US20170119466A1 - Automated system for laser-assisted dermatological treatment and control method - Google Patents
Automated system for laser-assisted dermatological treatment and control method Download PDFInfo
- Publication number
- US20170119466A1 US20170119466A1 US15/337,112 US201615337112A US2017119466A1 US 20170119466 A1 US20170119466 A1 US 20170119466A1 US 201615337112 A US201615337112 A US 201615337112A US 2017119466 A1 US2017119466 A1 US 2017119466A1
- Authority
- US
- United States
- Prior art keywords
- laser
- robot arm
- treatment
- automated system
- laser head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004590 computer program Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims description 28
- 231100000241 scar Toxicity 0.000 claims description 7
- 208000032544 Cicatrix Diseases 0.000 claims description 4
- 230000037387 scars Effects 0.000 claims description 4
- 206010004950 Birth mark Diseases 0.000 claims description 3
- 206010014970 Ephelides Diseases 0.000 claims description 3
- 208000003351 Melanosis Diseases 0.000 claims description 3
- 206010064127 Solar lentigo Diseases 0.000 claims description 3
- 208000000069 hyperpigmentation Diseases 0.000 claims description 3
- 230000003810 hyperpigmentation Effects 0.000 claims description 3
- 206010024217 lentigo Diseases 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 210000003491 skin Anatomy 0.000 description 81
- 238000004891 communication Methods 0.000 description 12
- 230000033001 locomotion Effects 0.000 description 9
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 9
- 210000000245 forearm Anatomy 0.000 description 8
- 239000000049 pigment Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000000608 laser ablation Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 238000002679 ablation Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001750 ruby Inorganic materials 0.000 description 2
- 239000010979 ruby Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- WYOHGPUPVHHUGO-UHFFFAOYSA-K potassium;oxygen(2-);titanium(4+);phosphate Chemical compound [O-2].[K+].[Ti+4].[O-]P([O-])([O-])=O WYOHGPUPVHHUGO-UHFFFAOYSA-K 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001052 yellow pigment Substances 0.000 description 1
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/203—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/201—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with beam delivery through a hollow tube, e.g. forming an articulated arm ; Hand-pieces therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/32—Surgical robots operating autonomously
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0616—Skin treatment other than tanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
- A61B2018/00458—Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2015—Miscellaneous features
- A61B2018/2025—Miscellaneous features with a pilot laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/105—Modelling of the patient, e.g. for ligaments or bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
- A61B2090/367—Correlation of different images or relation of image positions in respect to the body creating a 3D dataset from 2D images using position information
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/067—Radiation therapy using light using laser light
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45122—Laser skin treatment
Definitions
- the present invention generally relates to laser-assisted dermatological treatment systems and methods; more particularly the invention concerns an automated, robot arm assembly based system for laser-assisted removal of tattoos, scars and/or pigmented dermatological conditions from skin and an associated method for controlling thereof.
- a device for tattoo removal utilizing a titanium doped sapphire (Ti:Sapphire) solid state laser with pulse duration in a femtosecond range is further disclosed in the U.S. Pat. No. 8,187,256.
- An objective of the present invention is to at least alleviate one or more problems arising from the limitations and disadvantages of the related art.
- the objective is achieved by various embodiments of an automated system for laser-assisted dermatological treatment and a method for controlling thereof.
- an automated system for laser-assisted removal of an undesirable dermatological condition from skin is provided, according to what is defined in the independent claim 1 .
- the system thus comprises a robot arm assembly, comprising an end effector in the form of a laser head coupled to an articulated robot arm and a controlling unit.
- the system is configured to sequentially direct, via the laser head, laser energy to a number of pre-determined, individual portions of skin identified within the boundaries of a pre-defined skin surface area intended for treatment and at least partly comprising said undesirable dermatological condition, wherein the controlling unit is configured to adjust positioning of the robot arm assembly with respect to each individual skin portion and directing laser energy thereto in real time, said controlling unit is further configured to receive a series of parameter data obtainable from an at least one proximity sensor and an image acquisition device provided within the laser head and, based on said parameter data, to issue a series of updated commands to each of the robot arm and the laser head continuously throughout the treatment.
- system further comprises a processing unit configured to generate and store a virtual model of the pre-defined skin surface area intended for treatment, to identify a number of sub-areas within said model, wherein each sub-area corresponds to the individual skin portion within the boundaries of the pre-defined skin surface area intended for treatment, and to communicate the data on thus identified sub-areas to the controlling unit and/or the robot arm assembly.
- a processing unit configured to generate and store a virtual model of the pre-defined skin surface area intended for treatment, to identify a number of sub-areas within said model, wherein each sub-area corresponds to the individual skin portion within the boundaries of the pre-defined skin surface area intended for treatment, and to communicate the data on thus identified sub-areas to the controlling unit and/or the robot arm assembly.
- the processing unit of the system is preferably configured to update and adjust the stored virtual model based on the series of parameter data received from the controlling unit and/or the robot arm assembly and to communicate thus updated and adjusted model data to the controlling unit and/or the robot arm assembly, wherein updating, adjusting and communicating the model data is executed in real time and continuously throughout the treatment.
- controlling unit is combined with the processing unit.
- system further comprises a treatment platform for accommodating a patient.
- the undesirable dermatological condition to be treated is tattoo.
- the undesirable dermatological condition to be treated is selected from the group consisting of: scars, birthmarks, moles, freckles, lentigines, solar lentigo and hyperpigmentation.
- a method for real-time controlling an automated laser-assisted removal of undesirable dermatological condition from skin implemented by a system according to the previous aspect is further provided, according to what is defined in the independent claim 12 .
- a computer program product embodied in a non-transitory computer readable medium and comprising computer code for causing the computer to execute the method according to one of the previous aspects is provided, according to what is defined in the independent claim 14 .
- the system provides for fast and precise removal of the undesirable dermatological condition from skin in an essentially operator-independent manner, thus being free of errors caused by human factor.
- Any laser-assisted removal of undesirable dermatological conditions from skin inevitably results in ablating also the unaffected skin regions, when performed manually by the operator.
- tattoo removal by hand the operator manually targets laser pulses onto the patient's skin; however, manually directed lasing beam hits, along with the pigmented skin regions, also the ones free of pigment. Even the treatment performed by the experienced personnel is not error-free.
- this operator performance error related drawback can be completely eliminated.
- the system further allows for speeding up the treatment and/or for accomplishing the treatment during a reduced number of sessions as compared to the manual same, thus reducing costs and avoiding unnecessary discomfort.
- skin condition is utilized within the present disclosure as a synonym of the term “skin condition”.
- a number of refers herein to any positive integer starting from one (1), e.g. to one, two, or three.
- FIG. 1 is a perspective view of an automated system 100 for automated laser-assisted dermatological treatment in accordance to some aspect of the invention.
- FIG. 2A is a schematic view of a robot arm assembly 120 provided within the system 100 ;
- FIG. 2B illustrates rotational axes of the assembly of Fig. 2 A.
- FIG. 3 is a schematic view of the system 100 .
- FIG. 4 shows is a perspective view of a laser head provided within the assembly 120 and the system 100 , accordingly.
- FIGS. 5A and 5B show a schematic view and a perspective view, accordingly, of the system 100 implemented according to some embodiment.
- FIG. 6 schematically illustrates a process for the automated laser-assisted dermatological treatment mediated by the system 100 .
- FIG. 7 shows a comparative example for tattoo removal from patient's skin executed by the system 100 ; the photograph on the left shows a tattoo at the beginning of the treatment (0 sec) and the photograph on the right—the same tattoo 60 sec later.
- 102 a robot arm, wherein: 102 a is a base; 102 b is an upper arm and 102 c is a forearm;
- 103 a - c joint connectors, wherein: 103 a is a shoulder hinge; 103 b is an elbow hinge; and
- 103 c is a rotary joint at the forearm
- 105 a, 105 b communication lines between the control unit and the robot arm and between the control unit and the laser head, respectively;
- 111 a processing unit (a computer);
- 203 a supporting rack (auxiliary appliance);
- 301 a casing (laser head);
- 501 a skin surface area intended for treatment
- FIG. 1 illustrates at 100 the concept underlying various embodiments of an automated system for laser-assisted dermatological treatment in accordance with some aspect of the present invention.
- the laser-assisted dermatological treatment comprises removal of an undesirable dermatological condition from skin.
- the undesirable dermatological condition is tattoo.
- the undesirable dermatological condition is a scar.
- the scar to be treated may be caused by any of an accident, infection, inflammation or surgery.
- the undesirable dermatological condition is a pigmented dermatological condition (lesion), selected from the group consisting of birthmarks, moles, freckles, lentigines, solar lentigo and various types of hyperpigmentation.
- the system is thus configured to combine and/or to synchronize system data comprising pre-determined and/or pre-selected system parameter settings, and patient-related data comprising parameter data related to the undesirable dermatological condition intended for treatment and obtainable prior to and throughout the treatment.
- the system 100 comprises a robot arm assembly 120 and a controlling unit 110 ( FIG. 1 ).
- the robot arm assembly 120 comprises an articulated robot arm 102 , having an end effector configured as a laser head 101 .
- the laser head 101 is therefore coupled to the articulated robot arm 102 .
- the robot arm 102 is preferably implemented as a tabletop or otherwise an essentially small-sized robot arm manipulator having a number of segments interconnected by means of hinged joints to a kinematic chain.
- the height of the robot arm 102 when fully extended is about 500-1500 mm. In one exemplary embodiment ( FIG.
- the robot arm 102 comprises a base 102 a, an upper arm 102 b supported at one end on the base 102 a by means of a shoulder hinge 103 a and a forearm 102 c pivoted to the other end of the upper arm 102 b by an elbow hinge 103 b.
- the forearm 102 c is further separated into two sub-segments by a rotary joint 103 c and comprises a rotatable joint adapter 104 at its free end configured to receive the laser head 101 .
- the rotatable joint adapter 104 thus forms a mounting means for the laser head 101 .
- the laser head 101 is mounted onto the forearm 102 c by means of aforesaid rotatable joint adapter 104 , accordingly.
- the robot arm assembly 120 is preferably configured to have at least six degrees of freedom, indicated on FIG. 2B by roman numerals I-VI.
- the upper arm 102 b, supported on the base 102 a is thus configured to rotate about its longitudinal axis (I) and to heave forward and backward (axis II) relative to the shoulder hinge 103 a, whereas the corresponding forearm 102 c is configured to perform the heaving motion relative the elbow hinge 103 b (axis III).
- the rotary joint 103 c further ensures rotational movement of a distal sub-segment of the forearm 103 c about its longitudinal axis (IV).
- the laser head 101 is further arranged to rotate about at least two orthogonal axes (herein V, VI) by means of the rotatable joint adapter 104 .
- the robot arm 102 and the assembly 120 may be embodied as having higher degrees of freedom by implementing any or both of the robot arm segments 102 b, 102 c to extend telescopically, by providing different and/or additional rotational axes for joint connectors 103 a - c and 104 and/or by mounting the assembly 120 on tracks. Movements of the robot arm segments 102 b, 102 c and of the laser head 101 relative to each associated axis are realized by suitable motors, typically servo motors.
- the robot arm 102 may additionally comprise a variety of built-in sensors, such as torque-, pressure- and motion sensors, compensators, wire harnesses, cables and feeds, a power supply and any other components essential for the purposes of the present invention.
- the system 100 is illustrated by FIG. 3 , said system 100 further comprising a processing unit 111 implemented as a computer workstation, such as a tablet computer, a portable computer, a mobile electronic device and the like.
- the processing unit 111 may be further configured as a remote server workstation being in communication with the controlling unit 110 and/or the robot arm assembly 120 via wired and/or wireless connection.
- the controlling unit 110 and the processing unit 111 are provided as discrete devices interconnected by a number of wired and/or wireless communication lines (schematically shown by arrow).
- the controlling unit 110 and the processing unit 111 may be combined within a single device.
- the controlling unit 110 is implemented to execute direct controls over the robot arm assembly 120 and therefore comprises at least mechanical (motion) controllers for the robot arm 102 , laser function controllers for the laser head 101 , and a controlling means for integrating and coordinating functions of the laser head 101 with that of the robot arm 102 .
- the controlling unit 110 preferably comprises a laser source unit, power supply/supplies, motors, circuit boards, programmable logic controllers, control relays, drives, a cooling fan and a number of cable connectors/ports.
- the controlling unit 110 further comprises a front-panel control module (a user interface) and an associated circuitry.
- the front-panel control module may be realized as a graphical user interface (GUI) in the form of a display screen, preferably a touchscreen; as a control panel with a number of manual switches and an at least one monitoring panel/display screen; or as a combination thereof.
- GUI graphical user interface
- the controlling unit 110 is configured to communicate with the robot arm 102 via a communication line 105 a; and with the laser head 101 —via a communication line 105 b ( FIG. 3 ).
- Said communication lines 105 a, 105 b are advantageously configured to comprise power transmission cables, connecting each of the robot arm 102 and the laser head 101 to the appropriate power source.
- the communication line 105 a further comprises a signal communication line provided in the form of a fiber optic cable, for example, and configured to transfer data on commands issued and/or mediated by the controlling unit 110 to the robot arm 102 for activating motion control mechanism(s) thereof and to receive feedback data, accordingly.
- the communication line 105 b further comprises lasing beam delivery system, configured to deliver lasing beam from the power source (laser source), provided within the controlling unit 110 or separately therefrom, to the laser head 101 .
- the lasing beam delivery system is advantageously configured as a fiber optic cable assembly, further comprising an input- and output coupling optics and a number of connectors, adapters and the like. It is advantageous that one end of the fiber optic cable is permanently attached to the laser source whereas the opposite end of the cable includes a beam collimator and isolator enclosed into the laser head 101
- Selection of laser for the laser module is on one hand predetermined by an energy source (a pump source) and a gain medium, and on another hand, is object-related, i.e. dependent on the type of the undesirable dermatological condition intended for treatment, since successful treatment is largely anticipated by a wavelength of light emitted by laser.
- a Nd:YAG laser is utilized.
- the laser module is preferably configured as a Q-switched (QS) Nd:YAG laser capable of working in regimes of short pulses (in microsecond range) and/or ultra-short pulses (in nano- and picosecond ranges and shorter).
- QS Q-switched
- a Nd:YAG laser capable of producing light energy pulses in millisecond range may be utilized.
- a so called frequency-doubled QS Nd:YAG laser comprising, along with the Nd:YAG crystal, also a potassium titanyl phosphate (KTP) crystal, it utilized.
- KTP potassium titanyl phosphate
- the aforesaid frequency doubled Nd:YAG lasers are capable of emitting at two wavelengths, namely, at 1064 nm and at 532 nm, wherein the latter wavelength (green) is produced by doubling the frequency of 1064 nm laser light by the KTP crystal.
- Laser emission at 1064 nm enables successful treatment of most frequently utilized dark tattoo pigments, such as black and dark-blue, whereas brown, red, orange, and some yellow pigments can be treated using the 532 nm wavelength.
- tattoo color formulations such as green and blue
- additional and/or alternative utilization of other lasers such as a QS Ruby laser emitting at the 694 nm and a QS Alexandrite laser emitting at the 755 nm, is not excluded.
- Other important parameters to be determined and/or selected prior the treatment include laser power, intensity, fluence, pulse duration, pulse frequency, a number of pulses per a unit of time, as well as a spot size/diameter selected for treatment (in order to avoid treating surrounding unaffected area to minimize pigmentary alterations).
- the laser head 101 thus comprises a casing 301 , having an aperture 302 for a lasing beam and a cable port 305 for receiving the communication line 105 b, which connects the laser head 101 to the laser source (provided within the controlling unit 110 , for example). Fixation of the laser head to the robot arm 102 and, in particular, to the joint adapter 104 thereof, is implemented by means of a fastening element 304 . Connections of the laser head 101 to the laser source and to the robot arm 102 mediated by the cable port 305 and the fastening element 304 , accordingly, can each be either permanent or detachable. In some embodiment the laser head 101 is permanently connected to the laser source and detachably—to the robot arm.
- the laser head 101 further comprises an at least one image acquisition device and an at least one proximity sensor.
- the image acquisition device is preferably a color camera utilizing CCD (semiconductor charge-coupled device), CMOS (complementary metal-oxide-semiconductor) or NMOS (N-type metal-oxide-semiconductor) technologies.
- the proximity sensor(s) may be any of the inductive, capacitive, photoelectric or ultrasonic sensors. Laser sensor(s) or ultrasonic sensor(s) may still be preferred.
- the camera and the proximity sensor(s) are provided within an appliance 303 .
- the sensor(s) may be integrated with the camera.
- the appliance 303 can be incorporated or fixed to the casing 301 or the fastening element 304 . Alternative configurations are possible (not shown), in which the camera and the proximity sensor(s) are disposed apart from each other.
- the laser head 101 comprises three proximity sensors, preferably solid-state sensors, located at a certain distance from each other to form a triangle.
- a “three-point” measurement implemented via the aforesaid configuration ensures correct alignment of the laser head 101 with respect to a predetermined point at skin surface area intended for treatment and allows to overcome errors caused by skin irregularity and degree of curvature.
- FIGS. 5A and 5B illustrating the system 100 according to some other embodiment.
- the system 100 further includes a treatment platform 201 for accommodating a patient 210 thereon ( FIG. 5B ).
- the system shown on FIGS. 5A and 5B may additionally include the processing unit 111 (not shown) either independently or as a part of the controlling unit 110 .
- the treatment platform 201 may further include auxiliary appliances ( FIG. 5B ), such as stairs 202 and/or wheels (not shown), whereas the robot arm assembly 120 may be further mounted onto a rack 203 .
- FIG. 5B auxiliary appliances
- FIG. 5B shows a configuration, in which the rack 203 provides a support for both the robot arm assembly 120 and the controlling unit 110 .
- the rack 203 may further be rendered movable by provision of wheels 204 . Any other mounting means capable of providing sufficiently stable support for the robot arm assembly 120 and/or the controlling unit 110 may be alternatively utilized.
- the treatment platform 201 may be provided separately from the rack 203 , therefore the rack 203 may be freely driven around the treatment platform 201 .
- the treatment platform 201 and the rack 203 are attached to each other by means of guiding rails, for example, in order to enable sliding or rolling movement of the rack 203 along the edge of the treatment platform 201 .
- the guiding rails are advantageously provided with a locking means (not shown) in order to preclude accidental movements of the rack 203 during the treatment.
- the treatment platform 201 may, in turn, be implemented as a flat bed, an adjustable bed or a chair. An adjustable bed, with an at least one folding point in the middle and both ends being adjustable in vertical direction, is preferred.
- Such configuration is especially advantageous when the rack 203 , hosting the robot arm assembly 120 , is fixed to the treatment platform 201 by means of the abovementioned guiding rails, for example, since it allows treating either side of the patient's body (e.g. right and left arms) without disengaging the rack 203 and the treatment platform 201 from each other.
- Aforesaid configurations are given by way of example only; for those skilled in the art it is evident that other configurations, in view of design, realization and disposition of the treatment platform 201 , the rack 203 and the auxiliary appliances 202 , 204 , are possible.
- the operation principle of the system 100 will be further described in more detail with reference to FIG. 6 .
- the dotted-line box on FIG. 6 is herewith indicative of the system 100 being automated according to the definition above, i.e. defines a scope of actions executable by the system 100 throughout the treatment per se and in an absence of human attendance.
- the treatment per se may be specified as a sequence of actions performed by the system 100 since a data on a skin surface area 501 intended for treatment and at least partly comprising an undesirable dermatological condition 410 has been input into the processing unit 111 or, in an absence of a distinct processing unit into the controlling unit 110 or a combination thereof, till the moment the robot arm assembly 120 has acquired a final position after having worked the entire area 501 .
- an operator Prior to the treatment an operator (a physician, a medical attendant etc.) switches on the system 100 and brings the robot arm assembly 120 into a sufficient proximity to the patient 210 and the undesirable dermatological condition 410 to be treated.
- the robot arm assembly 120 may be mounted onto a movable rack further incorporating the controlling unit (not shown).
- the operator further defines the area 501 intended for treatment on patient's skin surface.
- the area 501 may be defined by drawing straight lines in x and y directions around or within the dermatological condition 410 , with or without a reference mark, and measuring length and width of a rectangular thus obtained. In the example shown on FIG. 6 the area 501 is therefore rectangular and entirely incorporates the condition 410 .
- the operator may define the shape of the area 501 as being other than rectangular, such as square, triangular, circular and the like, whether appropriate. Also more complex shapes are not excluded.
- the area 501 may not necessarily incorporate the entire condition 410 ; therefore, in case of large and very large dermatological conditions to be treated, such as large tattoos, for example, the operator may have to determine the area 501 within the dermatological condition 410 , in which case the area 501 includes the condition 410 only partly.
- Patient-related parameters may thus be selected from the group consisting of: dimensional parameters, such as length, width, diameter, radius etc., of the skin surface area 501 intended for treatment, skin color, type of the dermatological condition and a pigment color, whether the dermatological condition is tattoo. Mentioned parameters may be input manually or at least partly automatically, by means of photographing the dermatological condition 410 intended for treatment, for example.
- the operator further inputs and/or adjusts laser parameters, such as power, pulse duration, spot diameter, pulse frequency, a number of pulses per a unit of time, and optionally a wavelength. Further operational stages are advantageously performed by the system 100 in an operator-independent manner.
- the model 502 constitutes a two-dimensional representation of the skin surface area 501 , whose boundaries are determined by virtual axes x and y, corresponding to length and width of the skin surface area 501 . Parameters for grid 503 formation are further determined.
- the model 502 is split into a number of sub-areas 504 , preferably equal-sized, further referred to as squares. In one preferred embodiment the size of each sub-area 504 is 1 square inch (1′′ ⁇ 1′′). Dimensional calculations for each square 504 include the amount of spatial deviation intended to correct errors caused by skin surface irregularities and/or degree of curvature.
- each square 504 in the grid 503 comprises a border edge by which extent it overlaps with the neighboring squares. Dimensions of such overlapping edges (“joint seams”) can be standardized or determined case-wise. In practice, width of the border edge around each individual square 504 may vary within a range of 10-25% with respect to the width of a single square, thus constituting 0.1-0.25 inch.
- the data on the field model 502 and the grid 503 is stored in the memory of the processing unit 111 .
- Data on thus formed grid 503 is further communicated to the controlling unit 110 (not shown), in which said data is transformed to a number of commands for the robot arm assembly 120 .
- the robot arm assembly 120 is further configured, by means of the proximity sensors provided in the laser head 101 , to estimate a starting position of the laser head 101 with regards to the skin surface area 501 based on the virtual model 502 and the grid 503 .
- the skin surface area 501 intended for treatment may thus be considered as comprising a number of individual portions 501 a, each portion 501 a corresponding to a related virtual sub-area 504 . Determination of the starting position includes selection of a “first” virtual sub-area 504 and selection of a certain location therewithin (i.e.
- first sub-area 504 indicative of a starting position hereby, a square at the lower left corner of the grid 503 may be selected (marked by a capital “S”, FIG. 6 ).
- the starting position of the laser head 101 with regards to each subsequent virtual sub-area 504 and the related skin portion 501 a, accordingly, may be determined in the same manner.
- Selection of a starting position within the virtual model 502 and selection of the directions along x and y axes for a “row-wise” movement of the robot arm 201 carrying the laser head 101 may be pre-programmed; however manual input, selection and/or modification thereof is preferably made available.
- the laser head 101 is then positioned such that lasing beam trajectory would form an essentially right angle with an imaginary line on the skin surface it falls onto.
- the term “essentially right angle” is used in the present disclosure to indicate an angle formed between a lasing beam and a skin surface being within a range of 60° to 90°. Acquisition of a starting point, i.e.
- each subsequent skin portion includes positioning of the laser head 101 with regard to each of said skin portions, implemented preferably by means of three distinct solid state proximity sensors, as disclosed above, in order to attain a “three-point” measurement.
- the dermatological condition 410 is very small, such as a small tattoo located on a finger, for example, proximity measurement(s) may be omitted.
- each individual skin portion 501 a being captured at a time by the image acquisition device corresponds to a single virtual square 504 and constitutes 1 square inch (1′′ ⁇ 1′′).
- the image acquisition device is preferably adjusted to additionally include the abovementioned spatial deviation correction data.
- Proximity measurement data obtained by the proximity sensor(s) and data on captured images obtained by the image acquisition device, such as a color camera, for each individual skin region 501 a are transmitted to the controlling unit 110 and/or the processing unit 111 for processing and reconstruction of the dermatological condition 410 within the virtual field model 502 and the grid 503 .
- the processing unit 111 for processing and reconstruction of the dermatological condition 410 within the virtual field model 502 and the grid 503 .
- reconstruction is preferably monitored to which extent the images obtained from each skin portion 501 a overlap with each other; the overlapping edges are further removed automatically by means of an appropriate computer program product, according to some further aspect of the invention.
- the processing unit 111 is configured to issue a “START” command for initiating a series of actions performed by the robot arm assembly 120 and resulting in the removal of the dermatological condition 410 within the pre-defined skin surface area 501 .
- the robot arm 102 is set to the starting position (“S”) and laser supply from the laser source to the laser head 101 is initiated.
- the command(s) issued by the processing unit 111 are advantageously mediated by the controlling unit 110 .
- the system 100 is preferably configured to notify the personnel and the patient by a sound signal, for example, on its readiness for starting laser supply onto skin. Sound notification may be issued by the processing unit 111 and/or the controlling unit 110 , accordingly.
- the lasing beam delivery onto skin after issuing a notification may be initiated automatically, within a predetermined time period (e.g. 30 sec after notification).
- a predetermined time period e.g. 30 sec after notification.
- the system 100 may be configured to request confirmation for the start, optionally password-protected.
- FIG. 6 schematically illustrates an event of laser ablation occurring within the individual skin portion 501 a, provided herewith as a “projection” of the virtual sub-area 504 (black square), by means of the lasing beam 310 emitted by the laser head 101 (for clarity purposes the actual skin portion 501 a is omitted from the schematics of laser ablation visualization).
- the proximity sensor(s) and/or the image acquisition device provided within the laser head 101 are configured to continuously execute real-time proximity measurements and/or to acquire digital images, accordingly, of skin surface within each skin portion 501 a with predetermined frequency and in predetermined timeframe.
- obtained data is continuously transmitted to the controlling unit 110 and/or the processing unit 111 for real-time processing.
- the parameters for the virtual field model 502 and the grid 503 are updated, adjusted and communicated back to the robot arm assembly 120 via the controlling unit 110 or directly.
- the robot arm assembly 120 is configured, in response to the updated command received from the controlling unit 110 , to adjust the position of the robot arm 102 and/or the laser head 101 with respect to the individual skin portion 501 a being treated. A feedback loop control over the robot arm assembly 120 is thus implemented.
- the laser-assisted treatment of the dermatological condition 410 at least partly comprised within the boundaries of the pre-defined skin surface area 501 is completed when all individual skin portions 501 a defined within said area 501 have undergone laser ablation.
- the lasing beam can be directed throughout the dermatological condition 410 within the predetermined area 501 with an extremely high precision.
- the approach additionally allows for avoiding ablation of pigment-free skin surface areas.
- the system 100 may be configured to proceed directly to the laser-assisted removal of the dermatological condition 410 having the steps of preliminary obtaining a series of parameters data for each individual skin portion 501 a via the proximity sensor(s) and the image acquisition device omitted from the laser-assisted treatment.
- obtaining the parameter data from each individual skin portion 501 a directing laser energy thereto and issuing a series of updated commands to the robot arm assembly 120 based on said parameter data is executed simultaneously for each individual skin portion 501 a.
- the system 100 may require indicating, by a marker, for example, of an at least one reference point on patient's skin.
- the reference point may thus be used for determination and/or acquisition of the starting point (“S”) as disclosed above, and for adjusting positional data during laser ablation within each individual skin portion 501 a.
- the system 100 preferably comprises manual ON/OFF switch control(s) and PAUSE control(s) and/or an emergency ON/OFF switch control for the entire system 100 and/or each of the laser supply, the robot arm assembly 120 , the controlling unit 110 and the processing unit 111 .
- FIG. 7 An exemplary laser-assisted treatment executed by the system 100 is illustrated by FIG. 7 , said treatment being a tattoo removal.
- Figure on the left shows the undesirable dermatological condition 410 , being a tattoo, prior to treatment, and figure on the right shows the same during the course of the treatment (60 seconds from the beginning). Size of the tattoo 410 being treated is about 2 ⁇ 3 cm. Based on FIG. 7 one can ascertain that, additional of being highly precise, the laser-assisted tattoo removal executed by the system 100 is times faster when compared to that manually performed by the operator.
- a method for operating and real-time controlling the automated system 100 for laser-assisted removal of undesirable dermatological condition from patient's skin comprises at least the following steps:
- a. Generating and storing a virtual two-dimensional model 502 of a pre-defined skin surface area 501 intended for treatment, identifying a number of sub-areas 504 within said model 502 , wherein each sub-area 504 corresponds to an individual skin portion 501 a within the boundaries of the pre-defined skin surface area 501 intended for treatment, and issuing a series of commands to the robot arm assembly 120 to acquire a starting position with respect to the surface area 501 intended for treatment.
- step (b) Based on the parameter data obtained at step (b) issuing a series of updated commands to each of the robot arm 102 and the laser head 101 continuously during executing step (c) for each individual skin portion 501 a.
- the method is configured such that the steps (b), (c) and (d) are executed simultaneously within each individual skin portion 501 a.
- a computer program product is provided, said computer program product being embodied in a non-transitory computer readable medium, comprising computer code for causing the computer to execute the method items of the previous aspect.
- a computer is advantageously the processing unit 111 , according to the definition hereinabove.
- a computer program also referred to as a program, software, software application, or code, can be written in any form of programming language, including compiled or interpreted languages, and it can be provided in any form, including a standalone program, a module, a component, a subroutine or any other unit suitable for use in a computing environment.
- a computer program can be configured to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a wired or wireless communication network.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Otolaryngology (AREA)
- Pathology (AREA)
- Robotics (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Radiation-Therapy Devices (AREA)
- Laser Surgery Devices (AREA)
Abstract
A system 100 for automated laser-assisted dermatological treatment is provided; the system includes a robot arm assembly 120, including a laser head 101 coupled to the robot arm 102 and a controlling unit 110. The system is configured to remove an undesirable dermatological condition from skin by directing laser energy to a pre-defined skin surface area intended for treatment essentially in an absence of human attendance. A method for real-time controlling an automated laser-assisted removal of undesirable dermatological condition from skin implemented by a system 100 and a computer program product for causing the computer to execute the method are further provided.
Description
- The present invention generally relates to laser-assisted dermatological treatment systems and methods; more particularly the invention concerns an automated, robot arm assembly based system for laser-assisted removal of tattoos, scars and/or pigmented dermatological conditions from skin and an associated method for controlling thereof.
- The attempts to remove tattoos date back to the origins of tattooing—creating permanent marks or designs on the body—an ancient practice for identification and/or decoration of an individual, which has been in existence since the early beginnings of modern civilization. Since in recent decades a trend for tattooing became a matter of individual choice to serve the purpose of self-expression, the patients seek tattoo removal on a more frequent and routine basis, accordingly.
- Since the present-day tattooing technology involves injection of ink particles into a skin dermis (a layer of skin beneath epidermis) at a depth about 1.1-2.9 mm below the skin surface, removal of a tattoo requires elimination of said pigment from the skin, accordingly. Sophisticated modern laser-assisted methods target the tattoo ink and break it up into smaller particles, which are naturally absorbed by the body's immune system.
- Laser-assisted tattoo removal by argon and carbon dioxide lasers has been piloted at 1970s; however, these lasers have caused non-specific ablation of tissue at a tattoo site when targeting water molecules as chromophores and in majority of cases have failed to remove the tattoo completely while leaving scars. Recent techniques utilize quality-switched (QS) lasers, such as an alexandrite, ruby and neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers, for example, capable of producing nanosecond range pulses at very high peak power. Moreover, an apparatus for tattoo removal utilizing lasers with pulse duration in a picosecond range is disclosed in the U.S. Pat. Nos. 7,586,957 and 7,929,579 and in the U.S. patent application publication No. 2015/180193. A device for tattoo removal utilizing a titanium doped sapphire (Ti:Sapphire) solid state laser with pulse duration in a femtosecond range is further disclosed in the U.S. Pat. No. 8,187,256.
- The abovementioned laser-assisted devices and systems are still constrained with limitations caused by an ultimate dependence thereof on human factor. In other words, modern technology involves devices and systems for tattoo removal that are all human (manual) operated. In this regard, localization of pigment on a patient's skin and provision of pulses of electromagnetic radiation to remove said pigment are performed by an operator. As a consequence, accuracy, precision, speed and overall efficiency of the treatment are to a certain extent biased by an operator performance error. Since standardization of manually performed tattoo and/or scar removal procedures in terms of precision vs speed parameters is hampered, the treatment duration is often overextended and the patient is caused to experience unnecessary pain or at least discomfort. The aforesaid applies equally well to other undesirable pigmented dermatological condition (lesions) of varying nature.
- If tattooing becomes even more widespread than it is today, the request for tattoo removal will increase exponentially. In this regard, a demand for more effective permanent tattoo removal solutions still exists.
- An objective of the present invention is to at least alleviate one or more problems arising from the limitations and disadvantages of the related art. The objective is achieved by various embodiments of an automated system for laser-assisted dermatological treatment and a method for controlling thereof.
- Thereby, in one aspect of the invention an automated system for laser-assisted removal of an undesirable dermatological condition from skin is provided, according to what is defined in the independent claim 1. The system thus comprises a robot arm assembly, comprising an end effector in the form of a laser head coupled to an articulated robot arm and a controlling unit. The system is configured to sequentially direct, via the laser head, laser energy to a number of pre-determined, individual portions of skin identified within the boundaries of a pre-defined skin surface area intended for treatment and at least partly comprising said undesirable dermatological condition, wherein the controlling unit is configured to adjust positioning of the robot arm assembly with respect to each individual skin portion and directing laser energy thereto in real time, said controlling unit is further configured to receive a series of parameter data obtainable from an at least one proximity sensor and an image acquisition device provided within the laser head and, based on said parameter data, to issue a series of updated commands to each of the robot arm and the laser head continuously throughout the treatment.
- In one preferred embodiment the system further comprises a processing unit configured to generate and store a virtual model of the pre-defined skin surface area intended for treatment, to identify a number of sub-areas within said model, wherein each sub-area corresponds to the individual skin portion within the boundaries of the pre-defined skin surface area intended for treatment, and to communicate the data on thus identified sub-areas to the controlling unit and/or the robot arm assembly.
- The processing unit of the system is preferably configured to update and adjust the stored virtual model based on the series of parameter data received from the controlling unit and/or the robot arm assembly and to communicate thus updated and adjusted model data to the controlling unit and/or the robot arm assembly, wherein updating, adjusting and communicating the model data is executed in real time and continuously throughout the treatment.
- In some alternative embodiment the controlling unit is combined with the processing unit.
- In some further embodiment the system further comprises a treatment platform for accommodating a patient.
- In some embodiment the undesirable dermatological condition to be treated is tattoo. In some other embodiments the undesirable dermatological condition to be treated is selected from the group consisting of: scars, birthmarks, moles, freckles, lentigines, solar lentigo and hyperpigmentation.
- In another aspect of the invention a method for real-time controlling an automated laser-assisted removal of undesirable dermatological condition from skin implemented by a system according to the previous aspect is further provided, according to what is defined in the independent claim 12.
- In still another aspect a computer program product embodied in a non-transitory computer readable medium and comprising computer code for causing the computer to execute the method according to one of the previous aspects is provided, according to what is defined in the independent claim 14.
- The utility of the present invention arises from a variety of reasons depending on each particular embodiment thereof. At first, the system provides for fast and precise removal of the undesirable dermatological condition from skin in an essentially operator-independent manner, thus being free of errors caused by human factor. Any laser-assisted removal of undesirable dermatological conditions from skin inevitably results in ablating also the unaffected skin regions, when performed manually by the operator. For example, upon laser-assisted tattoo removal by hand the operator manually targets laser pulses onto the patient's skin; however, manually directed lasing beam hits, along with the pigmented skin regions, also the ones free of pigment. Even the treatment performed by the experienced personnel is not error-free. By utilization of the system provided hereby this operator performance error related drawback can be completely eliminated.
- The system further allows for speeding up the treatment and/or for accomplishing the treatment during a reduced number of sessions as compared to the manual same, thus reducing costs and avoiding unnecessary discomfort.
- The term “dermatological condition” is utilized within the present disclosure as a synonym of the term “skin condition”.
- The expression “a number of” refers herein to any positive integer starting from one (1), e.g. to one, two, or three.
- Different embodiments of the present invention will become apparent by consideration of the detailed description and accompanying drawings.
-
FIG. 1 is a perspective view of anautomated system 100 for automated laser-assisted dermatological treatment in accordance to some aspect of the invention. -
FIG. 2A is a schematic view of arobot arm assembly 120 provided within thesystem 100; -
FIG. 2B illustrates rotational axes of the assembly of Fig.2A. -
FIG. 3 is a schematic view of thesystem 100. -
FIG. 4 shows is a perspective view of a laser head provided within theassembly 120 and thesystem 100, accordingly. -
FIGS. 5A and 5B show a schematic view and a perspective view, accordingly, of thesystem 100 implemented according to some embodiment. -
FIG. 6 schematically illustrates a process for the automated laser-assisted dermatological treatment mediated by thesystem 100. -
FIG. 7 shows a comparative example for tattoo removal from patient's skin executed by thesystem 100; the photograph on the left shows a tattoo at the beginning of the treatment (0 sec) and the photograph on the right—thesame tattoo 60 sec later. - Detailed embodiments of the present invention are disclosed herein with the reference to accompanying drawings. The same reference characters are used throughout the drawings to refer to same members. Following citations are used for the members:
- 100—an automated system for laser-assisted dermatological treatment;
- 101—a laser head;
- 102—a robot arm, wherein: 102 a is a base; 102 b is an upper arm and 102 c is a forearm;
- 103 a-c—joint connectors, wherein: 103 a is a shoulder hinge; 103 b is an elbow hinge; and
- 103 c is a rotary joint at the forearm;
- 104—a rotatable joint adapter/mounting means for the laser head;
- 105 a, 105 b—communication lines between the control unit and the robot arm and between the control unit and the laser head, respectively;
- 110—a controlling unit;
- 111—a processing unit (a computer);
- 120—a robot arm assembly
- 201—a treatment platform;
- 202—stairs (auxiliary appliance);
- 203—a supporting rack (auxiliary appliance);
- 204—wheels for the supporting rack (auxiliary appliance);
- 210—a patient;
- 301—a casing (laser head);
- 302—a lasing beam aperture;
- 303—an image acquisition device and proximity sensor(s);
- 304—a fastening element;
- 305—a cable port;
- 310—a lasing beam;
- 410—an undesirable dermatological condition to be treated;
- 501—a skin surface area intended for treatment;
- 501 a—an individual skin portion within the
area 501; - 502—a virtual field model of the
area 501; - 503—a grid;
- 504—a sub-area within the
model 502 corresponding theskin portion 501 a. -
FIG. 1 illustrates at 100 the concept underlying various embodiments of an automated system for laser-assisted dermatological treatment in accordance with some aspect of the present invention. In preferred embodiment the laser-assisted dermatological treatment comprises removal of an undesirable dermatological condition from skin. In the most preferred embodiment the undesirable dermatological condition is tattoo. - In some other embodiment the undesirable dermatological condition is a scar. The scar to be treated may be caused by any of an accident, infection, inflammation or surgery. In further embodiments, the undesirable dermatological condition is a pigmented dermatological condition (lesion), selected from the group consisting of birthmarks, moles, freckles, lentigines, solar lentigo and various types of hyperpigmentation.
- By the term “automated” we refer in the present disclosure to the system, configured to perform the laser-assisted dermatological treatment comprising removal of an undesirable dermatological condition from skin essentially in an absence of human attendance. By the term “essentially” we stipulate that, although the system is configured to perform all actions related to the treatment per se in an absence of human attendance, presence of an operator is still required for inputting patient related data and/or spatially adjusting systems' gear with regard to a patient and a skin surface area intended for treatment, accordingly. Presence of the operator is still highly desirable throughout the entire treatment for safety purposes.
- The system, according to one aspect, is thus configured to combine and/or to synchronize system data comprising pre-determined and/or pre-selected system parameter settings, and patient-related data comprising parameter data related to the undesirable dermatological condition intended for treatment and obtainable prior to and throughout the treatment.
- The
system 100, according to one basic embodiment, comprises arobot arm assembly 120 and a controlling unit 110 (FIG. 1 ). Therobot arm assembly 120 comprises an articulatedrobot arm 102, having an end effector configured as alaser head 101. Thelaser head 101 is therefore coupled to the articulatedrobot arm 102. Therobot arm 102 is preferably implemented as a tabletop or otherwise an essentially small-sized robot arm manipulator having a number of segments interconnected by means of hinged joints to a kinematic chain. The height of therobot arm 102 when fully extended is about 500-1500 mm. In one exemplary embodiment (FIG. 2A ) therobot arm 102 comprises a base 102 a, anupper arm 102 b supported at one end on the base 102 a by means of ashoulder hinge 103 a and aforearm 102 c pivoted to the other end of theupper arm 102 b by anelbow hinge 103 b. Theforearm 102 c is further separated into two sub-segments by a rotary joint 103 c and comprises a rotatablejoint adapter 104 at its free end configured to receive thelaser head 101. The rotatablejoint adapter 104 thus forms a mounting means for thelaser head 101. Thelaser head 101 is mounted onto theforearm 102 c by means of aforesaid rotatablejoint adapter 104, accordingly. - The
robot arm assembly 120 is preferably configured to have at least six degrees of freedom, indicated onFIG. 2B by roman numerals I-VI. In theassembly 120 shown onFIG. 2B theupper arm 102 b, supported on the base 102 a, is thus configured to rotate about its longitudinal axis (I) and to heave forward and backward (axis II) relative to theshoulder hinge 103 a, whereas thecorresponding forearm 102 c is configured to perform the heaving motion relative theelbow hinge 103 b (axis III). The rotary joint 103 c further ensures rotational movement of a distal sub-segment of theforearm 103 c about its longitudinal axis (IV). By the distal sub-segment we refer to the sub-segment of theforearm 103 c connectable via theadapter 104 to thelaser head 101. Thelaser head 101 is further arranged to rotate about at least two orthogonal axes (herein V, VI) by means of the rotatablejoint adapter 104. - Aforementioned rotational axes are given by way of example, not limitation; therefore, the
robot arm 102 and theassembly 120 may be embodied as having higher degrees of freedom by implementing any or both of therobot arm segments assembly 120 on tracks. Movements of therobot arm segments laser head 101 relative to each associated axis are realized by suitable motors, typically servo motors. Therobot arm 102 may additionally comprise a variety of built-in sensors, such as torque-, pressure- and motion sensors, compensators, wire harnesses, cables and feeds, a power supply and any other components essential for the purposes of the present invention. - The
system 100 according to another preferred embodiment is illustrated byFIG. 3 , saidsystem 100 further comprising aprocessing unit 111 implemented as a computer workstation, such as a tablet computer, a portable computer, a mobile electronic device and the like. Theprocessing unit 111 may be further configured as a remote server workstation being in communication with the controllingunit 110 and/or therobot arm assembly 120 via wired and/or wireless connection. In the embodiment shown onFIG. 3 the controllingunit 110 and theprocessing unit 111 are provided as discrete devices interconnected by a number of wired and/or wireless communication lines (schematically shown by arrow). In some alternative embodiment the controllingunit 110 and theprocessing unit 111 may be combined within a single device. - The controlling
unit 110 is implemented to execute direct controls over therobot arm assembly 120 and therefore comprises at least mechanical (motion) controllers for therobot arm 102, laser function controllers for thelaser head 101, and a controlling means for integrating and coordinating functions of thelaser head 101 with that of therobot arm 102. The controllingunit 110 preferably comprises a laser source unit, power supply/supplies, motors, circuit boards, programmable logic controllers, control relays, drives, a cooling fan and a number of cable connectors/ports. The controllingunit 110 further comprises a front-panel control module (a user interface) and an associated circuitry. The front-panel control module may be realized as a graphical user interface (GUI) in the form of a display screen, preferably a touchscreen; as a control panel with a number of manual switches and an at least one monitoring panel/display screen; or as a combination thereof. - The controlling
unit 110 is configured to communicate with therobot arm 102 via acommunication line 105 a; and with thelaser head 101—via acommunication line 105 b (FIG. 3 ).Said communication lines robot arm 102 and thelaser head 101 to the appropriate power source. Thecommunication line 105 a further comprises a signal communication line provided in the form of a fiber optic cable, for example, and configured to transfer data on commands issued and/or mediated by the controllingunit 110 to therobot arm 102 for activating motion control mechanism(s) thereof and to receive feedback data, accordingly. Thecommunication line 105 b further comprises lasing beam delivery system, configured to deliver lasing beam from the power source (laser source), provided within the controllingunit 110 or separately therefrom, to thelaser head 101. The lasing beam delivery system is advantageously configured as a fiber optic cable assembly, further comprising an input- and output coupling optics and a number of connectors, adapters and the like. It is advantageous that one end of the fiber optic cable is permanently attached to the laser source whereas the opposite end of the cable includes a beam collimator and isolator enclosed into thelaser head 101 - The
laser head 101 connected by means of thecommunication line 105 b to the laser source unit, advantageously provided within the controllingunit 110, and the aforementioned laser source unit form a laser module within thesystem 100. Selection of laser for the laser module is on one hand predetermined by an energy source (a pump source) and a gain medium, and on another hand, is object-related, i.e. dependent on the type of the undesirable dermatological condition intended for treatment, since successful treatment is largely anticipated by a wavelength of light emitted by laser. - In one preferred embodiment a Nd:YAG laser is utilized. The laser module is preferably configured as a Q-switched (QS) Nd:YAG laser capable of working in regimes of short pulses (in microsecond range) and/or ultra-short pulses (in nano- and picosecond ranges and shorter). Alternatively a Nd:YAG laser capable of producing light energy pulses in millisecond range may be utilized. In another preferred embodiment a so called frequency-doubled QS Nd:YAG laser, comprising, along with the Nd:YAG crystal, also a potassium titanyl phosphate (KTP) crystal, it utilized. While the common Nd:YAG lasers emit at 1064 nm (infrared), the aforesaid frequency doubled Nd:YAG lasers are capable of emitting at two wavelengths, namely, at 1064 nm and at 532 nm, wherein the latter wavelength (green) is produced by doubling the frequency of 1064 nm laser light by the KTP crystal. Laser emission at 1064 nm enables successful treatment of most frequently utilized dark tattoo pigments, such as black and dark-blue, whereas brown, red, orange, and some yellow pigments can be treated using the 532 nm wavelength. Moreover, since it is known that light absorption by epidermal melanin pigment at 1064 nm is less high than that at 694 nm produced by QS ruby laser and at 755 nm produced by QS alexandrite laser, utilization of QS Nd:YAG lasers reduces various skin alterations and/or scarring, especially upon treating patients with darker skin.
- However, in order to treat other tattoo color formulations, such as green and blue, for example, additional and/or alternative utilization of other lasers, such as a QS Ruby laser emitting at the 694 nm and a QS Alexandrite laser emitting at the 755 nm, is not excluded.
- Other important parameters to be determined and/or selected prior the treatment include laser power, intensity, fluence, pulse duration, pulse frequency, a number of pulses per a unit of time, as well as a spot size/diameter selected for treatment (in order to avoid treating surrounding unaffected area to minimize pigmentary alterations).
- Reference is further made to
FIG. 4 illustrating thelaser head 101. Thelaser head 101 thus comprises acasing 301, having anaperture 302 for a lasing beam and acable port 305 for receiving thecommunication line 105 b, which connects thelaser head 101 to the laser source (provided within the controllingunit 110, for example). Fixation of the laser head to therobot arm 102 and, in particular, to thejoint adapter 104 thereof, is implemented by means of afastening element 304. Connections of thelaser head 101 to the laser source and to therobot arm 102 mediated by thecable port 305 and thefastening element 304, accordingly, can each be either permanent or detachable. In some embodiment thelaser head 101 is permanently connected to the laser source and detachably—to the robot arm. - The
laser head 101 further comprises an at least one image acquisition device and an at least one proximity sensor. The image acquisition device is preferably a color camera utilizing CCD (semiconductor charge-coupled device), CMOS (complementary metal-oxide-semiconductor) or NMOS (N-type metal-oxide-semiconductor) technologies. The proximity sensor(s) may be any of the inductive, capacitive, photoelectric or ultrasonic sensors. Laser sensor(s) or ultrasonic sensor(s) may still be preferred. In the embodiment shown onFIG. 4 the camera and the proximity sensor(s) are provided within anappliance 303. In some embodiment the sensor(s) may be integrated with the camera. Theappliance 303 can be incorporated or fixed to thecasing 301 or thefastening element 304. Alternative configurations are possible (not shown), in which the camera and the proximity sensor(s) are disposed apart from each other. - In one preferred embodiment the
laser head 101 comprises three proximity sensors, preferably solid-state sensors, located at a certain distance from each other to form a triangle. A “three-point” measurement implemented via the aforesaid configuration ensures correct alignment of thelaser head 101 with respect to a predetermined point at skin surface area intended for treatment and allows to overcome errors caused by skin irregularity and degree of curvature. - Reference is further made to
FIGS. 5A and 5B illustrating thesystem 100 according to some other embodiment. According to the embodiment shown onFIGS. 5A and 5B thesystem 100 further includes atreatment platform 201 for accommodating a patient 210 thereon (FIG. 5B ). It should be noted that the system shown onFIGS. 5A and 5B may additionally include the processing unit 111 (not shown) either independently or as a part of the controllingunit 110. Thetreatment platform 201 may further include auxiliary appliances (FIG. 5B ), such asstairs 202 and/or wheels (not shown), whereas therobot arm assembly 120 may be further mounted onto arack 203. The embodiment ofFIG. 5B shows a configuration, in which therack 203 provides a support for both therobot arm assembly 120 and the controllingunit 110. Therack 203 may further be rendered movable by provision ofwheels 204. Any other mounting means capable of providing sufficiently stable support for therobot arm assembly 120 and/or the controllingunit 110 may be alternatively utilized. - In some embodiment the
treatment platform 201 may be provided separately from therack 203, therefore therack 203 may be freely driven around thetreatment platform 201. In some other embodiments thetreatment platform 201 and therack 203 are attached to each other by means of guiding rails, for example, in order to enable sliding or rolling movement of therack 203 along the edge of thetreatment platform 201. The guiding rails are advantageously provided with a locking means (not shown) in order to preclude accidental movements of therack 203 during the treatment. Thetreatment platform 201 may, in turn, be implemented as a flat bed, an adjustable bed or a chair. An adjustable bed, with an at least one folding point in the middle and both ends being adjustable in vertical direction, is preferred. Such configuration is especially advantageous when therack 203, hosting therobot arm assembly 120, is fixed to thetreatment platform 201 by means of the abovementioned guiding rails, for example, since it allows treating either side of the patient's body (e.g. right and left arms) without disengaging therack 203 and thetreatment platform 201 from each other. Aforesaid configurations are given by way of example only; for those skilled in the art it is evident that other configurations, in view of design, realization and disposition of thetreatment platform 201, therack 203 and theauxiliary appliances - The operation principle of the
system 100 will be further described in more detail with reference toFIG. 6 . The dotted-line box onFIG. 6 is herewith indicative of thesystem 100 being automated according to the definition above, i.e. defines a scope of actions executable by thesystem 100 throughout the treatment per se and in an absence of human attendance. For clarity purposes the treatment per se may be specified as a sequence of actions performed by thesystem 100 since a data on askin surface area 501 intended for treatment and at least partly comprising an undesirabledermatological condition 410 has been input into theprocessing unit 111 or, in an absence of a distinct processing unit into the controllingunit 110 or a combination thereof, till the moment therobot arm assembly 120 has acquired a final position after having worked theentire area 501. - Prior to the treatment an operator (a physician, a medical attendant etc.) switches on the
system 100 and brings therobot arm assembly 120 into a sufficient proximity to thepatient 210 and the undesirabledermatological condition 410 to be treated. As described above therobot arm assembly 120 may be mounted onto a movable rack further incorporating the controlling unit (not shown). The operator further defines thearea 501 intended for treatment on patient's skin surface. Thearea 501 may be defined by drawing straight lines in x and y directions around or within thedermatological condition 410, with or without a reference mark, and measuring length and width of a rectangular thus obtained. In the example shown onFIG. 6 thearea 501 is therefore rectangular and entirely incorporates thecondition 410. In some particular instances the operator may define the shape of thearea 501 as being other than rectangular, such as square, triangular, circular and the like, whether appropriate. Also more complex shapes are not excluded. In some other instances thearea 501 may not necessarily incorporate theentire condition 410; therefore, in case of large and very large dermatological conditions to be treated, such as large tattoos, for example, the operator may have to determine thearea 501 within thedermatological condition 410, in which case thearea 501 includes thecondition 410 only partly. - The operator further inputs measured parameters and other patient-related data into the
processing unit 111. Patient-related parameters may thus be selected from the group consisting of: dimensional parameters, such as length, width, diameter, radius etc., of theskin surface area 501 intended for treatment, skin color, type of the dermatological condition and a pigment color, whether the dermatological condition is tattoo. Mentioned parameters may be input manually or at least partly automatically, by means of photographing thedermatological condition 410 intended for treatment, for example. The operator further inputs and/or adjusts laser parameters, such as power, pulse duration, spot diameter, pulse frequency, a number of pulses per a unit of time, and optionally a wavelength. Further operational stages are advantageously performed by thesystem 100 in an operator-independent manner. - Based on the patient-related parameter data input into the processing unit 111 a
virtual field model 502 is created. Themodel 502 constitutes a two-dimensional representation of theskin surface area 501, whose boundaries are determined by virtual axes x and y, corresponding to length and width of theskin surface area 501. Parameters forgrid 503 formation are further determined. Upon grid formation themodel 502 is split into a number ofsub-areas 504, preferably equal-sized, further referred to as squares. In one preferred embodiment the size of each sub-area 504 is 1 square inch (1″×1″). Dimensional calculations for each square 504 include the amount of spatial deviation intended to correct errors caused by skin surface irregularities and/or degree of curvature. In fact, each square 504 in thegrid 503 comprises a border edge by which extent it overlaps with the neighboring squares. Dimensions of such overlapping edges (“joint seams”) can be standardized or determined case-wise. In practice, width of the border edge around eachindividual square 504 may vary within a range of 10-25% with respect to the width of a single square, thus constituting 0.1-0.25 inch. The data on thefield model 502 and thegrid 503 is stored in the memory of theprocessing unit 111. - Data on thus formed
grid 503 is further communicated to the controlling unit 110 (not shown), in which said data is transformed to a number of commands for therobot arm assembly 120. Therobot arm assembly 120 is further configured, by means of the proximity sensors provided in thelaser head 101, to estimate a starting position of thelaser head 101 with regards to theskin surface area 501 based on thevirtual model 502 and thegrid 503. Theskin surface area 501 intended for treatment may thus be considered as comprising a number ofindividual portions 501 a, eachportion 501 a corresponding to a relatedvirtual sub-area 504. Determination of the starting position includes selection of a “first”virtual sub-area 504 and selection of a certain location therewithin (i.e. corner or center) and further acquisition of a starting point within the relatedskin portion 501 a, corresponding to said “first”sub-area 504. As an exemplary first sub-area, indicative of a starting position hereby, a square at the lower left corner of thegrid 503 may be selected (marked by a capital “S”,FIG. 6 ). The starting position of thelaser head 101 with regards to each subsequentvirtual sub-area 504 and therelated skin portion 501 a, accordingly, may be determined in the same manner. - Selection of a starting position within the
virtual model 502 and selection of the directions along x and y axes for a “row-wise” movement of therobot arm 201 carrying thelaser head 101 may be pre-programmed; however manual input, selection and/or modification thereof is preferably made available. Thelaser head 101 is then positioned such that lasing beam trajectory would form an essentially right angle with an imaginary line on the skin surface it falls onto. The term “essentially right angle” is used in the present disclosure to indicate an angle formed between a lasing beam and a skin surface being within a range of 60° to 90°. Acquisition of a starting point, i.e. of a point within theskin portion 501 a, corresponding to the “first” virtual sub-area 504 (“S”), and within each subsequent skin portion includes positioning of thelaser head 101 with regard to each of said skin portions, implemented preferably by means of three distinct solid state proximity sensors, as disclosed above, in order to attain a “three-point” measurement. However, in case thedermatological condition 410 is very small, such as a small tattoo located on a finger, for example, proximity measurement(s) may be omitted. - After the
laser head 101 has been aligned with respect to the aforesaid starting point within theskin portion 501 a corresponding to the “first” virtual sub-area 504 (“S”), an image of saidskin portion 501 a is acquired by means of the image acquisition device, such as a color camera, provided within thelaser head 101. Thus, eachindividual skin portion 501 a being captured at a time by the image acquisition device corresponds to a singlevirtual square 504 and constitutes 1 square inch (1″×1″). Upon capturingindividual skin portions 501 a the image acquisition device is preferably adjusted to additionally include the abovementioned spatial deviation correction data. - Proximity measurement data obtained by the proximity sensor(s) and data on captured images obtained by the image acquisition device, such as a color camera, for each
individual skin region 501 a are transmitted to the controllingunit 110 and/or theprocessing unit 111 for processing and reconstruction of thedermatological condition 410 within thevirtual field model 502 and thegrid 503. During reconstruction it is preferably monitored to which extent the images obtained from eachskin portion 501 a overlap with each other; the overlapping edges are further removed automatically by means of an appropriate computer program product, according to some further aspect of the invention. - Once reconstruction is complete the
processing unit 111 is configured to issue a “START” command for initiating a series of actions performed by therobot arm assembly 120 and resulting in the removal of thedermatological condition 410 within the pre-definedskin surface area 501. In particular, therobot arm 102 is set to the starting position (“S”) and laser supply from the laser source to thelaser head 101 is initiated. The command(s) issued by theprocessing unit 111 are advantageously mediated by the controllingunit 110. Thesystem 100 is preferably configured to notify the personnel and the patient by a sound signal, for example, on its readiness for starting laser supply onto skin. Sound notification may be issued by theprocessing unit 111 and/or the controllingunit 110, accordingly. In some embodiments the lasing beam delivery onto skin after issuing a notification may be initiated automatically, within a predetermined time period (e.g. 30 sec after notification). In some other embodiments thesystem 100 may be configured to request confirmation for the start, optionally password-protected. - Upon receiving the “START” command the
robot arm assembly 120 acquires the starting position (“S”) and laser supply to thelaser head 101 is therefore initiated. Directing of the lasing beam towards the dermatological condition 410 (FIG. 6 ) follows the same principles as described above with respect to proximity measurements and image capturing of theindividual skin portions 501 a. Laser ablation is thus executed square-wise in accordance with proximity and image data obtained beforehand.FIG. 6 schematically illustrates an event of laser ablation occurring within theindividual skin portion 501 a, provided herewith as a “projection” of the virtual sub-area 504 (black square), by means of thelasing beam 310 emitted by the laser head 101 (for clarity purposes theactual skin portion 501 a is omitted from the schematics of laser ablation visualization). - Throughout the laser-assisted treatment of the
dermatological condition 410 conducted within eachindividual skin portion 501 a, the proximity sensor(s) and/or the image acquisition device provided within thelaser head 101 are configured to continuously execute real-time proximity measurements and/or to acquire digital images, accordingly, of skin surface within eachskin portion 501 a with predetermined frequency and in predetermined timeframe. Thus obtained data is continuously transmitted to the controllingunit 110 and/or theprocessing unit 111 for real-time processing. During processing the parameters for thevirtual field model 502 and thegrid 503 are updated, adjusted and communicated back to therobot arm assembly 120 via the controllingunit 110 or directly. Therobot arm assembly 120 is configured, in response to the updated command received from the controllingunit 110, to adjust the position of therobot arm 102 and/or thelaser head 101 with respect to theindividual skin portion 501 a being treated. A feedback loop control over therobot arm assembly 120 is thus implemented. - The laser-assisted treatment of the
dermatological condition 410 at least partly comprised within the boundaries of the pre-definedskin surface area 501 is completed when allindividual skin portions 501 a defined within saidarea 501 have undergone laser ablation. - As a consequence of the above-described “square-wise” approach and continuous, real- time updating of the individual skin portions' 501 a related parameters, the lasing beam can be directed throughout the
dermatological condition 410 within thepredetermined area 501 with an extremely high precision. The approach additionally allows for avoiding ablation of pigment-free skin surface areas. - According to some other embodiment the
system 100 may be configured to proceed directly to the laser-assisted removal of thedermatological condition 410 having the steps of preliminary obtaining a series of parameters data for eachindividual skin portion 501 a via the proximity sensor(s) and the image acquisition device omitted from the laser-assisted treatment. In such an embodiment obtaining the parameter data from eachindividual skin portion 501 a, directing laser energy thereto and issuing a series of updated commands to therobot arm assembly 120 based on said parameter data is executed simultaneously for eachindividual skin portion 501 a. - Additionally or alternatively, the
system 100 may require indicating, by a marker, for example, of an at least one reference point on patient's skin. The reference point may thus be used for determination and/or acquisition of the starting point (“S”) as disclosed above, and for adjusting positional data during laser ablation within eachindividual skin portion 501 a. - The
system 100 preferably comprises manual ON/OFF switch control(s) and PAUSE control(s) and/or an emergency ON/OFF switch control for theentire system 100 and/or each of the laser supply, therobot arm assembly 120, the controllingunit 110 and theprocessing unit 111. - An exemplary laser-assisted treatment executed by the
system 100 is illustrated byFIG. 7 , said treatment being a tattoo removal. Figure on the left shows the undesirabledermatological condition 410, being a tattoo, prior to treatment, and figure on the right shows the same during the course of the treatment (60 seconds from the beginning). Size of thetattoo 410 being treated is about 2×3 cm. Based onFIG. 7 one can ascertain that, additional of being highly precise, the laser-assisted tattoo removal executed by thesystem 100 is times faster when compared to that manually performed by the operator. - In another aspect of the invention a method for operating and real-time controlling the
automated system 100 for laser-assisted removal of undesirable dermatological condition from patient's skin is provided. The method comprises at least the following steps: - a. Generating and storing a virtual two-
dimensional model 502 of a pre-definedskin surface area 501 intended for treatment, identifying a number ofsub-areas 504 within saidmodel 502, wherein each sub-area 504 corresponds to anindividual skin portion 501 a within the boundaries of the pre-definedskin surface area 501 intended for treatment, and issuing a series of commands to therobot arm assembly 120 to acquire a starting position with respect to thesurface area 501 intended for treatment. - b. For each
individual skin portion 501 a obtaining a series of parameter data by means of an at least one proximity sensor and an image acquisition device provided within thelaser head 101. - c. Directing, via the
laser head 101, laser energy to eachindividual skin portion 501 a. - d. Based on the parameter data obtained at step (b) issuing a series of updated commands to each of the
robot arm 102 and thelaser head 101 continuously during executing step (c) for eachindividual skin portion 501 a. - e. Repeating steps (c) and (d) for each
individual skin portion 501 a within the pre-definedskin surface area 501. - In some embodiment the method is configured such that the steps (b), (c) and (d) are executed simultaneously within each
individual skin portion 501 a. - In some further aspect a computer program product is provided, said computer program product being embodied in a non-transitory computer readable medium, comprising computer code for causing the computer to execute the method items of the previous aspect. A computer is advantageously the
processing unit 111, according to the definition hereinabove. A computer program, also referred to as a program, software, software application, or code, can be written in any form of programming language, including compiled or interpreted languages, and it can be provided in any form, including a standalone program, a module, a component, a subroutine or any other unit suitable for use in a computing environment. A computer program can be configured to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a wired or wireless communication network. - It is clear to a person skilled in the art that with the advancement of technology the basic ideas of the present invention are intended to cover various modifications and equivalent arrangements included in the spirit and the scope thereof The invention and its embodiments are thus not limited to the examples described above; instead they may generally vary within the scope of the appended claims.
Claims (14)
1. An automated system for laser-assisted removal of an undesirable dermatological condition from skin, which system comprises
a robot arm assembly, comprising a laser head coupled to an articulated robot arm, and
a controlling unit,
said system is configured to sequentially direct, via the laser head, laser energy to a number of pre-determined, individual portions of skin identified within the boundaries of a pre-defined skin surface area intended for treatment and at least partly comprising said undesirable dermatological condition,
wherein the controlling unit is configured to adjust positioning of the robot arm assembly with respect to each individual skin portion and directing laser energy thereto in real time,
said controlling unit is further configured to receive a series of parameter data obtainable from an at least one proximity sensor and an image acquisition device provided within the laser head and,
based on said parameter data, to issue a series of updated commands to each of the robot arm and the laser head continuously throughout the treatment.
2. The automated system of claim 1 , further comprising a processing unit configured to generate and store a virtual model of the pre-defined skin surface area intended for treatment, to identify a number of sub-areas within said model, wherein each sub-area corresponds to the individual skin portion within the boundaries of the pre-defined skin surface area intended for treatment, and to communicate the data on thus identified sub-areas to the controlling unit and/or the robot arm assembly.
3. The automated system of claim 2 , wherein the processing unit is further configured to update and adjust the stored model based on the series of parameter data received from the controlling unit and/or the robot arm assembly and to communicate thus updated and adjusted model data to the controlling unit and/or the robot arm assembly, wherein updating, adjusting and communicating the model data is executed in real time and continuously throughout the treatment.
4. The automated system of claim 2 , in which the controlling unit is combined with the processing unit.
5. The automated system of claim 1 , comprising within the laser head three proximity sensors disposed on a pre-determined distance from each other.
6. The automated system of claim 1 , wherein the laser is a Nd:YAG laser.
7. The automated system of claim 1 , further comprising a treatment platform for accommodating a patient.
8. The automated system of claim 2 , wherein each sub-area identified within the virtual model and each related individual skin portion within the pre-defined skin surface area intended for treatment constitutes one square inch.
9. The automated system of claim 2 , wherein dimensional calculations for each sub-area additionally include a pre-determined amount of spatial deviation for correcting errors caused by skin surface irregularities and/or degree of curvature thereof.
10. The automated system of claim 1 , configured for laser-assisted removal of a tattoo.
11. The automated system of claim 1 , configured for laser-assisted removal of the undesirable dermatological condition selected from the group consisting of: scars, birthmarks, moles, freckles, lentigines, solar lentigo and hyperpigmentation.
12. A method for operating an automated system for laser-assisted removal of an undesirable dermatological condition from skin, which system comprises a robot arm assembly, comprising a laser head coupled to an articulated robot arm, a controlling unit and a processing unit, said method comprising:
a. generating and storing a virtual two-dimensional model of a pre-defined skin surface area intended for treatment, identifying a number of sub-areas within said model, wherein each sub-area corresponds to an individual skin portion within the boundaries of the pre-defined skin surface area intended for treatment, and issuing a series of commands to the robot arm assembly to acquire a starting position with respect to the surface area intended for treatment;
b. for each individual skin portion obtaining a series of parameter data by means of an at least one proximity sensor and an image acquisition device provided within the laser head;
c. directing, via the laser head, laser energy to each individual skin portion;
d. based on the parameter data obtained at the method item (b) issuing a series of updated commands to each of the robot arm and the laser head continuously during executing the method item (c) for each individual skin portion;
e. repeating the method items (c) and (d) for each individual skin portion within the pre-defined skin surface area.
13. The method of claim 12 , wherein the method items (b), (c) and (d) are executed simultaneously within each individual skin portion.
14. A computer program product embodied in a non-transitory computer readable medium and comprising computer code for causing the computer to execute the method items of claim 12 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/655,583 US11426238B2 (en) | 2015-11-02 | 2019-10-17 | Automated system for laser-assisted dermatological treatment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20155784 | 2015-11-02 | ||
FI20155784A FI20155784A7 (en) | 2015-11-02 | 2015-11-02 | Automated system for laser-assisted dermatological treatment and control method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/655,583 Continuation US11426238B2 (en) | 2015-11-02 | 2019-10-17 | Automated system for laser-assisted dermatological treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170119466A1 true US20170119466A1 (en) | 2017-05-04 |
Family
ID=57249694
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/337,112 Abandoned US20170119466A1 (en) | 2015-11-02 | 2016-10-28 | Automated system for laser-assisted dermatological treatment and control method |
US16/655,583 Active 2037-09-05 US11426238B2 (en) | 2015-11-02 | 2019-10-17 | Automated system for laser-assisted dermatological treatment |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/655,583 Active 2037-09-05 US11426238B2 (en) | 2015-11-02 | 2019-10-17 | Automated system for laser-assisted dermatological treatment |
Country Status (3)
Country | Link |
---|---|
US (2) | US20170119466A1 (en) |
EP (1) | EP3162407B1 (en) |
FI (1) | FI20155784A7 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2692936C1 (en) * | 2018-08-21 | 2019-06-28 | Виталий Александрович Микрюков | Skin tattoo removal method |
WO2019148428A1 (en) * | 2018-02-01 | 2019-08-08 | Abb Schweiz Ag | Vision-based operation for robot |
US20210038426A1 (en) * | 2018-01-25 | 2021-02-11 | Keranova | Device and method for controlling the movement of an ocular therapy apparatus including an articulated support arm |
US10918448B2 (en) * | 2017-03-29 | 2021-02-16 | Verb Surgical Inc. | Surgical table base construction for heat dissipation from housed power electronics |
CN113290562A (en) * | 2021-05-28 | 2021-08-24 | 上海禾苗创先智能科技有限公司 | Control method and device of laser physical therapy robot, computer equipment and storage medium |
WO2023091603A1 (en) * | 2021-11-18 | 2023-05-25 | Epilady 2000 Llc | System and method for pigment removal |
US20240277409A1 (en) * | 2020-12-11 | 2024-08-22 | Nuvasive, Inc. | Robotic surgery |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017223120A1 (en) * | 2016-06-20 | 2017-12-28 | Avra Medical Robotics, Inc. | Robotic medical apparatus, system, and method |
DE102017116004A1 (en) * | 2017-07-17 | 2019-01-17 | Kuka Industries Gmbh | Robots and methods for treating surfaces |
FR3094124B1 (en) * | 2019-03-21 | 2022-08-12 | Squaremind | METHOD FOR GUIDING A ROBOT ARM, GUIDANCE SYSTEM |
EP4054462A1 (en) * | 2019-11-08 | 2022-09-14 | Epilady 2000 LLC | Device, system and method for removal of hair |
CN112587802B (en) * | 2020-12-07 | 2021-12-07 | 盐城东紫光电科技有限公司 | Pulse phototherapy equipment with adsorption function |
US12137997B2 (en) | 2022-05-17 | 2024-11-12 | BellaMia Technologies, Inc. | Systems and methods for laser skin treatment |
US11931102B2 (en) | 2022-05-17 | 2024-03-19 | BellaMia Technologies, Inc. | Laser treatment safety system |
US11819708B1 (en) | 2022-05-17 | 2023-11-21 | BellaMia Technologies, Inc. | Robotic laser treatment safety system |
US12011221B2 (en) | 2022-05-17 | 2024-06-18 | BellaMia Technologies, Inc. | Multiple laser wavelength treatment device |
US12239846B2 (en) | 2022-05-17 | 2025-03-04 | BellaMia Technologies, Inc. | Systems and methods for 3D robotic laser treatment interface |
CN115192919A (en) * | 2022-08-03 | 2022-10-18 | 武汉盛大康成医药科技有限公司 | Red and blue light therapeutic robot and red and blue light therapeutic system |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020065461A1 (en) * | 1991-01-28 | 2002-05-30 | Cosman Eric R. | Surgical positioning system |
US20030192557A1 (en) * | 1998-05-14 | 2003-10-16 | David Krag | Systems and methods for locating and defining a target location within a human body |
US6887233B2 (en) * | 2001-03-22 | 2005-05-03 | Lumenis, Inc. | Scanning laser handpiece with shaped output beam |
US7108690B1 (en) * | 1999-04-14 | 2006-09-19 | Koninklijke Philips Electronics N.V. | Hair-removing device with a controllable laser source |
US20060279698A1 (en) * | 2003-06-12 | 2006-12-14 | Carl Zeiss Meditec Ag | Method and device for determining movement of a human eye |
US20070236514A1 (en) * | 2006-03-29 | 2007-10-11 | Bracco Imaging Spa | Methods and Apparatuses for Stereoscopic Image Guided Surgical Navigation |
US20080024763A1 (en) * | 2006-06-30 | 2008-01-31 | Chian Chiu Li | Optical Interferometer And Method |
US20080033420A1 (en) * | 2006-08-04 | 2008-02-07 | Nields Morgan W | Methods for planning and performing thermal ablation |
US20080171930A1 (en) * | 2007-01-16 | 2008-07-17 | Ar2 Partners, Inc. | Method and apparatus for positioning an instrument in a predetermined region within a patient's body |
US20080188839A1 (en) * | 2007-02-06 | 2008-08-07 | Reliant Technologies, Inc. | Method and apparatus for monitoring and controlling laser-induced tissue treatment |
US20090131922A1 (en) * | 2007-11-07 | 2009-05-21 | Reliant Technologies, Inc. | Reconnectable Handpieces for Optical Energy Based Devices and Methods for Adjusting Device Components |
US20090306498A1 (en) * | 2008-06-06 | 2009-12-10 | Restoration Robotics, Inc. | Systems and Methods for Improving Follicular Unit Harvesting |
US20100114080A1 (en) * | 2008-11-05 | 2010-05-06 | Theriault Richard H | Apparatus, system and method for medical treatment |
US7720306B2 (en) * | 2005-08-29 | 2010-05-18 | Photomed Technologies, Inc. | Systems and methods for displaying changes in biological responses to therapy |
US20100185087A1 (en) * | 2006-08-04 | 2010-07-22 | Nields Morgan W | Methods and apparatuses for performing and monitoring thermal ablation |
US20100312096A1 (en) * | 2009-06-08 | 2010-12-09 | Michael Guttman | Mri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time |
US20110083696A1 (en) * | 2009-10-08 | 2011-04-14 | Nuventys Inc. | Laser Induced Shockwave Surface Cleaning |
US20110166560A1 (en) * | 2010-01-07 | 2011-07-07 | Solar System Beauty Corporation | Skin care laser device |
US7993289B2 (en) * | 2003-12-30 | 2011-08-09 | Medicis Technologies Corporation | Systems and methods for the destruction of adipose tissue |
US20110218597A1 (en) * | 2010-03-02 | 2011-09-08 | Bwt Property, Inc. | Precisely Guided Phototherapy Apparatus |
US20120071794A1 (en) * | 2010-09-20 | 2012-03-22 | Alma Lasers Ltd. | Robotic System for Delivering Energy for Treatment of Skin of a Subject |
US8182473B2 (en) * | 1999-01-08 | 2012-05-22 | Palomar Medical Technologies | Cooling system for a photocosmetic device |
US20120158019A1 (en) * | 2010-12-21 | 2012-06-21 | Tenney John A | Methods and systems for directing movement of a tool in hair transplantation procedures |
US20130190776A1 (en) * | 2010-12-21 | 2013-07-25 | Restoration Robotics, Inc. | Methods and Systems for Directing Movement of a Tool in Hair Transplantation Procedures |
US20130261446A1 (en) * | 2010-11-10 | 2013-10-03 | Siemens Corporation | Robotic Navigated Nuclear Probe Imaging |
US20130274582A1 (en) * | 2010-12-30 | 2013-10-17 | Valtino X. Afonso | System and Method for Diagnosing Arrhythmias and Directing Catheter Therapies |
US20130345718A1 (en) * | 2007-02-16 | 2013-12-26 | Excelsius Surgical, L.L.C. | Surgical robot platform |
US20140067024A1 (en) * | 2012-08-30 | 2014-03-06 | Photocure Asa | Dual panel photodynamic therapy lamp |
US20140188128A1 (en) * | 2012-12-31 | 2014-07-03 | Paul Joseph Weber | Systems, apparatus and methods for tissue dissection and modification |
US20140261467A1 (en) * | 2013-03-15 | 2014-09-18 | Restoration Robotics, Inc. | Systems and Methods for Planning Hair Transplantation |
US20140350571A1 (en) * | 2011-11-30 | 2014-11-27 | Medtech | Robotic-assisted device for positioning a surgical instrument relative to the body of a patient |
US20150051725A1 (en) * | 2012-04-30 | 2015-02-19 | Kohyoung Technology Inc. | Method of verifying a surgical operation image matching and method of compensating a surgical operation image matching |
US20150049081A1 (en) * | 2013-08-13 | 2015-02-19 | Dane Coffey | Computer Visualization of Anatomical Items |
US20150287236A1 (en) * | 2012-11-05 | 2015-10-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Imaging system, operating device with the imaging system and method for imaging |
US20160030134A1 (en) * | 2014-07-31 | 2016-02-04 | Restoration Robotics, Inc. | Robotic Hair Transplantation System with Touchscreen Interface for Controlling Movement of Tool |
US20160324664A1 (en) * | 2014-08-20 | 2016-11-10 | Cameron Piron | Intra-operative determination of dimensions for fabrication of artificial bone flap |
US10004530B2 (en) * | 2014-07-31 | 2018-06-26 | Restoration Robotics, Inc. | Systems and methods for creating hair transplantation procedure sites |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080051773A1 (en) * | 1997-10-08 | 2008-02-28 | Sergei Ivanov | Automated Treatment of Psoriasis |
US6165170A (en) | 1998-01-29 | 2000-12-26 | International Business Machines Corporation | Laser dermablator and dermablation |
US20030060810A1 (en) | 2000-02-16 | 2003-03-27 | Diego Syrowicz | Method and apparatus for treating and/or removing an undesired presence on the skin of an individual |
JP2002000745A (en) | 2000-06-16 | 2002-01-08 | Nidek Co Ltd | Laser therapeutic device |
WO2005119025A2 (en) * | 2004-06-01 | 2005-12-15 | Spectrum Dynamics Llc | Radioactive-emission-measurement optimization to specific body structures |
WO2004042546A1 (en) * | 2002-11-04 | 2004-05-21 | V-Target Technologies Ltd. | Apparatus and methods for imaging and attenuation correction |
US8565860B2 (en) * | 2000-08-21 | 2013-10-22 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system |
US20020193685A1 (en) * | 2001-06-08 | 2002-12-19 | Calypso Medical, Inc. | Guided Radiation Therapy System |
US8010180B2 (en) * | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
US20030236487A1 (en) * | 2002-04-29 | 2003-12-25 | Knowlton Edward W. | Method for treatment of tissue with feedback |
US7469160B2 (en) * | 2003-04-18 | 2008-12-23 | Banks Perry S | Methods and apparatus for evaluating image focus |
US20040206365A1 (en) * | 2003-03-31 | 2004-10-21 | Knowlton Edward Wells | Method for treatment of tissue |
US20110028212A1 (en) * | 2004-07-01 | 2011-02-03 | David Krien | Computerized Imaging of Sporting Trophies and Method of Providing a Replica |
US20060207978A1 (en) * | 2004-10-28 | 2006-09-21 | Rizun Peter R | Tactile feedback laser system |
US7929579B2 (en) | 2006-08-02 | 2011-04-19 | Cynosure, Inc. | Picosecond laser apparatus and methods for its operation and use |
US7586957B2 (en) | 2006-08-02 | 2009-09-08 | Cynosure, Inc | Picosecond laser apparatus and methods for its operation and use |
US9084622B2 (en) | 2006-08-02 | 2015-07-21 | Omnitek Partners Llc | Automated laser-treatment system with real-time integrated 3D vision system for laser debridement and the like |
US8574276B2 (en) * | 2007-01-17 | 2013-11-05 | Lerner Medical Devices, Inc. | Fiber optic brush for light delivery |
EP2104450A1 (en) * | 2007-01-17 | 2009-09-30 | Lerner Medical Devices, Inc. | Light source and fiber optic brush for light delivery |
US8036448B2 (en) * | 2007-04-05 | 2011-10-11 | Restoration Robotics, Inc. | Methods and devices for tattoo application and removal |
US8494227B2 (en) * | 2007-04-17 | 2013-07-23 | Francine J. Prokoski | System and method for using three dimensional infrared imaging to identify individuals |
US8187256B2 (en) | 2007-06-15 | 2012-05-29 | Alexander J Smits | Tattoo removal and other dermatological treatments using multi-photon processing |
WO2009005748A1 (en) * | 2007-06-29 | 2009-01-08 | The Trustees Of Columbia University In The City Ofnew York | Optical imaging or spectroscopy systems and methods |
US8382765B2 (en) * | 2007-08-07 | 2013-02-26 | Stryker Leibinger Gmbh & Co. Kg. | Method of and system for planning a surgery |
EP2559535A3 (en) * | 2008-09-26 | 2016-09-07 | Mikro Systems Inc. | Systems, devices, and/or methods for manufacturing castings |
US8641621B2 (en) * | 2009-02-17 | 2014-02-04 | Inneroptic Technology, Inc. | Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures |
US8454627B2 (en) * | 2009-03-11 | 2013-06-04 | Restoration Robotics, Inc. | Systems and methods for harvesting and implanting hair using image-generated topological skin models |
US8048090B2 (en) * | 2009-03-11 | 2011-11-01 | Restoration Robotics, Inc. | System and method for harvesting and implanting hair using image-generated topological skin models |
US8823775B2 (en) * | 2009-04-30 | 2014-09-02 | Board Of Regents, The University Of Texas System | Body surface imaging |
EP2451527B1 (en) * | 2009-07-09 | 2018-11-21 | Koninklijke Philips N.V. | Skin radiation apparatus |
WO2011134083A1 (en) * | 2010-04-28 | 2011-11-03 | Ryerson University | System and methods for intraoperative guidance feedback |
US8849015B2 (en) * | 2010-10-12 | 2014-09-30 | 3D Systems, Inc. | System and apparatus for haptically enabled three-dimensional scanning |
EP2677938B1 (en) * | 2011-02-22 | 2019-09-18 | Midmark Corporation | Space carving in 3d data acquisition |
EP2500740A1 (en) * | 2011-03-17 | 2012-09-19 | Koninklijke Philips Electronics N.V. | Accelerated magnetic resonance thermometry |
US9173708B2 (en) * | 2011-03-30 | 2015-11-03 | Tria Beauty, Inc. | Dermatological treatment device with one or more laser diode bar |
US9129277B2 (en) * | 2011-08-30 | 2015-09-08 | Digimarc Corporation | Methods and arrangements for identifying objects |
WO2013033566A1 (en) * | 2011-09-02 | 2013-03-07 | Stryker Corporation | Surgical instrument including a cutting accessory extending from a housing and actuators that establish the position of the cutting accessory relative to the housing |
EP2839552A4 (en) | 2012-04-18 | 2015-12-30 | Cynosure Inc | PICOSECOND LASER APPARATUS AND METHOD OF PROCESSING TARGET TISSUES USING THE SAME |
US10553130B2 (en) * | 2012-05-03 | 2020-02-04 | Regents Of The University Of Minnesota | Systems and methods for analyzing surgical techniques |
US8795359B2 (en) * | 2012-06-13 | 2014-08-05 | Elwha Llc | Breast implant with regionalized analyte sensors and internal power source |
US20140276200A1 (en) * | 2013-03-15 | 2014-09-18 | Covidien Lp | Microwave energy-delivery device and system |
US9196084B2 (en) * | 2013-03-15 | 2015-11-24 | Urc Ventures Inc. | Determining object volume from mobile device images |
WO2015061756A1 (en) * | 2013-10-24 | 2015-04-30 | Auris Surgical Robotics, Inc. | System for robotic-assisted endolumenal surgery and related methods |
EP3074951B1 (en) * | 2013-11-25 | 2022-01-05 | 7D Surgical ULC | System and method for generating partial surface from volumetric data for registration to surface topology image data |
US20150310601A1 (en) * | 2014-03-07 | 2015-10-29 | Digimarc Corporation | Methods and arrangements for identifying objects |
DE102014106960A1 (en) * | 2014-05-16 | 2015-11-19 | Faindu Gmbh | Method for displaying a virtual interaction on at least one screen and input device, system and method for a virtual application by means of a computing unit |
WO2015191605A1 (en) * | 2014-06-09 | 2015-12-17 | The Johns Hopkins University | Virtual rigid body optical tracking system and method |
US10617401B2 (en) * | 2014-11-14 | 2020-04-14 | Ziteo, Inc. | Systems for localization of targets inside a body |
WO2016154557A1 (en) * | 2015-03-26 | 2016-09-29 | Universidade De Coimbra | Methods and systems for computer-aided surgery using intra-operative video acquired by a free moving camera |
WO2017030557A1 (en) * | 2015-08-17 | 2017-02-23 | Orthogrid Systems, Inc. | A surgical positioning system, apparatus and method of use |
BR112019003315B1 (en) * | 2016-09-01 | 2023-12-26 | RefloDx, LLC | SYSTEMS TO MONITOR AND CHARACTERIZE THE ESOPHAGEAL STATUS OF THE ESOPHAGUS, TO CHARACTERIZE ESOPHAGEAL EVENTS, TO ANALYZE CHANGES IN TIME AT VARIOUS ACOUSTIC FRAMEWORKS, TO MONITOR AND CHARACTERIZE PATIENT ESOPHAGEAL STATUS, AND TO DETECT AND CHARACTERIZE ESOPHAGEAL STATUS |
-
2015
- 2015-11-02 FI FI20155784A patent/FI20155784A7/en not_active Application Discontinuation
-
2016
- 2016-10-28 US US15/337,112 patent/US20170119466A1/en not_active Abandoned
- 2016-10-31 EP EP16196541.3A patent/EP3162407B1/en active Active
-
2019
- 2019-10-17 US US16/655,583 patent/US11426238B2/en active Active
Patent Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020065461A1 (en) * | 1991-01-28 | 2002-05-30 | Cosman Eric R. | Surgical positioning system |
US20030192557A1 (en) * | 1998-05-14 | 2003-10-16 | David Krag | Systems and methods for locating and defining a target location within a human body |
US8182473B2 (en) * | 1999-01-08 | 2012-05-22 | Palomar Medical Technologies | Cooling system for a photocosmetic device |
US7108690B1 (en) * | 1999-04-14 | 2006-09-19 | Koninklijke Philips Electronics N.V. | Hair-removing device with a controllable laser source |
US6887233B2 (en) * | 2001-03-22 | 2005-05-03 | Lumenis, Inc. | Scanning laser handpiece with shaped output beam |
US20060279698A1 (en) * | 2003-06-12 | 2006-12-14 | Carl Zeiss Meditec Ag | Method and device for determining movement of a human eye |
US7993289B2 (en) * | 2003-12-30 | 2011-08-09 | Medicis Technologies Corporation | Systems and methods for the destruction of adipose tissue |
US7720306B2 (en) * | 2005-08-29 | 2010-05-18 | Photomed Technologies, Inc. | Systems and methods for displaying changes in biological responses to therapy |
US20070236514A1 (en) * | 2006-03-29 | 2007-10-11 | Bracco Imaging Spa | Methods and Apparatuses for Stereoscopic Image Guided Surgical Navigation |
US20080024763A1 (en) * | 2006-06-30 | 2008-01-31 | Chian Chiu Li | Optical Interferometer And Method |
US20080033420A1 (en) * | 2006-08-04 | 2008-02-07 | Nields Morgan W | Methods for planning and performing thermal ablation |
US20100185087A1 (en) * | 2006-08-04 | 2010-07-22 | Nields Morgan W | Methods and apparatuses for performing and monitoring thermal ablation |
US20080171930A1 (en) * | 2007-01-16 | 2008-07-17 | Ar2 Partners, Inc. | Method and apparatus for positioning an instrument in a predetermined region within a patient's body |
US20080188839A1 (en) * | 2007-02-06 | 2008-08-07 | Reliant Technologies, Inc. | Method and apparatus for monitoring and controlling laser-induced tissue treatment |
US20130345718A1 (en) * | 2007-02-16 | 2013-12-26 | Excelsius Surgical, L.L.C. | Surgical robot platform |
US20090131922A1 (en) * | 2007-11-07 | 2009-05-21 | Reliant Technologies, Inc. | Reconnectable Handpieces for Optical Energy Based Devices and Methods for Adjusting Device Components |
US20090306498A1 (en) * | 2008-06-06 | 2009-12-10 | Restoration Robotics, Inc. | Systems and Methods for Improving Follicular Unit Harvesting |
US20100114080A1 (en) * | 2008-11-05 | 2010-05-06 | Theriault Richard H | Apparatus, system and method for medical treatment |
US20100312096A1 (en) * | 2009-06-08 | 2010-12-09 | Michael Guttman | Mri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time |
US20110083696A1 (en) * | 2009-10-08 | 2011-04-14 | Nuventys Inc. | Laser Induced Shockwave Surface Cleaning |
US20110166560A1 (en) * | 2010-01-07 | 2011-07-07 | Solar System Beauty Corporation | Skin care laser device |
US20110218597A1 (en) * | 2010-03-02 | 2011-09-08 | Bwt Property, Inc. | Precisely Guided Phototherapy Apparatus |
US20120071794A1 (en) * | 2010-09-20 | 2012-03-22 | Alma Lasers Ltd. | Robotic System for Delivering Energy for Treatment of Skin of a Subject |
US20130261446A1 (en) * | 2010-11-10 | 2013-10-03 | Siemens Corporation | Robotic Navigated Nuclear Probe Imaging |
US20120158019A1 (en) * | 2010-12-21 | 2012-06-21 | Tenney John A | Methods and systems for directing movement of a tool in hair transplantation procedures |
US20130190776A1 (en) * | 2010-12-21 | 2013-07-25 | Restoration Robotics, Inc. | Methods and Systems for Directing Movement of a Tool in Hair Transplantation Procedures |
US20130274582A1 (en) * | 2010-12-30 | 2013-10-17 | Valtino X. Afonso | System and Method for Diagnosing Arrhythmias and Directing Catheter Therapies |
US20140350571A1 (en) * | 2011-11-30 | 2014-11-27 | Medtech | Robotic-assisted device for positioning a surgical instrument relative to the body of a patient |
US20150051725A1 (en) * | 2012-04-30 | 2015-02-19 | Kohyoung Technology Inc. | Method of verifying a surgical operation image matching and method of compensating a surgical operation image matching |
US20140067024A1 (en) * | 2012-08-30 | 2014-03-06 | Photocure Asa | Dual panel photodynamic therapy lamp |
US20150287236A1 (en) * | 2012-11-05 | 2015-10-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Imaging system, operating device with the imaging system and method for imaging |
US20140188128A1 (en) * | 2012-12-31 | 2014-07-03 | Paul Joseph Weber | Systems, apparatus and methods for tissue dissection and modification |
US20140261467A1 (en) * | 2013-03-15 | 2014-09-18 | Restoration Robotics, Inc. | Systems and Methods for Planning Hair Transplantation |
US20150049081A1 (en) * | 2013-08-13 | 2015-02-19 | Dane Coffey | Computer Visualization of Anatomical Items |
US20160030134A1 (en) * | 2014-07-31 | 2016-02-04 | Restoration Robotics, Inc. | Robotic Hair Transplantation System with Touchscreen Interface for Controlling Movement of Tool |
US10004530B2 (en) * | 2014-07-31 | 2018-06-26 | Restoration Robotics, Inc. | Systems and methods for creating hair transplantation procedure sites |
US20160324664A1 (en) * | 2014-08-20 | 2016-11-10 | Cameron Piron | Intra-operative determination of dimensions for fabrication of artificial bone flap |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10918448B2 (en) * | 2017-03-29 | 2021-02-16 | Verb Surgical Inc. | Surgical table base construction for heat dissipation from housed power electronics |
US20210038426A1 (en) * | 2018-01-25 | 2021-02-11 | Keranova | Device and method for controlling the movement of an ocular therapy apparatus including an articulated support arm |
WO2019148428A1 (en) * | 2018-02-01 | 2019-08-08 | Abb Schweiz Ag | Vision-based operation for robot |
US11926065B2 (en) | 2018-02-01 | 2024-03-12 | Abb Schweiz Ag | Vision-based operation for robot |
RU2692936C1 (en) * | 2018-08-21 | 2019-06-28 | Виталий Александрович Микрюков | Skin tattoo removal method |
US20240277409A1 (en) * | 2020-12-11 | 2024-08-22 | Nuvasive, Inc. | Robotic surgery |
CN113290562A (en) * | 2021-05-28 | 2021-08-24 | 上海禾苗创先智能科技有限公司 | Control method and device of laser physical therapy robot, computer equipment and storage medium |
WO2023091603A1 (en) * | 2021-11-18 | 2023-05-25 | Epilady 2000 Llc | System and method for pigment removal |
Also Published As
Publication number | Publication date |
---|---|
US20200046427A1 (en) | 2020-02-13 |
FI20155784A (en) | 2017-05-03 |
EP3162407B1 (en) | 2020-10-21 |
US11426238B2 (en) | 2022-08-30 |
EP3162407A1 (en) | 2017-05-03 |
FI20155784A7 (en) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11426238B2 (en) | Automated system for laser-assisted dermatological treatment | |
JP7239739B2 (en) | transurethral resectoscope surgical robotic system | |
CN109688964B (en) | Automated system and method for hair removal | |
US7083611B2 (en) | Method and apparatus for providing facial rejuvenation treatments | |
US10299871B2 (en) | Automated system and method for hair removal | |
KR200493500Y1 (en) | Artificial intelligent robot for dermatology treatment | |
RU2547180C2 (en) | System and method for cosmetic treatment and imaging | |
JP2021529613A (en) | Improvements in skin pigmentation and tattoo ink removal methods and equipment | |
US20120071794A1 (en) | Robotic System for Delivering Energy for Treatment of Skin of a Subject | |
US20060253176A1 (en) | Dermatological treatment device with deflector optic | |
CN112912026A (en) | Real-time monitoring of the course of skin treatment for cosmetic laser cosmetology | |
EP3407961B1 (en) | Skin treatment apparatus | |
CN211534702U (en) | Intervene puncture system and have its diagnosis and treatment equipment | |
KR20240063888A (en) | Image-guided laser treatment | |
KR20230133840A (en) | A cosmetic laser device that performs treatment by irradiating a variable pulse laser beam onto the human skin being treated. | |
CN118987518A (en) | Navigation movement control method of ultrasonic treatment head and applied ultrasonic treatment device | |
KR20240114264A (en) | A laser surgery device that performs treatment by irradiating a variable pulse laser beam to the area to be treated. | |
CN109045485A (en) | A kind of laser therapy machine people's system | |
Oh et al. | Development of autonomous laser toning system based on vision recognition and robot manipulator | |
KR20230053062A (en) | Laser irradiation apparatus using object recognition and control method thereof | |
KR20160122585A (en) | Laser irradiator for skin treatment and medical treatment method thereof | |
CN109745627A (en) | A kind of human body laser irradiating method and device | |
임형우 | (A) development of robot-assisted laser treatment system with clinical trials | |
WO2019220439A1 (en) | High intensity light treatment | |
Zhao et al. | Development and experiments of a robot assisting photodynamic therapy for port wine stains |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CRYOTECH NORDIC OU, ESTONIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRVONEN, VESA;EKLUND, JAN;YLIOLLITERVO, JUHA TAPANI;SIGNING DATES FROM 20171107 TO 20171114;REEL/FRAME:044504/0312 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |