmitted over wired or wireless connections.
- orthopedic fixation with imagery analysis techniques described herein provide not only for the use of non-orthogonal images, but also allow the use of overlapping images, images captured using different imaging techniques, images captured in different settings, and the like, thereby presenting a surgeon with greater flexibility when compared with existing fixation and imagery techniques.
- a repositionable mechanical manipulation apparatus such as a parallel manipulator, a Stewart platform, or the like, can have first and second objects connected to it.
- the manipulation apparatus can be made up of a plurality of components.
- the first and second objects can be any objects that are to be repositioned and/or realigned with respect to each other. Steps similar to those of the orthopedic fixation with imagery analysis method 300 can be applied to reconstruct a three dimensional representation of the first and second objects with respect to the repositionable manipulation apparatus.
- a three dimensional representation of the first and second objects can be reconstructed and used to determine one or more geometry changes of the manipulation apparatus that when implemented can reposition the first and second objects with respect to each other.
- the three dimensional representation can be reconstructed using respective first and second pluralities of imaging scene parameters, a location of an element of at least one of the objects in the first image, and a location of an element of at least one of the objects in the second image.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Robotics (AREA)
- Urology & Nephrology (AREA)
- Radiology & Medical Imaging (AREA)
- Surgical Instruments (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Neurosurgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pathology (AREA)
Abstract
Methods of orthopedic fixation and imagery analysis are provided. Images of first and second bone segments attached to a fixation apparatus are captured. Fixator elements identified in the images can be used to obtain imaging scene parameters. Bone elements identified in the images can be used with the imaging scene parameters to reconstruct a three dimensional representation of positions and/or orientations of the first and second bone segments with respect to the fixation apparatus.
Description
- This application is a divisional of, and claims priority to, U.S. patent application Ser. No. 13/111,180, filed on May 19, 2011, which claims priority to Great Britain Patent Application Serial Number GB1008281.6, filed May 19, 2010. U.S. patent application Ser. No. 13/111,180, filed on May 19, 2011, is incorporated herein by reference in its entirety. Great Britain Patent Application Serial Number GB1008281.6, filed May 19, 2010, is incorporated herein by reference in its entirety.
- Techniques used to treat bone fractures and/or bone deformities can include the use of external fixators, such as fixation frames, that are surgically mounted to bone segments on opposed sides of a fracture site. A pair of radiographic images is taken of the fixator and bone segments at the fracture site. Typically, the radiographic images must be orthogonal, or perpendicular with respect to each other and aligned with anatomical axes of the patient. Data from the images is then manipulated with orthogonal projection techniques to construct a three dimensional representation of the fixator and the bones segments that can be used in developing a treatment plan, which may for example comprise realigning the bone segments through adjustments to the fixator.
- However, the ability to acquire orthogonal radiographic images of a fracture site can be limited by factors beyond a surgeon's control, for instance maneuverability of the imaging apparatus, the anatomical location of a fracture or deformity, and/or pain incurred by a patient in positioning a broken limb for orthogonal imaging. Limiting factors such as these can introduce inaccuracies into the imaging process. These inaccuracies can have undesirable consequences such as improper alignment of bone segments during the healing process, compromised union between the bone segments, necessitating additional rounds of radiographic imaging to facilitate alignment corrections, or even necessitating additional surgical procedures.
- In accordance with one embodiment, a method of orthopedic fixation includes attaching a fixation apparatus to first and second bone segments. The method further includes capturing a first image of the fixation apparatus and bone segments from a first orientation with respect to the fixation apparatus. The method further still includes capturing a second image of the fixation apparatus and bone segments from a second orientation with respect to the fixation apparatus that is different from the first orientation. The method further still includes computing first and second transformation matrices for the first and second images, respectively. The method further still includes utilizing the transformation matrices to reconstruct a three dimensional representation of the first and second bone segments with respect to the fixation apparatus.
- In accordance with an alternative embodiment, a computer-readable storage medium has computer-readable instructions stored thereon that when executed by a processor perform a method of orthopedic fixation imagery analysis. The method includes capturing, via an imager, first and second images of a fixation apparatus and first and second bone segments attached thereto. The first image is captured from a first orientation and the second image is captured from a second orientation that is different from the first orientation. The method further includes obtaining a plurality of imaging scene parameters. The method further still includes reconstructing a three dimensional representation of the first and second bone segments with respect to the fixation apparatus based upon the plurality of imaging scene parameters.
- The foregoing summary, as well as the following detailed description of the preferred embodiments of the application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the methods and/or techniques of orthopedic fixation with imagery analysis, there are shown in the drawings preferred embodiments. It should be understood, however, that the instant application is not limited to the precise arrangements and/or instrumentalities illustrated in the drawings, in which:
-
FIG. 1 is a perspective view of a fixation assembly positioned for imaging in accordance with an embodiment; -
FIG. 2 is a perspective view of an example imaging process of the fixation assembly illustrated inFIG. 1 ; and -
FIG. 3 is a flow diagram illustrating an example orthopedic fixation with imagery analysis process in accordance with an embodiment. - For convenience, the same or equivalent elements in the various embodiments illustrated in the drawings have been identified with the same reference numerals. Certain terminology is used in the following description for convenience only and is not limiting. The words “right”, “left”, “top” and “bottom” designate directions in the drawings to which reference is made. The words “inward”, “inwardly”, “outward”, and “outwardly” refer to directions toward and away from, respectively, the geometric center of the device and designated parts thereof. The terminology intended to be non-limiting includes the above-listed words, derivatives thereof and words of similar import.
- Referring initially to
FIG. 1 , bodily tissues, for instance first andsecond bone segments orthopedic fixator 100. The orthopedic fixator can comprise an external fixation apparatus that includes a plurality of discrete fixator members that remain external to the patient's body, but that are attached to respective discreet bodily tissues, for example with minimally invasive attachment members. By adjusting the spatial positioning of the fixator members with respect to each other, the respective bodily tissues attached thereto can be reoriented and/or otherwise brought into alignment with each other, for example to promote union between the bodily tissues during the healing process. The use of external orthopedic fixators in combination with the imagery analysis and positioning techniques described herein can be advantageous in applications where direct measurement and manipulation of the bodily tissues is not possible, where limited or minimally invasive access to the bodily tissues is desired, or the like. - The fixator members can be connected to each other via adjustment members, the adjustment members configured to facilitate the spatial repositioning of the fixator members with respect to each other. For example, in the illustrated embodiment, the
orthopedic fixator 100 comprises a pair of fixator members in the form of anupper fixator ring 106 and alower fixator ring 108. Thefixator rings fixator rings fixator rings orthopedic fixator 100 are not limited to the illustrated upper andlower fixator rings orthopedic fixator 100 can be alternatively constructed. For example, additional fixator rings can be provided and interconnected with thefixator ring 106 and/or 108. It should further be appreciated that the geometries of the fixator members are not limited to rings, and that at least one, such as all of the fixator members can be alternatively constructed using any other suitable geometry. - The first and
second bone segments lower fixator rings fixator rings attachment rods 110 andattachment wires 112. - The
rods 110 and thewires 112 extend between proximal ends attached to mountingmembers 114 that are mounted to thefixator rings bone segments mounting members 114 can be removably mounted to thefixator rings fixator rings fixator ring mounting members 114 can be mounted to the upper surface of the ring, the lower surface of the ring, or any combination thereof. It should be appreciated that the attachment members are not limited to the configuration of the illustrated embodiment. For example, any number of attachment members, such as the illustratedrods 110 andwires 112 and any others, can be used to secure the bone segments to respective fixator members as desired. It should further be appreciated that one or more of the attachment members, for instance therods 110 and/orwires 112, can be alternatively configured to mount directly to thefixator rings members 114. - The upper and
lower fixator rings lower fixator rings adjustable length struts 116. It should be appreciated that the construction of theorthopedic fixator 100 is not limited to the sixstruts 116 of the illustrated embodiment, and that more or fewer struts can be used as desired. - Each of the
adjustable length struts 116 can comprise opposed upper andlower strut arms lower strut arms sleeve 122, and opposed distal ends that are coupled touniversal joints 124 mounted to the upper andlower fixator rings - The proximal ends of the upper and
lower strut arms strut 116 can have threads defined thereon that are configured to be received by complementary threads defined in thesleeve 122, such that when the proximal ends of the upper andlower strut arms strut 116 are received in arespective sleeve 122, rotation of thesleeve 122 causes the upper andlower strut arms sleeve 122, thus causing thestrut 116 to be elongated or shortened, depending on the direction of rotation. Thus, the length of eachstrut 116 can be independently adjusted with respect to the remaining struts. It should be appreciated that the adjustment members are not limited to the lengthadjustable struts 116 of the illustrated embodiment, and that the adjustment members can be alternatively constructed as desired, for example using one or more alternative geometries, alternative length adjustment mechanisms, and the like. - The adjustable length struts 116 and the
universal joints 124 by which they are mounted to the upper and lower fixator rings 106, 108, allow theorthopedic fixator 100 to function much like a Stewart platform, and more specifically like a distraction osteogenesis ring system, a hexapod, or a Taylor spatial frame. That is, by making length adjustments to thestruts 116, the spatial positioning of the upper and lower fixator rings 106, 108, and thus thebone segments first bone segment 102 is attached to theupper fixator ring 106 and thesecond bone segment 104 is attached to thelower fixator ring 108. It should be appreciated that attachment of the first andsecond bone segments second bone segments second bone segments orthopedic fixator 100. - By varying the length of one or more of the
struts 116, the upper and lower fixator rings 106, 108, and thus thebone segments struts 116 is not limited to the length adjustments as described herein, and that thestruts 116 can be differently adjusted as desired. It should further be appreciated that adjusting the positions of the fixator members is not limited to adjusting the lengths of the lengthadjustable struts 116, and that the positioning of the fixator members with respect to each other can be alternatively adjusted, for example in accordance the type and/or number of adjustment members connected to the fixation apparatus. - Repositioning of the fixator members of an orthopedic fixation apparatus, such as
orthopedic fixator 100, can be used to correct displacements of angulation, translation, rotation, or any combination thereof, within bodily tissues. A fixation apparatus, such asorthopedic fixator 100, utilized with the techniques described herein, can correct a plurality of such displacement defects individually or simultaneously. However, it should be appreciated that the fixation apparatus is not limited to the illustratedorthopedic fixator 100, and that the fixation apparatus can be alternatively constructed as desired. For example, the fixation apparatus can include additional fixation members, can include fixation members having alternative geometries, can include more or fewer adjustment members, can include alternatively constructed adjustment members, or any combination thereof. - Referring now to
FIGS. 2-3 , an example orthopedic fixation with imagery analysis process, or method in accordance with an embodiment is illustrated. Steps for carrying out an example orthopedic fixation withimagery analysis method 300 are depicted in the flow chart ofFIG. 3 . Atstep 302, bodily tissues, such as first andsecond bone segments orthopedic fixator 100, as described above. - At
step 304, with theorthopedic fixator 100 secured to thebone segments fixator 100 and thebone segments - The images can be captured from any position and/or orientation with respect to each other and with respect to the
fixator 100 and thebone segments imagers 130. Preferably, theimages images images images - The
images x-ray imagers 130 and/or correspondingimage capturing devices images repositionable x-ray imager 130, or can be captured by separately positionedimagers 130. Preferably, the position of theimage capturing devices imagers 130 with respect to thespace origin 135 of the three dimensional space, described in more detail below, are known. Theimagers 130 can be manually positioned and/or oriented under the control of a surgeon, automatically positioned, for instance by a software assisted imager, or any combination thereof. - At
step 306, imaging scene parameters pertaining tofixator 100, thebone segments image capturing devices bone segments fixator 100, as described in more detail below. One or more of the imaging scene parameters may be known. Imaging scene parameters that are not known can be obtained, for example by mathematically comparing the locations of fixator element representations in the two dimensional space of thex-ray images fixator 100. In a preferred embodiment, imaging scene parameters can be calculated using a pin hole or perspective camera models. For example, the imaging scene parameters can be determined numerically using matrix algebra, as described in more detail below. - The imaging scene parameters can include, but are not limited to image pixel scale factors, image pixel aspect ratio, the image sensor skew factor, the image size, the focal length, the position and orientation of the imaging source, the position of the principle point (defined as the point in the plane of a
respective image fixator 100, the position and orientation of a respective image receiver, and the position and orientation of the imaging source's lens. - In a preferred embodiment, at least some, such as all of the imaging scene parameters can be obtained by comparing the locations of representations of particular components, or fixator elements of the
fixator 100 within the two dimensional spaces of theimages orthopedic fixator 100, and preferably are components that are easy to identify in theimages universal joints 124, center points of the mountingmembers 114, and the like. - The fixator elements can further include marker elements that are distinct from the above-described components of the
fixator 100. The marker elements can be used in the comparison, as a supplement to or in lieu of using components of thefixator 100. The marker elements can be mounted to specific locations of components of thefixator 100 prior to imaging, can be imbedded within components of thefixator 100, or any combination thereof. The marker elements can be configured for enhanced viewability in theimages fixator 100. For example, the marker elements may be constructed of a different material, such as a radio-opaque material, or may be constructed with geometries that readily distinguish them from other components of thefixator 100 in theimages fixator 100. - At
step 306A, fixator elements can be identified for use in the comparison. The identification of fixator elements and the determination of their respective locations can be performed by a surgeon, with the assistance of software, or by any combination thereof. - The locations of the fixator elements in the two dimensional space of the
images local origins 125 defined in the imaging planes of theimages local origins 125 serve as a “zero points” for determining the locations of the fixator elements in theimages local origin 125. The location of thelocal origin 125 within the respective image can be arbitrary so long it is in the plane of the image. Typically, the origin is located at the center of the image or at a corner of the image, such as the lower left hand corner. It should be appreciated that the locations of the local origins are not limited to illustratedlocal origins 125, and that thelocal origins 125 can be alternatively defined at any other locations. It should further be appreciated that the locations of thelocal origins 125 can be designated by a surgeon, with the assistance of software, or by any combination thereof. - At step 306B, a respective transformation matrix P can be computed for each of the
images respective image images image 126 can be the same or different from the fixator element used in constructing the transformation matrix associated withimage 128. It should further be appreciated that increasing the number of fixator elements used in computing the transformation matrices can increase the accuracy method. The following equation represents this operation: -
- The symbols x and y represent location coordinates, with respect to the
local origin 125, of a fixator element point in the two dimensional space ofimages space origin 135, of the fixator element point in actual three dimensional space. In the illustrated embodiment, the point corresponding to the center of the plane defined by the upper surface of theupper fixator ring 106 has been designated as thespace origin 135. The illustrated matrix P can be at least four elements wide and three elements tall. In a preferred embodiment, the elements of the matrix P can be computed by solving the following matrix equation: -
A·p=B (2) - The vector p can contain eleven elements representing values of the matrix P. The following equations present arrangements of the elements in the vector p and the matrix P:
-
- In the preferred embodiment, the twelfth element p12 of the matrix P can be set to a numerical value of one. The matrices A and B can be assembled using the two dimensional and three dimensional information of the fixator elements. For every point representing a respective fixator element, two rows of matrices A and B can be constructed. The following equation presents the values of the two rows added to the matrices A and B for every point of a fixator element (e.g., a center point of a respective universal joint 124):
-
- The symbols X, Y and Z represent location coordinate values of a fixator element point in actual three dimensional space relative to the
space origin 135, and the symbols x and y represent location coordinate values of the corresponding fixator element point in the two dimensional space of therespective image local origin 125. - For every line representing a respective fixator element, two rows of matrices A and B can be constructed. The following equation presents the values of the two rows added to the matrices A and B for every line of a fixator element (e.g., a center line of a respective adjustable length strut 116):
-
- The symbols X, Y and Z represent location coordinate values of a point belonging to a line of a fixator element in actual three dimensional space relative to the
space origin 135. The symbols dX, dY and dZ represent gradient values of the line in actual three dimensional space. The symbols a, b and c represent constants defining a line in the two dimensional space of arespective image respective image -
a·x+b·y+c=0 (7) - The equation (2) can be over constrained by using six or more fixator elements, for example the adjustable length struts 116. It should be appreciated that it is not necessary for all of the fixator elements to be visible in a single one of the
images - At step 306C, the transformation matrices can be decomposed into imaging scene parameters. The following equation can be used to relate the matrix P to matrices E and I:
-
P=I·E (8) - It should be appreciated that additional terms can be introduced when decomposing the matrix P. For example, the method presented by Tsai, described in “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using of-the-shelf TV Cameras and Lenses”, IEEE Journal of Robotics & Automation, RA-3, No. 4, 323-344, August 1987, which is incorporated herein by reference in its entirety, can be used to correct
images - Matrices E and I contain imaging scene parameters. The following equation represents a composition of the matrix I:
-
- The symbols sx and sy represent values of image coordinate scale factors (e.g., pixel scale factors). The symbol f, representing the focal length, corresponds to the value of the shortest distance between a
respective imaging source 130 and the plane of acorresponding image local origin 125 of therespective image -
- The symbols ox, oy and oz represent values of the position of the
fixator 100 in actual three dimensional space. The symbols r1 to r9 describe the orientation of thefixator 100. These values can be assembled into a three dimensional rotational matrix R represented by the following equation: -
- The methods of Trucco and Verri, as described in “Introductory Techniques of 3-D Computer Vision”, Prentice Hall, 1998, or the method of Hartley, as described in “Euclidian Reconstruction from Uncalibrated Views”, Applications of Invariance in Computer Vision, pages 237-256, Springer Verlag, Berlin Heidelberg, 1994, which are incorporated herein in their entireties, can be used to obtain values of the matrices E and/or I. Utilizing the resulting values of matrices E and I, a complete three dimensional imaging scene of the
fixator 100 and thebone segments - For example,
FIG. 2 illustrates an example three dimensional imaging scene reconstructed from thex-ray images x-ray imagers 130. It should be appreciated that thex-ray imagers 130 can be the same or different imagers, as described above. The x-rays emitted from theimagers 130 are received on by corresponding imaging devices, thus capturing theimages imagers 130 with respect to thelocal origins 125 is known. - At
step 308, theimages bone segments second bone segments bone segments - At
step 308A, bone elements comprising representations of particular portions (e.g., anatomical features) of thebone segments images local origins 125 ofimages - The bone elements can be used in the construction of the three dimensional representation of the position and/or orientation of the
bone segments images bone segments images - The bone elements can further include marker elements that are implanted into the
bone segments images images bone segments - At
step 308B, a threedimensional representation 200 of thebone segments fixator 100. In the illustrated embodiment, pairs of ray-lines, such asray lines images respective imager 130. Each pair of ray lines can be analyzed for a common intersection point, such aspoints bone segments - The positions and/or orientations of the
bone segments bone segments bone segments bone segments - At
step 310, the threedimensional representation 200 can be used to determine desired changes to the positions and/or orientations of thebone segments bone segments bone segments second bone segment 104 such that the axes L1 and L2 are brought into alignment, and to change the position of the second bone segment such that the fractured ends 103, 105 of thebone segments bone segments second bone segments bone segments bone segments bone segments space origin 135. - Once the desired changes to the positions and/or orientations of the
bone segments bone segments bone segments adjustable struts 116. - At step 312, the required changes to the geometry of the fixator 100 (i.e., the position and/or orientation of the fixator 100) that can enable the desired changes to the positions and/or orientations of the
bone segments second bone segment 104 with respect to thefirst bone segment 102 can be translated to changes in the position and/or orientation of thelower fixator ring 108 with respect to theupper fixator ring 106. The required changes to the geometry of the fixator can be expressed with respect to afixator origin 145 designated for theorthopedic fixator 100. It should be appreciated that thefixator origin 145 need not coincide with thespace origin 135, as depicted in the illustrated embodiment. - At
step 314, the treatment plan can be implemented, that is the positions and/or orientations of thebone segments fixator 100. - As described above, one or more of the methods steps described herein and illustrated in
FIG. 3 can be executed by a computer program, software, firmware or other form of computer-readable instructions incorporated in a computer-readable medium for execution by a computer or processor. Examples of computer-readable media can include computer-readable storage media and computer-readable communication media. Examples of computer-readable storage media include, but are not limited to, a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs). Examples of computer-readable communication media include, but are not limited to electronic signals transmitted over wired or wireless connections. - It should be appreciated that the orthopedic fixation with imagery analysis techniques described herein provide not only for the use of non-orthogonal images, but also allow the use of overlapping images, images captured using different imaging techniques, images captured in different settings, and the like, thereby presenting a surgeon with greater flexibility when compared with existing fixation and imagery techniques.
- It should further be appreciated that the methods and techniques described herein with respect to orthopedic fixation can also be applied to other uses. For example, a repositionable mechanical manipulation apparatus, such as a parallel manipulator, a Stewart platform, or the like, can have first and second objects connected to it. The manipulation apparatus can be made up of a plurality of components. The first and second objects can be any objects that are to be repositioned and/or realigned with respect to each other. Steps similar to those of the orthopedic fixation with
imagery analysis method 300 can be applied to reconstruct a three dimensional representation of the first and second objects with respect to the repositionable manipulation apparatus. A three dimensional representation of the first and second objects can be reconstructed and used to determine one or more geometry changes of the manipulation apparatus that when implemented can reposition the first and second objects with respect to each other. The three dimensional representation can be reconstructed using respective first and second pluralities of imaging scene parameters, a location of an element of at least one of the objects in the first image, and a location of an element of at least one of the objects in the second image. - Although the orthopedic fixation with imagery analysis techniques have been described herein with reference to preferred embodiments and/or preferred methods, it should be understood that the words which have been used herein are words of description and illustration, rather than words of limitation, and that the scope of the instant disclosure is not intended to be limited to those particulars, but rather is meant to extend to all structures, methods, and/or uses of the herein described orthopedic fixation with imagery analysis techniques. Those skilled in the relevant art, having the benefit of the teachings of this specification, may effect numerous modifications to the orthopedic fixation with imagery analysis techniques as described herein, and changes may be made without departing from the scope and spirit of the instant disclosure, for instance as recited in the appended claims.
Claims (20)
1. A method of orthopedic fixation, the method comprising:
attaching a fixation apparatus to a first bone segment and a second bone segment;
capturing a first image of the fixation apparatus, the first bone segment, and the second bone segment from a first orientation with respect to the fixation apparatus;
capturing a second image of the fixation apparatus, the first bone segment, and the second bone segment from a second orientation with respect to the fixation apparatus that is different from the first orientation;
computing a first transformation matrix and a second transformation matrix for the first image and the second image, respectively, using identified respective locations of a plurality of fixator elements in the first image and the second image; and
utilizing the first transformation matrix and the second transformation matrix to reconstruct a three dimensional representation of the first bone segment and the second bone segment with respect to the fixation apparatus.
2. The method of claim 1 , wherein the first orientation and the second orientation are non-orthogonal with respect to each other.
3. The method of claim 1 , wherein the fixation apparatus comprises a distraction osteogenesis ring system, a hexapod, or a Taylor spatial frame.
4. The method of claim 1 , wherein at least one additional image is captured, and a respective transformation matrix is calculated for each at least one additional image.
5. The method of claim 1 , wherein the first transformation matrix is computed based at least in part upon comparing a location of a first fixator element in the first image with a corresponding location of the first fixator element in three dimensional space, and wherein the second transformation matrix is computed based at least in part upon comparing a location of a selected fixator element in the second image with a corresponding location of the second fixator element in three dimensional space.
6. The method of claim 1 , wherein the first transformation matrix and the second transformation matrix are decomposed, respectively, into a first plurality of imaging scene parameters and second plurality of imaging scene parameters.
7. The method of claim 6 , wherein the three dimensional representation is reconstructed using the first plurality of imaging scene parameters, the second plurality of imaging scene parameters, respective locations of a first plurality of bone elements in the first image, and respective locations of a second plurality of bone elements in the second image.
8. The method of claim 7 , wherein each of the first plurality of bone elements and the second plurality of bone elements comprises at least one anatomical feature of the first bone segment and at least one anatomical feature of the second bone segment.
9. The method of claim 1 , wherein the first transformation matrix and the second transformation matrix are constructed based, at least in part, on one or more lines representing one or more of the plurality of fixator elements.
10. The method of claim 9 , wherein the computing of the first transformation matrix and the second transformation matrix comprises constructing rows of matrices based on the one or more lines.
11. The method of claim 9 , comprising computing of the first transformation matrix and the second transformation matrix based, at least in part, on a point value and a gradient value for each of the one or more lines.
12. The method of claim 9 , wherein the one or more lines represent center lines of one or more struts.
13. The method of claim 1 , wherein at least one of the plurality of fixator elements comprises a radio-opaque marker element.
14. A method of manipulating objects, the method comprising:
attaching a manipulation apparatus to a first object and a second object;
capturing a first image of the manipulation apparatus, the first object, and the second object from a first orientation;
capturing a second image of the manipulation apparatus, the first object, and the second object from a second orientation;
identifying respective representations of a plurality of manipulation apparatus components in the first image and the second image;
utilizing locations of the respective representations to compute a first transformation matrix and a second transformation matrix for the first image and the second image, respectively;
decomposing the first transformation matrix and the second transformation matrix into a first plurality of imaging scene parameters and a second plurality of imaging scene parameters, respectively;
reconstructing a three dimensional representation of the first object and the second object with respect to the manipulation apparatus;
calculating geometry changes for the manipulation apparatus, the geometry changes representing a repositioning of the first object and the second object with respect to each other; and
implementing the geometry changes in order to reposition the first object and the second object with respect to each other.
15. The method of claim 14 , wherein the three dimensional representation is reconstructed using the first plurality of imaging scene parameters, the second plurality of imaging scene parameters, a location of an element of at least one of the objects in the first image, and a location of an element of at least one of the objects in the second image.
16. The method of claim 14 , wherein the first transformation matrix and the second transformation matrix are computed based, at least in part, on one or more lines representing one or more of the plurality of manipulation apparatus components.
17. The method of claim 16 , wherein computing of the first transformation matrix and the second transformation matrix comprises constructing rows of matrices based on the one or more lines.
18. The method of claim 16 , wherein computing of the first transformation matrix and the second transformation matrix is based, at least in part, on a point value and a gradient value for each of the one or more lines.
19. The method of claim 16 , wherein the one or more lines represent center lines of one or more struts.
20. The method of claim 14 , wherein the manipulation apparatus comprises a distraction osteogenesis ring system, a hexapod, or a Taylor spatial frame.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/461,969 US20170181800A1 (en) | 2010-05-19 | 2017-03-17 | Orthopedic fixation with imagery analysis |
US16/111,775 US10932857B2 (en) | 2010-05-19 | 2018-08-24 | Orthopedic fixation with imagery analysis |
US17/163,850 US11896313B2 (en) | 2010-05-19 | 2021-02-01 | Orthopedic fixation with imagery analysis |
US18/401,861 US20240225737A9 (en) | 2010-05-19 | 2024-01-02 | Orthopedic Fixation With Imagery Analysis |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1008281.6A GB201008281D0 (en) | 2010-05-19 | 2010-05-19 | Indirect analysis and manipulation of objects |
GB1008281.6 | 2010-05-19 | ||
US13/111,180 US9642649B2 (en) | 2010-05-19 | 2011-05-19 | Orthopedic fixation with imagery analysis |
US15/461,969 US20170181800A1 (en) | 2010-05-19 | 2017-03-17 | Orthopedic fixation with imagery analysis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/111,180 Division US9642649B2 (en) | 2010-05-19 | 2011-05-19 | Orthopedic fixation with imagery analysis |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/111,775 Continuation US10932857B2 (en) | 2010-05-19 | 2018-08-24 | Orthopedic fixation with imagery analysis |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170181800A1 true US20170181800A1 (en) | 2017-06-29 |
Family
ID=42334938
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/111,180 Active US9642649B2 (en) | 2010-05-19 | 2011-05-19 | Orthopedic fixation with imagery analysis |
US15/461,969 Abandoned US20170181800A1 (en) | 2010-05-19 | 2017-03-17 | Orthopedic fixation with imagery analysis |
US16/111,775 Active US10932857B2 (en) | 2010-05-19 | 2018-08-24 | Orthopedic fixation with imagery analysis |
US17/163,850 Active 2031-08-23 US11896313B2 (en) | 2010-05-19 | 2021-02-01 | Orthopedic fixation with imagery analysis |
US18/401,861 Pending US20240225737A9 (en) | 2010-05-19 | 2024-01-02 | Orthopedic Fixation With Imagery Analysis |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/111,180 Active US9642649B2 (en) | 2010-05-19 | 2011-05-19 | Orthopedic fixation with imagery analysis |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/111,775 Active US10932857B2 (en) | 2010-05-19 | 2018-08-24 | Orthopedic fixation with imagery analysis |
US17/163,850 Active 2031-08-23 US11896313B2 (en) | 2010-05-19 | 2021-02-01 | Orthopedic fixation with imagery analysis |
US18/401,861 Pending US20240225737A9 (en) | 2010-05-19 | 2024-01-02 | Orthopedic Fixation With Imagery Analysis |
Country Status (10)
Country | Link |
---|---|
US (5) | US9642649B2 (en) |
EP (3) | EP3069673B1 (en) |
JP (1) | JP5828890B2 (en) |
KR (1) | KR101809291B1 (en) |
CN (1) | CN102883671B (en) |
BR (1) | BR112012028013B1 (en) |
CA (1) | CA2796094C (en) |
GB (1) | GB201008281D0 (en) |
RU (1) | RU2016120275A (en) |
WO (1) | WO2011146703A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170215922A1 (en) * | 2014-08-14 | 2017-08-03 | Automobili Lamborghini S.P.A. | Device for external orthopedic fixations |
US10470800B2 (en) | 2013-03-13 | 2019-11-12 | DePuy Synthes Products, Inc. | External bone fixation device |
US10835318B2 (en) | 2016-08-25 | 2020-11-17 | DePuy Synthes Products, Inc. | Orthopedic fixation control and manipulation |
US10932857B2 (en) | 2010-05-19 | 2021-03-02 | DePuy Synthes Products, Inc. | Orthopedic fixation with imagery analysis |
US11304757B2 (en) | 2019-03-28 | 2022-04-19 | Synthes Gmbh | Orthopedic fixation control and visualization |
US11334997B2 (en) | 2020-04-03 | 2022-05-17 | Synthes Gmbh | Hinge detection for orthopedic fixation |
US11439436B2 (en) | 2019-03-18 | 2022-09-13 | Synthes Gmbh | Orthopedic fixation strut swapping |
US12220250B2 (en) | 2016-06-19 | 2025-02-11 | Synthes Gmbh | User interface for strut device |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2595366T3 (en) | 2008-01-09 | 2016-12-29 | Stryker European Holdings I, Llc | Computer-assisted stereotactic surgery system based on a three-dimensional visualization |
ES2595355T3 (en) | 2008-02-05 | 2016-12-29 | Texas Scottish Rite Hospital For Children | External fixing ring |
EP2240085A4 (en) | 2008-02-08 | 2014-01-01 | Texas Scottish Rite Hospital | STATE OF EXTERNAL FIXATION |
ES2641592T3 (en) | 2008-02-12 | 2017-11-10 | Texas Scottish Rite Hospital | Quick-fix external fixing connection rod |
JP5529047B2 (en) * | 2008-02-18 | 2014-06-25 | テキサス スコティッシュ ライト ホスピタル フォー チルドレン | Tool and method for external fixed support adjustment |
US8858555B2 (en) | 2009-10-05 | 2014-10-14 | Stryker Trauma Sa | Dynamic external fixator and methods for use |
US10588647B2 (en) | 2010-03-01 | 2020-03-17 | Stryker European Holdings I, Llc | Computer assisted surgery system |
US20110313419A1 (en) * | 2010-06-22 | 2011-12-22 | Extraortho, Inc. | Hexapod External Fixation System with Collapsing Connectors |
US9517107B2 (en) | 2010-07-16 | 2016-12-13 | Stryker European Holdings I, Llc | Surgical targeting system and method |
EP2417924B1 (en) | 2010-08-11 | 2015-07-01 | Stryker Trauma SA | External fixator system |
US8945128B2 (en) | 2010-08-11 | 2015-02-03 | Stryker Trauma Sa | External fixator system |
US11141196B2 (en) | 2010-08-11 | 2021-10-12 | Stryker European Operations Holdings Llc | External fixator system |
BR112013003955B1 (en) | 2010-08-20 | 2021-01-05 | Texas Scottish Rite Hospital For Children | method of creating a 3d model of an object |
US20120330312A1 (en) * | 2011-06-23 | 2012-12-27 | Stryker Trauma Gmbh | Methods and systems for adjusting an external fixation frame |
WO2013116812A1 (en) | 2012-02-03 | 2013-08-08 | Orthohub, Inc. | External fixator deformity correction systems and methods |
TR201205660A2 (en) * | 2012-05-15 | 2012-12-21 | Tuna Medi̇kal Ürünleri̇ Paz. Ltd. Şti̇ | Parametric navigation method for computer-assisted, circular fixator application |
US9101398B2 (en) | 2012-08-23 | 2015-08-11 | Stryker Trauma Sa | Bone transport external fixation frame |
CA2883395C (en) * | 2012-09-06 | 2018-05-01 | Solana Surgical, Llc | External fixator |
ES2641310T3 (en) * | 2012-09-27 | 2017-11-08 | Stryker European Holdings I, Llc | Determination of the rotation position |
US8574232B1 (en) | 2012-11-13 | 2013-11-05 | Texas Scottish Hospital for Children | External fixation connection rod for rapid and gradual adjustment |
US9204937B2 (en) * | 2013-02-19 | 2015-12-08 | Stryker Trauma Gmbh | Software for use with deformity correction |
US9039706B2 (en) | 2013-03-13 | 2015-05-26 | DePuy Synthes Products, Inc. | External bone fixation device |
US8864763B2 (en) | 2013-03-13 | 2014-10-21 | DePuy Synthes Products, LLC | External bone fixation device |
AU2013382253B2 (en) * | 2013-03-15 | 2019-11-21 | Orthofix S.R.L. | Method of determining the position of an object using projections of markers or struts |
BR112015028432A2 (en) * | 2013-05-14 | 2017-07-25 | Smith & Nephew Inc | apparatus and method for administering a medical device prescription |
CN103417276B (en) * | 2013-09-06 | 2015-05-13 | 江苏广济医疗科技有限公司 | Regulating orthopedic device for ankle joint coronal plane compound malformation |
CN103505275B (en) * | 2013-09-09 | 2016-08-17 | 中国人民解放军第四军医大学 | A kind of Intelligent reduction system for long bone fracture |
US9610102B2 (en) * | 2013-09-26 | 2017-04-04 | Stryker European Holdings I, Llc | Bone position tracking system |
US10258377B1 (en) | 2013-09-27 | 2019-04-16 | Orthex, LLC | Point and click alignment method for orthopedic surgeons, and surgical and clinical accessories and devices |
CN104161579B (en) * | 2013-10-11 | 2015-04-01 | 苏州大学附属第一医院 | Sleeve-in fixed-angle-type supporting frame assembly push and press fixator based on shrinking and expanding type |
US9962188B2 (en) | 2013-10-29 | 2018-05-08 | Cardinal Health 247. Inc. | External fixation system and methods of use |
CN104398295B (en) * | 2013-12-05 | 2017-03-08 | 乔锋 | A kind of orthopaedics malformation correction and fixator for fracture reduction and its processing method |
CN103622735B (en) * | 2013-12-05 | 2015-05-06 | 乔锋 | Orthopedics department deformity correction and bone fracture reduction fixing device and processing method of fixing device |
KR101578489B1 (en) * | 2014-04-28 | 2015-12-18 | 주식회사 프레스토솔루션 | User Control Appratus For Fracture Reduction Robot |
KR101576798B1 (en) * | 2014-04-28 | 2015-12-14 | (주)트리엔 | Bobot System For Fracture Reduction |
US10082384B1 (en) | 2015-09-10 | 2018-09-25 | Stryker European Holdings I, Llc | Systems and methods for detecting fixation frame parameters |
US10595941B2 (en) | 2015-10-30 | 2020-03-24 | Orthosensor Inc. | Spine measurement system and method therefor |
US10376182B2 (en) | 2015-10-30 | 2019-08-13 | Orthosensor Inc. | Spine measurement system including rod measurement |
US10010346B2 (en) | 2016-04-20 | 2018-07-03 | Stryker European Holdings I, Llc | Ring hole planning for external fixation frames |
US10251705B2 (en) | 2016-06-02 | 2019-04-09 | Stryker European Holdings I, Llc | Software for use with deformity correction |
US10010350B2 (en) | 2016-06-14 | 2018-07-03 | Stryker European Holdings I, Llc | Gear mechanisms for fixation frame struts |
EP3515339B1 (en) * | 2016-09-26 | 2023-02-22 | Texas Scottish Rite Hospital For Children | Radiography aid for an external fixator |
BR202016023699U2 (en) * | 2016-10-11 | 2018-05-02 | Biosthetics Reabilitação Buco Maxilofacial S/S Ltda | CONSTRUCTIVE ARRANGEMENT IN ELECTROMECHANICAL MANIPULATOR FOR SURGERIES AND SURGICAL GUIDES |
US10874433B2 (en) | 2017-01-30 | 2020-12-29 | Stryker European Holdings I, Llc | Strut attachments for external fixation frame |
CN106859750A (en) * | 2017-03-23 | 2017-06-20 | 河北工业大学 | A kind of parallel connection type exter-nal fixer and its application process |
EP3672495A4 (en) * | 2017-08-24 | 2021-10-06 | AMDT Holdings, Inc. | PROCEDURES AND SYSTEMS FOR DETERMINING SETTING INSTRUCTIONS FOR EXTERNAL FASTENING DEVICES |
WO2019195231A1 (en) * | 2018-04-05 | 2019-10-10 | Smith & Nephew, Inc. | Devices, software, systems, and methods for intraoperatively and postoperatively tracking the relative position between external fixation components or rings |
CN108670384A (en) * | 2018-05-31 | 2018-10-19 | 超微(上海)骨科医院管理股份有限公司 | A kind of prescribed parameters optimization method of parallel connection type exter-nal fixer |
JP2021530326A (en) * | 2018-07-24 | 2021-11-11 | エーエムディーティー ホールディングス インコーポレイテッドAmdt Holdings, Inc. | Methods and systems for registering 3D models of radiographic images and external fixation devices |
CN109009376B (en) * | 2018-08-10 | 2019-12-17 | 天津大学 | An automatic identification method for the spatial pose of a fracture combined with an external fixator |
BR112021018091A2 (en) * | 2019-03-12 | 2021-11-23 | Amdt Holdings Inc | Monoscopic radiographic image registration methods and systems and three-dimensional model |
SE543797C2 (en) * | 2019-10-29 | 2021-07-27 | Ortoma Ab | Method for Planning an Orthopedic Procedure |
EP4014911B1 (en) | 2020-12-21 | 2023-10-04 | Metamorphosis GmbH | Artificial-intelligence-based detection of invisible anatomical structures in 2d x-ray images |
US11877802B2 (en) | 2020-12-30 | 2024-01-23 | DePuy Synthes Products, Inc. | Perspective frame matching process for deformed fixation rings |
US12137941B2 (en) * | 2021-12-23 | 2024-11-12 | Orthofix S.R.L. | Orthopedic cable bone transport device and bone transport system comprising said device |
KR102700621B1 (en) * | 2022-03-28 | 2024-08-30 | 주식회사 에어스 | Fracture restoration robot system and their method |
KR102750202B1 (en) * | 2022-07-14 | 2025-01-07 | 주식회사 에어스 | Wireless fracture reduction robot device and its motion system |
ES3000427T3 (en) | 2022-11-23 | 2025-02-28 | Piotr Mazurkiewicz | Orthopaedic device and system for managing therapy |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4630203A (en) * | 1983-12-27 | 1986-12-16 | Thomas Szirtes | Contour radiography: a system for determining 3-dimensional contours of an object from its 2-dimensional images |
US6701174B1 (en) * | 2000-04-07 | 2004-03-02 | Carnegie Mellon University | Computer-aided bone distraction |
US20050256389A1 (en) * | 2001-11-16 | 2005-11-17 | Yoshio Koga | Calculation method, calculation program and calculation system for information supporting arthroplasty |
US20070043354A1 (en) * | 2005-08-03 | 2007-02-22 | Koo Terry K | Bone reposition device, method and system |
US7187792B2 (en) * | 2003-08-29 | 2007-03-06 | Accuray, Inc. | Apparatus and method for determining measure of similarity between images |
US20070238069A1 (en) * | 2006-04-10 | 2007-10-11 | Scott Lovald | Osteosynthesis plate, method of customizing same, and method for installing same |
US20080114267A1 (en) * | 2006-11-14 | 2008-05-15 | General Electric Company | Systems and methods for implant distance measurement |
US20090143788A1 (en) * | 2007-12-04 | 2009-06-04 | National Cheng Kung University | Navigation method and system for drilling operation in spinal surgery |
US20110029093A1 (en) * | 2001-05-25 | 2011-02-03 | Ray Bojarski | Patient-adapted and improved articular implants, designs and related guide tools |
US20130060146A1 (en) * | 2010-04-28 | 2013-03-07 | Ryerson University | System and methods for intraoperative guidance feedback |
Family Cites Families (189)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2055024A (en) | 1934-08-07 | 1936-09-22 | Jr Joseph E Bittner | Fracture reducing splint |
US2391537A (en) | 1943-09-27 | 1945-12-25 | Anderson Roger | Ambulatory rotating reduction and fixation splint |
NL281863A (en) | 1961-08-18 | |||
US3977397A (en) | 1974-11-27 | 1976-08-31 | Kalnberz Viktor Konstantinovic | Surgical compression-distraction instrument |
US4081686A (en) * | 1977-02-15 | 1978-03-28 | E. I. Du Pont De Nemours And Company | X-ray film cassette and method of making same |
US4450834A (en) | 1979-10-18 | 1984-05-29 | Ace Orthopedic Manufacturing, Inc. | External fixation device |
US4489111A (en) | 1984-01-24 | 1984-12-18 | Woodrum Dorothy B | Beaded trimmed satin christmas ornament |
US4889111A (en) | 1984-02-08 | 1989-12-26 | Ben Dov Meir | Bone growth stimulator |
CH664079A5 (en) | 1985-01-24 | 1988-02-15 | Jaquet Orthopedie | BOW ELEMENT AND EXTERNAL FIXER FOR OSTEOSYNTHESIS AND OSTEOPLASTY. |
FR2576774B1 (en) | 1985-02-07 | 1990-03-30 | Issoire Aviat Sa | DEVICE FOR THREE-DIMENSIONAL POSITIONING OF TWO PARTS, IN PARTICULAR TWO BONE PARTS, AND FOR MODIFYING THE SAME |
FR2577793B1 (en) | 1985-02-22 | 1989-04-21 | Realisations Electro Mecanique | EXTERNAL FIXER DEVICE FOR ORTHOPEDIC USE |
US4620533A (en) | 1985-09-16 | 1986-11-04 | Pfizer Hospital Products Group Inc. | External bone fixation apparatus |
AT384360B (en) | 1985-09-18 | 1987-11-10 | Kurgansky Niiex I Klinicheskoi | DRIVE FOR COMPRESSION DISTRACTION DEVICES |
FR2595045B1 (en) | 1986-02-28 | 1991-12-27 | Hardy Jean Marie | DEVICE FOR IMMOBILIZING A BONE ELEMENT, PARTICULARLY FOR ORTHOPEDIC INTERVENTION |
DE3720242A1 (en) | 1987-06-19 | 1988-12-29 | Schewior Thomas Dr Med | RING FIXATEUR FOR SETTING UP BONE SECTIONS AND / OR FRAGMENTS AND FOR GENERATING BONE TENSIONS |
US4875165A (en) | 1987-11-27 | 1989-10-17 | University Of Chicago | Method for determination of 3-D structure in biplane angiography |
US4964320A (en) | 1988-12-22 | 1990-10-23 | Engineering & Precision Machining, Inc. | Method of forming a beaded transfixion wire |
US4930961A (en) | 1988-12-23 | 1990-06-05 | Weis Charles W | Quick lock and release fastener |
US5180380A (en) | 1989-03-08 | 1993-01-19 | Autogenesis Corporation | Automatic compression-distraction-torsion method and apparatus |
US4973331A (en) | 1989-03-08 | 1990-11-27 | Autogenesis Corporation | Automatic compression-distraction-torsion method and apparatus |
US5179525A (en) | 1990-05-01 | 1993-01-12 | University Of Florida | Method and apparatus for controlling geometrically simple parallel mechanisms with distinctive connections |
US5156605A (en) | 1990-07-06 | 1992-10-20 | Autogenesis Corporation | Automatic internal compression-distraction-method and apparatus |
US5062844A (en) | 1990-09-07 | 1991-11-05 | Smith & Nephew Richards Inc. | Method and apparatus for the fixation of bone fractures, limb lengthening and the correction of deformities |
FR2667781B1 (en) | 1990-10-12 | 1994-01-21 | Materiel Orthopedique Cie Gle | EXTERNAL FIXATION AND REDUCTION OF BONE FRACTURES. |
US5074866A (en) | 1990-10-16 | 1991-12-24 | Smith & Nephew Richards Inc. | Translation/rotation device for external bone fixation system |
US5108393A (en) | 1991-04-08 | 1992-04-28 | The United States Of America As Represented By The Secretary Of The Navy | Non-invasive body-clamp |
US5275598A (en) | 1991-10-09 | 1994-01-04 | Cook Richard L | Quasi-isotropic apparatus and method of fabricating the apparatus |
US5443464A (en) | 1993-02-16 | 1995-08-22 | Memphis Orthopaedic Design, Inc. | External fixator apparatus |
US5540686A (en) | 1993-02-18 | 1996-07-30 | Endocare Ag | Apparatus for lengthening bones |
US5358504A (en) | 1993-05-05 | 1994-10-25 | Smith & Nephew Richards, Inc. | Fixation brace with focal hinge |
US5766173A (en) | 1993-06-10 | 1998-06-16 | Texas Scottish Rite Hospital For Children | Distractor mechanism for external fixation device |
US5451225A (en) | 1993-06-10 | 1995-09-19 | Texas Scottish Rite Hospital For Crippled Children | Fastener for external fixation device wires and pins |
US5437668A (en) | 1994-02-18 | 1995-08-01 | Board Of Trustees Of The University Of Ark. | Apparatus and method for clinical use of load measurement in distraction osteogenesis |
US5458599A (en) | 1994-04-21 | 1995-10-17 | Adobbati; Ricardo N. | System for the use in the fixation of a fractured bone |
US5653707A (en) | 1994-11-01 | 1997-08-05 | Smith & Nephew Richards, Inc. | External skeletal fixation system with improved bar-to-bar connector |
WO1996026678A1 (en) | 1995-03-01 | 1996-09-06 | Smith & Nephew, Inc. | Spatial frame |
US5971984A (en) | 1995-03-01 | 1999-10-26 | Smith & Nephew, Inc. | Method of using an orthopaedic fixation device |
US5961515A (en) | 1995-03-01 | 1999-10-05 | Smith & Nephew, Inc. | External skeletal fixation system |
US5728095A (en) | 1995-03-01 | 1998-03-17 | Smith & Nephew, Inc. | Method of using an orthopaedic fixation device |
US5601551A (en) | 1995-03-01 | 1997-02-11 | Smith & Nephew Richards, Inc. | Geared external fixator |
US5682886A (en) * | 1995-12-26 | 1997-11-04 | Musculographics Inc | Computer-assisted surgical system |
DE19613078A1 (en) * | 1996-04-02 | 1997-10-09 | Franz Prof Dr Med Copf | Prosthesis part |
US5746741A (en) | 1996-05-06 | 1998-05-05 | Tufts University | External fixator system |
IT1289103B1 (en) | 1996-05-15 | 1998-09-25 | Orthofix Srl | COMPACT EXTERNAL FIXER |
US6047080A (en) | 1996-06-19 | 2000-04-04 | Arch Development Corporation | Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images |
FR2752975B1 (en) | 1996-09-04 | 1998-12-04 | Ge Medical Syst Sa | METHOD FOR RECONSTRUCTING A THREE-DIMENSIONAL IMAGE OF AN OBJECT, IN PARTICULAR A THREE-DIMENSIONAL ANGIOGRAPHIC IMAGE |
US5863292A (en) | 1996-09-26 | 1999-01-26 | Tosic; Aleksandar | Articulated external orthopedic fixation system and method of use |
US5976142A (en) | 1996-10-16 | 1999-11-02 | Chin; Martin | Apparatus and method for distraction osteogenesis of small alveolar bone |
FR2756025B1 (en) | 1996-11-15 | 1998-12-24 | Const Mecaniques Des Vosges | CARDAN STRUCTURE FOR THE ARTICULATED CONNECTION OF A HEXAPODE |
US5776132A (en) | 1996-12-26 | 1998-07-07 | Blyakher; Arkady | External fixation assembly |
US5885282A (en) | 1997-05-09 | 1999-03-23 | The Regents Of The University Of California | Apparatus for treatment of fracture and malunion of the distal radius |
US5919192A (en) | 1997-06-10 | 1999-07-06 | Cottec Orthopaedic Technologies Development Ltd. | Compression-distraction apparatus for treatment of a bone fracture |
US6017341A (en) | 1997-06-20 | 2000-01-25 | Novo Nordisk A/S | Apparatus for fixation of the bones in a healing bone fracture |
JPH1196374A (en) | 1997-07-23 | 1999-04-09 | Sanyo Electric Co Ltd | Three-dimensional modeling device, three-dimensional modeling method and medium recorded with three-dimensional modeling program |
WO1999015945A2 (en) | 1997-09-23 | 1999-04-01 | Enroute, Inc. | Generating three-dimensional models of objects defined by two-dimensional image data |
US5891143A (en) | 1997-10-20 | 1999-04-06 | Smith & Nephew, Inc. | Orthopaedic fixation plate |
US5967777A (en) * | 1997-11-24 | 1999-10-19 | Klein; Michael | Surgical template assembly and method for drilling and installing dental implants |
US6731283B1 (en) * | 1997-12-31 | 2004-05-04 | Siemens Corporate Research, Inc. | C-arm calibration method utilizing aplanar transformation for 3D reconstruction in an imaging system |
US6021579A (en) | 1998-04-01 | 2000-02-08 | Joseph M. Schimmels | Spatial parallel compliant mechanism |
CA2332010A1 (en) * | 1998-05-14 | 1999-11-18 | Dan Albeck | Euclidean reconstruction of 3d scene from 2d images following a non-rigid transformation |
FR2779853B1 (en) | 1998-06-11 | 2000-08-11 | Ge Medical Syst Sa | PROCESS FOR RECONSTRUCTING A THREE-DIMENSIONAL IMAGE OF AN OBJECT, IN PARTICULAR AN ANGIOGRAPHIC THREE-DIMENSIONAL IMAGE |
US6912293B1 (en) | 1998-06-26 | 2005-06-28 | Carl P. Korobkin | Photogrammetry engine for model construction |
US6030386A (en) | 1998-08-10 | 2000-02-29 | Smith & Nephew, Inc. | Six axis external fixator strut |
US6206566B1 (en) | 1998-11-02 | 2001-03-27 | Siemens Aktiengesellschaft | X-ray apparatus for producing a 3D image from a set of 2D projections |
RU2159091C2 (en) | 1999-01-10 | 2000-11-20 | Борозда Иван Викторович | Device for reposition and fixation of fractures of hipbones |
US6129727A (en) | 1999-03-02 | 2000-10-10 | Smith & Nephew | Orthopaedic spatial frame apparatus |
DE69930973D1 (en) | 1999-08-30 | 2006-05-24 | Smith & Nephew Inc | ONE SIX AXES ADJUSTABLE BAR FOR EXTERNAL FIXATEUR |
FR2801123B1 (en) | 1999-11-12 | 2002-04-05 | Bertrand Aube | METHOD FOR THE AUTOMATIC CREATION OF A DIGITAL MODEL FROM COUPLES OF STEREOSCOPIC IMAGES |
US6293947B1 (en) | 2000-01-28 | 2001-09-25 | Daniel Buchbinder | Distraction osteogenesis device and method |
US20020010465A1 (en) * | 2000-01-31 | 2002-01-24 | Ja Kyo Koo | Frame fixator and operation system thereof |
US20040068187A1 (en) * | 2000-04-07 | 2004-04-08 | Krause Norman M. | Computer-aided orthopedic surgery |
US6711432B1 (en) | 2000-10-23 | 2004-03-23 | Carnegie Mellon University | Computer-aided orthopedic surgery |
EP1153576B1 (en) | 2000-05-09 | 2006-11-29 | ORTHOFIX S.r.l. | Securing component for a ring fixator used in orthopaedic surgery |
EP1153575B1 (en) | 2000-05-09 | 2007-01-03 | ORTHOFIX S.r.l. | Ring fixator |
DE10037491A1 (en) * | 2000-08-01 | 2002-02-14 | Stryker Leibinger Gmbh & Co Kg | Process for three-dimensional visualization of structures inside the body |
WO2002062249A1 (en) | 2001-02-07 | 2002-08-15 | Synthes Ag Chur | Method for establishing a three-dimensional representation of bone x-ray images |
DK1238636T3 (en) * | 2001-03-05 | 2007-01-02 | Orthofix Srl | Exterior fastener with ID |
US7261713B2 (en) | 2001-10-09 | 2007-08-28 | Synthes (Usa) | Adjustable fixator |
US6671975B2 (en) | 2001-12-10 | 2004-01-06 | C. William Hennessey | Parallel kinematic micromanipulator |
US7004943B2 (en) | 2002-02-04 | 2006-02-28 | Smith & Nephew, Inc. | Devices, systems, and methods for placing and positioning fixation elements in external fixation systems |
JP2005537818A (en) | 2002-04-05 | 2005-12-15 | スミス アンド ネフュー インコーポレーテッド | Orthopedic fixation method and apparatus |
AU2003237487A1 (en) | 2002-06-14 | 2003-12-31 | Smith And Nephew, Inc. | Device and methods for placing external fixation elements |
US7657079B2 (en) | 2002-06-28 | 2010-02-02 | Intel Corporation | Single constraint at a time (SCAAT) tracking of a virtual reality (VR) display |
US20040167518A1 (en) | 2002-07-12 | 2004-08-26 | Estrada Hector Mark | Radiolucent frame element for external bone fixators |
JP4004899B2 (en) | 2002-09-02 | 2007-11-07 | ファナック株式会社 | Article position / orientation detection apparatus and article removal apparatus |
GB2393625B (en) | 2002-09-26 | 2004-08-18 | Internet Tech Ltd | Orthopaedic surgery planning |
US7113623B2 (en) | 2002-10-08 | 2006-09-26 | The Regents Of The University Of Colorado | Methods and systems for display and analysis of moving arterial tree structures |
US20040073212A1 (en) | 2002-10-15 | 2004-04-15 | Kim Jung Jae | Extracorporeal fixing device for a bone fracture |
EP1567046A4 (en) | 2002-11-14 | 2010-08-25 | Extraortho Inc | Method for using a fixator device |
US7490085B2 (en) | 2002-12-18 | 2009-02-10 | Ge Medical Systems Global Technology Company, Llc | Computer-assisted data processing system and method incorporating automated learning |
US6944263B2 (en) | 2002-12-31 | 2005-09-13 | Tsinghua University | Apparatus and methods for multiple view angle stereoscopic radiography |
JP2004254899A (en) | 2003-02-26 | 2004-09-16 | Hitachi Ltd | Operation support system and operation support method |
US7645279B1 (en) | 2003-07-25 | 2010-01-12 | Haupt Bruce F | Bone fixation method |
EP1709617A2 (en) | 2003-12-30 | 2006-10-11 | Trustees Of The Stevens Institute Of Technology | Three-dimensional imaging system using optical pulses, non-linear optical mixers and holographic calibration |
US7361176B2 (en) | 2003-12-31 | 2008-04-22 | Depuy Products, Inc. | External bone/joint fixation device |
US7828801B2 (en) | 2004-09-03 | 2010-11-09 | A.M. Surgical, Inc. | External fixation device for fractures |
US20090226055A1 (en) | 2004-12-10 | 2009-09-10 | Harry Dankowicz | Systems and methods for multi-dimensional characterization and classification of spinal shape |
DE502005005096D1 (en) | 2005-02-09 | 2008-10-02 | Stryker Trauma Sa | External fastening device, in particular for increasing a distance between clamping elements |
US8469958B2 (en) | 2005-02-15 | 2013-06-25 | Morphographics, Lc | Fixing block and method for stabilizing bone |
US20060276786A1 (en) | 2005-05-25 | 2006-12-07 | Brinker Mark R | Apparatus for accurately positioning fractured bone fragments toward facilitating use of an external ring fixator system |
US7306601B2 (en) | 2005-06-10 | 2007-12-11 | Quantum Medical Concepts, Inc. | External fixation system with provisional brace |
DE102005039136B4 (en) * | 2005-08-18 | 2011-07-28 | Admedes Schuessler GmbH, 75179 | Improving the radiopacity and corrosion resistance of NiTi stents using sandwiched rivets |
US8029505B2 (en) | 2005-08-25 | 2011-10-04 | Synthes Usa, Llc | External fixation system and method of use |
US7422593B2 (en) | 2005-12-08 | 2008-09-09 | Ebi, L.P. | External fixation system |
US7749224B2 (en) | 2005-12-08 | 2010-07-06 | Ebi, Llc | Foot plate fixation |
RU2357699C2 (en) | 2005-12-29 | 2009-06-10 | ООО "Ортофикс" | Compression-destractive apparatus |
KR200443058Y1 (en) | 2005-12-29 | 2009-01-09 | 페드럴 스테이트 인스티튜션 (러시안 일리자로브 사이언티픽센터 (레스토러티브 트라우마톨로지 앤드 오르토패딕스) 오브 페드럴 에이젼시 온 하이 테크놀로지 메디컬 케어) | Compression-stretching device |
US7677078B2 (en) | 2006-02-02 | 2010-03-16 | Siemens Medical Solutions Usa, Inc. | Line-based calibration of ultrasound transducer integrated with a pose sensor |
US8282652B2 (en) | 2006-08-02 | 2012-10-09 | The Nemours Foundation | Force-controlled autodistraction |
RU2007110208A (en) | 2007-03-21 | 2009-04-20 | Общество с ограниченной ответственностью "Новые ортопедические инструменты" (RU) | HARDWARE-COMPUTER COMPLEX FOR EXTRACTION OF EXTREMITIES |
GB0706663D0 (en) | 2007-04-04 | 2007-05-16 | Univ Bristol | Analysis of parallel manipulators |
JP2008256916A (en) | 2007-04-04 | 2008-10-23 | Sony Corp | Driving method of organic electroluminescence light emission part |
US8494227B2 (en) | 2007-04-17 | 2013-07-23 | Francine J. Prokoski | System and method for using three dimensional infrared imaging to identify individuals |
US8202273B2 (en) | 2007-04-28 | 2012-06-19 | John Peter Karidis | Orthopedic fixation device with zero backlash and adjustable compliance, and process for adjusting same |
RU2352283C2 (en) | 2007-05-04 | 2009-04-20 | Леонид Николаевич Соломин | Solomin-utekhin-vilensky apparatus for perosseous osteosynthesis |
NL1033925C2 (en) | 2007-06-01 | 2008-12-02 | Umc Utrecht Holding Bv | System for correcting bones. |
US8147491B2 (en) | 2007-06-27 | 2012-04-03 | Vilex In Tennessee, Inc. | Multi-angle clamp |
US20100030219A1 (en) | 2007-07-01 | 2010-02-04 | L.R.S. Ortho Ltd. | Orthopedic navigation system and method |
WO2009018349A2 (en) | 2007-07-30 | 2009-02-05 | Karidis, John, Peter | Adjustable length strut apparatus for orthopaedic applications |
US20090036890A1 (en) | 2007-07-31 | 2009-02-05 | John Peter Karidis | Fixator apparatus with radiotransparent apertures for orthopaedic applications |
US7887495B2 (en) | 2007-10-18 | 2011-02-15 | Boyd Lawrence M | Protective and cosmetic covering for external fixators |
AU2007254627B2 (en) | 2007-12-21 | 2010-07-08 | Canon Kabushiki Kaisha | Geometric parameter measurement of an imaging device |
EP2085037B1 (en) | 2008-02-01 | 2013-07-24 | Stryker Trauma SA | Telescopic strut for an external fixator |
EP2085038B1 (en) | 2008-02-01 | 2011-11-30 | Stryker Trauma SA | Ball joint for an external fixator |
ES2595355T3 (en) | 2008-02-05 | 2016-12-29 | Texas Scottish Rite Hospital For Children | External fixing ring |
EP2240085A4 (en) | 2008-02-08 | 2014-01-01 | Texas Scottish Rite Hospital | STATE OF EXTERNAL FIXATION |
ES2641592T3 (en) | 2008-02-12 | 2017-11-10 | Texas Scottish Rite Hospital | Quick-fix external fixing connection rod |
JP5529047B2 (en) | 2008-02-18 | 2014-06-25 | テキサス スコティッシュ ライト ホスピタル フォー チルドレン | Tool and method for external fixed support adjustment |
EP2110089A1 (en) | 2008-04-18 | 2009-10-21 | Stryker Trauma SA | Orthopedic fixation plate |
EP2110090A1 (en) | 2008-04-18 | 2009-10-21 | Stryker Trauma SA | Radiolucent orthopedic fixation plate |
US8192434B2 (en) | 2008-05-02 | 2012-06-05 | Huebner Randall J | External fixation and foot-supporting device |
US9962523B2 (en) * | 2008-06-27 | 2018-05-08 | Merit Medical Systems, Inc. | Catheter with radiopaque marker |
US8187274B2 (en) | 2008-06-30 | 2012-05-29 | Depuy Products, Inc. | External fixator |
US20100087819A1 (en) | 2008-10-07 | 2010-04-08 | Extraortho, Inc. | Forward Kinematic Solution for a Hexapod Manipulator and Method of Use |
FR2937530B1 (en) | 2008-10-24 | 2012-02-24 | Biospace Med | MEASURING INTRINSIC GEOMETRIC SIZES WITH AN ANATOMIC SYSTEM |
US20100179548A1 (en) | 2009-01-13 | 2010-07-15 | Marin Luis E | External fixator assembly |
ES2595369T3 (en) | 2009-03-10 | 2016-12-29 | Stryker European Holdings I, Llc | External fixation system |
US20100280516A1 (en) | 2009-04-30 | 2010-11-04 | Jeffrey Taylor | Accessory Device for an Orthopedic Fixator |
US9278004B2 (en) | 2009-08-27 | 2016-03-08 | Cotera, Inc. | Method and apparatus for altering biomechanics of the articular joints |
DE102009040307A1 (en) | 2009-09-05 | 2011-03-10 | Arne Jansen | Device for fixing bone segments |
FI122920B (en) | 2009-10-05 | 2012-08-31 | Aalto Korkeakoulusaeaetioe | Anatomically personified and mobilizing external support, method of manufacture thereof and the use of a portion of the invasively attached support for determining the path of movement of the joint to be supported |
US9737336B2 (en) | 2009-10-05 | 2017-08-22 | Aalto University Foundation | Anatomically personalized and mobilizing external support and method for controlling a path of an external auxiliary frame |
US8858555B2 (en) | 2009-10-05 | 2014-10-14 | Stryker Trauma Sa | Dynamic external fixator and methods for use |
US8430878B2 (en) | 2009-11-13 | 2013-04-30 | Amei Technologies, Inc. | Adjustable orthopedic fixation system |
US8377060B2 (en) | 2009-11-13 | 2013-02-19 | Amei Technologies, Inc. | Fixation device and multiple-axis joint for a fixation device |
US20110131418A1 (en) | 2009-12-02 | 2011-06-02 | Giga-Byte Technology Co.,Ltd. | Method of password management and authentication suitable for trusted platform module |
US8257353B2 (en) | 2010-02-24 | 2012-09-04 | Wright Medical Technology, Inc. | Orthopedic external fixation device |
WO2011119873A2 (en) | 2010-03-24 | 2011-09-29 | Board Of Regents Of The University Of Texas System | Ultrasound guided automated wireless distraction osteogenesis |
GB201008281D0 (en) | 2010-05-19 | 2010-06-30 | Nikonovas Arkadijus | Indirect analysis and manipulation of objects |
US20110313419A1 (en) | 2010-06-22 | 2011-12-22 | Extraortho, Inc. | Hexapod External Fixation System with Collapsing Connectors |
US20120029280A1 (en) | 2010-07-29 | 2012-02-02 | Cannuflow, Inc. | Arthroscopic System |
US8945128B2 (en) | 2010-08-11 | 2015-02-03 | Stryker Trauma Sa | External fixator system |
EP2417924B1 (en) | 2010-08-11 | 2015-07-01 | Stryker Trauma SA | External fixator system |
US8315812B2 (en) | 2010-08-12 | 2012-11-20 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
US20120078251A1 (en) | 2010-09-23 | 2012-03-29 | Mgv Enterprises, Inc. | External Fixator Linkage |
US9265528B2 (en) | 2010-11-30 | 2016-02-23 | Nikolaj Wolfson | Orthopedic fixation systems and methods |
US20120232554A1 (en) | 2011-03-09 | 2012-09-13 | Quantum Medical Concepts Llc | Alignment Plate for Lower-extremity Ring Fixation, Method of Use, and System |
US9173649B2 (en) | 2011-04-08 | 2015-11-03 | Allen Medical Systems, Inc. | Low profile distractor apparatuses |
US20120330312A1 (en) | 2011-06-23 | 2012-12-27 | Stryker Trauma Gmbh | Methods and systems for adjusting an external fixation frame |
US20130041288A1 (en) | 2011-08-08 | 2013-02-14 | John Charles Taylor | Apparatus and Method of Monitoring Healing and/or Assessing Mechanical Stiffness of a Bone Fracture Site or the Like |
US20140236152A1 (en) | 2011-08-23 | 2014-08-21 | Aesculap Ag | Electrosurgical device and methods of manufacture and use |
GB201115586D0 (en) | 2011-09-09 | 2011-10-26 | Univ Bristol | A system for anatomical reduction of bone fractures |
US20140303670A1 (en) | 2011-11-16 | 2014-10-09 | Neuromechanical Innovations, Llc | Method and Device for Spinal Analysis |
WO2013116812A1 (en) | 2012-02-03 | 2013-08-08 | Orthohub, Inc. | External fixator deformity correction systems and methods |
US9017339B2 (en) | 2012-04-26 | 2015-04-28 | Stryker Trauma Gmbh | Measurement device for external fixation frame |
US9474552B2 (en) | 2012-05-04 | 2016-10-25 | Biomet Manufacturing, Llc | Ratcheting strut |
US8906021B1 (en) | 2012-08-20 | 2014-12-09 | Stryker Trauma Sa | Telescopic strut for an external fixator |
US9101398B2 (en) | 2012-08-23 | 2015-08-11 | Stryker Trauma Sa | Bone transport external fixation frame |
CA2883395C (en) | 2012-09-06 | 2018-05-01 | Solana Surgical, Llc | External fixator |
US8574232B1 (en) | 2012-11-13 | 2013-11-05 | Texas Scottish Hospital for Children | External fixation connection rod for rapid and gradual adjustment |
US9204937B2 (en) | 2013-02-19 | 2015-12-08 | Stryker Trauma Gmbh | Software for use with deformity correction |
US8864763B2 (en) | 2013-03-13 | 2014-10-21 | DePuy Synthes Products, LLC | External bone fixation device |
BR112015022354B1 (en) | 2013-03-13 | 2022-05-03 | Depuy Synthes Products, Inc | Anchor configured to be connected to a pair of external bone anchors |
US9039706B2 (en) | 2013-03-13 | 2015-05-26 | DePuy Synthes Products, Inc. | External bone fixation device |
BR112015028432A2 (en) | 2013-05-14 | 2017-07-25 | Smith & Nephew Inc | apparatus and method for administering a medical device prescription |
JP6122495B2 (en) | 2013-06-11 | 2017-04-26 | 敦 丹治 | Osteotomy support system, information processing apparatus, image processing method, and image processing program |
US9610102B2 (en) | 2013-09-26 | 2017-04-04 | Stryker European Holdings I, Llc | Bone position tracking system |
US9717528B2 (en) | 2014-04-01 | 2017-08-01 | Stryker European Holdings I, Llc | External fixator with Y strut |
US9289238B2 (en) | 2014-04-23 | 2016-03-22 | Texas Scottish Rite Hospital For Children | Dynamization module for external fixation strut |
US9808322B2 (en) | 2014-08-27 | 2017-11-07 | Vito Del Deo | Method and device for positioning and stabilization of bony structures during maxillofacial surgery |
US9987043B2 (en) | 2014-10-24 | 2018-06-05 | Stryker European Holdings I, Llc | Methods and systems for adjusting an external fixation frame |
CN107106088A (en) | 2014-11-04 | 2017-08-29 | 欧斯泰奥德萨格里克科技公司 | The method of integrated sensor and effector in customization three-dimensional correction device |
CN105852985B (en) | 2016-04-18 | 2018-07-06 | 上海昕健医疗技术有限公司 | The manufacturing method of personalized orthopedic positioning guide plate |
US10010346B2 (en) | 2016-04-20 | 2018-07-03 | Stryker European Holdings I, Llc | Ring hole planning for external fixation frames |
US10251705B2 (en) | 2016-06-02 | 2019-04-09 | Stryker European Holdings I, Llc | Software for use with deformity correction |
US10010350B2 (en) | 2016-06-14 | 2018-07-03 | Stryker European Holdings I, Llc | Gear mechanisms for fixation frame struts |
US10835318B2 (en) | 2016-08-25 | 2020-11-17 | DePuy Synthes Products, Inc. | Orthopedic fixation control and manipulation |
EP3672495A4 (en) | 2017-08-24 | 2021-10-06 | AMDT Holdings, Inc. | PROCEDURES AND SYSTEMS FOR DETERMINING SETTING INSTRUCTIONS FOR EXTERNAL FASTENING DEVICES |
JP2021530326A (en) | 2018-07-24 | 2021-11-11 | エーエムディーティー ホールディングス インコーポレイテッドAmdt Holdings, Inc. | Methods and systems for registering 3D models of radiographic images and external fixation devices |
-
2010
- 2010-05-19 GB GBGB1008281.6A patent/GB201008281D0/en not_active Ceased
-
2011
- 2011-05-19 EP EP16165349.8A patent/EP3069673B1/en active Active
- 2011-05-19 CA CA2796094A patent/CA2796094C/en active Active
- 2011-05-19 CN CN201180023213.0A patent/CN102883671B/en active Active
- 2011-05-19 US US13/111,180 patent/US9642649B2/en active Active
- 2011-05-19 EP EP18207561.4A patent/EP3474284A1/en not_active Withdrawn
- 2011-05-19 RU RU2016120275A patent/RU2016120275A/en not_active Application Discontinuation
- 2011-05-19 EP EP11723796.6A patent/EP2571433B1/en active Active
- 2011-05-19 WO PCT/US2011/037128 patent/WO2011146703A1/en active Application Filing
- 2011-05-19 JP JP2013511352A patent/JP5828890B2/en active Active
- 2011-05-19 KR KR1020127029423A patent/KR101809291B1/en active Active
- 2011-05-19 BR BR112012028013-9A patent/BR112012028013B1/en active IP Right Grant
-
2017
- 2017-03-17 US US15/461,969 patent/US20170181800A1/en not_active Abandoned
-
2018
- 2018-08-24 US US16/111,775 patent/US10932857B2/en active Active
-
2021
- 2021-02-01 US US17/163,850 patent/US11896313B2/en active Active
-
2024
- 2024-01-02 US US18/401,861 patent/US20240225737A9/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4630203A (en) * | 1983-12-27 | 1986-12-16 | Thomas Szirtes | Contour radiography: a system for determining 3-dimensional contours of an object from its 2-dimensional images |
US6701174B1 (en) * | 2000-04-07 | 2004-03-02 | Carnegie Mellon University | Computer-aided bone distraction |
US20110029093A1 (en) * | 2001-05-25 | 2011-02-03 | Ray Bojarski | Patient-adapted and improved articular implants, designs and related guide tools |
US20050256389A1 (en) * | 2001-11-16 | 2005-11-17 | Yoshio Koga | Calculation method, calculation program and calculation system for information supporting arthroplasty |
US7187792B2 (en) * | 2003-08-29 | 2007-03-06 | Accuray, Inc. | Apparatus and method for determining measure of similarity between images |
US20070043354A1 (en) * | 2005-08-03 | 2007-02-22 | Koo Terry K | Bone reposition device, method and system |
US20070238069A1 (en) * | 2006-04-10 | 2007-10-11 | Scott Lovald | Osteosynthesis plate, method of customizing same, and method for installing same |
US20080114267A1 (en) * | 2006-11-14 | 2008-05-15 | General Electric Company | Systems and methods for implant distance measurement |
US20090143788A1 (en) * | 2007-12-04 | 2009-06-04 | National Cheng Kung University | Navigation method and system for drilling operation in spinal surgery |
US20130060146A1 (en) * | 2010-04-28 | 2013-03-07 | Ryerson University | System and methods for intraoperative guidance feedback |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10932857B2 (en) | 2010-05-19 | 2021-03-02 | DePuy Synthes Products, Inc. | Orthopedic fixation with imagery analysis |
US11896313B2 (en) | 2010-05-19 | 2024-02-13 | DePuy Synthes Products, Inc. | Orthopedic fixation with imagery analysis |
US10470800B2 (en) | 2013-03-13 | 2019-11-12 | DePuy Synthes Products, Inc. | External bone fixation device |
US10285733B2 (en) * | 2014-08-14 | 2019-05-14 | Automobili Lamborghini S.P.A. | Device for external orthopedic fixations |
US20170215922A1 (en) * | 2014-08-14 | 2017-08-03 | Automobili Lamborghini S.P.A. | Device for external orthopedic fixations |
US12220250B2 (en) | 2016-06-19 | 2025-02-11 | Synthes Gmbh | User interface for strut device |
US11918292B2 (en) | 2016-08-25 | 2024-03-05 | DePuy Synthes Products, Inc. | Orthopedic fixation control and manipulation |
US10835318B2 (en) | 2016-08-25 | 2020-11-17 | DePuy Synthes Products, Inc. | Orthopedic fixation control and manipulation |
US11439436B2 (en) | 2019-03-18 | 2022-09-13 | Synthes Gmbh | Orthopedic fixation strut swapping |
US11648035B2 (en) | 2019-03-18 | 2023-05-16 | Synthes Gmbh | Orthopedic fixation strut swapping |
US11304757B2 (en) | 2019-03-28 | 2022-04-19 | Synthes Gmbh | Orthopedic fixation control and visualization |
US11334997B2 (en) | 2020-04-03 | 2022-05-17 | Synthes Gmbh | Hinge detection for orthopedic fixation |
US11893737B2 (en) | 2020-04-03 | 2024-02-06 | Synthes Gmbh | Hinge detection for orthopedic fixation |
Also Published As
Publication number | Publication date |
---|---|
US20190000552A1 (en) | 2019-01-03 |
RU2016120275A3 (en) | 2019-08-28 |
US10932857B2 (en) | 2021-03-02 |
EP3069673B1 (en) | 2018-12-12 |
WO2011146703A1 (en) | 2011-11-24 |
GB201008281D0 (en) | 2010-06-30 |
EP2571433B1 (en) | 2016-06-22 |
RU2016120275A (en) | 2018-11-15 |
BR112012028013A2 (en) | 2017-11-21 |
US20240130792A1 (en) | 2024-04-25 |
CA2796094A1 (en) | 2011-11-24 |
US20110313418A1 (en) | 2011-12-22 |
EP3474284A1 (en) | 2019-04-24 |
CN102883671A (en) | 2013-01-16 |
JP5828890B2 (en) | 2015-12-09 |
US20240225737A9 (en) | 2024-07-11 |
US9642649B2 (en) | 2017-05-09 |
EP3069673A1 (en) | 2016-09-21 |
JP2013526377A (en) | 2013-06-24 |
KR20130094704A (en) | 2013-08-26 |
EP2571433A1 (en) | 2013-03-27 |
BR112012028013B1 (en) | 2020-10-27 |
US20210153944A1 (en) | 2021-05-27 |
KR101809291B1 (en) | 2017-12-14 |
US11896313B2 (en) | 2024-02-13 |
CN102883671B (en) | 2016-03-02 |
CA2796094C (en) | 2019-07-09 |
RU2012147835A (en) | 2014-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11896313B2 (en) | Orthopedic fixation with imagery analysis | |
US11918292B2 (en) | Orthopedic fixation control and manipulation | |
JP7204663B2 (en) | Systems, apparatus, and methods for improving surgical accuracy using inertial measurement devices | |
US20200390503A1 (en) | Systems and methods for surgical navigation and orthopaedic fixation | |
US20190000564A1 (en) | System and method for medical imaging | |
US20200352651A1 (en) | A method for verifying hard tissue location using implant imaging | |
Schumann et al. | Radiographic reconstruction of lower-extremity bone fragments: a first trial | |
Wang et al. | Parallax-free long bone X-ray image stitching | |
RU2588316C2 (en) | Orthopedic fixation with imagery analysis | |
KR102731148B1 (en) | Method for matching 2D Image and 3D Image about bone | |
Oentoro et al. | High-accuracy registration of intraoperative CT imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |