US20170173055A1 - Salts and polymorphs of cyclic boronic acid ester derivatives and therapeutic uses thereof - Google Patents
Salts and polymorphs of cyclic boronic acid ester derivatives and therapeutic uses thereof Download PDFInfo
- Publication number
- US20170173055A1 US20170173055A1 US15/309,425 US201515309425A US2017173055A1 US 20170173055 A1 US20170173055 A1 US 20170173055A1 US 201515309425 A US201515309425 A US 201515309425A US 2017173055 A1 US2017173055 A1 US 2017173055A1
- Authority
- US
- United States
- Prior art keywords
- canceled
- potassium salt
- compound
- potassium
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- -1 cyclic boronic acid ester Chemical class 0.000 title claims description 15
- 150000003839 salts Chemical class 0.000 title description 22
- 230000001225 therapeutic effect Effects 0.000 title description 3
- 239000000203 mixture Substances 0.000 claims abstract description 58
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 38
- IOOWNWLVCOUUEX-WPRPVWTQSA-N 2-[(3r,6s)-2-hydroxy-3-[(2-thiophen-2-ylacetyl)amino]oxaborinan-6-yl]acetic acid Chemical compound OB1O[C@H](CC(O)=O)CC[C@@H]1NC(=O)CC1=CC=CS1 IOOWNWLVCOUUEX-WPRPVWTQSA-N 0.000 claims abstract description 25
- 208000035143 Bacterial infection Diseases 0.000 claims abstract description 13
- 208000022362 bacterial infectious disease Diseases 0.000 claims abstract description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 85
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 62
- 239000002904 solvent Substances 0.000 claims description 36
- 239000003795 chemical substances by application Substances 0.000 claims description 35
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 33
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 28
- 239000008194 pharmaceutical composition Substances 0.000 claims description 28
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 27
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 20
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 18
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 13
- 239000003814 drug Substances 0.000 claims description 13
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 claims description 12
- 239000003242 anti bacterial agent Substances 0.000 claims description 9
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 claims description 9
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 7
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 claims description 7
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 claims description 7
- 229960002182 imipenem Drugs 0.000 claims description 7
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 claims description 7
- 229910001414 potassium ion Inorganic materials 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 241000124008 Mammalia Species 0.000 claims description 6
- 229960002260 meropenem Drugs 0.000 claims description 6
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 claims description 6
- JUZNIMUFDBIJCM-ANEDZVCMSA-N Invanz Chemical compound O=C([C@H]1NC[C@H](C1)SC=1[C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)NC1=CC=CC(C(O)=O)=C1 JUZNIMUFDBIJCM-ANEDZVCMSA-N 0.000 claims description 5
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 claims description 5
- 229960003644 aztreonam Drugs 0.000 claims description 5
- 229960003169 biapenem Drugs 0.000 claims description 5
- MRMBZHPJVKCOMA-YJFSRANCSA-N biapenem Chemical compound C1N2C=NC=[N+]2CC1SC([C@@H]1C)=C(C([O-])=O)N2[C@H]1[C@@H]([C@H](O)C)C2=O MRMBZHPJVKCOMA-YJFSRANCSA-N 0.000 claims description 5
- 229960000895 doripenem Drugs 0.000 claims description 5
- AVAACINZEOAHHE-VFZPANTDSA-N doripenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](CNS(N)(=O)=O)C1 AVAACINZEOAHHE-VFZPANTDSA-N 0.000 claims description 5
- 229960002770 ertapenem Drugs 0.000 claims description 5
- 230000001747 exhibiting effect Effects 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 229940124586 β-lactam antibiotics Drugs 0.000 claims description 5
- UUGRTBCTVUNWTN-DLRIENLKSA-N (2s,3s)-3-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-[(1,5-dihydroxy-4-oxopyridin-2-yl)methoxyimino]acetyl]amino]-2-methyl-4-oxoazetidine-1-sulfonic acid Chemical compound O=C1N(S(O)(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(\C=1N=C(N)SC=1)=N/OCC1=CC(=O)C(O)=CN1O UUGRTBCTVUNWTN-DLRIENLKSA-N 0.000 claims description 4
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 claims description 4
- TYMABNNERDVXID-DLYFRVTGSA-N Panipenem Chemical compound C([C@@H]1[C@H](C(N1C=1C(O)=O)=O)[C@H](O)C)C=1S[C@H]1CCN(C(C)=N)C1 TYMABNNERDVXID-DLYFRVTGSA-N 0.000 claims description 4
- KLFSEZJCLYBFKQ-WXYNYTDUSA-N [(3s)-3-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-[(1,5-dihydroxy-4-oxopyridin-2-yl)methoxyimino]acetyl]amino]-2,2-dimethyl-4-oxoazetidin-1-yl] hydrogen sulfate Chemical compound O=C1N(OS(O)(=O)=O)C(C)(C)[C@@H]1NC(=O)C(\C=1N=C(N)SC=1)=N/OCC1=CC(=O)C(O)=CN1O KLFSEZJCLYBFKQ-WXYNYTDUSA-N 0.000 claims description 4
- UIMOJFJSJSIGLV-JNHMLNOCSA-N carumonam Chemical compound O=C1N(S(O)(=O)=O)[C@H](COC(=O)N)[C@@H]1NC(=O)C(=N/OCC(O)=O)\C1=CSC(N)=N1 UIMOJFJSJSIGLV-JNHMLNOCSA-N 0.000 claims description 4
- 229960000662 carumonam Drugs 0.000 claims description 4
- 229960000484 ceftazidime Drugs 0.000 claims description 4
- ORFOPKXBNMVMKC-DWVKKRMSSA-N ceftazidime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 ORFOPKXBNMVMKC-DWVKKRMSSA-N 0.000 claims description 4
- 229950011346 panipenem Drugs 0.000 claims description 4
- VAMSVIZLXJOLHZ-QWFSEIHXSA-N tigemonam Chemical compound O=C1N(OS(O)(=O)=O)C(C)(C)[C@@H]1NC(=O)C(=N/OCC(O)=O)\C1=CSC(N)=N1 VAMSVIZLXJOLHZ-QWFSEIHXSA-N 0.000 claims description 4
- 229950010206 tigemonam Drugs 0.000 claims description 4
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 3
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 3
- 239000000043 antiallergic agent Substances 0.000 claims description 3
- 239000003443 antiviral agent Substances 0.000 claims description 3
- 239000003429 antifungal agent Substances 0.000 claims description 2
- 229940121375 antifungal agent Drugs 0.000 claims description 2
- 159000000001 potassium salts Chemical class 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 description 62
- 229940125904 compound 1 Drugs 0.000 description 39
- 235000002639 sodium chloride Nutrition 0.000 description 28
- 229940022682 acetone Drugs 0.000 description 27
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 20
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 20
- 239000000347 magnesium hydroxide Substances 0.000 description 20
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 238000012216 screening Methods 0.000 description 19
- 102000006635 beta-lactamase Human genes 0.000 description 16
- 239000007787 solid Substances 0.000 description 16
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 14
- 239000000920 calcium hydroxide Substances 0.000 description 14
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 14
- 108020004256 Beta-lactamase Proteins 0.000 description 13
- 239000002552 dosage form Substances 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 239000000725 suspension Substances 0.000 description 13
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 159000000000 sodium salts Chemical class 0.000 description 12
- 239000003937 drug carrier Substances 0.000 description 11
- 235000019439 ethyl acetate Nutrition 0.000 description 11
- 235000019766 L-Lysine Nutrition 0.000 description 10
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 10
- 229930064664 L-arginine Natural products 0.000 description 10
- 235000014852 L-arginine Nutrition 0.000 description 10
- 239000004472 Lysine Substances 0.000 description 10
- 238000000746 purification Methods 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 238000002425 crystallisation Methods 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 9
- 239000003085 diluting agent Substances 0.000 description 9
- 229960003194 meglumine Drugs 0.000 description 9
- HMBHAQMOBKLWRX-UHFFFAOYSA-N 2,3-dihydro-1,4-benzodioxine-3-carboxylic acid Chemical compound C1=CC=C2OC(C(=O)O)COC2=C1 HMBHAQMOBKLWRX-UHFFFAOYSA-N 0.000 description 8
- 229940075419 choline hydroxide Drugs 0.000 description 8
- 238000004128 high performance liquid chromatography Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- 239000011591 potassium Substances 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- 238000001144 powder X-ray diffraction data Methods 0.000 description 7
- 239000003755 preservative agent Substances 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 6
- 229930195725 Mannitol Natural products 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003781 beta lactamase inhibitor Substances 0.000 description 6
- 229940126813 beta-lactamase inhibitor Drugs 0.000 description 6
- 239000003086 colorant Substances 0.000 description 6
- 239000000796 flavoring agent Substances 0.000 description 6
- 235000013355 food flavoring agent Nutrition 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 235000010355 mannitol Nutrition 0.000 description 6
- 239000000594 mannitol Substances 0.000 description 6
- 150000003952 β-lactams Chemical class 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 230000001351 cycling effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 238000001802 infusion Methods 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 230000000699 topical effect Effects 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 108090000204 Dipeptidase 1 Proteins 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- 239000004599 antimicrobial Substances 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 108010068385 carbapenemase Proteins 0.000 description 4
- 229940041011 carbapenems Drugs 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 4
- 238000011260 co-administration Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 235000003599 food sweetener Nutrition 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 4
- 238000001907 polarising light microscopy Methods 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 239000003765 sweetening agent Substances 0.000 description 4
- 241000588626 Acinetobacter baumannii Species 0.000 description 3
- 241000606125 Bacteroides Species 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000005079 FT-Raman Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- YZBQHRLRFGPBSL-RXMQYKEDSA-N carbapenem Chemical compound C1C=CN2C(=O)C[C@H]21 YZBQHRLRFGPBSL-RXMQYKEDSA-N 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 3
- 229960001231 choline Drugs 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 239000002132 β-lactam antibiotic Substances 0.000 description 3
- 229940126085 β‑Lactamase Inhibitor Drugs 0.000 description 3
- KEDAXBWZURNCHS-GPODMPQUSA-N (4r,5s,6s)-3-[(3s,5s)-5-[(3s)-3-[[2-(diaminomethylideneamino)acetyl]amino]pyrrolidine-1-carbonyl]-1-methylpyrrolidin-3-yl]sulfanyl-6-[(1r)-1-hydroxyethyl]-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid Chemical compound O=C([C@@H]1C[C@@H](CN1C)SC=1[C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)N1CC[C@H](NC(=O)CN=C(N)N)C1 KEDAXBWZURNCHS-GPODMPQUSA-N 0.000 description 2
- LZKPUSJSJVEXAW-WDXSGGTDSA-N (4s,5r,6s)-3-[7-[1-(2-amino-2-oxoethyl)pyridin-1-ium-3-carbonyl]imidazo[5,1-b][1,3]thiazol-2-yl]-6-[(1r)-1-hydroxyethyl]-4-methyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C([O-])=O)=O)[C@H](O)C)C(SC1=2)=CN1C=NC=2C(=O)C1=CC=C[N+](CC(N)=O)=C1 LZKPUSJSJVEXAW-WDXSGGTDSA-N 0.000 description 2
- YWKJNRNSJKEFMK-PQFQYKRASA-N (6r,7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetyl]amino]-8-oxo-3-(5,6,7,8-tetrahydroquinolin-1-ium-1-ylmethyl)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound N([C@@H]1C(N2C(=C(C[N+]=3C=4CCCCC=4C=CC=3)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 YWKJNRNSJKEFMK-PQFQYKRASA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 108010056874 AmpC beta-lactamases Proteins 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229930186147 Cephalosporin Natural products 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- 101000740462 Escherichia coli Beta-lactamase TEM Proteins 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 241000588747 Klebsiella pneumoniae Species 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 206010034133 Pathogen resistance Diseases 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229960002379 avibactam Drugs 0.000 description 2
- NDCUAPJVLWFHHB-UHNVWZDZSA-N avibactam Chemical compound C1N2[C@H](C(N)=O)CC[C@@]1([H])N(OS(O)(=O)=O)C2=O NDCUAPJVLWFHHB-UHNVWZDZSA-N 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000005620 boronic acid group Chemical group 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229950009592 cefquinome Drugs 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229940124587 cephalosporin Drugs 0.000 description 2
- 150000001780 cephalosporins Chemical class 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229960004926 chlorobutanol Drugs 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- GLJFFZOATODZQQ-XNOMRPDFSA-L disodium;(z)-2,3-diethylbut-2-enedioate Chemical compound [Na+].[Na+].CC\C(C([O-])=O)=C(/CC)C([O-])=O GLJFFZOATODZQQ-XNOMRPDFSA-L 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000006186 oral dosage form Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 235000019371 penicillin G benzathine Nutrition 0.000 description 2
- PDTFCHSETJBPTR-UHFFFAOYSA-N phenylmercuric nitrate Chemical compound [O-][N+](=O)O[Hg]C1=CC=CC=C1 PDTFCHSETJBPTR-UHFFFAOYSA-N 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 229950000381 razupenem Drugs 0.000 description 2
- XFGOMLIRJYURLQ-GOKYHWASSA-N razupenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)SC(SC=1)=NC=1C1=C[C@H](C)NC1 XFGOMLIRJYURLQ-GOKYHWASSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000000646 scanning calorimetry Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 2
- 229940033663 thimerosal Drugs 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 229950003816 tomopenem Drugs 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- JETQIUPBHQNHNZ-NJBDSQKTSA-N (2s,5r,6r)-3,3-dimethyl-7-oxo-6-[[(2r)-2-phenyl-2-sulfoacetyl]amino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid Chemical compound C1([C@H](C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)S(O)(=O)=O)=CC=CC=C1 JETQIUPBHQNHNZ-NJBDSQKTSA-N 0.000 description 1
- FMZXNVLFJHCSAF-DNVCBOLYSA-N (6R,7R)-3-[(4-carbamoyl-1-pyridin-1-iumyl)methyl]-8-oxo-7-[(1-oxo-2-thiophen-2-ylethyl)amino]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1=CC(C(=O)N)=CC=[N+]1CC1=C(C([O-])=O)N2C(=O)[C@@H](NC(=O)CC=3SC=CC=3)[C@H]2SC1 FMZXNVLFJHCSAF-DNVCBOLYSA-N 0.000 description 1
- SCSMAWFISUMSTO-ZTJYIHJESA-N (6R,7R)-3-[2-(2-aminoethylsulfanylmethyl)pyridin-3-yl]sulfanyl-7-[[(2Z)-2-(5-amino-1,2,4-thiadiazol-3-yl)-2-hydroxyiminoacetyl]amino]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound NC1=NC(=NS1)/C(/C(=O)N[C@H]1[C@@H]2N(C(=C(CS2)SC=2C(=NC=CC=2)CSCCN)C(=O)O)C1=O)=N/O SCSMAWFISUMSTO-ZTJYIHJESA-N 0.000 description 1
- XSPUSVIQHBDITA-KXDGEKGBSA-N (6r,7r)-7-[[(2e)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetyl]amino]-3-[(5-methyltetrazol-2-yl)methyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)/C(=N/OC)C=2N=C(N)SC=2)CC=1CN1N=NC(C)=N1 XSPUSVIQHBDITA-KXDGEKGBSA-N 0.000 description 1
- WDLWHQDACQUCJR-ZAMMOSSLSA-N (6r,7r)-7-[[(2r)-2-azaniumyl-2-(4-hydroxyphenyl)acetyl]amino]-8-oxo-3-[(e)-prop-1-enyl]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)/C=C/C)C(O)=O)=CC=C(O)C=C1 WDLWHQDACQUCJR-ZAMMOSSLSA-N 0.000 description 1
- LTUWUNMGTLOPNC-RLQAYIIJSA-N (6r,7r)-7-[[(2z)-2-(2-amino-5-chloro-1,3-thiazol-4-yl)-2-hydroxyiminoacetyl]amino]-3-[3-(2-aminoethylsulfanylmethyl)pyridin-4-yl]sulfanyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound NCCSCC1=CN=CC=C1SC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)C(=N/O)\C3=C(SC(N)=N3)Cl)[C@H]2SC1 LTUWUNMGTLOPNC-RLQAYIIJSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- UJDQGRLTPBVSFN-TVNHLQOTSA-N 2-[(z)-[2-[[(6r,7r)-3-[[3-amino-4-(2-aminoethylcarbamoylamino)-2-methylpyrazol-1-ium-1-yl]methyl]-2-carboxy-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-7-yl]amino]-1-(5-amino-1,2,4-thiadiazol-3-yl)-2-oxoethylidene]amino]oxy-2-methylpropanoate;sulfuric acid Chemical compound OS(O)(=O)=O.CN1C(N)=C(NC(=O)NCCN)C=[N+]1CC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)C(=N/OC(C)(C)C([O-])=O)\C=3N=C(N)SN=3)[C@H]2SC1 UJDQGRLTPBVSFN-TVNHLQOTSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- SDTMFDGELKWGFT-UHFFFAOYSA-N 2-methylpropan-2-olate Chemical compound CC(C)(C)[O-] SDTMFDGELKWGFT-UHFFFAOYSA-N 0.000 description 1
- HGGAKXAHAYOLDJ-FHZUQPTBSA-N 6alpha-[(R)-1-hydroxyethyl]-2-[(R)-tetrahydrofuran-2-yl]pen-2-em-3-carboxylic acid Chemical compound S([C@@H]1[C@H](C(N1C=1C(O)=O)=O)[C@H](O)C)C=1[C@H]1CCCO1 HGGAKXAHAYOLDJ-FHZUQPTBSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000589291 Acinetobacter Species 0.000 description 1
- 241000588624 Acinetobacter calcoaceticus Species 0.000 description 1
- 241001148231 Acinetobacter haemolyticus Species 0.000 description 1
- 241000607528 Aeromonas hydrophila Species 0.000 description 1
- 244000034356 Aframomum angustifolium Species 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241001135322 Bacteroides eggerthii Species 0.000 description 1
- 241000606124 Bacteroides fragilis Species 0.000 description 1
- 241000606123 Bacteroides thetaiotaomicron Species 0.000 description 1
- 241000606219 Bacteroides uniformis Species 0.000 description 1
- 241000606215 Bacteroides vulgatus Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000588779 Bordetella bronchiseptica Species 0.000 description 1
- 241000588780 Bordetella parapertussis Species 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 241000589969 Borreliella burgdorferi Species 0.000 description 1
- 241000589562 Brucella Species 0.000 description 1
- 241000589513 Burkholderia cepacia Species 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 241000589876 Campylobacter Species 0.000 description 1
- 241000589877 Campylobacter coli Species 0.000 description 1
- 241000589874 Campylobacter fetus Species 0.000 description 1
- 241000589875 Campylobacter jejuni Species 0.000 description 1
- UQLLWWBDSUHNEB-CZUORRHYSA-N Cefaprin Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C(O)=O)C(=O)CSC1=CC=NC=C1 UQLLWWBDSUHNEB-CZUORRHYSA-N 0.000 description 1
- QYQDKDWGWDOFFU-IUODEOHRSA-N Cefotiam Chemical compound CN(C)CCN1N=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CC=3N=C(N)SC=3)[C@H]2SC1 QYQDKDWGWDOFFU-IUODEOHRSA-N 0.000 description 1
- GNWUOVJNSFPWDD-XMZRARIVSA-M Cefoxitin sodium Chemical compound [Na+].N([C@]1(OC)C(N2C(=C(COC(N)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)CC1=CC=CS1 GNWUOVJNSFPWDD-XMZRARIVSA-M 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 241000588923 Citrobacter Species 0.000 description 1
- 241000588919 Citrobacter freundii Species 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000186227 Corynebacterium diphtheriae Species 0.000 description 1
- 241000918600 Corynebacterium ulcerans Species 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 241001600125 Delftia acidovorans Species 0.000 description 1
- JWCSIUVGFCSJCK-CAVRMKNVSA-N Disodium Moxalactam Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CO[C@@H]21)C(O)=O)=O)C(=O)C(C(O)=O)C1=CC=C(O)C=C1 JWCSIUVGFCSJCK-CAVRMKNVSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical group [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 241000588697 Enterobacter cloacae Species 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 241000194031 Enterococcus faecium Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- UIOFUWFRIANQPC-JKIFEVAISA-N Floxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(F)C=CC=C1Cl UIOFUWFRIANQPC-JKIFEVAISA-N 0.000 description 1
- 241000589602 Francisella tularensis Species 0.000 description 1
- 241000207201 Gardnerella vaginalis Species 0.000 description 1
- 241000606790 Haemophilus Species 0.000 description 1
- 241000606788 Haemophilus haemolyticus Species 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 241000606822 Haemophilus parahaemolyticus Species 0.000 description 1
- 241000606766 Haemophilus parainfluenzae Species 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 241001454354 Kingella Species 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241000588915 Klebsiella aerogenes Species 0.000 description 1
- 241000588749 Klebsiella oxytoca Species 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000589242 Legionella pneumophila Species 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 241001293418 Mannheimia haemolytica Species 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000588621 Moraxella Species 0.000 description 1
- 241000588655 Moraxella catarrhalis Species 0.000 description 1
- 241000588772 Morganella morganii Species 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 241000186367 Mycobacterium avium Species 0.000 description 1
- 241000186364 Mycobacterium intracellulare Species 0.000 description 1
- 241000186362 Mycobacterium leprae Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- SMOBCLHAZXOKDQ-UHFFFAOYSA-N O=C(NC1CCNCC1)C1CCC2CN1C(=O)N2OS(=O)(=O)O Chemical compound O=C(NC1CCNCC1)C1CCC2CN1C(=O)N2OS(=O)(=O)O SMOBCLHAZXOKDQ-UHFFFAOYSA-N 0.000 description 1
- YNUWDLZYLHIWOB-KOLCDFICSA-N O=C(O)C[C@@H]1CC[C@H](CC(=O)CC2=CC=CS2)B(O)O1 Chemical compound O=C(O)C[C@@H]1CC[C@H](CC(=O)CC2=CC=CS2)B(O)O1 YNUWDLZYLHIWOB-KOLCDFICSA-N 0.000 description 1
- 241001135232 Odoribacter splanchnicus Species 0.000 description 1
- 241000606210 Parabacteroides distasonis Species 0.000 description 1
- 241000606856 Pasteurella multocida Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229930195708 Penicillin V Natural products 0.000 description 1
- 241000206591 Peptococcus Species 0.000 description 1
- 229920002413 Polyhexanide Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 108010013381 Porins Proteins 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 241000588770 Proteus mirabilis Species 0.000 description 1
- 241000588767 Proteus vulgaris Species 0.000 description 1
- 241000576783 Providencia alcalifaciens Species 0.000 description 1
- 241000588777 Providencia rettgeri Species 0.000 description 1
- 241000588778 Providencia stuartii Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000168225 Pseudomonas alcaligenes Species 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 241000589776 Pseudomonas putida Species 0.000 description 1
- 241000220010 Rhode Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241001354013 Salmonella enterica subsp. enterica serovar Enteritidis Species 0.000 description 1
- 241000531795 Salmonella enterica subsp. enterica serovar Paratyphi A Species 0.000 description 1
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000192023 Sarcina Species 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241000607764 Shigella dysenteriae Species 0.000 description 1
- 241000607762 Shigella flexneri Species 0.000 description 1
- 241000607760 Shigella sonnei Species 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241000191963 Staphylococcus epidermidis Species 0.000 description 1
- 241000191984 Staphylococcus haemolyticus Species 0.000 description 1
- 241000192087 Staphylococcus hominis Species 0.000 description 1
- 241000191982 Staphylococcus hyicus Species 0.000 description 1
- 241000191980 Staphylococcus intermedius Species 0.000 description 1
- 241001464905 Staphylococcus saccharolyticus Species 0.000 description 1
- 241001147691 Staphylococcus saprophyticus Species 0.000 description 1
- 241000122973 Stenotrophomonas maltophilia Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 240000006474 Theobroma bicolor Species 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 241000607272 Vibrio parahaemolyticus Species 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 241000607447 Yersinia enterocolitica Species 0.000 description 1
- 241000607481 Yersinia intermedia Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 241000607477 Yersinia pseudotuberculosis Species 0.000 description 1
- 241000606834 [Haemophilus] ducreyi Species 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 229940045942 acetone sodium bisulfite Drugs 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- 229940024554 amdinocillin Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 229960004328 azidocillin Drugs 0.000 description 1
- ODFHGIPNGIAMDK-NJBDSQKTSA-N azidocillin Chemical compound C1([C@@H](N=[N+]=[N-])C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 ODFHGIPNGIAMDK-NJBDSQKTSA-N 0.000 description 1
- 229960003623 azlocillin Drugs 0.000 description 1
- JTWOMNBEOCYFNV-NFFDBFGFSA-N azlocillin Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC=CC=1)C(=O)N1CCNC1=O JTWOMNBEOCYFNV-NFFDBFGFSA-N 0.000 description 1
- 229960002699 bacampicillin Drugs 0.000 description 1
- PFOLLRNADZZWEX-FFGRCDKISA-N bacampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)[C@H](C(S3)(C)C)C(=O)OC(C)OC(=O)OCC)=CC=CC=C1 PFOLLRNADZZWEX-FFGRCDKISA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 229960002536 benzathine benzylpenicillin Drugs 0.000 description 1
- 229940095744 benzathine phenoxymethylpenicillin Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- BVGLIYRKPOITBQ-ANPZCEIESA-N benzylpenicillin benzathine Chemical compound C=1C=CC=CC=1C[NH2+]CC[NH2+]CC1=CC=CC=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)CC1=CC=CC=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)CC1=CC=CC=C1 BVGLIYRKPOITBQ-ANPZCEIESA-N 0.000 description 1
- WHRVRSCEWKLAHX-LQDWTQKMSA-N benzylpenicillin procaine Chemical compound [H+].CCN(CC)CCOC(=O)C1=CC=C(N)C=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)CC1=CC=CC=C1 WHRVRSCEWKLAHX-LQDWTQKMSA-N 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical group 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 229960000717 carindacillin Drugs 0.000 description 1
- JIRBAUWICKGBFE-MNRDOXJOSA-N carindacillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(=O)OC=1C=C2CCCC2=CC=1)C1=CC=CC=C1 JIRBAUWICKGBFE-MNRDOXJOSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229960003972 cefacetrile Drugs 0.000 description 1
- RRYMAQUWDLIUPV-BXKDBHETSA-N cefacetrile Chemical compound S1CC(COC(=O)C)=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CC#N)[C@@H]12 RRYMAQUWDLIUPV-BXKDBHETSA-N 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- FUBBGQLTSCSAON-PBFPGSCMSA-N cefaloglycin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)COC(=O)C)C(O)=O)=CC=CC=C1 FUBBGQLTSCSAON-PBFPGSCMSA-N 0.000 description 1
- 229950004030 cefaloglycin Drugs 0.000 description 1
- 229950005258 cefalonium Drugs 0.000 description 1
- 229960003866 cefaloridine Drugs 0.000 description 1
- CZTQZXZIADLWOZ-CRAIPNDOSA-N cefaloridine Chemical compound O=C([C@@H](NC(=O)CC=1SC=CC=1)[C@H]1SC2)N1C(C(=O)[O-])=C2C[N+]1=CC=CC=C1 CZTQZXZIADLWOZ-CRAIPNDOSA-N 0.000 description 1
- 229960000603 cefalotin Drugs 0.000 description 1
- 229960003012 cefamandole Drugs 0.000 description 1
- OLVCFLKTBJRLHI-AXAPSJFSSA-N cefamandole Chemical compound CN1N=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)[C@H](O)C=3C=CC=CC=3)[C@H]2SC1 OLVCFLKTBJRLHI-AXAPSJFSSA-N 0.000 description 1
- 229960004350 cefapirin Drugs 0.000 description 1
- 229960002420 cefatrizine Drugs 0.000 description 1
- UOCJDOLVGGIYIQ-PBFPGSCMSA-N cefatrizine Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)[C@H](N)C=2C=CC(O)=CC=2)CC=1CSC=1C=NNN=1 UOCJDOLVGGIYIQ-PBFPGSCMSA-N 0.000 description 1
- HGXLJRWXCXSEJO-GMSGAONNSA-N cefazaflur Chemical compound CN1N=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CSC(F)(F)F)[C@H]2SC1 HGXLJRWXCXSEJO-GMSGAONNSA-N 0.000 description 1
- 229950004359 cefazaflur Drugs 0.000 description 1
- 229960005312 cefazedone Drugs 0.000 description 1
- VTLCNEGVSVJLDN-MLGOLLRUSA-N cefazedone Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3C=C(Cl)C(=O)C(Cl)=C3)[C@H]2SC1 VTLCNEGVSVJLDN-MLGOLLRUSA-N 0.000 description 1
- 229960001139 cefazolin Drugs 0.000 description 1
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 description 1
- 229960001817 cefbuperazone Drugs 0.000 description 1
- SMSRCGPDNDCXFR-CYWZMYCQSA-N cefbuperazone Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H]([C@H](C)O)C(=O)N[C@]1(OC)C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 SMSRCGPDNDCXFR-CYWZMYCQSA-N 0.000 description 1
- 229960002966 cefcapene Drugs 0.000 description 1
- HJJRIJDTIPFROI-NVKITGPLSA-N cefcapene Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=C/CC)C1=CSC(N)=N1 HJJRIJDTIPFROI-NVKITGPLSA-N 0.000 description 1
- HOGISBSFFHDTRM-GHXIOONMSA-N cefdaloxime Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC)C(O)=O)C(=O)C(=N/O)\C1=CSC(N)=N1 HOGISBSFFHDTRM-GHXIOONMSA-N 0.000 description 1
- 229950006550 cefdaloxime Drugs 0.000 description 1
- 229960003719 cefdinir Drugs 0.000 description 1
- RTXOFQZKPXMALH-GHXIOONMSA-N cefdinir Chemical compound S1C(N)=NC(C(=N\O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 RTXOFQZKPXMALH-GHXIOONMSA-N 0.000 description 1
- 229960004069 cefditoren Drugs 0.000 description 1
- KMIPKYQIOVAHOP-YLGJWRNMSA-N cefditoren Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1\C=C/C=1SC=NC=1C KMIPKYQIOVAHOP-YLGJWRNMSA-N 0.000 description 1
- 229960002100 cefepime Drugs 0.000 description 1
- HVFLCNVBZFFHBT-ZKDACBOMSA-N cefepime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1C[N+]1(C)CCCC1 HVFLCNVBZFFHBT-ZKDACBOMSA-N 0.000 description 1
- 229960004041 cefetamet Drugs 0.000 description 1
- MQLRYUCJDNBWMV-GHXIOONMSA-N cefetamet Chemical compound N([C@@H]1C(N2C(=C(C)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 MQLRYUCJDNBWMV-GHXIOONMSA-N 0.000 description 1
- 229960002129 cefixime Drugs 0.000 description 1
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 description 1
- 229960003791 cefmenoxime Drugs 0.000 description 1
- HJJDBAOLQAWBMH-YCRCPZNHSA-N cefmenoxime Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NN=NN1C HJJDBAOLQAWBMH-YCRCPZNHSA-N 0.000 description 1
- 229960003585 cefmetazole Drugs 0.000 description 1
- SNBUBQHDYVFSQF-HIFRSBDPSA-N cefmetazole Chemical compound S([C@@H]1[C@@](C(N1C=1C(O)=O)=O)(NC(=O)CSCC#N)OC)CC=1CSC1=NN=NN1C SNBUBQHDYVFSQF-HIFRSBDPSA-N 0.000 description 1
- 229960002025 cefminox Drugs 0.000 description 1
- JSDXOWVAHXDYCU-VXSYNFHWSA-N cefminox Chemical compound S([C@@H]1[C@@](C(N1C=1C(O)=O)=O)(NC(=O)CSC[C@@H](N)C(O)=O)OC)CC=1CSC1=NN=NN1C JSDXOWVAHXDYCU-VXSYNFHWSA-N 0.000 description 1
- 229960001958 cefodizime Drugs 0.000 description 1
- XDZKBRJLTGRPSS-BGZQYGJUSA-N cefodizime Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(C)=C(CC(O)=O)S1 XDZKBRJLTGRPSS-BGZQYGJUSA-N 0.000 description 1
- 229960004489 cefonicid Drugs 0.000 description 1
- DYAIAHUQIPBDIP-AXAPSJFSSA-N cefonicid Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)[C@H](O)C=2C=CC=CC=2)CC=1CSC1=NN=NN1CS(O)(=O)=O DYAIAHUQIPBDIP-AXAPSJFSSA-N 0.000 description 1
- 229960004682 cefoperazone Drugs 0.000 description 1
- GCFBRXLSHGKWDP-XCGNWRKASA-N cefoperazone Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC(O)=CC=1)C(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 GCFBRXLSHGKWDP-XCGNWRKASA-N 0.000 description 1
- 229960004292 ceforanide Drugs 0.000 description 1
- SLAYUXIURFNXPG-CRAIPNDOSA-N ceforanide Chemical compound NCC1=CC=CC=C1CC(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)CC(O)=O)CS[C@@H]21 SLAYUXIURFNXPG-CRAIPNDOSA-N 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- 229960005495 cefotetan Drugs 0.000 description 1
- SRZNHPXWXCNNDU-RHBCBLIFSA-N cefotetan Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CS[C@@H]21)C(O)=O)=O)C(=O)C1SC(=C(C(N)=O)C(O)=O)S1 SRZNHPXWXCNNDU-RHBCBLIFSA-N 0.000 description 1
- 229960001242 cefotiam Drugs 0.000 description 1
- 229960003391 cefovecin Drugs 0.000 description 1
- ZJGQFXVQDVCVOK-MSUXKOGISA-N cefovecin Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)/C(=N/OC)C=2N=C(N)SC=2)CC=1[C@@H]1CCCO1 ZJGQFXVQDVCVOK-MSUXKOGISA-N 0.000 description 1
- 229960002682 cefoxitin Drugs 0.000 description 1
- 229960002642 cefozopran Drugs 0.000 description 1
- QDUIJCOKQCCXQY-WHJQOFBOSA-N cefozopran Chemical compound N([C@@H]1C(N2C(=C(CN3C4=CC=CN=[N+]4C=C3)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=NSC(N)=N1 QDUIJCOKQCCXQY-WHJQOFBOSA-N 0.000 description 1
- LNZMRLHZGOBKAN-KAWPREARSA-N cefpimizole Chemical compound N1=CNC(C(=O)N[C@@H](C(=O)N[C@@H]2C(N3C(=C(C[N+]=4C=CC(CCS(O)(=O)=O)=CC=4)CS[C@@H]32)C([O-])=O)=O)C=2C=CC=CC=2)=C1C(=O)O LNZMRLHZGOBKAN-KAWPREARSA-N 0.000 description 1
- 229950004036 cefpimizole Drugs 0.000 description 1
- 229960005446 cefpiramide Drugs 0.000 description 1
- PWAUCHMQEXVFJR-PMAPCBKXSA-N cefpiramide Chemical compound C1=NC(C)=CC(O)=C1C(=O)N[C@H](C=1C=CC(O)=CC=1)C(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 PWAUCHMQEXVFJR-PMAPCBKXSA-N 0.000 description 1
- 229960000466 cefpirome Drugs 0.000 description 1
- DKOQGJHPHLTOJR-WHRDSVKCSA-N cefpirome Chemical compound N([C@@H]1C(N2C(=C(C[N+]=3C=4CCCC=4C=CC=3)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 DKOQGJHPHLTOJR-WHRDSVKCSA-N 0.000 description 1
- 229960005090 cefpodoxime Drugs 0.000 description 1
- WYUSVOMTXWRGEK-HBWVYFAYSA-N cefpodoxime Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC)C(O)=O)C(=O)C(=N/OC)\C1=CSC(N)=N1 WYUSVOMTXWRGEK-HBWVYFAYSA-N 0.000 description 1
- 229960002580 cefprozil Drugs 0.000 description 1
- 229960002588 cefradine Drugs 0.000 description 1
- 229960003844 cefroxadine Drugs 0.000 description 1
- RDMOROXKXONCAL-UEKVPHQBSA-N cefroxadine Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)OC)C(O)=O)=CCC=CC1 RDMOROXKXONCAL-UEKVPHQBSA-N 0.000 description 1
- 229960003202 cefsulodin Drugs 0.000 description 1
- SYLKGLMBLAAGSC-QLVMHMETSA-N cefsulodin Chemical compound C1=CC(C(=O)N)=CC=[N+]1CC1=C(C([O-])=O)N2C(=O)[C@@H](NC(=O)[C@@H](C=3C=CC=CC=3)S(O)(=O)=O)[C@H]2SC1 SYLKGLMBLAAGSC-QLVMHMETSA-N 0.000 description 1
- 229940036735 ceftaroline Drugs 0.000 description 1
- ZCCUWMICIWSJIX-NQJJCJBVSA-N ceftaroline fosamil Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OCC)C=2N=C(NP(O)(O)=O)SN=2)CC=1SC(SC=1)=NC=1C1=CC=[N+](C)C=C1 ZCCUWMICIWSJIX-NQJJCJBVSA-N 0.000 description 1
- 229950000679 cefteram Drugs 0.000 description 1
- 229960004366 ceftezole Drugs 0.000 description 1
- DZMVCVMFETWNIU-LDYMZIIASA-N ceftezole Chemical compound O=C([C@@H](NC(=O)CN1N=NN=C1)[C@H]1SC2)N1C(C(=O)O)=C2CSC1=NN=CS1 DZMVCVMFETWNIU-LDYMZIIASA-N 0.000 description 1
- 229960004086 ceftibuten Drugs 0.000 description 1
- UNJFKXSSGBWRBZ-BJCIPQKHSA-N ceftibuten Chemical compound S1C(N)=NC(C(=C\CC(O)=O)\C(=O)N[C@@H]2C(N3C(=CCS[C@@H]32)C(O)=O)=O)=C1 UNJFKXSSGBWRBZ-BJCIPQKHSA-N 0.000 description 1
- 229960005229 ceftiofur Drugs 0.000 description 1
- ZBHXIWJRIFEVQY-IHMPYVIRSA-N ceftiofur Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC(=O)C1=CC=CO1 ZBHXIWJRIFEVQY-IHMPYVIRSA-N 0.000 description 1
- WJXAHFZIHLTPFR-JLRJEBFFSA-N ceftiolene Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1\C=C\SC1=NNC(=O)C(=O)N1CC=O WJXAHFZIHLTPFR-JLRJEBFFSA-N 0.000 description 1
- 229950008880 ceftiolene Drugs 0.000 description 1
- 229960001991 ceftizoxime Drugs 0.000 description 1
- NNULBSISHYWZJU-LLKWHZGFSA-N ceftizoxime Chemical compound N([C@@H]1C(N2C(=CCS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 NNULBSISHYWZJU-LLKWHZGFSA-N 0.000 description 1
- VOAZJEPQLGBXGO-SDAWRPRTSA-N ceftobiprole Chemical compound S1C(N)=NC(C(=N\O)\C(=O)N[C@@H]2C(N3C(=C(\C=C/4C(N([C@H]5CNCC5)CC\4)=O)CS[C@@H]32)C(O)=O)=O)=N1 VOAZJEPQLGBXGO-SDAWRPRTSA-N 0.000 description 1
- 229950004259 ceftobiprole Drugs 0.000 description 1
- 229960002405 ceftolozane Drugs 0.000 description 1
- 229960004755 ceftriaxone Drugs 0.000 description 1
- VAAUVRVFOQPIGI-SPQHTLEESA-N ceftriaxone Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(=O)C(=O)NN1C VAAUVRVFOQPIGI-SPQHTLEESA-N 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- CXHKZHZLDMQGFF-ZSDSSEDPSA-N cefuzonam Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=CN=NS1 CXHKZHZLDMQGFF-ZSDSSEDPSA-N 0.000 description 1
- 229950000807 cefuzonam Drugs 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- VUFGUVLLDPOSBC-XRZFDKQNSA-M cephalothin sodium Chemical compound [Na+].N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C([O-])=O)C(=O)CC1=CC=CS1 VUFGUVLLDPOSBC-XRZFDKQNSA-M 0.000 description 1
- RDLPVSKMFDYCOR-UEKVPHQBSA-N cephradine Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CCC=CC1 RDLPVSKMFDYCOR-UEKVPHQBSA-N 0.000 description 1
- NPGNOVNWUSPMDP-UTEPHESZSA-N chembl1650818 Chemical compound N(/[C@H]1[C@@H]2N(C1=O)[C@H](C(S2)(C)C)C(=O)OCOC(=O)C(C)(C)C)=C\N1CCCCCC1 NPGNOVNWUSPMDP-UTEPHESZSA-N 0.000 description 1
- BWWVAEOLVKTZFQ-ISVUSNJMSA-N chembl530 Chemical compound N(/[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)=C\N1CCCCCC1 BWWVAEOLVKTZFQ-ISVUSNJMSA-N 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000007910 chewable tablet Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- DHSUYTOATWAVLW-WFVMDLQDSA-N cilastatin Chemical compound CC1(C)C[C@@H]1C(=O)N\C(=C/CCCCSC[C@H](N)C(O)=O)C(O)=O DHSUYTOATWAVLW-WFVMDLQDSA-N 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 229960003324 clavulanic acid Drugs 0.000 description 1
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 description 1
- 229960001351 clometocillin Drugs 0.000 description 1
- JKXQBIZCQJLVOS-GSNLGQFWSA-N clometocillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C(OC)C1=CC=C(Cl)C(Cl)=C1 JKXQBIZCQJLVOS-GSNLGQFWSA-N 0.000 description 1
- 229960003326 cloxacillin Drugs 0.000 description 1
- LQOLIRLGBULYKD-JKIFEVAISA-N cloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1Cl LQOLIRLGBULYKD-JKIFEVAISA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229940013361 cresol Drugs 0.000 description 1
- 229960001585 dicloxacillin Drugs 0.000 description 1
- YFAGHNZHGGCZAX-JKIFEVAISA-N dicloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(Cl)C=CC=C1Cl YFAGHNZHGGCZAX-JKIFEVAISA-N 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- HRKQOINLCJTGBK-UHFFFAOYSA-L dioxidosulfate(2-) Chemical compound [O-]S[O-] HRKQOINLCJTGBK-UHFFFAOYSA-L 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229940124274 edetate disodium Drugs 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 229940092559 enterobacter aerogenes Drugs 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 229960002457 epicillin Drugs 0.000 description 1
- RPBAFSBGYDKNRG-NJBDSQKTSA-N epicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CCC=CC1 RPBAFSBGYDKNRG-NJBDSQKTSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- 229960004667 ethyl cellulose Drugs 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000001761 ethyl methyl cellulose Substances 0.000 description 1
- 229960000379 faropenem Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229960002878 flomoxef Drugs 0.000 description 1
- UHRBTBZOWWGKMK-DOMZBBRYSA-N flomoxef Chemical compound O([C@@H]1[C@@](C(N1C=1C(O)=O)=O)(NC(=O)CSC(F)F)OC)CC=1CSC1=NN=NN1CCO UHRBTBZOWWGKMK-DOMZBBRYSA-N 0.000 description 1
- 229960004273 floxacillin Drugs 0.000 description 1
- ISXSFOPKZQZDAO-UHFFFAOYSA-N formaldehyde;sodium Chemical compound [Na].O=C ISXSFOPKZQZDAO-UHFFFAOYSA-N 0.000 description 1
- 229940118764 francisella tularensis Drugs 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000008369 fruit flavor Substances 0.000 description 1
- 230000001408 fungistatic effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 229960003884 hetacillin Drugs 0.000 description 1
- DXVUYOAEDJXBPY-NFFDBFGFSA-N hetacillin Chemical compound C1([C@@H]2C(=O)N(C(N2)(C)C)[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 DXVUYOAEDJXBPY-NFFDBFGFSA-N 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 229960000433 latamoxef Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229940115932 legionella pneumophila Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229960001977 loracarbef Drugs 0.000 description 1
- JAPHQRWPEGVNBT-UTUOFQBUSA-N loracarbef Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CC[C@@H]32)C([O-])=O)=O)[NH3+])=CC=CC=C1 JAPHQRWPEGVNBT-UTUOFQBUSA-N 0.000 description 1
- 159000000003 magnesium salts Chemical group 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 102000020235 metallo-beta-lactamase Human genes 0.000 description 1
- 108060004734 metallo-beta-lactamase Proteins 0.000 description 1
- 229960003806 metampicillin Drugs 0.000 description 1
- FZECHKJQHUVANE-MCYUEQNJSA-N metampicillin Chemical compound C1([C@@H](N=C)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 FZECHKJQHUVANE-MCYUEQNJSA-N 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 229960000198 mezlocillin Drugs 0.000 description 1
- YPBATNHYBCGSSN-VWPFQQQWSA-N mezlocillin Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC=CC=1)C(=O)N1CCN(S(C)(=O)=O)C1=O YPBATNHYBCGSSN-VWPFQQQWSA-N 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 229940041009 monobactams Drugs 0.000 description 1
- 229940076266 morganella morganii Drugs 0.000 description 1
- 229960000515 nafcillin Drugs 0.000 description 1
- GPXLMGHLHQJAGZ-JTDSTZFVSA-N nafcillin Chemical compound C1=CC=CC2=C(C(=O)N[C@@H]3C(N4[C@H](C(C)(C)S[C@@H]43)C(O)=O)=O)C(OCC)=CC=C21 GPXLMGHLHQJAGZ-JTDSTZFVSA-N 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000002997 ophthalmic solution Substances 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 229960001019 oxacillin Drugs 0.000 description 1
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 1
- 108010071437 oxacillinase Proteins 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000003182 parenteral nutrition solution Substances 0.000 description 1
- 229940051027 pasteurella multocida Drugs 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229960000596 penamecillin Drugs 0.000 description 1
- NLOOMWLTUVBWAW-HLLBOEOZSA-N penamecillin Chemical compound N([C@H]1[C@@H]2N(C1=O)[C@H](C(S2)(C)C)C(=O)OCOC(=O)C)C(=O)CC1=CC=CC=C1 NLOOMWLTUVBWAW-HLLBOEOZSA-N 0.000 description 1
- 239000003961 penetration enhancing agent Substances 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 229940056367 penicillin v Drugs 0.000 description 1
- 239000007967 peppermint flavor Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- NONJJLVGHLVQQM-JHXYUMNGSA-N phenethicillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C(C)OC1=CC=CC=C1 NONJJLVGHLVQQM-JHXYUMNGSA-N 0.000 description 1
- 229960004894 pheneticillin Drugs 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- BPLBGHOLXOTWMN-MBNYWOFBSA-N phenoxymethylpenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)COC1=CC=CC=C1 BPLBGHOLXOTWMN-MBNYWOFBSA-N 0.000 description 1
- BBTOYUUSUQNIIY-ANPZCEIESA-N phenoxymethylpenicillin benzathine Chemical compound C=1C=CC=CC=1C[NH2+]CC[NH2+]CC1=CC=CC=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)COC1=CC=CC=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C([O-])=O)(C)C)C(=O)COC1=CC=CC=C1 BBTOYUUSUQNIIY-ANPZCEIESA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229960002292 piperacillin Drugs 0.000 description 1
- WCMIIGXFCMNQDS-IDYPWDAWSA-M piperacillin sodium Chemical compound [Na+].O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C([O-])=O)C(C)(C)S[C@@H]21 WCMIIGXFCMNQDS-IDYPWDAWSA-M 0.000 description 1
- 229960003342 pivampicillin Drugs 0.000 description 1
- ZEMIJUDPLILVNQ-ZXFNITATSA-N pivampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)[C@H](C(S3)(C)C)C(=O)OCOC(=O)C(C)(C)C)=CC=CC=C1 ZEMIJUDPLILVNQ-ZXFNITATSA-N 0.000 description 1
- 229960004212 pivmecillinam Drugs 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229940100467 polyvinyl acetate phthalate Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 102000007739 porin activity proteins Human genes 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229940027836 primaxin Drugs 0.000 description 1
- 229940095783 procaine benzylpenicillin Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229960003672 propicillin Drugs 0.000 description 1
- HOCWPKXKMNXINF-XQERAMJGSA-N propicillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C(CC)OC1=CC=CC=C1 HOCWPKXKMNXINF-XQERAMJGSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229940007042 proteus vulgaris Drugs 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229940007046 shigella dysenteriae Drugs 0.000 description 1
- 229940115939 shigella sonnei Drugs 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 229940001474 sodium thiosulfate Drugs 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- YNJORDSKPXMABC-UHFFFAOYSA-M sodium;2-hydroxypropane-2-sulfonate Chemical compound [Na+].CC(C)(O)S([O-])(=O)=O YNJORDSKPXMABC-UHFFFAOYSA-M 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229940037649 staphylococcus haemolyticus Drugs 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229960005256 sulbactam Drugs 0.000 description 1
- FKENQMMABCRJMK-RITPCOANSA-N sulbactam Chemical compound O=S1(=O)C(C)(C)[C@H](C(O)=O)N2C(=O)C[C@H]21 FKENQMMABCRJMK-RITPCOANSA-N 0.000 description 1
- 229960004932 sulbenicillin Drugs 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 229960002780 talampicillin Drugs 0.000 description 1
- SOROUYSPFADXSN-SUWVAFIASA-N talampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(=O)OC2C3=CC=CC=C3C(=O)O2)(C)C)=CC=CC=C1 SOROUYSPFADXSN-SUWVAFIASA-N 0.000 description 1
- 229960003865 tazobactam Drugs 0.000 description 1
- LPQZKKCYTLCDGQ-WEDXCCLWSA-N tazobactam Chemical compound C([C@]1(C)S([C@H]2N(C(C2)=O)[C@H]1C(O)=O)(=O)=O)N1C=CN=N1 LPQZKKCYTLCDGQ-WEDXCCLWSA-N 0.000 description 1
- 229960001114 temocillin Drugs 0.000 description 1
- BVCKFLJARNKCSS-DWPRYXJFSA-N temocillin Chemical compound N([C@]1(OC)C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C(C(O)=O)C=1C=CSC=1 BVCKFLJARNKCSS-DWPRYXJFSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229960004659 ticarcillin Drugs 0.000 description 1
- OHKOGUYZJXTSFX-KZFFXBSXSA-N ticarcillin Chemical compound C=1([C@@H](C(O)=O)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)C=CSC=1 OHKOGUYZJXTSFX-KZFFXBSXSA-N 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229940098232 yersinia enterocolitica Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/69—Boron compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/397—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/542—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
- A61K31/545—Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/025—Boronic and borinic acid compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2121/00—Preparations for use in therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to salts and polymorphs of cyclic boronic acid ester derivatives, compositions, their use and preparation as therapeutic agents for treating bacterial infection.
- the present invention relates to a potassium salt of 2-((3R,6S)-2-hydroxy-3 -(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- Antibiotics have been effective tools in the treatment of infectious diseases during the last half-century. From the development of antibiotic therapy to the late 1980s there was almost complete control over bacterial infections in developed countries. However, in response to the pressure of antibiotic usage, multiple resistance mechanisms have become widespread and are threatening the clinical utility of anti-bacterial therapy.
- the increase in antibiotic resistant strains has been particularly common in major hospitals and care centers. The consequences of the increase in resistant strains include higher morbidity and mortality, longer patient hospitalization, and an increase in treatment costs
- ⁇ -lactamases Various bacteria have evolved ⁇ -lactam deactivating enzymes, namely, ⁇ -lactamases, that counter the efficacy of the various ⁇ -lactams.
- ⁇ -lactamases can be grouped into 4 classes based on their amino acid sequences, namely, Ambler classes A, B, C, and D.
- Enzymes in classes A, C, and D include active-site serine ⁇ -lactamases, and class B enzymes, which are encountered less frequently, are Zn-dependent. These enzymes catalyze the chemical degradation of ⁇ -lactam antibiotics, rendering them inactive.
- Some ⁇ -lactamases can be transferred within and between various bacterial strains and species. The rapid spread of bacterial resistance and the evolution of multi-resistant strains severely limits ⁇ -lactam treatment options available.
- class D ⁇ -lactamase-expressing bacterium strains such as Acinetobacter baumannii has become an emerging multidrug-resistant threat.
- A. baumannii strains express A, C, and D class ⁇ -lactamases.
- the class D ⁇ -lactamases such as the OXA families are particularly effective at destroying carbapenem type ⁇ -lactam antibiotics, e.g., imipenem, the active carbapenems component of Merck's Primaxin® (Montefour, K.; et al. Crit. Care Nurse 2008, 28, 15; Perez, F. et al. Expert Rev. Anti Infect. Ther. 2008, 6, 269; Bou, G.; Martinez-Beltran, J. Antimicrob.
- New ⁇ -lactamases have recently evolved that hydrolyze the carbapenem class of antimicrobials, including imipenem, biapenem, doripenem, meropenem, and ertapenem, as well as other ⁇ -lactam antibiotics.
- carbapenemases belong to molecular classes A, B, and D.
- Class A carbapenemases of the KPC-type predominantly in Klebsiella pneumoniae but now also reported in other Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii.
- the KPC carbapenemase was first described in 1996 in North Carolina, but since then has disseminated widely in the US.
- Another mechanism of ⁇ -lactamase mediated resistance to carbapenems involves combination of permeability or efflux mechanisms combined with hyper production of beta-lactamases.
- One example is the loss of a porin combined in hyperproduction of ampC beta-lactamase results in resistance to imipenem in Pseudomonas aeruginosa.
- Efflux pump over expression combined with hyperproduction of the ampC ⁇ -lactamase can also result in resistance to a carbapenem such as meropenem.
- the present invention relates to antimicrobial agents and potentiators thereof.
- Some embodiments include salts, polymorphs, compounds, compositions, pharmaceutical compositions, use and preparation thereof.
- come embodiments relate to salts and polymorphs of cyclic boronic acid ester derivatives.
- Some embodiments relate to a potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- the potassium salt is in a crystalline form exhibiting an X-ray powder diffraction pattern comprising at least three characteristic peaks selected from the group consisting of peaks at approximately 7.3°, 13.9°, 16.9°, 19.1°, 20.8°, and 25.2° 2 ⁇ .
- Some embodiments include a pharmaceutical composition comprising the potassium salt described herein.
- Some embodiments include a pharmaceutical composition prepared by dissolving the potassium salt described herein.
- Some embodiments include a method of preventing a bacterial infection, comprising administering to a subject in need thereof, a composition described herein.
- Some embodiments include a sterile container, comprising any one of the foregoing composition or any one of the foregoing potassium salt.
- Some embodiments include a method of preparing a pharmaceutical composition for administration, comprising reconstituting the contents of any one of the foregoing the sterile container using a pharmaceutically acceptable liquid carrier.
- Some embodiments relate to a process of making a crystalline form of a potassium salt of 2-((3R,6S)-2-hydroxy-3 -(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid, comprising combining a purified 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid with a solvent to form an intermediate solution; intermixing a potassium counterion with the intermediate solution; and isolating the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- FIG. 1 is an X-ray powder diffraction (XRPD) pattern of the crystalline form of Compound 1A.
- FIG. 2 shows a polarized light microscopy (PLM) image of a sample containing the crystalline form of Compound 1A.
- PLM polarized light microscopy
- FIG. 3 shows thermo gravimetric (TGA) and digital scanning calorimetry (DSC) analysis results of the crystalline form of Compound 1A.
- FIG. 4 shows a FT-Roman spectrum of the crystalline form of Compound 1A.
- FIG. 5 shows a high-performance liquid chromatography (HPLC) analysis of the crystalline form of Compound 1A.
- FIG. 6 shows the X-ray powder diffraction pattern of sodium chloride and Compound 1 before and after purification.
- FIG. 7 is the TGA of Compound 1 after purification.
- FIG. 8 shows a (HPLC) analysis of Compound 1 after purification.
- the present invention relates to salts and polymorphs of cyclic boronic acid ester derivatives and pharmaceutical compositions comprising the same. Some embodiments include uses thereof, including methods of preparation, and methods of treatment.
- the present invention relates to polymorphs of a salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. More specifically, the present invention relates to polymorphs of a potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- Compound 1 as used herein refers to 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2 oxaborinan-6-yl)acetic acid as shown in the structure below.
- Compound 1 can be made by known methods such as the procedures described in US 2012/0040932, which is incorporated by reference in its entirety. More specifically, the skilled artisan given the disclosure in Example 1 of US 2012/0040932 is well equipped to prepare Compound 1.
- Compound 1 contains a boronic acid moiety that is chemically stable in solutions having pH values between 2 and 8.
- the pKa of Compound 1 is measured to be 3.92.
- Compound 1 can be converted into a salt.
- Some embodiments relate to a pharmaceutically acceptable salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- the pharmaceutically acceptable salt is a potassium salt.
- the pharmaceutically acceptable salt is a calcium salt.
- the pharmaceutically acceptable salt is a magnesium salt.
- Compound 1A as used herein refers to the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- Compound 1A can be made into a pure and stable crystalline form under controlled conditions.
- the X-ray powder diffraction (PXRD) pattern of Compound 1A is substantially the same as shown in FIG. 1 , with corresponding tabulated peak data shown in Table 1.
- Compound 1A is in a crystalline form exhibiting an X-ray powder diffraction pattern that includes at least three characteristic peaks selected from the group consisting of peaks at approximately 7.3°, 13.9°, 16.9°, 19.1°, 20.8°, and 25.2° 2 ⁇ .
- the crystalline form of Compound 1A exhibits an X-ray powder diffraction pattern comprising at least peaks at 7.3°, 13.9°, 16.9°, 19.1°, 20.8°, and 25.2° 2 ⁇ .
- the crystalline form of Compound 1A exhibits an X-ray powder diffraction pattern comprising at least peaks at approximately 7.3°, 13.9°, 14.6°, 16.9°, 17.9°, 19.1°, 20.8°, 21.2°, 25.2°, and 25.6° 2 ⁇ .
- the peak positions are assumed to be equal if the two theta (2 ⁇ ) values agree to within 0.2° (i.e., ⁇ 0.2°).
- ⁇ 0.2° the United States Pharmacopeia states that if the angular setting of the 10 strongest diffraction peaks agree to within ⁇ 0.2° with that of a reference material, and the relative intensities of the peaks do not vary by more than 20%, the identity is confirmed. Accordingly, peak positions within 0.2° of the positions recited herein are assumed to be identical.
- FIG. 3 shows digital scanning calorimetry (DSC) analysis results of the crystalline form of Compound 1A.
- the crystalline form of the potassium salt has a melting point of 199.0° C.
- One process for making a crystalline form of Compound 1A can include combining a purified Compound 1 with a solvent to form an intermediate solution; intermixing a potassium ion with the intermediate solution; and isolating the crystalline form of Compound 1A.
- the source of potassium ion can vary.
- the potassium ion is from potassium hydroxide.
- the potassium ion is from potassium t-butoxide.
- the solvent used for salt formation can vary depending on the source of the potassium ion and reaction conditions.
- the solvent is selected from the group consisting of tetrahydrofuran, 1,4-dioxane, acenitrile, acetone, ethyl acetate, methyl tert-butyl ether, water, and any combinations thereof.
- the solvent is acetone or acenitrile.
- the solvent is acetone.
- the solvent is acenitrile.
- compositions comprising the potassium salt described herein and a pharmaceutically acceptable carrier. Such a composition can be administered to a subject as part of a therapeutic treatment.
- Compound 1A described herein can be administered at a therapeutically effective dosage, e.g., a dosage sufficient to provide treatment for disease states described herein.
- a therapeutically effective dosage e.g., a dosage sufficient to provide treatment for disease states described herein.
- Suitable dosage levels may be from about 0.1 mg/kg to about 200 mg/kg or more of body weight, from about 0.25 mg/kg to about 120 mg/kg or more of body weight, from about 0.5 mg/kg or less to about 70 mg/kg, from about 1.0 mg/kg to about 50 mg/kg of body weight, or from about 1.5 mg/kg to about 10 mg/kg of body weight.
- the dosage range would be from about 17 mg per day to about 8000 mg per day, from about 35 mg per day or less to about 7000 mg per day or more, from about 70 mg per day to about 6000 mg per day, from about 100 mg per day to about 5000 mg per day, or from about 200 mg to about 3000 mg per day.
- the amount of active compound administered will, of course, be dependent on the subject and disease state being treated, the severity of the affliction, the manner and schedule of administration and the judgment of the prescribing physician.
- the pharmaceutical composition described herein includes a unit dose from 0.01 mg to 10 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. In some embodiments, the pharmaceutical composition described herein includes a unit dose from 0.1 mg to 5 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- the pharmaceutical composition described herein includes a unit dose from 0.1 mg to 2.5 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. In some embodiments, the pharmaceutical composition described herein includes a unit dose from 1.5 g to 2.5 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- the pharmaceutical composition described herein includes a unit dose of less than 5 g, less than 4.5 g, less than 4g, less than 3.5 g, less than 3 g, less than 2.5 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- the pharmaceutical composition described herein includes a unit dose more than 0.1 mg, more than 0.5 mg, more than 10 mg, more than 50 mg, more than 100 mg, more than 150 mg, more than 200 mg, more than 500 mg, more than 1 g, more than 2 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- Administration of the compounds disclosed herein or the pharmaceutically acceptable salts thereof can be via any of the accepted modes of administration for agents that serve similar utilities including, but not limited to, orally, subcutaneously, intravenously, intranasally, topically, transdermally, intraperitoneally, intramuscularly, intrapulmonarilly, vaginally, rectally, or intraocularly.
- Oral and parenteral administrations are customary in treating the indications that are the subject of the preferred embodiments.
- the compounds useful as described above can be formulated into pharmaceutical compositions for use in treatment of these conditions.
- Standard pharmaceutical formulation techniques are used, such as those disclosed in Remington's The Science and Practice of Pharmacy, 21st Ed., Lippincott Williams & Wilkins (2005), incorporated by reference in its entirety.
- compositions containing a pharmaceutically-acceptable carrier include compositions containing a pharmaceutically-acceptable carrier.
- pharmaceutically-acceptable carrier means one or more compatible solid or liquid filler diluents or encapsulating substances, which are suitable for administration to a mammal.
- compatible means that the components of the composition are capable of being commingled with the subject compound, and with each other, in a manner such that there is no interaction, which would substantially reduce the pharmaceutical efficacy of the composition under ordinary use situations.
- Pharmaceutically-acceptable carriers must, of course, be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration preferably to an animal, preferably mammal being treated.
- substances which can serve as pharmaceutically-acceptable carriers or components thereof, are sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and methyl cellulose; powdered tragacanth; malt; gelatin; talc; solid lubricants, such as stearic acid and magnesium stearate; calcium sulfate; vegetable oils, such as peanut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil of theobroma; polyols such as propylene glycol, glycerine, sorbitol, mannitol, and polyethylene glycol; alginic acid; emulsifiers, such as the TWEENS; wetting agents, such sodium lauryl sulfate; coloring agents; flavoring agents; tableting agents, stabilizers; antioxidants; preservatives; pyrogen-free sugars,
- a pharmaceutically-acceptable carrier to be used in conjunction with the subject compound is basically determined by the way the compound is to be administered.
- compositions described herein are preferably provided in unit dosage form.
- a “unit dosage form” is a composition containing an amount of a compound that is suitable for administration to an animal, preferably mammal subject, in a single dose, according to good medical practice.
- the preparation of a single or unit dosage form does not imply that the dosage form is administered once per day or once per course of therapy.
- Such dosage forms are contemplated to be administered once, twice, thrice or more per day and may be administered as infusion over a period of time (e.g., from about 30 minutes to about 2-6 hours), or administered as a continuous infusion, and may be given more than once during a course of therapy, though a single administration is not specifically excluded.
- the skilled artisan will recognize that the formulation does not specifically contemplate the entire course of therapy and such decisions are left for those skilled in the art of treatment rather than formulation.
- compositions useful as described above may be in any of a variety of suitable forms for a variety of routes for administration, for example, for oral, nasal, rectal, topical (including transdermal), ocular, intracerebral, intracranial, intrathecal, intra-arterial, intravenous, intramuscular, or other parental routes of administration.
- oral and nasal compositions comprise compositions that are administered by inhalation, and made using available methodologies.
- pharmaceutically-acceptable carriers include, for example, solid or liquid fillers, diluents, hydrotropies, surface-active agents, and encapsulating substances.
- Optional pharmaceutically-active materials may be included, which do not substantially interfere with the inhibitory activity of the compound.
- the amount of carrier employed in conjunction with the compound is sufficient to provide a practical quantity of material for administration per unit dose of the compound.
- oral dosage forms can be used, including such solid forms as tablets, capsules, granules and bulk powders. These oral forms comprise a safe and effective amount, usually at least about 5%, with a maximum of about 90%, of the compound. Tablets can be compressed, tablet triturates, enteric-coated, sugar-coated, film-coated, or multiple-compressed, containing suitable binders, lubricants, diluents, disintegrating agents, coloring agents, flavoring agents, flow-inducing agents, and melting agents.
- Liquid oral dosage forms include aqueous solutions, emulsions, suspensions, solutions and/or suspensions reconstituted from non-effervescent granules, and effervescent preparations reconstituted from effervescent granules, containing suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, melting agents, coloring agents and flavoring agents.
- the pharmaceutically-acceptable carrier suitable for the preparation of unit dosage forms for peroral administration is well-known in the art.
- Tablets typically comprise conventional pharmaceutically-compatible adjuvants as inert diluents, such as calcium carbonate, sodium carbonate, mannitol, lactose and cellulose; binders such as starch, gelatin and sucrose; disintegrants such as starch, alginic acid and croscarmelose; lubricants such as magnesium stearate, stearic acid and talc.
- Glidants such as silicon dioxide can be used to improve flow characteristics of the powder mixture.
- Coloring agents such as the FD&C dyes, can be added for appearance.
- Sweeteners and flavoring agents such as aspartame, saccharin, menthol, peppermint, and fruit flavors, are useful adjuvants for chewable tablets.
- Capsules typically comprise one or more solid diluents disclosed above.
- the selection of carrier components depends on secondary considerations like taste, cost, and shelf stability, which are not critical, and can be readily made by a person skilled in the art. suspensions, and the like.
- the pharmaceutically-acceptable carriers suitable for preparation of such compositions are well known in the art. Typical components of carriers for syrups, elixirs, emulsions and suspensions include ethanol, glycerol, propylene glycol, polyethylene glycol, liquid sucrose, sorbitol and water.
- typical suspending agents include methyl cellulose, sodium carboxymethyl cellulose, AVICEL RC-591, tragacanth and sodium alginate; typical wetting agents include lecithin and polysorbate 80; and typical preservatives include methyl paraben and sodium benzoate.
- Peroral liquid compositions may also contain one or more components such as sweeteners, flavoring agents and colorants disclosed above.
- compositions may also be coated by conventional methods, typically with pH or time-dependent coatings, such that the subject compound is released in the gastrointestinal tract in the vicinity of the desired topical application, or at various times to extend the desired action.
- dosage forms typically include, but are not limited to, one or more of cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropyl methyl cellulose phthalate, ethyl cellulose, Eudragit coatings, waxes and shellac.
- compositions described herein may optionally include other drug actives.
- compositions useful for attaining systemic delivery of the subject compounds include sublingual, buccal and nasal dosage forms.
- Such compositions typically comprise one or more of soluble filler substances such as sucrose, sorbitol and mannitol; and binders such as acacia, microcrystalline cellulose, carboxymethyl cellulose and hydroxypropyl methyl cellulose. Glidants, lubricants, sweeteners, colorants, antioxidants and flavoring agents disclosed above may also be included.
- a liquid composition which is formulated for topical ophthalmic use, is formulated such that it can be administered topically to the eye.
- the comfort should be maximized as much as possible, although sometimes formulation considerations (e.g. drug stability) may necessitate less than optimal comfort.
- the liquid should be formulated such that the liquid is tolerable to the patient for topical ophthalmic use.
- an ophthalmically acceptable liquid should either be packaged for single use, or contain a preservative to prevent contamination over multiple uses.
- solutions or medicaments are often prepared using a physiological saline solution as a major vehicle.
- Ophthalmic solutions should preferably be maintained at a comfortable pH with an appropriate buffer system.
- the formulations may also contain conventional, pharmaceutically acceptable preservatives, stabilizers and surfactants.
- Preservatives that may be used in the pharmaceutical compositions disclosed herein include, but are not limited to, benzalkonium chloride, PHMB, chlorobutanol, thimerosal, phenylmercuric, acetate and phenylmercuric nitrate.
- a useful surfactant is, for example, Tween 80.
- various useful vehicles may be used in the ophthalmic preparations disclosed herein. These vehicles include, but are not limited to, polyvinyl alcohol, povidone, hydroxypropyl methyl cellulose, poloxamers, carboxymethyl cellulose, hydroxyethyl cellulose and purified water.
- Tonicity adjustors may be added as needed or convenient. They include, but are not limited to, salts, particularly sodium chloride, potassium chloride, mannitol and glycerin, or any other suitable ophthalmically acceptable tonicity adjustor.
- buffers include acetate buffers, citrate buffers, phosphate buffers and borate buffers. Acids or bases may be used to adjust the pH of these formulations as needed.
- an ophthalmically acceptable antioxidant includes, but is not limited to, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene.
- excipient components which may be included in the ophthalmic preparations, are chelating agents.
- a useful chelating agent is edetate disodium, although other chelating agents may also be used in place or in conjunction with it.
- Topical formulations may generally be comprised of a pharmaceutical carrier, co-solvent, emulsifier, penetration enhancer, preservative system, and emollient.
- the compounds and compositions described herein may be dissolved or dispersed in a pharmaceutically acceptable diluent, such as a saline or dextrose solution.
- a pharmaceutically acceptable diluent such as a saline or dextrose solution.
- Suitable excipients may be included to achieve the desired pH, including but not limited to NaOH, sodium carbonate, sodium acetate, HCl, and citric acid.
- the pH of the final composition ranges from 2 to 8, or preferably from 4 to 7.
- Antioxidant excipients may include sodium bisulfite, acetone sodium bisulfite, sodium formaldehyde, sulfoxylate, thiourea, and EDTA.
- excipients found in the final intravenous composition may include sodium or potassium phosphates, citric acid, tartaric acid, gelatin, and carbohydrates such as dextrose, mannitol, and dextran. Further acceptable excipients are described in Powell, et al., Compendium of Excipients for Parenteral Formulations, PDA J Pharm Sci and Tech 1998, 52 238-311 and Nema et al., Excipients and Their Role in Approved Injectable Products: Current Usage and Future Directions, PDA J Pharm Sci and Tech 2011, 65 287-332, both of which are incorporated herein by reference in their entirety.
- Antimicrobial agents may also be included to achieve a bacteriostatic or fungistatic solution, including but not limited to phenylmercuric nitrate, thimerosal, benzethonium chloride, benzalkonium chloride, phenol, cresol, and chlorobutanol.
- the resulting composition may be infused into the patient over a period of time.
- the infusion time ranges from 5 minutes to continuous infusion, from 10 minutes to 8 hours, from 30 minutes to 4 hours, and from 1 hour to 3 hours.
- the drug is infused over a 3 hour period.
- the infusion may be repeated at the desired dose interval, which may include, for example, 6 hours, 8 hours, 12 hours, or 24 hours.
- compositions for intravenous administration may be provided to caregivers in the form of one more solids that are reconstituted with a suitable diluent such as sterile water, saline or dextrose in water shortly prior to administration.
- Reconstituted concentrated solutions may be further diluted into a parenteral solutions having a volume of from about 25 to about 1000 ml, from about 30 ml to about 500 ml, or from about 50 ml to about 100 ml.
- the compositions are provided in solution ready to administer parenterally.
- the compositions are provided in a solution that is further diluted prior to administration.
- the combination may be provided to caregivers as a mixture, or the caregivers may mix the two agents prior to administration, or the two agents may be administered separately.
- Some embodiments include a sterile container having the composition described herein. Some embodiments include a sterile container having Compound 1A described herein. Some embodiments include a kit comprising a potassium salt described herein and an additional agent, such as an antimicrobial agent. In one embodiment, both components are provided in a single sterile container. In the case of solids for reconstitution, the agents may be pre-blended and added to the container simultaneously or may be dry-powder filled into the container in two separate steps. In some embodiments, an additional agent is a sterile crystalline product. In other embodiments, the additional agent is a lyophile.
- agents to aid in lyophilization include sodium or potassium phosphates, citric acid, tartaric acid, gelatin, and carbohydrates such as dextrose, mannitol, and dextran.
- agents to aid in lyophilization include sodium or potassium phosphates, citric acid, tartaric acid, gelatin, and carbohydrates such as dextrose, mannitol, and dextran.
- One embodiment includes non-sterile solids that are irradiated either before or after introduction into the container.
- the agents may be dissolved or dispersed in a diluent ready for administration.
- the solution or dispersion may be further diluted prior to administration.
- Some embodiments include providing the liquid in an IV bag. The liquid may be frozen to improve stability.
- the container includes other ingredients such as a pH adjuster, a solubilizing agent, or a dispersing agent.
- pH adjusters include NaOH, sodium carbonate, sodium acetate, HCl, and citric acid.
- the liquid carrier is a saline solution.
- the molar ratio of Compound 1A described herein to additional agent may be from about 10:1 to 1:10, 8:1 to 1:8, 5:1 to 1:5, 3:1 to 1:3, 2:1 to 1:2, or about 1:1.
- the amount of compound described herein may be from 100 mg to 5 g, 500 mg to 2 g, or about 1 g.
- the amount of additional agent may be from 100 mg to 5 g, 500 mg to 2 g, or about 1 g.
- the two components may be provided in separate containers.
- Each container may include a solid, solution, or dispersion.
- the two containers may be provided in a single package or may be provided separately.
- the compound or composition described herein is provided as a solution while the additional agent (e.g., antibacterial agent) is provided as a solid ready for reconstitution.
- the solution of the compound or composition described herein is used as the diluent to reconstitute the other agent.
- the contents of the sterile container can be reconstituted using a pharmaceutically acceptable liquid carrier.
- the liquid carrier is a saline solution.
- the liquid carrier is a dextrose solution.
- the method of administration comprising administering the reconstituted solution described herein intravenously to a subject.
- Some embodiments of the present invention include methods of treating bacterial infections with the compounds and compositions described herein. Some methods include administering a compound, composition, pharmaceutical composition described herein to a subject in need thereof.
- a subject can be an animal, e.g., a mammal, a human.
- the bacterial infection comprises a bacteria described herein.
- methods of treating a bacterial infection include methods for preventing bacterial infection in a subject at risk thereof.
- a combination can include a compound, composition, pharmaceutical composition described herein with an additional medicament.
- Some embodiments include co-administering a compound, composition, and/or pharmaceutical composition described herein, with an additional medicament.
- co-administration it is meant that the two or more agents may be found in the patient's bloodstream at the same time, regardless of when or how they are actually administered.
- the agents are administered simultaneously.
- administration in combination is accomplished by combining the agents in a single dosage form.
- they may be physically mixed (e.g., by co-dissolution or dry mixing) or may form an adduct or be covalently linked such that they split into the two or more active ingredients upon administration to the patient.
- the agents are administered sequentially.
- the agents are administered through the same route, such as orally.
- the agents are administered through different routes, such as one being administered orally and another being administered i.v.
- additional medicaments include an antibacterial agent, antifungal agent, an antiviral agent, an anti-inflammatory agent and an anti-allergic agent.
- Some embodiments include co-administration of a compound, composition or pharmaceutical composition described herein with an antibacterial agent such as a ⁇ -lactam.
- ⁇ -lactams include Amoxicillin, Ampicillin (e.g., Pivampicillin, Hetacillin, Bacampicillin, Metampicillin, Talampicillin), Epicillin, Carbenicillin (Carindacillin), Ticarcillin, Temocillin, Azlocillin, Piperacillin, Mezlocillin, Mecillinam (Pivmecillinam), Sulbenicillin, Benzylpenicillin (G), Clometocillin, Benzathine benzylpenicillin, Procaine benzylpenicillin, Azidocillin, Penamecillin, Phenoxymethylpenicillin (V), Propicillin, Benzathine phenoxymethylpenicillin, Pheneticillin, Cloxacillin (e.g., Dicloxacillin, Flucloxacillin), Oxacillin
- Preferred embodiments include ⁇ -lactams such as Ceftazidime, Biapenem, Doripenem, Ertapenem, Imipenem, Meropenem, ME1036, Tomopenem, Razupenem, and Panipenem.
- ⁇ -lactams such as Ceftazidime, Biapenem, Doripenem, Ertapenem, Imipenem, Meropenem, ME1036, Tomopenem, Razupenem, and Panipenem.
- Some embodiments include co-administration of the compounds, compositions and/or pharmaceutical compositions described herein with an additional agent, wherein the additional agent comprises a monobactam.
- additional agent comprises a monobactam.
- monobactams include aztreonam, tigemonam, BAL 30072, SYN 2416 (BAL19764), and carumonam.
- Some embodiments include co-administration of the compounds, compositions and/or pharmaceutical compositions described herein with an additional agent, wherein the additional agent comprises a Class A, B, C, or D beta-lactamase inhibitor.
- a class B beta lactamase inhibitor includes ME1071 (Yoshikazu Ishii et al, “In Vitro Potentiation of Carbapenems with ME1071, a Novel Metallo- ⁇ -Lactamase Inhibitor, against Metallo-B-lactamase Producing Pseudomonas aeruginosa Clinical Isolates.” Antimicrob. Agents Chemother. doi:10.1128/AAC.01397-09 (July 2010)).
- beta-lactamase inhibitors administered as an additional agent include clavulanic acid, tazobactam, sulbactam, avibactam (NXL-104), MK-7655, and BAL29880.
- MK-7655 has the following structure:
- Bacterial infections that can be treated with the compounds, compositions and methods described herein can comprise a wide spectrum of bacteria.
- Example organisms include gram-positive bacteria, gram-negative bacteria, aerobic and anaerobic bacteria, such as Staphylococcus, Lactobacillus, Streptococcus, Sarcina, Escherichia, Enterobacter, Klebsiella, Pseudomonas, Acinetobacter, Mycobacterium, Proteus, Campylobacter, Citrobacter, Nisseria, Baccillus, Bacteroides, Peptococcus, Clostridium, Salmonella, Shigella, Serratia, Haemophilus, Brucella and other organisms.
- More examples of bacterial infections include Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas acidovorans, Pseudomonas alcaligenes, Pseudomonas putida, Stenotrophomonas maltophilia, Burkholderia cepacia, Aeromonas hydrophilia, Escherichia coli, Citrobacter freundii, Salmonella typhimurium, Salmonella typhi, Salmonella paratyphi, Salmonella enteritidis, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Enterobacter cloacae, Enterobacter aerogenes, Klebsiella pneumoniae, Klebsiella oxytoca, Serratia marcescens, Francisella tularensis, Morganella morganii, Proteus mirabilis, Proteus vulgaris
- FIG. 6 shows the PXRD pattern of the NaCl, Compound 1 before purification and after purification. As shown in FIG. 6 , the peak at 31.6° 2 ⁇ in the PXRD pattern is characteristic for the NaCl salt. The PXRD pattern for Compound 1 after purification shows significantly reduced or no presence of the NaCl salt.
- compound 1 was combined with water (15.0 mL) and the suspension was stirred at room temperature for 4 hrs. The solids were isolated using a Buchner funnel and Whitman #1 filter paper. After filtration, the compound was air-dried for 15 hrs. The yield of the procedure was 87% by weight.
- FIG. 6 shows the characteristic peaks of the NaCl salt in the purified compound disappeared as compared with the compound before purification.
- FIG. 7 shows the TGA trace of the purified compound 1.
- compound 1 underwent about 6.25% weight loss which was attributed to the loss of water due to a reversible reaction involving the boronic acid moiety.
- FIG. 8 is the HPLC analysis of the purified Compound 1. The HPLC chromatogram in FIG. 8 shows a retention peak of 2.52 for Compound 1 and no other peaks for NaCl or water.
- Compound 1 has a pKa of 3.92 and was expected to form salts with strong bases. Because of a possible high projected dose (3 g/day) of compound 1, the counterion selection was limited to Class 1 molecules having low toxicity. (Handbook of Pharmaceutical Salts Properties, Selection, and Use P. H. Stahl, C. G. Wermuth, (2002) Wiley-VCH, Weinheim). Table 1 lists seven basic counterions selected for the salt screen study, their pKa values, and the corresponding stoichiometry and dosing strategies.
- the salt-screening experiments were set up by combining 20.0 ⁇ 0.5 mg of Compound 1 with 300-500 ⁇ L of the solvent and the counterion in a stoichiometric amount.
- the screening studies were conducted in two stages.
- Stage 2 a few samples that remained undissolved and amorphous in the first stage were 1) subjected to rapid solvent evaporation under vacuum; 2) dissolved in solvent Nos. 7-9 listed in Table 2; 3) cooled to 5° C. and held at 5° C. for 72 hrs; and 4) allowed to evaporate at ambient conditions over 3-7 days.
- Table 3 only listed 83 examples of the approximately 360 screening experiments performed using various combinations of counterions, solvent systems, and crystallization mode. Most of the screening experiments produced amorphous powders, oils, gums. For example, those experiments that involved calcium and magnesium counterions yielded products that were mixtures of the unreacted substrates. The FT-Raman and PXRD analysis of the products showed that no pure and stable crystalline salt was formed in the experiments involving calcium or magnesium counterions. For another example, when the screening experiments involved the solvent system of THF and Water (95:5 vol %) and a range of counterions (potassium, choline, calcium, and magnesium), the HPLC analysis confirmed significant decomposition present in those products.
- the potassium salt Compound 1A in four experiments yielded a pure and stable crystalline form after long-term (>4 days) stirring of the initially amorphous products (gums and oils).
- the potassium salt was subsequently reproduced at 50 mg and 300 mg scales using seeding, which facilitated crystallization of the several hours of amorphous intermediate phase.
- the potassium salt may undergo deliquescence when isolated in open air; however, the deliquescence may be significantly reduced and/or eliminated by using the nitrogen blanket. Once a free-flowing powder was isolated, the powder was stable in open-air for at least 7 days.
- the potassium salt is a crystalline powder, as indicated by PXRD data in FIG. 1 and PLM image in FIG. 2 .
- FIG. 3 is the TGA and DSC analysis and FIG. 4 shows the FT-Raman spectrum of the crystalline form of Compound 1A.
- the DSC trace in FIG. 3 shows a melting endotherm at 199.0° C.
- the TGA analysis of Compound 1A in FIG. 3 also indicates a gradual weight loss of ⁇ 0.7% wt. over the temperature range 25-150° C., which can be contributed to a loss of residual or surface solvent, and a major weight loss at temperatures above 160° C. that was attributed to decomposition.
- the HPLC analysis of the potassium salt as shown in FIG. 5 confirmed the absence of decomposition of Compound 1.
- ICP-AES inductively coupled plasma atomic emission spectroscopy
- Groups A-E The studies discovered five crystalline forms of the sodium salt (Groups A-E). Groups A and B were obtained from the screening experiments using compound 1 as the starting material. The PXRD pattern of Group A showed broad peaks indicative of poor crystallinity. The isolated material was found to be sticky and deliquesced readily ( ⁇ 5 minutes) when exposed to ambient conditions. PXRD pattern of Group B showed sharper peaks compared to Group A. The isolated Group B material was free flowing and easy to handle. Thermal analyses of Group B of sodium salt showed this form is a methanol/water solvate which converted to a hydrate on drying at 60° C.
- Group C was isolated from a single crystallization experiment using amorphous sodium salt as the input.
- Group C of sodium salt showed physical properties similar to Group B and was found to be an acetone/water solvate which desolvated on drying at 60° C.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- Field of the Invention
- The present invention relates to salts and polymorphs of cyclic boronic acid ester derivatives, compositions, their use and preparation as therapeutic agents for treating bacterial infection. In particular, the present invention relates to a potassium salt of 2-((3R,6S)-2-hydroxy-3 -(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- Description of the Related Art
- Antibiotics have been effective tools in the treatment of infectious diseases during the last half-century. From the development of antibiotic therapy to the late 1980s there was almost complete control over bacterial infections in developed countries. However, in response to the pressure of antibiotic usage, multiple resistance mechanisms have become widespread and are threatening the clinical utility of anti-bacterial therapy. The increase in antibiotic resistant strains has been particularly common in major hospitals and care centers. The consequences of the increase in resistant strains include higher morbidity and mortality, longer patient hospitalization, and an increase in treatment costs
- Various bacteria have evolved β-lactam deactivating enzymes, namely, β-lactamases, that counter the efficacy of the various β-lactams. β-lactamases can be grouped into 4 classes based on their amino acid sequences, namely, Ambler classes A, B, C, and D. Enzymes in classes A, C, and D include active-site serine β-lactamases, and class B enzymes, which are encountered less frequently, are Zn-dependent. These enzymes catalyze the chemical degradation of β-lactam antibiotics, rendering them inactive. Some β-lactamases can be transferred within and between various bacterial strains and species. The rapid spread of bacterial resistance and the evolution of multi-resistant strains severely limits β-lactam treatment options available.
- The increase of class D β-lactamase-expressing bacterium strains such as Acinetobacter baumannii has become an emerging multidrug-resistant threat. A. baumannii strains express A, C, and D class β-lactamases. The class D β-lactamases such as the OXA families are particularly effective at destroying carbapenem type β-lactam antibiotics, e.g., imipenem, the active carbapenems component of Merck's Primaxin® (Montefour, K.; et al. Crit. Care Nurse 2008, 28, 15; Perez, F. et al. Expert Rev. Anti Infect. Ther. 2008, 6, 269; Bou, G.; Martinez-Beltran, J. Antimicrob. Agents Chemother. 2000, 40, 428. 2006, 50, 2280; Bou, G. et al, J. Antimicrob. Agents Chemother. 2000, 44, 1556). This has imposed a pressing threat to the effective use of drugs in that category to treat and prevent bacterial infections. Indeed the number of catalogued serine-based β-lactamases has exploded from less than ten in the 1970s to over 300 variants. These issues fostered the development of five “generations” of cephalosporins. When initially released into clinical practice, extended-spectrum cephalosporins resisted hydrolysis by the prevalent class A β-lactamases, TEM-1 and SHV-1. However, the development of resistant strains by the evolution of single amino acid substitutions in TEM-1 and SHV-1 resulted in the emergence of the extended-spectrum β-lactamase (ESBL) phenotype.
- New β-lactamases have recently evolved that hydrolyze the carbapenem class of antimicrobials, including imipenem, biapenem, doripenem, meropenem, and ertapenem, as well as other β-lactam antibiotics. These carbapenemases belong to molecular classes A, B, and D. Class A carbapenemases of the KPC-type predominantly in Klebsiella pneumoniae but now also reported in other Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii. The KPC carbapenemase was first described in 1996 in North Carolina, but since then has disseminated widely in the US. It has been particularly problematic in the New York City area, where several reports of spread within major hospitals and patient morbidity have been reported. These enzymes have also been recently reported in France, Greece, Sweden, United Kingdom, and an outbreak in Germany has recently been reported. Treatment of resistant strains with carbapenems can be associated with poor outcomes.
- Another mechanism of β-lactamase mediated resistance to carbapenems involves combination of permeability or efflux mechanisms combined with hyper production of beta-lactamases. One example is the loss of a porin combined in hyperproduction of ampC beta-lactamase results in resistance to imipenem in Pseudomonas aeruginosa. Efflux pump over expression combined with hyperproduction of the ampC β-lactamase can also result in resistance to a carbapenem such as meropenem.
- Because there are three major molecular classes of serine-based β-lactamases, and each of these classes contains significant numbers of β-lactamase variants, inhibition of one or a small number of β-lactamases is unlikely to be of therapeutic value. Legacy β-lactamase inhibitors are largely ineffective against at least Class A carbapenemases, against the chromosomal and plasmid-mediated Class C cephalosporinases and against many of the Class D oxacillinases. Therefore, there is a need for improved β-lactamase inhibitors.
- The present invention relates to antimicrobial agents and potentiators thereof. Some embodiments include salts, polymorphs, compounds, compositions, pharmaceutical compositions, use and preparation thereof. In particular, come embodiments relate to salts and polymorphs of cyclic boronic acid ester derivatives.
- Some embodiments relate to a potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- In some embodiments, the potassium salt is in a crystalline form exhibiting an X-ray powder diffraction pattern comprising at least three characteristic peaks selected from the group consisting of peaks at approximately 7.3°, 13.9°, 16.9°, 19.1°, 20.8°, and 25.2° 2θ.
- Some embodiments include a pharmaceutical composition comprising the potassium salt described herein.
- Some embodiments include a pharmaceutical composition prepared by dissolving the potassium salt described herein.
- Some embodiments include a method of preventing a bacterial infection, comprising administering to a subject in need thereof, a composition described herein.
- Some embodiments include a sterile container, comprising any one of the foregoing composition or any one of the foregoing potassium salt.
- Some embodiments include a method of preparing a pharmaceutical composition for administration, comprising reconstituting the contents of any one of the foregoing the sterile container using a pharmaceutically acceptable liquid carrier.
- Some embodiments relate to a process of making a crystalline form of a potassium salt of 2-((3R,6S)-2-hydroxy-3 -(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid, comprising combining a purified 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid with a solvent to form an intermediate solution; intermixing a potassium counterion with the intermediate solution; and isolating the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
-
FIG. 1 is an X-ray powder diffraction (XRPD) pattern of the crystalline form of Compound 1A. -
FIG. 2 shows a polarized light microscopy (PLM) image of a sample containing the crystalline form of Compound 1A. -
FIG. 3 shows thermo gravimetric (TGA) and digital scanning calorimetry (DSC) analysis results of the crystalline form of Compound 1A. -
FIG. 4 shows a FT-Roman spectrum of the crystalline form of Compound 1A. -
FIG. 5 shows a high-performance liquid chromatography (HPLC) analysis of the crystalline form of Compound 1A. -
FIG. 6 shows the X-ray powder diffraction pattern of sodium chloride andCompound 1 before and after purification. -
FIG. 7 is the TGA of Compound 1 after purification. -
FIG. 8 shows a (HPLC) analysis ofCompound 1 after purification. - The present invention relates to salts and polymorphs of cyclic boronic acid ester derivatives and pharmaceutical compositions comprising the same. Some embodiments include uses thereof, including methods of preparation, and methods of treatment. In particular, the present invention relates to polymorphs of a salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. More specifically, the present invention relates to polymorphs of a potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
-
Compound 1 as used herein refers to 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2 oxaborinan-6-yl)acetic acid as shown in the structure below. -
Compound 1 can be made by known methods such as the procedures described in US 2012/0040932, which is incorporated by reference in its entirety. More specifically, the skilled artisan given the disclosure in Example 1 of US 2012/0040932 is well equipped to prepareCompound 1. -
Compound 1 contains a boronic acid moiety that is chemically stable in solutions having pH values between 2 and 8. The pKa ofCompound 1 is measured to be 3.92. When combined with counterions such as potassium at suitable pH,Compound 1 can be converted into a salt. - Some embodiments relate to a pharmaceutically acceptable salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. In some embodiments, the pharmaceutically acceptable salt is a potassium salt. In some embodiments, the pharmaceutically acceptable salt is a calcium salt. In some embodiments, the pharmaceutically acceptable salt is a magnesium salt.
- Compound 1A as used herein refers to the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. Compound 1A can be made into a pure and stable crystalline form under controlled conditions. The X-ray powder diffraction (PXRD) pattern of Compound 1A is substantially the same as shown in
FIG. 1 , with corresponding tabulated peak data shown in Table 1. -
TABLE 1 Peak Data of X-ray powder diffraction (PXRD) pattern of Compound 1A No. Pos. [°2Th.] d-spacing [Å] Height [cts] 1 7.25 12.19 5999.35 2 9.23 9.59 213.77 3 13.87 6.38 1059.91 4 14.61 6.06 813.31 5 16.94 5.23 1005.45 6 17.07 5.19 664.12 7 17.45 5.08 358.32 8 17.94 4.94 635.36 9 19.05 4.66 1027.85 10 20.75 4.28 1510.77 11 21.26 4.18 654.04 12 23.34 3.81 216.52 13 23.66 3.76 379.78 14 25.15 3.54 964.68 15 25.58 3.48 484.34 16 28.33 3.15 246.72 17 31.05 2.88 304.67 18 31.38 2.85 435.25 19 32.10 2.79 311.25 20 33.65 2.66 239.27 21 34.12 2.63 196.90 - Compound 1A is in a crystalline form exhibiting an X-ray powder diffraction pattern that includes at least three characteristic peaks selected from the group consisting of peaks at approximately 7.3°, 13.9°, 16.9°, 19.1°, 20.8°, and 25.2° 2θ. In some embodiments, the crystalline form of Compound 1A exhibits an X-ray powder diffraction pattern comprising at least peaks at 7.3°, 13.9°, 16.9°, 19.1°, 20.8°, and 25.2° 2θ. In some embodiments, the crystalline form of Compound 1A exhibits an X-ray powder diffraction pattern comprising at least peaks at approximately 7.3°, 13.9°, 14.6°, 16.9°, 17.9°, 19.1°, 20.8°, 21.2°, 25.2°, and 25.6° 2θ.
- As is well understood in the art, because of the experimental variability when X-ray diffraction patterns are measured on different instruments, the peak positions are assumed to be equal if the two theta (2θ) values agree to within 0.2° (i.e., ±0.2°). For example, the United States Pharmacopeia states that if the angular setting of the 10 strongest diffraction peaks agree to within ±0.2° with that of a reference material, and the relative intensities of the peaks do not vary by more than 20%, the identity is confirmed. Accordingly, peak positions within 0.2° of the positions recited herein are assumed to be identical.
-
FIG. 3 shows digital scanning calorimetry (DSC) analysis results of the crystalline form of Compound 1A. As shown inFIG. 3 , the crystalline form of the potassium salt has a melting point of 199.0° C. - Process of making Crystalline Form of Compound 1A
- One process for making a crystalline form of Compound 1A can include combining a
purified Compound 1 with a solvent to form an intermediate solution; intermixing a potassium ion with the intermediate solution; and isolating the crystalline form of Compound 1A. - The source of potassium ion can vary. In some embodiment, the potassium ion is from potassium hydroxide. In some embodiment, the potassium ion is from potassium t-butoxide.
- The solvent used for salt formation can vary depending on the source of the potassium ion and reaction conditions. In some embodiment, the solvent is selected from the group consisting of tetrahydrofuran, 1,4-dioxane, acenitrile, acetone, ethyl acetate, methyl tert-butyl ether, water, and any combinations thereof. In some embodiment, the solvent is acetone or acenitrile. In some embodiment, the solvent is acetone. In some embodiment, the solvent is acenitrile.
- Some embodiments include pharmaceutical compositions comprising the potassium salt described herein and a pharmaceutically acceptable carrier. Such a composition can be administered to a subject as part of a therapeutic treatment.
- Compound 1A described herein can be administered at a therapeutically effective dosage, e.g., a dosage sufficient to provide treatment for disease states described herein. Suitable dosage levels may be from about 0.1 mg/kg to about 200 mg/kg or more of body weight, from about 0.25 mg/kg to about 120 mg/kg or more of body weight, from about 0.5 mg/kg or less to about 70 mg/kg, from about 1.0 mg/kg to about 50 mg/kg of body weight, or from about 1.5 mg/kg to about 10 mg/kg of body weight. Thus, for administration to a 70 kg person, the dosage range would be from about 17 mg per day to about 8000 mg per day, from about 35 mg per day or less to about 7000 mg per day or more, from about 70 mg per day to about 6000 mg per day, from about 100 mg per day to about 5000 mg per day, or from about 200 mg to about 3000 mg per day. The amount of active compound administered will, of course, be dependent on the subject and disease state being treated, the severity of the affliction, the manner and schedule of administration and the judgment of the prescribing physician.
- In some embodiments, the pharmaceutical composition described herein includes a unit dose from 0.01 mg to 10 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. In some embodiments, the pharmaceutical composition described herein includes a unit dose from 0.1 mg to 5 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. In some embodiments, the pharmaceutical composition described herein includes a unit dose from 0.1 mg to 2.5 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. In some embodiments, the pharmaceutical composition described herein includes a unit dose from 1.5 g to 2.5 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. In some embodiments, the pharmaceutical composition described herein includes a unit dose of less than 5 g, less than 4.5 g, less than 4g, less than 3.5 g, less than 3 g, less than 2.5 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid. In some embodiments, the pharmaceutical composition described herein includes a unit dose more than 0.1 mg, more than 0.5 mg, more than 10 mg, more than 50 mg, more than 100 mg, more than 150 mg, more than 200 mg, more than 500 mg, more than 1 g, more than 2 g of the crystalline form of the potassium salt of 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid.
- Administration of the compounds disclosed herein or the pharmaceutically acceptable salts thereof can be via any of the accepted modes of administration for agents that serve similar utilities including, but not limited to, orally, subcutaneously, intravenously, intranasally, topically, transdermally, intraperitoneally, intramuscularly, intrapulmonarilly, vaginally, rectally, or intraocularly. Oral and parenteral administrations are customary in treating the indications that are the subject of the preferred embodiments.
- The compounds useful as described above can be formulated into pharmaceutical compositions for use in treatment of these conditions. Standard pharmaceutical formulation techniques are used, such as those disclosed in Remington's The Science and Practice of Pharmacy, 21st Ed., Lippincott Williams & Wilkins (2005), incorporated by reference in its entirety.
- In addition to the selected compound useful as described above, come embodiments include compositions containing a pharmaceutically-acceptable carrier. The term “pharmaceutically-acceptable carrier”, as used herein, means one or more compatible solid or liquid filler diluents or encapsulating substances, which are suitable for administration to a mammal. The term “compatible”, as used herein, means that the components of the composition are capable of being commingled with the subject compound, and with each other, in a manner such that there is no interaction, which would substantially reduce the pharmaceutical efficacy of the composition under ordinary use situations. Pharmaceutically-acceptable carriers must, of course, be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration preferably to an animal, preferably mammal being treated.
- Some examples of substances, which can serve as pharmaceutically-acceptable carriers or components thereof, are sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and methyl cellulose; powdered tragacanth; malt; gelatin; talc; solid lubricants, such as stearic acid and magnesium stearate; calcium sulfate; vegetable oils, such as peanut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil of theobroma; polyols such as propylene glycol, glycerine, sorbitol, mannitol, and polyethylene glycol; alginic acid; emulsifiers, such as the TWEENS; wetting agents, such sodium lauryl sulfate; coloring agents; flavoring agents; tableting agents, stabilizers; antioxidants; preservatives; pyrogen-free water; isotonic saline; and phosphate buffer solutions.
- The choice of a pharmaceutically-acceptable carrier to be used in conjunction with the subject compound is basically determined by the way the compound is to be administered.
- The compositions described herein are preferably provided in unit dosage form. As used herein, a “unit dosage form” is a composition containing an amount of a compound that is suitable for administration to an animal, preferably mammal subject, in a single dose, according to good medical practice. The preparation of a single or unit dosage form however, does not imply that the dosage form is administered once per day or once per course of therapy. Such dosage forms are contemplated to be administered once, twice, thrice or more per day and may be administered as infusion over a period of time (e.g., from about 30 minutes to about 2-6 hours), or administered as a continuous infusion, and may be given more than once during a course of therapy, though a single administration is not specifically excluded. The skilled artisan will recognize that the formulation does not specifically contemplate the entire course of therapy and such decisions are left for those skilled in the art of treatment rather than formulation.
- The compositions useful as described above may be in any of a variety of suitable forms for a variety of routes for administration, for example, for oral, nasal, rectal, topical (including transdermal), ocular, intracerebral, intracranial, intrathecal, intra-arterial, intravenous, intramuscular, or other parental routes of administration. The skilled artisan will appreciate that oral and nasal compositions comprise compositions that are administered by inhalation, and made using available methodologies. Depending upon the particular route of administration desired, a variety of pharmaceutically-acceptable carriers well-known in the art may be used. Pharmaceutically-acceptable carriers include, for example, solid or liquid fillers, diluents, hydrotropies, surface-active agents, and encapsulating substances. Optional pharmaceutically-active materials may be included, which do not substantially interfere with the inhibitory activity of the compound. The amount of carrier employed in conjunction with the compound is sufficient to provide a practical quantity of material for administration per unit dose of the compound. Techniques and compositions for making dosage forms useful in the methods described herein are described in the following references, all incorporated by reference herein: Modern Pharmaceutics, 4th Ed.,
Chapters 9 and 10 (Banker & Rhodes, editors, 2002); Lieberman et al., Pharmaceutical Dosage Forms: Tablets (1989); and Ansel, Introduction to Pharmaceutical Dosage Forms 8th Edition (2004). - Various oral dosage forms can be used, including such solid forms as tablets, capsules, granules and bulk powders. These oral forms comprise a safe and effective amount, usually at least about 5%, with a maximum of about 90%, of the compound. Tablets can be compressed, tablet triturates, enteric-coated, sugar-coated, film-coated, or multiple-compressed, containing suitable binders, lubricants, diluents, disintegrating agents, coloring agents, flavoring agents, flow-inducing agents, and melting agents. Liquid oral dosage forms include aqueous solutions, emulsions, suspensions, solutions and/or suspensions reconstituted from non-effervescent granules, and effervescent preparations reconstituted from effervescent granules, containing suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, melting agents, coloring agents and flavoring agents.
- The pharmaceutically-acceptable carrier suitable for the preparation of unit dosage forms for peroral administration is well-known in the art. Tablets typically comprise conventional pharmaceutically-compatible adjuvants as inert diluents, such as calcium carbonate, sodium carbonate, mannitol, lactose and cellulose; binders such as starch, gelatin and sucrose; disintegrants such as starch, alginic acid and croscarmelose; lubricants such as magnesium stearate, stearic acid and talc. Glidants such as silicon dioxide can be used to improve flow characteristics of the powder mixture. Coloring agents, such as the FD&C dyes, can be added for appearance. Sweeteners and flavoring agents, such as aspartame, saccharin, menthol, peppermint, and fruit flavors, are useful adjuvants for chewable tablets. Capsules typically comprise one or more solid diluents disclosed above. The selection of carrier components depends on secondary considerations like taste, cost, and shelf stability, which are not critical, and can be readily made by a person skilled in the art. suspensions, and the like. The pharmaceutically-acceptable carriers suitable for preparation of such compositions are well known in the art. Typical components of carriers for syrups, elixirs, emulsions and suspensions include ethanol, glycerol, propylene glycol, polyethylene glycol, liquid sucrose, sorbitol and water. For a suspension, typical suspending agents include methyl cellulose, sodium carboxymethyl cellulose, AVICEL RC-591, tragacanth and sodium alginate; typical wetting agents include lecithin and
polysorbate 80; and typical preservatives include methyl paraben and sodium benzoate. Peroral liquid compositions may also contain one or more components such as sweeteners, flavoring agents and colorants disclosed above. - Such compositions may also be coated by conventional methods, typically with pH or time-dependent coatings, such that the subject compound is released in the gastrointestinal tract in the vicinity of the desired topical application, or at various times to extend the desired action. Such dosage forms typically include, but are not limited to, one or more of cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropyl methyl cellulose phthalate, ethyl cellulose, Eudragit coatings, waxes and shellac.
- Compositions described herein may optionally include other drug actives.
- Other compositions useful for attaining systemic delivery of the subject compounds include sublingual, buccal and nasal dosage forms. Such compositions typically comprise one or more of soluble filler substances such as sucrose, sorbitol and mannitol; and binders such as acacia, microcrystalline cellulose, carboxymethyl cellulose and hydroxypropyl methyl cellulose. Glidants, lubricants, sweeteners, colorants, antioxidants and flavoring agents disclosed above may also be included.
- A liquid composition, which is formulated for topical ophthalmic use, is formulated such that it can be administered topically to the eye. The comfort should be maximized as much as possible, although sometimes formulation considerations (e.g. drug stability) may necessitate less than optimal comfort. In the case that comfort cannot be maximized, the liquid should be formulated such that the liquid is tolerable to the patient for topical ophthalmic use. Additionally, an ophthalmically acceptable liquid should either be packaged for single use, or contain a preservative to prevent contamination over multiple uses.
- For ophthalmic application, solutions or medicaments are often prepared using a physiological saline solution as a major vehicle. Ophthalmic solutions should preferably be maintained at a comfortable pH with an appropriate buffer system. The formulations may also contain conventional, pharmaceutically acceptable preservatives, stabilizers and surfactants.
- Preservatives that may be used in the pharmaceutical compositions disclosed herein include, but are not limited to, benzalkonium chloride, PHMB, chlorobutanol, thimerosal, phenylmercuric, acetate and phenylmercuric nitrate. A useful surfactant is, for example,
Tween 80. Likewise, various useful vehicles may be used in the ophthalmic preparations disclosed herein. These vehicles include, but are not limited to, polyvinyl alcohol, povidone, hydroxypropyl methyl cellulose, poloxamers, carboxymethyl cellulose, hydroxyethyl cellulose and purified water. - Tonicity adjustors may be added as needed or convenient. They include, but are not limited to, salts, particularly sodium chloride, potassium chloride, mannitol and glycerin, or any other suitable ophthalmically acceptable tonicity adjustor.
- Various buffers and means for adjusting pH may be used so long as the resulting preparation is ophthalmically acceptable. For many compositions, the pH will be between 4 and 9. Accordingly, buffers include acetate buffers, citrate buffers, phosphate buffers and borate buffers. Acids or bases may be used to adjust the pH of these formulations as needed.
- In a similar vein, an ophthalmically acceptable antioxidant includes, but is not limited to, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene.
- Other excipient components, which may be included in the ophthalmic preparations, are chelating agents. A useful chelating agent is edetate disodium, although other chelating agents may also be used in place or in conjunction with it.
- For topical use, creams, ointments, gels, solutions or suspensions, etc., containing the compound disclosed herein are employed. Topical formulations may generally be comprised of a pharmaceutical carrier, co-solvent, emulsifier, penetration enhancer, preservative system, and emollient.
- For intravenous administration, the compounds and compositions described herein may be dissolved or dispersed in a pharmaceutically acceptable diluent, such as a saline or dextrose solution. Suitable excipients may be included to achieve the desired pH, including but not limited to NaOH, sodium carbonate, sodium acetate, HCl, and citric acid. In various embodiments, the pH of the final composition ranges from 2 to 8, or preferably from 4 to 7. Antioxidant excipients may include sodium bisulfite, acetone sodium bisulfite, sodium formaldehyde, sulfoxylate, thiourea, and EDTA. Other non-limiting examples of suitable excipients found in the final intravenous composition may include sodium or potassium phosphates, citric acid, tartaric acid, gelatin, and carbohydrates such as dextrose, mannitol, and dextran. Further acceptable excipients are described in Powell, et al., Compendium of Excipients for Parenteral Formulations, PDA J Pharm Sci and Tech 1998, 52 238-311 and Nema et al., Excipients and Their Role in Approved Injectable Products: Current Usage and Future Directions, PDA J Pharm Sci and Tech 2011, 65 287-332, both of which are incorporated herein by reference in their entirety. Antimicrobial agents may also be included to achieve a bacteriostatic or fungistatic solution, including but not limited to phenylmercuric nitrate, thimerosal, benzethonium chloride, benzalkonium chloride, phenol, cresol, and chlorobutanol.
- The resulting composition may be infused into the patient over a period of time. In various embodiments, the infusion time ranges from 5 minutes to continuous infusion, from 10 minutes to 8 hours, from 30 minutes to 4 hours, and from 1 hour to 3 hours. In one embodiment, the drug is infused over a 3 hour period. The infusion may be repeated at the desired dose interval, which may include, for example, 6 hours, 8 hours, 12 hours, or 24 hours.
- The compositions for intravenous administration may be provided to caregivers in the form of one more solids that are reconstituted with a suitable diluent such as sterile water, saline or dextrose in water shortly prior to administration. Reconstituted concentrated solutions may be further diluted into a parenteral solutions having a volume of from about 25 to about 1000 ml, from about 30 ml to about 500 ml, or from about 50 ml to about 100 ml. In other embodiments, the compositions are provided in solution ready to administer parenterally. In still other embodiments, the compositions are provided in a solution that is further diluted prior to administration. In embodiments that include administering a combination of a compound described herein and another agent, the combination may be provided to caregivers as a mixture, or the caregivers may mix the two agents prior to administration, or the two agents may be administered separately.
- The actual dose of the active compounds described herein depends on the specific compound, and on the condition to be treated; the selection of the appropriate dose is well within the knowledge of the skilled artisan.
- Some embodiments include a sterile container having the composition described herein. Some embodiments include a sterile container having Compound 1A described herein. Some embodiments include a kit comprising a potassium salt described herein and an additional agent, such as an antimicrobial agent. In one embodiment, both components are provided in a single sterile container. In the case of solids for reconstitution, the agents may be pre-blended and added to the container simultaneously or may be dry-powder filled into the container in two separate steps. In some embodiments, an additional agent is a sterile crystalline product. In other embodiments, the additional agent is a lyophile. Non-limiting examples of agents to aid in lyophilization include sodium or potassium phosphates, citric acid, tartaric acid, gelatin, and carbohydrates such as dextrose, mannitol, and dextran. One embodiment includes non-sterile solids that are irradiated either before or after introduction into the container.
- In the case of a liquid, the agents may be dissolved or dispersed in a diluent ready for administration. In another embodiment, the solution or dispersion may be further diluted prior to administration. Some embodiments include providing the liquid in an IV bag. The liquid may be frozen to improve stability.
- In one embodiment, the container includes other ingredients such as a pH adjuster, a solubilizing agent, or a dispersing agent. Non-limiting examples of pH adjusters include NaOH, sodium carbonate, sodium acetate, HCl, and citric acid. In some embodiments, the liquid carrier is a saline solution.
- The molar ratio of Compound 1A described herein to additional agent (e.g., antibacterial agent) may be from about 10:1 to 1:10, 8:1 to 1:8, 5:1 to 1:5, 3:1 to 1:3, 2:1 to 1:2, or about 1:1. In various embodiments the amount of compound described herein may be from 100 mg to 5 g, 500 mg to 2 g, or about 1 g. Similarly, in various embodiments the amount of additional agent may be from 100 mg to 5 g, 500 mg to 2 g, or about 1 g.
- In an alternative embodiment, the two components may be provided in separate containers. Each container may include a solid, solution, or dispersion. In such embodiments, the two containers may be provided in a single package or may be provided separately. In one embodiment, the compound or composition described herein is provided as a solution while the additional agent (e.g., antibacterial agent) is provided as a solid ready for reconstitution. In one such embodiment, the solution of the compound or composition described herein is used as the diluent to reconstitute the other agent.
- In case of preparing a pharmaceutical composition for administration, the contents of the sterile container can be reconstituted using a pharmaceutically acceptable liquid carrier. In some embodiments, the liquid carrier is a saline solution. In some embodiments, the liquid carrier is a dextrose solution. In some embodiments, the method of administration, comprising administering the reconstituted solution described herein intravenously to a subject.
- Some embodiments of the present invention include methods of treating bacterial infections with the compounds and compositions described herein. Some methods include administering a compound, composition, pharmaceutical composition described herein to a subject in need thereof. In some embodiments, a subject can be an animal, e.g., a mammal, a human. In some embodiments, the bacterial infection comprises a bacteria described herein. As will be appreciated from the foregoing, methods of treating a bacterial infection include methods for preventing bacterial infection in a subject at risk thereof.
- Further embodiments include administering a combination of compounds to a subject in need thereof. A combination can include a compound, composition, pharmaceutical composition described herein with an additional medicament.
- Some embodiments include co-administering a compound, composition, and/or pharmaceutical composition described herein, with an additional medicament. By “co-administration,” it is meant that the two or more agents may be found in the patient's bloodstream at the same time, regardless of when or how they are actually administered. In one embodiment, the agents are administered simultaneously. In one such embodiment, administration in combination is accomplished by combining the agents in a single dosage form. When combining the agents in a single dosage form, they may be physically mixed (e.g., by co-dissolution or dry mixing) or may form an adduct or be covalently linked such that they split into the two or more active ingredients upon administration to the patient. In another embodiment, the agents are administered sequentially. In one embodiment the agents are administered through the same route, such as orally. In another embodiment, the agents are administered through different routes, such as one being administered orally and another being administered i.v.
- Examples of additional medicaments include an antibacterial agent, antifungal agent, an antiviral agent, an anti-inflammatory agent and an anti-allergic agent.
- Some embodiments include co-administration of a compound, composition or pharmaceutical composition described herein with an antibacterial agent such as a β-lactam. Examples of such β-lactams include Amoxicillin, Ampicillin (e.g., Pivampicillin, Hetacillin, Bacampicillin, Metampicillin, Talampicillin), Epicillin, Carbenicillin (Carindacillin), Ticarcillin, Temocillin, Azlocillin, Piperacillin, Mezlocillin, Mecillinam (Pivmecillinam), Sulbenicillin, Benzylpenicillin (G), Clometocillin, Benzathine benzylpenicillin, Procaine benzylpenicillin, Azidocillin, Penamecillin, Phenoxymethylpenicillin (V), Propicillin, Benzathine phenoxymethylpenicillin, Pheneticillin, Cloxacillin (e.g., Dicloxacillin, Flucloxacillin), Oxacillin, Methicillin, Nafcillin, Faropenem, Biapenem, Doripenem, Ertapenem, Imipenem, Meropenem, Panipenem, Tomopenem, Razupenem, Cefazolin, Cefacetrile, Cefadroxil, Cefalexin, Cefaloglycin, Cefalonium, Cefaloridine, Cefalotin, Cefapirin, Cefatrizine, Cefazedone, Cefazaflur, Cefradine, Cefroxadine, Ceftezole, Cefaclor, Cefamandole, Cefminox, Cefonicid, Ceforanide, Cefotiam, Cefprozil, Cefbuperazone, Cefuroxime, Cefuzonam, Cefoxitin, Cefotetan, Cefmetazole, Loracarbef, Cefixime, Ceftazidime, Ceftriaxone, Cefcapene, Cefdaloxime, Cefdinir, Cefditoren, Cefetamet, Cefmenoxime, Cefodizime, Cefoperazone, Cefotaxime, Cefpimizole, Cefpiramide, Cefpodoxime, Cefsulodin, Cefteram, Ceftibuten, Ceftiolene, Ceftizoxime, Flomoxef, Latamoxef, Cefepime, Cefozopran, Cefpirome, Cefquinome, Ceftobiprole, Ceftaroline, CXA-101, RWJ-54428, MC-04,546, ME1036, BAL30072, SYN 2416, Ceftiofur, Cefquinome, Cefovecin, Aztreonam, Tigemonam, Carumonam, RWJ-442831, RWJ-333441, and RWJ-333442.
- Preferred embodiments include β-lactams such as Ceftazidime, Biapenem, Doripenem, Ertapenem, Imipenem, Meropenem, ME1036, Tomopenem, Razupenem, and Panipenem.
- Some embodiments include co-administration of the compounds, compositions and/or pharmaceutical compositions described herein with an additional agent, wherein the additional agent comprises a monobactam. Examples of monobactams include aztreonam, tigemonam, BAL 30072, SYN 2416 (BAL19764), and carumonam.
- Some embodiments include co-administration of the compounds, compositions and/or pharmaceutical compositions described herein with an additional agent, wherein the additional agent comprises a Class A, B, C, or D beta-lactamase inhibitor. An example of a class B beta lactamase inhibitor includes ME1071 (Yoshikazu Ishii et al, “In Vitro Potentiation of Carbapenems with ME1071, a Novel Metallo-β-Lactamase Inhibitor, against Metallo-B-lactamase Producing Pseudomonas aeruginosa Clinical Isolates.” Antimicrob. Agents Chemother. doi:10.1128/AAC.01397-09 (July 2010)). Other examples of beta-lactamase inhibitors administered as an additional agent include clavulanic acid, tazobactam, sulbactam, avibactam (NXL-104), MK-7655, and BAL29880. MK-7655 has the following structure:
- The compounds and compositions described herein can be used to treat bacterial infections. Bacterial infections that can be treated with the compounds, compositions and methods described herein can comprise a wide spectrum of bacteria. Example organisms include gram-positive bacteria, gram-negative bacteria, aerobic and anaerobic bacteria, such as Staphylococcus, Lactobacillus, Streptococcus, Sarcina, Escherichia, Enterobacter, Klebsiella, Pseudomonas, Acinetobacter, Mycobacterium, Proteus, Campylobacter, Citrobacter, Nisseria, Baccillus, Bacteroides, Peptococcus, Clostridium, Salmonella, Shigella, Serratia, Haemophilus, Brucella and other organisms.
- More examples of bacterial infections include Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas acidovorans, Pseudomonas alcaligenes, Pseudomonas putida, Stenotrophomonas maltophilia, Burkholderia cepacia, Aeromonas hydrophilia, Escherichia coli, Citrobacter freundii, Salmonella typhimurium, Salmonella typhi, Salmonella paratyphi, Salmonella enteritidis, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Enterobacter cloacae, Enterobacter aerogenes, Klebsiella pneumoniae, Klebsiella oxytoca, Serratia marcescens, Francisella tularensis, Morganella morganii, Proteus mirabilis, Proteus vulgaris, Providencia alcalifaciens, Providencia rettgeri, Providencia stuartii, Acinetobacter baumannii, Acinetobacter calcoaceticus, Acinetobacter haemolyticus, Yersinia enterocolitica, Yersinia pestis, Yersinia pseudotuberculosis, Yersinia intermedia, Bordetella pertussis, Bordetella parapertussis, Bordetella bronchiseptica, Haemophilus influenzae, Haemophilus parainfluenzae, Haemophilus haemolyticus, Haemophilus parahaemolyticus, Haemophilus ducreyi, Pasteurella multocida, Pasteurella haemolytica, Branhamella catarrhalis, Helicobacter pylori, Campylobacter fetus, Campylobacter jejuni, Campylobacter coli, Borrelia burgdorferi, Vibrio cholerae, Vibrio parahaemolyticus, Legionella pneumophila, Listeria monocytogenes, Neisseria gonorrhoeae, Neisseria meningitidis, Kingella, Moraxella, Gardnerella vaginalis, Bacteroides fragilis, Bacteroides distasonis, Bacteroides 3452A homology group, Bacteroides vulgatus, Bacteroides ovalus, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides eggerthii, Bacteroides splanchnicus, Clostridium difficile, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium leprae, Corynebacterium diphtheriae, Corynebacterium ulcerans, Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Staphylococcus intermedius, Staphylococcus hyicus subsp. hyicus, Staphylococcus haemolyticus, Staphylococcus hominis, or Staphylococcus saccharolyticus.
- The following examples will further describe the present invention, and are used for the purposes of illustration only, and should not be considered as limiting.
-
Compound 1, 2-((3R, 6 S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid, was found to often contain undesired NaCl salt.FIG. 6 shows the PXRD pattern of the NaCl,Compound 1 before purification and after purification. As shown inFIG. 6 , the peak at 31.6° 2θ in the PXRD pattern is characteristic for the NaCl salt. The PXRD pattern forCompound 1 after purification shows significantly reduced or no presence of the NaCl salt. - During the purification process,
compound 1 was combined with water (15.0 mL) and the suspension was stirred at room temperature for 4 hrs. The solids were isolated using a Buchner funnel andWhitman # 1 filter paper. After filtration, the compound was air-dried for 15 hrs. The yield of the procedure was 87% by weight. - After the purification step, the purified compound was analyzed using HPLC, PXRD and TGA. The PXRD pattern of the purified
compound 1 is shown inFIG. 6 . As shown inFIG. 6 , the characteristic peaks of the NaCl salt in the purified compound disappeared as compared with the compound before purification.FIG. 7 shows the TGA trace of the purifiedcompound 1. InFIG. 7 ,compound 1 underwent about 6.25% weight loss which was attributed to the loss of water due to a reversible reaction involving the boronic acid moiety.FIG. 8 is the HPLC analysis of the purifiedCompound 1. The HPLC chromatogram inFIG. 8 shows a retention peak of 2.52 forCompound 1 and no other peaks for NaCl or water. The analysis data confirmed that the material was 2-((3R,6S)-2-hydroxy-3-(2-(thiophen-2-yl)acetamido)-1,2-oxaborinan-6-yl)acetic acid and did not contain the undesired NaCl or crystallization solvent (water). - During the salt-screening step, 60 combinations of seven counterions with nine solvent systems were tested. These combinations were subject to a series of crystallization modes and resulted in approximately 360 screening experiments.
-
Compound 1 has a pKa of 3.92 and was expected to form salts with strong bases. Because of a possible high projected dose (3 g/day) ofcompound 1, the counterion selection was limited toClass 1 molecules having low toxicity. (Handbook of Pharmaceutical Salts Properties, Selection, and Use P. H. Stahl, C. G. Wermuth, (2002) Wiley-VCH, Weinheim). Table 1 lists seven basic counterions selected for the salt screen study, their pKa values, and the corresponding stoichiometry and dosing strategies. -
TABLE 1 Counterions used in the salt-screening study No. Counterion pKa3 Equivalent Dosing 1 Potassium ~14 1 3.6M in Water hydroxide 2 Potassium ~14 1 1.0M in t-BuOH t- butoxide 3 Choline >11 1 3.8M in Water hydroxide 4 L-Lysine 10.8; 9.2; 2.2 1 1.5M in Water 5 L-Arginine 13.2; 9.1; 2.2 1 0.5M in Water 6 Meglumine 8.0 1 1.5M in Water 7 Calcium 12.6; 11.6 0.5; 1 Solid hydroxide 8 Magnesium 11.4 0.5; 1 Solid hydroxide - Nine solvent systems were evaluated in the Salt-screening study. The solvents were selected based on the solubility data accumulated during preceding studies. In addition, solvents represented a diverse set of polarities, dielectric constants, dipole moments, and hydrogen-bond donor/acceptor attributes to promote crystallization of salts. The solvents and rationale for their selection are summarized in Table 2.
-
TABLE 2 Solvents used in salt-screening study No. Solvent Attributes Rationale for Selection 1 THF:Water Ether (Polar, Aprotic) High solubility of Compound 1 (95:5% vol.) Water (Polar, Protic) (S >>1 mg/mL) 2 1,4-Dioxane Ether Moderate solubility of Compound (Non-polar, Aprotic 1 (S = 1-10 mg/mL) Afforded crystalline sodium salt 3 ACN Nitrile Low solubility of Compound 1 (Polar, Aprotic) (S <1 mg/mL) 4 Acetone Ketone Low solubility of Compound 1 (Polar, Aprotic) (S <1 mg/mL) Afforded crystalline sodium salt 5 Ethyl Acetate Ester Low solubility of Compound 1 (Polar, Aprotic) (S <1 mg/mL) 6 MTBE Ether Low solubility of Compound 1 (Non-polar, Aprotic) (S <1 mg/mL) Afforded crystalline sodium salt 7 Water Water Low solubility of Compound 1 (Polar, Protic) Expected high(er) solubility of a salt 8 ACN:Water Nitrile (Polar, Modest solubility of Compound 1 (90:10% vol.) Aprotic) (S <20 mg/mL) Water Use instead of MTBE in reactions (Polar, Protic) with Ca2+ and Mg2+ counterions 9 Acetone:Water Ketone, Low/modest solubility of (50:50% vol.) (Polar, Aprotic) Compound 1Water Expected high(er) solubility of a salt (Polar, Protic) - The salt-screening experiments were set up by combining 20.0±0.5 mg of
Compound 1 with 300-500 μL of the solvent and the counterion in a stoichiometric amount. The screening studies were conducted in two stages. - In
Stage 1, the samples involving counterion Nos. 1-6 listed in Table 1 were paired with solvent Nos. 1-6 listed in Table 2, whereas samples involving counterion Nos. 7 and 8 were paired with solvent Nos. 1-5 and 8. - All samples were subject to the following processing steps: 1) Stirring for 48 hrs while maintaining the cycling temperature between 5° C.-40° C.; 2) Stirring for 6 hrs at 40° C.; 3) Stirring for 24 hrs at 20° C.; 4) solvent addition (same solvent in the same amount); 5) Stirring for 72 hrs while maintaining the cycling temperature between 10° C.-30° C.; 6) Stirring for 72 hrs at 5° C.; 7) Solvent addition (the solvent type and amount was adjusted based on the observed solubility and the solvent can be the same solvent previously used, water, or DMSO); 8) Stirring for 24 hrs while maintaining the cycling temperature between 5° C.-30° C.; the solutions obtained from the above steps were 9) cooled to 5° C. and held at 5° C. for 72 hrs; 10) allowed to evaporate at ambient conditions over 3-14 days.
- In
Stage 2, a few samples that remained undissolved and amorphous in the first stage were 1) subjected to rapid solvent evaporation under vacuum; 2) dissolved in solvent Nos. 7-9 listed in Table 2; 3) cooled to 5° C. and held at 5° C. for 72 hrs; and 4) allowed to evaporate at ambient conditions over 3-7 days. - All samples were inspected visually and by Polarized light microscopy at every step listed above to check any formation of crystalline products. Any crystalline products obtained from these procedures were isolated by vacuum filtration and, where possible, analyzed by FT-Raman. Unique crystalline products were subjected to further analyses by PXRD, DSC, TGA-IR, and HPLC, as necessary.
- A majority of the experiments produced amorphous products, including oils, gums, and powders. Some crystalline screening products underwent partial or complete deliquescence upon isolation, some screening products were mixtures of unreacted components, and some screening products were mixtures of decomposed components. The counterion Nos. 3-8 listed in Table 1 did not yield a pure stable crystalline form of Compound 1A. Only the potassium salt of
compound 1 yielded crystalline products. The results of some experiments are summarized in Table 3. -
TABLE 3 Examples of Screening Crystalline Form Crystallization Test Counterions Method Solvent Results 1 Potassium hydroxide Stage 1 Acetone G 2 Potassium hydroxide Stage 1 ACN G 3 Potassium hydroxide Stage 1 MTBE NG 4 Potassium hydroxide Stage 1 THF:Water NG (95:5 vol %) 5 Potassium hydroxide Stage 1 1,4-dioxane G 6 Potassium hydroxide Stage 1 EtOAc NG 7 Potassium hydroxide Stage 2 Water NG 8 Potassium hydroxide Stage 2 ACN:Water NG (90:10 vol %) 9 Potassium t-butoxide Stage 1 Acetone G 10 Potassium t-butoxide Stage 1 ACN NG 11 Potassium t-butoxide Stage 1 MTBE NG 12 Potassium t-butoxide Stage 1 THF:Water NG (95:5 vol %) 13 Potassium t-butoxide Stage 1 1,4-dioxane NG 14 Potassium t-butoxide Stage 1 EtoAc NG 15 Choline hydroxide Stage 1 Acetone NG 16 Choline hydroxide Stage 1 ACN NG 17 Choline hydroxide Stage 1 MTBE NG 18 Choline hydroxide Stage 1 THF:Water NG (95:5 vol %) 19 Choline hydroxide Stage 1 1,4-dioxane NG 20 Choline hydroxide Stage 1 EtOAc NG 21 Choline hydroxide Stage 2 Water NG 22 Choline hydroxide Stage 2 ACN:Water NG (90:10 vol %) 23 Choline hydroxide Stage 2 Acetone:Water NG (50:50 vol %) 24 L-Lysine Stage 1 Acetone NG 25 L-Lysine Stage 1 ACN NG 26 L-Lysine Stage 1 MTBE NG 27 L-Lysine Stage 1 THF:Water NG (95:5 vol %) 28 L-Lysine Stage 1 1,4-dioxane NG 29 L-Lysine Stage 1 EtOAc NG 30 L-Lysine Stage 2 Water NG 31 L-Lysine Stage 2 ACN:Water NG (90:10 vol %) 32 L-Lysine Stage 2 Acetone:Water NG (50:50 vol %) 33 L-Arginine Stage 1 Acetone NG 34 L-Arginine Stage 1 ACN NG 35 L-Arginine Stage 1 MTBE NG 36 L-Arginine Stage 1 THF:Water NG (95:5 vol %) 37 L-Arginine Stage 1 1,4-dioxane NG 38 L-Arginine Stage 1 EtOAc NG 39 L-Arginine Stage 2 Water NG 40 L-Arginine Stage 2 ACN:Water NG (90:10 vol %) 41 L-Arginine Stage 2 Acetone:Water NG (50:50 vol %) 42 Meglumine Stage 1 Acetone NG 43 Meglumine Stage 1 ACN NG 44 Meglumine Stage 1 MTBE NG 45 Meglumine Stage 1 THF:Water NG (95:5 vol %) 46 Meglumine Stage 1 1,4-dioxane NG 47 Meglumine Stage 1 EtOAc NG 48 Meglumine Stage 2 Water NG 49 Meglumine Stage 2 ACN:Water NG (90:10 vol %) 50 Calcium hydroxide Stage 1 Acetone NG (0.5 equivalent) 51 Calcium hydroxide Stage 1 ACN NG (0.5 equivalent) 52 Calcium hydroxide Stage 1 THF:Water NG (0.5 equivalent) (95:5 vol %) 53 Calcium hydroxide Stage 1 1,4-dioxane NG (0.5 equivalent) 54 Calcium hydroxide Stage 1 EtOAc NG (0.5 equivalent) 55 Calcium hydroxide Stage 2 Water NG (0.5 equivalent) 56 Calcium hydroxide Stage 2 ACN:Water NG (0.5 equivalent) (90:10 vol %) 57 Calcium hydroxide Stage 1 Acetone NG (1 equivalent) 58 Calcium hydroxide Stage 1 ACN NG (1 equivalent) 59 Calcium hydroxide Stage 1 THF:Water NG (1 equivalent) (95:5 vol %) 60 Calcium hydroxide Stage 1 1,4-dioxane NG (1 equivalent) 61 Calcium hydroxide Stage 1 EtOAc NG (1 equivalent) 62 Calcium hydroxide Stage 2 Water NG (1 equivalent) 63 Calcium hydroxide Stage 2 ACN:Water NG (1 equivalent) (90:10 vol %) 64 Magnesium hydroxide Stage 1 Acetone NG (0.5 equivalent) 65 Magnesium hydroxide Stage 1 ACN NG (0.5 equivalent) 66 Magnesium hydroxide Stage 1 THF:Water NG (0.5 equivalent) (95:5 vol %) 67 Magnesium hydroxide Stage 1 1,4-dioxane NG (0.5 equivalent) 68 Magnesium hydroxide Stage 1 EtOAc NG (0.5 equivalent) 69 Magnesium hydroxide Stage 2 ACN:Water NG (0.5 equivalent) (90:10 vol %) 70 Magnesium hydroxide Stage 1 Acetone NG (1 equivalent) 71 Magnesium hydroxide Stage 1 ACN NG (1 equivalent) 72 Magnesium hydroxide Stage 1 THF:Water NG (1 equivalent) (95:5 vol %) 73 Magnesium hydroxide Stage 1 1,4-dioxane NG (1 equivalent) 74 Magnesium hydroxide Stage 1 EtOAc NG (1 equivalent) 75 Magnesium hydroxide Stage 2 Water NG (1 equivalent) 76 Magnesium hydroxide Stage 2 ACN:Water NG (1 equivalent) (90:10 vol %) 77 Magnesium hydroxide Stage 2 Acetone:Water NG (1 equivalent) (50:50 vol %) 78 Magnesium hydroxide Stage 2 Acetone:Water NG (1 equivalent) (50:50 vol %) 79 Magnesium hydroxide Stage 2 Acetone:Water NG (1 equivalent) (50:50 vol %) 80 Magnesium hydroxide Stage 2 Acetone:Water NG (1 equivalent) (50:50 vol %) 81 Magnesium hydroxide Stage 2 Acetone:Water NG (1 equivalent) (50:50 vol %) 82 Magnesium hydroxide Stage 2 Acetone:Water NG (1 equivalent) (50:50 vol %) 83 Magnesium hydroxide Stage 2 Acetone:Water NG (1 equivalent) (50:50 vol %) G—pure and stable crystalline form yielded NG—no pure and stable crystalline form yielded - Table 3 only listed 83 examples of the approximately 360 screening experiments performed using various combinations of counterions, solvent systems, and crystallization mode. Most of the screening experiments produced amorphous powders, oils, gums. For example, those experiments that involved calcium and magnesium counterions yielded products that were mixtures of the unreacted substrates. The FT-Raman and PXRD analysis of the products showed that no pure and stable crystalline salt was formed in the experiments involving calcium or magnesium counterions. For another example, when the screening experiments involved the solvent system of THF and Water (95:5 vol %) and a range of counterions (potassium, choline, calcium, and magnesium), the HPLC analysis confirmed significant decomposition present in those products.
- Among the approximately 360 screening experiments performed, only the potassium salt Compound 1A in four experiments yielded a pure and stable crystalline form after long-term (>4 days) stirring of the initially amorphous products (gums and oils). The potassium salt was subsequently reproduced at 50 mg and 300 mg scales using seeding, which facilitated crystallization of the several hours of amorphous intermediate phase. The potassium salt may undergo deliquescence when isolated in open air; however, the deliquescence may be significantly reduced and/or eliminated by using the nitrogen blanket. Once a free-flowing powder was isolated, the powder was stable in open-air for at least 7 days.
- In addition, only one crystalline form of the potassium salt was observed during the course of the presented study. This single crystalline form also showed that Compound 1A has a low propensity for polymorphism.
- 48.7 mg of
Compound 1 was combined with acetone (1.0 mL) in a 2-mL vial containing a stir bar. The suspension was stirred at 40° C. for 10 min and seeded with about 1 mg of potassium salt. 164.0 μL of potassium t-butoxide (1.0eq. ofcompound 1; 1.0M solution in t-BuOH) was added in five aliquots: 10 μL, 20 μL, 20 μL, 20 μL, 93 μL in every 5 min. Gum was formed upon the counterion addition. The sample was stirred for 15 hrs while the cycling temperature was maintained between 40° C.-45° C., during which the gum changed into a free-flowing suspension. The suspension was equilibrated at 5° C. for 30 min and the solids were isolated on a Buchner funnel under nitrogen blanket and allowed to dry for 30 min. The yield of this preparation procedure was 70% wt. - Compound 1 (302.6 mg) was combined with ACN (15.0 mL) in a 20-mL vial containing a stir bar. The suspension was stirred at 50° C. for 30 min and seeded with about 3 mg of potassium salt. 256.7 μL of potassium hydroxide (0.9 eq. of
compound 1; 3.57M aqueous solution) was added in eight aliquots: 20 μL, 20 μL, 20 μL, 20 μL, 20 μL, 50 μL, 50 μL, 56.7 μL in every 15 min. Partial conversion to a gum upon the counterion addition was observed. The suspension was stirred at 50° C. for 60 min, cooled to 5° C. at 0.1° C./min rate (7.5 hrs), and subjected to stirring while the cycling temperature was maintained between 40° C.-45° C. for 10 hrs. The temperature cycle involved holding at 40° C. for 1 hr followed by cooling at 0.5° C./min, and then holding at 5° C. for 2 hrs followed by heating to 40° C. at a maximum rate. The suspension was equilibrated at 5° C. for 2 hrs. The solids were isolated on a Büchner funnel under nitrogen blanket, allowed to dry for 60 min at room temperature and then at 40° C. under vacuum for 3 hrs. The yield of this procedure was 65% wt. - The potassium salt is a crystalline powder, as indicated by PXRD data in
FIG. 1 and PLM image inFIG. 2 .FIG. 3 is the TGA and DSC analysis andFIG. 4 shows the FT-Raman spectrum of the crystalline form of Compound 1A. The DSC trace inFIG. 3 shows a melting endotherm at 199.0° C. The TGA analysis of Compound 1A inFIG. 3 also indicates a gradual weight loss of ˜0.7% wt. over the temperature range 25-150° C., which can be contributed to a loss of residual or surface solvent, and a major weight loss at temperatures above 160° C. that was attributed to decomposition. The HPLC analysis of the potassium salt as shown inFIG. 5 confirmed the absence of decomposition ofCompound 1. The inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis confirmed the presence of potassium cations in the amount of 13.1% by weight. This result closely corresponds to a mono-salt composition because the theoretical content of 1 eq. of potassium is about 11.6% by weight. - Studies of a possible sodium salt crystalline form were performed using purified
compound 1 and amorphous sodium salt ofcompound 1 as the starting materials and explored diverse crystallization modes, solvents and temperatures. - The studies discovered five crystalline forms of the sodium salt (Groups A-E). Groups A and B were obtained from the screening
experiments using compound 1 as the starting material. The PXRD pattern of Group A showed broad peaks indicative of poor crystallinity. The isolated material was found to be sticky and deliquesced readily (<5 minutes) when exposed to ambient conditions. PXRD pattern of Group B showed sharper peaks compared to Group A. The isolated Group B material was free flowing and easy to handle. Thermal analyses of Group B of sodium salt showed this form is a methanol/water solvate which converted to a hydrate on drying at 60° C. - Attempts to prepare Groups A and B using purified
compound 1 led to two new crystalline forms of sodium salt (Groups D and E). These forms did not deliquesce when exposed to ambient conditions and were free-flowing solids. However, the DSC data of these two new forms showed broad endotherms below 150° C. indicative of a solvated/hydrated form. - Group C was isolated from a single crystallization experiment using amorphous sodium salt as the input. Group C of sodium salt showed physical properties similar to Group B and was found to be an acetone/water solvate which desolvated on drying at 60° C.
- These results showed that the sodium salt of
compound 1 is not a desirable crystalline form because of poor crystallinity, complicated polymorphism, poor thermal properties and hygroscopicity. In contrast, as described above, the potassium salt surprisingly demonstrated better crystallinity with a single crystalline form.
Claims (39)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/309,425 US9687497B1 (en) | 2014-05-05 | 2015-04-29 | Salts and polymorphs of cyclic boronic acid ester derivatives and therapeutic uses thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461988524P | 2014-05-05 | 2014-05-05 | |
PCT/US2015/028265 WO2015171398A1 (en) | 2014-05-05 | 2015-04-29 | Salts and polymorphs of cyclic boronic acid ester derivatives and therapeutic uses thereof |
US15/309,425 US9687497B1 (en) | 2014-05-05 | 2015-04-29 | Salts and polymorphs of cyclic boronic acid ester derivatives and therapeutic uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170173055A1 true US20170173055A1 (en) | 2017-06-22 |
US9687497B1 US9687497B1 (en) | 2017-06-27 |
Family
ID=54392859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/309,425 Active US9687497B1 (en) | 2014-05-05 | 2015-04-29 | Salts and polymorphs of cyclic boronic acid ester derivatives and therapeutic uses thereof |
Country Status (4)
Country | Link |
---|---|
US (1) | US9687497B1 (en) |
EP (1) | EP3139930B1 (en) |
ES (1) | ES2985626T3 (en) |
WO (1) | WO2015171398A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9963467B2 (en) | 2014-05-19 | 2018-05-08 | Rempex Pharmaceuticals, Inc. | Boronic acid derivatives and therapeutic uses thereof |
US10004758B2 (en) | 2010-08-10 | 2018-06-26 | Rempex Pharmaceuticals, Inc. | Cyclic boronic acid ester derivatives and methods of making the same |
US10294249B2 (en) | 2016-06-30 | 2019-05-21 | Qpex Biopharma, Inc. | Boronic acid derivatives and therapeutic uses thereof |
US10618918B2 (en) | 2015-03-17 | 2020-04-14 | Qpex Biopharma, Inc. | Substituted boronic acids as antimicrobials |
US10662205B2 (en) | 2014-11-18 | 2020-05-26 | Qpex Biopharma, Inc. | Cyclic boronic acid ester derivatives and therapeutic uses thereof |
US11286270B2 (en) | 2017-10-11 | 2022-03-29 | Qpex Biopharma, Inc. | Boronic acid derivatives and synthesis thereof |
US12016868B2 (en) | 2018-04-20 | 2024-06-25 | Qpex Biopharma, Inc. | Boronic acid derivatives and therapeutic uses thereof |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150103269A (en) | 2013-01-04 | 2015-09-09 | 렘펙스 파머수티클스 인코퍼레이티드 | Boronic acid derivatives and therapeutic uses thereof |
SMT201900611T1 (en) | 2014-05-05 | 2020-01-14 | Rempex Pharmaceuticals Inc | Synthesis of boronate salts and uses thereof |
ES2985626T3 (en) | 2014-05-05 | 2024-11-06 | Melinta Therapeutics Inc | Salts and polymorphs of cyclic boronic acid ester derivatives and therapeutic uses thereof |
KR102396753B1 (en) | 2014-06-11 | 2022-05-12 | 베나토알엑스 파마슈티컬스, 인크. | Beta-lactamase inhibitors |
US9511142B2 (en) | 2014-06-11 | 2016-12-06 | VenatoRx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
KR20170024087A (en) | 2014-07-01 | 2017-03-06 | 렘펙스 파머수티클스 인코퍼레이티드 | Boronic acid derivatives and therapeutic uses thereof |
US10399996B2 (en) | 2015-09-11 | 2019-09-03 | VenatoRx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
WO2017100537A1 (en) | 2015-12-10 | 2017-06-15 | VenatoRx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
US10889600B2 (en) | 2016-08-04 | 2021-01-12 | VenatoRx Pharmaceuticals, Inc. | Boron-containing compounds |
WO2018218190A1 (en) | 2017-05-26 | 2018-11-29 | VenatoRx Pharmaceuticals, Inc. | Penicillin-binding protein inhibitors |
WO2018218154A1 (en) | 2017-05-26 | 2018-11-29 | VenatoRx Pharmaceuticals, Inc. | Penicillin-binding protein inhibitors |
EP3802551A4 (en) | 2018-05-25 | 2022-03-02 | Venatorx Pharmaceuticals, Inc. | PENICILLIN BINDING PROTEIN INHIBITORS |
US20230144152A1 (en) * | 2019-06-19 | 2023-05-11 | Qpex Biopharma, Inc. | Boronic acid derivatives and therapeutic uses thereof |
Family Cites Families (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4194047A (en) | 1975-11-21 | 1980-03-18 | Merck & Co., Inc. | Substituted N-methylene derivatives of thienamycin |
US4260543A (en) | 1978-07-03 | 1981-04-07 | Merck & Co., Inc. | Crystalline N-formimidoyl thienamycin |
US4409214A (en) | 1979-11-19 | 1983-10-11 | Fujisawa Pharmaceutical, Co., Ltd. | 7-Acylamino-3-vinylcephalosporanic acid derivatives and processes for the preparation thereof |
FR2573070B1 (en) | 1984-11-13 | 1987-01-30 | Rhone Poulenc Sante | PROCESS FOR THE PREPARATION OF CARBONYL COMPOUNDS |
US4783443A (en) | 1986-03-03 | 1988-11-08 | The University Of Chicago | Amino acyl cephalosporin derivatives |
CA1283404C (en) | 1986-07-01 | 1991-04-23 | Shigeru Sanai | Cephalosporin compounds, processes for their preparation and antibacterial agents |
ZA893284B (en) | 1988-05-04 | 1990-03-28 | Igen Inc | Peptide analogs and their use as haptens to elicit catalytic antibodies |
US5442100A (en) | 1992-08-14 | 1995-08-15 | The Procter & Gamble Company | β-aminoalkyl and β-N-peptidylaminoalkyl boronic acids |
US5888998A (en) | 1997-04-24 | 1999-03-30 | Synphar Laboratories, Inc. | 2-oxo-1-azetidine sulfonic acid derivatives as potent β-lactamase inhibitors |
US6184363B1 (en) | 1997-06-13 | 2001-02-06 | Northwestern University | Inhibitors of β-lactamases and uses therefor |
JP2002504122A (en) | 1997-06-13 | 2002-02-05 | ノースウエスタン ユニバーシティー | Beta-lactamase inhibitors and methods of use |
AU2190400A (en) | 1998-12-16 | 2000-07-03 | Northwestern University | Inhibitors of beta-lactamases and uses therefor |
WO2000035904A1 (en) | 1998-12-16 | 2000-06-22 | Northwestern University | INHIBITORS OF β-LACTAMASES AND USES THEREFOR |
DK1216239T3 (en) | 1999-09-25 | 2004-06-14 | Smithkline Beecham Plc | Antagonists of piperazine derivatives AS 5-HT1B |
JP2003513890A (en) | 1999-10-28 | 2003-04-15 | メルク エンド カムパニー インコーポレーテッド | Novel succinic metallo-beta-lactamase inhibitors and their use in treating bacterial infections |
AU2001292732A1 (en) | 2000-09-12 | 2002-03-26 | Larry C. Blasczcak | Beta-lactam analogs and uses therefor |
ES2244666T3 (en) | 2000-09-14 | 2005-12-16 | Pantherix Limited | ACID DERIVATIVES 3- (HETEROARIL-ACETAMIDE) -2-OXOAZETIDINE-1-SULPHONICS USED AS ANTIBACTERIAL AGENTS. |
AU2002243508A1 (en) | 2001-01-10 | 2002-07-24 | Bristol-Myers Squibb Company Patent Department | Alpha-aminoboronic acids prepared by novel synthetic methods |
DE10118698A1 (en) | 2001-04-17 | 2002-11-07 | Jerini Ag | Immobilization method and arrangement of connections produced therewith on a planar surface |
FR2835186B1 (en) | 2002-01-28 | 2006-10-20 | Aventis Pharma Sa | NOVEL HETEROCYCLIC COMPOUNDS ACTIVE AS BETA-LACTAMASES INHIBITORS |
JP2003229277A (en) | 2002-02-04 | 2003-08-15 | Matsushita Electric Ind Co Ltd | Material for light emitting element, light emitting element and light emitting device using the same |
AUPS065102A0 (en) | 2002-02-20 | 2002-03-14 | Unisearch Limited | Fluorous acetalation |
CN100528846C (en) | 2002-09-11 | 2009-08-19 | 株式会社吴羽 | Amine compounds and use thereof |
EP2325223B1 (en) | 2002-10-30 | 2014-05-14 | Sumitomo Chemical Company, Limited | Complex aryl copolymer compounds and polymer light emitting devices made by using the same |
US7439253B2 (en) | 2002-12-06 | 2008-10-21 | Novexel | Heterocyclic compounds, their preparation and their use as medicaments, in particular as antibacterials and beta-lactamase inhibitors |
US7271186B1 (en) | 2002-12-09 | 2007-09-18 | Northwestern University | Nanomolar β-lactamase inhibitors |
WO2004058679A2 (en) | 2002-12-20 | 2004-07-15 | Migenix Corp. | Ligands of adenine nucleotide translocase (ant) and compositions and methods related thereto |
TW200418791A (en) | 2003-01-23 | 2004-10-01 | Bristol Myers Squibb Co | Pharmaceutical compositions for inhibiting proteasome |
JP4233365B2 (en) | 2003-03-25 | 2009-03-04 | 三井化学株式会社 | Azadiol complex compound and optical recording medium using the compound |
US7842941B2 (en) | 2003-10-06 | 2010-11-30 | Sumitomo Chemical Company, Limited | Aromatic compound |
WO2005035532A1 (en) | 2003-10-10 | 2005-04-21 | Pfizer Products Inc. | Substituted 2h-[1,2,4]triazolo[4,3-a]pyrazines as gsk-3 inhibitors |
TW200600494A (en) | 2004-03-08 | 2006-01-01 | Chugai Pharmaceutical Co Ltd | Bisphenyl compounds useful as vitamin d3 receptor agonists |
US20060019116A1 (en) | 2004-07-22 | 2006-01-26 | Eastman Kodak Company | White electroluminescent device with anthracene derivative host |
TW200618820A (en) | 2004-11-05 | 2006-06-16 | Alza Corp | Liposome formulations of boronic acid compounds |
US20060178357A1 (en) | 2005-02-10 | 2006-08-10 | Buynak John D | Chphalosporin-derived mercaptans as inhibitors of serine and metallo-beta-lactamases |
NZ598441A (en) | 2005-02-16 | 2013-07-26 | Anacor Pharmaceuticals Inc | Boron-containing small molecules |
US7612203B2 (en) | 2005-02-22 | 2009-11-03 | Teva Pharmaceutical Industries Ltd. | Rosuvastatin and salts thereof free of rosuvastatin alkylether and a process for the preparation thereof |
US9184428B2 (en) | 2005-03-15 | 2015-11-10 | Uchicago Argonne Llc | Non-aqueous electrolytes for lithium ion batteries |
TW200734311A (en) | 2005-11-21 | 2007-09-16 | Astrazeneca Ab | New compounds |
ES2373461T3 (en) | 2005-12-07 | 2012-02-03 | Basilea Pharmaceutica Ag | USEFUL ANTIBIOTICS OF MONOBACTAMA. |
RU2508113C2 (en) | 2006-02-16 | 2014-02-27 | Анакор Фармасьютикалз, Инк. | Boron-based small molecules as anti-inflammatory drugs |
EP2069347A2 (en) | 2006-09-27 | 2009-06-17 | Merck & Co., Inc. | Novel inhibitors of beta-lactamase |
NZ579375A (en) | 2007-03-23 | 2012-02-24 | Basilea Pharmaceutica Ag | Combination medicaments for treating bacterial infections |
GB0719366D0 (en) | 2007-10-03 | 2007-11-14 | Smithkline Beecham Corp | Compounds |
EP2220096A1 (en) | 2007-11-13 | 2010-08-25 | Protez Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
US20100120715A1 (en) | 2007-11-13 | 2010-05-13 | Burns Christopher J | Beta-lactamase inhibitors |
ME02089B (en) | 2008-01-18 | 2014-04-30 | Merck Sharp & Dohme | Beta-lactamase inhibitors |
US8129398B2 (en) | 2008-03-19 | 2012-03-06 | Bristol-Myers Squibb Company | HIV integrase inhibitors |
WO2009140309A2 (en) | 2008-05-12 | 2009-11-19 | Anacor Pharmaceuticals, Inc. | Boron-containing small molecules |
CN102098918A (en) | 2008-05-13 | 2011-06-15 | 帕纳德制药公司 | Bioactive compounds for treatment of cancer and neurodegenerative diseases |
US20120046242A1 (en) | 2008-12-24 | 2012-02-23 | Massachusetts Institute Of Technology | Molecular activators of the wnt/beta-catenin pathway |
WO2010097675A1 (en) | 2009-02-27 | 2010-09-02 | Dhanuka Laboratories Ltd. | An improved preparation process for cefpodoxime proxetil |
AR076667A1 (en) | 2009-05-12 | 2011-06-29 | Novartis Int Pharm Ltd | BETA-LACTAMASA INHIBITORS |
CA2764785C (en) | 2009-06-08 | 2015-10-27 | California Capital Equity, Llc | Triazine derivatives and their therapeutical applications |
JP2013500974A (en) | 2009-07-28 | 2013-01-10 | アナコール ファーマシューティカルズ,インコーポレイテッド | Trisubstituted boron-containing molecules |
WO2011103686A1 (en) | 2010-02-26 | 2011-09-01 | Viswanatha , Sundaramma | CEPHALOSPORIN DERIVATIVES USEFUL AS β-LACTAMASE INHIBITORS AND COMPOSITIONS AND METHODS OF USE THEREOF |
JP5933523B2 (en) | 2010-03-31 | 2016-06-08 | ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. | Derivatives of 1-amino-2-cyclopropylethylboronic acid |
US20110288063A1 (en) | 2010-05-19 | 2011-11-24 | Naeja Pharmaceutical Inc. | Novel fused bridged bicyclic heteroaryl substituted 6-alkylidene penems as potent beta-lactamase inhibitors |
HUE048859T2 (en) | 2010-08-10 | 2020-08-28 | Rempex Pharmaceuticals Inc | Cyclic boronic acid ester derivatives, process for their preparation and their therapeutic use |
RS54750B1 (en) | 2010-10-26 | 2016-10-31 | Mars Inc | Boronates as arginase inhibitors |
WO2012067664A1 (en) | 2010-11-18 | 2012-05-24 | Glaxo Group Limited | Compounds |
EP2487159A1 (en) | 2011-02-11 | 2012-08-15 | MSD Oss B.V. | RorgammaT inhibitors |
EP2508506A1 (en) | 2011-04-08 | 2012-10-10 | LEK Pharmaceuticals d.d. | Preparation of sitagliptin intermediates |
US9012491B2 (en) | 2011-08-31 | 2015-04-21 | Rempex Pharmaceuticals, Inc. | Heterocyclic boronic acid ester derivatives and therapeutic uses thereof |
WO2013053372A1 (en) | 2011-10-13 | 2013-04-18 | Therabor Pharmaceuticals | Boronic acid inhibitors of beta-lactamases |
WO2013056163A1 (en) | 2011-10-14 | 2013-04-18 | The Regents Of The University Of California | Beta-lactamase inhibitors |
EP2793900B1 (en) | 2011-12-22 | 2018-08-22 | Ares Trading S.A. | Alpha-amino boronic acid derivatives, selective immunoproteasome inhibitors |
EP2615080A1 (en) | 2012-01-12 | 2013-07-17 | LEK Pharmaceuticals d.d. | Preparation of Optically Pure ß-Amino Acid Type Active Pharmaceutical Ingredients and Intermediates thereof |
WO2013107897A1 (en) | 2012-01-20 | 2013-07-25 | Ardagh Mp Group Netherlands B.V. | Container with plastic cover ring |
US20150119363A1 (en) | 2012-02-15 | 2015-04-30 | Rempex Pharmaceuticals, Inc.. | Methods of treating bacterial infections |
US9156858B2 (en) | 2012-05-23 | 2015-10-13 | Rempex Pharmaceuticals, Inc. | Boronic acid derivatives and therapeutic uses thereof |
US10561675B2 (en) | 2012-06-06 | 2020-02-18 | Rempex Pharmaceuticals, Inc. | Cyclic boronic acid ester derivatives and therapeutic uses thereof |
ES2878118T3 (en) | 2012-12-07 | 2021-11-18 | Venatorx Pharmaceuticals Inc | Beta-lactamase inhibitors |
US9101638B2 (en) | 2013-01-04 | 2015-08-11 | Rempex Pharmaceuticals, Inc. | Boronic acid derivatives and therapeutic uses thereof |
EP2941247A4 (en) | 2013-01-04 | 2017-02-08 | Rempex Pharmaceuticals, Inc. | Boronic acid derivatives and therapeutic uses thereof |
KR20150103269A (en) | 2013-01-04 | 2015-09-09 | 렘펙스 파머수티클스 인코퍼레이티드 | Boronic acid derivatives and therapeutic uses thereof |
US9241947B2 (en) | 2013-01-04 | 2016-01-26 | Rempex Pharmaceuticals, Inc. | Boronic acid derivatives and therapeutic uses thereof |
US9403850B2 (en) | 2013-01-10 | 2016-08-02 | VenatoRx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
EP2970340B1 (en) | 2013-03-14 | 2020-02-12 | Venatorx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
ES2985626T3 (en) | 2014-05-05 | 2024-11-06 | Melinta Therapeutics Inc | Salts and polymorphs of cyclic boronic acid ester derivatives and therapeutic uses thereof |
KR20170007448A (en) | 2014-05-19 | 2017-01-18 | 렘펙스 파머수티클스 인코퍼레이티드 | Boronic acid derivatives and therapeutic uses thereof |
US9511142B2 (en) | 2014-06-11 | 2016-12-06 | VenatoRx Pharmaceuticals, Inc. | Beta-lactamase inhibitors |
KR20170024087A (en) | 2014-07-01 | 2017-03-06 | 렘펙스 파머수티클스 인코퍼레이티드 | Boronic acid derivatives and therapeutic uses thereof |
WO2016065282A1 (en) | 2014-10-24 | 2016-04-28 | The Regents Of The University Of Michigan | Nasal formulation, nasal kit, and method for enhancing nasal nitric oxide (no) levels |
JP6945452B2 (en) | 2015-04-24 | 2021-10-06 | レンペックス・ファーマシューティカルズ・インコーポレイテッド | How to treat bacterial infections |
-
2015
- 2015-04-29 ES ES15788658T patent/ES2985626T3/en active Active
- 2015-04-29 US US15/309,425 patent/US9687497B1/en active Active
- 2015-04-29 WO PCT/US2015/028265 patent/WO2015171398A1/en active Application Filing
- 2015-04-29 EP EP15788658.1A patent/EP3139930B1/en active Active
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10004758B2 (en) | 2010-08-10 | 2018-06-26 | Rempex Pharmaceuticals, Inc. | Cyclic boronic acid ester derivatives and methods of making the same |
US10172874B2 (en) | 2010-08-10 | 2019-01-08 | Rempex Pharmaceuticals, Inc. | Pharmaceutical compositions comprising cyclic boronic acid ester derivatives |
US10183034B2 (en) | 2010-08-10 | 2019-01-22 | Rempex Pharmaceuticals, Inc. | Therapeutic uses of pharmaceutical compositions comprising cyclic boronic acid ester derivatives |
US12171772B2 (en) | 2010-08-10 | 2024-12-24 | Melinta Subsidiary Corp. | Therapeutic uses of pharmaceutical compositions comprising cyclic boronic acid ester derivatives |
US11684629B2 (en) | 2010-08-10 | 2023-06-27 | Melinta Subsidiary Corp. | Therapeutic uses of pharmaceutical compositions comprising cyclic boronic acid ester derivatives |
US11090319B2 (en) | 2010-08-10 | 2021-08-17 | Melinta Subsidiary Corp. | Therapeutic uses of pharmaceutical compositions comprising cyclic boronic acid ester derivatives |
US10639318B2 (en) | 2010-08-10 | 2020-05-05 | Rempex Pharmaceuticals, Inc. | Therapeutic uses of pharmaceutical compositions comprising cyclic boronic acid ester derivatives |
US9963467B2 (en) | 2014-05-19 | 2018-05-08 | Rempex Pharmaceuticals, Inc. | Boronic acid derivatives and therapeutic uses thereof |
US10662205B2 (en) | 2014-11-18 | 2020-05-26 | Qpex Biopharma, Inc. | Cyclic boronic acid ester derivatives and therapeutic uses thereof |
US10618918B2 (en) | 2015-03-17 | 2020-04-14 | Qpex Biopharma, Inc. | Substituted boronic acids as antimicrobials |
US11180512B2 (en) | 2016-06-30 | 2021-11-23 | Qpex Biopharma, Inc. | Boronic acid derivatives and therapeutic uses thereof |
US10570159B2 (en) | 2016-06-30 | 2020-02-25 | Qpex Biopharma, Inc. | Boronic acid derivatives and therapeutic uses thereof |
US11999759B2 (en) | 2016-06-30 | 2024-06-04 | Qpex Biopharma, Inc. | Boronic acid derivatives and therapeutic uses thereof |
US10294249B2 (en) | 2016-06-30 | 2019-05-21 | Qpex Biopharma, Inc. | Boronic acid derivatives and therapeutic uses thereof |
US11286270B2 (en) | 2017-10-11 | 2022-03-29 | Qpex Biopharma, Inc. | Boronic acid derivatives and synthesis thereof |
US12016868B2 (en) | 2018-04-20 | 2024-06-25 | Qpex Biopharma, Inc. | Boronic acid derivatives and therapeutic uses thereof |
Also Published As
Publication number | Publication date |
---|---|
ES2985626T3 (en) | 2024-11-06 |
EP3139930A4 (en) | 2018-01-17 |
EP3139930A1 (en) | 2017-03-15 |
US9687497B1 (en) | 2017-06-27 |
WO2015171398A1 (en) | 2015-11-12 |
EP3139930C0 (en) | 2024-08-14 |
EP3139930B1 (en) | 2024-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9687497B1 (en) | Salts and polymorphs of cyclic boronic acid ester derivatives and therapeutic uses thereof | |
US11007206B2 (en) | Cyclic boronic acid ester derivatives and therapeutic uses thereof | |
US20250064838A1 (en) | Therapeutic uses of pharmaceutical compositions comprising cyclic boronic acid ester derivatives | |
CA2982911C (en) | Methods of treating bacterial infections | |
US9241947B2 (en) | Boronic acid derivatives and therapeutic uses thereof | |
US20230144152A1 (en) | Boronic acid derivatives and therapeutic uses thereof | |
AU2018205327B2 (en) | Methods of treating bacterial infections | |
US20230151029A1 (en) | Boronic acid derivatives and therapeutic uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CATALENT PHARMA SOLUTIONS, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BIS, JOANNA A.;CHEN, PINGYUN;KUSALAKUMARI SUKUMAR, SENTHIL KUMAR;SIGNING DATES FROM 20150423 TO 20150428;REEL/FRAME:042275/0115 Owner name: REMPEX PHARMACEUTICALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CATALENT PHARMA SOLUTIONS, INC.;REEL/FRAME:042275/0949 Effective date: 20150428 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: CORTLAND CAPITAL MARKET SERVICES LLC, AS AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:MELINTA THERAPEUTICS, INC.;REMPEX PHARMACEUTICALS, INC.;CEMPRA PHARMACEUTICALS, INC.;AND OTHERS;REEL/FRAME:045019/0552 Effective date: 20180105 Owner name: CORTLAND CAPITAL MARKET SERVICES LLC, AS AGENT, IL Free format text: SECURITY INTEREST;ASSIGNORS:MELINTA THERAPEUTICS, INC.;REMPEX PHARMACEUTICALS, INC.;CEMPRA PHARMACEUTICALS, INC.;AND OTHERS;REEL/FRAME:045019/0552 Effective date: 20180105 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:REMPEX PHARMACEUTICALS, INC.;REEL/FRAME:054836/0739 Effective date: 20201222 |
|
AS | Assignment |
Owner name: MELINTA THERAPEUTICS, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REMPEX PHARMACEUTICALS, INC.;REEL/FRAME:054755/0846 Effective date: 20200311 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: MELINTA SUBSIDIARY CORP., NEW JERSEY Free format text: CHANGE OF NAME;ASSIGNOR:MELINTA THERAPEUTICS, INC.;REEL/FRAME:054778/0658 Effective date: 20171103 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:MELINTA SUBSIDIARY CORP.;REEL/FRAME:061314/0572 Effective date: 20220823 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE UNDER 1.28(C) (ORIGINAL EVENT CODE: M1559); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |