US20170107113A1 - Method for making molecular sieve ssz-105 - Google Patents
Method for making molecular sieve ssz-105 Download PDFInfo
- Publication number
- US20170107113A1 US20170107113A1 US14/884,859 US201514884859A US2017107113A1 US 20170107113 A1 US20170107113 A1 US 20170107113A1 US 201514884859 A US201514884859 A US 201514884859A US 2017107113 A1 US2017107113 A1 US 2017107113A1
- Authority
- US
- United States
- Prior art keywords
- molecular sieve
- sio
- ssz
- synthesized
- reaction mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 95
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 19
- -1 N,N-dimethylpiperidinium cations Chemical class 0.000 claims abstract description 20
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910000323 aluminium silicate Inorganic materials 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 87
- 239000000377 silicon dioxide Substances 0.000 claims description 41
- 229910052681 coesite Inorganic materials 0.000 claims description 39
- 229910052906 cristobalite Inorganic materials 0.000 claims description 39
- 229910052682 stishovite Inorganic materials 0.000 claims description 39
- 229910052905 tridymite Inorganic materials 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 22
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 20
- 239000011541 reaction mixture Substances 0.000 claims description 20
- 229910052593 corundum Inorganic materials 0.000 claims description 19
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 19
- 239000013078 crystal Substances 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 15
- 229910052700 potassium Inorganic materials 0.000 claims description 13
- 239000011591 potassium Substances 0.000 claims description 13
- 238000002425 crystallisation Methods 0.000 claims description 12
- 230000008025 crystallization Effects 0.000 claims description 12
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 8
- 229910052708 sodium Inorganic materials 0.000 claims description 8
- 239000011734 sodium Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910001868 water Inorganic materials 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 abstract description 6
- 239000000047 product Substances 0.000 description 30
- 238000001144 powder X-ray diffraction data Methods 0.000 description 22
- 239000010457 zeolite Substances 0.000 description 19
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 18
- 239000000463 material Substances 0.000 description 16
- 238000001878 scanning electron micrograph Methods 0.000 description 16
- 238000002441 X-ray diffraction Methods 0.000 description 15
- 229910021536 Zeolite Inorganic materials 0.000 description 14
- 238000000634 powder X-ray diffraction Methods 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000008367 deionised water Substances 0.000 description 10
- 229910021641 deionized water Inorganic materials 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 239000012265 solid product Substances 0.000 description 6
- XGCGTMISKOMHJD-UHFFFAOYSA-M 1,1-dimethylpiperidin-1-ium;hydroxide Chemical compound [OH-].C[N+]1(C)CCCCC1 XGCGTMISKOMHJD-UHFFFAOYSA-M 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 5
- 229920006362 Teflon® Polymers 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000000921 elemental analysis Methods 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- NNCAWEWCFVZOGF-UHFFFAOYSA-N C[N+]1(C)CCCCC1 Chemical compound C[N+]1(C)CCCCC1 NNCAWEWCFVZOGF-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052605 nesosilicate Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 239000006069 physical mixture Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/50—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/023—Preparation of physical mixtures or intergrowth products of zeolites chosen from group C01B39/04 or two or more of groups C01B39/14 - C01B39/48
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/30—Erionite or offretite type, e.g. zeolite T
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/30—Erionite or offretite type, e.g. zeolite T
- C01B39/305—Erionite or offretite type, e.g. zeolite T using at least one organic template directing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J2029/062—Mixtures of different aluminosilicates
Definitions
- SSZ-105 is a disordered aluminosilicate molecular sieve comprising at least one intergrown phase of an ERI framework type molecular sieve and an LEV framework type molecular sieve.
- molecular sieve materials both natural and synthetic, have been demonstrated in the past to be useful as adsorbents and to have catalytic properties for various types of organic conversion reactions.
- Certain molecular sieves such as zeolites, aluminophosphates, and mesoporous materials, are ordered, porous crystalline materials having a definite crystalline structure as determined by X-ray diffraction.
- Within the crystalline molecular sieve material there are a large number of cavities which may be interconnected by a number of channels or pores. These cavities and pores are uniform in size within a specific molecular sieve material. Because the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of larger dimensions, these materials have come to be known as “molecular sieves” and are utilized in a variety of industrial processes.
- New molecular sieves can contain novel internal pore architectures, providing enhanced selectivities in these processes.
- Molecular sieves are classified by the Structure Commission of the International Zeolite Association according to the rules of the IUPAC Commission on Zeolite Nomenclature. According to this classification, framework type zeolites and other crystalline microporous molecular sieves, for which a structure has been established, are assigned a three letter code and are described in the “ Atlas of Zeolite Framework Types ,” Sixth Revised Edition, Elsevier, 2007.
- Molecular sieves may be ordered or disordered. Ordered molecular sieves are built from structurally invariant building units, called Period Building Units (PerBUs), and are periodically ordered in three dimensions. Crystal structures built from PerBUs are called end-member structures if periodic ordering is achieved in all three dimensions. Disordered structures, on the other hand, show periodic ordering in less than three dimensions.
- One such disordered structure is a disordered planar intergrowth in which the building units from more than one framework type are present. Such intergrowths frequently have significantly different catalytic properties from their end members.
- zeolite ZSM-34 is well known intergrowth of ERI and OFF framework types and exhibits a methanol-to-olefins performance superior to that of its individual component materials.
- SSZ-105 Disclosed herein is a unique disordered aluminosilicate molecular sieve designated SSZ-105 which comprises at least one intergrown phase of an ERI framework type molecular sieve and an LEV framework type molecular sieve.
- Molecular sieve SSZ-105 comprises at least one intergrown phase of an ERI framework type molecular sieve and an LEV framework type molecular sieve.
- molecular sieve SSZ-105 has a chemical composition, in terms of mole ratios, comprising the following:
- n has a value from 10 to 50.
- a process for preparing molecular sieve SSZ-105 by (a) preparing a reaction mixture containing: (1) at least one source of silicon oxide; (2) at least one source of aluminum oxide; (3) at least one source of a Group 1 metal (M), wherein M is selected from the group consisting of potassium and combinations of sodium and potassium; (4) hydroxide ions; (5) N,N-dimethylpiperidinium cations; and (6) water; and (b) subjecting the reaction mixture to crystallization conditions sufficient to form crystals of the molecular sieve.
- M Group 1 metal
- molecular sieve SSZ-105 has a chemical composition, in terms of mole ratios, comprising the following:
- SiO 2 /Al 2 O 3 10 to 50 15 to 40 Q/SiO 2 0.02 to 0.20 0.05 to 0.20 M/SiO 2 0.01 to 0.20 0.02 to 0.15 wherein Q comprises N,N-dimethylpiperidinium cations and M is a Group 1 metal selected from the group consisting of potassium and combinations of sodium and potassium.
- the molecular sieve disclosed herein is useful in a wide range of processes, including separation processes and as a catalyst in organic conversion reactions.
- a process for converting a feedstock comprising an organic compound to a conversion product which comprises the step of contacting the feedstock with a catalyst at organic compound conversion conditions, the catalyst comprising an active form of the molecular sieve described herein.
- FIG. 1 is a powder X-ray diffraction (XRD) pattern of the as-synthesized molecular sieve prepared in Example 1.
- FIG. 2 is a Scanning Electron Micrograph (SEM) image of the as-synthesized molecular sieve prepared in Example 1.
- FIG. 3 is a plot of several DIFFaX-generated simulated XRD patterns and a powder XRD pattern of the calcined form of the molecular sieve prepared in Example 1.
- FIG. 4 is a SEM image of the as-synthesized molecular sieve prepared in Example 2.
- FIG. 5 is a plot of several DIFFaX-generated simulated XRD patterns and a powder XRD pattern of the calcined form of the molecular sieve prepared in Example 2.
- FIG. 6 is a SEM image of the as-synthesized molecular sieve prepared in Example 3.
- FIG. 7 is a plot of several DIFFaX-generated simulated XRD patterns and a powder XRD pattern of the calcined form of the molecular sieve prepared in Example 3.
- FIG. 8 is a SEM image of the as-synthesized molecular sieve prepared in Example 4.
- FIG. 9 is a plot of several DIFFaX-generated simulated XRD patterns and a powder XRD pattern of the calcined form of the molecular sieve prepared in Example 4.
- FIG. 10 is a SEM image of the as-synthesized molecular sieve prepared in Example 5.
- FIG. 11 is a plot of several DIFFaX-generated simulated XRD patterns and a powder XRD pattern of the calcined form of the molecular sieve prepared in Example 5.
- frame type is used in the sense described in the “ Atlas of Zeolite Framework Types ,” Sixth Revised Edition, Elsevier, 2007.
- Intergrown molecular sieve phases are disordered planar intergrowths of molecular sieve frameworks. Reference is directed to the “Catalog of Disordered Zeolite Structures,” 2000 Edition, published by the Structure Commission of the International Zeolite Association and to the “ Collection of Simulated XRD Powder Patterns for Zeolites ,” Fifth Revised Edition, Elsevier, 2007, published on behalf of the Structure Commission of the International Zeolite Association for a detailed explanation on intergrown molecular sieve phases.
- the molecular sieves described herein are disordered planar intergrowths of end-member structures ERI and LEV. Both of these two framework types belong to the group that has double 6-rings (d6r) as secondary building units. Intergrown ERI/LEV molecular sieves comprise regions of ERI framework type sequences and regions of LEV framework type sequences. Each change from an ERI to an LEV framework type sequence results in a stacking fault.
- an N,N-dimethylpiperidinium cation is used as a structure directing agent (“SDA”), also known as a crystallization template.
- SDA structure directing agent
- the SDA useful for making SSZ-105 has the following structure (1):
- the SDA cation is associated with anions which may be any anion that is not detrimental to the formation of SSZ-105.
- Representative anions include elements from Group 17 of the Periodic Table (e.g., fluoride, chloride, bromide and iodide), hydroxide, sulfate, tetrafluoroboroate, acetate, carboxylate, and the like.
- molecular sieve SSZ-105 is prepared by: (a) preparing a reaction mixture containing (1) at least one source of silicon oxide; (2) at least one source of aluminum oxide; (3) at least one source of a Group 1 metal (M), wherein M is selected from the group consisting of potassium and combinations of sodium and potassium; (4) hydroxide ions; (5) N,N-dimethylpiperidinium cations; and (6) water; and (b) subjecting the reaction mixture to crystallization conditions sufficient to form crystals of the molecular sieve.
- M Group 1 metal
- composition of the reaction mixture from which the molecular sieve is formed in terms of mole ratios, is identified in Table 1 below:
- Sources useful herein for silicon oxide include fumed silica, precipitated silicates, silica hydrogel, silicic acid, colloidal silica, tetra-alkyl orthosilicates (e.g., tetraethyl orthosilicate), and silica hydroxides.
- Sources useful herein for aluminum oxide include aluminates, alumina, and aluminum compounds (e.g., aluminum chloride, aluminum hydroxide, and aluminum sulfate), kaolin clays, and other zeolites (e.g., zeolite Y).
- aluminum compounds e.g., aluminum chloride, aluminum hydroxide, and aluminum sulfate
- kaolin clays e.g., zeolites Y.
- the Group 1 metal (M) is selected from the group consisting of potassium and combinations of sodium and potassium.
- the sodium source may be sodium hydroxide.
- the potassium source may be potassium hydroxide.
- the molar ratio of sodium (m 1 ) divided by the molar ratio of potassium (m 2 ) in the reaction mixture is less than or equal to 2.0; or less than or equal to 1.0; preferably, in the range from 0.1 to 2.0; and conveniently, in the range from 0.1 to 0.5.
- the reaction mixture may also include seeds of a molecular sieve material, such as SSZ-105 crystals from a previous synthesis, in an amount of from 0.1 to 10 wt. % or from 0.5 to 5 wt. % of the reaction mixture.
- a molecular sieve material such as SSZ-105 crystals from a previous synthesis
- the molecular sieve reaction mixture can be supplied by more than one source. Also, two or more reaction components can be provided by one source.
- the reaction mixture can be prepared either batch wise or continuously. Crystal size, morphology and crystallization time of the molecular sieve described herein can vary with the nature of the reaction mixture and the crystallization conditions.
- Crystallization of the molecular sieve disclosed herein can be carried out under either static, tumbled or stirred conditions in a suitable reactor vessel, such as for example polypropylene jars or Teflon-lined or stainless steel autoclaves, at a temperature of from 125° C. to 200° C. (e.g., from 140° C. to 180° C.) for a time sufficient for crystallization to occur at the temperature used, e.g., from 1 day to 28 days.
- a suitable reactor vessel such as for example polypropylene jars or Teflon-lined or stainless steel autoclaves
- the solid product is separated from the reaction mixture by standard mechanical separation techniques such as centrifugation or filtration.
- the crystals are water-washed and then dried to obtain the as-synthesized molecular sieve crystals.
- the drying step is typically performed at a temperature of less than 200° C.
- the recovered crystalline molecular sieve product contains within its pore structure at least a portion of the structure directing agent used in the synthesis.
- the structure directing agent is typically at least partially removed from the molecular sieve by calcination before use. Calcination consists essentially of heating the molecular sieve comprising the structure directing agent at a temperature of from 200° C. to 800° C. in the presence of an oxygen-containing gas, optionally in the presence of steam.
- the structure directing agent can also be removed by photolysis techniques as described in U.S. Pat. No. 6,960,327.
- any cations in the as-synthesized or calcined molecular sieve can be replaced in accordance with techniques well known in the art by ion exchange with other cations.
- Preferred replacing cations include metal ions, hydrogen ions, hydrogen precursor, e.g., ammonium ions and mixtures thereof.
- Particularly preferred cations are those which tailor the catalytic activity for certain organic conversion reactions. These include hydrogen, rare earth metals and metals of Groups 2 to 15 of the Periodic Table of the Elements.
- the term “as-synthesized” refers to the molecular sieve in its form after crystallization, prior to removal of the SDA cation.
- the molecular sieve disclosed herein can be formulated with into a catalyst composition by combination with other materials, such as binders and/or matrix materials, which provide additional hardness or catalytic activity to the finished catalyst.
- the relative proportions of the SSZ-105 molecular sieve and matrix may vary widely with the SSZ-105 content ranging from 1 to 99 wt. % (e.g., from 10 to 90 wt. % or from 20 to 80 wt. %) of the total catalyst.
- Molecular sieve SSZ-105 is an intergrowth of the ERI and LEV crystal structures. Physical mixtures of the two phases ERI and LEV prepared by mixing samples of two pure materials are not defined as molecular sieve SSZ-105.
- molecular sieve SSZ-105 has a chemical composition, in terms of mole ratios, as described in Table 2:
- the as-synthesized form of the molecular sieve disclosed herein may have molar ratios different from the molar ratios of reactants of the reaction mixture used to prepare the as-synthesized form. This result may occur due to incomplete incorporation of 100% of the reactants of the reaction mixture into the crystals formed (from the reaction mixture).
- molecular sieve SSZ-105 has chemical composition comprising the following molar relationship:
- n has a value of at least 10 (e.g., from 10 to 50, from 10 to 45, from 10 to 40, from 10 to 35, from 10 to 30, from 10 to 25, from 12 to 50, from 12 to 45, from 12 to 40, from 12 to 35, from 12 to 30, from 12 to 25, from 15 to 50, from 15 to 45, from 15 to 40, from 15 to 35, from 15 to 30, or from 15 to 25).
- 10 to 50 from 10 to 45, from 10 to 40, from 10 to 35, from 10 to 30, from 10 to 25, from 12 to 50, from 12 to 45, from 12 to 40, from 12 to 35, from 12 to 30, from 12 to 25, from 15 to 50, from 15 to 45, from 15 to 40, from 15 to 35, from 15 to 30, or from 15 to 25.
- the intergrown crystalline molecular sieve disclosed herein can have from 1% to 99% (e.g., from 5% to 95%, from 10% to 90%, from 20% to 80%, from 30% to 70%, from 40% to 60%) of the ERI crystal structure.
- the intergrown molecular sieve disclosed herein can have from 1% to 99% (e.g., from 5% to 95%, from 10% to 90%, from 20% to 80%, from 30% to 70%, or from 40% to 60%) of the LEV crystal structure.
- the relative proportions of each of the phases can be analyzed by X-ray diffraction and, in particular, by comparing the observed patterns with calculated patterns generated using algorithms to simulate the effects of stacking disorder.
- DIFFaX is a computer program based on a mathematical model for calculating intensities from faults (see M. M. J. Treacy et al., Proc. R. Soc. Lond. A 1991, 433, 499-520).
- DIFFaX is the simulation program selected by and available from the International Zeolite Association to simulate the powder XRD patterns for randomly intergrown phases (see “ Collection of Simulated XRD Powder Patterns for Zeolites ,” Fifth Revised Edition, Elsevier, 2007).
- the powder X-ray diffraction patterns presented herein were collected by standard techniques.
- the radiation was CuK ⁇ radiation.
- Minor variations in the diffraction pattern can result from variations in the mole ratios of the framework species of the particular sample due to changes in lattice constants. In addition, sufficiently small crystals will affect the shape and intensity of peaks, leading to significant peak broadening. Minor variations in the diffraction pattern can also result from variations in the organic compound used in the preparation. Calcination can also cause minor shifts in the XRD pattern. Notwithstanding these minor perturbations, the basic crystal lattice structure remains unchanged.
- Molecular sieve SSZ-105 can be used to dry gases and liquids; for selective molecular separation based on size and polar properties; as an ion-exchanger; as a chemical carrier; in gas chromatography; and as a catalyst in organic conversion reactions.
- suitable catalytic uses include catalytic conversion of oxygenates to one or more olefins, synthesis of monoalkylamines and dialkylamines, and catalytic reduction of nitrogen oxides.
- the resulting product had a SiO 2 /Al 2 O 3 mole ratio of 15.8, as determined by ICP elemental analysis.
- the resulting product was analyzed by powder XRD and SEM.
- the powder XRD pattern is shown in FIG. 1 .
- the SEM image is shown in FIG. 2 and indicates a uniform field of crystals.
- the list of the characteristic XRD peaks for this as-synthesized product is shown in Table 3 below.
- FIG. 3 A comparison between the experimental powder XRD pattern collected from the calcined product and DIFFaX simulated powder XRD patterns with various ERI/LEV intergrowth ratios is shown in FIG. 3 .
- DIFFaX calculation indicates that the product is an intergrowth material with approximately 50-60% of ERI stacking sequence and 40-50% LEV stacking sequence.
- the resulting product had a SiO 2 /Al 2 O 3 mole ratio of 17.1, as determined by ICP elemental analysis.
- the resulting product was identified by powder XRD and SEM as pure SSZ-105.
- the SEM image is shown in FIG. 4 .
- the list of the characteristic XRD peaks for this as-synthesized product is shown in Table 4 below.
- FIG. 5 A comparison between the experimental powder XRD pattern collected from the calcined product and DIFFaX simulated powder XRD patterns with various ERI/LEV intergrowth ratios is shown in FIG. 5 .
- DIFFaX calculation indicates that the product is an intergrowth material with approximately 50-60% of ERI stacking sequence and 40-50% LEV stacking sequence.
- the resulting product had a SiO 2 /Al 2 O 3 mole ratio of 12.7, as determined by ICP elemental analysis.
- the resulting product was identified by powder XRD and SEM as pure SSZ-105.
- the SEM image is shown in FIG. 6 .
- the list of the characteristic XRD peaks for this as-synthesized product is shown in Table 5 below.
- FIG. 7 A comparison between the experimental powder XRD pattern collected from the calcined product and DIFFaX simulated powder XRD patterns with various ERI/LEV intergrowth ratios is shown in FIG. 7 .
- DIFFaX calculation indicates that the product is an intergrowth material with approximately 80-90% of ERI stacking sequence and 10-20% LEV stacking sequence.
- the resulting product had a SiO 2 /Al 2 O 3 mole ratio of 19.7, as determined by ICP elemental analysis.
- the resulting product was analyzed by powder XRD and SEM. It was identified as pure SSZ-105 molecular sieve. The SEM image is shown in FIG. 8 . The list of the characteristic XRD peaks for this as-synthesized product is shown in Table 6 below.
- FIG. 9 A comparison between the experimental powder XRD pattern collected from the calcined product and DIFFaX simulated powder XRD patterns with various ERI/LEV intergrowth ratios is shown in FIG. 9 .
- DIFFaX calculation indicates that the product is an intergrowth material with approximately 20-30% of ERI stacking sequence and 70-80% LEV stacking sequence.
- the resulting product had a SiO 2 /Al 2 O 3 mole ratio of 21.6, as determined by ICP elemental analysis.
- the resulting product was analyzed by powder XRD and SEM and indicated that the product was pure SSZ-105 molecular sieve.
- the SEM image is shown in FIG. 10 .
- the list of the characteristic XRD peaks for this as-synthesized product is shown in Table 7 below.
- FIG. 11 A comparison between the experimental powder XRD pattern collected from the calcined product and DIFFaX simulated powder XRD patterns with various ERI/LEV intergrowth ratios is shown in FIG. 11 .
- DIFFaX calculation indicates that the product is an intergrowth material with approximately 10-20% of ERI stacking sequence and 80-90% LEV stacking sequence.
- the as-synthesized molecular sieve products were calcined inside a muffle furnace under a flow of air heated to 540° C. at a rate of 1° C./minute and held at 540° C. for 5 hours, cooled and then analyzed by powder XRD.
- FIG. 3 , FIG. 5 , FIG. 7 , FIG. 9 and FIG. 11 show the XRD patterns of calcined SSZ-105 molecular sieve products 1, 2, 3, 4 and 5, respectively, and indicate that the material remains stable after calcination to remove the organic SDA.
- Example 6 The calcined material from Example 6 was treated with 10 mL (per g of molecular sieve) of a 1N ammonium nitrate solution at 90° C. for 2 hours. The solution was cooled, decanted off and same process repeated.
- the ammonium-exchanged molecular sieve product (NH 4 -SSZ-105) was subjected to a micropore volume analysis using N 2 as adsorbate and via the BET method.
- the molecular sieve exhibited a micropore volume of 0.25 cm 3 /g and indicates that SSZ-105 has microporous character.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
- This disclosure relates to a new crystalline molecular sieve designated SSZ-105, a method for preparing SSZ-105, and uses for SSZ-105. SSZ-105 is a disordered aluminosilicate molecular sieve comprising at least one intergrown phase of an ERI framework type molecular sieve and an LEV framework type molecular sieve.
- Molecular sieve materials, both natural and synthetic, have been demonstrated in the past to be useful as adsorbents and to have catalytic properties for various types of organic conversion reactions. Certain molecular sieves, such as zeolites, aluminophosphates, and mesoporous materials, are ordered, porous crystalline materials having a definite crystalline structure as determined by X-ray diffraction. Within the crystalline molecular sieve material there are a large number of cavities which may be interconnected by a number of channels or pores. These cavities and pores are uniform in size within a specific molecular sieve material. Because the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of larger dimensions, these materials have come to be known as “molecular sieves” and are utilized in a variety of industrial processes.
- Although many different crystalline molecular sieves have been discovered, there is a continuing need for new molecular sieves with desirable properties for gas separation and drying, organic conversion reactions, and other applications. New molecular sieves can contain novel internal pore architectures, providing enhanced selectivities in these processes.
- Molecular sieves are classified by the Structure Commission of the International Zeolite Association according to the rules of the IUPAC Commission on Zeolite Nomenclature. According to this classification, framework type zeolites and other crystalline microporous molecular sieves, for which a structure has been established, are assigned a three letter code and are described in the “Atlas of Zeolite Framework Types,” Sixth Revised Edition, Elsevier, 2007.
- Molecular sieves may be ordered or disordered. Ordered molecular sieves are built from structurally invariant building units, called Period Building Units (PerBUs), and are periodically ordered in three dimensions. Crystal structures built from PerBUs are called end-member structures if periodic ordering is achieved in all three dimensions. Disordered structures, on the other hand, show periodic ordering in less than three dimensions. One such disordered structure is a disordered planar intergrowth in which the building units from more than one framework type are present. Such intergrowths frequently have significantly different catalytic properties from their end members. For example, zeolite ZSM-34 is well known intergrowth of ERI and OFF framework types and exhibits a methanol-to-olefins performance superior to that of its individual component materials.
- Disclosed herein is a unique disordered aluminosilicate molecular sieve designated SSZ-105 which comprises at least one intergrown phase of an ERI framework type molecular sieve and an LEV framework type molecular sieve.
- The present disclosure is directed to a new family of crystalline molecular sieves with unique properties, referred to herein as “molecular sieve SSZ-105 ” or simply “SSZ-105.” Molecular sieve SSZ-105 comprises at least one intergrown phase of an ERI framework type molecular sieve and an LEV framework type molecular sieve.
- In its calcined form, molecular sieve SSZ-105 has a chemical composition, in terms of mole ratios, comprising the following:
-
Al2O3:(n)SiO2 - wherein n has a value from 10 to 50.
- In one aspect, there is provided a process for preparing molecular sieve SSZ-105 by (a) preparing a reaction mixture containing: (1) at least one source of silicon oxide; (2) at least one source of aluminum oxide; (3) at least one source of a Group 1 metal (M), wherein M is selected from the group consisting of potassium and combinations of sodium and potassium; (4) hydroxide ions; (5) N,N-dimethylpiperidinium cations; and (6) water; and (b) subjecting the reaction mixture to crystallization conditions sufficient to form crystals of the molecular sieve.
- In its as-synthesized and anhydrous form, molecular sieve SSZ-105 has a chemical composition, in terms of mole ratios, comprising the following:
-
Broad Exemplary SiO2/Al2 O 310 to 50 15 to 40 Q/SiO2 0.02 to 0.20 0.05 to 0.20 M/SiO2 0.01 to 0.20 0.02 to 0.15
wherein Q comprises N,N-dimethylpiperidinium cations and M is a Group 1 metal selected from the group consisting of potassium and combinations of sodium and potassium. - Additionally, the molecular sieve disclosed herein is useful in a wide range of processes, including separation processes and as a catalyst in organic conversion reactions. In further aspect, there is disclosed a process for converting a feedstock comprising an organic compound to a conversion product which comprises the step of contacting the feedstock with a catalyst at organic compound conversion conditions, the catalyst comprising an active form of the molecular sieve described herein.
-
FIG. 1 is a powder X-ray diffraction (XRD) pattern of the as-synthesized molecular sieve prepared in Example 1. -
FIG. 2 is a Scanning Electron Micrograph (SEM) image of the as-synthesized molecular sieve prepared in Example 1. -
FIG. 3 is a plot of several DIFFaX-generated simulated XRD patterns and a powder XRD pattern of the calcined form of the molecular sieve prepared in Example 1. -
FIG. 4 is a SEM image of the as-synthesized molecular sieve prepared in Example 2. -
FIG. 5 is a plot of several DIFFaX-generated simulated XRD patterns and a powder XRD pattern of the calcined form of the molecular sieve prepared in Example 2. -
FIG. 6 is a SEM image of the as-synthesized molecular sieve prepared in Example 3. -
FIG. 7 is a plot of several DIFFaX-generated simulated XRD patterns and a powder XRD pattern of the calcined form of the molecular sieve prepared in Example 3. -
FIG. 8 is a SEM image of the as-synthesized molecular sieve prepared in Example 4. -
FIG. 9 is a plot of several DIFFaX-generated simulated XRD patterns and a powder XRD pattern of the calcined form of the molecular sieve prepared in Example 4. -
FIG. 10 is a SEM image of the as-synthesized molecular sieve prepared in Example 5. -
FIG. 11 is a plot of several DIFFaX-generated simulated XRD patterns and a powder XRD pattern of the calcined form of the molecular sieve prepared in Example 5. - Introduction
- The following terms will be used throughout the specification and will have the following meanings unless otherwise indicated.
- The term “framework type” is used in the sense described in the “Atlas of Zeolite Framework Types,” Sixth Revised Edition, Elsevier, 2007.
- As used herein, the numbering scheme for the Periodic Table Groups is as disclosed in Chem. Eng. News, 63(5), 26-27 (1985).
- Intergrown molecular sieve phases are disordered planar intergrowths of molecular sieve frameworks. Reference is directed to the “Catalog of Disordered Zeolite Structures,” 2000 Edition, published by the Structure Commission of the International Zeolite Association and to the “Collection of Simulated XRD Powder Patterns for Zeolites,” Fifth Revised Edition, Elsevier, 2007, published on behalf of the Structure Commission of the International Zeolite Association for a detailed explanation on intergrown molecular sieve phases.
- The molecular sieves described herein are disordered planar intergrowths of end-member structures ERI and LEV. Both of these two framework types belong to the group that has double 6-rings (d6r) as secondary building units. Intergrown ERI/LEV molecular sieves comprise regions of ERI framework type sequences and regions of LEV framework type sequences. Each change from an ERI to an LEV framework type sequence results in a stacking fault.
- In preparing molecular sieve SSZ-105, an N,N-dimethylpiperidinium cation is used as a structure directing agent (“SDA”), also known as a crystallization template. The SDA useful for making SSZ-105 has the following structure (1):
- The SDA cation is associated with anions which may be any anion that is not detrimental to the formation of SSZ-105. Representative anions include elements from Group 17 of the Periodic Table (e.g., fluoride, chloride, bromide and iodide), hydroxide, sulfate, tetrafluoroboroate, acetate, carboxylate, and the like.
- Reaction Mixture
- In general, molecular sieve SSZ-105 is prepared by: (a) preparing a reaction mixture containing (1) at least one source of silicon oxide; (2) at least one source of aluminum oxide; (3) at least one source of a Group 1 metal (M), wherein M is selected from the group consisting of potassium and combinations of sodium and potassium; (4) hydroxide ions; (5) N,N-dimethylpiperidinium cations; and (6) water; and (b) subjecting the reaction mixture to crystallization conditions sufficient to form crystals of the molecular sieve.
- The composition of the reaction mixture from which the molecular sieve is formed, in terms of mole ratios, is identified in Table 1 below:
-
TABLE 1 Components Broad Exemplary SiO2/Al2O3 10 to 100 15 to 80 M/SiO2 0.05 to 1.00 0.10 to 0.30 Q/SiO2 0.05 to 0.70 0.20 to 0.45 OH/SiO2 0.10 to 1.00 0.30 to 0.80 H2O/ SiO 210 to 100 15 to 60
wherein compositional variables M and Q are as described herein above. - Sources useful herein for silicon oxide include fumed silica, precipitated silicates, silica hydrogel, silicic acid, colloidal silica, tetra-alkyl orthosilicates (e.g., tetraethyl orthosilicate), and silica hydroxides.
- Sources useful herein for aluminum oxide include aluminates, alumina, and aluminum compounds (e.g., aluminum chloride, aluminum hydroxide, and aluminum sulfate), kaolin clays, and other zeolites (e.g., zeolite Y).
- In the present synthesis method, the Group 1 metal (M) is selected from the group consisting of potassium and combinations of sodium and potassium. The sodium source may be sodium hydroxide. The potassium source may be potassium hydroxide. In embodiments when the Group 1 metal (M) is a mixture of sodium and potassium, the molar ratio of sodium (m1) divided by the molar ratio of potassium (m2) in the reaction mixture is less than or equal to 2.0; or less than or equal to 1.0; preferably, in the range from 0.1 to 2.0; and conveniently, in the range from 0.1 to 0.5.
- Optionally, the reaction mixture may also include seeds of a molecular sieve material, such as SSZ-105 crystals from a previous synthesis, in an amount of from 0.1 to 10 wt. % or from 0.5 to 5 wt. % of the reaction mixture.
- For each embodiment described herein, the molecular sieve reaction mixture can be supplied by more than one source. Also, two or more reaction components can be provided by one source.
- The reaction mixture can be prepared either batch wise or continuously. Crystal size, morphology and crystallization time of the molecular sieve described herein can vary with the nature of the reaction mixture and the crystallization conditions.
- Crystallization and Post-Synthesis Treatment
- Crystallization of the molecular sieve disclosed herein can be carried out under either static, tumbled or stirred conditions in a suitable reactor vessel, such as for example polypropylene jars or Teflon-lined or stainless steel autoclaves, at a temperature of from 125° C. to 200° C. (e.g., from 140° C. to 180° C.) for a time sufficient for crystallization to occur at the temperature used, e.g., from 1 day to 28 days.
- Once the molecular sieve crystals have formed, the solid product is separated from the reaction mixture by standard mechanical separation techniques such as centrifugation or filtration. The crystals are water-washed and then dried to obtain the as-synthesized molecular sieve crystals. The drying step is typically performed at a temperature of less than 200° C.
- As a result of the crystallization process, the recovered crystalline molecular sieve product contains within its pore structure at least a portion of the structure directing agent used in the synthesis.
- The structure directing agent is typically at least partially removed from the molecular sieve by calcination before use. Calcination consists essentially of heating the molecular sieve comprising the structure directing agent at a temperature of from 200° C. to 800° C. in the presence of an oxygen-containing gas, optionally in the presence of steam. The structure directing agent can also be removed by photolysis techniques as described in U.S. Pat. No. 6,960,327.
- To the extent desired and depending on the composition of the molecular sieve, any cations in the as-synthesized or calcined molecular sieve can be replaced in accordance with techniques well known in the art by ion exchange with other cations. Preferred replacing cations include metal ions, hydrogen ions, hydrogen precursor, e.g., ammonium ions and mixtures thereof. Particularly preferred cations are those which tailor the catalytic activity for certain organic conversion reactions. These include hydrogen, rare earth metals and metals of Groups 2 to 15 of the Periodic Table of the Elements. As used herein, the term “as-synthesized” refers to the molecular sieve in its form after crystallization, prior to removal of the SDA cation.
- The molecular sieve disclosed herein can be formulated with into a catalyst composition by combination with other materials, such as binders and/or matrix materials, which provide additional hardness or catalytic activity to the finished catalyst. When blended with such components, the relative proportions of the SSZ-105 molecular sieve and matrix may vary widely with the SSZ-105 content ranging from 1 to 99 wt. % (e.g., from 10 to 90 wt. % or from 20 to 80 wt. %) of the total catalyst.
- Characterization of the Molecular Sieve
- Molecular sieve SSZ-105 is an intergrowth of the ERI and LEV crystal structures. Physical mixtures of the two phases ERI and LEV prepared by mixing samples of two pure materials are not defined as molecular sieve SSZ-105.
- In its as-synthesized and anhydrous form, molecular sieve SSZ-105 has a chemical composition, in terms of mole ratios, as described in Table 2:
-
TABLE 2 Broad Exemplary SiO2/Al2O3 10 to 50 15 to 40 Q/SiO2 0.02 to 0.20 0.05 to 0.20 M/SiO2 0.01 to 0.20 0.02 to 0.15
wherein compositional variables Q and M are as described herein above. - It should be noted that the as-synthesized form of the molecular sieve disclosed herein may have molar ratios different from the molar ratios of reactants of the reaction mixture used to prepare the as-synthesized form. This result may occur due to incomplete incorporation of 100% of the reactants of the reaction mixture into the crystals formed (from the reaction mixture).
- In its calcined form, molecular sieve SSZ-105 has chemical composition comprising the following molar relationship:
-
Al2O3: (n)SiO2 - wherein n has a value of at least 10 (e.g., from 10 to 50, from 10 to 45, from 10 to 40, from 10 to 35, from 10 to 30, from 10 to 25, from 12 to 50, from 12 to 45, from 12 to 40, from 12 to 35, from 12 to 30, from 12 to 25, from 15 to 50, from 15 to 45, from 15 to 40, from 15 to 35, from 15 to 30, or from 15 to 25).
- In one embodiment, the intergrown crystalline molecular sieve disclosed herein can have from 1% to 99% (e.g., from 5% to 95%, from 10% to 90%, from 20% to 80%, from 30% to 70%, from 40% to 60%) of the ERI crystal structure. Similarly, the intergrown molecular sieve disclosed herein can have from 1% to 99% (e.g., from 5% to 95%, from 10% to 90%, from 20% to 80%, from 30% to 70%, or from 40% to 60%) of the LEV crystal structure. The relative proportions of each of the phases can be analyzed by X-ray diffraction and, in particular, by comparing the observed patterns with calculated patterns generated using algorithms to simulate the effects of stacking disorder. DIFFaX is a computer program based on a mathematical model for calculating intensities from faults (see M. M. J. Treacy et al., Proc. R. Soc. Lond. A 1991, 433, 499-520). DIFFaX is the simulation program selected by and available from the International Zeolite Association to simulate the powder XRD patterns for randomly intergrown phases (see “Collection of Simulated XRD Powder Patterns for Zeolites,” Fifth Revised Edition, Elsevier, 2007).
- The powder X-ray diffraction patterns presented herein were collected by standard techniques. The radiation was CuKα radiation. The peak heights and the positions, as a function of 2θ where θ is the Bragg angle, were read from the relative intensities of the peaks (adjusting for background), and d, the interplanar spacing corresponding to the recorded lines, can be calculated.
- Minor variations in the diffraction pattern can result from variations in the mole ratios of the framework species of the particular sample due to changes in lattice constants. In addition, sufficiently small crystals will affect the shape and intensity of peaks, leading to significant peak broadening. Minor variations in the diffraction pattern can also result from variations in the organic compound used in the preparation. Calcination can also cause minor shifts in the XRD pattern. Notwithstanding these minor perturbations, the basic crystal lattice structure remains unchanged.
- Processes Using SSZ-105
- Molecular sieve SSZ-105 can be used to dry gases and liquids; for selective molecular separation based on size and polar properties; as an ion-exchanger; as a chemical carrier; in gas chromatography; and as a catalyst in organic conversion reactions. Examples of suitable catalytic uses include catalytic conversion of oxygenates to one or more olefins, synthesis of monoalkylamines and dialkylamines, and catalytic reduction of nitrogen oxides.
- The following illustrative examples are intended to be non-limiting.
- 0.80 g of 45% KOH solution, 0.13 g of 50% NaOH solution, 9.56 g of deionized water and 2.00 g of CBV760 Y-zeolite powder (Zeolyst International, SiO2/Al2O3 mole ratio=60) were mixed together in a Teflon liner. Then, 8.45 g of 20% N,N-dimethylpiperidinium hydroxide solution was added to the mixture. The resulting gel was stirred until it became homogeneous. The liner was then capped and placed within a Parr steel autoclave reactor. The autoclave was then placed in an oven and the heated at 150° C. for 4 days. The solid products were recovered by centrifugation, washed with deionized water and dried at 95° C.
- The resulting product had a SiO2/Al2O3 mole ratio of 15.8, as determined by ICP elemental analysis.
- The resulting product was analyzed by powder XRD and SEM. The powder XRD pattern is shown in
FIG. 1 . The SEM image is shown inFIG. 2 and indicates a uniform field of crystals. The list of the characteristic XRD peaks for this as-synthesized product is shown in Table 3 below. -
TABLE 3 Characteristic Peaks for As-Synthesized SSZ-105 Prepared in Example 1 2-Theta(a) d-Spacing, nm Relative Intensity(b) 7.86 1.124 S 11.00 0.804 S 11.76 0.752 W 13.54 0.654 M 15.64 0.566 W 17.49 0.507 S 17.94 0.494 S 20.72 0.428 M 22.10 0.402 VS 23.54 0.378 S (a)±0.35 (b)The powder XRD patterns provided are based on a relative intensity scale in which the strongest line in the powder X-ray diffraction pattern is assigned a value of 100: W = weak (>0 to ≦20); M = medium (>20 to ≦40); S = strong (>40 to ≦60); VS = very strong (>60 to ≦100). - A comparison between the experimental powder XRD pattern collected from the calcined product and DIFFaX simulated powder XRD patterns with various ERI/LEV intergrowth ratios is shown in
FIG. 3 . DIFFaX calculation indicates that the product is an intergrowth material with approximately 50-60% of ERI stacking sequence and 40-50% LEV stacking sequence. - 3.21 g of 45% KOH solution, 0.52 g of 50% NaOH solution, 32.46 g of deionized water and 8.00 g of CBV780 Y-zeolite powder (Zeolyst International, SiO2/Al2O3 mole ratio=80) were mixed together in a Teflon liner. Then, 41.05 g of 20% N,N-dimethylpiperidinium hydroxide solution was added to the mixture. The resulting gel was stirred until it became homogeneous. The liner was then capped and placed within a Parr steel autoclave reactor. The autoclave was then placed in an oven and the heated at 150° C. for 3 days. The solid products were recovered by centrifugation, washed with deionized water and dried at 95° C.
- The resulting product had a SiO2/Al2O3 mole ratio of 17.1, as determined by ICP elemental analysis.
- The resulting product was identified by powder XRD and SEM as pure SSZ-105. The SEM image is shown in
FIG. 4 . The list of the characteristic XRD peaks for this as-synthesized product is shown in Table 4 below. -
TABLE 4 Characteristic Peaks for As-Synthesized SSZ-105 Prepared in Example 2 2-Theta(a) d-Spacing, nm Relative Intensity(b) 7.90 1.118 S 11.00 0.804 S 11.73 0.754 W 13.51 0.655 W 15.78 0.561 W 17.48 0.507 S 17.90 0.495 M 20.86 0.425 M 22.28 0.399 VS 23.52 0.378 M (a)±0.35 (b)The powder XRD patterns provided are based on a relative intensity scale in which the strongest line in the powder X-ray diffraction pattern is assigned a value of 100: W = weak (>0 to ≦20); M = medium (>20 to ≦40); S = strong (>40 to ≦60); VS = very strong (>60 to ≦100). - A comparison between the experimental powder XRD pattern collected from the calcined product and DIFFaX simulated powder XRD patterns with various ERI/LEV intergrowth ratios is shown in
FIG. 5 . DIFFaX calculation indicates that the product is an intergrowth material with approximately 50-60% of ERI stacking sequence and 40-50% LEV stacking sequence. - 0.80 g of 45% KOH solution, 0.13 g of 50% NaOH solution, 9.56 g of deionized water and 2.00 g of CBV720 Y-zeolite powder (Zeolyst International, SiO2/Al2O3 mole ratio=30) were mixed together in a Teflon liner. Then, 8.45 g of 20% N,N-dimethylpiperidinium hydroxide solution was added to the mixture. The resulting gel was stirred until it became homogeneous. The liner was then capped and placed within a Parr steel autoclave reactor. The autoclave was then placed in an oven and the heated at 150° C. for 4 days. The solid products were recovered by centrifugation, washed with deionized water and dried at 95° C.
- The resulting product had a SiO2/Al2O3 mole ratio of 12.7, as determined by ICP elemental analysis.
- The resulting product was identified by powder XRD and SEM as pure SSZ-105. The SEM image is shown in
FIG. 6 . The list of the characteristic XRD peaks for this as-synthesized product is shown in Table 5 below. -
TABLE 5 Characteristic Peaks for As-Synthesized SSZ-105 Prepared in Example 3 2-Theta(a) d-Spacing, nm Relative Intensity(b) 7.80 1.132 VS 9.80 0.902 M 11.76 0.752 W 13.47 0.657 S 15.56 0.569 M 16.68 0.531 W 17.90 0.495 W 19.36 0.458 S 20.65 0.430 M 21.45 0.414 W (a)±0.35 (b)The powder XRD patterns provided are based on a relative intensity scale in which the strongest line in the powder X-ray diffraction pattern is assigned a value of 100: W = weak (>0 to ≦20); M = medium (>20 to ≦40); S = strong (>40 to ≦60); VS = very strong (>60 to ≦100). - A comparison between the experimental powder XRD pattern collected from the calcined product and DIFFaX simulated powder XRD patterns with various ERI/LEV intergrowth ratios is shown in
FIG. 7 . DIFFaX calculation indicates that the product is an intergrowth material with approximately 80-90% of ERI stacking sequence and 10-20% LEV stacking sequence. - 3.21 g of 45% KOH solution, 32.72 g of deionized water and 8.00 g of CBV760 Y-zeolite powder (Zeolyst International, SiO2/Al2O3 mole ratio =60) were mixed together in a Teflon liner. Then, 41.05 g of 20% N,N-dimethylpiperidinium hydroxide solution was added to the mixture. The resulting gel was stirred until it became homogeneous. The liner was then capped and placed within a Parr steel autoclave reactor. The autoclave was then placed in an oven and the heated at 150° C. for 3 days. The solid products were recovered by centrifugation, washed with deionized water and dried at 95° C.
- The resulting product had a SiO2/Al2O3 mole ratio of 19.7, as determined by ICP elemental analysis.
- The resulting product was analyzed by powder XRD and SEM. It was identified as pure SSZ-105 molecular sieve. The SEM image is shown in
FIG. 8 . The list of the characteristic XRD peaks for this as-synthesized product is shown in Table 6 below. -
TABLE 6 Characteristic Peaks for As-Synthesized SSZ-105 Prepared in Example 4. 2-Theta(a) d-Spacing, nm Relative Intensity(b) 7.84 1.126 W 8.62 1.025 W 10.92 0.809 S 11.73 0.754 W 13.55 0.653 S 15.69 0.564 W 17.56 0.505 VS 17.92 0.495 S 21.06 0.421 M 22.28 0.399 VS (a)±0.35 (b)The powder XRD patterns provided are based on a relative intensity scale in which the strongest line in the powder X-ray diffraction pattern is assigned a value of 100: W = weak (>0 to ≦20); M = medium (>20 to ≦40); S = strong (>40 to ≦60); VS = very strong (>60 to ≦100). - A comparison between the experimental powder XRD pattern collected from the calcined product and DIFFaX simulated powder XRD patterns with various ERI/LEV intergrowth ratios is shown in
FIG. 9 . DIFFaX calculation indicates that the product is an intergrowth material with approximately 20-30% of ERI stacking sequence and 70-80% LEV stacking sequence. - 0.80 g of 45% KOH solution, 8.18 g of deionized water and 2.00 g of CBV780 Y-zeolite powder (Zeolyst International, SiO2/Al2O3 mole ratio=80) were mixed together in a Teflon liner. Then, 10.26 g of 20% N,N-dimethylpiperidinium hydroxide solution was added to the mixture. The resulting gel was stirred until it became homogeneous. The liner was then capped and placed within a Parr steel autoclave reactor. The autoclave was then placed in an oven and the heated at 150° C. for 4 days. The solid products were recovered by centrifugation, washed with deionized water and dried at 95° C.
- The resulting product had a SiO2/Al2O3 mole ratio of 21.6, as determined by ICP elemental analysis.
- The resulting product was analyzed by powder XRD and SEM and indicated that the product was pure SSZ-105 molecular sieve. The SEM image is shown in
FIG. 10 . The list of the characteristic XRD peaks for this as-synthesized product is shown in Table 7 below. -
TABLE 7 Characteristic Peaks for As-Synthesized SSZ-105 Prepared in Example 5 2-Theta(a) d-Spacing, nm Relative Intensity(b) 7.95 1.111 W 8.63 1.024 W 10.97 0.806 M 11.62 0.761 W 13.54 0.654 M 16.00 0.554 W 17.46 0.507 VS 17.88 0.496 M 21.06 0.421 S 22.22 0.400 VS (a)±0.35 (b)The powder XRD patterns provided are based on a relative intensity scale in which the strongest line in the powder X-ray diffraction pattern is assigned a value of 100: W = weak (>0 to ≦20); M = medium (>20 to ≦40); S = strong (>40 to ≦60); VS = very strong (>60 to ≦100). - A comparison between the experimental powder XRD pattern collected from the calcined product and DIFFaX simulated powder XRD patterns with various ERI/LEV intergrowth ratios is shown in
FIG. 11 . DIFFaX calculation indicates that the product is an intergrowth material with approximately 10-20% of ERI stacking sequence and 80-90% LEV stacking sequence. - The as-synthesized molecular sieve products were calcined inside a muffle furnace under a flow of air heated to 540° C. at a rate of 1° C./minute and held at 540° C. for 5 hours, cooled and then analyzed by powder XRD.
-
FIG. 3 ,FIG. 5 ,FIG. 7 ,FIG. 9 andFIG. 11 show the XRD patterns of calcined SSZ-105molecular sieve products 1, 2, 3, 4 and 5, respectively, and indicate that the material remains stable after calcination to remove the organic SDA. - The calcined material from Example 6 was treated with 10 mL (per g of molecular sieve) of a 1N ammonium nitrate solution at 90° C. for 2 hours. The solution was cooled, decanted off and same process repeated.
- The ammonium-exchanged molecular sieve product (NH4-SSZ-105) was subjected to a micropore volume analysis using N2 as adsorbate and via the BET method. The molecular sieve exhibited a micropore volume of 0.25 cm3/g and indicates that SSZ-105 has microporous character.
- As used herein, the term “comprising” means including elements or steps that are identified following that term, but any such elements or steps are not exhaustive, and an embodiment can include other elements or steps.
- Unless otherwise specified, the recitation of a genus of elements, materials or other components, from which an individual component or mixture of components can be selected, is intended to include all possible sub-generic combinations of the listed components and mixtures thereof.
- All documents cited in this application are herein incorporated by reference in their entirety to the extent such disclosure is not inconsistent with this text.
Claims (7)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/884,859 US9617165B1 (en) | 2015-10-16 | 2015-10-16 | Method for making molecular sieve SSZ-105 |
CN201680059620.XA CN108137333B (en) | 2015-10-16 | 2016-09-27 | Molecular sieve SSZ-105, its synthesis and use |
KR1020187008739A KR102539262B1 (en) | 2015-10-16 | 2016-09-27 | Molecular Sieve SSZ-105, Synthesis and Uses thereof |
EP16784303.6A EP3362410B1 (en) | 2015-10-16 | 2016-09-27 | Molecular sieve ssz-105, its synthesis and use |
ES16784303T ES2775738T3 (en) | 2015-10-16 | 2016-09-27 | SSZ-105 molecular sieve, its synthesis and use |
PCT/US2016/053911 WO2017065967A1 (en) | 2015-10-16 | 2016-09-27 | Molecular sieve ssz-105, its synthesis and use |
JP2018519294A JP6697549B2 (en) | 2015-10-16 | 2016-09-27 | Molecular sieve SSZ-105, its synthesis and use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/884,859 US9617165B1 (en) | 2015-10-16 | 2015-10-16 | Method for making molecular sieve SSZ-105 |
Publications (2)
Publication Number | Publication Date |
---|---|
US9617165B1 US9617165B1 (en) | 2017-04-11 |
US20170107113A1 true US20170107113A1 (en) | 2017-04-20 |
Family
ID=58461681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/884,859 Active 2035-12-30 US9617165B1 (en) | 2015-10-16 | 2015-10-16 | Method for making molecular sieve SSZ-105 |
Country Status (1)
Country | Link |
---|---|
US (1) | US9617165B1 (en) |
-
2015
- 2015-10-16 US US14/884,859 patent/US9617165B1/en active Active
Non-Patent Citations (2)
Title |
---|
Passsaglia et al. "Crystal chemistry of the zeolites erionite and offretite", American Mineralogist, Vol. 83, pp577-589, (1998) * |
Wise eta l, "The chemical compositions and orignins fo the zeolites offretite, erionite, and levyne", American Mineralogist, Vol. 61, pp853-863, (1976) * |
Also Published As
Publication number | Publication date |
---|---|
US9617165B1 (en) | 2017-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3164361B1 (en) | Method for making molecular sieve ssz-98 | |
US9662642B2 (en) | Synthesis of aluminosilicate zeolite SSZ-98 | |
EP3678993B1 (en) | Synthesis of afx framework type molecular sieves | |
US9815705B2 (en) | Synthesis of molecular sieve SSZ-98 | |
EP3386918B1 (en) | Synthesis of molecular sieve ssz-105 | |
US9815704B2 (en) | Method for preparing zeolite SSZ-98 | |
US9643855B2 (en) | Synthesis of aluminosilicate RTH framework type zeolites | |
EP3353114B1 (en) | Method for preparing zeolite ssz-98 | |
US9663380B2 (en) | Molecular sieve SSZ-105 | |
US9617165B1 (en) | Method for making molecular sieve SSZ-105 | |
US20190375648A1 (en) | Synthesis of molecular sieve ssz-109 | |
US9708193B2 (en) | Synthesis of aluminosilicate LEV framework type zeolites | |
US20170158520A1 (en) | Synthesis of aluminosilicate zeolites having the offretite structure | |
US10407313B2 (en) | Synthesis of aluminosilicate zeolites having the offretite structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHEVRON U.S.A. INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XIE, DAN;LEW, CHRISTOPHER MICHAEL;REEL/FRAME:036806/0822 Effective date: 20151013 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |