US20170175583A1 - Flexible support structure for a geared architecture gas turbine engine - Google Patents
Flexible support structure for a geared architecture gas turbine engine Download PDFInfo
- Publication number
- US20170175583A1 US20170175583A1 US15/452,232 US201715452232A US2017175583A1 US 20170175583 A1 US20170175583 A1 US 20170175583A1 US 201715452232 A US201715452232 A US 201715452232A US 2017175583 A1 US2017175583 A1 US 2017175583A1
- Authority
- US
- United States
- Prior art keywords
- gear
- stiffness
- fan
- gas turbine
- gear system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
- F01D25/162—Bearing supports
- F01D25/164—Flexible supports; Vibration damping means associated with the bearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/12—Combinations with mechanical gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/28—Supporting or mounting arrangements, e.g. for turbine casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/06—Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/32—Arrangement, mounting, or driving, of auxiliaries
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/36—Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K3/00—Plants including a gas turbine driving a compressor or a ducted fan
- F02K3/02—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
- F02K3/04—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
- F02K3/06—Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/04—Units comprising pumps and their driving means the pump being fluid-driven
- F04D25/045—Units comprising pumps and their driving means the pump being fluid-driven the pump wheel carrying the fluid driving means, e.g. turbine blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/053—Shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/325—Rotors specially for elastic fluids for axial flow pumps for axial flow fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/60—Shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/40—Transmission of power
- F05D2260/403—Transmission of power through the shape of the drive components
- F05D2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
- F05D2260/40311—Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/96—Preventing, counteracting or reducing vibration or noise
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
- Y10T29/49321—Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
Definitions
- the present disclosure relates to a gas turbine engine, and more particularly to a flexible support structure for a geared architecture therefor.
- Planetary and star gear trains may be used in gas turbine engines for their compact designs and efficient high gear reduction capabilities.
- Planetary and star gear trains generally include three gear train elements: a central sun gear, an outer ring gear with internal gear teeth, and a plurality of planet gears supported by a planet carrier between and in meshed engagement with both the sun gear and the ring gear.
- the gear train elements share a common longitudinal central axis, about which at least two rotate.
- the central sun gear In gas turbine engine applications, where a speed reduction transmission is required, the central sun gear generally receives rotary input from the powerplant, the outer ring gear is generally held stationary and the planet gear carrier rotates in the same direction as the sun gear to provide torque output at a reduced rotational speed.
- the planet carrier In star gear trains, the planet carrier is held stationary and the output shaft is driven by the ring gear in a direction opposite that of the sun gear.
- a gas turbine engine includes a fan shaft configured to drive a fan, a support configured to support at least a portion of the fan shaft, the support defining a support transverse stiffness and a support lateral stiffness, a gear system coupled to the fan shaft, and a flexible support configured to at least partially support the gear system.
- the flexible support defines a flexible support transverse stiffness with respect to the support transverse stiffness and a flexible support lateral stiffness with respect to the support lateral stiffness.
- the input defines an input transverse stiffness with respect to the support transverse stiffness and an input lateral stiffness with respect to the support lateral stiffness.
- the support and the flexible support are mounted to a static structure.
- the static structure is a front center body of the gas turbine engine.
- the flexible support is mounted to a planet carrier of the gear system, and the input is mounted to a sun gear of the gear system.
- the fan shaft is mounted to a ring gear of the gear system.
- the gear system is a star system.
- the flexible support is mounted to a ring gear of the gear system, and the input is mounted to a sun gear of the gear system.
- the fan shaft is mounted to a planet carrier of the gear system.
- the flexible support transverse stiffness and the input transverse stiffness are both less than the support transverse stiffness.
- the flexible support transverse stiffness and the input transverse stiffness are each less than about 20% of the support transverse stiffness.
- the flexible support transverse stiffness and the input transverse stiffness are each less than about 11% of the support transverse stiffness.
- the input to the gear system is coupled to a turbine section, and the gear system is configured to drive a compressor rotor at a common speed with the fan shaft.
- a gas turbine engine includes a fan shaft configured to drive a fan, a support configured to support at least a portion of the fan shaft, and a gear system configured to drive the fan shaft.
- the gear system includes a gear mesh that defines a gear mesh transverse stiffness and a gear mesh lateral stiffness.
- a flexible support is configured to at least partially support the gear system.
- the flexible support defines a flexible support transverse stiffness with respect to the gear mesh transverse stiffness and a flexible support lateral stiffness with respect to the gear mesh lateral stiffness.
- the input defines an input transverse stiffness with respect to the gear mesh transverse stiffness and an input lateral stiffness with respect to the gear mesh lateral stiffness.
- both the flexible support transverse stiffness and the input transverse stiffness are less than the gear mesh transverse stiffness.
- the flexible support transverse stiffness is less than about 8% of the gear mesh transverse stiffness
- the input transverse stiffness is less than about 5% of the gear mesh transverse stiffness
- a transverse stiffness of a ring gear of the gear system is less than about 20% of the gear mesh transverse stiffness.
- a transverse stiffness of a planet journal bearing which supports a planet gear of the gear system is less than or equal to the gear mesh transverse stiffness.
- the support and the flexible support are mounted to a front center body of the gas turbine engine.
- a method of designing a gas turbine engine includes providing a fan shaft, and providing a support configured to support at least a portion of the fan shaft, the support defining at least one of a support transverse stiffness and a support lateral stiffness, and providing a gear system coupled to the fan shaft.
- the gear system includes a gear mesh that defines a gear mesh lateral stiffness and a gear mesh transverse stiffness.
- the method includes providing a flexible support configured to at least partially support the gear system, and providing an input to the gear system.
- the flexible support defines a flexible support transverse stiffness with respect to the gear mesh transverse stiffness and a flexible support lateral stiffness with respect to the gear mesh lateral stiffness.
- the input defines an input transverse stiffness with respect to the gear mesh transverse stiffness and an input lateral stiffness with respect to the gear mesh lateral stiffness.
- the flexible support lateral stiffness is less than the gear mesh lateral stiffness
- the flexible support transverse stiffness is less than the gear mesh transverse stiffness
- both the flexible support transverse stiffness and the input transverse stiffness are less than the gear mesh transverse stiffness.
- FIG. 1 is a schematic cross-section of a gas turbine engine
- FIG. 2 is an enlarged cross-section of a section of the gas turbine engine which illustrates a fan drive gear system (FDGS);
- FDGS fan drive gear system
- FIG. 3 is a schematic view of a flex mount arrangement for one non-limiting embodiment of the FDGS
- FIG. 4 is a schematic view of a flex mount arrangement for another non-limiting embodiment of the FDGS
- FIG. 5 is a schematic view of a flex mount arrangement for another non-limiting embodiment of a star system FDGS;
- FIG. 6 is a schematic view of a flex mount arrangement for another non-limiting embodiment of a planetary system FDGS.
- FIG. 7 is a schematic view of a flex mount arrangement for another non-limiting embodiment of a star system FDGS;
- FIG. 8 is a schematic view of a flex mount arrangement for another non-limiting embodiment of a planetary system FDGS;
- FIG. 9 shows another embodiment
- FIG. 10 shows yet another embodiment.
- FIG. 1 schematically illustrates a gas turbine engine 20 .
- the gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22 , a compressor section 24 , a combustor section 26 and a turbine section 28 .
- Alternative engines might include an augmentor section (not shown) among other systems or features.
- the fan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15
- the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28 .
- the exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38 . It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
- the low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42 , a first (or low) pressure compressor 44 and a first (or low) pressure turbine 46 .
- the inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30 .
- the high speed spool 32 includes an outer shaft 50 that interconnects a second (or high) pressure compressor 52 and a second (or high) pressure turbine 54 .
- a combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54 .
- a mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46 .
- the mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28 .
- the inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
- the core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52 , mixed and burned with fuel in the combustor 56 , then expanded over the high pressure turbine 54 and low pressure turbine 46 .
- the mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C.
- the turbines 46 , 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
- gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28
- fan section 22 may be positioned forward or aft of the location of gear system 48 .
- the engine 20 in one example is a high-bypass geared aircraft engine.
- the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10)
- the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3
- the low pressure turbine 46 has a pressure ratio that is greater than about five.
- the engine 20 bypass ratio is greater than about ten (10:1)
- the fan diameter is significantly larger than that of the low pressure compressor 44
- the low pressure turbine 46 has a pressure ratio that is greater than about five 5:1.
- Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle.
- the geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
- the fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet.
- TSFC Thrust Specific Fuel Consumption
- Low fan pressure ratio is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system.
- the low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45.
- Low corrected fan tip speed is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram ° R)/(518.7° R)] 0.5 .
- the “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second.
- the geared architecture 48 generally includes a fan drive gear system (FDGS) 60 driven by the low speed spool 30 (illustrated schematically) through an input 62 .
- the input 62 which may be in the form of a coupling, both transfers torque from the low speed spool 30 to the geared architecture 48 and facilitates the segregation of vibrations and other transients therebetween.
- the FDGS 60 may include an epicyclic gear system which may be, for example, a star system or a planet system.
- the input coupling 62 may include an interface spline 64 joined, by a gear spline 66 , to a sun gear 68 of the FDGS 60 .
- the sun gear 68 is in meshed engagement with multiple planet gears 70 , of which the illustrated planet gear 70 is representative.
- Each planet gear 70 is rotatably mounted in a planet carrier 72 by a respective planet journal bearing 75 .
- Rotary motion of the sun gear 68 urges each planet gear 70 to rotate about a respective longitudinal axis P.
- Each planet gear 70 is also in meshed engagement with rotating ring gear 74 that is mechanically connected to a fan shaft 76 . Since the planet gears 70 mesh with both the rotating ring gear 74 as well as the rotating sun gear 68 , the planet gears 70 rotate about their own axes to drive the ring gear 74 to rotate about engine axis A. The rotation of the ring gear 74 is conveyed to the fan 42 ( FIG. 1 ) through the fan shaft 76 to thereby drive the fan 42 at a lower speed than the low speed spool 30 . It should be understood that the described geared architecture 48 is but a single non-limiting embodiment and that various other geared architectures will alternatively benefit herefrom.
- a flexible support 78 supports the planet carrier 72 to at least partially support the FDGS 60 A with respect to the static structure 36 such as a front center body which facilitates the segregation of vibrations and other transients therebetween.
- the static structure 36 such as a front center body which facilitates the segregation of vibrations and other transients therebetween.
- various gas turbine engine case structures may alternatively or additionally provide the static structure and flexible support 78 .
- lateral as defined herein is generally transverse to the axis of rotation A and the term “transverse” refers to a pivotal bending movement with respect to the axis of rotation A which typically absorbs deflection applied to the FDGS 60 .
- the static structure 36 may further include a number 1 and 1.5 bearing support static structure 82 which is commonly referred to as a “K-frame” which supports the number 1 and number 1.5 bearing systems 38 A, 38 B.
- K-frame bearing support defines a lateral stiffness (represented as Kframe in FIG. 3 ) and a transverse stiffness (represented as Kframe BEND in FIG. 3 ) as the referenced factors in this non-limiting embodiment.
- the lateral stiffness (KFS; KIC) of both the flexible support 78 and the input coupling 62 are each less than about 11% of the lateral stiffness (Kframe). That is, the lateral stiffness of the entire FDGS 60 is controlled by this lateral stiffness relationship.
- the transverse stiffness of both the flexible support 78 and the input coupling 62 are each less than about 11% of the transverse stiffness (Kframe BEND ). That is, the transverse stiffness of the entire FDGS 60 is controlled by this transverse stiffness relationship.
- a FDGS 60 B includes a flexible support 78 ′ that supports a rotationally fixed ring gear 74 ′.
- the fan shaft 76 ′ is driven by the planet carrier 72 ′ in the schematically illustrated planet system which otherwise generally follows the star system architecture of FIG. 3 .
- lateral stiffness relationship within a FDGS 60 C itself is schematically represented.
- the lateral stiffness (KIC) of an input coupling 62 , a lateral stiffness (KFS) of a flexible support 78 , a lateral stiffness (KRG) of a ring gear 74 and a lateral stiffness (KJB) of a planet journal bearing 75 are controlled with respect to a lateral stiffness (KGM) of a gear mesh within the FDGS 60 .
- the stiffness (KGM) may be defined by the gear mesh between the sun gear 68 and the multiple planet gears 70 .
- the lateral stiffness (KGM) within the FDGS 60 is the referenced factor and the static structure 82 ′ rigidly supports the fan shaft 76 . That is, the fan shaft 76 is supported upon bearing systems 38 A, 38 B which are essentially rigidly supported by the static structure 82 ′.
- the lateral stiffness (KJB) may be mechanically defined by, for example, the stiffness within the planet journal bearing 75 and the lateral stiffness (KRG) of the ring gear 74 may be mechanically defined by, for example, the geometry of the ring gear wings 74 L, 74 R ( FIG. 2 ).
- the lateral stiffness (KRG) of the ring gear 74 is less than about 12% of the lateral stiffness (KGM) of the gear mesh; the lateral stiffness (KFS) of the flexible support 78 is less than about 8% of the lateral stiffness (KGM) of the gear mesh; the lateral stiffness (KJB) of the planet journal bearing 75 is less than or equal to the lateral stiffness (KGM) of the gear mesh; and the lateral stiffness (KIC) of an input coupling 62 is less than about 5% of the lateral stiffness (KGM) of the gear mesh.
- FIG. 6 another non-limiting embodiment of a lateral stiffness relationship within a FDGS 60 D itself are schematically illustrated for a planetary gear system architecture, which otherwise generally follows the star system architecture of FIG. 5 .
- lateral stiffness relationships may be utilized as well.
- the lateral stiffness of each of structural components may be readily measured as compared to film stiffness and spline stiffness which may be relatively difficult to determine.
- the flex mount facilitates alignment to increase system life and reliability.
- the lateral flexibility in the flexible support and input coupling allows the FDGS to essentially ‘float’ with the fan shaft during maneuvers. This allows: (a) the torque transmissions in the fan shaft, the input coupling and the flexible support to remain constant during maneuvers; (b) maneuver induced lateral loads in the fan shaft (which may otherwise potentially misalign gears and damage teeth) to be mainly reacted to through the number 1 and 1.5 bearing support K-frame; and (c) both the flexible support and the input coupling to transmit small amounts of lateral loads into the FDGS.
- the splines, gear tooth stiffness, journal bearings, and ring gear ligaments are specifically designed to minimize gear tooth stress variations during maneuvers.
- the other connections to the FDGS are flexible mounts (turbine coupling, case flex mount). These mount spring rates have been determined from analysis and proven in rig and flight testing to isolate the gears from engine maneuver loads.
- the planet journal bearing spring rate may also be controlled to support system flexibility.
- FIG. 7 is similar to FIG. 5 but shows the transverse stiffness relationships within the FDGS 60 C (for a star system architecture).
- the transverse stiffness (KIC BEND ) of the input coupling 62 , a transverse stiffness (KFS BEND ) of the flexible support 78 , a transverse stiffness (KRG BEND ) of the ring gear 74 and a transverse stiffness (KJB BEND ) of the planet journal bearing 75 are controlled with respect to a transverse stiffness (KGM BEND ) of the gear mesh within the FDGS 60 .
- the stiffness (KGM BEND ) may be defined by the gear mesh between the sun gear 68 and the multiple planet gears 70 .
- the transverse stiffness (KGM BEND ) within the FDGS 60 is the referenced factor and the static structure 82 ′ rigidly supports the fan shaft 76 . That is, the fan shaft 76 is supported upon bearing systems 38 A, 38 B which are essentially rigidly supported by the static structure 82 ′.
- the transverse stiffness (KJB BEND ) may be mechanically defined by, for example, the stiffness within the planet journal bearing 75 and the transverse stiffness (KRG BEND ) of the ring gear 74 may be mechanically defined by, for example, the geometry of the ring gear wings 74 L, 74 R ( FIG. 2 ).
- the transverse stiffness (KRG BEND ) of the ring gear 74 is less than about 12% of the transverse stiffness (KGM BEND ) of the gear mesh; the transverse stiffness (KFS BEND ) of the flexible support 78 is less than about 8% of the transverse stiffness (KGM BEND ) of the gear mesh; the transverse stiffness (KJB BEND ) of the planet journal bearing 75 is less than or equal to the transverse stiffness (KGM BEND ) of the gear mesh; and the transverse stiffness (KIC BEND ) of an input coupling 62 is less than about 5% of the transverse stiffness (KGM BEND ) of the gear mesh.
- FIG. 8 is similar to FIG. 6 but shows the transverse stiffness relationship within the FDGS 60 D for the planetary gear system architecture.
- FIG. 9 shows an embodiment 200 , wherein there is a fan drive turbine 208 driving a shaft 206 to in turn drive a fan rotor 202 .
- a gear reduction 204 may be positioned between the fan drive turbine 208 and the fan rotor 202 .
- This gear reduction 204 may be structured, mounted and operate like the gear reduction disclosed above.
- a compressor rotor 210 is driven by an intermediate pressure turbine 212
- a second stage compressor rotor 214 is driven by a turbine rotor 216 .
- a combustion section 218 is positioned intermediate the compressor rotor 214 and the turbine section 216 .
- FIG. 10 shows yet another embodiment 300 wherein a fan rotor 302 and a first stage compressor 304 rotate at a common speed.
- the gear reduction 306 (which may be structured, mounted and operate as disclosed above) is intermediate the compressor rotor 304 and a shaft 308 , which is driven by a low pressure turbine section.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Retarders (AREA)
- General Details Of Gearings (AREA)
Abstract
Description
- The present disclosure is a continuation of U.S. patent application Ser. No. 14/859,381, filed Sep. 21, 2015, which is a continuation of U.S. patent application Ser. No. 14/604,811, filed Jan. 26, 2015, now U.S. Pat. No. 9,239,012, issued Jan. 19, 2016, which is a continuation-in-part of U.S. patent application Ser. No. 13/623,309, filed Sep. 20, 2012, now U.S. Pat. No. 9,133,729, issued Sep. 15, 2015, which is a continuation-in-part of U.S. application Ser. No. 13/342,508, filed Jan. 3, 2012, now U.S. Pat. No. 8,297,916, issued Oct. 30, 2012, which claimed priority to U.S. Provisional Application No. 61/494,453, filed Jun. 8, 2011.
- The present disclosure relates to a gas turbine engine, and more particularly to a flexible support structure for a geared architecture therefor.
- Epicyclic gearboxes with planetary or star gear trains may be used in gas turbine engines for their compact designs and efficient high gear reduction capabilities. Planetary and star gear trains generally include three gear train elements: a central sun gear, an outer ring gear with internal gear teeth, and a plurality of planet gears supported by a planet carrier between and in meshed engagement with both the sun gear and the ring gear. The gear train elements share a common longitudinal central axis, about which at least two rotate. An advantage of epicyclic gear trains is that a rotary input can be connected to any one of the three elements. One of the other two elements is then held stationary with respect to the other two to permit the third to serve as an output.
- In gas turbine engine applications, where a speed reduction transmission is required, the central sun gear generally receives rotary input from the powerplant, the outer ring gear is generally held stationary and the planet gear carrier rotates in the same direction as the sun gear to provide torque output at a reduced rotational speed. In star gear trains, the planet carrier is held stationary and the output shaft is driven by the ring gear in a direction opposite that of the sun gear.
- During flight, light weight structural cases deflect with aero and maneuver loads causing significant amounts of transverse deflection commonly known as backbone bending of the engine. This deflection may cause the individual sun or planet gear's axis of rotation to lose parallelism with the central axis. This deflection may result in some misalignment at gear train journal bearings and at the gear teeth mesh, which may lead to efficiency losses from the misalignment and potential reduced life from increases in the concentrated stresses.
- A gas turbine engine according to an example of the present disclosure includes a fan shaft configured to drive a fan, a support configured to support at least a portion of the fan shaft, the support defining a support transverse stiffness and a support lateral stiffness, a gear system coupled to the fan shaft, and a flexible support configured to at least partially support the gear system. The flexible support defines a flexible support transverse stiffness with respect to the support transverse stiffness and a flexible support lateral stiffness with respect to the support lateral stiffness. The input defines an input transverse stiffness with respect to the support transverse stiffness and an input lateral stiffness with respect to the support lateral stiffness.
- In a further embodiment of any of the forgoing embodiments, the support and the flexible support are mounted to a static structure.
- In a further embodiment of any of the forgoing embodiments, the static structure is a front center body of the gas turbine engine.
- In a further embodiment of any of the forgoing embodiments, the flexible support is mounted to a planet carrier of the gear system, and the input is mounted to a sun gear of the gear system.
- In a further embodiment of any of the forgoing embodiments, the fan shaft is mounted to a ring gear of the gear system.
- In a further embodiment of any of the forgoing embodiments, the gear system is a star system.
- In a further embodiment of any of the forgoing embodiments, the flexible support is mounted to a ring gear of the gear system, and the input is mounted to a sun gear of the gear system.
- In a further embodiment of any of the forgoing embodiments, the fan shaft is mounted to a planet carrier of the gear system.
- In a further embodiment of any of the forgoing embodiments, the flexible support transverse stiffness and the input transverse stiffness are both less than the support transverse stiffness.
- In a further embodiment of any of the forgoing embodiments, the flexible support transverse stiffness and the input transverse stiffness are each less than about 20% of the support transverse stiffness.
- In a further embodiment of any of the forgoing embodiments, the flexible support transverse stiffness and the input transverse stiffness are each less than about 11% of the support transverse stiffness.
- In a further embodiment of any of the forgoing embodiments, the input to the gear system is coupled to a turbine section, and the gear system is configured to drive a compressor rotor at a common speed with the fan shaft.
- A gas turbine engine according to an example of the present disclosure includes a fan shaft configured to drive a fan, a support configured to support at least a portion of the fan shaft, and a gear system configured to drive the fan shaft. The gear system includes a gear mesh that defines a gear mesh transverse stiffness and a gear mesh lateral stiffness. A flexible support is configured to at least partially support the gear system. The flexible support defines a flexible support transverse stiffness with respect to the gear mesh transverse stiffness and a flexible support lateral stiffness with respect to the gear mesh lateral stiffness. The input defines an input transverse stiffness with respect to the gear mesh transverse stiffness and an input lateral stiffness with respect to the gear mesh lateral stiffness.
- In a further embodiment of any of the forgoing embodiments, both the flexible support transverse stiffness and the input transverse stiffness are less than the gear mesh transverse stiffness.
- In a further embodiment of any of the forgoing embodiments, the flexible support transverse stiffness is less than about 8% of the gear mesh transverse stiffness, the input transverse stiffness is less than about 5% of the gear mesh transverse stiffness, and a transverse stiffness of a ring gear of the gear system is less than about 20% of the gear mesh transverse stiffness.
- In a further embodiment of any of the forgoing embodiments, a transverse stiffness of a planet journal bearing which supports a planet gear of the gear system is less than or equal to the gear mesh transverse stiffness.
- In a further embodiment of any of the forgoing embodiments, the support and the flexible support are mounted to a front center body of the gas turbine engine.
- A method of designing a gas turbine engine according to an example of the present disclosure includes providing a fan shaft, and providing a support configured to support at least a portion of the fan shaft, the support defining at least one of a support transverse stiffness and a support lateral stiffness, and providing a gear system coupled to the fan shaft. The gear system includes a gear mesh that defines a gear mesh lateral stiffness and a gear mesh transverse stiffness. The method includes providing a flexible support configured to at least partially support the gear system, and providing an input to the gear system. The flexible support defines a flexible support transverse stiffness with respect to the gear mesh transverse stiffness and a flexible support lateral stiffness with respect to the gear mesh lateral stiffness. The input defines an input transverse stiffness with respect to the gear mesh transverse stiffness and an input lateral stiffness with respect to the gear mesh lateral stiffness.
- In a further embodiment of any of the forgoing embodiments, the flexible support lateral stiffness is less than the gear mesh lateral stiffness, and the flexible support transverse stiffness is less than the gear mesh transverse stiffness.
- In a further embodiment of any of the forgoing embodiments, both the flexible support transverse stiffness and the input transverse stiffness are less than the gear mesh transverse stiffness.
- The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of an embodiment. The drawings that accompany the detailed description can be briefly described as follows.
- Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:
-
FIG. 1 is a schematic cross-section of a gas turbine engine; -
FIG. 2 is an enlarged cross-section of a section of the gas turbine engine which illustrates a fan drive gear system (FDGS); -
FIG. 3 is a schematic view of a flex mount arrangement for one non-limiting embodiment of the FDGS; -
FIG. 4 is a schematic view of a flex mount arrangement for another non-limiting embodiment of the FDGS; -
FIG. 5 is a schematic view of a flex mount arrangement for another non-limiting embodiment of a star system FDGS; -
FIG. 6 is a schematic view of a flex mount arrangement for another non-limiting embodiment of a planetary system FDGS. -
FIG. 7 is a schematic view of a flex mount arrangement for another non-limiting embodiment of a star system FDGS; -
FIG. 8 is a schematic view of a flex mount arrangement for another non-limiting embodiment of a planetary system FDGS; -
FIG. 9 shows another embodiment; and -
FIG. 10 shows yet another embodiment. -
FIG. 1 schematically illustrates agas turbine engine 20. Thegas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates afan section 22, acompressor section 24, acombustor section 26 and aturbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. Thefan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15, while thecompressor section 24 drives air along a core flow path C for compression and communication into thecombustor section 26 then expansion through theturbine section 28. Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with two-spool turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures. - The
exemplary engine 20 generally includes alow speed spool 30 and ahigh speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an enginestatic structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application. - The
low speed spool 30 generally includes aninner shaft 40 that interconnects afan 42, a first (or low) pressure compressor 44 and a first (or low)pressure turbine 46. Theinner shaft 40 is connected to thefan 42 through a speed change mechanism, which in exemplarygas turbine engine 20 is illustrated as a gearedarchitecture 48 to drive thefan 42 at a lower speed than thelow speed spool 30. Thehigh speed spool 32 includes anouter shaft 50 that interconnects a second (or high)pressure compressor 52 and a second (or high)pressure turbine 54. Acombustor 56 is arranged inexemplary gas turbine 20 between thehigh pressure compressor 52 and thehigh pressure turbine 54. A mid-turbine frame 57 of the enginestatic structure 36 is arranged generally between thehigh pressure turbine 54 and thelow pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in theturbine section 28. Theinner shaft 40 and theouter shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes. - The core airflow is compressed by the low pressure compressor 44 then the
high pressure compressor 52, mixed and burned with fuel in thecombustor 56, then expanded over thehigh pressure turbine 54 andlow pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C. Theturbines low speed spool 30 andhigh speed spool 32 in response to the expansion. It will be appreciated that each of the positions of thefan section 22,compressor section 24,combustor section 26,turbine section 28, and fandrive gear system 48 may be varied. For example,gear system 48 may be located aft ofcombustor section 26 or even aft ofturbine section 28, andfan section 22 may be positioned forward or aft of the location ofgear system 48. - The
engine 20 in one example is a high-bypass geared aircraft engine. In a further example, theengine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10), the gearedarchitecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and thelow pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, theengine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and thelow pressure turbine 46 has a pressure ratio that is greater than about five 5:1.Low pressure turbine 46 pressure ratio is pressure measured prior to inlet oflow pressure turbine 46 as related to the pressure at the outlet of thelow pressure turbine 46 prior to an exhaust nozzle. The gearedarchitecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans. - A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The
fan section 22 of theengine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft, with the engine at its best fuel consumption—also known as “bucket cruise Thrust Specific Fuel Consumption (‘TSFC’)”—is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. “Low fan pressure ratio” is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. “Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram ° R)/(518.7° R)]0.5. The “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second. - With reference to
FIG. 2 , the gearedarchitecture 48 generally includes a fan drive gear system (FDGS) 60 driven by the low speed spool 30 (illustrated schematically) through aninput 62. Theinput 62, which may be in the form of a coupling, both transfers torque from thelow speed spool 30 to the gearedarchitecture 48 and facilitates the segregation of vibrations and other transients therebetween. In the disclosed non-limiting embodiment, theFDGS 60 may include an epicyclic gear system which may be, for example, a star system or a planet system. - The
input coupling 62 may include aninterface spline 64 joined, by agear spline 66, to asun gear 68 of theFDGS 60. Thesun gear 68 is in meshed engagement with multiple planet gears 70, of which the illustratedplanet gear 70 is representative. Eachplanet gear 70 is rotatably mounted in aplanet carrier 72 by a respective planet journal bearing 75. Rotary motion of thesun gear 68 urges eachplanet gear 70 to rotate about a respective longitudinal axis P. - Each
planet gear 70 is also in meshed engagement withrotating ring gear 74 that is mechanically connected to afan shaft 76. Since the planet gears 70 mesh with both therotating ring gear 74 as well as therotating sun gear 68, the planet gears 70 rotate about their own axes to drive thering gear 74 to rotate about engine axis A. The rotation of thering gear 74 is conveyed to the fan 42 (FIG. 1 ) through thefan shaft 76 to thereby drive thefan 42 at a lower speed than thelow speed spool 30. It should be understood that the described gearedarchitecture 48 is but a single non-limiting embodiment and that various other geared architectures will alternatively benefit herefrom. - With reference to
FIG. 3 , aflexible support 78 supports theplanet carrier 72 to at least partially support theFDGS 60A with respect to thestatic structure 36 such as a front center body which facilitates the segregation of vibrations and other transients therebetween. It should be understood that various gas turbine engine case structures may alternatively or additionally provide the static structure andflexible support 78. It should be understood that lateral as defined herein is generally transverse to the axis of rotation A and the term “transverse” refers to a pivotal bending movement with respect to the axis of rotation A which typically absorbs deflection applied to theFDGS 60. Thestatic structure 36 may further include a number 1 and 1.5 bearing supportstatic structure 82 which is commonly referred to as a “K-frame” which supports the number 1 and number 1.5bearing systems FIG. 3 ) and a transverse stiffness (represented as KframeBEND inFIG. 3 ) as the referenced factors in this non-limiting embodiment. - In this disclosed non-limiting embodiment, the lateral stiffness (KFS; KIC) of both the
flexible support 78 and theinput coupling 62 are each less than about 11% of the lateral stiffness (Kframe). That is, the lateral stiffness of theentire FDGS 60 is controlled by this lateral stiffness relationship. Alternatively, or in addition to this relationship, the transverse stiffness of both theflexible support 78 and theinput coupling 62 are each less than about 11% of the transverse stiffness (KframeBEND). That is, the transverse stiffness of theentire FDGS 60 is controlled by this transverse stiffness relationship. - With reference to
FIG. 4 , another non-limiting embodiment of aFDGS 60B includes aflexible support 78′ that supports a rotationally fixedring gear 74′. Thefan shaft 76′ is driven by theplanet carrier 72′ in the schematically illustrated planet system which otherwise generally follows the star system architecture ofFIG. 3 . - With reference to
FIG. 5 , the lateral stiffness relationship within aFDGS 60C itself (for a star system architecture) is schematically represented. The lateral stiffness (KIC) of aninput coupling 62, a lateral stiffness (KFS) of aflexible support 78, a lateral stiffness (KRG) of aring gear 74 and a lateral stiffness (KJB) of a planet journal bearing 75 are controlled with respect to a lateral stiffness (KGM) of a gear mesh within theFDGS 60. - In the disclosed non-limiting embodiment, the stiffness (KGM) may be defined by the gear mesh between the
sun gear 68 and the multiple planet gears 70. The lateral stiffness (KGM) within theFDGS 60 is the referenced factor and thestatic structure 82′ rigidly supports thefan shaft 76. That is, thefan shaft 76 is supported upon bearingsystems static structure 82′. The lateral stiffness (KJB) may be mechanically defined by, for example, the stiffness within the planet journal bearing 75 and the lateral stiffness (KRG) of thering gear 74 may be mechanically defined by, for example, the geometry of thering gear wings FIG. 2 ). - In the disclosed non-limiting embodiment, the lateral stiffness (KRG) of the
ring gear 74 is less than about 12% of the lateral stiffness (KGM) of the gear mesh; the lateral stiffness (KFS) of theflexible support 78 is less than about 8% of the lateral stiffness (KGM) of the gear mesh; the lateral stiffness (KJB) of the planet journal bearing 75 is less than or equal to the lateral stiffness (KGM) of the gear mesh; and the lateral stiffness (KIC) of aninput coupling 62 is less than about 5% of the lateral stiffness (KGM) of the gear mesh. - With reference to
FIG. 6 , another non-limiting embodiment of a lateral stiffness relationship within aFDGS 60D itself are schematically illustrated for a planetary gear system architecture, which otherwise generally follows the star system architecture ofFIG. 5 . - It should be understood that combinations of the above lateral stiffness relationships may be utilized as well. The lateral stiffness of each of structural components may be readily measured as compared to film stiffness and spline stiffness which may be relatively difficult to determine.
- By flex mounting to accommodate misalignment of the shafts under design loads, the FDGS design loads have been reduced by more than 17% which reduces overall engine weight. The flex mount facilitates alignment to increase system life and reliability. The lateral flexibility in the flexible support and input coupling allows the FDGS to essentially ‘float’ with the fan shaft during maneuvers. This allows: (a) the torque transmissions in the fan shaft, the input coupling and the flexible support to remain constant during maneuvers; (b) maneuver induced lateral loads in the fan shaft (which may otherwise potentially misalign gears and damage teeth) to be mainly reacted to through the number 1 and 1.5 bearing support K-frame; and (c) both the flexible support and the input coupling to transmit small amounts of lateral loads into the FDGS. The splines, gear tooth stiffness, journal bearings, and ring gear ligaments are specifically designed to minimize gear tooth stress variations during maneuvers. The other connections to the FDGS are flexible mounts (turbine coupling, case flex mount). These mount spring rates have been determined from analysis and proven in rig and flight testing to isolate the gears from engine maneuver loads. In addition, the planet journal bearing spring rate may also be controlled to support system flexibility.
-
FIG. 7 is similar toFIG. 5 but shows the transverse stiffness relationships within theFDGS 60C (for a star system architecture). The transverse stiffness (KICBEND) of theinput coupling 62, a transverse stiffness (KFSBEND) of theflexible support 78, a transverse stiffness (KRGBEND) of thering gear 74 and a transverse stiffness (KJBBEND) of the planet journal bearing 75 are controlled with respect to a transverse stiffness (KGMBEND) of the gear mesh within theFDGS 60. - In the disclosed non-limiting embodiment, the stiffness (KGMBEND) may be defined by the gear mesh between the
sun gear 68 and the multiple planet gears 70. The transverse stiffness (KGMBEND) within theFDGS 60 is the referenced factor and thestatic structure 82′ rigidly supports thefan shaft 76. That is, thefan shaft 76 is supported upon bearingsystems static structure 82′. The transverse stiffness (KJBBEND) may be mechanically defined by, for example, the stiffness within the planet journal bearing 75 and the transverse stiffness (KRGBEND) of thering gear 74 may be mechanically defined by, for example, the geometry of thering gear wings FIG. 2 ). - In the disclosed non-limiting embodiment, the transverse stiffness (KRGBEND) of the
ring gear 74 is less than about 12% of the transverse stiffness (KGMBEND) of the gear mesh; the transverse stiffness (KFSBEND) of theflexible support 78 is less than about 8% of the transverse stiffness (KGMBEND) of the gear mesh; the transverse stiffness (KJBBEND) of the planet journal bearing 75 is less than or equal to the transverse stiffness (KGMBEND) of the gear mesh; and the transverse stiffness (KICBEND) of aninput coupling 62 is less than about 5% of the transverse stiffness (KGMBEND) of the gear mesh. -
FIG. 8 is similar toFIG. 6 but shows the transverse stiffness relationship within theFDGS 60D for the planetary gear system architecture. -
FIG. 9 shows anembodiment 200, wherein there is afan drive turbine 208 driving ashaft 206 to in turn drive afan rotor 202. Agear reduction 204 may be positioned between thefan drive turbine 208 and thefan rotor 202. Thisgear reduction 204 may be structured, mounted and operate like the gear reduction disclosed above. Acompressor rotor 210 is driven by anintermediate pressure turbine 212, and a secondstage compressor rotor 214 is driven by aturbine rotor 216. A combustion section 218 is positioned intermediate thecompressor rotor 214 and theturbine section 216. -
FIG. 10 shows yet anotherembodiment 300 wherein afan rotor 302 and afirst stage compressor 304 rotate at a common speed. The gear reduction 306 (which may be structured, mounted and operate as disclosed above) is intermediate thecompressor rotor 304 and ashaft 308, which is driven by a low pressure turbine section. - It should be understood that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.
- It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.
- Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present disclosure.
- The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/452,232 US20170175583A1 (en) | 2011-06-08 | 2017-03-07 | Flexible support structure for a geared architecture gas turbine engine |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161494453P | 2011-06-08 | 2011-06-08 | |
US13/342,508 US8297916B1 (en) | 2011-06-08 | 2012-01-03 | Flexible support structure for a geared architecture gas turbine engine |
US13/623,309 US9133729B1 (en) | 2011-06-08 | 2012-09-20 | Flexible support structure for a geared architecture gas turbine engine |
US14/604,811 US9239012B2 (en) | 2011-06-08 | 2015-01-26 | Flexible support structure for a geared architecture gas turbine engine |
US14/859,381 US10301968B2 (en) | 2011-06-08 | 2015-09-21 | Flexible support structure for a geared architecture gas turbine engine |
US15/452,232 US20170175583A1 (en) | 2011-06-08 | 2017-03-07 | Flexible support structure for a geared architecture gas turbine engine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/859,381 Continuation US10301968B2 (en) | 2011-06-08 | 2015-09-21 | Flexible support structure for a geared architecture gas turbine engine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170175583A1 true US20170175583A1 (en) | 2017-06-22 |
Family
ID=54701170
Family Applications (21)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/604,811 Expired - Fee Related US9239012B2 (en) | 2011-06-08 | 2015-01-26 | Flexible support structure for a geared architecture gas turbine engine |
US14/859,381 Active 2033-11-15 US10301968B2 (en) | 2011-06-08 | 2015-09-21 | Flexible support structure for a geared architecture gas turbine engine |
US15/451,929 Abandoned US20170175581A1 (en) | 2011-06-08 | 2017-03-07 | Flexible support structure for a geared architecture gas turbine engine |
US15/452,232 Abandoned US20170175583A1 (en) | 2011-06-08 | 2017-03-07 | Flexible support structure for a geared architecture gas turbine engine |
US15/452,175 Abandoned US20170175582A1 (en) | 2011-06-08 | 2017-03-07 | Flexible support structure for a geared architecture gas turbine engine |
US15/485,732 Abandoned US20170298768A1 (en) | 2011-06-08 | 2017-04-12 | Flexible support structure for a geared architecture gas turbine engine |
US15/485,481 Abandoned US20170226936A1 (en) | 2011-06-08 | 2017-04-12 | Flexible support structure for a geared architecture gas turbine engine |
US15/606,776 Abandoned US20170260876A1 (en) | 2011-06-08 | 2017-05-26 | Flexible support structure for a geared architecture gas turbine engine |
US15/606,556 Abandoned US20170260875A1 (en) | 2011-06-08 | 2017-05-26 | Flexible support structure for a geared architecture gas turbine engine |
US15/606,494 Active US10227893B2 (en) | 2011-06-08 | 2017-05-26 | Flexible support structure for a geared architecture gas turbine engine |
US15/639,188 Abandoned US20170298770A1 (en) | 2011-06-08 | 2017-06-30 | Flexible support structure for a geared architecture gas turbine engine |
US15/664,682 Abandoned US20170342858A1 (en) | 2011-06-08 | 2017-07-31 | Flexible support structure for a geared architecture gas turbine engine |
US15/788,373 Abandoned US20180094540A1 (en) | 2011-06-08 | 2017-10-19 | Flexible support structure for a geared architecture gas turbine engine |
US15/788,393 Abandoned US20180094541A1 (en) | 2011-06-08 | 2017-10-19 | Flexible support structure for a geared architecture gas turbine engine |
US15/816,487 Abandoned US20180073393A1 (en) | 2011-06-08 | 2017-11-17 | Flexible support structure for a geared architecture gas turbine engine |
US16/125,179 Active US10590802B2 (en) | 2011-06-08 | 2018-09-07 | Flexible support structure for a geared architecture gas turbine engine |
US16/298,319 Active 2032-07-31 US11021996B2 (en) | 2011-06-08 | 2019-03-11 | Flexible support structure for a geared architecture gas turbine engine |
US16/406,371 Active 2032-10-27 US11021997B2 (en) | 2011-06-08 | 2019-05-08 | Flexible support structure for a geared architecture gas turbine engine |
US16/667,154 Active 2032-02-15 US11111818B2 (en) | 2011-06-08 | 2019-10-29 | Flexible support structure for a geared architecture gas turbine engine |
US17/321,018 Active 2032-04-03 US11698007B2 (en) | 2011-06-08 | 2021-05-14 | Flexible support structure for a geared architecture gas turbine engine |
US17/394,497 Pending US20210363898A1 (en) | 2011-06-08 | 2021-08-05 | Flexible support structure for a geared architecture gas turbine engine |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/604,811 Expired - Fee Related US9239012B2 (en) | 2011-06-08 | 2015-01-26 | Flexible support structure for a geared architecture gas turbine engine |
US14/859,381 Active 2033-11-15 US10301968B2 (en) | 2011-06-08 | 2015-09-21 | Flexible support structure for a geared architecture gas turbine engine |
US15/451,929 Abandoned US20170175581A1 (en) | 2011-06-08 | 2017-03-07 | Flexible support structure for a geared architecture gas turbine engine |
Family Applications After (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/452,175 Abandoned US20170175582A1 (en) | 2011-06-08 | 2017-03-07 | Flexible support structure for a geared architecture gas turbine engine |
US15/485,732 Abandoned US20170298768A1 (en) | 2011-06-08 | 2017-04-12 | Flexible support structure for a geared architecture gas turbine engine |
US15/485,481 Abandoned US20170226936A1 (en) | 2011-06-08 | 2017-04-12 | Flexible support structure for a geared architecture gas turbine engine |
US15/606,776 Abandoned US20170260876A1 (en) | 2011-06-08 | 2017-05-26 | Flexible support structure for a geared architecture gas turbine engine |
US15/606,556 Abandoned US20170260875A1 (en) | 2011-06-08 | 2017-05-26 | Flexible support structure for a geared architecture gas turbine engine |
US15/606,494 Active US10227893B2 (en) | 2011-06-08 | 2017-05-26 | Flexible support structure for a geared architecture gas turbine engine |
US15/639,188 Abandoned US20170298770A1 (en) | 2011-06-08 | 2017-06-30 | Flexible support structure for a geared architecture gas turbine engine |
US15/664,682 Abandoned US20170342858A1 (en) | 2011-06-08 | 2017-07-31 | Flexible support structure for a geared architecture gas turbine engine |
US15/788,373 Abandoned US20180094540A1 (en) | 2011-06-08 | 2017-10-19 | Flexible support structure for a geared architecture gas turbine engine |
US15/788,393 Abandoned US20180094541A1 (en) | 2011-06-08 | 2017-10-19 | Flexible support structure for a geared architecture gas turbine engine |
US15/816,487 Abandoned US20180073393A1 (en) | 2011-06-08 | 2017-11-17 | Flexible support structure for a geared architecture gas turbine engine |
US16/125,179 Active US10590802B2 (en) | 2011-06-08 | 2018-09-07 | Flexible support structure for a geared architecture gas turbine engine |
US16/298,319 Active 2032-07-31 US11021996B2 (en) | 2011-06-08 | 2019-03-11 | Flexible support structure for a geared architecture gas turbine engine |
US16/406,371 Active 2032-10-27 US11021997B2 (en) | 2011-06-08 | 2019-05-08 | Flexible support structure for a geared architecture gas turbine engine |
US16/667,154 Active 2032-02-15 US11111818B2 (en) | 2011-06-08 | 2019-10-29 | Flexible support structure for a geared architecture gas turbine engine |
US17/321,018 Active 2032-04-03 US11698007B2 (en) | 2011-06-08 | 2021-05-14 | Flexible support structure for a geared architecture gas turbine engine |
US17/394,497 Pending US20210363898A1 (en) | 2011-06-08 | 2021-08-05 | Flexible support structure for a geared architecture gas turbine engine |
Country Status (1)
Country | Link |
---|---|
US (21) | US9239012B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11187212B1 (en) | 2021-04-02 | 2021-11-30 | Ice Thermal Harvesting, Llc | Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature |
US11293414B1 (en) | 2021-04-02 | 2022-04-05 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
US11326550B1 (en) | 2021-04-02 | 2022-05-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11421663B1 (en) | 2021-04-02 | 2022-08-23 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US12180861B1 (en) | 2022-12-30 | 2024-12-31 | Ice Thermal Harvesting, Llc | Systems and methods to utilize heat carriers in conversion of thermal energy |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9410608B2 (en) | 2011-06-08 | 2016-08-09 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US9239012B2 (en) * | 2011-06-08 | 2016-01-19 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US9631558B2 (en) | 2012-01-03 | 2017-04-25 | United Technologies Corporation | Geared architecture for high speed and small volume fan drive turbine |
US10125693B2 (en) | 2012-04-02 | 2018-11-13 | United Technologies Corporation | Geared turbofan engine with power density range |
WO2014189564A2 (en) * | 2013-03-06 | 2014-11-27 | United Technologies Corporation | Pretrenched rotor for gas turbine engine |
EP2971698B1 (en) * | 2013-03-12 | 2021-04-21 | Raytheon Technologies Corporation | Flexible coupling for geared turbine engine |
FR3034140B1 (en) * | 2015-03-26 | 2018-09-07 | Safran Aircraft Engines | AIRCRAFT TURBOMACHINE WITH PLANETARY OR EPICYCLOIDAL REDUCER |
US10119465B2 (en) | 2015-06-23 | 2018-11-06 | United Technologies Corporation | Geared turbofan with independent flexible ring gears and oil collectors |
US10352274B2 (en) | 2016-08-18 | 2019-07-16 | United Technologies Corporation | Direct drive aft fan engine |
FR3071024B1 (en) * | 2017-09-12 | 2021-02-19 | Safran Trans Systems | PIVOT FOR SMOOTH BEARING |
US10677087B2 (en) | 2018-05-11 | 2020-06-09 | General Electric Company | Support structure for geared turbomachine |
US10823003B2 (en) | 2018-05-25 | 2020-11-03 | General Electric Company | System and method for mitigating undesired vibrations at a turbo machine |
IT201800005822A1 (en) * | 2018-05-29 | 2019-11-29 | ATTACHMENT OF A GEAR GROUP FOR A GAS TURBINE ENGINE | |
US11493407B2 (en) | 2018-09-28 | 2022-11-08 | Ge Avio S.R.L. | Torque measurement system |
GB201917773D0 (en) | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | High power epicyclic gearbox and operation thereof |
GB201917779D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Aircraft engine |
GB201917761D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Reliable gearbox for gas turbine engine |
GB201917774D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Gas turbine engine arrangement |
GB201917781D0 (en) | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Reliable gearbox for gas turbine engine |
GB201917776D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Aircraft engine |
GB201917765D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Aircraft engine |
GB201917762D0 (en) | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Reliable gearbox for gas turbine engine |
GB201917764D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Reliable gearbox for gas turbine engine |
GB201917767D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | High power epicyclic gearbox and operation thereof |
GB201917770D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Reliable gearbox for gas turine engine |
GB201917777D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | High power epicyclic gearbox and operation thereof |
GB201917766D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Geared gas turbine engine |
GB201917760D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Aircraft engine |
GB201917782D0 (en) | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | High power epicyclic gearbox and operation thereof |
GB201917772D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Aircraft engine |
GB201917763D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Gas turbine engine arrangement |
GB201917769D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Geared gas turbine engine |
KR102762978B1 (en) | 2020-04-16 | 2025-02-11 | 삼성전자주식회사 | Semiconductor devices and method of manufacturing the same |
KR20210128534A (en) | 2020-04-16 | 2021-10-27 | 삼성전자주식회사 | Semiconductor devices |
CN115750093A (en) * | 2021-09-02 | 2023-03-07 | 通用电气公司 | Bearing support assembly |
US20230184175A1 (en) * | 2021-12-09 | 2023-06-15 | General Electric Company | Systems and methods for aligning a gearbox of a gas turbine engine |
CN116988876A (en) | 2022-04-25 | 2023-11-03 | 通用电气公司 | Mounting assembly for a gearbox assembly |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080044276A1 (en) * | 2006-08-15 | 2008-02-21 | Mccune Michael E | Ring gear mounting arrangement with oil scavenge scheme |
US20100105516A1 (en) * | 2006-07-05 | 2010-04-29 | United Technologies Corporation | Coupling system for a star gear train in a gas turbine engine |
US20110106510A1 (en) * | 2008-04-29 | 2011-05-05 | Siu Yun Poon | Methods, apparatus and computer readable storage mediums for model-based diagnosis |
Family Cites Families (293)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3111005A (en) | 1963-11-19 | Jet propulsion plant | ||
US791754A (en) | 1903-10-23 | 1905-06-06 | Ai Root Co | Beehive. |
US1090416A (en) | 1913-04-10 | 1914-03-17 | Karl H Roth | Knife. |
US2258792A (en) | 1941-04-12 | 1941-10-14 | Westinghouse Electric & Mfg Co | Turbine blading |
US2608821A (en) | 1949-10-08 | 1952-09-02 | Gen Electric | Contrarotating turbojet engine having independent bearing supports for each turbocompressor |
US3021731A (en) | 1951-11-10 | 1962-02-20 | Wilhelm G Stoeckicht | Planetary gear transmission |
US2748623A (en) | 1952-02-05 | 1956-06-05 | Boeing Co | Orbit gear controlled reversible planetary transmissions |
US2936655A (en) | 1955-11-04 | 1960-05-17 | Gen Motors Corp | Self-aligning planetary gearing |
US3033002A (en) | 1957-11-08 | 1962-05-08 | Fairfield Shipbuilding And Eng | Marine propulsion steam turbine installations |
US3015798A (en) | 1959-03-09 | 1962-01-02 | Sylvania Electric Prod | Flash gun socket |
US3185857A (en) | 1960-02-01 | 1965-05-25 | Lear Siegler Inc | Control apparatus for the parallel operation of alternators |
US3061969A (en) | 1960-04-28 | 1962-11-06 | Lunday Robert Lee | Adjustable book holder |
GB969579A (en) | 1962-11-09 | 1964-09-09 | Rolls Royce | Gas turbine engine |
US3172717A (en) | 1963-02-26 | 1965-03-09 | Clewes Antony Brasher | Electrical contact and edge connector for such contact |
US3194487A (en) | 1963-06-04 | 1965-07-13 | United Aircraft Corp | Noise abatement method and apparatus |
US3287906A (en) | 1965-07-20 | 1966-11-29 | Gen Motors Corp | Cooled gas turbine vanes |
US3352178A (en) | 1965-11-15 | 1967-11-14 | Gen Motors Corp | Planetary gearing |
US3412560A (en) | 1966-08-03 | 1968-11-26 | Gen Motors Corp | Jet propulsion engine with cooled combustion chamber, fuel heater, and induced air-flow |
GB1313841A (en) | 1967-01-18 | 1973-04-18 | Secr Defence | Gas turbine jet propulsion engine |
GB1135129A (en) | 1967-09-15 | 1968-11-27 | Rolls Royce | Gas turbine engine |
US3527054A (en) | 1969-01-23 | 1970-09-08 | Gen Electric | Pressurization of lubrication sumps in gas turbine engines |
US3664612A (en) | 1969-12-22 | 1972-05-23 | Boeing Co | Aircraft engine variable highlight inlet |
GB1309721A (en) | 1971-01-08 | 1973-03-14 | Secr Defence | Fan |
GB1350431A (en) | 1971-01-08 | 1974-04-18 | Secr Defence | Gearing |
US3892358A (en) | 1971-03-17 | 1975-07-01 | Gen Electric | Nozzle seal |
US3765623A (en) | 1971-10-04 | 1973-10-16 | Mc Donnell Douglas Corp | Air inlet |
US3747343A (en) | 1972-02-10 | 1973-07-24 | United Aircraft Corp | Low noise prop-fan |
GB1418905A (en) | 1972-05-09 | 1975-12-24 | Rolls Royce | Gas turbine engines |
US3861139A (en) | 1973-02-12 | 1975-01-21 | Gen Electric | Turbofan engine having counterrotating compressor and turbine elements and unique fan disposition |
US3843277A (en) | 1973-02-14 | 1974-10-22 | Gen Electric | Sound attenuating inlet duct |
US3988889A (en) | 1974-02-25 | 1976-11-02 | General Electric Company | Cowling arrangement for a turbofan engine |
US3932058A (en) | 1974-06-07 | 1976-01-13 | United Technologies Corporation | Control system for variable pitch fan propulsor |
GB1521465A (en) | 1974-09-04 | 1978-08-16 | Vickers Ltd | Gearboxes |
US3935558A (en) | 1974-12-11 | 1976-01-27 | United Technologies Corporation | Surge detector for turbine engines |
US4130872A (en) | 1975-10-10 | 1978-12-19 | The United States Of America As Represented By The Secretary Of The Air Force | Method and system of controlling a jet engine for avoiding engine surge |
US4084861A (en) * | 1976-11-11 | 1978-04-18 | United Technologies Corporation | Thrust bearing damping means |
US4201513A (en) | 1976-12-07 | 1980-05-06 | Rolls-Royce (1971) Limited | Gas turbine engines |
GB1516041A (en) | 1977-02-14 | 1978-06-28 | Secr Defence | Multistage axial flow compressor stators |
US4136286A (en) | 1977-07-05 | 1979-01-23 | Woodward Governor Company | Isolated electrical power generation system with multiple isochronous, load-sharing engine-generator units |
US4240250A (en) | 1977-12-27 | 1980-12-23 | The Boeing Company | Noise reducing air inlet for gas turbine engines |
US4275557A (en) | 1978-01-25 | 1981-06-30 | General Electric Company | Method and apparatus for controlling thrust in a gas turbine engine |
GB2041090A (en) | 1979-01-31 | 1980-09-03 | Rolls Royce | By-pass gas turbine engines |
US4233555A (en) | 1979-04-05 | 1980-11-11 | Dyna Technology, Inc. | Alternating current generator for providing three phase and single phase power at different respective voltages |
US4284174A (en) | 1979-04-18 | 1981-08-18 | Avco Corporation | Emergency oil/mist system |
US4220171A (en) | 1979-05-14 | 1980-09-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Curved centerline air intake for a gas turbine engine |
US4405892A (en) | 1979-07-19 | 1983-09-20 | Brunswick Corporation | Regulator for a generator energized battery |
US4289360A (en) | 1979-08-23 | 1981-09-15 | General Electric Company | Bearing damper system |
DE2940446C2 (en) | 1979-10-05 | 1982-07-08 | B. Braun Melsungen Ag, 3508 Melsungen | Cultivation of animal cells in suspension and monolayer cultures in fermentation vessels |
US4304522A (en) | 1980-01-15 | 1981-12-08 | Pratt & Whitney Aircraft Of Canada Limited | Turbine bearing support |
FR2506840A1 (en) | 1981-05-29 | 1982-12-03 | Onera (Off Nat Aerospatiale) | TURBOREACTOR WITH CONTRA-ROTATING WHEELS |
US4478551A (en) | 1981-12-08 | 1984-10-23 | United Technologies Corporation | Turbine exhaust case design |
US4660376A (en) | 1984-04-27 | 1987-04-28 | General Electric Company | Method for operating a fluid injection gas turbine engine |
DE3532456A1 (en) | 1985-09-11 | 1987-03-19 | Mtu Muenchen Gmbh | INTERMEDIATE SHAFT (INTERSHAFT) BEARING WITH SQUEEZE FILM DAMPING WITH OR WITHOUT SQUIRREL CAGE |
US5252905A (en) | 1985-12-23 | 1993-10-12 | York International Corporation | Driving system for single phase A-C induction motor |
US4722357A (en) | 1986-04-11 | 1988-02-02 | United Technologies Corporation | Gas turbine engine nacelle |
US4696156A (en) | 1986-06-03 | 1987-09-29 | United Technologies Corporation | Fuel and oil heat management system for a gas turbine engine |
IL82840A0 (en) | 1986-07-15 | 1987-12-20 | Savyon Diagnostics Ltd | Method and compositions for the determination of occult blood |
GB8630754D0 (en) | 1986-12-23 | 1987-02-04 | Rolls Royce Plc | Turbofan gas turbine engine |
US4885912A (en) | 1987-05-13 | 1989-12-12 | Gibbs & Hill, Inc. | Compressed air turbomachinery cycle with reheat and high pressure air preheating in recuperator |
GB2207191B (en) | 1987-07-06 | 1992-03-04 | Gen Electric | Gas turbine engine |
US4825723A (en) | 1987-09-04 | 1989-05-02 | Allied-Signal Inc. | Compound planetary gear assembly |
US4825644A (en) | 1987-11-12 | 1989-05-02 | United Technologies Corporation | Ventilation system for a nacelle |
US4808076A (en) | 1987-12-15 | 1989-02-28 | United Technologies Corporation | Rotor for a gas turbine engine |
US4879624A (en) | 1987-12-24 | 1989-11-07 | Sundstrand Corporation | Power controller |
US5168208A (en) | 1988-05-09 | 1992-12-01 | Onan Corporation | Microprocessor based integrated generator set controller apparatus and method |
US4916894A (en) | 1989-01-03 | 1990-04-17 | General Electric Company | High bypass turbofan engine having a partially geared fan drive turbine |
FR2644844B1 (en) | 1989-03-23 | 1994-05-06 | Snecma | SUSPENSION OF THE LOW PRESSURE TURBINE ROTOR OF A DOUBLE BODY TURBOMACHINE |
US4979362A (en) | 1989-05-17 | 1990-12-25 | Sundstrand Corporation | Aircraft engine starting and emergency power generating system |
JP2632214B2 (en) | 1989-06-08 | 1997-07-23 | 富士写真フイルム株式会社 | Magnetic recording media |
US5081832A (en) | 1990-03-05 | 1992-01-21 | Rolf Jan Mowill | High efficiency, twin spool, radial-high pressure, gas turbine engine |
US5058617A (en) | 1990-07-23 | 1991-10-22 | General Electric Company | Nacelle inlet for an aircraft gas turbine engine |
US5182464A (en) | 1991-01-09 | 1993-01-26 | Techmatics, Inc. | High speed transfer switch |
US5141400A (en) | 1991-01-25 | 1992-08-25 | General Electric Company | Wide chord fan blade |
US5102379A (en) | 1991-03-25 | 1992-04-07 | United Technologies Corporation | Journal bearing arrangement |
US5160251A (en) | 1991-05-13 | 1992-11-03 | General Electric Company | Lightweight engine turbine bearing support assembly for withstanding radial and axial loads |
US5317877A (en) | 1992-08-03 | 1994-06-07 | General Electric Company | Intercooled turbine blade cooling air feed system |
CA2100319C (en) | 1992-08-31 | 2003-10-07 | Michael J. Deaner | Advanced polymer/wood composite structural member |
EP0663904A1 (en) | 1992-10-09 | 1995-07-26 | UNIROYAL CHEMICAL COMPANY, Inc. | Fungicidal substituted azole derivatives |
US5447411A (en) | 1993-06-10 | 1995-09-05 | Martin Marietta Corporation | Light weight fan blade containment system |
US5466198A (en) | 1993-06-11 | 1995-11-14 | United Technologies Corporation | Geared drive system for a bladed propulsor |
US5361580A (en) | 1993-06-18 | 1994-11-08 | General Electric Company | Gas turbine engine rotor support system |
US5307622A (en) | 1993-08-02 | 1994-05-03 | General Electric Company | Counterrotating turbine support assembly |
US5524847A (en) | 1993-09-07 | 1996-06-11 | United Technologies Corporation | Nacelle and mounting arrangement for an aircraft engine |
US5388964A (en) | 1993-09-14 | 1995-02-14 | General Electric Company | Hybrid rotor blade |
RU2082824C1 (en) | 1994-03-10 | 1997-06-27 | Московский государственный авиационный институт (технический университет) | Method of protection of heat-resistant material from effect of high-rapid gaseous flow of corrosive media (variants) |
US5433674A (en) | 1994-04-12 | 1995-07-18 | United Technologies Corporation | Coupling system for a planetary gear train |
JPH07286503A (en) | 1994-04-20 | 1995-10-31 | Hitachi Ltd | High efficiency gas turbine |
US5625276A (en) | 1994-09-14 | 1997-04-29 | Coleman Powermate, Inc. | Controller for permanent magnet generator |
US5778659A (en) | 1994-10-20 | 1998-07-14 | United Technologies Corporation | Variable area fan exhaust nozzle having mechanically separate sleeve and thrust reverser actuation systems |
JP3489106B2 (en) | 1994-12-08 | 2004-01-19 | 株式会社サタケ | Brushless three-phase synchronous generator |
US5915917A (en) | 1994-12-14 | 1999-06-29 | United Technologies Corporation | Compressor stall and surge control using airflow asymmetry measurement |
US5607165A (en) | 1995-06-07 | 1997-03-04 | Cooper Cameron Corporation | Sealing system for a valve having biassed sealant under pressure |
US5729059A (en) | 1995-06-07 | 1998-03-17 | Kilroy; Donald G. | Digital no-break power transfer system |
JP2969075B2 (en) | 1996-02-26 | 1999-11-02 | ジャパンゴアテックス株式会社 | Degassing device |
US5734255A (en) | 1996-03-13 | 1998-03-31 | Alaska Power Systems Inc. | Control system and circuits for distributed electrical power generating stations |
US5754033A (en) | 1996-03-13 | 1998-05-19 | Alaska Power Systems Inc. | Control system and circuits for distributed electrical-power generating stations |
US5806303A (en) | 1996-03-29 | 1998-09-15 | General Electric Company | Turbofan engine with a core driven supercharged bypass duct and fixed geometry nozzle |
US5634767A (en) | 1996-03-29 | 1997-06-03 | General Electric Company | Turbine frame having spindle mounted liner |
EP0817350B1 (en) | 1996-06-24 | 2008-03-26 | SANYO ELECTRIC Co., Ltd. | Power-supply system involving system interconnection |
US5857836A (en) | 1996-09-10 | 1999-01-12 | Aerodyne Research, Inc. | Evaporatively cooled rotor for a gas turbine engine |
GB2322914B (en) | 1997-03-05 | 2000-05-24 | Rolls Royce Plc | Ducted fan gas turbine engine |
US5949153A (en) | 1997-03-06 | 1999-09-07 | Consolidated Natural Gas Service Company, Inc. | Multi-engine controller |
US6172717B1 (en) | 1997-07-31 | 2001-01-09 | Sony Corporation | Apparatus and methods for synthesizing foreground and background images |
US5975841A (en) | 1997-10-03 | 1999-11-02 | Thermal Corp. | Heat pipe cooling for turbine stators |
US5985470A (en) | 1998-03-16 | 1999-11-16 | General Electric Company | Thermal/environmental barrier coating system for silicon-based materials |
US6209311B1 (en) | 1998-04-13 | 2001-04-03 | Nikkiso Company, Ltd. | Turbofan engine including fans with reduced speed |
JP2002512337A (en) | 1998-04-16 | 2002-04-23 | 3カー−ヴァルナー・トゥルボズュステームズ・ゲーエムベーハー | Internal combustion engine with turbocharge |
US6205432B1 (en) | 1998-06-05 | 2001-03-20 | Creative Internet Concepts, Llc | Background advertising system |
US6230480B1 (en) | 1998-08-31 | 2001-05-15 | Rollins, Iii William Scott | High power density combined cycle power plant |
US6104171A (en) | 1998-11-23 | 2000-08-15 | Caterpillar Inc. | Generator set with redundant bus sensing and automatic generator on-line control |
US6260351B1 (en) | 1998-12-10 | 2001-07-17 | United Technologies Corporation | Controlled spring rate gearbox mount |
US6307622B1 (en) | 1999-02-17 | 2001-10-23 | Infineon Technologies North America Corp. | Correlation based optical ranging and proximity detector |
US6517341B1 (en) | 1999-02-26 | 2003-02-11 | General Electric Company | Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments |
US6410148B1 (en) | 1999-04-15 | 2002-06-25 | General Electric Co. | Silicon based substrate with environmental/ thermal barrier layer |
USH2032H1 (en) | 1999-10-01 | 2002-07-02 | The United States Of America As Represented By The Secretary Of The Air Force | Integrated fan-core twin spool counter-rotating turbofan gas turbine engine |
US6668629B1 (en) | 1999-11-26 | 2003-12-30 | General Electric Company | Methods and apparatus for web-enabled engine-generator systems |
US6315815B1 (en) | 1999-12-16 | 2001-11-13 | United Technologies Corporation | Membrane based fuel deoxygenator |
US6223616B1 (en) | 1999-12-22 | 2001-05-01 | United Technologies Corporation | Star gear system with lubrication circuit and lubrication method therefor |
US6318070B1 (en) | 2000-03-03 | 2001-11-20 | United Technologies Corporation | Variable area nozzle for gas turbine engines driven by shape memory alloy actuators |
US6444335B1 (en) | 2000-04-06 | 2002-09-03 | General Electric Company | Thermal/environmental barrier coating for silicon-containing materials |
EP1780387A3 (en) | 2000-09-05 | 2007-07-18 | Sudarshan Paul Dev | Nested core gas turbine engine |
US6631310B1 (en) | 2000-09-15 | 2003-10-07 | General Electric Company | Wireless engine-generator systems digital assistant |
US6555929B1 (en) | 2000-10-24 | 2003-04-29 | Kohler Co. | Method and apparatus for preventing excessive reaction to a load disturbance by a generator set |
US6657416B2 (en) | 2001-06-15 | 2003-12-02 | Generac Power Systems, Inc. | Control system for stand-by electrical generator |
US6653821B2 (en) | 2001-06-15 | 2003-11-25 | Generac Power Systems, Inc. | System controller and method for monitoring and controlling a plurality of generator sets |
US6669393B2 (en) | 2001-10-10 | 2003-12-30 | General Electric Co. | Connector assembly for gas turbine engines |
US6708482B2 (en) | 2001-11-29 | 2004-03-23 | General Electric Company | Aircraft engine with inter-turbine engine frame |
US6639331B2 (en) | 2001-11-30 | 2003-10-28 | Onan Corporation | Parallel generator power system |
US6663530B2 (en) | 2001-12-14 | 2003-12-16 | Pratt & Whitney Canada Corp. | Zero twist carrier |
US6735954B2 (en) | 2001-12-21 | 2004-05-18 | Pratt & Whitney Canada Corp. | Offset drive for gas turbine engine |
US6914763B2 (en) | 2002-01-15 | 2005-07-05 | Wellspring Heritage, Llc | Utility control and autonomous disconnection of distributed generation from a power distribution system |
AU2003231962A1 (en) | 2002-02-25 | 2003-09-09 | General Electric Company | External clock to obtain multiple synchronized computer |
US6732502B2 (en) | 2002-03-01 | 2004-05-11 | General Electric Company | Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor |
US6619030B1 (en) | 2002-03-01 | 2003-09-16 | General Electric Company | Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors |
US6966174B2 (en) | 2002-04-15 | 2005-11-22 | Paul Marius A | Integrated bypass turbojet engines for air craft and other vehicles |
US20030235523A1 (en) | 2002-06-24 | 2003-12-25 | Maxim Lyubovsky | Method for methane oxidation and, apparatus for use therewith |
US6607165B1 (en) | 2002-06-28 | 2003-08-19 | General Electric Company | Aircraft engine mount with single thrust link |
US6763653B2 (en) | 2002-09-24 | 2004-07-20 | General Electric Company | Counter rotating fan aircraft gas turbine engine with aft booster |
US6814541B2 (en) | 2002-10-07 | 2004-11-09 | General Electric Company | Jet aircraft fan case containment design |
US7021042B2 (en) | 2002-12-13 | 2006-04-04 | United Technologies Corporation | Geartrain coupling for a turbofan engine |
US6847297B2 (en) | 2003-01-06 | 2005-01-25 | General Electric Company | Locator devices and methods for centrally controlled power distribution systems |
US6709492B1 (en) | 2003-04-04 | 2004-03-23 | United Technologies Corporation | Planar membrane deoxygenator |
US20050138914A1 (en) | 2003-04-28 | 2005-06-30 | Marius Paul | Turbo rocket with real carnot cycle |
US7055306B2 (en) | 2003-04-30 | 2006-06-06 | Hamilton Sundstrand Corporation | Combined stage single shaft turbofan engine |
US6895741B2 (en) | 2003-06-23 | 2005-05-24 | Pratt & Whitney Canada Corp. | Differential geared turbine engine with torque modulation capability |
US7104918B2 (en) | 2003-07-29 | 2006-09-12 | Pratt & Whitney Canada Corp. | Compact epicyclic gear carrier |
US7019495B2 (en) | 2003-08-28 | 2006-03-28 | C.E. Neihoff & Co. | Inter-regulator control of multiple electric power sources |
US7216475B2 (en) | 2003-11-21 | 2007-05-15 | General Electric Company | Aft FLADE engine |
FR2866387B1 (en) | 2004-02-12 | 2008-03-14 | Snecma Moteurs | AERODYNAMIC ADAPTATION OF THE BACK BLOW OF A DOUBLE BLOWER TURBOREACTOR |
US7338259B2 (en) | 2004-03-02 | 2008-03-04 | United Technologies Corporation | High modulus metallic component for high vibratory operation |
GB0406174D0 (en) | 2004-03-19 | 2004-04-21 | Rolls Royce Plc | Turbine engine arrangement |
DE102004016246A1 (en) | 2004-04-02 | 2005-10-20 | Mtu Aero Engines Gmbh | Turbine, in particular low-pressure turbine, a gas turbine, in particular an aircraft engine |
US7144349B2 (en) | 2004-04-06 | 2006-12-05 | Pratt & Whitney Canada Corp. | Gas turbine gearbox |
US7168949B2 (en) | 2004-06-10 | 2007-01-30 | Georgia Tech Research Center | Stagnation point reverse flow combustor for a combustion system |
US7328580B2 (en) | 2004-06-23 | 2008-02-12 | General Electric Company | Chevron film cooled wall |
DE102004042739A1 (en) | 2004-09-03 | 2006-03-09 | Mtu Aero Engines Gmbh | Fan for an aircraft engine and aircraft engine |
US7269938B2 (en) | 2004-10-29 | 2007-09-18 | General Electric Company | Counter-rotating gas turbine engine and method of assembling same |
US7334392B2 (en) | 2004-10-29 | 2008-02-26 | General Electric Company | Counter-rotating gas turbine engine and method of assembling same |
US7409819B2 (en) | 2004-10-29 | 2008-08-12 | General Electric Company | Gas turbine engine and method of assembling same |
US7195446B2 (en) | 2004-10-29 | 2007-03-27 | General Electric Company | Counter-rotating turbine engine and method of assembling same |
US7458202B2 (en) | 2004-10-29 | 2008-12-02 | General Electric Company | Lubrication system for a counter-rotating turbine engine and method of assembling same |
DE602004027766D1 (en) | 2004-12-01 | 2010-07-29 | United Technologies Corp | HYDRAULIC SEAL FOR A GEARBOX OF A TOP TURBINE ENGINE |
WO2006059970A2 (en) | 2004-12-01 | 2006-06-08 | United Technologies Corporation | Turbine engine with differential gear driven fan and compressor |
US7309210B2 (en) | 2004-12-17 | 2007-12-18 | United Technologies Corporation | Turbine engine rotor stack |
FR2879720B1 (en) | 2004-12-17 | 2007-04-06 | Snecma Moteurs Sa | COMPRESSION-EVAPORATION SYSTEM FOR LIQUEFIED GAS |
US20060177302A1 (en) | 2005-02-04 | 2006-08-10 | Berry Henry M | Axial flow compressor |
CN1332500C (en) | 2005-02-04 | 2007-08-15 | 艾纯 | Small-sized dipolar single-phase generator |
US7845902B2 (en) | 2005-02-15 | 2010-12-07 | Massachusetts Institute Of Technology | Jet engine inlet-fan system and design method |
GB0502324D0 (en) | 2005-03-14 | 2005-03-16 | Rolls Royce Plc | A multi-shaft arrangement for a turbine engine |
GB0506685D0 (en) | 2005-04-01 | 2005-05-11 | Hopkins David R | A design to increase and smoothly improve the throughput of fluid (air or gas) through the inlet fan (or fans) of an aero-engine system |
US7374403B2 (en) | 2005-04-07 | 2008-05-20 | General Electric Company | Low solidity turbofan |
US7151332B2 (en) | 2005-04-27 | 2006-12-19 | Stephen Kundel | Motor having reciprocating and rotating permanent magnets |
US7393182B2 (en) | 2005-05-05 | 2008-07-01 | Florida Turbine Technologies, Inc. | Composite tip shroud ring |
WO2007038673A1 (en) | 2005-09-28 | 2007-04-05 | Entrotech Composites, Llc | Linerless prepregs, composite articles therefrom, and related methods |
US7685808B2 (en) | 2005-10-19 | 2010-03-30 | General Electric Company | Gas turbine engine assembly and methods of assembling same |
US7513103B2 (en) | 2005-10-19 | 2009-04-07 | General Electric Company | Gas turbine engine assembly and methods of assembling same |
US20080097813A1 (en) | 2005-12-28 | 2008-04-24 | Collins Robert J | System and method for optimizing advertisement campaigns according to advertiser specified business objectives |
DE102006001984A1 (en) | 2006-01-16 | 2007-07-19 | Robert Bosch Gmbh | Method and device for providing a supply voltage by means of parallel-connected generator units |
US7631484B2 (en) | 2006-03-13 | 2009-12-15 | Rollin George Giffin | High pressure ratio aft fan |
US20070214795A1 (en) | 2006-03-15 | 2007-09-20 | Paul Cooker | Continuous real time EGT margin control |
US7591754B2 (en) | 2006-03-22 | 2009-09-22 | United Technologies Corporation | Epicyclic gear train integral sun gear coupling design |
US7610763B2 (en) | 2006-05-09 | 2009-11-03 | United Technologies Corporation | Tailorable design configuration topologies for aircraft engine mid-turbine frames |
BE1017135A3 (en) | 2006-05-11 | 2008-03-04 | Hansen Transmissions Int | A GEARBOX FOR A WIND TURBINE. |
US7600370B2 (en) | 2006-05-25 | 2009-10-13 | Siemens Energy, Inc. | Fluid flow distributor apparatus for gas turbine engine mid-frame section |
US20080003096A1 (en) | 2006-06-29 | 2008-01-03 | United Technologies Corporation | High coverage cooling hole shape |
JP4911344B2 (en) | 2006-07-04 | 2012-04-04 | 株式会社Ihi | Turbofan engine |
US7926260B2 (en) | 2006-07-05 | 2011-04-19 | United Technologies Corporation | Flexible shaft for gas turbine engine |
US7704178B2 (en) | 2006-07-05 | 2010-04-27 | United Technologies Corporation | Oil baffle for gas turbine fan drive gear system |
US7594404B2 (en) | 2006-07-27 | 2009-09-29 | United Technologies Corporation | Embedded mount for mid-turbine frame |
US7594405B2 (en) | 2006-07-27 | 2009-09-29 | United Technologies Corporation | Catenary mid-turbine frame design |
US7694505B2 (en) | 2006-07-31 | 2010-04-13 | General Electric Company | Gas turbine engine assembly and method of assembling same |
EP2066896B1 (en) | 2006-08-22 | 2016-10-05 | Rolls-Royce North American Technologies, Inc. | Gas turbine engine with intermediate speed booster |
US7632064B2 (en) | 2006-09-01 | 2009-12-15 | United Technologies Corporation | Variable geometry guide vane for a gas turbine engine |
US7815417B2 (en) | 2006-09-01 | 2010-10-19 | United Technologies Corporation | Guide vane for a gas turbine engine |
US7816813B2 (en) | 2006-09-28 | 2010-10-19 | Asco Power Technologies, L.P. | Method and apparatus for parallel engine generators |
US7662059B2 (en) | 2006-10-18 | 2010-02-16 | United Technologies Corporation | Lubrication of windmilling journal bearings |
US7832193B2 (en) | 2006-10-27 | 2010-11-16 | General Electric Company | Gas turbine engine assembly and methods of assembling same |
US7841165B2 (en) | 2006-10-31 | 2010-11-30 | General Electric Company | Gas turbine engine assembly and methods of assembling same |
US7966806B2 (en) | 2006-10-31 | 2011-06-28 | General Electric Company | Turbofan engine assembly and method of assembling same |
US7926259B2 (en) | 2006-10-31 | 2011-04-19 | General Electric Company | Turbofan engine assembly and method of assembling same |
US7841163B2 (en) | 2006-11-13 | 2010-11-30 | Hamilton Sundstrand Corporation | Turbofan emergency generator |
US8020665B2 (en) | 2006-11-22 | 2011-09-20 | United Technologies Corporation | Lubrication system with extended emergency operability |
US7882693B2 (en) | 2006-11-29 | 2011-02-08 | General Electric Company | Turbofan engine assembly and method of assembling same |
US7797946B2 (en) | 2006-12-06 | 2010-09-21 | United Technologies Corporation | Double U design for mid-turbine frame struts |
US20080148881A1 (en) | 2006-12-21 | 2008-06-26 | Thomas Ory Moniz | Power take-off system and gas turbine engine assembly including same |
US7716914B2 (en) | 2006-12-21 | 2010-05-18 | General Electric Company | Turbofan engine assembly and method of assembling same |
US7791235B2 (en) | 2006-12-22 | 2010-09-07 | General Electric Company | Variable magnetic coupling of rotating machinery |
FR2912181B1 (en) | 2007-02-07 | 2009-04-24 | Snecma Sa | GAS TURBINE WITH HP AND BP TURBINES CONTRA-ROTATIVES |
US7721549B2 (en) | 2007-02-08 | 2010-05-25 | United Technologies Corporation | Fan variable area nozzle for a gas turbine engine fan nacelle with cam drive ring actuation system |
US8015828B2 (en) | 2007-04-03 | 2011-09-13 | General Electric Company | Power take-off system and gas turbine engine assembly including same |
US8017188B2 (en) | 2007-04-17 | 2011-09-13 | General Electric Company | Methods of making articles having toughened and untoughened regions |
US7557544B2 (en) | 2007-04-23 | 2009-07-07 | Cummins Power Generation Ip, Inc. | Zero crossing detection for an electric power generation system |
US20080318066A1 (en) | 2007-05-11 | 2008-12-25 | Asml Holding N.V. | Optical Component Fabrication Using Coated Substrates |
US8262817B2 (en) | 2007-06-11 | 2012-09-11 | Honeywell International Inc. | First stage dual-alloy turbine wheel |
US7950237B2 (en) | 2007-06-25 | 2011-05-31 | United Technologies Corporation | Managing spool bearing load using variable area flow nozzle |
US8104265B2 (en) | 2007-06-28 | 2012-01-31 | United Technologies Corporation | Gas turbines with multiple gas flow paths |
US20120124964A1 (en) | 2007-07-27 | 2012-05-24 | Hasel Karl L | Gas turbine engine with improved fuel efficiency |
US8347633B2 (en) | 2007-07-27 | 2013-01-08 | United Technologies Corporation | Gas turbine engine with variable geometry fan exit guide vane system |
US8256707B2 (en) | 2007-08-01 | 2012-09-04 | United Technologies Corporation | Engine mounting configuration for a turbofan gas turbine engine |
US8844265B2 (en) | 2007-08-01 | 2014-09-30 | United Technologies Corporation | Turbine section of high bypass turbofan |
US7942635B1 (en) | 2007-08-02 | 2011-05-17 | Florida Turbine Technologies, Inc. | Twin spool rotor assembly for a small gas turbine engine |
US8074440B2 (en) | 2007-08-23 | 2011-12-13 | United Technologies Corporation | Gas turbine engine with axial movable fan variable area nozzle |
US9957918B2 (en) | 2007-08-28 | 2018-05-01 | United Technologies Corporation | Gas turbine engine front architecture |
US8075261B2 (en) | 2007-09-21 | 2011-12-13 | United Technologies Corporation | Gas turbine engine compressor case mounting arrangement |
US8205432B2 (en) | 2007-10-03 | 2012-06-26 | United Technologies Corporation | Epicyclic gear train for turbo fan engine |
US7656060B2 (en) | 2007-10-31 | 2010-02-02 | Caterpillar Inc. | Power system with method for adding multiple generator sets |
US8590286B2 (en) | 2007-12-05 | 2013-11-26 | United Technologies Corp. | Gas turbine engine systems involving tip fans |
US8511986B2 (en) | 2007-12-10 | 2013-08-20 | United Technologies Corporation | Bearing mounting system in a low pressure turbine |
US8015798B2 (en) | 2007-12-13 | 2011-09-13 | United Technologies Corporation | Geared counter-rotating gas turbofan engine |
CN101903619B (en) | 2007-12-20 | 2014-06-11 | 沃尔沃航空公司 | Gas turbine engine |
US8118251B2 (en) | 2008-01-18 | 2012-02-21 | United Technologies Corporation | Mounting system for a gas turbine engine |
US7762086B2 (en) | 2008-03-12 | 2010-07-27 | United Technologies Corporation | Nozzle extension assembly for ground and flight testing |
DE102008023990A1 (en) | 2008-05-16 | 2009-11-19 | Rolls-Royce Deutschland Ltd & Co Kg | Two-shaft engine for an aircraft gas turbine |
US20140174056A1 (en) | 2008-06-02 | 2014-06-26 | United Technologies Corporation | Gas turbine engine with low stage count low pressure turbine |
US8128021B2 (en) | 2008-06-02 | 2012-03-06 | United Technologies Corporation | Engine mount system for a turbofan gas turbine engine |
US8210800B2 (en) | 2008-06-12 | 2012-07-03 | United Technologies Corporation | Integrated actuator module for gas turbine engine |
US8973364B2 (en) | 2008-06-26 | 2015-03-10 | United Technologies Corporation | Gas turbine engine with noise attenuating variable area fan nozzle |
US20100005810A1 (en) | 2008-07-11 | 2010-01-14 | Rob Jarrell | Power transmission among shafts in a turbine engine |
DK2331813T3 (en) * | 2008-09-10 | 2012-09-03 | Timken Co | Wind turbine transmission |
US7997868B1 (en) | 2008-11-18 | 2011-08-16 | Florida Turbine Technologies, Inc. | Film cooling hole for turbine airfoil |
US8166748B2 (en) | 2008-11-21 | 2012-05-01 | General Electric Company | Gas turbine engine booster having rotatable radially inwardly extending blades and non-rotatable vanes |
US20100132377A1 (en) | 2008-11-28 | 2010-06-03 | Pratt & Whitney Canada Corp. | Fabricated itd-strut and vane ring for gas turbine engine |
US8091371B2 (en) | 2008-11-28 | 2012-01-10 | Pratt & Whitney Canada Corp. | Mid turbine frame for gas turbine engine |
US8061969B2 (en) | 2008-11-28 | 2011-11-22 | Pratt & Whitney Canada Corp. | Mid turbine frame system for gas turbine engine |
US8177488B2 (en) * | 2008-11-29 | 2012-05-15 | General Electric Company | Integrated service tube and impingement baffle for a gas turbine engine |
US8106633B2 (en) | 2008-12-18 | 2012-01-31 | Caterpillar Inc. | Generator set control system |
US8191352B2 (en) | 2008-12-19 | 2012-06-05 | General Electric Company | Geared differential speed counter-rotatable low pressure turbine |
US8307626B2 (en) | 2009-02-26 | 2012-11-13 | United Technologies Corporation | Auxiliary pump system for fan drive gear system |
US8181441B2 (en) | 2009-02-27 | 2012-05-22 | United Technologies Corporation | Controlled fan stream flow bypass |
GB0903423D0 (en) | 2009-03-02 | 2009-04-08 | Rolls Royce Plc | Variable drive gas turbine engine |
FR2944558B1 (en) | 2009-04-17 | 2014-05-02 | Snecma | DOUBLE BODY GAS TURBINE ENGINE PROVIDED WITH SUPPLEMENTARY BP TURBINE BEARING. |
US8172716B2 (en) | 2009-06-25 | 2012-05-08 | United Technologies Corporation | Epicyclic gear system with superfinished journal bearing |
US8333678B2 (en) | 2009-06-26 | 2012-12-18 | United Technologies Corporation | Epicyclic gear system with load share reduction |
US8375695B2 (en) | 2009-06-30 | 2013-02-19 | General Electric Company | Aircraft gas turbine engine counter-rotatable generator |
US8176725B2 (en) | 2009-09-09 | 2012-05-15 | United Technologies Corporation | Reversed-flow core for a turbofan with a fan drive gear system |
US8500392B2 (en) | 2009-10-01 | 2013-08-06 | Pratt & Whitney Canada Corp. | Sealing for vane segments |
US8457126B2 (en) | 2009-10-14 | 2013-06-04 | Vss Monitoring, Inc. | System, method and apparatus for distributing captured data packets including tunneling identifiers |
US8672801B2 (en) | 2009-11-30 | 2014-03-18 | United Technologies Corporation | Mounting system for a planetary gear train in a gas turbine engine |
JP5282731B2 (en) | 2009-12-22 | 2013-09-04 | 株式会社安川電機 | Power converter |
US9170616B2 (en) | 2009-12-31 | 2015-10-27 | Intel Corporation | Quiet system cooling using coupled optimization between integrated micro porous absorbers and rotors |
US8566000B2 (en) | 2010-02-23 | 2013-10-22 | Williams International Co., L.L.C. | System and method for controlling a single-spool turboshaft engine |
US8845277B2 (en) | 2010-05-24 | 2014-09-30 | United Technologies Corporation | Geared turbofan engine with integral gear and bearing supports |
US8905713B2 (en) | 2010-05-28 | 2014-12-09 | General Electric Company | Articles which include chevron film cooling holes, and related processes |
US9006930B2 (en) | 2010-07-08 | 2015-04-14 | Delta Electronics Inc. | Power supply having converters with serially connected inputs and parallel connected outputs |
JP5411111B2 (en) | 2010-11-25 | 2014-02-12 | 川崎重工業株式会社 | Planetary gear reducer |
US8366385B2 (en) | 2011-04-15 | 2013-02-05 | United Technologies Corporation | Gas turbine engine front center body architecture |
US9410608B2 (en) | 2011-06-08 | 2016-08-09 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US8172717B2 (en) | 2011-06-08 | 2012-05-08 | General Electric Company | Compliant carrier wall for improved gearbox load sharing |
US9239012B2 (en) * | 2011-06-08 | 2016-01-19 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US8297916B1 (en) | 2011-06-08 | 2012-10-30 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US8770922B2 (en) | 2011-06-08 | 2014-07-08 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US9631558B2 (en) | 2012-01-03 | 2017-04-25 | United Technologies Corporation | Geared architecture for high speed and small volume fan drive turbine |
US9133729B1 (en) | 2011-06-08 | 2015-09-15 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US8814503B2 (en) | 2011-06-08 | 2014-08-26 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US9506402B2 (en) | 2011-07-29 | 2016-11-29 | United Technologies Corporation | Three spool engine bearing configuration |
US9938898B2 (en) | 2011-07-29 | 2018-04-10 | United Technologies Corporation | Geared turbofan bearing arrangement |
CA2789325C (en) | 2011-10-27 | 2015-04-07 | United Technologies Corporation | Gas turbine engine front center body architecture |
CA2789465C (en) | 2011-10-27 | 2016-08-09 | United Technologies Corporation | Gas turbine engine front center body architecture |
US9498823B2 (en) | 2011-11-07 | 2016-11-22 | United Technologies Corporation | Metal casting apparatus, cast work piece and method therefor |
US20130186058A1 (en) | 2012-01-24 | 2013-07-25 | William G. Sheridan | Geared turbomachine fan and compressor rotation |
US9297917B2 (en) | 2012-01-25 | 2016-03-29 | Inova Ltd. | High-precision time synchronization for a cabled network in linear topology |
US20130192196A1 (en) | 2012-01-31 | 2013-08-01 | Gabriel L. Suciu | Gas turbine engine with high speed low pressure turbine section |
US20130192266A1 (en) | 2012-01-31 | 2013-08-01 | United Technologies Corporation | Geared turbofan gas turbine engine architecture |
US9103227B2 (en) | 2012-02-28 | 2015-08-11 | United Technologies Corporation | Gas turbine engine with fan-tied inducer section |
US20130219913A1 (en) | 2012-02-28 | 2013-08-29 | Michael E. McCune | Geared turbofan gas turbine engine with reliability check on gear connection |
US20130259650A1 (en) | 2012-04-02 | 2013-10-03 | Frederick M. Schwarz | Geared turbofan with three turbines with first two co-rotating and third rotating in an opposed direction |
US20130259653A1 (en) | 2012-04-02 | 2013-10-03 | Frederick M. Schwarz | Geared turbofan engine with power density range |
US8756908B2 (en) | 2012-05-31 | 2014-06-24 | United Technologies Corporation | Fundamental gear system architecture |
EP2811120B1 (en) | 2013-06-03 | 2017-07-12 | United Technologies Corporation | Geared architecture for high speed and small volume fan drive turbine |
EP3608515A1 (en) | 2014-01-22 | 2020-02-12 | United Technologies Corporation | Flexible support structure for a geared architecture gas turbine engine |
US20160032826A1 (en) | 2014-08-04 | 2016-02-04 | MTU Aero Engines AG | Turbofan aircraft engine |
US10107378B2 (en) * | 2015-11-03 | 2018-10-23 | General Electric Company | Systems and methods for a gas turbine engine with combined multi-directional gearbox deflection limiters and dampers |
GB201917769D0 (en) * | 2019-12-05 | 2020-01-22 | Rolls Royce Plc | Geared gas turbine engine |
-
2015
- 2015-01-26 US US14/604,811 patent/US9239012B2/en not_active Expired - Fee Related
- 2015-09-21 US US14/859,381 patent/US10301968B2/en active Active
-
2017
- 2017-03-07 US US15/451,929 patent/US20170175581A1/en not_active Abandoned
- 2017-03-07 US US15/452,232 patent/US20170175583A1/en not_active Abandoned
- 2017-03-07 US US15/452,175 patent/US20170175582A1/en not_active Abandoned
- 2017-04-12 US US15/485,732 patent/US20170298768A1/en not_active Abandoned
- 2017-04-12 US US15/485,481 patent/US20170226936A1/en not_active Abandoned
- 2017-05-26 US US15/606,776 patent/US20170260876A1/en not_active Abandoned
- 2017-05-26 US US15/606,556 patent/US20170260875A1/en not_active Abandoned
- 2017-05-26 US US15/606,494 patent/US10227893B2/en active Active
- 2017-06-30 US US15/639,188 patent/US20170298770A1/en not_active Abandoned
- 2017-07-31 US US15/664,682 patent/US20170342858A1/en not_active Abandoned
- 2017-10-19 US US15/788,373 patent/US20180094540A1/en not_active Abandoned
- 2017-10-19 US US15/788,393 patent/US20180094541A1/en not_active Abandoned
- 2017-11-17 US US15/816,487 patent/US20180073393A1/en not_active Abandoned
-
2018
- 2018-09-07 US US16/125,179 patent/US10590802B2/en active Active
-
2019
- 2019-03-11 US US16/298,319 patent/US11021996B2/en active Active
- 2019-05-08 US US16/406,371 patent/US11021997B2/en active Active
- 2019-10-29 US US16/667,154 patent/US11111818B2/en active Active
-
2021
- 2021-05-14 US US17/321,018 patent/US11698007B2/en active Active
- 2021-08-05 US US17/394,497 patent/US20210363898A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100105516A1 (en) * | 2006-07-05 | 2010-04-29 | United Technologies Corporation | Coupling system for a star gear train in a gas turbine engine |
US20080044276A1 (en) * | 2006-08-15 | 2008-02-21 | Mccune Michael E | Ring gear mounting arrangement with oil scavenge scheme |
US20110106510A1 (en) * | 2008-04-29 | 2011-05-05 | Siu Yun Poon | Methods, apparatus and computer readable storage mediums for model-based diagnosis |
Non-Patent Citations (1)
Title |
---|
Du, S., "Modelling of spur gear mesh stiffness and static transmission error", 1998, Proc Instn Mech Engrs, Vol. 212 Part C. * |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11187212B1 (en) | 2021-04-02 | 2021-11-30 | Ice Thermal Harvesting, Llc | Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature |
US11236735B1 (en) | 2021-04-02 | 2022-02-01 | Ice Thermal Harvesting, Llc | Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US11255315B1 (en) | 2021-04-02 | 2022-02-22 | Ice Thermal Harvesting, Llc | Controller for controlling generation of geothermal power in an organic Rankine cycle operation during hydrocarbon production |
US11274663B1 (en) | 2021-04-02 | 2022-03-15 | Ice Thermal Harvesting, Llc | Controller for controlling generation of geothermal power in an organic rankine cycle operation during hydrocarbon production |
US11280322B1 (en) | 2021-04-02 | 2022-03-22 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US11293414B1 (en) | 2021-04-02 | 2022-04-05 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
US11326550B1 (en) | 2021-04-02 | 2022-05-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11359612B1 (en) | 2021-04-02 | 2022-06-14 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
US11359576B1 (en) | 2021-04-02 | 2022-06-14 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11421663B1 (en) | 2021-04-02 | 2022-08-23 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11421625B1 (en) | 2021-04-02 | 2022-08-23 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11486330B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11542888B2 (en) | 2021-04-02 | 2023-01-03 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11549402B2 (en) | 2021-04-02 | 2023-01-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11572849B1 (en) | 2021-04-02 | 2023-02-07 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11578706B2 (en) | 2021-04-02 | 2023-02-14 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11598320B2 (en) | 2021-04-02 | 2023-03-07 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11624355B2 (en) | 2021-04-02 | 2023-04-11 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11644014B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11668209B2 (en) | 2021-04-02 | 2023-06-06 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11680541B2 (en) | 2021-04-02 | 2023-06-20 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11732697B2 (en) | 2021-04-02 | 2023-08-22 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US11761433B2 (en) | 2021-04-02 | 2023-09-19 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11761353B2 (en) | 2021-04-02 | 2023-09-19 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11773805B2 (en) | 2021-04-02 | 2023-10-03 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11879409B2 (en) | 2021-04-02 | 2024-01-23 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11905934B2 (en) | 2021-04-02 | 2024-02-20 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11933279B2 (en) | 2021-04-02 | 2024-03-19 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11933280B2 (en) | 2021-04-02 | 2024-03-19 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11946459B2 (en) | 2021-04-02 | 2024-04-02 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11959466B2 (en) | 2021-04-02 | 2024-04-16 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11971019B2 (en) | 2021-04-02 | 2024-04-30 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US12049875B2 (en) | 2021-04-02 | 2024-07-30 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US12060867B2 (en) | 2021-04-02 | 2024-08-13 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature |
US12104553B2 (en) | 2021-04-02 | 2024-10-01 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US12110878B2 (en) | 2021-04-02 | 2024-10-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US12135016B2 (en) | 2021-04-02 | 2024-11-05 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US12140124B2 (en) | 2021-04-02 | 2024-11-12 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US12146475B2 (en) | 2021-04-02 | 2024-11-19 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
US12163485B2 (en) | 2021-04-02 | 2024-12-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US12180861B1 (en) | 2022-12-30 | 2024-12-31 | Ice Thermal Harvesting, Llc | Systems and methods to utilize heat carriers in conversion of thermal energy |
Also Published As
Publication number | Publication date |
---|---|
US20200025031A1 (en) | 2020-01-23 |
US20170226936A1 (en) | 2017-08-10 |
US20200291816A1 (en) | 2020-09-17 |
US20200025032A1 (en) | 2020-01-23 |
US20170260876A1 (en) | 2017-09-14 |
US20170298768A1 (en) | 2017-10-19 |
US20170342858A1 (en) | 2017-11-30 |
US20180094540A1 (en) | 2018-04-05 |
US20200232342A1 (en) | 2020-07-23 |
US11021997B2 (en) | 2021-06-01 |
US11698007B2 (en) | 2023-07-11 |
US20160053635A1 (en) | 2016-02-25 |
US20150345398A1 (en) | 2015-12-03 |
US20210363898A1 (en) | 2021-11-25 |
US10301968B2 (en) | 2019-05-28 |
US20170260875A1 (en) | 2017-09-14 |
US20170335718A1 (en) | 2017-11-23 |
US10227893B2 (en) | 2019-03-12 |
US20170175581A1 (en) | 2017-06-22 |
US20180073393A1 (en) | 2018-03-15 |
US20180094541A1 (en) | 2018-04-05 |
US11111818B2 (en) | 2021-09-07 |
US9239012B2 (en) | 2016-01-19 |
US20170175582A1 (en) | 2017-06-22 |
US11021996B2 (en) | 2021-06-01 |
US20220049622A1 (en) | 2022-02-17 |
US10590802B2 (en) | 2020-03-17 |
US20170298770A1 (en) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11698007B2 (en) | Flexible support structure for a geared architecture gas turbine engine | |
US12163582B2 (en) | Flexible support structure for a geared architecture gas turbine engine | |
US8814503B2 (en) | Flexible support structure for a geared architecture gas turbine engine | |
US8770922B2 (en) | Flexible support structure for a geared architecture gas turbine engine | |
US9133729B1 (en) | Flexible support structure for a geared architecture gas turbine engine | |
EP3097275B1 (en) | Flexible support structure for a geared architecture gas turbine engine | |
EP2899389A1 (en) | Flexible support structure for a geared architecture gas turbine engine | |
EP3048284A1 (en) | Flexible support structure for a geared architecture gas turbine engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
AS | Assignment |
Owner name: RAYTHEON TECHNOLOGIES CORPORATION, MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:054062/0001 Effective date: 20200403 |
|
AS | Assignment |
Owner name: RAYTHEON TECHNOLOGIES CORPORATION, CONNECTICUT Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:055659/0001 Effective date: 20200403 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |