US20170092753A1 - Water and Ion Barrier for III-V Semiconductor Devices - Google Patents
Water and Ion Barrier for III-V Semiconductor Devices Download PDFInfo
- Publication number
- US20170092753A1 US20170092753A1 US14/869,457 US201514869457A US2017092753A1 US 20170092753 A1 US20170092753 A1 US 20170092753A1 US 201514869457 A US201514869457 A US 201514869457A US 2017092753 A1 US2017092753 A1 US 2017092753A1
- Authority
- US
- United States
- Prior art keywords
- interlayer dielectric
- barrier
- iii
- metal layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H01L29/7787—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/564—Details not otherwise provided for, e.g. protection against moisture
-
- H01L29/2003—
-
- H01L29/205—
-
- H01L29/66462—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
- H01L23/3192—Multilayer coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
Definitions
- the present application relates to III-V semiconductor devices, in particular a water and ion barrier for III-V semiconductor devices.
- GaN based semiconductors provide superior performance figure of merits compared to silicon based semiconductors due to outstanding material properties. Additionally GaN based semiconductors are also very robust against oxidation and other chemicals. However, this robust aspect is not valid if high electric fields are applied on a GaN device within a humid environment. The combination of a high electric field and moisture leads to severe oxidation of the GaN or AlGaN surface layer, and therefore to destruction of the device.
- the reduction-oxidation (redox) reaction between an AlxGa1-xN surface layer and water is given by:
- the gate metal acts as the cathode which provides electrons to the water at the interface.
- the corresponding reduction reaction for the water is given by:
- the AlxGa1-xN surface layer acts as the anode and is decomposed and subsequently anodically oxidized in the presence of holes and hydroxyl ions (OH—) as given by the following reactions:
- holes are available at the top III-Nitride surface layer during high off-state drain bias conditions; and (2) water ions from the ambient diffuse/permeate through the uppermost passivation layer and reach the III-Nitride surface layer.
- holes can be generated by either impact ionization or by inter-band tunneling (trap assisted).
- Conventional GaN HEMT (high electron mobility transistor) device structure has a passivation layer on top of the uppermost power metal layer.
- the passivation layer typically includes a thick oxide layer (in the range of 1000 nm) covering the uppermost power metal layer followed by a dense nitride layer (thickness in the range of 800 nm) on the thick oxide layer.
- the interlayer dielectrics which separate the metal layers of the device consist of oxides and the surface passivation of the GaN device is usually a thin silicon nitride layer having a thickness of several 100 nm.
- the silicon nitride surface passivation layer typically has low nitride density and therefore is an ineffective barrier against ions.
- GaN HEMTs are often used as power devices in which a large amount of current flows through the power metallization of the device. Because of this large current, the power metallization thickness is in the range of several ⁇ m to satisfy electromigration requirements.
- Metals such as Al, AlCu, AlSiCu and Au are often used as the power metallization for GaN HEMTs to be compatible with the Si CMOS technology. Copper power metallization is not an option due to dendrite formation in the lateral device concept.
- the drawback of Al, AlCu, AlSiCu and Au is the softness of the material. The metal lines tend to move or deform (so-called ratcheting effect) after temperature cycling due to package-induced thermomechanical stresses which arise because of thermal mismatch of the temperature coefficients of the different material systems.
- top passivation layer As a result, movement/deformation of the power metal lines induces cracks in the top passivation layer. These cracks easily will extend downward into the interlayer dielectrics which separate the different metal layers. If a relatively thick top passivation layer is used e.g. >800 nm, the passivation crack length is at least on the order of the passivation layer thickness. The energy of the passivation crack is a function of the passivation thickness. As such, for standard thick top passivation layers, the passivation crack easily propagates into the interlayer dielectrics and even down to the GaN surface layer. This effect is responsible for the insufficient THB lifetimes often observed in conventional GaN devices.
- a semiconductor device comprises an III-V semiconductor body, a device formed in the III-V semiconductor body, one or more metal layers above the III-V semiconductor body, an interlayer dielectric adjacent each metal layer, a plurality of vias electrically connecting each metal layer to the device formed in the III-V semiconductor body, and a barrier disposed below the uppermost metal layer and in or above the lowermost interlayer dielectric.
- the barrier is configured to prevent water, water ions, sodium ions and potassium ions from diffusing into the interlayer dielectric or portion of the interlayer dielectric immediately below the barrier.
- the method comprises: forming a device in an III-V semiconductor body; forming one or more metal layers above the III-V semiconductor body; forming an interlayer dielectric adjacent each metal layer; forming a plurality of vias electrically connecting each metal layer to the device formed in the III-V semiconductor body; and forming a barrier below the uppermost metal layer and in or above the lowermost interlayer dielectric, the barrier configured to prevent water, water ions, sodium ions and potassium ions from diffusing into the interlayer dielectric or portion of the interlayer dielectric immediately below the barrier.
- FIGS. 1 through 11 illustrate respective partial sectional views of an III-V semiconductor device having a water and ion barrier, according to different embodiments.
- a passivation layer can be provided on the uppermost metal layer which is often the power metal layer and therefore the thickest metal layer.
- an electrically conductive liner can be interposed between each metal line of the uppermost metal layer and the interlayer dielectric immediately below the uppermost metal layer and can extend outward beyond opposing side faces of the metal line above that electrically conductive liner. The extended region of each electrically conductive liner prevents cracks in the relatively thick top passivation layer from propagating downward into the underlying interlayer dielectrics and barrier.
- a relatively thin top passivation layer e.g.
- FIG. 1 illustrates a partial sectional view of one embodiment of an III-V semiconductor device.
- the semiconductor device comprises an III-V semiconductor body 100 and a device formed in the III-V semiconductor body 100 .
- the semiconductor body 100 can include an III-nitride buffer 102 and an III-nitride barrier 104 which form a heterostructure.
- the semiconductor body 100 also includes a source 106 and a drain 108 which are spaced apart from one another.
- the III-nitride barrier 104 has a different band gap than the III-nitride buffer 102 so that a two-dimensional charge carrier gas channel 110 arises along an interface between the III-nitride buffer 102 and the III-nitride barrier 104 .
- the two-dimensional charge carrier gas channel 110 electrically connects the source 106 and the drain 108 .
- source and drain as used herein refer to respective doped regions of the device or to respective electrodes (as shown) if no doped regions are provided.
- typical HEMTs have source and drain ohmic contacts which are based on a metal alloy that does not require any additional doping.
- dope the source and drain region e.g. with Si for III-nitride devices to have an n+ region below the ohmic contact and to lower, therefore, the overall contact resistance of high or low voltage transistors.
- a standard gate 112 is provided for controlling the two-dimensional charge carrier gas channel 110 .
- the gate 112 can be a planar (as shown) or trench gate in direct contact with the heterostructure body 100 , or electrically insulated from the heterostructure body 100 by a silicon nitride surface passivation layer 114 which is usually a different thickness and even a different material system than the gate dielectric. Additional insulative device isolation regions 116 can be provided.
- the silicon nitride surface passivation layer 114 touches and is supported by the top surface of the III-V semiconductor body 100 , and a lowermost interlayer dielectric 118 touches and is supported by the top surface of the surface passivation layer 114 .
- the silicon nitride surface passivation layer 114 can have a Si rich composition and thus have relatively low density of nitride as compared to silicon, and therefore is leaky and an ineffective barrier against the diffusion of water, water ions, sodium ions and potassium ions into the underlying III-V semiconductor body 100 . Even if the surface passivation layer 114 is nitride dense, the standard passivation thicknesses of about 100 nm is too thin for the surface passivation layer 114 to be an effective water and ion barrier for the entire lifetime of the device.
- the gate 112 controls the conducting or non-conducting state of the two-dimensional charge carrier gas channel 110 .
- the transistor device can be normally-on or normally-off.
- the channel 110 of a normally-off HEMT is disrupted absent a voltage applied to the gate 112 , and disrupted in the presence of a suitable gate voltage for a normally-on device.
- the gate 112 can be placed on top of a p-doped GaN layer (not shown) which is disposed on top of the III-nitride barrier 104 . This additional pGaN layer can be patterned so that it is placed only below the gate 112 .
- the embodiments described herein can be applied to both normally-on and normally-off transistor devices and to other types of active devices such as power diodes.
- the III-V semiconductor device can further include a field plate 120 disposed between the source 106 and the drain 108 .
- the field plate 120 can be made of semiconductor material or metal and can be electrically connected to the source 106 via a contact or to the gate 112 , and is configured to minimize the electric field at the gate edge.
- the field plate configuration shown in FIG. 1 is merely an example. Any desired field plate configuration can be used.
- the field plate 120 can have different shapes, more than one field plate can be provided which can be connected either to the source 106 or gate 112 , etc.
- the III-V semiconductor device is a GaN-based HEMT.
- the presence of polarization charges and strain effects in a GaN-based heterostructure body due to spontaneous and piezoelectric polarization yield a two-dimensional charge carrier gas 110 in the heterostructure body 100 characterized by very high carrier density and carrier mobility.
- This two-dimensional charge carrier gas 110 such as a 2DEG (two-dimensional electron gas) or 2DHG (two-dimensional hole gas), forms the conductive channel of the device near the interface between the III-nitride barrier 104 , e.g., a GaN alloy barrier such as AlGaN, InAlGaN, InAlN, etc.
- III-nitride buffer 102 e.g., a GaN buffer.
- a thin, e.g. 1-2 nm, AlN layer can be provided between the GaN buffer 102 and the GaN alloy barrier 104 to minimize alloy scattering and enhance 2DEG mobility.
- the III-V semiconductor device described herein can be formed from any binary, ternary or quaternary III-nitride compound semiconductor material where piezoelectric effects or a heterojunction is responsible for the device concept.
- the buffer 102 can be manufactured on a semiconductor substrate 122 such as a Si, SiC or sapphire substrate, on which a nucleation (seed) layer 124 such as an AlN layer can be formed for providing thermal and lattice matching to the buffer 102 .
- the III-V semiconductor device may also have AlInN/AlN/GaN barrier/spacer/buffer layer structures.
- the III-V semiconductor device can be realized using any suitable III-V technology such as GaAs, GaN, etc.
- the III-V semiconductor device also includes a plurality of interlayer dielectrics 118 , 126 above the III-V semiconductor body 100 and a plurality of metal layers 128 , 130 separated from one another by the interlayer dielectrics 118 , 126 .
- Two metal layers 128 , 130 and two interlayer dielectrics 118 , 126 are shown in FIG. 1 for ease of illustration.
- the III-V semiconductor device can have one or more metal layers and a corresponding number of interlayer dielectrics.
- Vias 132 extend through the interlayer dielectrics 118 , 126 and electrically connect the metal layers 128 , 130 to the device formed in the III-V semiconductor body 100 . For example in FIG.
- vias 132 extend through the interlayer dielectrics 118 , 126 and electrically connect the metal layers 128 , 130 to the source 106 , drain 108 and gate 112 of the transistor device formed in the III-V semiconductor body 100 (the gate connections are out of view in FIG. 1 ).
- the III-V semiconductor device further includes a barrier 134 disposed below the uppermost metal layer 130 e.g. the power metal layer and in or above the lowermost interlayer dielectric 118 .
- the barrier 130 extends under the metal lines 136 of the uppermost metal layer 130 .
- the barrier 134 is configured to prevent water ions, sodium ions and potassium ions from diffusing into the interlayer dielectric 126 or portion of the interlayer dielectric 126 immediately below the barrier 134 over the required or specified device lifetime. This way, the electric field distribution in each interlayer dielectric 118 , 126 or portion of each interlayer dielectric 118 , 126 immediately below the barrier 134 is unaffected by ions.
- an III-nitride material system e.g.
- the barrier 134 also prevents oxidation of the nitride-based surface layer 104 of the semiconductor body 100 by blocking water and water ions.
- Silicon oxynitride and silicon nitride are effective barriers against water, water ions, sodium ions and potassium ions, and are compatible with standard silicon processing technologies. Still other types of water/ion barrier materials can be used.
- the barrier 134 can comprise a single layer of the same material e.g. of silicon oxynitride or silicon nitride or a plurality of layers of different materials e.g. silicon oxynitride encased by silicon nitride.
- the barrier 134 comprises silicon oxynitride or silicon nitride and the interlayer dielectrics 118 , 126 comprise oxide.
- silicon oxynitride silicon oxynitride is typically under tensile stress and oxide is under compressive stress.
- the barrier 134 can be interposed between a first oxide layer 138 and a second oxide layer 140 of the uppermost interlayer dielectric 126 so that the compressive stress of the oxide layers 138 , 140 at least partly counteract tensile silicon oxynitride, protecting the barrier 134 from cracking.
- the barrier 134 shown in FIG. 1 can be formed by a 3-step deposition process.
- the 3-step deposition process includes depositing the first oxide layer 138 of the uppermost interlayer dielectric 126 on the metal layer 128 just below the uppermost metal layer 130 , depositing silicon oxynitride or silicon nitride on the first oxide layer 138 and depositing the second oxide layer 140 of the uppermost interlayer dielectric 126 on the silicon oxynitride/silicon nitride.
- a relatively thin passivation layer 142 made of e.g. oxide and dense nitride can be formed on the uppermost metal layer 130 , the passivation layer 142 having a thickness of 800 nm or less.
- An imide 144 can be formed on the thin passivation layer 142 to complete the III-V semiconductor device. If cracks occur in the top passivation layer 142 , the energy of the cracks will be relatively low since the passivation layer 142 is made as thin as possible e.g. 800 nm or less thick.
- top passivation layer 142 should not damage the underlying barrier 134 to the point where the barrier 134 no longer prevents water ions, sodium ions and potassium ions from diffusing into the first oxide layer 138 of the uppermost interlayer dielectric 126 over the required or specified device lifetime.
- the III-V semiconductor device does not include the top passivation layer 142 .
- FIG. 2 illustrates a sectional view of another embodiment of an III-V semiconductor device having a water/ion barrier 134 disposed below the uppermost metal layer 130 and in or above the lowermost interlayer dielectric 118 .
- the embodiment shown in FIG. 2 is similar to the embodiment shown in FIG. 1 .
- the barrier 134 is touching and being supported by the top surface of the uppermost interlayer dielectric 126 and comprises silicon nitride. Unlike silicon oxynitride which is typically under tensile stress and therefore prone to cracking, silicon nitride is under compressive stress. As such, the barrier 134 need not be interposed between two oxide layers of one of the interlayer dielectrics 118 , 126 .
- the silicon nitride-based barrier 134 is on the uppermost interlayer dielectric 126 according to this embodiment. Also, the density of nitride as compared to silicon is made high enough so that the barrier 134 is not leaky and therefore prevents the diffusion of water ions, sodium ions and potassium ions into the interlayer dielectric 126 immediately below the barrier 134 over the required or specified device lifetime.
- a barrier 134 made of silicon nitride is formed by depositing by chemical vapor deposition a silane-ammonia mixture on one of the interlayer dielectrics 118 , 126 or on an oxide layer of one of the interlayer dielectrics 118 , 126 .
- the flow rate of silane and ammonia is controlled during the chemical vapor deposition so that the silicon nitride layer formed by the chemical vapor deposition has a concentration of nitride sufficient to prevent water, water ions, sodium ions and potassium ions from diffusing into the interlayer dielectric 118 , 126 or portion of the interlayer dielectric 118 , 126 immediately below the barrier 134 over the required or specified device lifetime.
- the barrier 134 made of silicon nitride can have a higher density of nitride than the surface passivation layer 114 on the III-V semiconductor body 100 which may be of poor quality (i.e. leaky) in some cases and therefore ineffective as a water/ion barrier.
- FIG. 3 illustrates a sectional view of yet another embodiment of an III-V semiconductor device having a water/ion barrier 134 disposed below the uppermost metal layer 130 and in or above the lowermost interlayer dielectric 118 .
- the embodiment shown in FIG. 3 is similar to the embodiment shown in FIG. 1 .
- the barrier 134 is interposed between a first oxide layer 146 and a second oxide layer 148 of the lowermost interlayer dielectric 118 .
- the lowermost interlayer dielectric 118 and the barrier 134 can be formed by the 3-step deposition process previously described herein.
- the barrier 134 in this embodiment still prevents the electric field distribution in the portion of the lowermost interlayer dielectric 118 below the barrier 134 from being affected by ions.
- the barrier 134 also still prevents oxidation of a nitride-based surface layer 104 of the semiconductor body 100 by blocking water ions in the case of an III-nitride material system.
- FIG. 5 illustrates a sectional view of an embodiment which combines the barrier features shown in FIGS. 1 and 3 . That is, the III-V semiconductor device has a first water/ion barrier 134 ′ made of silicon oxynitride interposed between the first and second oxide layers 138 , 140 of the uppermost interlayer dielectric 126 and a second water ion barrier 134 ′′ made of silicon oxynitride interposed between the first and second oxide layers 146 , 148 of the lowermost interlayer dielectric 118 .
- Each barrier 134 ′, 134 ′′ can comprise a single layer of the same material e.g. of silicon oxynitride or silicon nitride or a plurality of layers of different materials e.g.
- each interlayer dielectric 118 , 126 and the corresponding barrier 134 ′, 134 ′′ can be formed by the 3-step deposition process previously described herein.
- more than one barrier 134 ′, 134 ′′ is provided between the uppermost metal layer 130 and the semiconductor passivation layer 114 in case one (or more) of the barriers is damaged.
- the lower barrier 134 ′′ still prevents the electric field distribution in the lower oxide layer 146 of the lowermost interlayer dielectric 118 from being affected by ions and also prevents oxidation of the nitride-based surface layer 104 of the semiconductor body 100 by blocking water ions in the case of an III-nitride material system.
- FIG. 6 illustrates a sectional view of an embodiment which combines the barrier features shown in FIGS. 2 and 4 . That is, the III-V semiconductor device has a first water/ion barrier 134 ′ made of silicon nitride or compressive silicon oxynitride disposed on the uppermost interlayer dielectric 126 and a second water/ion barrier 134 ′′ made of silicon nitride or tensile or compressive silicon oxynitride disposed on the lowermost interlayer dielectric 118 . Like the embodiment shown in FIG. 5 , more than one barrier 134 ′, 134 ′′ is provided between the uppermost metal layer 130 and semiconductor passivation layer 114 in case one (or more) of the barriers is damaged.
- FIG. 7 illustrates a sectional view of another embodiment of an III-V semiconductor device having more than one water/ion barrier 134 ′, 134 ′′ disposed below the uppermost metal layer 130 and above the semiconductor passivation layer 114 .
- the barriers 134 ′, 134 ′′ comprise different materials.
- the upper barrier 134 ′ can be made of silicon nitride and disposed on the uppermost interlayer dielectric 126 and the lower barrier 134 ′′ can be made of tensile silicon oxynitride and interposed between first and second oxide layers 146 , 148 of the lowermost interlayer dielectric 118 .
- the upper barrier 134 ′ can comprise silicon oxynitride and be interposed between the first and second oxide layers 138 , 140 of the uppermost interlayer dielectric 126 e.g. as shown in FIG. 1 and the lower barrier 134 ′′ can comprises silicon nitride or compressive silicon oxynitride and be disposed on the top surface of the lowermost interlayer dielectric 118 e.g. as shown in FIG. 4 .
- the III-V semiconductor device has two metal layers 128 , 130 and two interlayer dielectrics 118 , 126 . This is for ease of explanation only.
- the number of metal layers and thus the number of interlayer dielectrics depends on several factors, including the type of device and design of the III-V semiconductor device, the III-V semiconductor technology used to fabricate the device, etc.
- the III-V semiconductor device can have one or more metal layers and a corresponding number of interlayer dielectrics.
- FIG. 8 illustrates a sectional view of an embodiment of an III-V semiconductor device having a single metal layer 128 and a single interlayer dielectric 118 . All metal wiring, including power metal lines, are provided in the same metal layer 128 .
- the water/ion barrier 134 comprises silicon nitride or tensile silicon oxynitride and is interposed between a first oxide layer 146 and a second oxide layer 148 of the only interlayer dielectric 118 according to this embodiment.
- the interlayer dielectric 118 separates the single metal layer 128 from the underlying semiconductor body 100 .
- the single interlayer dielectric 118 and the barrier 134 can be formed by the 3-step deposition process previously described herein.
- FIG. 9 illustrates a sectional view of another embodiment of an III-V semiconductor device having a single metal layer 128 and single interlayer dielectric 118 .
- the embodiment shown in FIG. 8 is similar to the embodiment shown in FIG. 9 .
- the water/ion barrier 134 comprises silicon nitride or compressive silicon oxynitride and is touching and being supported by the top surface of the single interlayer dielectric 118 .
- water/ion barrier embodiments previously described herein can be applied to any of the interlayer dielectric(s) included in the III-V semiconductor device—and not to just the uppermost and/or lowermost dielectric layers.
- a relatively thick top passivation layer e.g. thicker than about 800 nm. Crack energy is higher with such a thick top passivation layer, and therefore additional safeguards are described for mitigating the increased risk of crack propagation. These additional safeguards can be applied to any of the embodiments previously described herein.
- FIG. 10 illustrates a sectional view of an embodiment of an III-V semiconductor device having a top passivation layer 142 with a thickness >800 nm on the uppermost metal layer 130 , and a water/ion barrier 134 disposed below the uppermost metal layer 130 and above the semiconductor passivation layer 114 .
- FIG. 10 shows the deformation/movement in the uppermost metal layer 130 which can occur after temperature cycling due to package-induced thermomechanical stresses which arise because of thermal mismatch of the temperature coefficients of the different material systems used in the III-V semiconductor device.
- the deformation/movement is particularly pronounced for relatively thick metal lines 136 (e.g. 1000 nm or thicker) made of a relatively soft metal i.e.
- a metal having a low yield strength such as Al, AlCu, AlSiCu and Au.
- Cracks in the top passivation layer 142 are graphically illustrated with lightning bolts in FIG. 10 . The cracks tend to occur in the region of the top passivation layer 142 contacting the metal lines 136 of the uppermost metal layer 130 . The region 150 of the top passivation layer 142 between the metals lines 136 of the uppermost metal layer 130 does not tend to crack.
- an electrically conductive liner 152 made of e.g. titanium nitride is deposited in openings formed in the barrier 134 and in the uppermost interlayer dielectric 126 . Vias 132 are then formed on the liner 152 in the openings.
- the liner 152 extends laterally onto the barrier 134 or onto the uppermost interlayer dielectric 126 if the barrier 134 is disposed in or below the uppermost interlayer dielectric 126 .
- each electrically conductive liner 152 extends outward beyond opposing side faces 154 of the corresponding metal line 136 above that electrically conductive liner 152 .
- each electrically conductive liner 152 extends under the region 150 of the top passivation layer 142 positioned between adjacent metals lines 136 of the uppermost metal layer 130 and which has no cracks.
- the electrically conductive liners 152 are made of a material such as titanium nitride or other suitable material which does not tend to brake or crack easily.
- the liners 152 function as crack stops by preventing cracks in the relatively thick top passivation layer 142 from propagating to the underlying interlayer dielectrics 126 , 118 and barrier(s) 134 .
- Electrically conductive liners 156 are interposed between the metal lines 158 of the metal layer 128 immediately above the additional barrier 134 ′′ and the interlayer dielectric 118 immediately below that metal layer 128 . Each of these lower electrically conductive liners 156 extends outward beyond opposing side faces 160 of the metal line 158 above that liner 156 , to prevent cracks in the uppermost interlayer dielectric 126 from propagating to the underlying interlayer dielectric 118 and additional barrier 134 ′′. Deformation/movement in the lower metal layer 128 can occur if the metal lines 158 in this layer 128 are relatively thick (e.g. around 1000 nm) and made of a relatively soft metal such as Al, AlCu, AlSiCu and Au.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Junction Field-Effect Transistors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
- The present application relates to III-V semiconductor devices, in particular a water and ion barrier for III-V semiconductor devices.
- BACKGROUND
- GaN based semiconductors provide superior performance figure of merits compared to silicon based semiconductors due to outstanding material properties. Additionally GaN based semiconductors are also very robust against oxidation and other chemicals. However, this robust aspect is not valid if high electric fields are applied on a GaN device within a humid environment. The combination of a high electric field and moisture leads to severe oxidation of the GaN or AlGaN surface layer, and therefore to destruction of the device. The reduction-oxidation (redox) reaction between an AlxGa1-xN surface layer and water is given by:
-
2AlxGa1−xN+3H2O=xAl2O3+(1−x)Ga2O3+N2↑+3H2↑. (1) - In the electrochemical cell, the gate metal acts as the cathode which provides electrons to the water at the interface. The corresponding reduction reaction for the water is given by:
-
2H2O+2c −=H2+2OH−. (2) - The electrons contribute to the total gate current. On the other hand, the AlxGa1-xN surface layer acts as the anode and is decomposed and subsequently anodically oxidized in the presence of holes and hydroxyl ions (OH—) as given by the following reactions:
-
2AlxGa1−xN+6h +=2xAl3++2(1−x)Ga3++N2↑ (3) - and
-
2xAl3++2(1−x)Ga3++6OH− =xAl2O3+(1−x)Ga2O3+3H2O. (4) - In summary, for the corrosion process to happen, it is necessary that: (1) holes are available at the top III-Nitride surface layer during high off-state drain bias conditions; and (2) water ions from the ambient diffuse/permeate through the uppermost passivation layer and reach the III-Nitride surface layer. Under high applied fields, holes can be generated by either impact ionization or by inter-band tunneling (trap assisted).
- Conventional GaN HEMT (high electron mobility transistor) device structure has a passivation layer on top of the uppermost power metal layer. The passivation layer typically includes a thick oxide layer (in the range of 1000 nm) covering the uppermost power metal layer followed by a dense nitride layer (thickness in the range of 800 nm) on the thick oxide layer. To be compatible with Si processes, the interlayer dielectrics which separate the metal layers of the device consist of oxides and the surface passivation of the GaN device is usually a thin silicon nitride layer having a thickness of several 100 nm. The silicon nitride surface passivation layer typically has low nitride density and therefore is an ineffective barrier against ions. Even in the case of a nitride-dense surface passivation layer, a standard 100 nm thick silicon nitride layer may be too thin to block ions over the required device lifetime. Without damage to the top passivation layer, this conventional GaN HEMT device structure concept can withstand temperature, humidity and bias (THB) testing, which often is a required test for releasing a product into the market.
- Due to the lateral device structure and the capability of GaN, GaN HEMTs are often used as power devices in which a large amount of current flows through the power metallization of the device. Because of this large current, the power metallization thickness is in the range of several μm to satisfy electromigration requirements. Metals such as Al, AlCu, AlSiCu and Au are often used as the power metallization for GaN HEMTs to be compatible with the Si CMOS technology. Copper power metallization is not an option due to dendrite formation in the lateral device concept. The drawback of Al, AlCu, AlSiCu and Au is the softness of the material. The metal lines tend to move or deform (so-called ratcheting effect) after temperature cycling due to package-induced thermomechanical stresses which arise because of thermal mismatch of the temperature coefficients of the different material systems.
- As a result, movement/deformation of the power metal lines induces cracks in the top passivation layer. These cracks easily will extend downward into the interlayer dielectrics which separate the different metal layers. If a relatively thick top passivation layer is used e.g. >800 nm, the passivation crack length is at least on the order of the passivation layer thickness. The energy of the passivation crack is a function of the passivation thickness. As such, for standard thick top passivation layers, the passivation crack easily propagates into the interlayer dielectrics and even down to the GaN surface layer. This effect is responsible for the insufficient THB lifetimes often observed in conventional GaN devices.
- As described above in detail, water ions and high electric fields are needed for the destruction of GaN devices. High electric fields cannot be avoided in power devices, as such novel barrier concepts are needed which hinder water and corresponding water ions (e.g. OH− and H3O+) and other ions such as sodium and potassium ions from reaching the GaN or the AlGaN surface layer. Even if ions only diffuse into the interlayer dielectrics without reaching the semiconductor surface, the ions still effect the electric field distribution in each interlayer dielectric penetrated by the ions. This is a concern for all III-V devices, including GaN devices, particularly if ions reach the lowermost interlayer dielectric where spacing is the most critical and therefore can lead to device destruction. For example in the case of water and high fields, device destruction occurs due to corrosion. In the case of Na ions, destruction occurs due to electric field redistributions which give rise to high local electric fields which can lead to local dielectric breakdown/device breakdown. As such, an effective water and ion barrier solution is desirable.
- A semiconductor device comprises an III-V semiconductor body, a device formed in the III-V semiconductor body, one or more metal layers above the III-V semiconductor body, an interlayer dielectric adjacent each metal layer, a plurality of vias electrically connecting each metal layer to the device formed in the III-V semiconductor body, and a barrier disposed below the uppermost metal layer and in or above the lowermost interlayer dielectric. The barrier is configured to prevent water, water ions, sodium ions and potassium ions from diffusing into the interlayer dielectric or portion of the interlayer dielectric immediately below the barrier.
- According to an embodiment of a method of manufacturing a semiconductor device, the method comprises: forming a device in an III-V semiconductor body; forming one or more metal layers above the III-V semiconductor body; forming an interlayer dielectric adjacent each metal layer; forming a plurality of vias electrically connecting each metal layer to the device formed in the III-V semiconductor body; and forming a barrier below the uppermost metal layer and in or above the lowermost interlayer dielectric, the barrier configured to prevent water, water ions, sodium ions and potassium ions from diffusing into the interlayer dielectric or portion of the interlayer dielectric immediately below the barrier.
- Those skilled in the art will recognize additional features and advantages upon reading the following detailed description, and upon viewing the accompanying drawings.
- The elements of the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding similar parts. The features of the various illustrated embodiments can be combined unless they exclude each other. Embodiments are depicted in the drawings and are detailed in the description which follows.
-
FIGS. 1 through 11 illustrate respective partial sectional views of an III-V semiconductor device having a water and ion barrier, according to different embodiments. - An III-V semiconductor device is provided which has metal layers separated from one another by interlayer dielectrics, and a barrier disposed below the uppermost metal layer and in or above the lowermost interlayer dielectric. The term ‘interlayer dielectric’ as used herein refers to a dielectric material used to electrically separate closely spaced interconnect lines arranged in different wiring levels (multilevel metallization). The barrier is configured i.e. arranged or prepared to prevent water, water ions (e.g. OH− and H3O+), sodium ions and potassium ions from diffusing into the interlayer dielectric or portion of the interlayer dielectric immediately below the barrier over the required or specified device lifetime. The barrier can be interposed between two layers of the same interlayer dielectric, or disposed on one of the interlayer dielectrics i.e. touching and being supported by the top surface of that interlayer dielectric.
- In some cases, a passivation layer can be provided on the uppermost metal layer which is often the power metal layer and therefore the thickest metal layer. In the case of a relatively thick top passivation layer e.g. >800 nm thick, an electrically conductive liner can be interposed between each metal line of the uppermost metal layer and the interlayer dielectric immediately below the uppermost metal layer and can extend outward beyond opposing side faces of the metal line above that electrically conductive liner. The extended region of each electrically conductive liner prevents cracks in the relatively thick top passivation layer from propagating downward into the underlying interlayer dielectrics and barrier. In the case of a relatively thin top passivation layer e.g. <800 nm thick, the optional electrically conductive liner extension can be omitted. More than one barrier can be provided. In the case of two or more barriers, the ions barriers can comprise the same or different materials. The embodiments described herein can be implemented interchangeably unless technically or explicitly prohibited against.
-
FIG. 1 illustrates a partial sectional view of one embodiment of an III-V semiconductor device. The semiconductor device comprises an III-V semiconductor body 100 and a device formed in the III-V semiconductor body 100. In the case of an III-nitride device, thesemiconductor body 100 can include an III-nitride buffer 102 and an III-nitride barrier 104 which form a heterostructure. In the case of a transistor device formed in the III-V semiconductor body 100, thesemiconductor body 100 also includes asource 106 and adrain 108 which are spaced apart from one another. The III-nitride barrier 104 has a different band gap than the III-nitride buffer 102 so that a two-dimensional chargecarrier gas channel 110 arises along an interface between the III-nitride buffer 102 and the III-nitride barrier 104. - The two-dimensional charge
carrier gas channel 110 electrically connects thesource 106 and thedrain 108. The terms ‘source’ and ‘drain’ as used herein refer to respective doped regions of the device or to respective electrodes (as shown) if no doped regions are provided. For example, typical HEMTs have source and drain ohmic contacts which are based on a metal alloy that does not require any additional doping. There is also the option to dope the source and drain region e.g. with Si for III-nitride devices to have an n+ region below the ohmic contact and to lower, therefore, the overall contact resistance of high or low voltage transistors. - Continuing with the transistor device example, a
standard gate 112 is provided for controlling the two-dimensional chargecarrier gas channel 110. Thegate 112 can be a planar (as shown) or trench gate in direct contact with theheterostructure body 100, or electrically insulated from theheterostructure body 100 by a silicon nitridesurface passivation layer 114 which is usually a different thickness and even a different material system than the gate dielectric. Additional insulativedevice isolation regions 116 can be provided. - The silicon nitride
surface passivation layer 114 touches and is supported by the top surface of the III-V semiconductor body 100, and alowermost interlayer dielectric 118 touches and is supported by the top surface of thesurface passivation layer 114. The silicon nitridesurface passivation layer 114 can have a Si rich composition and thus have relatively low density of nitride as compared to silicon, and therefore is leaky and an ineffective barrier against the diffusion of water, water ions, sodium ions and potassium ions into the underlying III-V semiconductor body 100. Even if thesurface passivation layer 114 is nitride dense, the standard passivation thicknesses of about 100 nm is too thin for thesurface passivation layer 114 to be an effective water and ion barrier for the entire lifetime of the device. - The
gate 112 controls the conducting or non-conducting state of the two-dimensional chargecarrier gas channel 110. The transistor device can be normally-on or normally-off. Thechannel 110 of a normally-off HEMT is disrupted absent a voltage applied to thegate 112, and disrupted in the presence of a suitable gate voltage for a normally-on device. For example in the case of a normally-off pGaN device, thegate 112 can be placed on top of a p-doped GaN layer (not shown) which is disposed on top of the III-nitride barrier 104. This additional pGaN layer can be patterned so that it is placed only below thegate 112. In general, the embodiments described herein can be applied to both normally-on and normally-off transistor devices and to other types of active devices such as power diodes. - The III-V semiconductor device can further include a
field plate 120 disposed between thesource 106 and thedrain 108. Thefield plate 120 can be made of semiconductor material or metal and can be electrically connected to thesource 106 via a contact or to thegate 112, and is configured to minimize the electric field at the gate edge. The field plate configuration shown inFIG. 1 is merely an example. Any desired field plate configuration can be used. For example, thefield plate 120 can have different shapes, more than one field plate can be provided which can be connected either to thesource 106 orgate 112, etc. - In one embodiment, the III-V semiconductor device is a GaN-based HEMT. Specifically with regard to GaN technology, the presence of polarization charges and strain effects in a GaN-based heterostructure body due to spontaneous and piezoelectric polarization yield a two-dimensional
charge carrier gas 110 in theheterostructure body 100 characterized by very high carrier density and carrier mobility. This two-dimensionalcharge carrier gas 110, such as a 2DEG (two-dimensional electron gas) or 2DHG (two-dimensional hole gas), forms the conductive channel of the device near the interface between the III-nitride barrier 104, e.g., a GaN alloy barrier such as AlGaN, InAlGaN, InAlN, etc. and the III-nitride buffer 102, e.g., a GaN buffer. A thin, e.g. 1-2 nm, AlN layer can be provided between theGaN buffer 102 and theGaN alloy barrier 104 to minimize alloy scattering and enhance 2DEG mobility. - In a broad sense, the III-V semiconductor device described herein can be formed from any binary, ternary or quaternary III-nitride compound semiconductor material where piezoelectric effects or a heterojunction is responsible for the device concept. The
buffer 102 can be manufactured on asemiconductor substrate 122 such as a Si, SiC or sapphire substrate, on which a nucleation (seed)layer 124 such as an AlN layer can be formed for providing thermal and lattice matching to thebuffer 102. The III-V semiconductor device may also have AlInN/AlN/GaN barrier/spacer/buffer layer structures. In general, the III-V semiconductor device can be realized using any suitable III-V technology such as GaAs, GaN, etc. - The III-V semiconductor device also includes a plurality of
interlayer dielectrics V semiconductor body 100 and a plurality ofmetal layers interlayer dielectrics metal layers interlayer dielectrics FIG. 1 for ease of illustration. In general, the III-V semiconductor device can have one or more metal layers and a corresponding number of interlayer dielectrics.Vias 132 extend through theinterlayer dielectrics V semiconductor body 100. For example inFIG. 1 , vias 132 extend through theinterlayer dielectrics source 106, drain 108 andgate 112 of the transistor device formed in the III-V semiconductor body 100 (the gate connections are out of view inFIG. 1 ). - The III-V semiconductor device further includes a
barrier 134 disposed below theuppermost metal layer 130 e.g. the power metal layer and in or above thelowermost interlayer dielectric 118. Thebarrier 130 extends under themetal lines 136 of theuppermost metal layer 130. Thebarrier 134 is configured to prevent water ions, sodium ions and potassium ions from diffusing into theinterlayer dielectric 126 or portion of theinterlayer dielectric 126 immediately below thebarrier 134 over the required or specified device lifetime. This way, the electric field distribution in eachinterlayer dielectric interlayer dielectric barrier 134 is unaffected by ions. In the case of an III-nitride material system e.g. of the kinds previously described herein, thebarrier 134 also prevents oxidation of the nitride-basedsurface layer 104 of thesemiconductor body 100 by blocking water and water ions. Silicon oxynitride and silicon nitride are effective barriers against water, water ions, sodium ions and potassium ions, and are compatible with standard silicon processing technologies. Still other types of water/ion barrier materials can be used. Thebarrier 134 can comprise a single layer of the same material e.g. of silicon oxynitride or silicon nitride or a plurality of layers of different materials e.g. silicon oxynitride encased by silicon nitride. - According to the embodiment shown in
FIG. 1 , thebarrier 134 comprises silicon oxynitride or silicon nitride and theinterlayer dielectrics barrier 134 can be interposed between afirst oxide layer 138 and asecond oxide layer 140 of theuppermost interlayer dielectric 126 so that the compressive stress of the oxide layers 138, 140 at least partly counteract tensile silicon oxynitride, protecting thebarrier 134 from cracking. Thebarrier 134 shown inFIG. 1 can be formed by a 3-step deposition process. The 3-step deposition process includes depositing thefirst oxide layer 138 of theuppermost interlayer dielectric 126 on themetal layer 128 just below theuppermost metal layer 130, depositing silicon oxynitride or silicon nitride on thefirst oxide layer 138 and depositing thesecond oxide layer 140 of theuppermost interlayer dielectric 126 on the silicon oxynitride/silicon nitride. - A relatively
thin passivation layer 142 made of e.g. oxide and dense nitride can be formed on theuppermost metal layer 130, thepassivation layer 142 having a thickness of 800 nm or less. Animide 144 can be formed on thethin passivation layer 142 to complete the III-V semiconductor device. If cracks occur in thetop passivation layer 142, the energy of the cracks will be relatively low since thepassivation layer 142 is made as thin as possible e.g. 800 nm or less thick. As such, cracks in thetop passivation layer 142 should not damage theunderlying barrier 134 to the point where thebarrier 134 no longer prevents water ions, sodium ions and potassium ions from diffusing into thefirst oxide layer 138 of theuppermost interlayer dielectric 126 over the required or specified device lifetime. In other cases, the III-V semiconductor device does not include thetop passivation layer 142. -
FIG. 2 illustrates a sectional view of another embodiment of an III-V semiconductor device having a water/ion barrier 134 disposed below theuppermost metal layer 130 and in or above thelowermost interlayer dielectric 118. The embodiment shown inFIG. 2 is similar to the embodiment shown inFIG. 1 . Different, however, thebarrier 134 is touching and being supported by the top surface of theuppermost interlayer dielectric 126 and comprises silicon nitride. Unlike silicon oxynitride which is typically under tensile stress and therefore prone to cracking, silicon nitride is under compressive stress. As such, thebarrier 134 need not be interposed between two oxide layers of one of theinterlayer dielectrics barrier 134 is on theuppermost interlayer dielectric 126 according to this embodiment. Also, the density of nitride as compared to silicon is made high enough so that thebarrier 134 is not leaky and therefore prevents the diffusion of water ions, sodium ions and potassium ions into theinterlayer dielectric 126 immediately below thebarrier 134 over the required or specified device lifetime. - In one embodiment, a
barrier 134 made of silicon nitride is formed by depositing by chemical vapor deposition a silane-ammonia mixture on one of theinterlayer dielectrics interlayer dielectrics interlayer dielectric interlayer dielectric barrier 134 over the required or specified device lifetime. Thebarrier 134 made of silicon nitride can have a higher density of nitride than thesurface passivation layer 114 on the III-V semiconductor body 100 which may be of poor quality (i.e. leaky) in some cases and therefore ineffective as a water/ion barrier. -
FIG. 3 illustrates a sectional view of yet another embodiment of an III-V semiconductor device having a water/ion barrier 134 disposed below theuppermost metal layer 130 and in or above thelowermost interlayer dielectric 118. The embodiment shown inFIG. 3 is similar to the embodiment shown inFIG. 1 . Different, however, thebarrier 134 is interposed between afirst oxide layer 146 and asecond oxide layer 148 of thelowermost interlayer dielectric 118. In the case of a silicon oxynitride orsilicon nitride barrier 134, thelowermost interlayer dielectric 118 and thebarrier 134 can be formed by the 3-step deposition process previously described herein. Thebarrier 134 in this embodiment still prevents the electric field distribution in the portion of thelowermost interlayer dielectric 118 below thebarrier 134 from being affected by ions. Thebarrier 134 also still prevents oxidation of a nitride-basedsurface layer 104 of thesemiconductor body 100 by blocking water ions in the case of an III-nitride material system. -
FIG. 4 illustrates a sectional view of still another embodiment of an III-V semiconductor device having a water/ion barrier 134 disposed below theuppermost metal layer 130 and in or above thelowermost interlayer dielectric 118. The embodiment shown inFIG. 4 is similar to the embodiment shown inFIG. 2 . Different, however, thebarrier 134 is touching and being supported by the top surface of thelowermost interlayer dielectric 118. Thebarrier 134 can comprise silicon nitride or tensile or compressive silicon oxynitride. In the case of tensile silicon oxynitride, thebarrier 134 is interposed between twodifferent interlayer dielectrics FIG. 3 . -
FIG. 5 illustrates a sectional view of an embodiment which combines the barrier features shown inFIGS. 1 and 3 . That is, the III-V semiconductor device has a first water/ion barrier 134′ made of silicon oxynitride interposed between the first and second oxide layers 138, 140 of theuppermost interlayer dielectric 126 and a secondwater ion barrier 134″ made of silicon oxynitride interposed between the first and second oxide layers 146, 148 of thelowermost interlayer dielectric 118. Eachbarrier 134′, 134″ can comprise a single layer of the same material e.g. of silicon oxynitride or silicon nitride or a plurality of layers of different materials e.g. silicon oxynitride encased by silicon nitride as previously described herein. For example, eachinterlayer dielectric corresponding barrier 134′, 134″ can be formed by the 3-step deposition process previously described herein. - According to the embodiment shown in
FIG. 5 , more than onebarrier 134′, 134″ is provided between theuppermost metal layer 130 and thesemiconductor passivation layer 114 in case one (or more) of the barriers is damaged. For example if theupper barrier 134′ is damaged by crack propagation from thetop passivation layer 142 and the cracks do not reach thelower barrier 134″, thelower barrier 134″ still prevents the electric field distribution in thelower oxide layer 146 of the lowermost interlayer dielectric 118 from being affected by ions and also prevents oxidation of the nitride-basedsurface layer 104 of thesemiconductor body 100 by blocking water ions in the case of an III-nitride material system. -
FIG. 6 illustrates a sectional view of an embodiment which combines the barrier features shown inFIGS. 2 and 4 . That is, the III-V semiconductor device has a first water/ion barrier 134′ made of silicon nitride or compressive silicon oxynitride disposed on theuppermost interlayer dielectric 126 and a second water/ion barrier 134″ made of silicon nitride or tensile or compressive silicon oxynitride disposed on thelowermost interlayer dielectric 118. Like the embodiment shown inFIG. 5 , more than onebarrier 134′, 134″ is provided between theuppermost metal layer 130 andsemiconductor passivation layer 114 in case one (or more) of the barriers is damaged. -
FIG. 7 illustrates a sectional view of another embodiment of an III-V semiconductor device having more than one water/ion barrier 134′, 134″ disposed below theuppermost metal layer 130 and above thesemiconductor passivation layer 114. Different than the embodiments shown inFIGS. 5 and 6 , thebarriers 134′, 134″ comprise different materials. For example, theupper barrier 134′ can be made of silicon nitride and disposed on theuppermost interlayer dielectric 126 and thelower barrier 134″ can be made of tensile silicon oxynitride and interposed between first and second oxide layers 146, 148 of thelowermost interlayer dielectric 118. Alternatively, theupper barrier 134′ can comprise silicon oxynitride and be interposed between the first and second oxide layers 138, 140 of theuppermost interlayer dielectric 126 e.g. as shown inFIG. 1 and thelower barrier 134″ can comprises silicon nitride or compressive silicon oxynitride and be disposed on the top surface of thelowermost interlayer dielectric 118 e.g. as shown inFIG. 4 . - So far, embodiments have been described in which the III-V semiconductor device has two
metal layers interlayer dielectrics -
FIG. 8 illustrates a sectional view of an embodiment of an III-V semiconductor device having asingle metal layer 128 and asingle interlayer dielectric 118. All metal wiring, including power metal lines, are provided in thesame metal layer 128. The water/ion barrier 134 comprises silicon nitride or tensile silicon oxynitride and is interposed between afirst oxide layer 146 and asecond oxide layer 148 of theonly interlayer dielectric 118 according to this embodiment. Theinterlayer dielectric 118 separates thesingle metal layer 128 from theunderlying semiconductor body 100. Thesingle interlayer dielectric 118 and thebarrier 134 can be formed by the 3-step deposition process previously described herein. -
FIG. 9 illustrates a sectional view of another embodiment of an III-V semiconductor device having asingle metal layer 128 andsingle interlayer dielectric 118. The embodiment shown inFIG. 8 is similar to the embodiment shown inFIG. 9 . Different, however, the water/ion barrier 134 comprises silicon nitride or compressive silicon oxynitride and is touching and being supported by the top surface of thesingle interlayer dielectric 118. - The water/ion barrier embodiments previously described herein can be applied to any of the interlayer dielectric(s) included in the III-V semiconductor device—and not to just the uppermost and/or lowermost dielectric layers.
- Described next are embodiments in which a relatively thick top passivation layer is used e.g. thicker than about 800 nm. Crack energy is higher with such a thick top passivation layer, and therefore additional safeguards are described for mitigating the increased risk of crack propagation. These additional safeguards can be applied to any of the embodiments previously described herein.
-
FIG. 10 illustrates a sectional view of an embodiment of an III-V semiconductor device having atop passivation layer 142 with a thickness >800 nm on theuppermost metal layer 130, and a water/ion barrier 134 disposed below theuppermost metal layer 130 and above thesemiconductor passivation layer 114. In an exaggerated manner,FIG. 10 shows the deformation/movement in theuppermost metal layer 130 which can occur after temperature cycling due to package-induced thermomechanical stresses which arise because of thermal mismatch of the temperature coefficients of the different material systems used in the III-V semiconductor device. The deformation/movement is particularly pronounced for relatively thick metal lines 136 (e.g. 1000 nm or thicker) made of a relatively soft metal i.e. a metal having a low yield strength such as Al, AlCu, AlSiCu and Au. Cracks in thetop passivation layer 142 are graphically illustrated with lightning bolts inFIG. 10 . The cracks tend to occur in the region of thetop passivation layer 142 contacting themetal lines 136 of theuppermost metal layer 130. Theregion 150 of thetop passivation layer 142 between themetals lines 136 of theuppermost metal layer 130 does not tend to crack. - According to the embodiment shown in
FIG. 10 , an electricallyconductive liner 152 made of e.g. titanium nitride is deposited in openings formed in thebarrier 134 and in theuppermost interlayer dielectric 126.Vias 132 are then formed on theliner 152 in the openings. Theliner 152 extends laterally onto thebarrier 134 or onto theuppermost interlayer dielectric 126 if thebarrier 134 is disposed in or below theuppermost interlayer dielectric 126. In each case, each electricallyconductive liner 152 extends outward beyond opposing side faces 154 of the correspondingmetal line 136 above that electricallyconductive liner 152. That is, each electricallyconductive liner 152 extends under theregion 150 of thetop passivation layer 142 positioned betweenadjacent metals lines 136 of theuppermost metal layer 130 and which has no cracks. The electricallyconductive liners 152 are made of a material such as titanium nitride or other suitable material which does not tend to brake or crack easily. As such, by extending each electricallyconductive liner 152 under theregion 150 of thetop passivation layer 142 positioned betweenadjacent metals lines 136 of theuppermost metal layer 130, theliners 152 function as crack stops by preventing cracks in the relatively thicktop passivation layer 142 from propagating to theunderlying interlayer dielectrics -
FIG. 11 illustrates another embodiment in which the electricallyconductive liners 152 extend under theregion 150 of thetop passivation layer 142 positioned betweenadjacent metals lines 136 of theuppermost metal layer 130. The embodiment shown inFIG. 11 is similar to the embodiment shown inFIG. 10 . In addition, an additional water/ion barrier 134″ is disposed below theuppermost metal layer 130 and in or on a different interlayer dielectric 118 than theother barrier 134′ as previously described herein. Theadditional barrier 134″ is configured to prevent water, water ions, sodium ions and potassium ions from diffusing into the interlayer dielectric or portion of theinterlayer dielectric 118 immediately below theadditional barrier 134″ over the required or specified device lifetime. Electricallyconductive liners 156 are interposed between themetal lines 158 of themetal layer 128 immediately above theadditional barrier 134″ and theinterlayer dielectric 118 immediately below thatmetal layer 128. Each of these lower electricallyconductive liners 156 extends outward beyond opposing side faces 160 of themetal line 158 above thatliner 156, to prevent cracks in the uppermost interlayer dielectric 126 from propagating to theunderlying interlayer dielectric 118 andadditional barrier 134″. Deformation/movement in thelower metal layer 128 can occur if themetal lines 158 in thislayer 128 are relatively thick (e.g. around 1000 nm) and made of a relatively soft metal such as Al, AlCu, AlSiCu and Au. Cracks in theuppermost interlayer dielectric 126 are most likely to occur in the region where theuppermost interlayer dielectric 126 contacts themetal lines 158 of thelower metal layer 128. The region of theuppermost interlayer dielectric 126 between theadjacent metals lines 158 does not tend to crack. The lateral extensions of the upper andlower liners FIG. 11 . - Spatially relative terms such as “under”, “below”, “lower”, “over”, “upper” and the like, are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first”, “second”, and the like, are also used to describe various elements, regions, sections, etc. and are also not intended to be limiting. Like terms refer to like elements throughout the description.
- As used herein, the terms “having”, “containing”, “including”, “comprising” and the like are open-ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles “a”, “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.
- With the above range of variations and applications in mind, it should be understood that the present invention is not limited by the foregoing description, nor is it limited by the accompanying drawings. Instead, the present invention is limited only by the following claims and their legal equivalents.
Claims (20)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/869,457 US20170092753A1 (en) | 2015-09-29 | 2015-09-29 | Water and Ion Barrier for III-V Semiconductor Devices |
DE102016118386.5A DE102016118386A1 (en) | 2015-09-29 | 2016-09-28 | Water and ion barrier for III-V semiconductor devices |
CN201610864469.9A CN106971986B (en) | 2015-09-29 | 2016-09-29 | Water and Ion Barriers for III-V Semiconductor Devices |
US18/100,620 US20230163209A1 (en) | 2015-09-29 | 2023-01-24 | Water and ion barrier for iii-v semiconductor devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/869,457 US20170092753A1 (en) | 2015-09-29 | 2015-09-29 | Water and Ion Barrier for III-V Semiconductor Devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/100,620 Division US20230163209A1 (en) | 2015-09-29 | 2023-01-24 | Water and ion barrier for iii-v semiconductor devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170092753A1 true US20170092753A1 (en) | 2017-03-30 |
Family
ID=58281992
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/869,457 Abandoned US20170092753A1 (en) | 2015-09-29 | 2015-09-29 | Water and Ion Barrier for III-V Semiconductor Devices |
US18/100,620 Pending US20230163209A1 (en) | 2015-09-29 | 2023-01-24 | Water and ion barrier for iii-v semiconductor devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/100,620 Pending US20230163209A1 (en) | 2015-09-29 | 2023-01-24 | Water and ion barrier for iii-v semiconductor devices |
Country Status (3)
Country | Link |
---|---|
US (2) | US20170092753A1 (en) |
CN (1) | CN106971986B (en) |
DE (1) | DE102016118386A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200251585A1 (en) * | 2019-02-05 | 2020-08-06 | Fujitsu Limited | Compound semiconductor device, manufacturing method for compound semiconductor device, and amplifier |
US20230163209A1 (en) * | 2015-09-29 | 2023-05-25 | Infineon Technologies Austria Ag | Water and ion barrier for iii-v semiconductor devices |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111328184B (en) * | 2020-01-20 | 2022-03-11 | 维沃移动通信有限公司 | Display screen and electronic equipment |
TWI841311B (en) * | 2023-03-22 | 2024-05-01 | 致伸科技股份有限公司 | Touch pad module |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5712206A (en) * | 1996-03-20 | 1998-01-27 | Vanguard International Semiconductor Corporation | Method of forming moisture barrier layers for integrated circuit applications |
US20020153529A1 (en) * | 2001-04-24 | 2002-10-24 | Jin-Shown Shie | LED array with optical isolation structure and method of manufacturing the same |
US20070045688A1 (en) * | 2005-09-01 | 2007-03-01 | Fujitsu Limited | Ferroelectric memory device and fabrication process thereof, fabrication process of a semiconductor device |
US20080001291A1 (en) * | 2006-06-30 | 2008-01-03 | Fujitsu Limited | Semiconductor device and method of manufacturing the same |
US20080073685A1 (en) * | 2005-06-02 | 2008-03-27 | Fujitsu Limited | Semiconductor device and method for manufacturing the same |
US20080185623A1 (en) * | 2005-10-03 | 2008-08-07 | Fujitsu Limited | Ferroelectric memory device and fabrication process thereof, fabrication process of a semiconductor device |
US20080211066A1 (en) * | 2007-03-01 | 2008-09-04 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Barrier film and method of producing barrier film |
US20080224195A1 (en) * | 2005-11-29 | 2008-09-18 | Fujitsu Limited | Semiconductor device with ferro-electric capacitor |
US20080258195A1 (en) * | 2005-12-28 | 2008-10-23 | Fujitsu Limited | Semiconductor device and method of manufacturing the same |
US20090106726A1 (en) * | 2007-10-17 | 2009-04-23 | Natalie Barbara Feilchenfeld | Design structures including means for lateral current carrying capability improvement in semiconductor devices |
US20090160020A1 (en) * | 2007-12-21 | 2009-06-25 | Hans-Joachim Barth | Moisture Barrier Capacitors in Semiconductor Components |
US20110169135A1 (en) * | 2008-09-16 | 2011-07-14 | Rohm Co., Ltd. | Semiconductor storage device and method for manufacturing the semiconductor storage device |
US20120115300A1 (en) * | 2010-11-08 | 2012-05-10 | Elpida Memory, Inc. | Method for manufacturing semiconductor memory device |
US20120307534A1 (en) * | 2010-03-01 | 2012-12-06 | Fujitsu Limited | Compound semiconductor device and method for manufacturing the same |
US20120305992A1 (en) * | 2011-06-06 | 2012-12-06 | Fabio Alessio Marino | Hybrid monolithic integration |
US20130153923A1 (en) * | 2011-12-09 | 2013-06-20 | Imec | Enhancement mode iii-nitride device and method for manufacturing thereof |
US20130228929A1 (en) * | 2012-03-02 | 2013-09-05 | Infineon Technologies Ag | Protection Layers for Conductive Pads and Methods of Formation Thereof |
US20130277680A1 (en) * | 2012-04-23 | 2013-10-24 | Bruce M. Green | High Speed Gallium Nitride Transistor Devices |
US20130288438A1 (en) * | 2011-12-19 | 2013-10-31 | Jacob Jensen | Selective laser annealing process for buried regions in a mos device |
US20140061659A1 (en) * | 2012-09-05 | 2014-03-06 | James A. Teplik | GaN Dual Field Plate Device with Single Field Plate Metal |
US20150004718A1 (en) * | 2013-06-27 | 2015-01-01 | Cypress Semiconductor Corporation | Methods of fabricating an f-ram |
US8941218B1 (en) * | 2013-08-13 | 2015-01-27 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Passivation for group III-V semiconductor devices having a plated metal layer over an interlayer dielectric layer |
US20150072441A1 (en) * | 2013-09-09 | 2015-03-12 | Cypress Semiconductor Corporation | Method of fabricating a ferroelectric capacitor |
US20150155359A1 (en) * | 2012-11-08 | 2015-06-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contact Structure of Semiconductor Device |
US20150206893A1 (en) * | 2014-01-20 | 2015-07-23 | Cypress Semiconductor Corporation | Damascene oxygen barrier and hydrogen barrier for ferroelectric random-access memory |
US20150221658A1 (en) * | 2014-02-03 | 2015-08-06 | Fujitsu Semiconductor Limited | Semiconductor device and manufacturing method for same |
US20150295051A1 (en) * | 2014-04-11 | 2015-10-15 | Nxp B.V. | Semiconductor device |
US20150311084A1 (en) * | 2014-04-23 | 2015-10-29 | Freescale Semiconductor, Inc. | Method for Improving E-Beam Lithography Gate Metal Profile for Enhanced Field Control |
US20150325523A1 (en) * | 2014-05-06 | 2015-11-12 | International Business Machines Corporation | Chip with programmable shelf life |
US9305995B1 (en) * | 2015-06-01 | 2016-04-05 | Cypress Semiconductor Corporation | Methods of fabricating an F-RAM |
US20160141423A1 (en) * | 2014-11-18 | 2016-05-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contacts For Highly Scaled Transistors |
US20160172194A1 (en) * | 2014-12-15 | 2016-06-16 | Imec Vzw | Method for blocking a trench portion |
US20160190321A1 (en) * | 2012-09-27 | 2016-06-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET Low Resistivity Contact Formation Method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5369299A (en) * | 1993-07-22 | 1994-11-29 | National Semiconductor Corporation | Tamper resistant integrated circuit structure |
US5413962A (en) * | 1994-07-15 | 1995-05-09 | United Microelectronics Corporation | Multi-level conductor process in VLSI fabrication utilizing an air bridge |
US6420777B2 (en) * | 1998-02-26 | 2002-07-16 | International Business Machines Corporation | Dual layer etch stop barrier |
US6287977B1 (en) * | 1998-07-31 | 2001-09-11 | Applied Materials, Inc. | Method and apparatus for forming improved metal interconnects |
US6189209B1 (en) * | 1998-10-27 | 2001-02-20 | Texas Instruments Incorporated | Method for reducing via resistance in small high aspect ratio holes filled using aluminum extrusion |
JP2009200154A (en) * | 2008-02-20 | 2009-09-03 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
US9425267B2 (en) * | 2013-03-14 | 2016-08-23 | Freescale Semiconductor, Inc. | Transistor with charge enhanced field plate structure and method |
JP6276150B2 (en) * | 2014-09-16 | 2018-02-07 | 株式会社東芝 | Semiconductor device |
US20170092753A1 (en) * | 2015-09-29 | 2017-03-30 | Infineon Technologies Austria Ag | Water and Ion Barrier for III-V Semiconductor Devices |
-
2015
- 2015-09-29 US US14/869,457 patent/US20170092753A1/en not_active Abandoned
-
2016
- 2016-09-28 DE DE102016118386.5A patent/DE102016118386A1/en active Pending
- 2016-09-29 CN CN201610864469.9A patent/CN106971986B/en active Active
-
2023
- 2023-01-24 US US18/100,620 patent/US20230163209A1/en active Pending
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5712206A (en) * | 1996-03-20 | 1998-01-27 | Vanguard International Semiconductor Corporation | Method of forming moisture barrier layers for integrated circuit applications |
US20020153529A1 (en) * | 2001-04-24 | 2002-10-24 | Jin-Shown Shie | LED array with optical isolation structure and method of manufacturing the same |
US20080073685A1 (en) * | 2005-06-02 | 2008-03-27 | Fujitsu Limited | Semiconductor device and method for manufacturing the same |
US20070045688A1 (en) * | 2005-09-01 | 2007-03-01 | Fujitsu Limited | Ferroelectric memory device and fabrication process thereof, fabrication process of a semiconductor device |
US20080185623A1 (en) * | 2005-10-03 | 2008-08-07 | Fujitsu Limited | Ferroelectric memory device and fabrication process thereof, fabrication process of a semiconductor device |
US20080224195A1 (en) * | 2005-11-29 | 2008-09-18 | Fujitsu Limited | Semiconductor device with ferro-electric capacitor |
US20080258195A1 (en) * | 2005-12-28 | 2008-10-23 | Fujitsu Limited | Semiconductor device and method of manufacturing the same |
US20080001291A1 (en) * | 2006-06-30 | 2008-01-03 | Fujitsu Limited | Semiconductor device and method of manufacturing the same |
US20080211066A1 (en) * | 2007-03-01 | 2008-09-04 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Barrier film and method of producing barrier film |
US20090106726A1 (en) * | 2007-10-17 | 2009-04-23 | Natalie Barbara Feilchenfeld | Design structures including means for lateral current carrying capability improvement in semiconductor devices |
US20090160020A1 (en) * | 2007-12-21 | 2009-06-25 | Hans-Joachim Barth | Moisture Barrier Capacitors in Semiconductor Components |
US20110169135A1 (en) * | 2008-09-16 | 2011-07-14 | Rohm Co., Ltd. | Semiconductor storage device and method for manufacturing the semiconductor storage device |
US20120307534A1 (en) * | 2010-03-01 | 2012-12-06 | Fujitsu Limited | Compound semiconductor device and method for manufacturing the same |
US20120115300A1 (en) * | 2010-11-08 | 2012-05-10 | Elpida Memory, Inc. | Method for manufacturing semiconductor memory device |
US20120305992A1 (en) * | 2011-06-06 | 2012-12-06 | Fabio Alessio Marino | Hybrid monolithic integration |
US20130153923A1 (en) * | 2011-12-09 | 2013-06-20 | Imec | Enhancement mode iii-nitride device and method for manufacturing thereof |
US20130288438A1 (en) * | 2011-12-19 | 2013-10-31 | Jacob Jensen | Selective laser annealing process for buried regions in a mos device |
US20130228929A1 (en) * | 2012-03-02 | 2013-09-05 | Infineon Technologies Ag | Protection Layers for Conductive Pads and Methods of Formation Thereof |
US20130277680A1 (en) * | 2012-04-23 | 2013-10-24 | Bruce M. Green | High Speed Gallium Nitride Transistor Devices |
US20140061659A1 (en) * | 2012-09-05 | 2014-03-06 | James A. Teplik | GaN Dual Field Plate Device with Single Field Plate Metal |
US20160190321A1 (en) * | 2012-09-27 | 2016-06-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET Low Resistivity Contact Formation Method |
US20150155359A1 (en) * | 2012-11-08 | 2015-06-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contact Structure of Semiconductor Device |
US20150004718A1 (en) * | 2013-06-27 | 2015-01-01 | Cypress Semiconductor Corporation | Methods of fabricating an f-ram |
US8941218B1 (en) * | 2013-08-13 | 2015-01-27 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Passivation for group III-V semiconductor devices having a plated metal layer over an interlayer dielectric layer |
US20150072441A1 (en) * | 2013-09-09 | 2015-03-12 | Cypress Semiconductor Corporation | Method of fabricating a ferroelectric capacitor |
US20150206893A1 (en) * | 2014-01-20 | 2015-07-23 | Cypress Semiconductor Corporation | Damascene oxygen barrier and hydrogen barrier for ferroelectric random-access memory |
US20150221658A1 (en) * | 2014-02-03 | 2015-08-06 | Fujitsu Semiconductor Limited | Semiconductor device and manufacturing method for same |
US20150295051A1 (en) * | 2014-04-11 | 2015-10-15 | Nxp B.V. | Semiconductor device |
US20150311084A1 (en) * | 2014-04-23 | 2015-10-29 | Freescale Semiconductor, Inc. | Method for Improving E-Beam Lithography Gate Metal Profile for Enhanced Field Control |
US20150325523A1 (en) * | 2014-05-06 | 2015-11-12 | International Business Machines Corporation | Chip with programmable shelf life |
US20160141423A1 (en) * | 2014-11-18 | 2016-05-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contacts For Highly Scaled Transistors |
US20160172194A1 (en) * | 2014-12-15 | 2016-06-16 | Imec Vzw | Method for blocking a trench portion |
US9305995B1 (en) * | 2015-06-01 | 2016-04-05 | Cypress Semiconductor Corporation | Methods of fabricating an F-RAM |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230163209A1 (en) * | 2015-09-29 | 2023-05-25 | Infineon Technologies Austria Ag | Water and ion barrier for iii-v semiconductor devices |
US20200251585A1 (en) * | 2019-02-05 | 2020-08-06 | Fujitsu Limited | Compound semiconductor device, manufacturing method for compound semiconductor device, and amplifier |
Also Published As
Publication number | Publication date |
---|---|
DE102016118386A1 (en) | 2017-03-30 |
CN106971986B (en) | 2020-06-19 |
CN106971986A (en) | 2017-07-21 |
US20230163209A1 (en) | 2023-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230163209A1 (en) | Water and ion barrier for iii-v semiconductor devices | |
US9837519B2 (en) | Semiconductor device | |
JP7065370B2 (en) | Semiconductor devices and their manufacturing methods | |
US8314447B2 (en) | Semiconductor including lateral HEMT | |
US9196731B2 (en) | Semiconductor device | |
US9666705B2 (en) | Contact structures for compound semiconductor devices | |
US7964895B2 (en) | III-nitride heterojunction semiconductor device and method of fabrication | |
US8952421B2 (en) | RF power HEMT grown on a silicon or SiC substrate with a front-side plug connection | |
JP2011155221A (en) | Semiconductor device and method of manufacturing the same | |
US9178016B2 (en) | Charge protection for III-nitride devices | |
CN114303248B (en) | Nitrogen-based semiconductor device and method for manufacturing the same | |
US10062630B2 (en) | Water and ion barrier for the periphery of III-V semiconductor dies | |
US9929107B1 (en) | Method for manufacturing a semiconductor device | |
CN111712925B (en) | Semiconductor device with a semiconductor device having a plurality of semiconductor chips | |
KR102059981B1 (en) | Semiconductor device and method for manufacturing the same | |
US10304923B2 (en) | Method of forming a vertical potential short in a periphery region of a III-nitride stack for preventing lateral leakage | |
US11456294B2 (en) | Semiconductor device and manufacturing method thereof | |
US12094713B2 (en) | Nitride-based semiconductor device and manufacturing method thereof | |
US11817451B2 (en) | Semiconductor device and manufacturing method thereof | |
CN119208371A (en) | Semiconductor device and preparation method thereof, chip, and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INFINEON TECHNOLOGIES AUSTRIA AG, AUSTRIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRECHTL, GERHARD;HAEBERLEN, OLIVER;REEL/FRAME:037219/0481 Effective date: 20151117 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |