US20170157894A9 - Methods and apparatus for producing scored mediums, and articles and compositions resulting therefrom - Google Patents
Methods and apparatus for producing scored mediums, and articles and compositions resulting therefrom Download PDFInfo
- Publication number
- US20170157894A9 US20170157894A9 US14/855,353 US201514855353A US2017157894A9 US 20170157894 A9 US20170157894 A9 US 20170157894A9 US 201514855353 A US201514855353 A US 201514855353A US 2017157894 A9 US2017157894 A9 US 2017157894A9
- Authority
- US
- United States
- Prior art keywords
- medium
- scores
- board
- major axis
- scored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B29/00—Layered products comprising a layer of paper or cardboard
- B32B29/002—Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B29/005—Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material next to another layer of paper or cardboard layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B29/00—Layered products comprising a layer of paper or cardboard
- B32B29/08—Corrugated paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/266—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/28—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/03—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/26—All layers being made of paper or paperboard
Definitions
- Corrugated board also known as corrugated cardboard or colloquially as cardboard, represented a significant advancement in the container arts.
- Single wall corrugated board comprised a fluted paper medium bonded to and separating two flexible liners of paper to create an engineered article having exceptional stiffness or resistance to deflection in the in the strong axis or flute direction (i.e., parallel to the flutes) due to beam strength induced by the flutes, and good stiffness in the weak axis or orthogonal direction thereto (i.e., perpendicular to the flutes) due to one of the sheets resisting deflection through tensioned resistance between flute peaks and an opposing sheet resisting deflection through compressive resistance there between.
- increased resistance to deflection and/or increased flexural stiffness can be achieved by creating multiple wall corrugated boards, e.g., double and triple wall boards, by layering single faced corrugated board.
- a common theme to the aforementioned solutions for increasing resistance to deflection and/or increasing flexural stiffness of a single wall corrugated board is the requirement for modifying the constitution of the paper itself, i.e., material properties such as basis weight, fiber orientation or material composition, or modifying the flute configuration, i.e., flute frequency (pitch) or amplitude (caliper).
- material properties such as basis weight, fiber orientation or material composition
- flute configuration i.e., flute frequency (pitch) or amplitude (caliper).
- a change in the material constitution or article design must be made prior to formation of the corrugated board article, which may not be suitable for other applications.
- more stock materials must be stored for disparate purposes, production lines must be changed for different runs, etc.
- corrugated board liners have been characterized as generally planar, the result of which has been single wall corrugate board having a generally smooth surface on both major sides thereof. If increased flexural stiffness was desired, a plethora of pre- and post formation manipulations have been employed: from the simple such as creating multiple faced corrugated board (e.g., double or triple faced board) to the more complex such as laminating multiple single wall corrugated board during article converting processes.
- the invention is directed to methods and apparatus for making scored mediums, particularly but not exclusively for use in the corrugated board arts, and articles of manufacture and compositions made there with and made there by.
- at least one scored medium is used in a layered or laminated article, and particularly when selectively used as a liner member and/or fluted member in a corrugated board, whether as part of a corrugated board article of manufacture or a laminate with at least one other member, the article will possess mechanical qualities superior to those that would otherwise exist if a non-scored medium was/were used.
- a major axis of the scores formed in the scored medium runs askew, and preferably perpendicular, to the direction of beam strength in any article or article intermediate to which the scored medium is to be associated.
- the direction of beam strength of a fluted member is parallel to its major axis (the flute direction, i.e., the direction of a continuous peak or valley); similarly, the direction of beam strength of a scored liner at a score is parallel to the score's major axis (the score direction, i.e., the direction of a continuous peak or valley).
- a “medium” refers to a flexible, yet deformable, substantially planar material, which includes two major surfaces and a longitudinal direction, of which a “sheet” is a subset thereof.
- the medium may be formed from cellulose, plastic(s) or combination thereof, and may be highly elongate in nature, e.g., a web.
- the medium is preferably intended for, but is not restricted to, use as an element, member or component in corrugated boards, laminated boards and combinations thereof.
- corrugated board refers to single face, single wall or multiple wall engineered boards having at least one fluted element or component (an “element or component” is also referred to herein as a “member”), and at least one liner member attached thereto (the combination of a fluted member and a liner member is conventionally referred to as a single face corrugated board).
- laminated board refers to engineered boards having at least two sheets at least partially adhered to each other in overlapping fashion. Laminated boards may be used alone or as a member in a corrugated board.
- score refers to a type of surface feature characterized as an elongate, non-penetrating deformation formed in a medium wherein the deformation may be plastic, non-plastic or a combination thereof.
- plastic deformation include embossing, pressing and environmental modification (e.g., an elevated moisture and temperature environment);
- non-plastic deformation include conventional roll forming (e.g., conventional scoring), bending, and folding.
- plastic deformation during score formation is preferred.
- the non-penetrating deformation or score is established in the medium after its initial formation, i.e., not as part of the medium's innate formation process such as would be the case during an extrusion formation process.
- establishing scores after creation of the medium provides exceptional economies and flexibility in creating articles of manufacture and compositions comprising a scored medium such as a liner member for corrugated boards.
- each score is preferably permanent, meaning that evidence of the score will remain at least until, and preferably after, integration with other article elements—if the scored medium is a liner member, then substantially all scores exist after its attachment to a fluted member. Additionally, each score defines a major axis corresponding to its primary direction of elongation, and may define a greater than nominal minor axis.
- Scored mediums comprise a plurality of spaced apart scores wherein the major axes of at least some of the scores are preferably characterized as generally parallel to one another.
- each score will have certain score attributes, namely, a cross sectional profile, a directional orientation relative to the medium, and a major axis quality, which includes a continuity quality.
- score attributes namely, a cross sectional profile, a directional orientation relative to the medium, and a major axis quality, which includes a continuity quality.
- Each of these attributes both singularly and in combination affect the mechanical qualities of the medium and/or articles and compositions that include the medium.
- certain attributes may have substantial effects with regard to the resulting articles and compositions.
- rectilinear e.g., “V” or “I_I”
- curvilinear e.g., semicircular
- hybrid e.g., “U”.
- V rectilinear
- curvilinear e.g., semicircular
- hybrid e.g., “U”.
- the major axis quality of a score considers the score's characteristics along its run length. Such characteristics include planar orientation, i.e., directional orientation relative to the medium's major axis (e.g., parallel or non-parallel), and/or deviation(s) from the score's nominal major axis (e.g., sinusoidal, square or sawtooth geometry); and consistency or variability of score depth along its run length relative to the adjacent surface of the un-scored medium.
- the score depth may have constant or variable caliper and may include no depth, thereby creating non-scored portions or a segmented score. If in segmented form, the major axis quality of this characteristic may be characterized as patterned or random in segment length and/or pitch. As a corollary, a score need not extend a majority of a medium, although in many embodiment applications it does.
- a plurality of scores will have certain group qualities or attributes that may be characterized in certain ways.
- score attributes two adjacent scores having identical score attributes will be considered homogeneous scores; a plurality of adjacent scores having identical score attributes will be considered a homogeneous group of scores.
- two adjacent scores having non-identical score attributes will be considered heterogeneous scores; a plurality of adjacent scores having non-identical score attributes will be considered a heterogeneous group of scores (although a subset of scores within the plurality may have identical score attributes and therefore the subset would be considered homogeneous scores).
- a plurality of adjacent scores having identical lateral spacing preferably over each score's run length, will be considered to have a constant score pitch while a plurality of adjacent scores having non-identical lateral spacing will be considered to have a variable score pitch (although a subset of scores within such plurality may have constant spacing and therefore the subset would have a constant score pitch).
- the relative score pitch is variable along the run length of adjacent score, and is referenced herein as a skewed score pitch.
- the degree of relative convergence/divergence over a run length may be constant between adjacent scores or may be variable.
- Corrugated article embodiments of the invention comprise at least one scored member in combination with its counterpart member.
- the scored member is a liner member, then the counterpart member is a fluted member; if the scored member is a fluted member, then the counterpart member is a liner member.
- the article is considered a scored single face corrugated board.
- the resulting article is considered a scored single wall corrugated board.
- Corrugated article embodiments of the invention also include single wall corrugated board comprising two scored liner members, with or without incorporation of a scored fluted member.
- double wall corrugated boards can comprise one, two or three scored liner members (with or without incorporation of one or two scored fluted members), and triple wall corrugated board can comprise one, two, three or four scored liner members (with or without incorporation of one, two or three scored fluted members).
- scored liner member embodiments of the invention for maximum performance (e.g., stiffness) the overall score run direction/axes of a scored liner member is established perpendicular to the fluted member axis, thereby creating beam strength in the liner member that is parallel to the fluted member's weak axis. While the directional orientation of liner member scores can be positive and/or negative in reference to the exposed or outer (non-fluted) side of a single face corrugated board, the scores are preferably characterized as negative. In this manner, positive surface features extend towards and into the peaks of the fluted member.
- the caliper of corrugated boards comprising such scored liner member(s) remains unaffected by the inclusion thereof.
- the positive surface features presenting to the peaks of the fluted member function to mechanically interact therewith, which when combined with the use of adhesive increases the strength of the bond there between.
- a glue pocket may be created at the interface between the flute peak of the fluted member and the negative features of the liner member's inner surface. If glue is applied to the liner member as opposed to the flute peaks, the inner surface negative features may receive additional glue and thereby enhanced structural properties after its cure.
- the scored liner member in such embodiments will have positive surface features present on the outer surface thereof, the coefficient of friction for such liner member will be altered, which may have functional benefits in certain applications.
- a scored liner member can have a heterogeneous mix of score orientations, thereby potentially realizing benefits of both orientations described above.
- at least some of the scores have a directional orientation substantially opposite to that of at least some other scores.
- the mix may present a pseudo-sinusoidal pattern (i.e., adjacent scores have opposite orientations), grouped patterns of orientations and/or random orientations.
- Corrugated boards comprising a scored medium also include embodiments wherein the fluted member comprises a plurality of scores.
- the overall score run direction/axes is established perpendicular to the fluted member major axis, thereby creating beam strength in the fluted member that is parallel to the fluted member's weak axis.
- the minor axis width of such scores as well as their pitch will likely be larger and greater than of those for liner members.
- scored liner members may be used for enhancing structural properties of single face corrugated boards
- many embodiments of the invention will comprise a liner member having a plurality of constant pitch, homogeneous linear scores formed therein, wherein several factors are considered when determining the nature of the scored liner member, namely, score amplitude (i.e., relief or caliper), score pitch and score displacement.
- score amplitude i.e., relief or caliper
- score pitch i.e., score pitch and score displacement.
- these factors are also considered in light of the nature of the fluted member that forms part of the ultimate corrugated board.
- amplitude and pitch considerations include, but are not limited to, the amount of lateral take-up, the liner member basis weight or caliper, and the corrugating environment if the scored liner member forms one part of a single face corrugated board or similar board.
- score displacement In addition to score amplitude and pitch, score displacement relative to the major axis of the flutes formed in the fluted member is another important factor when discussing corrugated boards comprising at least one scored liner. Score displacement considers the relative angle between the predominant score major axis or run direction of the scored liner member and the flute direction (or, in the non-corrugated arts, the predominant score major axis of a second scored sheet). Generally speaking, the score displacement will be 90° relative to the flute direction for maximum resistance to weak axis bending of the fluted member. However, there may be instances wherein predictable localization of stresses is more desired than maximum stiffness and resistance to shear. Thus, score displacement need not be 90° in order to be within the scope of the invention.
- scoring methods and resulting liner members disclosed herein can be used when forming any corrugated board, and need not nor should be limited to “first face” applications to form single face corrugated boards. Consequently, conventionally formed single face corrugated board can be used in conjunction with a scored second liner member to form a single wall corrugated board. Additionally, single face corrugated board comprising a scored liner member can be combined with another scored liner member to form a single wall corrugated board with two scored liner members. Moreover, a scored fluted member can be used in conjunction with any of the foregoing combinations. Thus, the scope of the invention extends to any medium making up part of a corrugated board.
- flutes refers to a manipulation (as opposed to a modification) of a medium to transform it from a generally planar geometry to a generally sinusoidal geometry, which may have constant pitch, i.e., period, and conventionally forms one part of a single face corrugated board.
- scored mediums according to the invention need not be used as a liner member in conjunction with a fluted member, whether scored or not-at least one scored medium can be associated with one or a plurality of non-scored members.
- optimal performance can be achieved when pairs of orthogonally oriented scored members are used in a laminated article of manufacture, or when a plurality of scored members are so used and the net score major axis is minimal or zero (for example, a 3 ⁇ 120° displacement; a 5 ⁇ 72° displacement; a 6 ⁇ 60° displacement; etc.).
- a corrugated fluted member is not used, many, if not most, of the same characterizations apply as did with respect to embodiments comprising a corrugated fluted member.
- a scored member can be considered to have analogous performance qualities to that of a corrugated fluted member.
- certain articles of manufacture incorporating the invention comprise corrugated board having (a) laminated face(s) comprising at least one scored liner member in combination with one of a non-scored liner member or another scored liner member.
- These hybrid corrugated boards therefore have one or more liner members having enhanced caliper, and preferably, enhanced stiffness due to the presence of at least one scored liner member.
- While a web of scored medium may be created at the time of its manufacture, enhanced benefit of the invention can be realized through on-site formation of scored mediums from generic webs of the medium to meet the requirements of any given production run; by so doing, storage and setup of dedicated webs of scored mediums are thereby eliminated.
- roll density run length
- unintentional crushing of the surface features that characterize the scores is avoided if it is created just prior to incorporation with, for example, a fluted member.
- the medium that ultimately forms the fluted member is exposed to elevated temperature and humidity in this preferred environment. These conditions permit the medium to more easily conform to the corrugating rollers and retain the sinusoidal shape after release there from. Similarly, by exposing the medium that ultimately forms the single face liner member to such an environment prior to scoring, the medium will be more compliant and the impressed scores will better retain their shape during subsequent handling and processing. Similarly, creation of scores in the material that ultimately becomes the fluted member will be concurrent with the corrugation process, again benefiting from the elevated temperature and humidity environment in this preferred environment.
- the container arts frequently manipulate single, double and triple wall corrugated board into variously shaped containers.
- This manipulation requires converting the planar corrugated board (i.e., blank) into multiple sided containers or boxes.
- the converting process relies upon, inter alia, establishing scores that serve to localize a crease that results when forming container edges/corners through bending or folding of the corrugated board.
- the resulting crease is the manifestation of an intentional failure of the corrugated board: compression of the putative inner liner of the container or box is biased at or towards the score.
- integrated scored liner members according to the invention enhance the stiffness of a corrugated board article by creating beam strength in the scored liner preferably in opposition to the weak axis of the board, it follows that mechanically destroying the structure associated with the induced beam strength will localize stresses imparted upon the board at or proximate to such locations.
- the predominant major axes of the scores (run length) in at least one scored liner member are oriented perpendicular to the fluted member major axis, as has been previously described. Because blank scoring predominately occurs parallel to the fluted member major axis (which is perpendicular to its weak axis), such blank scores will necessary run perpendicular to the liner member score run lengths (major axes).
- any re-scoring of the scored liner member (particularly, but not exclusively, on the positive surface feature side of the liner member) will compromise the integrity of the liner member scores, thereby directing stress induced failures (such as resulting from compressive converting actions) to the locations where the re-scoring has occurred.
- stress induced failures such as resulting from compressive converting actions
- An additional advantage of this ability is realized through the use of lower basis weight inner liners: since it is only necessary to defeat the scoring that results in beam formation, which itself was a result of material deformation, less consideration need be given to concerns regarding over-compression and medium penetration.
- a scored liner of a blank which forms an inner surface of a corner or fold, preferably comprises positive surface feature scores on the exposed side of a corrugated board blank inner surface (the side opposite the fluted member).
- blank scoring may be optional during the blank converting process: in situations wherein the scored liner member of a corrugated board (for simplification, a single wall board is presumed) forms an inner surface of the converted form, simple bending of the board induces a compression load to all scores at the common axis of the hinge moment, which results in the scores generally uniformly failing at their mid points between flute peaks; these points are the most susceptible to compression failure.
- the resulting uniform “failure” of the scores at this common location along a fluted member, which corresponds to a flute valley permits the inner liner member to displace into the valley, thereby creating a clean bend or fold or edge.
- the valley corresponds to a peak on the opposite side of the corrugated board
- the inner surface of the bend/fold/edge remains cleans and consistent along the length of the flute valley while the outer surface thereof retains most if not all original structural integrity.
- This optimization also permits a materially higher article reuse value: the hinge created by this arrangement is much less susceptible to material degradation over many cycles.
- an inner side scored liner member is preferred, similar functionality can also be achieved through use of an outer side scored liner member, although the results may not be as consistent or optimized.
Landscapes
- Laminated Bodies (AREA)
- Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)
Abstract
Description
- The present application is a Continuation of International Patent Application Serial No. PCT/US2014/030909, entitled METHODS AND APPARATUS FOR PRODUCING SCORED MEDIUMS, AND ARTICLES AND COMPOSITIONS RESULTING THERE FROM, filed Mar. 17, 2014; which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/802,009, filed Mar. 15, 2013, now expired; all of the foregoing applications are incorporated herein by reference in their entireties.
- Corrugated board, also known as corrugated cardboard or colloquially as cardboard, represented a significant advancement in the container arts. Single wall corrugated board comprised a fluted paper medium bonded to and separating two flexible liners of paper to create an engineered article having exceptional stiffness or resistance to deflection in the in the strong axis or flute direction (i.e., parallel to the flutes) due to beam strength induced by the flutes, and good stiffness in the weak axis or orthogonal direction thereto (i.e., perpendicular to the flutes) due to one of the sheets resisting deflection through tensioned resistance between flute peaks and an opposing sheet resisting deflection through compressive resistance there between.
- To increase resistance to deflection and/or increase flexural stiffness of single and/or multiple wall corrugated board in general, and particularly in the weak axis, one may increase the basis weight of the liners and or fluted medium; increase the flute pitch; modify the pulp characteristics of the material used for the liners and/or fluted medium; control fiber orientation in the materials used for the liners and/or fluted medium; and/or augment the liners and/or flute medium by coating or other structural modifications. Additionally, increased resistance to deflection and/or increased flexural stiffness can be achieved by creating multiple wall corrugated boards, e.g., double and triple wall boards, by layering single faced corrugated board.
- A common theme to the aforementioned solutions for increasing resistance to deflection and/or increasing flexural stiffness of a single wall corrugated board is the requirement for modifying the constitution of the paper itself, i.e., material properties such as basis weight, fiber orientation or material composition, or modifying the flute configuration, i.e., flute frequency (pitch) or amplitude (caliper). In each instance a change in the material constitution or article design must be made prior to formation of the corrugated board article, which may not be suitable for other applications. As a consequence, more stock materials must be stored for disparate purposes, production lines must be changed for different runs, etc.
- Heretofore, corrugated board liners have been characterized as generally planar, the result of which has been single wall corrugate board having a generally smooth surface on both major sides thereof. If increased flexural stiffness was desired, a plethora of pre- and post formation manipulations have been employed: from the simple such as creating multiple faced corrugated board (e.g., double or triple faced board) to the more complex such as laminating multiple single wall corrugated board during article converting processes.
- The invention is directed to methods and apparatus for making scored mediums, particularly but not exclusively for use in the corrugated board arts, and articles of manufacture and compositions made there with and made there by. When at least one scored medium is used in a layered or laminated article, and particularly when selectively used as a liner member and/or fluted member in a corrugated board, whether as part of a corrugated board article of manufacture or a laminate with at least one other member, the article will possess mechanical qualities superior to those that would otherwise exist if a non-scored medium was/were used. To achieve these desired qualities, a major axis of the scores formed in the scored medium runs askew, and preferably perpendicular, to the direction of beam strength in any article or article intermediate to which the scored medium is to be associated.
- For example, the direction of beam strength of a fluted member is parallel to its major axis (the flute direction, i.e., the direction of a continuous peak or valley); similarly, the direction of beam strength of a scored liner at a score is parallel to the score's major axis (the score direction, i.e., the direction of a continuous peak or valley).
- As a result of integration and/or substitution of scored mediums according to the invention with or in, for example, corrugated boards, performance characteristics associated with conventionally derived corrugated boards can be achieved even while using lower basis weight materials (liners/fluted members), lower quality materials (higher recycled content), and/or decreased caliper. Moreover, in selected embodiments, preferential failure of invention embodiments serve to localize deformations, thereby increasing overall end article performance due to uniformity and predictability of converting actions and in-use load distributions.
- As used herein, a “medium” refers to a flexible, yet deformable, substantially planar material, which includes two major surfaces and a longitudinal direction, of which a “sheet” is a subset thereof. The medium may be formed from cellulose, plastic(s) or combination thereof, and may be highly elongate in nature, e.g., a web. The medium is preferably intended for, but is not restricted to, use as an element, member or component in corrugated boards, laminated boards and combinations thereof.
- The term “corrugated board” as used herein refers to single face, single wall or multiple wall engineered boards having at least one fluted element or component (an “element or component” is also referred to herein as a “member”), and at least one liner member attached thereto (the combination of a fluted member and a liner member is conventionally referred to as a single face corrugated board).
- The term “laminated board” as used herein refers to engineered boards having at least two sheets at least partially adhered to each other in overlapping fashion. Laminated boards may be used alone or as a member in a corrugated board.
- The term “score” as used in the singular sense herein refers to a type of surface feature characterized as an elongate, non-penetrating deformation formed in a medium wherein the deformation may be plastic, non-plastic or a combination thereof. Examples of plastic deformation include embossing, pressing and environmental modification (e.g., an elevated moisture and temperature environment); examples of non-plastic deformation include conventional roll forming (e.g., conventional scoring), bending, and folding. For many of the articles of manufacture and compositions comprising a scored medium that are disclosed herein, plastic deformation during score formation is preferred.
- The non-penetrating deformation or score is established in the medium after its initial formation, i.e., not as part of the medium's innate formation process such as would be the case during an extrusion formation process. As will be discussed in greater detail below, establishing scores after creation of the medium provides exceptional economies and flexibility in creating articles of manufacture and compositions comprising a scored medium such as a liner member for corrugated boards.
- Once established, the score is preferably permanent, meaning that evidence of the score will remain at least until, and preferably after, integration with other article elements—if the scored medium is a liner member, then substantially all scores exist after its attachment to a fluted member. Additionally, each score defines a major axis corresponding to its primary direction of elongation, and may define a greater than nominal minor axis.
- Scored mediums according the invention comprise a plurality of spaced apart scores wherein the major axes of at least some of the scores are preferably characterized as generally parallel to one another.
- Depending upon the embodiment, each score will have certain score attributes, namely, a cross sectional profile, a directional orientation relative to the medium, and a major axis quality, which includes a continuity quality. Each of these attributes both singularly and in combination affect the mechanical qualities of the medium and/or articles and compositions that include the medium. As will be described in more detail below, certain attributes may have substantial effects with regard to the resulting articles and compositions.
- With respect to a score's cross sectional profile, three principal types exist, namely, rectilinear (e.g., “V” or “I_I”), curvilinear (e.g., semicircular) and hybrid (e.g., “U”). Each of these profiles in turn has a directional orientation relative to the medium, i.e., positive (a protrusion or land) or negative (a recess or groove) when viewed from one side thereof. Because a land on one side of the medium usually constitutes a groove on the other, the nomenclature is inherently indefinite unless only one side of the medium is being considered. Therefore, when describing the directional orientation of score profiles, it is necessary to maintain reference to a single side of the medium.
- The major axis quality of a score considers the score's characteristics along its run length. Such characteristics include planar orientation, i.e., directional orientation relative to the medium's major axis (e.g., parallel or non-parallel), and/or deviation(s) from the score's nominal major axis (e.g., sinusoidal, square or sawtooth geometry); and consistency or variability of score depth along its run length relative to the adjacent surface of the un-scored medium. The score depth may have constant or variable caliper and may include no depth, thereby creating non-scored portions or a segmented score. If in segmented form, the major axis quality of this characteristic may be characterized as patterned or random in segment length and/or pitch. As a corollary, a score need not extend a majority of a medium, although in many embodiment applications it does.
- Depending upon the embodiment, a plurality of scores will have certain group qualities or attributes that may be characterized in certain ways. With respect to score attributes, two adjacent scores having identical score attributes will be considered homogeneous scores; a plurality of adjacent scores having identical score attributes will be considered a homogeneous group of scores. The converse is then also true: two adjacent scores having non-identical score attributes will be considered heterogeneous scores; a plurality of adjacent scores having non-identical score attributes will be considered a heterogeneous group of scores (although a subset of scores within the plurality may have identical score attributes and therefore the subset would be considered homogeneous scores).
- With respect to score pitch, a plurality of adjacent scores having identical lateral spacing, preferably over each score's run length, will be considered to have a constant score pitch while a plurality of adjacent scores having non-identical lateral spacing will be considered to have a variable score pitch (although a subset of scores within such plurality may have constant spacing and therefore the subset would have a constant score pitch).
- The foregoing definitions presumed that the scores within a plurality were parallel to one another. However, such a geometric relationship is not necessary in order to fall within the scope of the invention. In such instances, the relative score pitch is variable along the run length of adjacent score, and is referenced herein as a skewed score pitch. Again, the degree of relative convergence/divergence over a run length may be constant between adjacent scores or may be variable.
- Corrugated article embodiments of the invention comprise at least one scored member in combination with its counterpart member. In other words, if the scored member is a liner member, then the counterpart member is a fluted member; if the scored member is a fluted member, then the counterpart member is a liner member. In this basic form, the article is considered a scored single face corrugated board. When an additional liner member is attached to the fluted member, the resulting article is considered a scored single wall corrugated board. Corrugated article embodiments of the invention also include single wall corrugated board comprising two scored liner members, with or without incorporation of a scored fluted member. By extension, double wall corrugated boards can comprise one, two or three scored liner members (with or without incorporation of one or two scored fluted members), and triple wall corrugated board can comprise one, two, three or four scored liner members (with or without incorporation of one, two or three scored fluted members).
- Turning first to scored liner member embodiments of the invention, for maximum performance (e.g., stiffness) the overall score run direction/axes of a scored liner member is established perpendicular to the fluted member axis, thereby creating beam strength in the liner member that is parallel to the fluted member's weak axis. While the directional orientation of liner member scores can be positive and/or negative in reference to the exposed or outer (non-fluted) side of a single face corrugated board, the scores are preferably characterized as negative. In this manner, positive surface features extend towards and into the peaks of the fluted member. Since the exposed or outer side of the liner member only has negative surface features, the caliper of corrugated boards comprising such scored liner member(s) remains unaffected by the inclusion thereof. Moreover, when viewed from the inner surface of the liner member, the positive surface features presenting to the peaks of the fluted member function to mechanically interact therewith, which when combined with the use of adhesive increases the strength of the bond there between.
- Alternatively, if the directional orientation of the scores in the liner member are reversed, a glue pocket may be created at the interface between the flute peak of the fluted member and the negative features of the liner member's inner surface. If glue is applied to the liner member as opposed to the flute peaks, the inner surface negative features may receive additional glue and thereby enhanced structural properties after its cure. In addition, because the scored liner member in such embodiments will have positive surface features present on the outer surface thereof, the coefficient of friction for such liner member will be altered, which may have functional benefits in certain applications.
- Finally, a scored liner member can have a heterogeneous mix of score orientations, thereby potentially realizing benefits of both orientations described above. In such embodiments, at least some of the scores have a directional orientation substantially opposite to that of at least some other scores. The mix may present a pseudo-sinusoidal pattern (i.e., adjacent scores have opposite orientations), grouped patterns of orientations and/or random orientations.
- Corrugated boards comprising a scored medium also include embodiments wherein the fluted member comprises a plurality of scores. As was the case with scored liner member embodiments, the overall score run direction/axes is established perpendicular to the fluted member major axis, thereby creating beam strength in the fluted member that is parallel to the fluted member's weak axis. It should be appreciated that the minor axis width of such scores as well as their pitch will likely be larger and greater than of those for liner members. Although this preferred difference results from optimizing the formation of the fluted member, it is not necessary to the functioning of various invention embodiments.
- Because scored liner members according to the invention may be used for enhancing structural properties of single face corrugated boards, many embodiments of the invention will comprise a liner member having a plurality of constant pitch, homogeneous linear scores formed therein, wherein several factors are considered when determining the nature of the scored liner member, namely, score amplitude (i.e., relief or caliper), score pitch and score displacement. Preferably, these factors are also considered in light of the nature of the fluted member that forms part of the ultimate corrugated board.
- The parameters of score amplitude and pitch for any liner member depend upon a variety factors, which are highly application dependent. Nevertheless, amplitude and pitch considerations include, but are not limited to, the amount of lateral take-up, the liner member basis weight or caliper, and the corrugating environment if the scored liner member forms one part of a single face corrugated board or similar board.
- In addition to score amplitude and pitch, score displacement relative to the major axis of the flutes formed in the fluted member is another important factor when discussing corrugated boards comprising at least one scored liner. Score displacement considers the relative angle between the predominant score major axis or run direction of the scored liner member and the flute direction (or, in the non-corrugated arts, the predominant score major axis of a second scored sheet). Generally speaking, the score displacement will be 90° relative to the flute direction for maximum resistance to weak axis bending of the fluted member. However, there may be instances wherein predictable localization of stresses is more desired than maximum stiffness and resistance to shear. Thus, score displacement need not be 90° in order to be within the scope of the invention.
- It should be again understood that the scoring methods and resulting liner members disclosed herein can be used when forming any corrugated board, and need not nor should be limited to “first face” applications to form single face corrugated boards. Consequently, conventionally formed single face corrugated board can be used in conjunction with a scored second liner member to form a single wall corrugated board. Additionally, single face corrugated board comprising a scored liner member can be combined with another scored liner member to form a single wall corrugated board with two scored liner members. Moreover, a scored fluted member can be used in conjunction with any of the foregoing combinations. Thus, the scope of the invention extends to any medium making up part of a corrugated board.
- The term “flutes” as used herein refers to a manipulation (as opposed to a modification) of a medium to transform it from a generally planar geometry to a generally sinusoidal geometry, which may have constant pitch, i.e., period, and conventionally forms one part of a single face corrugated board.
- As noted previously, scored mediums according to the invention need not be used as a liner member in conjunction with a fluted member, whether scored or not-at least one scored medium can be associated with one or a plurality of non-scored members. However, optimal performance can be achieved when pairs of orthogonally oriented scored members are used in a laminated article of manufacture, or when a plurality of scored members are so used and the net score major axis is minimal or zero (for example, a 3×120° displacement; a 5×72° displacement; a 6×60° displacement; etc.). Although a corrugated fluted member is not used, many, if not most, of the same characterizations apply as did with respect to embodiments comprising a corrugated fluted member. Moreover, in many respects, a scored member can be considered to have analogous performance qualities to that of a corrugated fluted member.
- By extension, certain articles of manufacture incorporating the invention comprise corrugated board having (a) laminated face(s) comprising at least one scored liner member in combination with one of a non-scored liner member or another scored liner member. These hybrid corrugated boards therefore have one or more liner members having enhanced caliper, and preferably, enhanced stiffness due to the presence of at least one scored liner member.
- While a web of scored medium may be created at the time of its manufacture, enhanced benefit of the invention can be realized through on-site formation of scored mediums from generic webs of the medium to meet the requirements of any given production run; by so doing, storage and setup of dedicated webs of scored mediums are thereby eliminated. In addition, roll density (run length) is greater for non-scored mediums than for scored mediums. Moreover, unintentional crushing of the surface features that characterize the scores is avoided if it is created just prior to incorporation with, for example, a fluted member.
- Perhaps the greatest advantage to concurrent score formation and corrugation occurs due to the environment in which the single face corrugating process preferably takes place. To properly condition the medium that ultimately forms the fluted member, the medium is exposed to elevated temperature and humidity in this preferred environment. These conditions permit the medium to more easily conform to the corrugating rollers and retain the sinusoidal shape after release there from. Similarly, by exposing the medium that ultimately forms the single face liner member to such an environment prior to scoring, the medium will be more compliant and the impressed scores will better retain their shape during subsequent handling and processing. Similarly, creation of scores in the material that ultimately becomes the fluted member will be concurrent with the corrugation process, again benefiting from the elevated temperature and humidity environment in this preferred environment.
- The container arts frequently manipulate single, double and triple wall corrugated board into variously shaped containers. This manipulation requires converting the planar corrugated board (i.e., blank) into multiple sided containers or boxes. The converting process relies upon, inter alia, establishing scores that serve to localize a crease that results when forming container edges/corners through bending or folding of the corrugated board. The resulting crease is the manifestation of an intentional failure of the corrugated board: compression of the putative inner liner of the container or box is biased at or towards the score. As those persons skilled in the art appreciate, there is balance between creating a sufficiently effective score (high relief) and not breaching or penetrating the scored liner. Too little compression by a scoring wheel and the score's effectiveness is marginalized; too much compression by the scoring wheel and the liner can be penetrated, thereby materially weakening the resulting edge or corner joint.
- Because integrated scored liner members according to the invention enhance the stiffness of a corrugated board article by creating beam strength in the scored liner preferably in opposition to the weak axis of the board, it follows that mechanically destroying the structure associated with the induced beam strength will localize stresses imparted upon the board at or proximate to such locations.
- In many corrugated board embodiments of the invention, the predominant major axes of the scores (run length) in at least one scored liner member are oriented perpendicular to the fluted member major axis, as has been previously described. Because blank scoring predominately occurs parallel to the fluted member major axis (which is perpendicular to its weak axis), such blank scores will necessary run perpendicular to the liner member score run lengths (major axes).
- Consequently, any re-scoring of the scored liner member (particularly, but not exclusively, on the positive surface feature side of the liner member) will compromise the integrity of the liner member scores, thereby directing stress induced failures (such as resulting from compressive converting actions) to the locations where the re-scoring has occurred. In this manner and particularly with respect to the re-scoring of positive feature side scores, it is only necessary to defeat the initial scoring rather than to mechanically deform the base liner member and/or fluted member through relatively high compression scoring in order to facilitate formation of a corrugated board fold/corner. An additional advantage of this ability is realized through the use of lower basis weight inner liners: since it is only necessary to defeat the scoring that results in beam formation, which itself was a result of material deformation, less consideration need be given to concerns regarding over-compression and medium penetration.
- As touched upon above and to enhance the likelihood of failure in such instances and minimize unintended destruction of the scored liner in one series of embodiments, a scored liner of a blank, which forms an inner surface of a corner or fold, preferably comprises positive surface feature scores on the exposed side of a corrugated board blank inner surface (the side opposite the fluted member). By so doing, when such inner liner member is subjected to compressive force through rescoring, the previous score-induced beams are intentionally destroyed, beneficially with minimal mechanical consequences to the virgin (non-previously scored) portions of the inner liner member. While the foregoing embodiments are presently preferred, in another series of embodiments the scored inner liner member presents its positive surface features to the fluted member side of the corrugated board blank. While greater scoring pressure is needed in such embodiments, certain advantages over the first series embodiments exist: In both series of embodiments, the subsequent re-scoring biases compressive failure of the inner liner member towards the outer liner member, thereby increasing the density of material within the fold/joint structure during the bending process, however, in the second series of embodiments, the reliability of such directional failure is considered more robust.
- It should be noted that blank scoring may be optional during the blank converting process: in situations wherein the scored liner member of a corrugated board (for simplification, a single wall board is presumed) forms an inner surface of the converted form, simple bending of the board induces a compression load to all scores at the common axis of the hinge moment, which results in the scores generally uniformly failing at their mid points between flute peaks; these points are the most susceptible to compression failure. The resulting uniform “failure” of the scores at this common location along a fluted member, which corresponds to a flute valley, permits the inner liner member to displace into the valley, thereby creating a clean bend or fold or edge. Moreover, because the valley corresponds to a peak on the opposite side of the corrugated board, there is only minimal or nominal tension induced into the outer liner member at the bend/fold/edge location. As a consequence of this optimal arrangement, the inner surface of the bend/fold/edge remains cleans and consistent along the length of the flute valley while the outer surface thereof retains most if not all original structural integrity. This optimization also permits a materially higher article reuse value: the hinge created by this arrangement is much less susceptible to material degradation over many cycles. And while an inner side scored liner member is preferred, similar functionality can also be achieved through use of an outer side scored liner member, although the results may not be as consistent or optimized.
- For purposes of this patent, the terms “area”, “boundary”, “part”, “portion”, “surface”, “zone”, and their synonyms, equivalents and plural forms, as may be used herein and by way of example, are intended to provide descriptive references or landmarks with respect to the article and/or process being described. These and similar or equivalent terms are not intended, nor should be inferred, to delimit or define per se elements of the referenced article and/or process, unless specifically stated as such or facially clear from the several drawings and/or the context in which the term(s) is/are used.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/855,353 US11420417B2 (en) | 2013-03-15 | 2015-09-15 | Methods and apparatus for producing scored mediums, and articles and compositions resulting therefrom |
US15/677,960 US11420418B2 (en) | 2013-03-15 | 2017-08-15 | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361802009P | 2013-03-15 | 2013-03-15 | |
PCT/US2014/030909 WO2014146036A1 (en) | 2013-03-15 | 2014-03-17 | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from |
US14/855,353 US11420417B2 (en) | 2013-03-15 | 2015-09-15 | Methods and apparatus for producing scored mediums, and articles and compositions resulting therefrom |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/030909 Continuation WO2014146036A1 (en) | 2013-03-15 | 2014-03-17 | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/677,960 Continuation US11420418B2 (en) | 2013-03-15 | 2017-08-15 | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from |
Publications (3)
Publication Number | Publication Date |
---|---|
US20160167338A1 US20160167338A1 (en) | 2016-06-16 |
US20170157894A9 true US20170157894A9 (en) | 2017-06-08 |
US11420417B2 US11420417B2 (en) | 2022-08-23 |
Family
ID=56110303
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/855,353 Active US11420417B2 (en) | 2013-03-15 | 2015-09-15 | Methods and apparatus for producing scored mediums, and articles and compositions resulting therefrom |
US15/677,960 Active US11420418B2 (en) | 2013-03-15 | 2017-08-15 | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/677,960 Active US11420418B2 (en) | 2013-03-15 | 2017-08-15 | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from |
Country Status (1)
Country | Link |
---|---|
US (2) | US11420417B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180015695A1 (en) * | 2013-03-15 | 2018-01-18 | Scorrboard, Llc | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from |
US10328654B2 (en) | 2016-04-20 | 2019-06-25 | Scorrboard, Llc | System and method for producing a multi-layered board having a medium with improved structure |
US10363717B2 (en) | 2013-03-15 | 2019-07-30 | Scorrboard Llc | Methods, apparatus and systems for establishing a registered score, slit or slot in a corrugated board, and articles produced there from |
US10800133B2 (en) | 2016-04-20 | 2020-10-13 | Scorrboard, Llc | System and method for producing a facing for a board product with strategically placed scores |
US11027513B2 (en) | 2016-04-20 | 2021-06-08 | Scorrboard Llc | System and method for producing an articulating board product having a facing with score lines in register to fluting |
US11027515B2 (en) | 2016-04-20 | 2021-06-08 | Scorrboard Llc | System and method for producing multi-layered board having at least three mediums with at least two mediums being different |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4034135A (en) * | 1975-11-20 | 1977-07-05 | Passmore Michael Edward Anthon | Rigid structure |
WO2009101526A1 (en) * | 2008-02-14 | 2009-08-20 | Giorgio Trani | Multilayer paper material, method for its forming and method for obtaining three-dimensional containers |
Family Cites Families (190)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE20970E (en) | 1939-01-03 | Apparatus for imparting stretchability to webs | ||
US479999A (en) | 1891-05-09 | 1892-08-02 | Corrugated packing | |
US762033A (en) | 1903-03-06 | 1904-06-07 | Jeffrey T Ferres | Apparatus for corrugating paper. |
US1582841A (en) | 1921-01-04 | 1926-04-27 | Otaka Fabric Company | Paper corrugating |
US1591062A (en) | 1922-04-01 | 1926-07-06 | Lightship Cloth Board Corp | Method of making cloth boards and similar articles |
US1504218A (en) | 1923-06-05 | 1924-08-12 | Charles H Crowell | Process and machine for making cross-corrugated paperboard |
FR580581A (en) | 1924-04-23 | 1924-11-10 | Sound purifier | |
US1692720A (en) | 1926-05-07 | 1928-11-20 | William H Cannard | Web-converting apparatus |
US1924873A (en) | 1930-11-01 | 1933-08-29 | Orenda Corp | Machine for making packing material |
US1863973A (en) | 1930-12-19 | 1932-06-21 | Jr William H Ellis | Indented paper |
US2054867A (en) | 1932-08-02 | 1936-09-22 | Rudin Ernst | Assembled board |
US2089898A (en) | 1934-08-17 | 1937-08-10 | Kappler Felix | Production of corrugated cardboard |
US2359314A (en) | 1939-10-21 | 1944-10-03 | Beutex Corp | Adhesive sheet |
US2409195A (en) | 1943-06-22 | 1946-10-15 | Walter J Crawford | Surgical splint |
GB594328A (en) | 1943-10-25 | 1947-11-07 | Centrale Des Usines A Papiers | Process and plant for manufacturing longitudinally corrugated cardboard and cross-corrugated cardboard and products obtained thereby |
US2485020A (en) | 1945-11-05 | 1949-10-18 | Sperry Corp | Combined cutting and creasing dies for paper slotting machines |
US2503874A (en) | 1946-02-27 | 1950-04-11 | Charles Q Ives | Flexible corrugated sheet material, method and apparatus |
US2474381A (en) | 1948-07-02 | 1949-06-28 | Sr Frank Sladick | Concrete composition and process for production thereof |
US2547880A (en) | 1949-08-09 | 1951-04-03 | Leonard S Meyer | Method and apparatus for corrugating sheet material and forming laminated cellular units thereof |
US2651448A (en) | 1950-08-19 | 1953-09-08 | Patent Prot Corp | Filler for cartons |
US2576278A (en) | 1951-05-10 | 1951-11-27 | John N Bode | Laminated paper product |
US2758047A (en) | 1953-09-17 | 1956-08-07 | Dowd Alfred | Flexible corrugated wrapping sheet |
US3002876A (en) | 1955-10-22 | 1961-10-03 | Rosati Gildo | Apparatus for corrugating paper in a direction parallel to the length of the sheet |
US2900673A (en) | 1955-12-23 | 1959-08-25 | Brooksbank Wallace Ronald | Textile machinery |
US3122300A (en) | 1958-06-12 | 1964-02-25 | Int Paper Box Machine Co | Foldable blank and carton |
US3039372A (en) | 1958-06-12 | 1962-06-19 | Int Paper Box Machine Co | Creasing apparatus, method and product |
US2960145A (en) | 1958-07-14 | 1960-11-15 | Ruegenberg Gottfried | Method of and apparatus for manufacturing longitudinally folded or longitudinally arched, particularly longitudinally corrugated webs of paper, carton, cardboard, plastics or the like |
US3011602A (en) | 1959-07-13 | 1961-12-05 | Lockheed Aircraft Corp | Panel construction |
US3179023A (en) | 1960-07-18 | 1965-04-20 | Weyerhaeuser Co | Method of manufacturing a reinforced liner |
US3156599A (en) | 1960-09-07 | 1964-11-10 | Roland R Keesee | Method and apparatus for manufacturing cardboard molding |
NL272881A (en) | 1961-12-22 | |||
US3290205A (en) | 1962-04-18 | 1966-12-06 | Tri Wall Containers Inc | Method of making corrugated fibre board and products obtained thereby |
US3178494A (en) | 1962-11-15 | 1965-04-13 | Lucien E Tisdale | Method and apparatus for forming longitudinal corrugations in sheet material |
US3449157A (en) | 1965-07-28 | 1969-06-10 | Kurt Wandel | Method of producing a corrugated member |
US3542636A (en) | 1965-07-28 | 1970-11-24 | Kurt Wandel | Corrugated board |
US3529516A (en) | 1966-04-04 | 1970-09-22 | Union Oil Co | Method and compositions for improving the bending quality of water resistant corrugated paperboard |
US3526566A (en) | 1968-08-20 | 1970-09-01 | Downingtown Paper Co | Method and apparatus for scoring paperboard and product produced thereby |
GB1302305A (en) | 1970-12-09 | 1973-01-10 | ||
US3773587A (en) | 1971-07-01 | 1973-11-20 | Domtar Ltd | Manufacture of corrugated board |
CA955095A (en) | 1971-07-02 | 1974-09-24 | Domtar Limited | Manufacture of corrugated board |
JPS4972089U (en) | 1972-10-04 | 1974-06-22 | ||
JPS5254312Y2 (en) | 1973-05-22 | 1977-12-08 | ||
JPS51115191A (en) | 1975-04-02 | 1976-10-09 | Honshu Paper Co Ltd | Preparation of stepped rolls having bent grooves |
US4278486A (en) | 1976-04-29 | 1981-07-14 | Schrader Edward H | Method and apparatus for corrugating paperboard |
GB1542765A (en) | 1976-06-05 | 1979-03-28 | Rengo Co Ltd | Paper products |
JPS52156090A (en) | 1976-06-18 | 1977-12-26 | Kobayashi Seisakusho | Apparatus for forming corrugation of corrugated cardboard in direction of flow of sheet |
US4126508A (en) | 1976-09-13 | 1978-11-21 | Boise Cascade Corporation | Apparatus for forming multi-flute-layer corrugated board |
US4179253A (en) | 1978-04-10 | 1979-12-18 | Domtar Inc. | Linear corrugating roll deflection control |
IT1156949B (en) | 1978-04-11 | 1987-02-04 | Beloit Italia Spa | PROCESS AND EQUIPMENT FOR THE MANUFACTURE OF A CONTINUOUS CARDBOARD TAPE INCLUDING AT LEAST A CORRUGATED INTERNAL LAYER OF FIBER MATERIAL |
US4259950A (en) | 1979-03-07 | 1981-04-07 | Rescue Products, Inc. | Extrication back brace |
US4268555A (en) | 1979-12-26 | 1981-05-19 | Union Carbide Corporation | Wide-folding hinge |
SE433590B (en) | 1980-06-25 | 1984-06-04 | Sundpacma Ab | METHOD AND DEVICE FOR HANDLING AND REPRESENTING SIZE WINDOWS |
JPS5940620B2 (en) | 1980-10-14 | 1984-10-01 | 株式会社ト−モク | Method for manufacturing reinforced corrugated paper packaging containers |
US4541895A (en) | 1982-10-29 | 1985-09-17 | Scapa Inc. | Papermakers fabric of nonwoven layers in a laminated construction |
US4544597A (en) | 1982-11-12 | 1985-10-01 | Adolph Coors Company | Corrugated paper board and its method of manufacture |
GB2144077B (en) | 1983-07-26 | 1987-03-25 | Corrugated Prod Ltd | Improvement in or related to corrugated products |
JPS6027529A (en) | 1983-07-27 | 1985-02-12 | 紙真株式会社 | Manufacture of buffer material |
FR2550724B1 (en) | 1983-08-18 | 1987-05-07 | Martin Sa | AUTOMATIC DEVICE FOR REGISTERING A TOOL MOUNTED ON A ROTARY CYLINDER FOR THE TREATMENT OF PLATE PRODUCTS |
US4657611A (en) | 1984-11-28 | 1987-04-14 | Kaser Associates, Inc. | Cross corrugated fiberboard and method and apparatus for making the same |
ZA866491B (en) | 1985-09-04 | 1987-05-27 | Amcor Ltd | Corrugated board |
EP0253898B1 (en) | 1985-12-24 | 1991-07-24 | Trest 'juzhvodoprovod' | Agricultural machine |
IT207312Z2 (en) | 1986-02-10 | 1988-01-04 | Amiantit S P A | UNDER-CORRUGATED SHEET WITH LOWERED TRAY-SHAPED CRESTS. |
FR2596033B1 (en) | 1986-03-19 | 1989-03-31 | Auvergne Sa Carton | INSTALLATION FOR TRANSFORMING MATERIAL INTO TAPE SUCH AS CORRUGATED CARDBOARD, COMPRISING A PLURALITY OF STATIONS WORKING IN SYNCHRONISM |
US4693413A (en) | 1986-11-20 | 1987-09-15 | International Paper Company | Laminated bulk bin corner structure |
US4800286A (en) | 1987-08-10 | 1989-01-24 | Macmillan Bloedel Limited | Measurement of variation in flute profile height |
US4748067A (en) | 1987-10-19 | 1988-05-31 | Corra-Board Products Co., Inc. | Padded book panel construction |
CA1312540C (en) | 1987-12-18 | 1993-01-12 | Peter Gordon Bennett | Forming corrugated board structures |
JPH0263358A (en) | 1988-08-30 | 1990-03-02 | Fujitsu Ltd | Method for preventing false detection of power failure in electronic switching equipment |
US4931346A (en) | 1988-12-19 | 1990-06-05 | Book Covers Inc. | Lightweight laminated paperboard |
JPH02235623A (en) | 1989-03-09 | 1990-09-18 | Risaburo Yada | Double faced corrugated cardboard and preparation thereof |
US5061232A (en) | 1989-04-12 | 1991-10-29 | Scott Paper Company | Rolled paper embossing dispenser |
JPH0737097B2 (en) | 1989-06-24 | 1995-04-26 | 株式会社磯輪鉄工所 | Corrugated sheet production method |
JP2761055B2 (en) | 1989-09-20 | 1998-06-04 | 株式会社東芝 | Silicon wafer and inspection method of silicon wafer |
JPH03275292A (en) | 1990-03-22 | 1991-12-05 | Yoshizawa Kogyo Kk | Laser beam machine |
JPH0624198Y2 (en) | 1990-03-23 | 1994-06-29 | 株式会社タナカヤ | Cardboard structure |
US5356364A (en) | 1991-02-22 | 1994-10-18 | Kimberly-Clark Corporation | Method for embossing webs |
US5316828A (en) | 1991-04-25 | 1994-05-31 | Miller Ray R | Reinforced fluted medium and corrugated fiberboard made using the medium |
ES2033582B1 (en) | 1991-08-01 | 1994-02-01 | Cobo Fargas Francisca | "LIGHTWEIGHT LAMINATED CARDBOARD" |
US5582571A (en) | 1992-04-03 | 1996-12-10 | Container Graphics Corporation | Apparatus and method for perforating and creasing paperboard |
AT396906B (en) | 1992-05-18 | 1993-12-27 | Lusa Alex | METHOD FOR PREPARING CARDBOARD FOR PRODUCING PACKAGING INSERTS AND CARDBOARD |
US5339577A (en) | 1992-12-08 | 1994-08-23 | Snyder Darryl L | Laminated non-combustible board for forming ductwork and headers |
NZ245923A (en) | 1993-02-17 | 1996-05-28 | Print Ueb Ltd | Panel formed from large pitch and depth corrugated board between liners; details of corner construction between such panels |
CN1092355A (en) | 1993-03-12 | 1994-09-21 | 陈晓明 | Reinforced corrugated cardboard and its manufacturing method |
US5508083A (en) | 1993-05-19 | 1996-04-16 | Chapman, Jr.; Francis L. | Machine direction fluted combined corrugated containerboard |
GB9311075D0 (en) | 1993-05-28 | 1993-07-14 | Aston Packaging Ltd | Product packaging material and method |
US5537936A (en) | 1994-02-02 | 1996-07-23 | Lin Pac, Inc. | Support structure for supporting a load |
KR970703238A (en) | 1994-05-18 | 1997-07-03 | 요시마사 요꾜야마 | STOCK FOR CORRUGATED CARD BOARD LAMINATE |
DE4420958A1 (en) | 1994-06-16 | 1995-12-21 | Bhs Corr Masch & Anlagenbau | Machine for the production of a single-sided laminated corrugated cardboard web |
ES2156208T3 (en) | 1994-06-20 | 2001-06-16 | Newark Group Inc | METHOD FOR THE FORMATION OF A ROLLED CARTON CONTAINER AND A CONTAINER CARRIED OUT WITH SUCH METHOD. |
DE4425155A1 (en) | 1994-07-16 | 1996-01-18 | Bhs Corr Masch & Anlagenbau | Plant for the production of corrugated cardboard sheets with changeable format |
US5581353A (en) | 1995-02-14 | 1996-12-03 | Qualitek Ltd. | Laser-based measurement apparatus and method for the on-line measurement of multiple corrugated board characteristics |
KR0181565B1 (en) | 1995-04-11 | 1999-04-15 | 김승무 | Multi corrugated cardboard forming method and apparatus |
US5589257A (en) | 1995-05-08 | 1996-12-31 | Claymax Corporation | Low permeability geosynthetic clay liner and method of manufacture thereof |
JPH08309889A (en) | 1995-05-16 | 1996-11-26 | Toshinaga Urabe | Female die for corrugated fiberboard |
DE19526459A1 (en) | 1995-07-20 | 1997-01-23 | Festo Kg | Valve arrangement |
JP3460760B2 (en) | 1995-07-31 | 2003-10-27 | キッコーマン株式会社 | Crease processing method for cardboard box material to improve bending dimensional accuracy |
JP3486262B2 (en) | 1995-08-08 | 2004-01-13 | 大創株式会社 | Crease groove forming body and crease ruled line |
US5687517A (en) | 1995-09-21 | 1997-11-18 | W. R. Grace & Co.-Conn. | Skid-resistant roofing underlayment |
JP2925993B2 (en) | 1995-12-15 | 1999-07-28 | 大興製紙株式会社 | Water-absorbing and oil-absorbing release paper for food packaging |
US5690601A (en) | 1996-06-10 | 1997-11-25 | Marquip, Inc. | Method and apparatus for slitting and scoring corrugated paperboard sheets for folding |
JPH1050775A (en) | 1996-08-02 | 1998-02-20 | Hitachi Cable Ltd | Double-sided adhesive insulating tape for semiconductor device and lead frame using the same |
EP0833246B1 (en) | 1996-09-27 | 2014-11-26 | Texas Instruments Incorporated | A method of producing a computer program |
EP0869865A1 (en) | 1996-10-30 | 1998-10-14 | Best Carton, Ltd. | Production of corrugated board structures |
KR19980069691A (en) | 1997-02-27 | 1998-10-26 | 이소와에이이치 | Web humidifier and corrugated web manufacturing line |
JP3389044B2 (en) | 1997-04-10 | 2003-03-24 | 三菱重工業株式会社 | Single-sided corrugated cardboard sheet manufacturing equipment |
US6508751B1 (en) | 1997-09-12 | 2003-01-21 | Sun Source L Llc | Method and apparatus for preforming and creasing container board |
US6871480B1 (en) | 1997-09-29 | 2005-03-29 | David P. Goodrich | Pleated paper and method of manufacturing |
US5944016A (en) | 1997-11-03 | 1999-08-31 | Ferko, Iii; Joseph G. | Adjustable, collapsible head immobilizer |
US6143113A (en) | 1998-03-02 | 2000-11-07 | Le Groupe Recherche I.D. Inc. | Repulpable corrugated boxboard |
WO1999047347A1 (en) | 1998-03-18 | 1999-09-23 | United Container Machinery, Inc. | Lengthwise web corrugator |
US6056840A (en) | 1998-03-27 | 2000-05-02 | Mills Industries, Inc. | Method and apparatus for heavy corrugated plastic construction |
US6261666B1 (en) | 1998-08-14 | 2001-07-17 | Paper Converting Machine Co. | Two-ply paper products with either nested or foot-to-foot embossments and method of making |
JP2000202930A (en) | 1999-01-19 | 2000-07-25 | Oji Paper Co Ltd | Single facer and corrugated ball seat manufactured using the single facer |
US6139938A (en) | 1999-02-22 | 2000-10-31 | Innovative Packaging Corp. | High flute density, printable, corrugated paperboard |
US6162155A (en) | 1999-04-21 | 2000-12-19 | Jonco Die Company, Inc. | Folding score and method and apparatus for forming the same |
JP2001047533A (en) | 1999-08-12 | 2001-02-20 | Isowa Corp | Corrugated roll and corrugated cardboard manufacturing equipment |
US6836331B2 (en) | 1999-11-20 | 2004-12-28 | Bhs Corrugated Maschinen-Und Anlagenbau Gmbh | Apparatus for detection of format accuracy of a web of corrugated board |
KR20010062998A (en) | 1999-12-21 | 2001-07-09 | 김승무 | Corrugated Paper Box Produce Apparatus Using Pre-creasing |
WO2001058679A1 (en) | 2000-02-10 | 2001-08-16 | United Container Machinery, Inc. | Lateral corrugator |
USD467204S1 (en) | 2000-06-23 | 2002-12-17 | Møller Vital AS | Cardboard stretcher |
KR200217930Y1 (en) | 2000-07-03 | 2001-03-15 | 김정일 | A rolling machine to manufacture the waves of the corrugated paper of the corrugated cardboard |
KR100412574B1 (en) | 2000-07-03 | 2003-12-31 | 김정일 | The method to manufacture the corrugated cardboard with lattice-layered corrugated papers |
DE10038511A1 (en) | 2000-08-08 | 2002-02-21 | Bhs Corr Masch & Anlagenbau | Longitudinal processing machine for corrugated sheets |
FI116687B (en) | 2000-08-15 | 2006-01-31 | Avenira Oy | Method and arrangement of cardboard manufacture and cardboard product |
GB0024792D0 (en) | 2000-10-10 | 2000-11-22 | Linpac Containers Ltd | Board |
SE523870C2 (en) | 2001-02-12 | 2004-05-25 | Korsnaes Ab | Embossed highly flexible paper and a process for making it |
US7963899B2 (en) | 2001-07-13 | 2011-06-21 | The Proctor & Gamble Company | Continuous in-line pleating apparatus and process |
NZ532998A (en) | 2001-11-20 | 2005-10-28 | Josef Gmeiner | Device for connecting a mutilayered web by ultrasound |
EP3050698B1 (en) | 2002-02-05 | 2019-10-23 | Mitsubishi Heavy Industries Machinery Systems, Ltd. | System for fabricating corrugated board |
JP2003291230A (en) | 2002-04-05 | 2003-10-14 | Mitsubishi Heavy Ind Ltd | Apparatus for laminating double-faced corrugated cardboard sheet |
US7303642B2 (en) | 2002-11-12 | 2007-12-04 | Kimberly-Clark Worldwide, Inc. | Methods of making responsive film with corrugated microlayers having improved properties |
EP1428654A1 (en) | 2002-12-09 | 2004-06-16 | SCA Hygiene Products GmbH | Process for laminating plies of tissue paper and laminated tissue paper |
JP4346360B2 (en) | 2002-12-25 | 2009-10-21 | 東レ株式会社 | Sheet material for radio wave absorber and radio wave absorber |
DE10306210A1 (en) | 2003-02-13 | 2004-08-26 | Hermann Hötten Maschinenbau GmbH | Method and device for double-sided transverse creasing of continuous webs |
JP3717167B2 (en) | 2003-02-13 | 2005-11-16 | 株式会社イソワ | Control method of slitter scorer |
FI115781B (en) | 2003-02-26 | 2005-07-15 | M Real Oyj | Process for making corrugated cardboard |
US7326168B2 (en) | 2004-03-19 | 2008-02-05 | Kocherga Michael E | Method and apparatus for forming corrugated board carton blanks |
US7413629B2 (en) | 2004-05-21 | 2008-08-19 | The Procter & Gamble Company | Process for producing deep-nested embossed paper products |
US7255300B2 (en) | 2004-11-03 | 2007-08-14 | Baldwin Filters, Inc. | Method and apparatus for winding a filter media pack |
US7909954B2 (en) | 2004-11-03 | 2011-03-22 | Baldwin Filters, Inc. | Method and apparatus for winding a filter media pack |
MX2007009631A (en) | 2005-02-10 | 2007-09-25 | Ecosynthetix Inc | Apparatus and method for the production of corrugated and laminated board and compositions based thereon. |
CN2806125Y (en) | 2005-06-17 | 2006-08-16 | 东莞市维德实业有限公司 | Roller unit with embossing and calendering |
CN2841324Y (en) | 2005-10-19 | 2006-11-29 | 许家振 | Improved paper pallet feet |
US7595086B2 (en) | 2005-10-27 | 2009-09-29 | Kohler Herbert B | Method for producing corrugated cardboard |
JP4563311B2 (en) | 2005-12-02 | 2010-10-13 | 三菱重工業株式会社 | Corrugating machine and production management device used therefor |
US8012309B2 (en) | 2007-01-12 | 2011-09-06 | Cascades Canada Ulc | Method of making wet embossed paperboard |
GB2446585A (en) | 2007-02-14 | 2008-08-20 | Victor John Clement Adie | High bulk laminated board using embossed plies |
KR100866390B1 (en) | 2007-07-18 | 2008-11-03 | 황지순 | Reinforced corrugated cardboard and manufacturing apparatus thereof |
US20090029840A1 (en) | 2007-07-24 | 2009-01-29 | Jung Chi Chen | Corrugating machine |
JP2009184730A (en) | 2007-08-03 | 2009-08-20 | Suntory Holdings Ltd | Packaging box, cardboard blank sheet and ruled wheel assembly |
GB0715679D0 (en) | 2007-08-10 | 2007-09-19 | Rkvo Trust | Corrugator |
JP2009125998A (en) | 2007-11-21 | 2009-06-11 | Toppan Printing Co Ltd | Corrugated board, method and apparatus for manufacturing the same |
JP2009172942A (en) | 2008-01-28 | 2009-08-06 | Nippon Shikogyo Kk | Corrugating medium and corrugated cardboard sheet |
US9034443B2 (en) | 2008-02-14 | 2015-05-19 | Giorgio Trani | Container composed of a multilayer paper material and method for obtaining such a container |
US8672825B2 (en) | 2008-03-21 | 2014-03-18 | Hbk Family, Llc | Apparatus for producing corrugated board |
CN101259765A (en) | 2008-04-18 | 2008-09-10 | 陈毅辉 | Corrugated cardboard and production method thereof |
NZ568698A (en) | 2008-05-27 | 2010-12-24 | Corcel Ip Ltd | Method and machine for forming single face corrugated board |
US7998299B2 (en) | 2008-10-01 | 2011-08-16 | The Boeing Company | Method for making composite truss panel having a fluted core |
JP5325737B2 (en) | 2009-10-06 | 2013-10-23 | アイキ工業株式会社 | Corrugated paper having corrugated core and embossed core, method for manufacturing the same, and manufacturing apparatus |
US20110114712A1 (en) | 2009-11-13 | 2011-05-19 | Cascades Canada Inc. | Corrugated container having a non-continuous layer |
US9114596B2 (en) | 2009-11-16 | 2015-08-25 | The Glad Products Company | Incrementally-stretched adhesively-laminated films and methods for making the same |
JP2011131044A (en) | 2009-11-24 | 2011-07-07 | Kao Corp | Absorbent article |
JP5457882B2 (en) | 2010-02-26 | 2014-04-02 | 三菱重工印刷紙工機械株式会社 | Corrugated roll and its reworking method, and single facer |
KR20110104772A (en) | 2010-03-17 | 2011-09-23 | (주)한성실업 | Structure of corrugated cardboard for packing box |
RU2015156631A (en) | 2010-03-31 | 2019-01-17 | КОРСЕЛ АйПи ЛИМИТЕД | ADVANCED METHOD AND INSTALLATION FOR MANUFACTURING CORRUGATED PAPERBOARD |
GB2479775A (en) | 2010-04-22 | 2011-10-26 | British American Tobacco Co | Embossing smoking article wrappers |
MX377892B (en) | 2011-03-22 | 2025-03-11 | Albarran Torres Luis | ASSEMBLY AND STRUCTURING SYSTEM BASED ON CORRUGATED AND LAMINATED CARDBOARD. |
ITFI20110075A1 (en) | 2011-04-19 | 2012-10-20 | Perini Engraving S R L | "EMBOSSING GROUP, EMBOSSING METHOD AND EMBOSSED PRODUCT" |
US8657596B2 (en) | 2011-04-26 | 2014-02-25 | The Procter & Gamble Company | Method and apparatus for deforming a web |
NZ594363A (en) | 2011-08-01 | 2012-12-21 | Corcel Ip Ltd | Method and machine for perforating corrugated board as part of a continuous cold forming process |
US20140166520A1 (en) | 2011-08-02 | 2014-06-19 | Sanofi-Aventis Deutschland Gmbh | Shock Absorbing Lining for a Transport Container |
ES2758657T3 (en) | 2011-12-30 | 2020-05-06 | Philip Morris Products Sa | Apparatus and method for supplying a continuous web of crimped sheet material |
SG11201407960QA (en) | 2012-06-15 | 2014-12-30 | Corcel Ip Ltd | Improvements in and relating to paperboard manufacture |
JP5573915B2 (en) | 2012-10-11 | 2014-08-20 | 凸版印刷株式会社 | Cardboard manufacturing method and apparatus |
JP5946971B2 (en) | 2012-11-01 | 2016-07-06 | エイチビーケー ファミリー, エルエルシーHBK Family, LLC | Method and apparatus for fluting web in machine direction |
US8943976B2 (en) | 2012-12-17 | 2015-02-03 | Disney Enterprises, Inc. | Flying roller coaster with vertical load and launch |
CN202986283U (en) | 2012-12-26 | 2013-06-12 | 上海翔港印务有限公司 | Structure of mini-type corrugated board |
MX369253B (en) | 2013-03-15 | 2019-10-16 | Scorrboard Llc | Establishing a registered score, slit or slot in corrugated board, and articles produced therefrom. |
KR20160008518A (en) | 2013-03-15 | 2016-01-22 | 커러게이티드 시너지스 인터내셔널, 엘엘씨 | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from |
US11420417B2 (en) | 2013-03-15 | 2022-08-23 | Scorrboard Llc | Methods and apparatus for producing scored mediums, and articles and compositions resulting therefrom |
DE102013223076A1 (en) | 2013-11-13 | 2015-05-13 | Hauni Maschinenbau Ag | embossing roller |
FI127489B (en) | 2014-02-28 | 2018-07-13 | Metso Automation Oy | Equipment and method for the control and production of corrugated fibreboard |
US9512338B2 (en) | 2014-04-29 | 2016-12-06 | Greif Packaging Llc | Method for manufacturing an adhesive compound for use in the production of corrugated paperboard |
NL2012841B1 (en) | 2014-05-19 | 2016-03-02 | S4B B V | Folding device for folding a plate with successive indentations and protrusions. |
US20170274616A1 (en) | 2016-03-22 | 2017-09-28 | Scorrboard, Llc | System and method for inducing fluting in a paper product by embossing with respect to machine direction |
US20170282489A1 (en) | 2016-04-01 | 2017-10-05 | Scorrboard, Llc | System and method for producing multi-layered board having a corrugated medium and an embossed medium |
US11027513B2 (en) | 2016-04-20 | 2021-06-08 | Scorrboard Llc | System and method for producing an articulating board product having a facing with score lines in register to fluting |
US10800133B2 (en) | 2016-04-20 | 2020-10-13 | Scorrboard, Llc | System and method for producing a facing for a board product with strategically placed scores |
US10328654B2 (en) | 2016-04-20 | 2019-06-25 | Scorrboard, Llc | System and method for producing a multi-layered board having a medium with improved structure |
US11027515B2 (en) | 2016-04-20 | 2021-06-08 | Scorrboard Llc | System and method for producing multi-layered board having at least three mediums with at least two mediums being different |
-
2015
- 2015-09-15 US US14/855,353 patent/US11420417B2/en active Active
-
2017
- 2017-08-15 US US15/677,960 patent/US11420418B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4034135A (en) * | 1975-11-20 | 1977-07-05 | Passmore Michael Edward Anthon | Rigid structure |
WO2009101526A1 (en) * | 2008-02-14 | 2009-08-20 | Giorgio Trani | Multilayer paper material, method for its forming and method for obtaining three-dimensional containers |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180015695A1 (en) * | 2013-03-15 | 2018-01-18 | Scorrboard, Llc | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from |
US11420417B2 (en) | 2013-03-15 | 2022-08-23 | Scorrboard Llc | Methods and apparatus for producing scored mediums, and articles and compositions resulting therefrom |
US10363717B2 (en) | 2013-03-15 | 2019-07-30 | Scorrboard Llc | Methods, apparatus and systems for establishing a registered score, slit or slot in a corrugated board, and articles produced there from |
US11420418B2 (en) * | 2013-03-15 | 2022-08-23 | Scorrboard Llc | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from |
US11001027B2 (en) | 2013-03-15 | 2021-05-11 | Scorrboard Llc | Methods and apparatus and systems for establishing a registered score, slit or slot in a corrugated board, and articles produced there from |
US11027515B2 (en) | 2016-04-20 | 2021-06-08 | Scorrboard Llc | System and method for producing multi-layered board having at least three mediums with at least two mediums being different |
US11027513B2 (en) | 2016-04-20 | 2021-06-08 | Scorrboard Llc | System and method for producing an articulating board product having a facing with score lines in register to fluting |
US10800133B2 (en) | 2016-04-20 | 2020-10-13 | Scorrboard, Llc | System and method for producing a facing for a board product with strategically placed scores |
US10328654B2 (en) | 2016-04-20 | 2019-06-25 | Scorrboard, Llc | System and method for producing a multi-layered board having a medium with improved structure |
US11446893B2 (en) | 2016-04-20 | 2022-09-20 | Scorrboard Llc | System and method for producing a multi-layered board having a medium with improved structure |
US11458702B2 (en) | 2016-04-20 | 2022-10-04 | Scorrboard, Llc | System and method for producing multi-layered board having at least three mediums with at least two mediums being different |
US11465386B2 (en) | 2016-04-20 | 2022-10-11 | Scorrboard, Llc | Method for producing multi-layered board having at least three mediums with at least two mediums being different |
US11465385B2 (en) | 2016-04-20 | 2022-10-11 | Scorrboard Llc | System and method for producing a facing for a board product with strategically placed scores |
Also Published As
Publication number | Publication date |
---|---|
US20160167338A1 (en) | 2016-06-16 |
US20180015695A1 (en) | 2018-01-18 |
US11420418B2 (en) | 2022-08-23 |
US11420417B2 (en) | 2022-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11420418B2 (en) | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from | |
AU2014232272B2 (en) | Methods and apparatus for producing scored mediums, and articles and compositions resulting there from | |
JP7629068B2 (en) | System and method for producing multi-ply paperboard having corrugated and embossed intermediates - Patents.com | |
US5316828A (en) | Reinforced fluted medium and corrugated fiberboard made using the medium | |
US20040076798A1 (en) | Embossed high flexible paper and a method of producing the same | |
KR102514470B1 (en) | System and method for manufacturing a multi-layer board having at least three media where at least two media are different | |
US11446893B2 (en) | System and method for producing a multi-layered board having a medium with improved structure | |
CN111372764B (en) | Corrugated board and container | |
FI120486B (en) | Process for making cardboard product | |
GB2599661A (en) | Multi-layered material | |
NZ747761B2 (en) | System and method for producing multi-layered board having a corrugated medium and an embossed medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCORRBOARD LLC, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GREENFIELD, GILES;REEL/FRAME:041569/0602 Effective date: 20161215 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: PACKAGING ACQUISITIONS I, LLC, TEXAS Free format text: BILL OF SALE;ASSIGNOR:SCORRBOARD, LLC;REEL/FRAME:063980/0385 Effective date: 20230426 |