US20170159184A1 - Metallization of low temperature fibers and porous substrates - Google Patents
Metallization of low temperature fibers and porous substrates Download PDFInfo
- Publication number
- US20170159184A1 US20170159184A1 US15/372,108 US201615372108A US2017159184A1 US 20170159184 A1 US20170159184 A1 US 20170159184A1 US 201615372108 A US201615372108 A US 201615372108A US 2017159184 A1 US2017159184 A1 US 2017159184A1
- Authority
- US
- United States
- Prior art keywords
- catalyst
- substrate
- temperature
- solution
- coated substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 117
- 239000000835 fiber Substances 0.000 title claims description 9
- 238000001465 metallisation Methods 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 85
- 239000003054 catalyst Substances 0.000 claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 52
- 239000004744 fabric Substances 0.000 claims abstract description 45
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- 238000000454 electroless metal deposition Methods 0.000 claims abstract description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 39
- 239000000243 solution Substances 0.000 claims description 38
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 25
- 229910052802 copper Inorganic materials 0.000 claims description 25
- 239000010949 copper Substances 0.000 claims description 25
- 239000012018 catalyst precursor Substances 0.000 claims description 24
- 229910052763 palladium Inorganic materials 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000003638 chemical reducing agent Substances 0.000 claims description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 9
- 239000003929 acidic solution Substances 0.000 claims description 9
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 239000012736 aqueous medium Substances 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229920001778 nylon Polymers 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- -1 polyethylene Polymers 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 239000004677 Nylon Substances 0.000 claims description 5
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 5
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 235000019253 formic acid Nutrition 0.000 claims description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 229920000742 Cotton Polymers 0.000 claims description 3
- 241000196324 Embryophyta Species 0.000 claims description 3
- 102000011782 Keratins Human genes 0.000 claims description 3
- 108010076876 Keratins Proteins 0.000 claims description 3
- 229920000271 Kevlar® Polymers 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000003125 aqueous solvent Substances 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 239000004761 kevlar Substances 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 235000006408 oxalic acid Nutrition 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 239000012286 potassium permanganate Substances 0.000 claims description 3
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229920002994 synthetic fiber Polymers 0.000 claims description 2
- 239000012209 synthetic fiber Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 35
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- ZVSLRJWQDNRUDU-UHFFFAOYSA-L palladium(2+);propanoate Chemical compound [Pd+2].CCC([O-])=O.CCC([O-])=O ZVSLRJWQDNRUDU-UHFFFAOYSA-L 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000012696 Pd precursors Substances 0.000 description 4
- 229940072049 amyl acetate Drugs 0.000 description 4
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- JKLYMAFKWXBAGI-UHFFFAOYSA-N C1(CCCC1)N.C(CC)(=O)O Chemical compound C1(CCCC1)N.C(CC)(=O)O JKLYMAFKWXBAGI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 159000000009 barium salts Chemical class 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000002941 palladium compounds Chemical class 0.000 description 2
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 206010013082 Discomfort Diseases 0.000 description 1
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- WXHIJDCHNDBCNY-UHFFFAOYSA-N palladium dihydride Chemical compound [PdH2] WXHIJDCHNDBCNY-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
- C23C18/1641—Organic substrates, e.g. resin, plastic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1644—Composition of the substrate porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1862—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
- C23C18/1865—Heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1862—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
- C23C18/1868—Radiation, e.g. UV, laser
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1872—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
- C23C18/1886—Multistep pretreatment
- C23C18/1889—Multistep pretreatment with use of metal first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2026—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
- C23C18/2033—Heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2026—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
- C23C18/204—Radiation, e.g. UV, laser
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/208—Multistep pretreatment with use of metal first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/2086—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/83—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1689—After-treatment
- C23C18/1692—Heat-treatment
- C23C18/1698—Control of temperature
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/22—Roughening, e.g. by etching
- C23C18/24—Roughening, e.g. by etching using acid aqueous solutions
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/34—Polyamides
- D06M2101/36—Aromatic polyamides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/40—Fibres of carbon
Definitions
- the present inventive subject matter relates to methods and systems for generating conductive circuits for flexible substrates and/or temperature-sensitive substrates.
- Metalized plastic, ceramic and composite materials have widespread applications. Metallization of polymer films has previously been achieved under some circumstances using appropriate palladium precursors, followed by thermal treatment, to generate catalytic palladium which initiates electroless metal deposition.
- substrates and polymers that are thermally sensitive such as paper, polyethylene, clear olefinic polymers (COP), acrylonitrile butadiene styrene(ABS), nylon and cotton based materials, plant leaves, protein and keratin based substrates (human hair) can suffer permanent degradation or deformation, and/or cannot be properly metalized at a high temperature, e.g., 100-200° C. or more.
- some materials e.g., ABS material, etc.
- the present inventive subject matter provides metalized temperature-sensitive materials, metalized flexible materials, and systems and methods for metalizing a temperature-sensitive material, which includes papers, polymers, clothes and fibers.
- One aspect of the inventive subject matter includes a method of metalizing a temperature-sensitive material.
- the method begins with a step of applying a catalyst solution on the temperature-sensitive material to form an at least partially catalyst-coated substrate.
- the method continues with a step of incubating the catalyst-coated substrate at a temperature less than 100° C. Once the incubation is substantially completed, then a layer of a metal is deposited on the incubated catalyst-coated substrate using an electroless metal deposition technique.
- Another aspect of the inventive subject matter includes a method of metalizing a fabric.
- the method begins with a step of applying a catalyst solution on the fabric to form a catalyst-coated fabric. Then the method continues with a step of incubating the catalyst-coated substrate at a temperature less than 100° C. Once the incubation is substantially completed, then the catalyst-coated substrate is heated at a temperature at least 250° C. Then, an electroless metal layer is placed on the heated catalyst-coated fabric.
- Another aspect of the inventive subject matter includes a method of metallizing a substrate.
- the method begins with a step of applying to the substrate a catalyst precursor that has limited solubility in aqueous or mixed aqueous media to form a catalyst precursor layer. Then, the catalyst precursor layer is substantially dried. Once the catalyst precursor is dried, the substrate is treated with an aqueous or mixed aqueous solution of a reducing agent to converts the catalyst precursor to its active form. Then, an electroless metal layer is placed on the substrate.
- Still another aspect of the inventive subject matter includes a method of metallizing a substrate.
- the method begins with a step of applying to the substrate a catalyst precursor that has limited solubility in aqueous or mixed aqueous media to form a catalyst precursor layer. Then, the catalyst precursor layer is substantially dried. Once the catalyst precursor is dried, the substrate is treated with electromagnetic radiation to generate an active catalyst from the catalyst precursor. Then, an electroless metal layer is placed on the substrate.
- FIG. 1 illustrates a perspective view of one embodiment of metalized temperature sensitive material.
- FIG. 2 illustrates a flowchart of a method of metalizing a temperature-sensitive material.
- FIG. 3 illustrates a flowchart of one embodiment of a method of metalizing a fabric.
- FIG. 4 illustrates a flowchart of another embodiment of a method of metalizing a temperature-sensitive material.
- FIG. 5 illustrates a flowchart of still another embodiment of a method of metalizing a temperature-sensitive material.
- the present inventive subject matter relates to methods, systems and devices for metalizing cloth or other temperature-sensitive materials, and, in some embodiments, for constructing circuits for “Smart Clothing”. Further, the present inventive subject matter relates to methods, systems and devices for providing or improving electrostatic safety for large composite structures such as aircraft and wind turbine blades.
- inventive subject matter is considered to include all possible combinations of the disclosed elements.
- inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly disclosed.
- Coupled to is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously.
- the numbers expressing quantities of ingredients, properties such as concentration, reaction conditions, and so forth, used to describe and claim certain embodiments of the inventive subject matter are to be understood as being modified in some instances by the term “about.” Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the inventive subject matter are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the inventive subject matter may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
- the present inventive subject matter uses a variation of a precursor catalytic ink to print a precursor metalized pattern on a substrate at a range of temperatures suitable for a wide range of substrates and fibers. At least one of advantages of the present inventive subject matter is that it allows for efficient metallization for Smart Clothing, electrically safe composite structures, and lower cost medical applications.
- FIG. 1 shows one exemplary embodiment of a metallized substrate 100 .
- the metalized substrate 100 includes three layers: the substrate layer 105 , the catalyst layer 110 and the electroless metal layer 115 .
- the substrate layer 105 in this embodiment, is a temperature-sensitive material that may include various types of fibers, papers, clothes, fabrics, or thin polymers, as further discussed below.
- the substrate layer 105 comprises a flexible material, and the flexibility of metallized substrate 100 maintains at least 50%, preferably at least 70%, more preferably at least 90% of the flexibility (e.g., rigidity, stiffness, etc.) of the substrate layer 105 . It is also preferred that the metallized substrate 100 substantially maintains the shape of the substrate layer 105 (i.e., without substantial deformation (e.g., wrinkling, shrinking, tearing, loosening, shearing, pilling, etc.) from the original shape of the substrate layer such as)
- FIG. 2 illustrates the flowchart of one embodiment of such method.
- the method 200 begins with a step 205 of applying a catalyst solution on the temperature-sensitive material to form a catalyst-coated substrate.
- a substrate can comprise paper materials, fibers, polyethylene, clear olefininc polymers, acrylonitrile butadiene styrene, cotton based material, clothes, fabrics, textiles, (e.g., nylons, Lycra®, wool, linen, microfiber, silk, etc.), plant leaves, protein, keratin-based materials.
- temperature-sensitive as applied to a material means that the material suffers a temporary or permanent decomposition or deformation as a result of being subjected to a temperature between 100° C. and 200° C. (e.g., directly heated, indirectly exposed, etc.).
- a palladium precursor solution is used as a catalyst solution.
- the palladium precursor solution is prepared in a form of palladium propionate (e.g., palladium (II) propionate-cyclopentylamine complex, etc.). Additional details on preparing a palladium propionate solution are described in the U.S. Pat. No. 8,628,818, which is incorporated herein by reference in its entirety.
- the catalyst layer is thin enough not to substantially change the flexibility or the thickness of the substrate material.
- the catalyst layer has an average thickness of less than 20 atoms, preferably less than 10 atoms, more preferably less than 5 atoms, and most preferably less than 3 atoms.
- the thickness of the catalyst layer is achieved by modulating the concentration of catalyst metals in the solution.
- a palladium propionate solution contains palladium in a concentration less than 10,000 ppm, more preferably 7,000 ppm, most preferably, less than 5,000 ppm.
- the temperature-sensitive material is treated with a solution (e.g., potassium permanganate, sulfuric acid, formic acid, etc.) at a temperature less than 100° C. before applying the catalyst solution.
- a solution e.g., potassium permanganate, sulfuric acid, formic acid, etc.
- the temperature-sensitive material is further treated with acidic solution (e.g., oxalic acid, etc.).
- acidic solution e.g., oxalic acid, etc.
- the temperature-sensitive material is washed with water (e.g., deionized water, distilled water, etc.) and/or methanol before placing the catalyst layer.
- the method continues with a step 210 of incubating the catalyst-coated substrate at a relatively low temperature.
- a relatively low temperature For example, it is contemplated that the catalyst-coated substrate is incubated at a temperature less than 100° C., preferably less than 80° C., more preferably less than 60° C.
- the catalyst-coated substrate can be treated (e.g., washed, etc.) with reducing agent solutions.
- the reducing agent is in an aqueous or mixed aqueous solvent (e.g., alcoholic and water solvent, etc.) or solvents (e.g., aqueous and nonaqueous solvent mixtures, etc.).
- the reducing agent include hydrazineN 2 H 4 in its various forms (e.g., in a form of an aqueous solution, salts, ascorbic acid, aldehydes, alcohols, etc.)
- the method continues with a step 215 of placing an electroless metal layer (e.g., copper, nickel, etc.) on the catalyst-coated substrate.
- an electroless metal layer e.g., copper, nickel, etc.
- this method 200 enables the user to generate the metalized substrate without a substantial deformation or degeneration of the original substrate materials (e.g., the substrate that is prone to be deformed or degenerated at a temperature at or around 100° C., or at a temperature between 100° C. and 200° C., etc.). Because the conventional method of metalizing requires a treatment step at high temperatures (e.g., higher than 200° C., etc.), such conventional method cannot be used to metalize various non heat-resistant or less heat-resistant materials. Thus, this method is contemplated to widen the use and scope of metalizing techniques to more various substrate materials.
- the original substrate materials e.g., the substrate that is prone to be deformed or degenerated at a temperature at or around 100° C., or at a temperature between 100° C. and 200° C., etc.
- Another aspect of the present inventive subject matter includes a method 300 of metalizing a fabric. Similar to the method 200 of metalizing temperature-sensitive materials, The method 300 begins with a step 305 of applying a catalyst solution (e.g., palladium (II) propionate-cyclopentylamine complex, etc.) on the fabric to form a catalyst-coated fabric.
- a catalyst solution e.g., palladium (II) propionate-cyclopentylamine complex, etc.
- a substrate can comprise a carbon fiber cloth, a Kevlar cloth, a cloth containing a natural fiber, or a cloth containing a synthetic fiber.
- the method continues with a step 310 of incubating the catalyst-coated substrate at a relatively lower temperature.
- the catalyst-coated substrate is incubated at a temperature less than 100° C., preferably less than 80° C., more preferably less than 60° C.
- the method continues with an additional step 315 that the catalyst-coated substrate is heated at a temperature at a relatively high temperature (e.g., at least 250° C., at least 300° C., at least 350° C., etc.).
- the method continues with a step 320 of placing an electroless metal layer (e.g., copper, nickel, etc.) on the catalyst-coated substrate.
- an electroless metal layer e.g., copper, nickel, etc.
- this method enables the user to generate a metalized substrate that substantially maintains original characters of the substrate materials so that the metalized substrates can be used for the same purpose as the original substrate materials are used.
- the metalized substrate substantially maintains the original flexibility, texture, and/or shape of the substrate material.
- the coated nylon fabric maintains at least 60%, preferably at least 70%, more preferably at least 90% of the nylon substrate's flexibility.
- the metalized substrate substantially maintains the original shape of the substrate material (i.e., without substantial deformation (e.g., wrinkling, shrinking, tearing, loosening, shearing, pilling, etc.) from the original shape of the substrate layer, etc.). It is also preferred that the metalized substrate substantially maintains the original texture of the original substrate material (e.g., without substantially additional roughness added to the original substrate material, etc.). Further, it is also preferred that the weight of the metalized substrate is no more than 130%, preferably no more than 120%, more preferably no more than 110% of original substrate material.
- the metalized substrate can be also used for clothing without substantially providing discomforts (e.g., excessive weight added on the original fabric substrate, uncomfortable texture, etc.) to the wearer.
- Still another aspect of the present inventive subject matter includes a method 400 of metalizing a substrate.
- the method begins with a step 405 of applying to the substrate a catalyst precursor that has limited solubility in aqueous or mixed aqueous media to form a catalyst precursor layer.
- the method continues with a step 410 of drying the catalyst precursor layer (e.g., air-dried, oven-dried, etc.).
- the catalyst coated substrate is substantially dried (e.g., contains less than 50%, preferably less than 30%, more preferably less than 15%, most preferably less than 10% of the water content before the step of drying)
- the method continues with a step 415 of treating the substrate with an aqueous or mixed aqueous solution of a reducing agent to convert the catalyst precursor to its active form.
- the method continues with a step 415 of placing an electroless layer of metal (e.g., copper, nickel, etc.) on the substrate.
- an electroless layer of metal e.g., copper, nickel, etc.
- Still another aspect of the present inventive subject matter includes a method 500 of metalizing a substrate.
- the method begins with a step 505 of applying to the substrate a catalyst precursor that has limited solubility in aqueous or mixed aqueous media to form a catalyst precursor layer.
- the method continues with a step 510 of drying the catalyst precursor layer (e.g., air-dried, oven-dried, etc.).
- the catalyst coated substrate is substantially dried (e.g., contains less than 50%, preferably less than 30%, more preferably less than 15%, most preferably less than 10% of the water content before the step of drying)
- the method continues with a step 515 of treating the substrate with coherent or non-coherent electromagnetic radiation to generate an active catalyst from the catalyst precursor.
- the method continues with a step 520 of placing an electroless layer of metal (e.g., copper, nickel, etc.) on the substrate.
- an electroless layer of metal e.g., copper, nickel, etc.
- the step of treating the substrate can be performed with convective heat transfer. In other embodiments, the step of treating the substrate can be performed with conductive heat transfer.
- the palladium solution used herein is not an aqueous solution that are used in metathetical reactions.
- metathetical reactions ionic palladium is converted to catalytic palladium in situ using electroless metal chemistries having reducing agents.
- a reducing agent is used subsequent to the substrate surface treatment followed by electroless metal deposition.
- the ionic palladium precursors are water-based soluble palladium salts.
- metathetical reactions lead to a formation of colloidal, nano, aggregate nano or bulk precipitation of electroless metals.
- a precipitation of barium sulfate from a soluble barium salt followed by treatment with a solution containing SO4 2 ⁇ ions leads to a bulk precipitation of barium sulfate.
- a substrate soaked with an aqueous or a mixed aqueous solution of a metal salt and then treated with a suitable reducing agent or agents reduces the soluble metal salt to metal. Because metals are generally insoluble in water, the reduced metal will be precipitated.
- it is redox reaction that converts a soluble metal salt to a precipitated metal and is similar to a precipitation reaction similar to the example of barium sulfate precipitation from a soluble barium salt.
- the deposition of the catalyst using a soluble metal compound can be depicted as following:
- aqueous solutions instead of aqueous solutions, the inventors use a palladium compound that is water insoluble or has limited water solubility.
- a non-aqueous precursor is deposited on a porous or non-porous substrate followed by treatment with a reducing agent.
- non-aqueous palladium compound the inventors could avoid metathetical reaction of precipitation of palladium in the aqueous medium.
- the inventors could avoid bulk precipitation of palladium metals, the inventors could achieve the formation of near “atomic” or sub-nano palladium particles.
- the above chemical reaction typically represents the generation of the active catalytic palladium according to the present inventive subject matter.
- DMSO dimethyl sulfoxide
- An ABS substrate was dipped in a solution of 5% potassium permanganate (w/v) prepared in 20% sulfuric acid at 60-70 degree Celsius for 3 minutes. The substrate was then dipped in 5% oxalic acid solution in 10% sulfuric acid (w/v) for 1 minute at room temperature followed by washing with water. The substrate was washed with IPA and dried. It was then coated with a coating solution prepared by mixing 1 gm of solution A with 7.26 gm of solution B. The mixed solution was quickly coated on the ABS substrate using Meyer rod #8. The substrate was placed in a convection oven at 85° C. for 40 minutes. The substrate was then dipped in electroless copper solution using commercially available electroless copper from MacDermid (Electroless Copper 22). A copper film was obtained on the substrate. The substrate was washed with de-ionized (DI) water and then with methanol and kept in oven at 60° C. for couple of hours.
- DI de-ionized
- a challenging issue is the metallization of cellulosic porous media (e.g., photocopying paper, filter papers, etc.). These substrates have cellulose as the main component which is composited with suitable binders to fabricate products for different applications.
- a filter paper (e.g., Whatman Filter #1, etc.) is used in teaching and research for routine filtration.
- the filter paper becomes very fragile in aqueous media which is normally the media for routine chemical, physicochemical and even biological applications.
- the filter paper cannot be used in acidic and alkaline media as the cellulose fibers and/or the compositing binders are dissolved or attacked by alkalis or acids thus rendering the filter paper unworthy of use under such conditions.
- the resulting metalized filter paper can be used for neutral, alkaline, acidic aqueous and non-aqueous media.
- a Whatman Filter #5 was coated with a 3000 ppm palladium ink using palladium propionate in amyl acetate.
- the substrate was dried in oven at 50° C. It was then dipped in a 10% solution of formic acid in water at 25-35° C. for 1 minute.
- the filter paper was gently washed with water and methanol and then dipped in electroless copper solution for 15 minutes.
- An electrically conducting copper coated filter paper was obtained that has porosity.
- the above method can also be used to metalize fabrics of different varieties. Thus, for example, a clean room swipe was metalized as described in Example 3.
- a clean room wipe was soak-coated with a 3000 ppm palladium solution as palladium propionate in amyl acetate. It was dried around 25-40° C. for 45 minutes and dipped in a 10% solution of formic acid in water for 1 minute. It was washed with water and then dipped in electroless copper solution (Electroless Copper 22) for 30 minutes. An electrically conducting swipe was obtained.
- Kevlar cloth was soak coated with a 3000 ppm palladium solution as palladium propionate in amyl acetate as described above. It was dried 40-50° C. for 15 minutes and then heated at 300° C. for 9 min followed by treatment by electroless copper solution. A nice copper deposition was obtained on the entire fabric cloth. An electrically conducting swipe was obtained.
- a carbon fiber cloth was soak-coated with a 3000 ppm palladium solution as palladium propionate in amyl acetate as described above. It was dried 40-50° C. for 15 minutes and then heated at 300° C. for 9 min followed by treatment by electroless copper solution. A nice copper deposition was obtained on the entire fabric cloth. An electrically conducting swipe was obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Toxicology (AREA)
- Chemically Coating (AREA)
Abstract
Description
- This application claims the benefit of priority to U.S. Provisional Patent Application No. 62/264,237, filed Dec. 7, 2015. Where a definition or use of a term in a reference that is incorporated by reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein is deemed to be controlling.
- The present inventive subject matter relates to methods and systems for generating conductive circuits for flexible substrates and/or temperature-sensitive substrates.
- The following description includes information that may be useful in understanding the present inventive subject matter. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed inventive subject matter, or that any publication specifically or implicitly referenced is prior art.
- Metalized plastic, ceramic and composite materials have widespread applications. Metallization of polymer films has previously been achieved under some circumstances using appropriate palladium precursors, followed by thermal treatment, to generate catalytic palladium which initiates electroless metal deposition. However, substrates and polymers that are thermally sensitive, such as paper, polyethylene, clear olefinic polymers (COP), acrylonitrile butadiene styrene(ABS), nylon and cotton based materials, plant leaves, protein and keratin based substrates (human hair) can suffer permanent degradation or deformation, and/or cannot be properly metalized at a high temperature, e.g., 100-200° C. or more. For example, some materials (e.g., ABS material, etc.) can be sufficiently softened at a temperature higher than 100° C. to become difficult to be properly metalized.
- Thus, while conventional metallization methods can be used to metalize rigid substrates and/or high-temperature resistant subtrates, such methods cannot be practically or efficiently applied to a many non-rigid substrates and fibers.
- Many have made efforts to efficiently metalize fabrics or temperature sensitive materials. For example, Wang et al., in a publication titled “Optimization of process conditions for electroless copper plating on polyester fabric”, published Apr. 16-18, 2011 in 2011 International Conference on Consumer Electronics, Communications and Networks, disclose a method of creating a copper-coated polyester fabric by electroless plating using sodium hypophosphite as a reducing reagent. For another example, U.S. Pat. No. 3,589,962 to Bonjour discloses that metallic layer can be produced over a fabric using a thermoplastic adhesive.
- Others have made effort to metalize fabrics using catalysts. For example, U.S. Pat. No. 2,474,502 to Suchy discloses a method of metallization of non-conductive porous material including fabrics. In Suchy, colloidal silver was deposited on textiles via an electro-deposition process using a catalyzer such as stannous chloride. It is also known in the art that various techniques (e.g., vacuum deposition, ion plating, electroplating, electroless plating) can be used to metalize fabrics. Yet, currently available methods are not very effective in creating a thin metal layer (e.g., atomic layer, etc.) on the fabric.
- Related arts also include the following, each of which is incorporated herein as references in its entirety.
- 1. Ceramic Substrates and Packages for Electronic Applications (Advances in Ceramics. W. S. Young (Editor). 1989. ISBN-10: 0916094359.
- 2. Metalized plastics—fundamentals and applications. Edited by K. L. Mittal, Marcel Dekker, New York, 1998. ISBN 0-8247-9925-9.
- 3. Sunity Sharma, et. al., U.S. Pat. No. 7,981,508.
- 4. Sunity Sharma, et. al., US Pat. Application No. 2012/0100286 A1.
- 5. Sunity Sharma, et. al., US Pat. Application No. 2014/0083748 A1.
- 6. U.S. Pat. No. 8,110,254: FLEXIBLE CIRCUIT CHEMISTRY: Catalytic ink chemistry for flexible circuit applications (5515-3).
- 7. U.S. Pat. No. 7,981,508: ADHESIVELESS FLEXIBLE CIRCUIT: All flexible circuits which are copper directly on substrate with only single molecules of active palladium on the surface and with no tie coat or adhesive layer (5516-3).
- 8. U.S. Pat. No. 8,124,226: ADDITIVE ADHESIVELESS FLEXIBLE CIRCUIT: All flexible circuits which are copper directly deposited on a precursor pattern on a substrate with no tie coat or adhesive layer (5516-5).
- 9. U.S. Pat. No. 7,989,029: REDUCED POROSITY COPPER DEPOSITION: Flex circuits and coatings with reduced copper porosity (5564-2).
- 10. U.S. Pat. No. 8,628,818: CONDUCTIVE PATTERN FORMATION: All flexible circuits which are made using a semi-additive process for which the conductive layer is copper directly deposited on a substrate with only single molecules of active palladium on the surface and with no tied coat or adhesive layer (5553-2).
- Thus, there is still a need for materials and processes that can be used to generate metal films on the surfaces of temperature-sensitive materials due to application of excessive heat and/or radiation.
- The present inventive subject matter provides metalized temperature-sensitive materials, metalized flexible materials, and systems and methods for metalizing a temperature-sensitive material, which includes papers, polymers, clothes and fibers.
- One aspect of the inventive subject matter includes a method of metalizing a temperature-sensitive material. The method begins with a step of applying a catalyst solution on the temperature-sensitive material to form an at least partially catalyst-coated substrate. Then the method continues with a step of incubating the catalyst-coated substrate at a temperature less than 100° C. Once the incubation is substantially completed, then a layer of a metal is deposited on the incubated catalyst-coated substrate using an electroless metal deposition technique.
- Another aspect of the inventive subject matter includes a method of metalizing a fabric. The method begins with a step of applying a catalyst solution on the fabric to form a catalyst-coated fabric. Then the method continues with a step of incubating the catalyst-coated substrate at a temperature less than 100° C. Once the incubation is substantially completed, then the catalyst-coated substrate is heated at a temperature at least 250° C. Then, an electroless metal layer is placed on the heated catalyst-coated fabric.
- Another aspect of the inventive subject matter includes a method of metallizing a substrate. The method begins with a step of applying to the substrate a catalyst precursor that has limited solubility in aqueous or mixed aqueous media to form a catalyst precursor layer. Then, the catalyst precursor layer is substantially dried. Once the catalyst precursor is dried, the substrate is treated with an aqueous or mixed aqueous solution of a reducing agent to converts the catalyst precursor to its active form. Then, an electroless metal layer is placed on the substrate.
- Still another aspect of the inventive subject matter includes a method of metallizing a substrate. The method begins with a step of applying to the substrate a catalyst precursor that has limited solubility in aqueous or mixed aqueous media to form a catalyst precursor layer. Then, the catalyst precursor layer is substantially dried. Once the catalyst precursor is dried, the substrate is treated with electromagnetic radiation to generate an active catalyst from the catalyst precursor. Then, an electroless metal layer is placed on the substrate.
- Various objects, features, aspects and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawing figures in which like numerals represent like components.
-
FIG. 1 illustrates a perspective view of one embodiment of metalized temperature sensitive material. -
FIG. 2 illustrates a flowchart of a method of metalizing a temperature-sensitive material. -
FIG. 3 illustrates a flowchart of one embodiment of a method of metalizing a fabric. -
FIG. 4 illustrates a flowchart of another embodiment of a method of metalizing a temperature-sensitive material. -
FIG. 5 illustrates a flowchart of still another embodiment of a method of metalizing a temperature-sensitive material. - The present inventive subject matter relates to methods, systems and devices for metalizing cloth or other temperature-sensitive materials, and, in some embodiments, for constructing circuits for “Smart Clothing”. Further, the present inventive subject matter relates to methods, systems and devices for providing or improving electrostatic safety for large composite structures such as aircraft and wind turbine blades.
- The following discussion provides many example embodiments of the inventive subject matter. Although each embodiment represents a single combination of inventive elements, the inventive subject matter is considered to include all possible combinations of the disclosed elements. Thus if one embodiment comprises elements A, B, and C, and a second embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly disclosed.
- As used herein, and unless the context dictates otherwise, the term “coupled to” is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously.
- In some embodiments, the numbers expressing quantities of ingredients, properties such as concentration, reaction conditions, and so forth, used to describe and claim certain embodiments of the inventive subject matter are to be understood as being modified in some instances by the term “about.” Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the inventive subject matter are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the inventive subject matter may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
- As used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
- Unless the context dictates the contrary, all ranges set forth herein should be interpreted as being inclusive of their endpoints and open-ended ranges should be interpreted to include only commercially practical values. The recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value within a range is incorporated into the specification as if it were individually recited herein. Similarly, all lists of values should be considered as inclusive of intermediate values unless the context indicates the contrary.
- All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided with respect to certain embodiments herein is intended merely to better illuminate the inventive subject matter and does not pose a limitation on the scope of the inventive subject matter otherwise claimed. No language in the application should be construed as indicating any non-claimed element essential to the practice of the inventive subject matter.
- Groupings of alternative elements or embodiments of the inventive subject matter disclosed herein are not to be construed as limitations. Each group member can be referred to and claimed individually or in any combination with other members of the group or other elements found herein. One or more members of a group can be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
- The present inventive subject matter uses a variation of a precursor catalytic ink to print a precursor metalized pattern on a substrate at a range of temperatures suitable for a wide range of substrates and fibers. At least one of advantages of the present inventive subject matter is that it allows for efficient metallization for Smart Clothing, electrically safe composite structures, and lower cost medical applications.
- One aspect of the present inventive subject matter includes a metalized temperature-sensitive material.
FIG. 1 shows one exemplary embodiment of a metallizedsubstrate 100. Generally, the metalizedsubstrate 100 includes three layers: thesubstrate layer 105, thecatalyst layer 110 and theelectroless metal layer 115. Thesubstrate layer 105, in this embodiment, is a temperature-sensitive material that may include various types of fibers, papers, clothes, fabrics, or thin polymers, as further discussed below. - Preferably, the
substrate layer 105 comprises a flexible material, and the flexibility of metallizedsubstrate 100 maintains at least 50%, preferably at least 70%, more preferably at least 90% of the flexibility (e.g., rigidity, stiffness, etc.) of thesubstrate layer 105. It is also preferred that the metallizedsubstrate 100 substantially maintains the shape of the substrate layer 105 (i.e., without substantial deformation (e.g., wrinkling, shrinking, tearing, loosening, shearing, pilling, etc.) from the original shape of the substrate layer such as) - Another aspect of the present inventive subject matter includes a method of metalizing a temperature-sensitive material.
FIG. 2 illustrates the flowchart of one embodiment of such method. Themethod 200 begins with astep 205 of applying a catalyst solution on the temperature-sensitive material to form a catalyst-coated substrate. It is contemplated that any suitable type of temperature-sensitive material can be used as a substrate. For example, a substrate can comprise paper materials, fibers, polyethylene, clear olefininc polymers, acrylonitrile butadiene styrene, cotton based material, clothes, fabrics, textiles, (e.g., nylons, Lycra®, wool, linen, microfiber, silk, etc.), plant leaves, protein, keratin-based materials. - As used herein, the term “temperature-sensitive” as applied to a material means that the material suffers a temporary or permanent decomposition or deformation as a result of being subjected to a temperature between 100° C. and 200° C. (e.g., directly heated, indirectly exposed, etc.).
- It is contemplated that many precious metals can be used as catalyst for electroless plating, including for example, palladium, gold, silver, tin, ruthenium and platinum. In a preferred embodiment, a palladium precursor solution is used as a catalyst solution. In this embodiment, it is contemplated that the palladium precursor solution is prepared in a form of palladium propionate (e.g., palladium (II) propionate-cyclopentylamine complex, etc.). Additional details on preparing a palladium propionate solution are described in the U.S. Pat. No. 8,628,818, which is incorporated herein by reference in its entirety.
- In a preferred embodiment, the catalyst layer is thin enough not to substantially change the flexibility or the thickness of the substrate material. Thus, it is preferred that the catalyst layer has an average thickness of less than 20 atoms, preferably less than 10 atoms, more preferably less than 5 atoms, and most preferably less than 3 atoms. In some embodiments, the thickness of the catalyst layer is achieved by modulating the concentration of catalyst metals in the solution. For example, it is preferred that a palladium propionate solution contains palladium in a concentration less than 10,000 ppm, more preferably 7,000 ppm, most preferably, less than 5,000 ppm.
- In some embodiments, the temperature-sensitive material is treated with a solution (e.g., potassium permanganate, sulfuric acid, formic acid, etc.) at a temperature less than 100° C. before applying the catalyst solution. In a preferred embodiment, the temperature-sensitive material is further treated with acidic solution (e.g., oxalic acid, etc.). To remove the acid residue, it is contemplated that the temperature-sensitive material is washed with water (e.g., deionized water, distilled water, etc.) and/or methanol before placing the catalyst layer.
- Once the catalyst layer is placed on the substrate, the method continues with a
step 210 of incubating the catalyst-coated substrate at a relatively low temperature. For example, it is contemplated that the catalyst-coated substrate is incubated at a temperature less than 100° C., preferably less than 80° C., more preferably less than 60° C. - Optionally, the catalyst-coated substrate can be treated (e.g., washed, etc.) with reducing agent solutions. In a preferred embodiment, the reducing agent is in an aqueous or mixed aqueous solvent (e.g., alcoholic and water solvent, etc.) or solvents (e.g., aqueous and nonaqueous solvent mixtures, etc.). For example, the reducing agent include hydrazineN2H4 in its various forms (e.g., in a form of an aqueous solution, salts, ascorbic acid, aldehydes, alcohols, etc.)
- After the incubation of the catalyst-coated substrate, the method continues with a
step 215 of placing an electroless metal layer (e.g., copper, nickel, etc.) on the catalyst-coated substrate. The details of the electroless metal deposition technique are described in the inventors' co-pending application, U.S. Pub. No. US 2016/0113121, which is incorporated in its entirety herein. - It is contemplated that this
method 200 enables the user to generate the metalized substrate without a substantial deformation or degeneration of the original substrate materials (e.g., the substrate that is prone to be deformed or degenerated at a temperature at or around 100° C., or at a temperature between 100° C. and 200° C., etc.). Because the conventional method of metalizing requires a treatment step at high temperatures (e.g., higher than 200° C., etc.), such conventional method cannot be used to metalize various non heat-resistant or less heat-resistant materials. Thus, this method is contemplated to widen the use and scope of metalizing techniques to more various substrate materials. - Another aspect of the present inventive subject matter includes a
method 300 of metalizing a fabric. Similar to themethod 200 of metalizing temperature-sensitive materials, Themethod 300 begins with astep 305 of applying a catalyst solution (e.g., palladium (II) propionate-cyclopentylamine complex, etc.) on the fabric to form a catalyst-coated fabric. Any suitable type of fabric can be used. For example, a substrate can comprise a carbon fiber cloth, a Kevlar cloth, a cloth containing a natural fiber, or a cloth containing a synthetic fiber. - Once the catalyst solution is applied on the fabric, the method continues with a
step 310 of incubating the catalyst-coated substrate at a relatively lower temperature. For example, it is contemplated that the catalyst-coated substrate is incubated at a temperature less than 100° C., preferably less than 80° C., more preferably less than 60° C. In a preferred embodiment, once the catalyst-coated substrate is incubated at a low temperature, then the method continues with anadditional step 315 that the catalyst-coated substrate is heated at a temperature at a relatively high temperature (e.g., at least 250° C., at least 300° C., at least 350° C., etc.). - After the incubation of the catalyst-coated substrate, the method continues with a
step 320 of placing an electroless metal layer (e.g., copper, nickel, etc.) on the catalyst-coated substrate. - It is contemplated that this method enables the user to generate a metalized substrate that substantially maintains original characters of the substrate materials so that the metalized substrates can be used for the same purpose as the original substrate materials are used. For example, it is highly preferred that the metalized substrate substantially maintains the original flexibility, texture, and/or shape of the substrate material. In this example, when the electroless metal is coated on the nylon fabric, the coated nylon fabric maintains at least 60%, preferably at least 70%, more preferably at least 90% of the nylon substrate's flexibility. For another example, the metalized substrate substantially maintains the original shape of the substrate material (i.e., without substantial deformation (e.g., wrinkling, shrinking, tearing, loosening, shearing, pilling, etc.) from the original shape of the substrate layer, etc.). It is also preferred that the metalized substrate substantially maintains the original texture of the original substrate material (e.g., without substantially additional roughness added to the original substrate material, etc.). Further, it is also preferred that the weight of the metalized substrate is no more than 130%, preferably no more than 120%, more preferably no more than 110% of original substrate material. Thus, for example, if the original substrate is suitable for manufacturing clothing (e.g., T-shirts, a jacket, pants, hats, etc.), the metalized substrate can be also used for clothing without substantially providing discomforts (e.g., excessive weight added on the original fabric substrate, uncomfortable texture, etc.) to the wearer.
- Still another aspect of the present inventive subject matter includes a
method 400 of metalizing a substrate. The method begins with astep 405 of applying to the substrate a catalyst precursor that has limited solubility in aqueous or mixed aqueous media to form a catalyst precursor layer. Then the method continues with astep 410 of drying the catalyst precursor layer (e.g., air-dried, oven-dried, etc.). Once the catalyst coated substrate is substantially dried (e.g., contains less than 50%, preferably less than 30%, more preferably less than 15%, most preferably less than 10% of the water content before the step of drying), the method continues with astep 415 of treating the substrate with an aqueous or mixed aqueous solution of a reducing agent to convert the catalyst precursor to its active form. Once the catalyst precursor is converted to active catalyst, the method continues with astep 415 of placing an electroless layer of metal (e.g., copper, nickel, etc.) on the substrate. - Still another aspect of the present inventive subject matter includes a
method 500 of metalizing a substrate. The method begins with astep 505 of applying to the substrate a catalyst precursor that has limited solubility in aqueous or mixed aqueous media to form a catalyst precursor layer. Then the method continues with astep 510 of drying the catalyst precursor layer (e.g., air-dried, oven-dried, etc.). Once the catalyst coated substrate is substantially dried (e.g., contains less than 50%, preferably less than 30%, more preferably less than 15%, most preferably less than 10% of the water content before the step of drying), the method continues with astep 515 of treating the substrate with coherent or non-coherent electromagnetic radiation to generate an active catalyst from the catalyst precursor. Once the catalyst precursor is converted to active catalyst, the method continues with astep 520 of placing an electroless layer of metal (e.g., copper, nickel, etc.) on the substrate. In some embodiments, the step of treating the substrate can be performed with convective heat transfer. In other embodiments, the step of treating the substrate can be performed with conductive heat transfer. - It should be noted that the palladium solution used herein is not an aqueous solution that are used in metathetical reactions. In metathetical reactions, ionic palladium is converted to catalytic palladium in situ using electroless metal chemistries having reducing agents. Alternatively, a reducing agent is used subsequent to the substrate surface treatment followed by electroless metal deposition. The ionic palladium precursors are water-based soluble palladium salts. Generally, metathetical reactions lead to a formation of colloidal, nano, aggregate nano or bulk precipitation of electroless metals. For example, a precipitation of barium sulfate from a soluble barium salt followed by treatment with a solution containing SO42− ions leads to a bulk precipitation of barium sulfate. A substrate soaked with an aqueous or a mixed aqueous solution of a metal salt and then treated with a suitable reducing agent or agents reduces the soluble metal salt to metal. Because metals are generally insoluble in water, the reduced metal will be precipitated. Thus it is redox reaction that converts a soluble metal salt to a precipitated metal and is similar to a precipitation reaction similar to the example of barium sulfate precipitation from a soluble barium salt. The deposition of the catalyst using a soluble metal compound can be depicted as following:
- This represents a typical example of generating ionic palladium catalyst.
- Instead of aqueous solutions, the inventors use a palladium compound that is water insoluble or has limited water solubility. A non-aqueous precursor is deposited on a porous or non-porous substrate followed by treatment with a reducing agent. By using non-aqueous palladium compound, the inventors could avoid metathetical reaction of precipitation of palladium in the aqueous medium. As the inventors could avoid bulk precipitation of palladium metals, the inventors could achieve the formation of near “atomic” or sub-nano palladium particles.
- The above chemical reaction typically represents the generation of the active catalytic palladium according to the present inventive subject matter.
- Inventors have successfully developed materials and processes for the metallization of such materials. The following examples illustrate the basic and key features of this inventive subject matter. The process described below is generic enough to be used for those porous materials which can stand high temperatures.
- A solution of palladium propionate was prepared in dimethyl sulfoxide (DMSO) solvent as follows: Solution (A): Pd(II)propionate=9.5 gm of palladium was added to 45 gm dimethyl sulfoxide (DMSO) and warmed to dissolve; Solution (B): The following ingredients were mixed together: 54.45 gm DMSO, 0.66 gm Et3N, 0.25 gm HCOOH, 22 gm isopropyl alcohol (IPA) and 22 gm HCONH2.
- An ABS substrate was dipped in a solution of 5% potassium permanganate (w/v) prepared in 20% sulfuric acid at 60-70 degree Celsius for 3 minutes. The substrate was then dipped in 5% oxalic acid solution in 10% sulfuric acid (w/v) for 1 minute at room temperature followed by washing with water. The substrate was washed with IPA and dried. It was then coated with a coating solution prepared by mixing 1 gm of solution A with 7.26 gm of solution B. The mixed solution was quickly coated on the ABS substrate using Meyer rod #8. The substrate was placed in a convection oven at 85° C. for 40 minutes. The substrate was then dipped in electroless copper solution using commercially available electroless copper from MacDermid (Electroless Copper 22). A copper film was obtained on the substrate. The substrate was washed with de-ionized (DI) water and then with methanol and kept in oven at 60° C. for couple of hours.
- A challenging issue is the metallization of cellulosic porous media (e.g., photocopying paper, filter papers, etc.). These substrates have cellulose as the main component which is composited with suitable binders to fabricate products for different applications. A filter paper, (e.g., Whatman Filter #1, etc.) is used in teaching and research for routine filtration. One of the issues is that the filter paper becomes very fragile in aqueous media which is normally the media for routine chemical, physicochemical and even biological applications. The filter paper cannot be used in acidic and alkaline media as the cellulose fibers and/or the compositing binders are dissolved or attacked by alkalis or acids thus rendering the filter paper unworthy of use under such conditions. However, if the filter paper is metalized in such a way that the fibers of the filtering substrate are completely covered by the metal with the retention of porosity, the resulting metalized filter paper can be used for neutral, alkaline, acidic aqueous and non-aqueous media.
- A Whatman Filter #5 was coated with a 3000 ppm palladium ink using palladium propionate in amyl acetate. The substrate was dried in oven at 50° C. It was then dipped in a 10% solution of formic acid in water at 25-35° C. for 1 minute. The filter paper was gently washed with water and methanol and then dipped in electroless copper solution for 15 minutes. An electrically conducting copper coated filter paper was obtained that has porosity. The above method can also be used to metalize fabrics of different varieties. Thus, for example, a clean room swipe was metalized as described in Example 3.
- A clean room wipe was soak-coated with a 3000 ppm palladium solution as palladium propionate in amyl acetate. It was dried around 25-40° C. for 45 minutes and dipped in a 10% solution of formic acid in water for 1 minute. It was washed with water and then dipped in electroless copper solution (Electroless Copper 22) for 30 minutes. An electrically conducting swipe was obtained.
- A Kevlar cloth was soak coated with a 3000 ppm palladium solution as palladium propionate in amyl acetate as described above. It was dried 40-50° C. for 15 minutes and then heated at 300° C. for 9 min followed by treatment by electroless copper solution. A nice copper deposition was obtained on the entire fabric cloth. An electrically conducting swipe was obtained.
- A carbon fiber cloth was soak-coated with a 3000 ppm palladium solution as palladium propionate in amyl acetate as described above. It was dried 40-50° C. for 15 minutes and then heated at 300° C. for 9 min followed by treatment by electroless copper solution. A nice copper deposition was obtained on the entire fabric cloth. An electrically conducting swipe was obtained.
- It should be apparent to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Where the specification claims refers to at least one of something selected from the group consisting of A, B, C . . . and N, the text should be interpreted as requiring only one element from the group, not A plus N, or B plus N, etc.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/372,108 US20170159184A1 (en) | 2015-12-07 | 2016-12-07 | Metallization of low temperature fibers and porous substrates |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562264237P | 2015-12-07 | 2015-12-07 | |
US15/372,108 US20170159184A1 (en) | 2015-12-07 | 2016-12-07 | Metallization of low temperature fibers and porous substrates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170159184A1 true US20170159184A1 (en) | 2017-06-08 |
Family
ID=58798940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/372,108 Abandoned US20170159184A1 (en) | 2015-12-07 | 2016-12-07 | Metallization of low temperature fibers and porous substrates |
Country Status (1)
Country | Link |
---|---|
US (1) | US20170159184A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190394888A1 (en) * | 2018-06-21 | 2019-12-26 | Averatek Corporation | Patterning of electroless metals |
CN111005026A (en) * | 2019-12-24 | 2020-04-14 | 广东省新材料研究所 | Carbon fiber-based composite material and preparation method thereof |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3011920A (en) * | 1959-06-08 | 1961-12-05 | Shipley Co | Method of electroless deposition on a substrate and catalyst solution therefor |
US3684534A (en) * | 1970-07-06 | 1972-08-15 | Hooker Chemical Corp | Method for stabilizing palladium containing solutions |
US3787698A (en) * | 1972-10-11 | 1974-01-22 | Us Army | Recording of fast neutron images |
US4764401A (en) * | 1981-12-05 | 1988-08-16 | Bayer Aktiengesellschaft | Process for activating substrate surfaces for electroless metallization |
US4775449A (en) * | 1986-12-29 | 1988-10-04 | General Electric Company | Treatment of a polyimide surface to improve the adhesion of metal deposited thereon |
US4830880A (en) * | 1986-04-22 | 1989-05-16 | Nissan Chemical Industries Ltd. | Formation of catalytic metal nuclei for electroless plating |
US4937608A (en) * | 1988-08-19 | 1990-06-26 | Fuji Photo Film Co., Ltd. | Photographic processing apparatus |
US4969842A (en) * | 1989-11-30 | 1990-11-13 | Amp Incorporated | Molded electrical connector having integral spring contact beams |
US5108786A (en) * | 1989-05-01 | 1992-04-28 | Enthone-Omi, Inc. | Method of making printed circuit boards |
US5114812A (en) * | 1989-07-07 | 1992-05-19 | Hoechst Aktiengesellschaft | Electrodes for primary and secondary electric cells |
US5302750A (en) * | 1993-05-25 | 1994-04-12 | Exxon Chemical Patents Inc. | Method for producing n-octadienol from butadiene |
US5373629A (en) * | 1989-08-31 | 1994-12-20 | Blasberg-Oberflachentechnik Gmbh | Through-hole plate printed circuit board with resist and process for manufacturing same |
US5411795A (en) * | 1992-10-14 | 1995-05-02 | Monsanto Company | Electroless deposition of metal employing thermally stable carrier polymers |
US20010019928A1 (en) * | 1999-12-07 | 2001-09-06 | Susumu Takagi | Metal coated fiber materials |
US20050009334A1 (en) * | 2003-07-07 | 2005-01-13 | Semiconductor Technology Academic Research Center | Method of producing multilayer interconnection structure |
US20080029294A1 (en) * | 2004-06-01 | 2008-02-07 | Fujifilm Corporation | Multi-Layer Circuit Board And Production Method Thereof |
US20100155255A1 (en) * | 2007-05-22 | 2010-06-24 | Okuno Chemical Industries Co., Ltd. | Pretreatment process for electroless plating of resin molded body, method for plating resin molded body, and pretreatment agent |
US20110174524A1 (en) * | 2006-09-12 | 2011-07-21 | Sri International | Flexible circuits |
US7989029B1 (en) * | 2007-06-21 | 2011-08-02 | Sri International | Reduced porosity copper deposition |
WO2015006418A1 (en) * | 2013-07-09 | 2015-01-15 | United Technologies Corporation | Plating adhesion promotion |
-
2016
- 2016-12-07 US US15/372,108 patent/US20170159184A1/en not_active Abandoned
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3011920A (en) * | 1959-06-08 | 1961-12-05 | Shipley Co | Method of electroless deposition on a substrate and catalyst solution therefor |
US3684534A (en) * | 1970-07-06 | 1972-08-15 | Hooker Chemical Corp | Method for stabilizing palladium containing solutions |
US3787698A (en) * | 1972-10-11 | 1974-01-22 | Us Army | Recording of fast neutron images |
US4764401A (en) * | 1981-12-05 | 1988-08-16 | Bayer Aktiengesellschaft | Process for activating substrate surfaces for electroless metallization |
US4830880A (en) * | 1986-04-22 | 1989-05-16 | Nissan Chemical Industries Ltd. | Formation of catalytic metal nuclei for electroless plating |
US4775449A (en) * | 1986-12-29 | 1988-10-04 | General Electric Company | Treatment of a polyimide surface to improve the adhesion of metal deposited thereon |
US4937608A (en) * | 1988-08-19 | 1990-06-26 | Fuji Photo Film Co., Ltd. | Photographic processing apparatus |
US5108786A (en) * | 1989-05-01 | 1992-04-28 | Enthone-Omi, Inc. | Method of making printed circuit boards |
US5114812A (en) * | 1989-07-07 | 1992-05-19 | Hoechst Aktiengesellschaft | Electrodes for primary and secondary electric cells |
US5373629A (en) * | 1989-08-31 | 1994-12-20 | Blasberg-Oberflachentechnik Gmbh | Through-hole plate printed circuit board with resist and process for manufacturing same |
US4969842A (en) * | 1989-11-30 | 1990-11-13 | Amp Incorporated | Molded electrical connector having integral spring contact beams |
US5411795A (en) * | 1992-10-14 | 1995-05-02 | Monsanto Company | Electroless deposition of metal employing thermally stable carrier polymers |
US5302750A (en) * | 1993-05-25 | 1994-04-12 | Exxon Chemical Patents Inc. | Method for producing n-octadienol from butadiene |
US20010019928A1 (en) * | 1999-12-07 | 2001-09-06 | Susumu Takagi | Metal coated fiber materials |
US20050009334A1 (en) * | 2003-07-07 | 2005-01-13 | Semiconductor Technology Academic Research Center | Method of producing multilayer interconnection structure |
US20080029294A1 (en) * | 2004-06-01 | 2008-02-07 | Fujifilm Corporation | Multi-Layer Circuit Board And Production Method Thereof |
US20110174524A1 (en) * | 2006-09-12 | 2011-07-21 | Sri International | Flexible circuits |
US20100155255A1 (en) * | 2007-05-22 | 2010-06-24 | Okuno Chemical Industries Co., Ltd. | Pretreatment process for electroless plating of resin molded body, method for plating resin molded body, and pretreatment agent |
US7989029B1 (en) * | 2007-06-21 | 2011-08-02 | Sri International | Reduced porosity copper deposition |
WO2015006418A1 (en) * | 2013-07-09 | 2015-01-15 | United Technologies Corporation | Plating adhesion promotion |
Non-Patent Citations (1)
Title |
---|
62-223812 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190394888A1 (en) * | 2018-06-21 | 2019-12-26 | Averatek Corporation | Patterning of electroless metals |
CN112789368A (en) * | 2018-06-21 | 2021-05-11 | 艾瑞科公司 | Patterned electroless metal |
CN111005026A (en) * | 2019-12-24 | 2020-04-14 | 广东省新材料研究所 | Carbon fiber-based composite material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110537394B (en) | Printed circuit nanoweb manufacturing method and printed circuit nanoweb | |
Ojstršek et al. | Metallisation of textiles and protection of conductive layers: an overview of application techniques | |
AU635393B2 (en) | Catalytic, water-soluble polymeric films for metal coatings | |
US6461678B1 (en) | Process for metallization of a substrate by curing a catalyst applied thereto | |
TWI627885B (en) | Method for producing three-dimensional conductive pattern structure and material for three-dimensional molding used there | |
CN100516348C (en) | Preparation method of carbon fiber surface silica coating | |
Zhang et al. | Fabrication of flexible copper patterns by electroless plating with copper nanoparticles as seeds | |
US20170159184A1 (en) | Metallization of low temperature fibers and porous substrates | |
JPS6354791B2 (en) | ||
Farraj et al. | Binuclear copper complex ink as a seed for electroless copper plating yielding> 70% bulk conductivity on 3D printed polymers | |
CN105734959A (en) | Preparing method for silver-plated fibers | |
CN102733179B (en) | Method for chemically plating and electroplating copper on artificial fibers and textile | |
TW200813288A (en) | Color-coated, fouling-resistant conductive clothes and manufacturing method thereof | |
JP2004502055A (en) | Fabric having gold layer formed thereon and method for producing same | |
EP2011917A2 (en) | Method for manufacturing embossed conductive cloth | |
CN105887054A (en) | High-conductivity biomass and nanometal flexible composite film and preparation method thereof | |
JP5160057B2 (en) | Fiber material with silver plating | |
KR102119476B1 (en) | Method of manufacturing printed circuit nano-fiber web, printed circuit nano-fiber web thereby and electronic device comprising the same | |
JPH10500734A (en) | Catalytic crosslinked polymer film for metal electroless deposition | |
JP3682526B2 (en) | Method for producing internal metallized polymer composite | |
CN105611725A (en) | Intelligent ultralight and ultrathin electronic component capable of being rubbed and folded and fabrication method thereof | |
JP2628659B2 (en) | Manufacturing method of metal fiber body | |
JP6085833B2 (en) | Electroless plating method on paper | |
KR100344958B1 (en) | Method for making conductive fabric | |
JP2003286588A (en) | Process for preparing composite conductive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AVERATEK CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHARMA, SUNITY K.;VINSON, MICHAEL RILEY;KADIWALA, DIVYAKANT P.;REEL/FRAME:044034/0050 Effective date: 20161220 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |