US20170037412A1 - MicroRNA-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Ovarian Cancer Using a Real-Time PCR Platform - Google Patents
MicroRNA-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Ovarian Cancer Using a Real-Time PCR Platform Download PDFInfo
- Publication number
- US20170037412A1 US20170037412A1 US15/294,867 US201615294867A US2017037412A1 US 20170037412 A1 US20170037412 A1 US 20170037412A1 US 201615294867 A US201615294867 A US 201615294867A US 2017037412 A1 US2017037412 A1 US 2017037412A1
- Authority
- US
- United States
- Prior art keywords
- mir
- expression
- marker
- subject
- disease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 177
- 206010061535 Ovarian neoplasm Diseases 0.000 title claims abstract description 85
- 206010033128 Ovarian cancer Diseases 0.000 title claims abstract description 81
- 238000011282 treatment Methods 0.000 title claims abstract description 27
- 239000000203 mixture Substances 0.000 title abstract description 44
- 238000004393 prognosis Methods 0.000 title abstract description 7
- 238000003745 diagnosis Methods 0.000 title abstract description 5
- 238000003753 real-time PCR Methods 0.000 title description 12
- 108091070501 miRNA Proteins 0.000 claims description 97
- 102000039446 nucleic acids Human genes 0.000 claims description 62
- 108020004707 nucleic acids Proteins 0.000 claims description 62
- 150000007523 nucleic acids Chemical class 0.000 claims description 62
- 108091062762 miR-21 stem-loop Proteins 0.000 claims description 50
- 108091041631 miR-21-1 stem-loop Proteins 0.000 claims description 50
- 108091044442 miR-21-2 stem-loop Proteins 0.000 claims description 50
- 108091032902 miR-93 stem-loop Proteins 0.000 claims description 50
- 108091059456 miR-92-1 stem-loop Proteins 0.000 claims description 49
- 108091084336 miR-92-2 stem-loop Proteins 0.000 claims description 49
- 239000003814 drug Substances 0.000 claims description 40
- 108091028066 Mir-126 Proteins 0.000 claims description 39
- 108091028076 Mir-127 Proteins 0.000 claims description 38
- 108091088477 miR-29a stem-loop Proteins 0.000 claims description 38
- 108091029716 miR-29a-1 stem-loop Proteins 0.000 claims description 38
- 108091092089 miR-29a-2 stem-loop Proteins 0.000 claims description 38
- 108091066559 miR-29a-3 stem-loop Proteins 0.000 claims description 38
- 108091033773 MiR-155 Proteins 0.000 claims description 34
- 108091053257 miR-99b stem-loop Proteins 0.000 claims description 34
- 229940079593 drug Drugs 0.000 claims description 21
- 230000002611 ovarian Effects 0.000 claims description 17
- 239000003112 inhibitor Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- -1 mi-R92 Proteins 0.000 claims description 5
- 239000000018 receptor agonist Substances 0.000 claims description 4
- 229940044601 receptor agonist Drugs 0.000 claims description 4
- 239000000411 inducer Substances 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 description 239
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 234
- 239000003550 marker Substances 0.000 description 214
- 230000014509 gene expression Effects 0.000 description 201
- 210000004027 cell Anatomy 0.000 description 144
- 201000010099 disease Diseases 0.000 description 137
- 239000002679 microRNA Substances 0.000 description 123
- 102000004169 proteins and genes Human genes 0.000 description 114
- 208000035475 disorder Diseases 0.000 description 97
- 239000000523 sample Substances 0.000 description 71
- 239000000090 biomarker Substances 0.000 description 70
- 150000001875 compounds Chemical class 0.000 description 64
- 108700011259 MicroRNAs Proteins 0.000 description 62
- 206010028980 Neoplasm Diseases 0.000 description 59
- 238000012360 testing method Methods 0.000 description 50
- 210000001519 tissue Anatomy 0.000 description 47
- 239000003795 chemical substances by application Substances 0.000 description 41
- 230000000694 effects Effects 0.000 description 41
- 201000011510 cancer Diseases 0.000 description 37
- 230000000295 complement effect Effects 0.000 description 32
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 31
- 210000002966 serum Anatomy 0.000 description 31
- 108091034117 Oligonucleotide Proteins 0.000 description 28
- 241001465754 Metazoa Species 0.000 description 22
- 108090000765 processed proteins & peptides Proteins 0.000 description 21
- 230000001105 regulatory effect Effects 0.000 description 20
- 230000000875 corresponding effect Effects 0.000 description 18
- 125000003729 nucleotide group Chemical group 0.000 description 18
- 238000002560 therapeutic procedure Methods 0.000 description 18
- 238000010171 animal model Methods 0.000 description 17
- 238000003556 assay Methods 0.000 description 17
- 238000012216 screening Methods 0.000 description 17
- 238000009396 hybridization Methods 0.000 description 16
- 239000002773 nucleotide Substances 0.000 description 16
- 102000040430 polynucleotide Human genes 0.000 description 16
- 108091033319 polynucleotide Proteins 0.000 description 16
- 239000002157 polynucleotide Substances 0.000 description 16
- 230000004044 response Effects 0.000 description 16
- 230000002401 inhibitory effect Effects 0.000 description 15
- 239000003153 chemical reaction reagent Substances 0.000 description 14
- 238000001514 detection method Methods 0.000 description 14
- 239000002243 precursor Substances 0.000 description 14
- 239000012472 biological sample Substances 0.000 description 13
- 238000009472 formulation Methods 0.000 description 12
- 108020004999 messenger RNA Proteins 0.000 description 12
- 208000024891 symptom Diseases 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 11
- 230000000670 limiting effect Effects 0.000 description 11
- 238000012544 monitoring process Methods 0.000 description 11
- 229940124597 therapeutic agent Drugs 0.000 description 11
- 125000003275 alpha amino acid group Chemical group 0.000 description 10
- 150000001413 amino acids Chemical class 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- 239000013068 control sample Substances 0.000 description 9
- 239000012634 fragment Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000008194 pharmaceutical composition Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000013519 translation Methods 0.000 description 9
- 230000000692 anti-sense effect Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 230000003285 pharmacodynamic effect Effects 0.000 description 8
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 238000002493 microarray Methods 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 6
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 6
- 108091030146 MiRBase Proteins 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 6
- 230000004075 alteration Effects 0.000 description 6
- 239000005557 antagonist Substances 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 210000004408 hybridoma Anatomy 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 230000002018 overexpression Effects 0.000 description 6
- 230000002974 pharmacogenomic effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000002596 correlated effect Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 208000015124 ovarian disease Diseases 0.000 description 5
- 239000008177 pharmaceutical agent Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012384 transportation and delivery Methods 0.000 description 5
- 230000004544 DNA amplification Effects 0.000 description 4
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 4
- 239000003183 carcinogenic agent Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000012707 chemical precursor Substances 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 208000020816 lung neoplasm Diseases 0.000 description 4
- 230000036210 malignancy Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 230000009261 transgenic effect Effects 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- 206010067671 Disease complication Diseases 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 108091033760 Oncomir Proteins 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 3
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 3
- 102000039471 Small Nuclear RNA Human genes 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003150 biochemical marker Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 230000004547 gene signature Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 108091027963 non-coding RNA Proteins 0.000 description 3
- 102000042567 non-coding RNA Human genes 0.000 description 3
- 239000002853 nucleic acid probe Substances 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 125000003835 nucleoside group Chemical group 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 108091029842 small nuclear ribonucleic acid Proteins 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 108020005345 3' Untranslated Regions Proteins 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 102000053642 Catalytic RNA Human genes 0.000 description 2
- 108090000994 Catalytic RNA Proteins 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 2
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 108091005461 Nucleic proteins Proteins 0.000 description 2
- 102000015636 Oligopeptides Human genes 0.000 description 2
- 108010038807 Oligopeptides Proteins 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108091030071 RNAI Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 2
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 2
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 2
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000857 drug effect Effects 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 210000003722 extracellular fluid Anatomy 0.000 description 2
- 238000002060 fluorescence correlation spectroscopy Methods 0.000 description 2
- 230000005714 functional activity Effects 0.000 description 2
- 230000009368 gene silencing by RNA Effects 0.000 description 2
- 230000002962 histologic effect Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 108091007426 microRNA precursor Proteins 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000816 peptidomimetic Substances 0.000 description 2
- 239000002831 pharmacologic agent Substances 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 108091007428 primary miRNA Proteins 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000004952 protein activity Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000000754 repressing effect Effects 0.000 description 2
- 108091092562 ribozyme Proteins 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 108091012583 BCL2 Proteins 0.000 description 1
- 241000244203 Caenorhabditis elegans Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108091029523 CpG island Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 206010061968 Gastric neoplasm Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000971234 Homo sapiens B-cell lymphoma 6 protein Proteins 0.000 description 1
- 101000611943 Homo sapiens Programmed cell death protein 4 Proteins 0.000 description 1
- 101001120822 Homo sapiens Putative microRNA 17 host gene protein Proteins 0.000 description 1
- 101000904152 Homo sapiens Transcription factor E2F1 Proteins 0.000 description 1
- 238000009015 Human TaqMan MicroRNA Assay kit Methods 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 102000007999 Nuclear Proteins Human genes 0.000 description 1
- 108010089610 Nuclear Proteins Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 102100040992 Programmed cell death protein 4 Human genes 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102100026055 Putative microRNA 17 host gene protein Human genes 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 108010005173 SERPIN-B5 Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 102100030333 Serpin B5 Human genes 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 102100024026 Transcription factor E2F1 Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 229940121657 clinical drug Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000001819 effect on gene Effects 0.000 description 1
- 238000002337 electrophoretic mobility shift assay Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000011223 gene expression profiling Methods 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 238000012203 high throughput assay Methods 0.000 description 1
- 230000001632 homeopathic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000008611 intercellular interaction Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 108091023663 let-7 stem-loop Proteins 0.000 description 1
- 108091063478 let-7-1 stem-loop Proteins 0.000 description 1
- 108091049777 let-7-2 stem-loop Proteins 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 108091038783 miR-129a stem-loop Proteins 0.000 description 1
- 108091028159 miR-92a-1 stem-loop Proteins 0.000 description 1
- 238000003253 miRNA assay Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002417 nutraceutical Substances 0.000 description 1
- 235000021436 nutraceutical agent Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000009666 routine test Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 239000000107 tumor biomarker Substances 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1138—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6809—Methods for determination or identification of nucleic acids involving differential detection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
- C12N2310/113—Antisense targeting other non-coding nucleic acids, e.g. antagomirs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering nucleic acids [NA]
- C12N2310/141—MicroRNAs, miRNAs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/207—Modifications characterised by siRNA, miRNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/178—Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
Definitions
- This invention relates generally to the field of molecular biology. Certain aspects of the invention include application in diagnostics, therapeutics, and prognostics of ovarian cancer related disorders.
- MicroRNAs are small, 22-25 nucleotide non-coding sequences of RNA. These sequences control gene expression either by translational repression or degradation of the messenger RNA transcript after targeting the 3′UTR.
- miRNAs are highly conserved across all species, demonstrating the important roles that miRNAs play in cellular differentiation, proliferation and cell cycle control [7]. It is now recognized that miRNAs are frequently de-regulated in malignancy.
- under-expressed miRNAs such as let-7 in lung cancer and mirs-15/16 in leukemia, are tumor suppressor genes, suppressing Ras and BCL2 respectively [8,9].
- Over-expressed miRNAs such as mir-21 and the cluster miR-17-92, are oncogenes (oncomirs), targeting tumor suppressors PTEN and E2F1 in solid and hematologic malignancies respectively [10,11]. While miRNA research in gynecologic malignancies is in its infancy, the miRNA signature profile of ovarian cancer has recently been published [12-14].
- circulating RNAs in both benign and malignant conditions have recently been revealed. Placental-associated circulating miRNAs correlate with pregnancy progression [15]. In malignant states, circulating mRNAs in renal cell carcinoma patients [16], as well as miRNAs from the serum of patients with diffuse large B cell lymphoma [17], have been shown to be stable and highly predictive of malignancy as well as survival. Recently, it has been demonstrated that the miRNA signature of circulating tumor exosomes of ovarian cancer patients demonstrates high correlation with miRNA expression of the primary tumor [18]. Ovarian cancer remains a disease for which improved non-invasive, serum screening tests are highly desirable.
- a method of diagnosing whether a subject has, or is at risk for developing a ovarian-related disorder, determining a prognosis of a subject with ovarian related disorder, and/or treating a ovarian related disorder in a subject who has the ovarian related disorder comprising: measuring the level of at least one biomarker in a test sample of serum from the subject, wherein an alteration in the level of the biomarker in the test sample, relative to the level of a corresponding biomarker in a control sample, is indicative of the subject either having, or being at risk for developing, the disorder.
- the at least one biomarker differentially expressed between tumor tissue and non-tumor tissue, and is one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- the level of the biomarker in the test sample is greater than the level of the corresponding biomarker in the control sample.
- the biomarker is differentially expressed between tumor tissue and non-tumor tissue, and is one or more of miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof.
- the biomarker is differentially expressed between tumor tissue and non-tumor tissue, and is one or more of miR-21, miR92 and miR-93, or functional variants thereof.
- the level of the at least one biomarker in the test sample is less than the level of the corresponding biomarker in the control sample.
- the biomarker is differentially expressed between tumor tissue and non-tumor tissue, and is one or more of miR-155, miR-127 and miR-99b, or functional variants thereof.
- a method of screening for one or more biomarkers for ovarian cancer in a subject comprising: obtaining a sample of serum from the subject, conducting quantitative real-time polymerase chain reaction (RT-PCR), and quantifying one or more one biomarkers differentially expressed between tumor tissue and non-tumor tissue, wherein the biomarkers are selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- the sample comprises a blood sample.
- the sample comprises one or more of serum or plasma blood samples.
- a method biomarker for ovarian cancer comprising at least one biomarker differentially expressed between tumor tissue and non-tumor tissue, wherein the biomarkers are selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- a method distinct microRNA expression signature in ovarian tumors comprising alterations in the expression of one or more biomarkers that regulate tumor microRNA processing, wherein the biomarkers are selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- a method for influencing transcript abundance and/or protein expression of target mRNAs in the ovary of a subject in need thereof comprising deregulating one or more microRNAs selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- the method further includes inhibiting protein expression of cancer-related genes.
- the method includes altering expression of one or more of miR-21, miR-92, mir-93, miR-126 and miR-129a to inhibit the protein expression of cancer-related genes.
- RNAs and/or protein-encoding RNAs use of a large-scale gene expression profiling of microRNAs and/or protein-encoding RNAs to identify alterations in microRNA function that occur in human ovarian tumors.
- a method for screening for ovarian in a subject in need thereof comprising the step of performing real-time polymerase chain reaction (RT-PCR) on a serum sample from the subject.
- RT-PCR real-time polymerase chain reaction
- a tumor gene signature for an ovarian related disorder comprising: one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- a tumor gene signature for an ovarian related disorder comprising: one or more of: miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof that are up-regulated; and, miR-155, miR-127 and miR-99b, or functional variants thereof, that are down regulated.
- a tumor gene signature for an ovarian related disorder comprising: one or more of: miR-21, miR92 and miR-93, or functional variants thereof.
- the biomarker comprises host gene expression in ovarian tumors that are increased in ovarian tumors.
- the biomarkers include one or more of: miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof.
- miR-21, miR92 and/or miR-93, or functional variants thereof as a target for at least one gene in ovarian cancer cells and/or use in inhibiting protein expression of such gene.
- a method for regulating one or more of genes expressed by ovarian cancer cells comprising the step of altering expression of miR-21, miR92 and/or miR-93 in ovarian cancer cells.
- a miR-expression inhibitor comprising one or more of: miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof.
- a miR-expression inhibitor comprising one or more of: miR-21, miR92 and/or miR-93, or functional variants thereof.
- a miR-expression antisense inhibitor comprising one or more of: miR-155, miR-127 and miR-99b, or functional variants thereof.
- an oncomiR biomarker of an ovarian disorder or disease comprising one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- an oncomiR biomarker of an ovarian disorder or disease comprising one or more of: miR-21, miR92 and miR-93, or functional variants thereof.
- a method for regulating protein expression in ovarian cancer cells comprising modulating the expression of one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof, in the ovarian cancer cells.
- a method for regulating protein expression in ovarian cancer cells comprising modulating the expression of one or more of: miR-21, miR92 and miR-93, or functional variants thereof, in the ovarian cancer cells.
- compositions for repressing expression of one or more of genes in ovarian cancer cells comprising one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- compositions for repressing expression of one or more of genes in ovarian cancer cells comprising one or more of: miR-21, miR92 and miR-93, or functional variants thereof.
- a method for regulating one or more of protein levels in a subject with ovarian cancer comprising using one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- a method for regulating one or more of protein levels in a subject with ovarian cancer comprising using one or more of: miR-21, miR92 and miR-93, or functional variants thereof.
- a method for determining the prognosis of a subject with ovarian cancer comprising measuring the level of at least one biomarker in a test sample of serum from the subject, wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof, and wherein: i) the biomarker is associated with an adverse prognosis in ovarian cancer; and ii) an alteration in the level of the at least one biomarker in the test sample, relative to the level of a corresponding biomarker in a control sample, is indicative of an adverse prognosis.
- a method of diagnosing whether a subject has, or is at risk for developing, ovarian cancer comprising: reverse transcribing RNA from a test sample of serum obtained from the subject to provide a set of target oligodeoxynucleotides; hybridizing the target oligodeoxynucleotides to a microarray comprising miRNA-specific probe oligonucleotides to provide a hybridization profile for the test sample; and comparing the test sample hybridization profile to a hybridization profile generated from a control sample, wherein an alteration in the signal of at least one miRNA is indicative of the subject either having, or being at risk for developing, ovarian cancer.
- the signal of at least one miRNA, relative to the signal generated from the control sample is down-regulated, and/or wherein the signal of at least one miRNA, relative to the signal generated from the control sample, is up-regulated.
- an alteration in the signal of at least one biomarker miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof are indicative of the subject either having, or being at risk for developing, an ovarian cancer with an adverse prognosis.
- a method of treating ovarian cancer in a subject who has an ovarian cancer in which at least one biomarker is down-regulated or up-regulated in the cancer cells of the subject relative to control cells comprising: when the at least one biomarker is down-regulated in the cancer cells, administering to the subject an effective amount of at least one isolated biomarker, or an isolated variant or biologically-active fragment thereof, such that proliferation of cancer cells in the subject is inhibited; or when the at least one biomarker is up-regulated in the cancer cells, administering to the subject an effective amount of at least one compound for inhibiting expression of the at least one biomarker, such that proliferation of cancer cells in the subject is inhibited; wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- a method of treating ovarian cancer in a subject comprising: determining the amount of at least one biomarker in ovarian cancer cells, relative to control cells; and altering the amount of biomarker expressed in the ovarian cancer cells by: administering to the subject an effective amount of at least one isolated biomarker, if the amount of the biomarker expressed in the cancer cells is less than the amount of the biomarker expressed in control cells; or administering to the subject an effective amount of at least one compound for inhibiting expression of the at least one biomarker, if the amount of the biomarker expressed in the cancer cells is greater than the amount of the biomarker expressed in control cells; wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- a pharmaceutical composition for treating ovarian cancer comprising at least one isolated biomarker, and a pharmaceutically-acceptable carrier, wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- the biomarker corresponds to a biomarker that is up-regulated in ovarian cancer cells relative to control cells.
- the pharmaceutical composition comprises at least one miR expression-inhibitor compound and a pharmaceutically-acceptable carrier.
- a method of identifying an anti-ovarian cancer agent comprising providing a test agent to a cell and measuring the level of at least one biomarker associated with increased expression levels in ovarian cancer cells, wherein a decrease in the level of the biomarker in the cell, relative to a control cell, is indicative of the test agent being an anti-ovarian cancer agent; and wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof.
- a method of identifying an anti-ovarian cancer agent comprising providing a test agent to a cell and measuring the level of at least one biomarker associated with decreased expression levels in ovarian cancer cells, wherein an increase in the level of the biomarker in the cell, relative to a control cell, is indicative of the test agent being an anti-ovarian cancer agent; and wherein the biomarker is selected from one or more of miR-155, miR-127 and miR-99b, or functional variants thereof.
- a method of assessing the effectiveness of a therapy to prevent, diagnose and/or treat an ovarian cancer associated disease comprising: subjecting an animal to a therapy whose effectiveness is being assessed, and determining the level of effectiveness of the treatment being tested in treating or preventing the disease, by evaluating at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- the candidate therapeutic agent comprises one or more of: pharmaceutical compositions, nutraceutical compositions, and homeopathic compositions.
- the therapy being assessed is for use in a human subject.
- an article of manufacture comprising: at least one capture reagent that binds to a marker for an ovarian cancer associated disease comprising at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- kits for screening for a candidate compound for a therapeutic agent to treat a ovarian cancer associated disease comprising: one or more reagents of at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof, and a cell expressing at least one biomarker.
- the presence of the biomarker is detected using a reagent comprising an antibody or an antibody fragment which specifically binds with at least one biomarker.
- an agent that interferes with an ovarian cancer associated disease response signaling pathway for the manufacture of a medicament for treating, preventing, reversing or limiting the severity of the disease complication in an individual, wherein the agent comprises at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- a method of treating, preventing, reversing or limiting the severity of an ovarian cancer associated disease complication in an individual in need thereof comprising: administering to the individual an agent that interferes with at least an ovarian cancer associated disease response cascade, wherein the agent comprises at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- an agent that interferes with at least an ovarian cancer associated disease response cascade for the manufacture of a medicament for treating, preventing, reversing or limiting the severity of an ovarian cancer-related disease complication in an individual, wherein the agent comprises at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- composition comprising an inhibitor of one or more of miR-21, miR-92 and miR-93.
- a method of treating an ovarian disorder in a subject in need thereof comprising administering to a subject a therapeutically effective amount of the composition.
- the composition is administered prophylactically.
- administration of the composition delays the onset of one or more symptoms of the disorder.
- administration of the peptide inhibits development of ovarian cancer.
- administration of the peptide inhibits tumor growth.
- a method for detecting the presence of an ovarian cancer in a biological sample comprising: exposing the biological sample suspected of containing ovarian cancer to a marker therefor; and detecting the presence or absence of the marker, if any, in the sample; wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- the marker includes a detectable label.
- the method further comprising comparing the amount of the marker in the biological sample from the subject to an amount of the marker in a corresponding biological sample from a normal subject. In certain embodiments, the method further comprises collecting a plurality of biological samples from a subject at different time points and comparing the amount of the marker in each biological sample to determine if the amount of the marker is increasing or decreasing in the subject over time.
- a method for treating an ovarian cancer in a subject comprising: administering to the subject in need thereof a therapeutically effective amount of an ovarian receptor agonist comprising: an inhibitor of one or more of: miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof.
- a method for treating an ovarian cancer in a subject comprising: administering to the subject in need thereof a therapeutically effective amount of an ovarian receptor agonist comprising: an antisense inhibitor of one or more of: miR-155, miR-127 and miR-99b, or functional variants thereof.
- a use, to manufacture a drug for the treatment of an ovarian cancer comprised of a nucleic acid molecule chosen from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- the drug comprises a nucleic acid molecule presenting a sequence chosen from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- an in vitro method to identify effective therapeutic agents or combinations of therapeutic agents to induce the differentiation of ovarian cancer cells comprising the stages of: i) culturing of cells derived from an ovarian tumor, ii) adding at least one compound to the culture medium of the cell line, iii) analyzing the evolution of the level of expression of at least one miR between stages (i) and (ii), and iv) identifying compounds or combinations of compounds inducing a change in the level of expression of the miR between stages (i) and (ii).
- stage (iii) includes the analysis of the level of expression of at least one miR.
- stage (iv) includes the identification of the compounds or combinations of compounds modulating the level of expression of at least one miR. In certain embodiments, stage (iv) includes the identification of compounds or combinations of compounds reducing the level of expression of at least one miR. In certain embodiments, the compound is a therapeutic agent for the treatment of cancer.
- a method for classifying an ovarian tissue from a subject comprising: measuring the expression of one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof, among the miR in a test cell population, wherein at least one cell in the test cell population is capable of expressing one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof among the miR; comparing the expression of the miR(s) to the expression of the miR(s) in a reference cell population comprising at least one cell for which an ovarian cancer classification is known; and identifying a difference, if present, in expression levels of one or more miR(s) in the test cell population and reference cell population, thereby classifying the ovarian cancer in the subject
- a difference in the expression in the test cell population as compared to the reference cell population indicates that the test cell population has a different classification as the cells from the reference cell population.
- a similar expression pattern in the test cell population as compared to the reference cell population indicates that the test cell population has the same classification as the cells from the reference cell population.
- the reference cell population is a plurality of cells or a database. In certain embodiments, the reference cell population is selected from the group consisting of: a reference cell population classified as a cell population from normal ovarian tissue, a reference cell population classified as a cell population from benign ovarian tissue and a reference cell population classified as a cell population from malignant ovarian tissue.
- FIG. 1 Comparison of published miRNA profile and differentially expressed miRNAs from ovarian cancer patient serum.
- FIG. 2 Median fold-change differences in differentially expressed miRNAs between patient and control serum.
- MicroRNAs are small non-coding RNAs that regulate the expression of protein-coding genes. MicroRNA expression becomes altered with the development and progression of ovarian cancer. Some of these microRNAs regulate the expression of cancer-related genes in ovarian cancer cells.
- a “miR gene product,” “microRNA,” “miR,” or “miRNA” refers to the unprocessed or processed RNA transcript from a miR gene.
- biomarker can include one or more of a “miR gene product,” “microRNA,” “miR,” or “miRNA,” or a protein-encoding RNA.
- the active 19-25 nucleotide RNA molecule can be obtained from the miR precursor through natural processing routes (e.g., using intact cells or cell lysates) or by synthetic processing routes (e.g., using isolated processing enzymes, such as isolated Dicer, Argonaut, or RNAse III). It is understood that the active 19-25 nucleotide RNA molecule can also be produced directly by biological or chemical synthesis, without having to be processed from the miR precursor. When a microRNA is referred to herein by name, the name corresponds to both the precursor and mature forms, unless otherwise indicated.
- the present invention encompasses methods of diagnosing whether a subject has, or is at risk for developing, an ovarian related disorder.
- a “subject” can be any mammal that has, or is suspected of having, ovarian cancer.
- serum samples from 28 patients with newly diagnosed ovarian cancer and 15 normal controls. These serum samples were collected at the time of initial consultation, prior to definitive surgical management and/or adjuvant therapy. The serum was obtained as part of a prospective tissue and serum procurement study and was stored at ⁇ 80° C. Fresh serum was obtained from 15 healthy women who volunteered to serve as controls. The frozen serum was thawed and RNA was extracted from the patient and control populations simultaneously. None of the healthy controls had previously been diagnosed with a malignancy.
- snRNAs small nuclear RNAs
- RNAs that may serve as normalizers given the lack of published data on the subject. Twenty-one miRNAs from the expression profile were empirically chosen for further examination in control and patient serum (11 controls and 19 patients). These were chosen based on apparent Ct differences of 4 cycles or greater between controls and patients. Two miRNAs (142-3p and 16) were identified as potential normalizers given consistent expression across all patient and control samples. For the miRNAs of interest the single tube TaqMan MicroRNA Assays were used. All reagents, primers and probes were obtained from Applied Biosystems (Applied Biosystems, Foster City, Calif.). One nanogram of RNA per sample was used for the assays.
- MiRNA-142-3p was used as a normalizer. All RT reactions, including no-template (no cDNA) controls and minus controls (no reverse transcriptase), were run in a GeneAmp PCR 9700 Thermocycler (Applied Biosystems). Gene expression levels were quantified using the ABI Prism 7900HT Sequence detection system (Applied Biosystems). Comparative real-time PCR was performed in triplicate, including no-template controls.
- stage breakdown was as follows: stage 18 (28.5%), stage 11-2 (7.1%), stage 111-8 (28.5%) stage IV-10 (35.7%). Histologic breakdown was as follows: serous (60%), clear cell (21.2%), endometrioid (12%), mucinous (6%). Median age was 57 years (age range 34-79) Similar to most groups with ovarian cancer, the majority (66%) had stage III or IV disease, and was predominately (60%) serous histology.
- the inventors herein show herein the first description of using a real-time PCR, microarray platform to screen large numbers of miRNAs while minimizing the amount of RNA needed.
- miRNAs can as early detection biomarkers in patients with normal CA-125.
- miRNAs-21 are three potential oncomirs; miRs-21, 92 and 93.
- miR-21 has been demonstrated in glioblastoma, breast, colon, prostate, lung, pancreas and stomach cancers [19,20]. It has been shown to modulate expression of PTEN in hepatocellular carcinoma [10] as well as PDCD4 and maspin, two genes involved in regulating invasion and metastasis [21,22].
- miRNA in serum from patients was miR-92.
- Mir-92a-1 is part of the mir-17-92 polycistron, located on chromosome 13q13.
- Over-expression of miR-93 was associated with decreased progression-free and overall survival in ovarian cancer patients [13]. In gastric tumors, this cluster negatively regulated TGF ⁇ tumor suppressor activities [24].
- the proposed oncogenic activities of both miR-92 and miR-93 agree with our serum findings.
- Mir-127 has been identified as one of thirty-one down-regulated miRNAs in ovarian cancer cell lines [14]. It has recently been shown to be embedded in a CpG island and silenced completely in most cancer cell lines. In this same study, it was demonstrated that treatment of cell lines with 5-aza-2′deoxycytidine not only restored miR-127 expression but also reduced expression of the proto-oncogene BCL6 [27]. Taken together these results identify miR-127 as a tumor suppressor gene, supporting our findings of decreased expression in patient serum.
- RNA degradation As well as genomic DNA contamination (results not shown), the inventors found that only 400 ng of total RNA are required for the TaqMan Array Human MicroRNA. Additionally, given that the amplicons of interest are approximately 25-30 nucleotides, the inventors determined that some degradation of the RNA is tolerable.
- the inventors herein have also determined that the controls used in real-time PCR account for both cross contamination by reagents (no template control) as well as genomic DNA contamination (RT minus control).
- the real-time based method described herein does not require extracting large amounts of pure RNA from serum.
- the inventors herein show for the first time that a real-time PCT method can be to obtain a miRNA profile on serum RNA.
- an element means one element or more than one element.
- a “marker” and “biomarker” is a gene and/or protein and/or functional variants thereof to whose altered level of expression in a tissue or cell from its expression level in normal or healthy tissue or cell is associated with a disorder and/or disease state.
- the “normal” level of expression of a marker is the level of expression of the marker in cells of a human subject or patient not afflicted with a disorder and/or disease state.
- an “over-expression” or “significantly higher level of expression” of a marker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and in certain embodiments, at least twice, and in other embodiments, three, four, five or ten times the expression level of the marker in a control sample (e.g., sample from a healthy subject not having the marker associated disorder and/or disease state) and in certain embodiments, the average expression level of the marker in several control samples.
- a “significantly lower level of expression” of a marker refers to an expression level in a test sample that is at least twice, and in certain embodiments, three, four, five or ten times lower than the expression level of the marker in a control sample (e.g., sample from a healthy subject not having the marker associated disorder and/or disease state) and in certain embodiments, the average expression level of the marker in several control samples.
- kits are any manufacture (e.g. a package or container) comprising at least one reagent, e.g., a probe, for specifically detecting the expression of a marker.
- the kit may be promoted, distributed or sold as a unit for performing the methods of the present invention.
- Proteins encompass marker proteins and their fragments; variant marker proteins and their fragments; peptides and polypeptides comprising an at least 15 amino acid segment of a marker or variant marker protein; and fusion proteins comprising a marker or variant marker protein, or an at least 15 amino acid segment of a marker or variant marker protein.
- compositions, kits and methods described herein have the following non-limiting uses, among others:
- composition or therapy for inhibiting a disorder and/or disease state in a subject selected from the group consisting of:
- Animal models can be created to enable screening of therapeutic agents useful for treating or preventing a disorder and/or disease state in a subject. Accordingly, the methods are useful for identifying therapeutic agents for treating or preventing a disorder and/or disease state in a subject.
- the methods comprise administering a candidate agent to an animal model made by the methods described herein, and assessing at least one response in the animal model as compared to a control animal model to which the candidate agent has not been administered. If at least one response is reduced in symptoms or delayed in onset, the candidate agent is an agent for treating or preventing the disease.
- the candidate agents may be pharmacologic agents already known in the art or may be agents previously unknown to have any pharmacological activity.
- the agents may be naturally arising or designed in the laboratory. They may be isolated from microorganisms, animals or plants, or may be produced recombinantly, or synthesized by any suitable chemical method. They may be small molecules, nucleic acids, proteins, peptides or peptidomimetics. In certain embodiments, candidate agents are small organic compounds having a molecular weight of more than 50 and less than about 2,500 Daltons.
- Candidate agents comprise functional groups necessary for structural interaction with proteins.
- Candidate agents are also found among biomolecules including, but not limited to: peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.
- Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. There are, for example, numerous means available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides and oligopeptides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and may be used to produce combinatorial libraries.
- the candidate agents can be obtained using any of the numerous approaches in combinatorial library methods art, including, by non-limiting example: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection.
- certain pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs.
- the same methods for identifying therapeutic agents for treating a disorder and/or disease state in a subject can also be used to validate lead compounds/agents generated from in vitro studies.
- the candidate agent may be an agent that up- or down-regulates one or more of a disorder and/or disease state in a subject response pathway.
- the candidate agent may be an antagonist that affects such pathway.
- an agent that interferes with a signaling cascade is administered to an individual in need thereof, such as, but not limited to, subjects in whom such complications are not yet evident and those who already have at least one such response.
- such treatment is useful to prevent the occurrence of such response and/or reduce the extent to which they occur.
- such treatment is useful to reduce the extent to which such response occurs, prevent their further development or reverse the response.
- the agent that interferes with the response cascade may be an antibody specific for such response.
- an antisense oligonucleotide can be provided to the disease cells in order to inhibit transcription, translation, or both, of the marker(s).
- a polynucleotide encoding an antibody, an antibody derivative, or an antibody fragment which specifically binds a marker protein, and operably linked with an appropriate promoter/regulator region can be provided to the cell in order to generate intracellular antibodies which will inhibit the function or activity of the protein.
- the expression and/or function of a marker may also be inhibited by treating the disease cell with an antibody, antibody derivative or antibody fragment that specifically binds a marker protein.
- a variety of molecules can be screened in order to identify molecules which inhibit expression of a marker or inhibit the function of a marker protein.
- the compound so identified can be provided to the subject in order to inhibit disease cells of the subject.
- any marker or combination of markers, as well as any certain markers in combination with the markers, may be used in the compositions, kits and methods described herein.
- this difference can be as small as the limit of detection of the method for assessing expression of the marker, it is desirable that the difference be at least greater than the standard error of the assessment method, and, in certain embodiments, a difference of at least 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, 20-, 100-, 500-, 1000-fold or greater than the level of expression of the same marker in normal tissue.
- marker proteins are secreted to the extracellular space surrounding the cells. These markers are used in certain embodiments of the compositions, kits and methods, owing to the fact that such marker proteins can be detected in a body fluid sample, which may be more easily collected from a human subject than a tissue biopsy sample.
- in vivo techniques for detection of a marker protein include introducing into a subject a labeled antibody directed against the protein.
- the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
- the marker protein is expressed in, for example, a mammalian cell, such as a human cell line, extracellular fluid is collected, and the presence or absence of the protein in the extracellular fluid is assessed (e.g. using a labeled antibody which binds specifically with the protein).
- the level of expression of the marker can be assessed by assessing the amount (e.g., absolute amount or concentration) of the marker in a sample.
- the cell sample can, of course, be subjected to a variety of post-collection preparative and storage techniques (e.g., nucleic acid and/or protein extraction, fixation, storage, freezing, ultrafiltration, concentration, evaporation, centrifugation, etc.) prior to assessing the amount of the marker in the sample.
- the markers may be shed from the cells into, for example, the respiratory system, digestive system, the blood stream and/or interstitial spaces.
- the shed markers can be tested, for example, by examining the sputum, BAL, serum, plasma, urine, stool, etc.
- compositions, kits and methods can be used to detect expression of marker proteins having at least one portion which is displayed on the surface of cells which express it.
- immunological methods may be used to detect such proteins on whole cells, or computer-based sequence analysis methods may be used to predict the presence of at least one extracellular domain (i.e., including both secreted proteins and proteins having at least one cell-surface domain).
- Expression of a marker protein having at least one portion which is displayed on the surface of a cell which expresses it may be detected without necessarily lysing the cell (e.g., using a labeled antibody which binds specifically with a cell-surface domain of the protein).
- Expression of a marker may be assessed by any of a wide variety of methods for detecting expression of a transcribed nucleic acid or protein.
- Non-limiting examples of such methods include immunological methods for detection of secreted, cell-surface, cytoplasmic or nuclear proteins, protein purification methods, protein function or activity assays, nucleic acid hybridization methods, nucleic acid reverse transcription methods and nucleic acid amplification methods.
- expression of a marker is assessed using an antibody (e.g., a radio-labeled, chromophore-labeled, fluorophore-labeled or enzyme-labeled antibody), an antibody derivative (e.g., an antibody conjugated with a substrate or with the protein or ligand of a protein-ligand pair), or an antibody fragment (e.g., a single-chain antibody, an isolated antibody hypervariable domain, etc.) which binds specifically with a marker protein or fragment thereof, including a marker protein which has undergone all or a portion of its normal post-translational modification.
- an antibody e.g., a radio-labeled, chromophore-labeled, fluorophore-labeled or enzyme-labeled antibody
- an antibody derivative e.g., an antibody conjugated with a substrate or with the protein or ligand of a protein-ligand pair
- an antibody fragment e.g., a single-chain antibody, an isolated antibody hyper
- expression of a marker is assessed by preparing mRNA/cDNA (i.e., a transcribed polynucleotide) from cells in a subject sample, and by hybridizing the mRNA/cDNA with a reference polynucleotide which is a complement of a marker nucleic acid, or a fragment thereof.
- cDNA can, optionally, be amplified using any of a variety of polymerase chain reaction methods prior to hybridization with the reference polynucleotide; preferably, it is not amplified.
- Expression of one or more markers can likewise be detected using quantitative PCR to assess the level of expression of the marker(s).
- any of the many methods of detecting mutations or variants e.g., single nucleotide polymorphisms, deletions, etc.
- a mixture of transcribed polynucleotides obtained from the sample is contacted with a substrate having fixed thereto a polynucleotide complementary to or homologous with at least a portion (e.g., at least 7, 10, 15, 20, 25, 30, 40, 50, 100, 500, or more nucleotide residues) of a marker nucleic acid.
- polynucleotides complementary to or homologous with are differentially detectable on the substrate (e.g., detectable using different chromophores or fluorophores, or fixed to different selected positions), then the levels of expression of a plurality of markers can be assessed simultaneously using a single substrate (e.g., a “gene chip” microarray of polynucleotides fixed at selected positions).
- a method of assessing marker expression which involves hybridization of one nucleic acid with another, it is desired that the hybridization be performed under stringent hybridization conditions.
- the biomarker assays can be performed using mass spectrometry or surface plasmon resonance.
- the method of identifying an agent active against a disorder and/or disease state in a subject can include one or more of: a) providing a sample of cells containing one or more markers or derivative thereof; b) preparing an extract from such cells; c) mixing the extract with a labeled nucleic acid probe containing a marker binding site; and, d) determining the formation of a complex between the marker and the nucleic acid probe in the presence or absence of the test agent.
- the determining step can include subjecting said extract/nucleic acid probe mixture to an electrophoretic mobility shift assay.
- the determining step comprises an assay selected from an enzyme linked immunoabsorption assay (ELISA), fluorescence based assays and ultra high throughput assays, for example surface plasmon resonance (SPR) or fluorescence correlation spectroscopy (FCS) assays.
- ELISA enzyme linked immunoabsorption assay
- SPR fluorescence based assays
- FCS fluorescence correlation spectroscopy
- the SPR sensor is useful for direct real-time observation of biomolecular interactions since SPR is sensitive to minute refractive index changes at a metal-dielectric surface.
- SPR is a surface technique that is sensitive to changes of 10 5 to 10 ⁇ 6 refractive index (RI) units within approximately 200 nm of the SPR sensor/sample interface.
- RI refractive index
- compositions, kits, and methods rely on detection of a difference in expression levels of one or more markers, it is desired that the level of expression of the marker is significantly greater than the minimum detection limit of the method used to assess expression in at least one of normal cells and cancer-affected cells.
- markers are over-expressed in cells of various types, including a specific disorder and/or disease state in a subject.
- compositions, kits, and methods are thus useful for characterizing one or more of the stage, grade, histological type, and nature of a disorder and/or disease state in a subject.
- the marker or panel of markers is selected such that a positive result is obtained in at least about 20%, and in certain embodiments, at least about 40%, 60%, or 80%, and in substantially all subjects afflicted with a disorder and/or disease state of the corresponding stage, grade, histological type, or nature.
- the marker or panel of markers invention can be selected such that a positive predictive value of greater than about 10% is obtained for the general population (in a non-limiting example, coupled with an assay specificity greater than 80%).
- the level of expression of each marker in a subject sample can be compared with the normal level of expression of each of the plurality of markers in non-disorder and/or non-disease samples of the same type, either in a single reaction mixture (i.e. using reagents, such as different fluorescent probes, for each marker) or in individual reaction mixtures corresponding to one or more of the markers.
- a significantly increased level of expression of more than one of the plurality of markers in the sample, relative to the corresponding normal levels is an indication that the subject is afflicted with a disorder and/or disease state.
- 2, 3, 4, 5, 8, 10, 12, 15, 20, 30, or 50 or more individual markers can be used; in certain embodiments, the use of fewer markers may be desired.
- the marker used therein be a marker which has a restricted tissue distribution, e.g., normally not expressed in a non-system tissue.
- compositions, kits, and methods will be of particular utility to subjects having an enhanced risk of developing a disorder and/or disease state in a subject and their medical advisors.
- Subjects recognized as having an enhanced risk of developing a disorder and/or disease include, for example, subjects having a familial history of such disorder or disease.
- the level of expression of a marker in normal human system tissue can be assessed in a variety of ways.
- this normal level of expression is assessed by assessing the level of expression of the marker in a portion of system cells which appear to be normal and by comparing this normal level of expression with the level of expression in a portion of the system cells which is suspected of being abnormal.
- population-average values for normal expression of the markers may be used.
- the ‘normal’ level of expression of a marker may be determined by assessing expression of the marker in a subject sample obtained from a non-afflicted subject, from a subject sample obtained from a subject before the suspected onset of a disorder and/or disease state in the subject, from archived subject samples, and the like.
- compositions, kits, and methods for assessing the presence of disorder and/or disease state cells in a sample e.g. an archived tissue sample or a sample obtained from a subject.
- a sample e.g. an archived tissue sample or a sample obtained from a subject.
- these compositions, kits, and methods are substantially the same as those described above, except that, where necessary, the compositions, kits, and methods are adapted for use with samples other than subject samples.
- the sample to be used is a parafinized, archived human tissue sample, it can be necessary to adjust the ratio of compounds in the compositions, in the kits, or the methods used to assess levels of marker expression in the sample.
- kits are useful for assessing the presence of disease cells (e.g. in a sample such as a subject sample).
- the kit comprises a plurality of reagents, each of which is capable of binding specifically with a marker nucleic acid or protein.
- Suitable reagents for binding with a marker protein include antibodies, antibody derivatives, antibody fragments, and the like.
- Suitable reagents for binding with a marker nucleic acid include complementary nucleic acids.
- the nucleic acid reagents may include oligonucleotides (labeled or non-labeled) fixed to a substrate, labeled oligonucleotides not bound with a substrate, pairs of PCR primers, molecular beacon probes, and the like.
- kits may optionally comprise additional components useful for performing the methods described herein.
- the kit may comprise fluids (e.g. SSC buffer) suitable for annealing complementary nucleic acids or for binding an antibody with a protein with which it specifically binds, one or more sample compartments, an instructional material which describes performance of the method, a sample of normal system cells, a sample of cancer-related disease cells, and the like.
- a method of making an isolated hybridoma which produces an antibody useful for assessing whether a subject is afflicted with a disorder and/or disease state.
- a protein or peptide comprising the entirety or a segment of a marker protein is synthesized or isolated (e.g. by purification from a cell in which it is expressed or by transcription and translation of a nucleic acid encoding the protein or peptide in vivo or in vitro).
- a vertebrate for example, a mammal such as a mouse, rat, rabbit, or sheep, is immunized using the protein or peptide.
- the vertebrate may optionally (and preferably) be immunized at least one additional time with the protein or peptide, so that the vertebrate exhibits a robust immune response to the protein or peptide.
- Splenocytes are isolated from the immunized vertebrate and fused with an immortalized cell line to form hybridomas, using any of a variety of methods. Hybridomas formed in this manner are then screened using standard methods to identify one or more hybridomas which produce an antibody which specifically binds with the marker protein or a fragment thereof. There is also provided herein hybridomas made by this method and antibodies made using such hybridomas.
- a method of assessing the efficacy of a test compound for inhibiting disease cells As described above, differences in the level of expression of the markers correlate with the abnormal state of the subject's cells. Although it is recognized that changes in the levels of expression of certain of the markers likely result from the abnormal state of such cells, it is likewise recognized that changes in the levels of expression of other of the markers induce, maintain, and promote the abnormal state of those cells. Thus, compounds which inhibit a disorder and/or disease state in a subject will cause the level of expression of one or more of the markers to change to a level nearer the normal level of expression for that marker (i.e. the level of expression for the marker in normal cells).
- This method thus comprises comparing expression of a marker in a first cell sample and maintained in the presence of the test compound and expression of the marker in a second cell sample and maintained in the absence of the test compound.
- a significantly reduced expression of a marker in the presence of the test compound is an indication that the test compound inhibits a related disease.
- the cell samples may, for example, be aliquots of a single sample of normal cells obtained from a subject, pooled samples of normal cells obtained from a subject, cells of a normal cell line, aliquots of a single sample of related disease cells obtained from a subject, pooled samples of related disease cells obtained from a subject, cells of a related disease cell line, or the like.
- the samples are cancer-related disease cells obtained from a subject and a plurality of compounds believed to be effective for inhibiting various cancer-related diseases are tested in order to identify the compound which is likely to best inhibit the cancer-related disease in the subject.
- This method may likewise be used to assess the efficacy of a therapy for inhibiting a related disease in a subject.
- the level of expression of one or more markers in a pair of samples is assessed.
- the therapy induces a significantly lower level of expression of a marker then the therapy is efficacious for inhibiting a cancer-related disease.
- alternative therapies can be assessed in vitro in order to select a therapy most likely to be efficacious for inhibiting a cancer-related disease in the subject.
- the abnormal state of human cells is correlated with changes in the levels of expression of the markers.
- a method for assessing the harmful potential of a test compound comprises maintaining separate aliquots of human cells in the presence and absence of the test compound. Expression of a marker in each of the aliquots is compared. A significantly higher level of expression of a marker in the aliquot maintained in the presence of the test compound (relative to the aliquot maintained in the absence of the test compound) is an indication that the test compound possesses a harmful potential.
- the relative harmful potential of various test compounds can be assessed by comparing the degree of enhancement or inhibition of the level of expression of the relevant markers, by comparing the number of markers for which the level of expression is enhanced or inhibited, or by comparing both. Various aspects are described in further detail in the following subsections.
- One aspect pertains to isolated marker proteins and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise antibodies directed against a marker protein or a fragment thereof.
- the native marker protein can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques.
- a protein or peptide comprising the whole or a segment of the marker protein is produced by recombinant DNA techniques.
- Alternative to recombinant expression such protein or peptide can be synthesized chemically using standard peptide synthesis techniques.
- an “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized.
- the language “substantially free of cellular material” includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced.
- protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a “contaminating protein”).
- the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.
- culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation.
- the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.
- Biologically active portions of a marker protein include polypeptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of the marker protein, which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein.
- biologically active portions comprise a domain or motif with at least one activity of the corresponding full-length protein.
- a biologically active portion of a marker protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length.
- other biologically active portions, in which other regions of the marker protein are deleted can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of the marker protein.
- useful proteins are substantially identical (e.g., at least about 40%, and in certain embodiments, 50%, 60%, 70%, 80%, 90%, 95%, or 99%) to one of these sequences and retain the functional activity of the corresponding naturally-occurring marker protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.
- libraries of segments of a marker protein can be used to generate a variegated population of polypeptides for screening and subsequent selection of variant marker proteins or segments thereof.
- diagnostic assays for determining the level of expression of one or more marker proteins or nucleic acids, in order to determine whether an individual is at risk of developing a particular disorder and/or disease.
- Such assays can be used for prognostic or predictive purposes to thereby prophylactically treat an individual prior to the onset of the disorder and/or disease.
- the methods are useful for at least periodic screening of the same individual to see if that individual has been exposed to chemicals or toxins that change his/her expression patterns.
- Yet another aspect pertains to monitoring the influence of agents (e.g., drugs or other compounds) administered either to inhibit a disorder and/or disease or to treat or prevent any other disorder (e.g., in order to understand any system effects that such treatment may have) on the expression or activity of a marker in clinical trials.
- agents e.g., drugs or other compounds
- the compounds may be in a formulation for administration topically, locally or systemically in a suitable pharmaceutical carrier.
- Remington's Pharmaceutical Sciences, 15th Edition by E. W. Martin discloses typical carriers and methods of preparation.
- the compound may also be encapsulated in suitable biocompatible microcapsules, microparticles or microspheres formed of biodegradable or non-biodegradable polymers or proteins or liposomes for targeting to cells.
- biocompatible microcapsules, microparticles or microspheres formed of biodegradable or non-biodegradable polymers or proteins or liposomes for targeting to cells.
- Such systems are well known to those skilled in the art and may be optimized for use with the appropriate nucleic acid.
- nucleic acid delivery systems comprise the desired nucleic acid, by way of example and not by limitation, in either “naked” form as a “naked” nucleic acid, or formulated in a vehicle suitable for delivery, such as in a complex with a cationic molecule or a liposome forming lipid, or as a component of a vector, or a component of a pharmaceutical composition.
- the nucleic acid delivery system can be provided to the cell either directly, such as by contacting it with the cell, or indirectly, such as through the action of any biological process.
- Formulations for topical administration may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
- Conventional pharmaceutical carriers, aqueous, powder or oily bases, or thickeners can be used as desired.
- Formulations suitable for parenteral administration include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions, solutions or emulsions that can include suspending agents, solubilizers, thickening agents, dispersing agents, stabilizers, and preservatives.
- aqueous and non-aqueous, isotonic sterile injection solutions which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient
- aqueous and non-aqueous sterile suspensions, solutions or emulsions that can include suspending agents, solubilizers, thickening agents, dispersing agents, stabilizers, and preservatives.
- Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative.
- Those of skill in the art can readily determine the various parameters for preparing and formulating the compositions without resort to undue experimentation.
- the compound can be used alone or in combination with other suitable components.
- an “effective amount” is that amount which is able to treat one or more symptoms of the disorder, reverse the progression of one or more symptoms of the disorder, halt the progression of one or more symptoms of the disorder, or prevent the occurrence of one or more symptoms of the disorder in a subject to whom the formulation is administered, as compared to a matched subject not receiving the compound.
- the actual effective amounts of compound can vary according to the specific compound or combination thereof being utilized, the particular composition formulated, the mode of administration, and the age, weight, condition of the individual, and severity of the symptoms or condition being treated.
- any acceptable method known to one of ordinary skill in the art may be used to administer a formulation to the subject.
- the administration may be localized (i.e., to a particular region, physiological system, tissue, organ, or cell type) or systemic, depending on the condition being treated.
- a “pharmacogenomic marker” is an objective biochemical marker whose expression level correlates with a specific clinical drug response or susceptibility in a subject.
- the presence or quantity of the pharmacogenomic marker expression is related to the predicted response of the subject and more particularly the subject's tumor to therapy with a specific drug or class of drugs.
- Monitoring the influence of agents (e.g., drug compounds) on the level of expression of a marker can be applied not only in basic drug screening, but also in clinical trials.
- agents e.g., drug compounds
- the effectiveness of an agent to affect marker expression can be monitored in clinical trials of subjects receiving treatment for a cancer-related disease.
- the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) comprising the steps of:
- an agent e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
- increased expression of the marker gene(s) during the course of treatment may indicate ineffective dosage and the desirability of increasing the dosage.
- decreased expression of the marker gene(s) may indicate efficacious treatment and no need to change dosage.
- “electronic apparatus readable media” refers to any suitable medium for storing, holding or containing data or information that can be read and accessed directly by an electronic apparatus.
- Such media can include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as compact disc; electronic storage media such as RAM, ROM, EPROM, EEPROM and the like; and general hard disks and hybrids of these categories such as magnetic/optical storage media.
- the medium is adapted or configured for having recorded thereon a marker as described herein.
- the term “electronic apparatus” is intended to include any suitable computing or processing apparatus or other device configured or adapted for storing data or information.
- Examples of electronic apparatus suitable for use with the present invention include stand-alone computing apparatus; networks, including a local area network (LAN), a wide area network (WAN) Internet, Intranet, and Extranet; electronic appliances such as personal digital assistants (PDAs), cellular phone, pager and the like; and local and distributed processing systems.
- “recorded” refers to a process for storing or encoding information on the electronic apparatus readable medium. Those skilled in the art can readily adopt any method for recording information on media to generate materials comprising the markers described herein.
- a variety of software programs and formats can be used to store the marker information of the present invention on the electronic apparatus readable medium. Any number of data processor structuring formats (e.g., text file or database) may be employed in order to obtain or create a medium having recorded thereon the markers.
- data processor structuring formats e.g., text file or database
- By providing the markers in readable form one can routinely access the marker sequence information for a variety of purposes. For example, one skilled in the art can use the nucleotide or amino acid sequences in readable form to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the sequences which match a particular target sequence or target motif.
- a medium for holding instructions for performing a method for determining whether a subject has a cancer-related disease or a pre-disposition to a cancer-related disease wherein the method comprises the steps of determining the presence or absence of a marker and based on the presence or absence of the marker, determining whether the subject has a cancer-related disease or a pre-disposition to a cancer-related disease and/or recommending a particular treatment for a cancer-related disease or pre-cancer-related disease condition.
- an electronic system and/or in a network a method for determining whether a subject has a cancer-related disease or a pre-disposition to a cancer-related disease associated with a marker
- the method comprises the steps of determining the presence or absence of the marker, and based on the presence or absence of the marker, determining whether the subject has a particular disorder and/or disease or a pre-disposition to such disorder and/or disease, and/or recommending a particular treatment for such disease or disease and/or such pre-cancer-related disease condition.
- the method may further comprise the step of receiving phenotypic information associated with the subject and/or acquiring from a network phenotypic information associated with the subject.
- Also provided herein is a network, a method for determining whether a subject has a disorder and/or disease or a pre-disposition to a disorder and/or disease associated with a marker, the method comprising the steps of receiving information associated with the marker, receiving phenotypic information associated with the subject, acquiring information from the network corresponding to the marker and/or disorder and/or disease, and based on one or more of the phenotypic information, the marker, and the acquired information, determining whether the subject has a disorder and/or disease or a pre-disposition thereto.
- the method may further comprise the step of recommending a particular treatment for the disorder and/or disease or pre-disposition thereto.
- a business method for determining whether a subject has a disorder and/or disease or a pre-disposition thereto comprising the steps of receiving information associated with the marker, receiving phenotypic information associated with the subject, acquiring information from the network corresponding to the marker and/or a disorder and/or disease, and based on one or more of the phenotypic information, the marker, and the acquired information, determining whether the subject has a disorder and/or disease or a pre-disposition thereto.
- the method may further comprise the step of recommending a particular treatment therefor.
- an array that can be used to assay expression of one or more genes in the array.
- the array can be used to assay gene expression in a tissue to ascertain tissue specificity of genes in the array. In this manner, up to about 7000 or more genes can be simultaneously assayed for expression. This allows a profile to be developed showing a battery of genes specifically expressed in one or more tissues.
- tissue specificity not only tissue specificity, but also the level of expression of a battery of genes in the tissue is ascertainable.
- genes can be grouped on the basis of their tissue expression per se and level of expression in that tissue. This is useful, for example, in ascertaining the relationship of gene expression between or among tissues.
- one tissue can be perturbed and the effect on gene expression in a second tissue can be determined.
- the effect of one cell type on another cell type in response to a biological stimulus can be determined.
- Such a determination is useful, for example, to know the effect of cell-cell interaction at the level of gene expression. If an agent is administered therapeutically to treat one cell type but has an undesirable effect on another cell type, the method provides an assay to determine the molecular basis of the undesirable effect and thus provides the opportunity to co-administer a counteracting agent or otherwise treat the undesired effect. Similarly, even within a single cell type, undesirable biological effects can be determined at the molecular level. Thus, the effects of an agent on expression of other than the target gene can be ascertained and counteracted.
- the array can be used to monitor the time course of expression of one or more genes in the array. This can occur in various biological contexts, as disclosed herein, for example development of a disorder and/or disease, progression thereof, and processes, such as cellular transformation associated therewith.
- the array is also useful for ascertaining the effect of the expression of a gene or the expression of other genes in the same cell or in different cells. This provides, for example, for a selection of alternate molecular targets for therapeutic intervention if the ultimate or downstream target cannot be regulated.
- the array is also useful for ascertaining differential expression patterns of one or more genes in normal and abnormal cells. This provides a battery of genes that could serve as a molecular target for diagnosis or therapeutic intervention.
- the markers may serve as surrogate markers for one or more disorders or disease states or for conditions leading up thereto.
- a “surrogate marker” is an objective biochemical marker which correlates with the absence or presence of a disease or disorder, or with the progression of a disease or disorder. The presence or quantity of such markers is independent of the disease. Therefore, these markers may serve to indicate whether a particular course of treatment is effective in lessening a disease state or disorder.
- Surrogate markers are of particular use when the presence or extent of a disease state or disorder is difficult to assess through standard methodologies, or when an assessment of disease progression is desired before a potentially dangerous clinical endpoint is reached.
- a “pharmacodynamic marker” is an objective biochemical marker which correlates specifically with drug effects.
- the presence or quantity of a pharmacodynamic marker is not related to the disease state or disorder for which the drug is being administered; therefore, the presence or quantity of the marker is indicative of the presence or activity of the drug in a subject.
- a pharmacodynamic marker may be indicative of the concentration of the drug in a biological tissue, in that the marker is either expressed or transcribed or not expressed or transcribed in that tissue in relationship to the level of the drug. In this fashion, the distribution or uptake of the drug may be monitored by the pharmacodynamic marker.
- the presence or quantity of the pharmacodynamic marker may be related to the presence or quantity of the metabolic product of a drug, such that the presence or quantity of the marker is indicative of the relative breakdown rate of the drug in vivo.
- Pharmacodynamic markers are of particular use in increasing the sensitivity of detection of drug effects, particularly when the drug is administered in low doses. Since even a small amount of a drug may be sufficient to activate multiple rounds of marker transcription or expression, the amplified marker may be in a quantity which is more readily detectable than the drug itself. Also, the marker may be more easily detected due to the nature of the marker itself; for example, using the methods described herein, antibodies may be employed in an immune-based detection system for a protein marker, or marker-specific radiolabeled probes may be used to detect a mRNA marker. Furthermore, the use of a pharmacodynamic marker may offer mechanism-based prediction of risk due to drug treatment beyond the range of possible direct observations.
- the method of testing for a disorder and/or disease may comprise, for example measuring the expression level of each marker gene in a biological sample from a subject over time and comparing the level with that of the marker gene in a control biological sample.
- the subject is judged to be affected with a disorder and/or disease.
- the expression level of the marker gene falls within the permissible range, the subject is unlikely to be affected therewith.
- the standard value for the control may be pre-determined by measuring the expression level of the marker gene in the control, in order to compare the expression levels.
- the standard value can be determined based on the expression level of the above-mentioned marker gene in the control.
- the permissible range is taken as ⁇ 2S.D. based on the standard value.
- Expression levels of marker genes include transcription of the marker genes to mRNA, and translation into proteins. Therefore, one method of testing for a disorder and/or disease is performed based on a comparison of the intensity of expression of mRNA corresponding to the marker genes, or the expression level of proteins encoded by the marker genes.
- the measurement of the expression levels of marker genes in the testing for a disorder and/or disease can be carried out according to various gene analysis methods. Specifically, one can use, for example, a hybridization technique using nucleic acids that hybridize to these genes as probes, or a gene amplification technique using DNA that hybridize to the marker genes as primers.
- the probes or primers used for the testing can be designed based on the nucleotide sequences of the marker genes.
- the identification numbers for the nucleotide sequences of the respective marker genes are described herein.
- genes of higher animals generally accompany polymorphism in a high frequency.
- genes of higher animals generally accompany polymorphism in a high frequency.
- marker genes can include homologs of other species in addition to humans.
- the expression “marker gene” refers to a homolog of the marker gene unique to the species or a foreign marker gene which has been introduced into an individual.
- a “homolog of a marker gene” refers to a gene derived from a species other than a human, which can hybridize to the human marker gene as a probe under stringent conditions. Such stringent conditions are known to one skilled in the art who can select an appropriate condition to produce an equal stringency experimentally or empirically.
- a polynucleotide comprising the nucleotide sequence of a marker gene or a nucleotide sequence that is complementary to the complementary strand of the nucleotide sequence of a marker gene and has at least 15 nucleotides, can be used as a primer or probe.
- a “complementary strand” means one strand of a double stranded DNA with respect to the other strand and which is composed of A:T (U for RNA) and G:C base pairs.
- “complementary” means not only those that are completely complementary to a region of at least 15 continuous nucleotides, but also those that have a nucleotide sequence homology of at least 40% in certain instances, 50% in certain instances, 60% in certain instances, 70% in certain instances, 80% in certain instances, 90% in certain instances, and 95% in certain instances, or higher.
- the degree of homology between nucleotide sequences can be determined by an algorithm, BLAST, etc.
- polynucleotides are useful as a probe to detect a marker gene, or as a primer to amplify a marker gene.
- the polynucleotide comprises usually 15 bp to 100 bp, and in certain embodiments 15 bp to 35 bp of nucleotides.
- a DNA comprises the whole nucleotide sequence of the marker gene (or the complementary strand thereof), or a partial sequence thereof that has at least 15 bp nucleotides.
- the 3′ region must be complementary to the marker gene, while the 5′ region can be linked to a restriction enzyme-recognition sequence or a tag.
- Polynucleotides may be either DNA or RNA. These polynucleotides may be either synthetic or naturally-occurring. Also, DNA used as a probe for hybridization is usually labeled. Those skilled in the art readily understand such labeling methods.
- oligonucleotide means a polynucleotide with a relatively low degree of polymerization. Oligonucleotides are included in polynucleotides.
- Tests for a disorder and/or disease using hybridization techniques can be performed using, for example, Northern hybridization, dot blot hybridization, or the DNA microarray technique.
- gene amplification techniques such as the RT-PCR method may be used. By using the PCR amplification monitoring method during the gene amplification step in RT-PCR, one can achieve a more quantitative analysis of the expression of a marker gene.
- the detection target (DNA or reverse transcript of RNA) is hybridized to probes that are labeled with a fluorescent dye and a quencher which absorbs the fluorescence.
- the fluorescent dye and the quencher draw away from each other and the fluorescence is detected.
- the fluorescence is detected in real time.
- the method of testing for a cancer-related disease can be also carried out by detecting a protein encoded by a marker gene.
- a protein encoded by a marker gene is described as a “marker protein.”
- the Western blotting method, the immunoprecipitation method, and the ELISA method may be employed using an antibody that binds to each marker protein.
- Antibodies used in the detection that bind to the marker protein may be produced by any suitable technique. Also, in order to detect a marker protein, such an antibody may be appropriately labeled. Alternatively, instead of labeling the antibody, a substance that specifically binds to the antibody, for example, protein A or protein G, may be labeled to detect the marker protein indirectly. More specifically, such a detection method can include the ELISA method.
- a protein or a partial peptide thereof used as an antigen may be obtained, for example, by inserting a marker gene or a portion thereof into an expression vector, introducing the construct into an appropriate host cell to produce a transformant, culturing the transformant to express the recombinant protein, and purifying the expressed recombinant protein from the culture or the culture supernatant.
- the amino acid sequence encoded by a gene or an oligopeptide comprising a portion of the amino acid sequence encoded by a full-length cDNA are chemically synthesized to be used as an immunogen.
- a test for a cancer-related disease can be performed using as an index not only the expression level of a marker gene but also the activity of a marker protein in a biological sample.
- Activity of a marker protein means the biological activity intrinsic to the protein.
- Various methods can be used for measuring the activity of each protein.
- an increase or decrease in the expression level of the marker gene in a subject whose symptoms suggest at least a susceptibility to a disorder and/or disease indicates that the symptoms are primarily caused thereby.
- the tests are useful to determine whether a disorder and/or disease are improving in a subject.
- the methods described herein can be used to judge the therapeutic effect of a treatment therefor.
- an increase or decrease in the expression level of the marker gene in a subject, who has been diagnosed as being affected thereby, implies that the disease has progressed more.
- the severity and/or susceptibility to a disorder and/or disease may also be determined based on the difference in expression levels. For example, when the marker gene is one of the genes described herein, the degree of increase in the expression level of the marker gene is correlated with the presence and/or severity of a disorder and/or disease.
- a “functionally equivalent gene” as used herein generally is a gene that encodes a protein having an activity similar to a known activity of a protein encoded by the marker gene.
- a representative example of a functionally equivalent gene includes a counterpart of a marker gene of a subject animal, which is intrinsic to the animal.
- the animal model is useful for detecting physiological changes due to a disorder and/or disease.
- the animal model is useful to reveal additional functions of marker genes and to evaluate drugs whose targets are the marker genes.
- An animal model can be created by controlling the expression level of a counterpart gene or administering a counterpart gene.
- the method can include creating an animal model by controlling the expression level of a gene selected from the group of genes described herein.
- the method can include creating an animal model by administering the protein encoded by a gene described herein, or administering an antibody against the protein.
- the marker can be over-expressed such that the marker can then be measured using appropriate methods.
- an animal model can be created by introducing a gene selected from such groups of genes, or by administering a protein encoded by such a gene.
- a disorder and/or disease can be induced by suppressing the expression of a gene selected from such groups of genes or the activity of a protein encoded by such a gene.
- An antisense nucleic acid, a ribozyme, or an RNAi can be used to suppress the expression.
- the activity of a protein can be controlled effectively by administering a substance that inhibits the activity, such as an antibody.
- the animal model is useful to elucidate the mechanism underlying a disorder and/or disease and also to test the safety of compounds obtained by screening. For example, when an animal model develops the symptoms of a particular disorder and/or disease, or when a measured value involved in certain a disorder and/or disease alters in the animal, a screening system can be constructed to explore compounds having activity to alleviate the disease.
- an increase in the expression level refers to any one of the following: where a marker gene introduced as a foreign gene is expressed artificially; where the transcription of a marker gene intrinsic to the subject animal and the translation thereof into the protein are enhanced; or where the hydrolysis of the protein, which is the translation product, is suppressed.
- the expression “a decrease in the expression level” refers to either the state in which the transcription of a marker gene of the subject animal and the translation thereof into the protein are inhibited, or the state in which the hydrolysis of the protein, which is the translation product, is enhanced.
- the expression level of a gene can be determined, for example, by a difference in signal intensity on a DNA chip.
- the animal model can include transgenic animals, including, for example animals where a marker gene has been introduced and expressed artificially; marker gene knockout animals; and knock-in animals in which another gene has been substituted for a marker gene.
- transgenic animals including, for example animals where a marker gene has been introduced and expressed artificially; marker gene knockout animals; and knock-in animals in which another gene has been substituted for a marker gene.
- transgenic animals also include, for example, animals in which the activity of a marker protein has been enhanced or suppressed by introducing a mutation(s) into the coding region of the gene, or the amino acid sequence has been modified to become resistant or susceptible to hydrolysis. Mutations in an amino acid sequence include substitutions, deletions, insertions, and additions.
- the expression itself of a marker gene can be controlled by introducing a mutation(s) into the transcriptional regulatory region of the gene.
- a mutation Those skilled in the art understand such amino acid substitutions.
- the number of amino acids that are mutated is not particularly restricted, as long as the activity is maintained. Normally, it is within 50 amino acids, in certain non-limiting embodiments, within 30 amino acids, within 10 amino acids, or within 3 amino acids.
- the site of mutation may be any site, as long as the activity is maintained.
- screening methods for candidate compounds for therapeutic agents to treat a particular disorder and/or disease are provided herein.
- One or more marker genes are selected from the group of genes described herein.
- a therapeutic agent for a cancer-related disease can be obtained by selecting a compound capable of increasing or decreasing the expression level of the marker gene(s).
- the expression “a compound that increases the expression level of a gene” refers to a compound that promotes any one of the steps of gene transcription, gene translation, or expression of a protein activity.
- the expression “a compound that decreases the expression level of a gene”, as used herein, refers to a compound that inhibits any one of these steps.
- the method of screening for a therapeutic agent for a disorder and/or disease can be carried out either in vivo or in vitro.
- This screening method can be performed, for example, by:
- a method to assess the efficacy of a candidate compound for a pharmaceutical agent on the expression level of a marker gene(s) by contacting an animal subject with the candidate compound and monitoring the effect of the compound on the expression level of the marker gene(s) in a biological sample derived from the animal subject.
- the variation in the expression level of the marker gene(s) in a biological sample derived from the animal subject can be monitored using the same technique as used in the testing method described above.
- a candidate compound for a pharmaceutical agent can be selected by screening.
- Nucleobase sequences of mature miRNAs and their corresponding stem-loop sequences described herein are the sequences found in miRBase, an online searchable database of miRNA sequences and annotation, found at http://microrna.sanger.ac.uk/. Entries in the miRBase Sequence database represent a predicted hairpin portion of a miRNA transcript (the stem-loop), with information on the location and sequence of the mature miRNA sequence.
- the miRNA stem-loop sequences in the database are not strictly precursor miRNAs (pre-miRNAs), and may in some instances include the pre-miRNA and some flanking sequence from the presumed primary transcript.
- the miRNA nucleobase sequences described herein encompass any version of the miRNA, including the sequences described in Release 10.0 of the miRBase sequence database and sequences described in any earlier Release of the miRBase sequence database.
- a sequence database release may result in the re-naming of certain miRNAs.
- a sequence database release may result in a variation of a mature miRNA sequence.
- the compounds that may encompass such modified oligonucleotides may be complementary to any nucleobase sequence version of the miRNAs described herein.
- nucleobase sequence set forth herein is independent of any modification to a sugar moiety, an internucleoside linkage, or a nucleobase. It is further understood that a nucleobase sequence comprising U's also encompasses the same nucleobase sequence wherein ‘U’ is replaced by ‘T’ at one or more positions having ‘U’. Conversely, it is understood that a nucleobase sequence comprising T's also encompasses the same nucleobase sequence wherein ‘T’ is replaced by ‘U’ at one or more positions having ‘T’.
- a modified oligonucleotide has a nucleobase sequence that is complementary to a miRNA or a precursor thereof, meaning that the nucleobase sequence of a modified oligonucleotide is a least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical to the complement of a miRNA or precursor thereof over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more nucleobases, or that the two sequences hybridize under stringent hybridization conditions.
- the nucleobase sequence of a modified oligonucleotide may have one or more mismatched basepairs with respect to its target miRNA or target miRNA precursor sequence, and is capable of hybridizing to its target sequence.
- a modified oligonucleotide has a nucleobase sequence that is 100% complementary to a miRNA or a precursor thereof.
- the nucleobase sequence of a modified oligonucleotide has full-length complementary to a miRNA.
- the present invention provides microRNAs that inhibit the expression of one or more genes in a subject.
- MicroRNA expression profiles can serve as a new class of cancer biomarkers.
- the miR(s) inhibit the expression of a protein. In other embodiments, the miRNA(s) inhibits gene activity (e.g., cell invasion activity).
- the miRNA can be isolated from cells or tissues, recombinantly produced, or synthesized in vitro by a variety of techniques well known to one of ordinary skill in the art.
- miRNA is isolated from cells or tissues. Techniques for isolating miRNA from cells or tissues are well known to one of ordinary skill in the art. For example, miRNA can be isolated from total RNA using the mirVana miRNA isolation kit from Ambion, Inc. Another technique utilizes the flashIPAGETM Fractionator System (Ambion, Inc.) for PAGE purification of small nucleic acids.
- nucleic acids administered in vivo are taken up and distributed to cells and tissues.
- the nucleic acid may be delivered in a suitable manner which enables tissue-specific uptake of the agent and/or nucleic acid delivery system.
- the formulations described herein can supplement treatment conditions by any known conventional therapy, including, but not limited to, antibody administration, vaccine administration, administration of cytotoxic agents, natural amino acid polypeptides, nucleic acids, nucleotide analogues, and biologic response modifiers. Two or more combined compounds may be used together or sequentially.
- compositions containing (a) one or more nucleic acid or small molecule compounds and (b) one or more other chemotherapeutic agents.
- Subject means a human or non-human animal selected for treatment or therapy.
- Subject suspected of having means a subject exhibiting one or more clinical indicators of a disorder, disease or condition.
- Preventing refers to delaying or forestalling the onset, development or progression of a condition or disease for a period of time, including weeks, months, or years.
- Treatment or “treat” means the application of one or more specific procedures used for the cure or amelioration of a disorder and/or disease.
- the specific procedure is the administration of one or more pharmaceutical agents.
- “Amelioration” means a lessening of severity of at least one indicator of a condition or disease. In certain embodiments, amelioration includes a delay or slowing in the progression of one or more indicators of a condition or disease. The severity of indicators may be determined by subjective or objective measures which are known to those skilled in the art.
- Subject in need thereof means a subject identified as in need of a therapy or treatment.
- administering means providing a pharmaceutical agent or composition to a subject, and includes, but is not limited to, administering by a medical professional and self-administering.
- Parenteral administration means administration through injection or infusion.
- Parenteral administration includes, but is not limited to, subcutaneous administration, intravenous administration, intramuscular administration, intra-arterial administration, and intracranial administration.
- Subcutaneous administration means administration just below the skin.
- “Improves function” means the changes function toward normal parameters. In certain embodiments, function is assessed by measuring molecules found in a subject's bodily fluids.
- Pharmaceutical composition means a mixture of substances suitable for administering to an individual that includes a pharmaceutical agent.
- a pharmaceutical composition may comprise a modified oligonucleotide and a sterile aqueous solution.
- Target nucleic acid all mean a nucleic acid capable of being targeted by antisense compounds.
- Targeting means the process of design and selection of nucleobase sequence that will hybridize to a target nucleic acid and induce a desired effect.
- Targeteted to means having a nucleobase sequence that will allow hybridization to a target nucleic acid to induce a desired effect. In certain embodiments, a desired effect is reduction of a target nucleic acid.
- Modulation means to a perturbation of function or activity. In certain embodiments, modulation means an increase in gene expression. In certain embodiments, modulation means a decrease in gene expression.
- “Expression” means any functions and steps by which a gene's coded information is converted into structures present and operating in a cell.
- a modified oligonucleotide has a nucleobase sequence that is complementary to a region of a target nucleic acid.
- a modified oligonucleotide is complementary to a region of a miRNA stem-loop sequence.
- a modified oligonucleotide is 100% identical to a region of a miRNA sequence.
- Segment means a smaller or sub-portion of a region.
- Nucleobase sequence means the order of contiguous nucleobases, in a 5′ to 3′ orientation, independent of any sugar, linkage, and/or nucleobase modification.
- Contiguous nucleobases means nucleobases immediately adjacent to each other in a nucleic acid.
- Nucleobase complementarity means the ability of two nucleobases to pair non-covalently via hydrogen bonding.
- “Complementary” means a first nucleobase sequence is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical, or is 100% identical, to the complement of a second nucleobase sequence over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more nucleobases, or that the two sequences hybridize under stringent hybridization conditions.
- a modified oligonucleotide that has a nucleobase sequence which is 100% complementary to a miRNA, or precursor thereof may not be 100% complementary to the miRNA, or precursor thereof, over the entire length of the modified oligonucleotide.
- “Complementarity” means the nucleobase pairing ability between a first nucleic acid and a second nucleic acid. “Full-length complementarity” means each nucleobase of a first nucleic acid is capable of pairing with each nucleobase at a corresponding position in a second nucleic acid. For example, in certain embodiments, a modified oligonucleotide wherein each nucleobase has complementarity to a nucleobase in an miRNA has full-length complementarity to the miRNA.
- Percent complementary means the number of complementary nucleobases in a nucleic acid divided by the length of the nucleic acid. In certain embodiments, percent complementarity of a modified oligonucleotide means the number of nucleobases that are complementary to the target nucleic acid, divided by the number of nucleobases of the modified oligonucleotide. In certain embodiments, percent complementarity of a modified oligonucleotide means the number of nucleobases that are complementary to a miRNA, divided by the number of nucleobases of the modified oligonucleotide.
- Percent region bound means the percent of a region complementary to an oligonucleotide region. Percent region bound is calculated by dividing the number of nucleobases of the target region that are complementary to the oligonucleotide by the length of the target region. In certain embodiments, percent region bound is at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
- Percent identity means the number of nucleobases in first nucleic acid that are identical to nucleobases at corresponding positions in a second nucleic acid, divided by the total number of nucleobases in the first nucleic acid.
- “Substantially identical” used herein may mean that a first and second nucleobase sequence are at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical, or 100% identical, over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more nucleobases.
- Hybridize means the annealing of complementary nucleic acids that occurs through nucleobase complementarity.
- mismatch means a nucleobase of a first nucleic acid that is not capable of pairing with a nucleobase at a corresponding position of a second nucleic acid.
- Non-complementary nucleobase means two nucleobases that are not capable of pairing through hydrogen bonding.
- miRNA or “miR” means a non-coding RNA between 18 and 25 nucleobases in length which hybridizes to and regulates the expression of a coding RNA.
- a miRNA is the product of cleavage of a pre-miRNA by the enzyme Dicer. Examples of miRNAs are found in the miRNA database known as miRBase (http://microrna.sanger.ac.uk/).
- Pre-miRNA or “pre-miR” means a non-coding RNA having a hairpin structure, which contains a miRNA.
- a pre-miRNA is the product of cleavage of a pri-miR by the double-stranded RNA-specific ribonuclease known as Drosha.
- “Stem-loop sequence” means an RNA having a hairpin structure and containing a mature miRNA sequence. Pre-miRNA sequences and stem-loop sequences may overlap. Examples of stem-loop sequences are found in the miRNA database known as miRBase (microrna.sanger.ac.uk/.
- miRNA precursor means a transcript that originates from a genomic DNA and that comprises a non-coding, structured RNA comprising one or more miRNA sequences.
- a miRNA precursor is a pre-miRNA.
- a miRNA precursor is a pri-miRNA.
- Antisense compound means a compound having a nucleobase sequence that will allow hybridization to a target nucleic acid.
- an antisense compound is an oligonucleotide having a nucleobase sequence complementary to a target nucleic acid.
- “Oligonucleotide” means a polymer of linked nucleosides, each of which can be modified or unmodified, independent from one another. “Naturally occurring internucleoside linkage” means a 3′ to 5′ phosphodiester linkage between nucleosides. “Natural nucleobase” means a nucleobase that is unmodified relative to its naturally occurring form. “miR antagonist”+means an agent designed to interfere with or inhibit the activity of a miRNA. In certain embodiments, a miR antagonist comprises an antisense compound targeted to a miRNA.
- a miR antagonist comprises a modified oligonucleotide having a nucleobase sequence that is complementary to the nucleobase sequence of a miRNA, or a precursor thereof.
- an miR antagonist comprises a small molecule, or the like that interferes with or inhibits the activity of an miRNA.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Plant Pathology (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Endocrinology (AREA)
- Reproductive Health (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Methods and compositions for the diagnosis, prognosis and/or treatment of ovarian cancer are disclosed.
Description
- This application is a continuation of U.S. Ser. No. 14/284,992 filed May 22, 2014, now allowed, which is a continuation application of U.S. Ser. No. 13/132,583 filed Jun. 29, 2011, now abandoned, which claims the benefit of PCT/US2009/038214 application filed Mar. 25, 2009, which claims priority to the U.S. Provisional Application No. 61/120,123, filed Dec. 5, 2008, the entire disclosure of which is expressly incorporated herein by reference.
- This invention was not made with government support and the government has no rights in this invention.
- This invention relates generally to the field of molecular biology. Certain aspects of the invention include application in diagnostics, therapeutics, and prognostics of ovarian cancer related disorders.
- There is no admission that the background art disclosed in this section legally constitutes prior art.
- In 2008, it is expected that 20,180 women will be diagnosed with ovarian cancer and 15,310 will succumb to the disease [1]. Ovarian cancer is a devastating illness in which only 20% of patients are diagnosed with stage I disease [2]. The poor prognosis associated with ovarian cancer is multi-factorial; a lack of minimally invasive, early detection tests, subtle symptom development and tumor chemo-resistance. Even with the advent of chemo-resistance assays it is still difficult to predict drug resistance and only 10-15% of patients will remain in prolonged remission after initial cytotoxic therapy.
- While annual pelvic examination is widely practiced, it lacks the sensitivity to be used a screening strategy for ovarian cancer [3]. Women at high risk for ovarian cancer may typically undergo screening with trans-vaginal ultrasound and serum CA-125. CA-125, however, remains a poor marker for early stage disease with a documented sensitivity of 40% [4,5]. Additionally, it has been shown that even in a high-risk, screened population, incident cases are still more likely to be advanced stage [6]. The identification of biomarkers that may assist in treatment planning and prediction of chemotherapy outcomes is highly desirable in this population of patients.
- There is emerging research about the role of microRNAs in a variety of pathologic conditions; including both solid and hematologic malignancies. MicroRNAs (miRNAs) are small, 22-25 nucleotide non-coding sequences of RNA. These sequences control gene expression either by translational repression or degradation of the messenger RNA transcript after targeting the 3′UTR. Early studies with Caenorhabditis elegans showed that a great number of these sequences are highly conserved across all species, demonstrating the important roles that miRNAs play in cellular differentiation, proliferation and cell cycle control [7]. It is now recognized that miRNAs are frequently de-regulated in malignancy. Under-expressed miRNAs such as let-7 in lung cancer and mirs-15/16 in leukemia, are tumor suppressor genes, suppressing Ras and BCL2 respectively [8,9]. Over-expressed miRNAs such as mir-21 and the cluster miR-17-92, are oncogenes (oncomirs), targeting tumor suppressors PTEN and E2F1 in solid and hematologic malignancies respectively [10,11]. While miRNA research in gynecologic malignancies is in its infancy, the miRNA signature profile of ovarian cancer has recently been published [12-14].
- The diagnostic and prognostic utility of circulating RNAs in both benign and malignant conditions has recently been revealed. Placental-associated circulating miRNAs correlate with pregnancy progression [15]. In malignant states, circulating mRNAs in renal cell carcinoma patients [16], as well as miRNAs from the serum of patients with diffuse large B cell lymphoma [17], have been shown to be stable and highly predictive of malignancy as well as survival. Recently, it has been demonstrated that the miRNA signature of circulating tumor exosomes of ovarian cancer patients demonstrates high correlation with miRNA expression of the primary tumor [18]. Ovarian cancer remains a disease for which improved non-invasive, serum screening tests are highly desirable.
- In spite of considerable research into therapies to treat these diseases, they remain difficult to diagnose and treat effectively, and the mortality observed in patients indicates that improvements are needed in the diagnosis, treatment and prevention of ovarian cancer.
- In a first broad aspect, there is provided herein, a method of diagnosing whether a subject has, or is at risk for developing a ovarian-related disorder, determining a prognosis of a subject with ovarian related disorder, and/or treating a ovarian related disorder in a subject who has the ovarian related disorder, comprising: measuring the level of at least one biomarker in a test sample of serum from the subject, wherein an alteration in the level of the biomarker in the test sample, relative to the level of a corresponding biomarker in a control sample, is indicative of the subject either having, or being at risk for developing, the disorder.
- In certain embodiments, the at least one biomarker differentially expressed between tumor tissue and non-tumor tissue, and is one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In certain embodiments, the level of the biomarker in the test sample is greater than the level of the corresponding biomarker in the control sample.
- In certain embodiments, the biomarker is differentially expressed between tumor tissue and non-tumor tissue, and is one or more of miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof.
- In certain embodiments, the biomarker is differentially expressed between tumor tissue and non-tumor tissue, and is one or more of miR-21, miR92 and miR-93, or functional variants thereof.
- In certain embodiments, the level of the at least one biomarker in the test sample is less than the level of the corresponding biomarker in the control sample. In certain embodiments, the biomarker is differentially expressed between tumor tissue and non-tumor tissue, and is one or more of miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a method of screening for one or more biomarkers for ovarian cancer in a subject, comprising: obtaining a sample of serum from the subject, conducting quantitative real-time polymerase chain reaction (RT-PCR), and quantifying one or more one biomarkers differentially expressed between tumor tissue and non-tumor tissue, wherein the biomarkers are selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof. In certain embodiments, the sample comprises a blood sample.
- In certain embodiments, the sample comprises one or more of serum or plasma blood samples.
- In another broad aspect, there is provided herein, a method biomarker for ovarian cancer, comprising at least one biomarker differentially expressed between tumor tissue and non-tumor tissue, wherein the biomarkers are selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a method distinct microRNA expression signature in ovarian tumors comprising alterations in the expression of one or more biomarkers that regulate tumor microRNA processing, wherein the biomarkers are selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a method for influencing transcript abundance and/or protein expression of target mRNAs in the ovary of a subject in need thereof, comprising deregulating one or more microRNAs selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In certain embodiments, the method further includes inhibiting protein expression of cancer-related genes.
- In certain embodiments, the method includes altering expression of one or more of miR-21, miR-92, mir-93, miR-126 and miR-129a to inhibit the protein expression of cancer-related genes.
- In another broad aspect, there is provided herein, use of a large-scale gene expression profiling of microRNAs and/or protein-encoding RNAs to identify alterations in microRNA function that occur in human ovarian tumors.
- In another broad aspect, there is provided herein, a method for screening for ovarian in a subject in need thereof, comprising the step of performing real-time polymerase chain reaction (RT-PCR) on a serum sample from the subject.
- In another broad aspect, there is provided herein, a tumor gene signature for an ovarian related disorder comprising: one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a tumor gene signature for an ovarian related disorder comprising: one or more of: miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof that are up-regulated; and, miR-155, miR-127 and miR-99b, or functional variants thereof, that are down regulated.
- In another broad aspect, there is provided herein, a tumor gene signature for an ovarian related disorder comprising: one or more of: miR-21, miR92 and miR-93, or functional variants thereof.
- In certain embodiments, the biomarker comprises host gene expression in ovarian tumors that are increased in ovarian tumors. In certain embodiments, the biomarkers include one or more of: miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof.
- In another broad aspect, there is provided herein, use of miR-21, miR92 and/or miR-93, or functional variants thereof, as a target for at least one gene in ovarian cancer cells and/or use in inhibiting protein expression of such gene.
- In another broad aspect, there is provided herein, a method for regulating one or more of genes expressed by ovarian cancer cells, comprising the step of altering expression of miR-21, miR92 and/or miR-93 in ovarian cancer cells.
- In another broad aspect, there is provided herein, use of binding of microRNAs to 3′UTR sequences to lead to degradation and/or accumulation of targeted mRNA in mammalian ovarian cancer cells.
- In another broad aspect, there is provided herein, use of an inverse and/or a positive correlation between a microRNA and a mRNA in a human tissue predictive of a microRNA target gene for ovarian cancer.
- In another broad aspect, there is provided herein, a miR-expression inhibitor comprising one or more of: miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof.
- In another broad aspect, there is provided herein, a miR-expression inhibitor comprising one or more of: miR-21, miR92 and/or miR-93, or functional variants thereof.
- In another broad aspect, there is provided herein, a miR-expression antisense inhibitor comprising one or more of: miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, an oncomiR biomarker of an ovarian disorder or disease, comprising one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, an oncomiR biomarker of an ovarian disorder or disease, comprising one or more of: miR-21, miR92 and miR-93, or functional variants thereof.
- In another broad aspect, there is provided herein, a method for regulating protein expression in ovarian cancer cells, comprising modulating the expression of one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof, in the ovarian cancer cells.
- In another broad aspect, there is provided herein, a method for regulating protein expression in ovarian cancer cells, comprising modulating the expression of one or more of: miR-21, miR92 and miR-93, or functional variants thereof, in the ovarian cancer cells.
- In another broad aspect, there is provided herein, a composition for repressing expression of one or more of genes in ovarian cancer cells, the composition comprising one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a composition for repressing expression of one or more of genes in ovarian cancer cells, the composition comprising one or more of: miR-21, miR92 and miR-93, or functional variants thereof.
- In another broad aspect, there is provided herein, a method for regulating one or more of protein levels in a subject with ovarian cancer, comprising using one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a method for regulating one or more of protein levels in a subject with ovarian cancer, comprising using one or more of: miR-21, miR92 and miR-93, or functional variants thereof.
- In another broad aspect, there is provided herein, a method for determining the prognosis of a subject with ovarian cancer, comprising measuring the level of at least one biomarker in a test sample of serum from the subject, wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof, and wherein: i) the biomarker is associated with an adverse prognosis in ovarian cancer; and ii) an alteration in the level of the at least one biomarker in the test sample, relative to the level of a corresponding biomarker in a control sample, is indicative of an adverse prognosis.
- In another broad aspect, there is provided herein, a method of diagnosing whether a subject has, or is at risk for developing, ovarian cancer, comprising: reverse transcribing RNA from a test sample of serum obtained from the subject to provide a set of target oligodeoxynucleotides; hybridizing the target oligodeoxynucleotides to a microarray comprising miRNA-specific probe oligonucleotides to provide a hybridization profile for the test sample; and comparing the test sample hybridization profile to a hybridization profile generated from a control sample, wherein an alteration in the signal of at least one miRNA is indicative of the subject either having, or being at risk for developing, ovarian cancer.
- In certain embodiments, the signal of at least one miRNA, relative to the signal generated from the control sample, is down-regulated, and/or wherein the signal of at least one miRNA, relative to the signal generated from the control sample, is up-regulated.
- In certain embodiments, an alteration in the signal of at least one biomarker miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof are indicative of the subject either having, or being at risk for developing, an ovarian cancer with an adverse prognosis.
- In another broad aspect, there is provided herein, a method of treating ovarian cancer in a subject who has an ovarian cancer in which at least one biomarker is down-regulated or up-regulated in the cancer cells of the subject relative to control cells, comprising: when the at least one biomarker is down-regulated in the cancer cells, administering to the subject an effective amount of at least one isolated biomarker, or an isolated variant or biologically-active fragment thereof, such that proliferation of cancer cells in the subject is inhibited; or when the at least one biomarker is up-regulated in the cancer cells, administering to the subject an effective amount of at least one compound for inhibiting expression of the at least one biomarker, such that proliferation of cancer cells in the subject is inhibited; wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a method of treating ovarian cancer in a subject, comprising: determining the amount of at least one biomarker in ovarian cancer cells, relative to control cells; and altering the amount of biomarker expressed in the ovarian cancer cells by: administering to the subject an effective amount of at least one isolated biomarker, if the amount of the biomarker expressed in the cancer cells is less than the amount of the biomarker expressed in control cells; or administering to the subject an effective amount of at least one compound for inhibiting expression of the at least one biomarker, if the amount of the biomarker expressed in the cancer cells is greater than the amount of the biomarker expressed in control cells; wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a pharmaceutical composition for treating ovarian cancer, comprising at least one isolated biomarker, and a pharmaceutically-acceptable carrier, wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof. In certain embodiments, the biomarker corresponds to a biomarker that is up-regulated in ovarian cancer cells relative to control cells. In certain embodiments, the pharmaceutical composition comprises at least one miR expression-inhibitor compound and a pharmaceutically-acceptable carrier.
- In another broad aspect, there is provided herein, a method of identifying an anti-ovarian cancer agent, comprising providing a test agent to a cell and measuring the level of at least one biomarker associated with increased expression levels in ovarian cancer cells, wherein a decrease in the level of the biomarker in the cell, relative to a control cell, is indicative of the test agent being an anti-ovarian cancer agent; and wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof.
- In another broad aspect, there is provided herein, a method of identifying an anti-ovarian cancer agent, comprising providing a test agent to a cell and measuring the level of at least one biomarker associated with decreased expression levels in ovarian cancer cells, wherein an increase in the level of the biomarker in the cell, relative to a control cell, is indicative of the test agent being an anti-ovarian cancer agent; and wherein the biomarker is selected from one or more of miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein a method of assessing the effectiveness of a therapy to prevent, diagnose and/or treat an ovarian cancer associated disease, comprising: subjecting an animal to a therapy whose effectiveness is being assessed, and determining the level of effectiveness of the treatment being tested in treating or preventing the disease, by evaluating at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In certain embodiments, the candidate therapeutic agent comprises one or more of: pharmaceutical compositions, nutraceutical compositions, and homeopathic compositions.
- In certain embodiments, the therapy being assessed is for use in a human subject.
- In another broad aspect, there is provided herein, an article of manufacture comprising: at least one capture reagent that binds to a marker for an ovarian cancer associated disease comprising at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a kit for screening for a candidate compound for a therapeutic agent to treat a ovarian cancer associated disease, wherein the kit comprises: one or more reagents of at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof, and a cell expressing at least one biomarker. In certain embodiments, the presence of the biomarker is detected using a reagent comprising an antibody or an antibody fragment which specifically binds with at least one biomarker.
- In another broad aspect, there is provided herein, use of an agent that interferes with an ovarian cancer associated disease response signaling pathway, for the manufacture of a medicament for treating, preventing, reversing or limiting the severity of the disease complication in an individual, wherein the agent comprises at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a method of treating, preventing, reversing or limiting the severity of an ovarian cancer associated disease complication in an individual in need thereof, comprising: administering to the individual an agent that interferes with at least an ovarian cancer associated disease response cascade, wherein the agent comprises at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, use of an agent that interferes with at least an ovarian cancer associated disease response cascade, for the manufacture of a medicament for treating, preventing, reversing or limiting the severity of an ovarian cancer-related disease complication in an individual, wherein the agent comprises at least one biomarker selected from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a composition comprising an inhibitor of one or more of miR-21, miR-92 and miR-93.
- In another broad aspect, there is provided herein, a method of treating an ovarian disorder in a subject in need thereof, comprising administering to a subject a therapeutically effective amount of the composition. In certain embodiments, the composition is administered prophylactically. In certain embodiments, administration of the composition delays the onset of one or more symptoms of the disorder.
- In certain embodiments, administration of the peptide inhibits development of ovarian cancer.
- In certain embodiments, administration of the peptide inhibits tumor growth.
- In another broad aspect, there is provided herein, a method for detecting the presence of an ovarian cancer in a biological sample, the method comprising: exposing the biological sample suspected of containing ovarian cancer to a marker therefor; and detecting the presence or absence of the marker, if any, in the sample; wherein the biomarker is selected from one or more of miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof. In certain embodiments, the marker includes a detectable label.
- In certain embodiments, the method further comprising comparing the amount of the marker in the biological sample from the subject to an amount of the marker in a corresponding biological sample from a normal subject. In certain embodiments, the method further comprises collecting a plurality of biological samples from a subject at different time points and comparing the amount of the marker in each biological sample to determine if the amount of the marker is increasing or decreasing in the subject over time.
- In another broad aspect, there is provided herein, a method for treating an ovarian cancer in a subject, the method comprising: administering to the subject in need thereof a therapeutically effective amount of an ovarian receptor agonist comprising: an inhibitor of one or more of: miR-21, miR92, miR-93, miR-126 and miR-29a, or functional variants thereof.
- In another broad aspect, there is provided herein, a method for treating an ovarian cancer in a subject, the method comprising: administering to the subject in need thereof a therapeutically effective amount of an ovarian receptor agonist comprising: an antisense inhibitor of one or more of: miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, a use, to manufacture a drug for the treatment of an ovarian cancer, comprised of a nucleic acid molecule chosen from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof. In certain embodiments, the drug comprises a nucleic acid molecule presenting a sequence chosen from one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof.
- In another broad aspect, there is provided herein, an in vitro method to identify effective therapeutic agents or combinations of therapeutic agents to induce the differentiation of ovarian cancer cells, the method comprising the stages of: i) culturing of cells derived from an ovarian tumor, ii) adding at least one compound to the culture medium of the cell line, iii) analyzing the evolution of the level of expression of at least one miR between stages (i) and (ii), and iv) identifying compounds or combinations of compounds inducing a change in the level of expression of the miR between stages (i) and (ii). In certain embodiments, stage (iii) includes the analysis of the level of expression of at least one miR. In certain embodiments, stage (iv) includes the identification of the compounds or combinations of compounds modulating the level of expression of at least one miR. In certain embodiments, stage (iv) includes the identification of compounds or combinations of compounds reducing the level of expression of at least one miR. In certain embodiments, the compound is a therapeutic agent for the treatment of cancer.
- In another broad aspect, there is provided herein, a method for classifying an ovarian tissue from a subject comprising: measuring the expression of one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof, among the miR in a test cell population, wherein at least one cell in the test cell population is capable of expressing one or more of: miR-21, miR92, miR-93, miR-126, miR-29a, miR-155, miR-127 and miR-99b, or functional variants thereof among the miR; comparing the expression of the miR(s) to the expression of the miR(s) in a reference cell population comprising at least one cell for which an ovarian cancer classification is known; and identifying a difference, if present, in expression levels of one or more miR(s) in the test cell population and reference cell population, thereby classifying the ovarian cancer in the subject.
- In certain embodiments, a difference in the expression in the test cell population as compared to the reference cell population indicates that the test cell population has a different classification as the cells from the reference cell population.
- In certain embodiments, a similar expression pattern in the test cell population as compared to the reference cell population indicates that the test cell population has the same classification as the cells from the reference cell population.
- In certain embodiments, the reference cell population is a plurality of cells or a database. In certain embodiments, the reference cell population is selected from the group consisting of: a reference cell population classified as a cell population from normal ovarian tissue, a reference cell population classified as a cell population from benign ovarian tissue and a reference cell population classified as a cell population from malignant ovarian tissue.
- Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.
- The patent or application file may contain one or more drawings executed in color and/or one or more photographs. Copies of this patent or patent application publication with color drawing(s) and/or photograph(s) will be provided by the Patent Office upon request and payment of the necessary fee.
-
FIG. 1 : Comparison of published miRNA profile and differentially expressed miRNAs from ovarian cancer patient serum. -
FIG. 2 : Median fold-change differences in differentially expressed miRNAs between patient and control serum. - Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.
- Before describing the present invention in detail, it is to be understood that this invention is not limited to particular formulations or process parameters as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting.
- Although a number of methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.
- MicroRNAs are small non-coding RNAs that regulate the expression of protein-coding genes. MicroRNA expression becomes altered with the development and progression of ovarian cancer. Some of these microRNAs regulate the expression of cancer-related genes in ovarian cancer cells. As used herein interchangeably, a “miR gene product,” “microRNA,” “miR,” or “miRNA” refers to the unprocessed or processed RNA transcript from a miR gene.
- As used herein, “biomarker” can include one or more of a “miR gene product,” “microRNA,” “miR,” or “miRNA,” or a protein-encoding RNA.
- The active 19-25 nucleotide RNA molecule can be obtained from the miR precursor through natural processing routes (e.g., using intact cells or cell lysates) or by synthetic processing routes (e.g., using isolated processing enzymes, such as isolated Dicer, Argonaut, or RNAse III). It is understood that the active 19-25 nucleotide RNA molecule can also be produced directly by biological or chemical synthesis, without having to be processed from the miR precursor. When a microRNA is referred to herein by name, the name corresponds to both the precursor and mature forms, unless otherwise indicated.
- The present invention encompasses methods of diagnosing whether a subject has, or is at risk for developing, an ovarian related disorder. As used herein, a “subject” can be any mammal that has, or is suspected of having, ovarian cancer.
- We offer a description of miRNA extraction from the serum of ovarian cancer patients, the differential expression of a number of these miRNAs between patients and healthy controls as well as a novel real-time PCR microarray detection method.
- The present invention is further explained in the following Examples, in which all parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. All publications, including patents and non-patent literature, referred to in this specification are expressly incorporated by reference.
- Following approval from the Institutional Review Board of The Ohio State University College of Medicine we analyzed serum samples from 28 patients with newly diagnosed ovarian cancer and 15 normal controls. These serum samples were collected at the time of initial consultation, prior to definitive surgical management and/or adjuvant therapy. The serum was obtained as part of a prospective tissue and serum procurement study and was stored at −80° C. Fresh serum was obtained from 15 healthy women who volunteered to serve as controls. The frozen serum was thawed and RNA was extracted from the patient and control populations simultaneously. None of the healthy controls had previously been diagnosed with a malignancy.
- RNA was extracted from 250 μl of serum using the Tri-Reagent BD (Molecular Research Center, Inc., Cincinnati, Ohio) as described by the manufacturer. RNA quality was assessed with the ThermoScientific NanoDrop1000 (Thermo Fisher Scientific, Inc., Waltham, Mass.). MicroRNA expression profiling was performed with RNA from 4 controls and 9 cancer patients utilizing the TaqMan Array Human MicroRNA Panel (v.1, Applied Biosystems, Foster City, Calif.) using 50 ng of RNA per port for a total of 400 ng. This array contains 365 miRNA targets as well as endogenous controls. Normalization was performed with the small nuclear RNAs (snRNAs) U44 and U48. These snRNAs are stably expressed reference genes suitable for use as normalizers in TaqMan assays.
- In addition to identifying differentially expressed miRNAs on the microarray panel, a second goal was to identify miRNAs that may serve as normalizers given the lack of published data on the subject. Twenty-one miRNAs from the expression profile were empirically chosen for further examination in control and patient serum (11 controls and 19 patients). These were chosen based on apparent Ct differences of 4 cycles or greater between controls and patients. Two miRNAs (142-3p and 16) were identified as potential normalizers given consistent expression across all patient and control samples. For the miRNAs of interest the single tube TaqMan MicroRNA Assays were used. All reagents, primers and probes were obtained from Applied Biosystems (Applied Biosystems, Foster City, Calif.). One nanogram of RNA per sample was used for the assays. MiRNA-142-3p was used as a normalizer. All RT reactions, including no-template (no cDNA) controls and minus controls (no reverse transcriptase), were run in a GeneAmp PCR 9700 Thermocycler (Applied Biosystems). Gene expression levels were quantified using the ABI Prism 7900HT Sequence detection system (Applied Biosystems). Comparative real-time PCR was performed in triplicate, including no-template controls.
- Expression of the microRNAs was calculated utilizing the comparative Ct. method. Statistical analysis was performed with STATA v. 10 (College Station, Tex.). Expression was compared using the Mann-Whitney test. P-values >0.05 were considered statistically significant.
- Results
- Twenty-eight patients with epithelial ovarian cancer were included in this study. Stage breakdown was as follows: stage 18 (28.5%), stage 11-2 (7.1%), stage 111-8 (28.5%) stage IV-10 (35.7%). Histologic breakdown was as follows: serous (60%), clear cell (21.2%), endometrioid (12%), mucinous (6%). Median age was 57 years (age range 34-79) Similar to most groups with ovarian cancer, the majority (66%) had stage III or IV disease, and was predominately (60%) serous histology.
- Primary miRNA expression profiling with microarray identified 23 miRNAs (including 2 normalizers) of interest. We created a Venn diagram in order to compare the 23 miRNAs of interest from our initial test set with known miRNA signature profiles. There were 10 miRNAs of interest in such group that were in common with miRNAs that have been published in the literature as part of the miRNA signatures of ovarian cancer (
FIG. 1 ). - On follow up quantitative RT-PCR of the 21 miRNAs, 5 miRNAs were over-expressed (miRNAs-21, 29a, 92, 93 and 126, p=0.0002, p=0.003, p=0.0001, p=0.0003, p=0.007) and 3 miRNAs were under-expressed (mir-127, 155 and 99b, p=0.0001, p=0.0003, p=0.0001) in the serum of ovarian cancer patients compared to controls. Fold-differences in median expression of the miRNAs in patients versus controls are demonstrated in
FIG. 2 . - Three patients were identified with pre-operative CA-125<35 U/ml. We then examined the three miRNAs with the highest serum expression, miRs-21, 92 and 93 for expression patterns in those patients with normal CA-125 in order to determine if miRNA patterns mimicked CA-125 patterns. These three miRNAs were found to be significantly over-expressed in these patients when median expression in the patient population was compared to controls (Table 1).
-
TABLE 1 miRNA over-expression in patients with normal pre-operative CA-125 miR-21 miR-92 miR-93 FIGO CA-125 Patienta/ Patient/ Patient/ ID Stage (u/ml) Controlb Controlc Controld 1050133 IIC 34 1.89/.79 27.5/4.3 2.37/.76 1050130 IV 13.4 1.54/.79 13.8/4.3 14/.76 1010026 IA 16.9 1.46/.79 16.1/4.3 3.5/.76 aIndividual patient serum miRNA expression is defined as the 2(ΔCt). bInter-quartile range for median expression of miR-21 in controls: (.68-.93). cInter-quartile range for median expression of miR-92 in controls: (2.9-8.7). dInter-quartile range for median expression of miR-93 in controls: (.36-1.3). - There was no correlation between miRNA status and grade, stage or histologic subtype. Due to the small sample size and recent diagnosis of disease we did not attempt to correlate miRNA status with progression-free interval or survival.
- Discussion
- We demonstrate that the extraction of RNA and identification of miRNAs from the serum of individuals diagnosed with ovarian cancer is practicable.
- The inventors herein show herein the first description of using a real-time PCR, microarray platform to screen large numbers of miRNAs while minimizing the amount of RNA needed.
- Additionally, the inventors herein show that miRNAs can as early detection biomarkers in patients with normal CA-125.
- A profile was created that was subsequently examined on a set of 19 patients and 11 healthy controls. Out of the 21 miRNAs of interest that we selected, 10 miRNAs were common to published ovarian cancer profiles. Among the 5 over-expressed miRNAs that we discovered are three potential oncomirs; miRs-21, 92 and 93. Over-expression of miR-21 has been demonstrated in glioblastoma, breast, colon, prostate, lung, pancreas and stomach cancers [19,20]. It has been shown to modulate expression of PTEN in hepatocellular carcinoma [10] as well as PDCD4 and maspin, two genes involved in regulating invasion and metastasis [21,22].
- The most consistently over-expressed miRNA in serum from patients was miR-92. Mir-92a-1 is part of the mir-17-92 polycistron, located on chromosome 13q13. A known oncomir, mir-17-92-enforced expression in a transgenic mouse model of lymphoma unequivocally demonstrated accelerated lymphoma progression [23]. Over-expression of miR-93 was associated with decreased progression-free and overall survival in ovarian cancer patients [13]. In gastric tumors, this cluster negatively regulated TGFβ tumor suppressor activities [24]. The proposed oncogenic activities of both miR-92 and miR-93 agree with our serum findings.
- Contrary to the published ovarian cancer profiles, the inventors herein now have demonstrated significant over-expression of miR-29a and miR-126 in the sera from ovarian cancer patients. There have been a number of tumor suppressor activities proposed for both miR-126 and 29a. Mir-126 has been implicated as a “metastatic-suppressor” in breast cancer with loss associated with poor outcome [25]. Mir-29a has been found to be under-expressed in lung cancers; having been implicated in the modulation of methylation patterns seen in lung cancer [26]. While over expression of these miRNAs would tend to suggest they behave as oncomirs, TargetScan (4.2) does predict PTEN as a potential target of miR-29a.
- Mir-127 has been identified as one of thirty-one down-regulated miRNAs in ovarian cancer cell lines [14]. It has recently been shown to be embedded in a CpG island and silenced completely in most cancer cell lines. In this same study, it was demonstrated that treatment of cell lines with 5-aza-2′deoxycytidine not only restored miR-127 expression but also reduced expression of the proto-oncogene BCL6 [27]. Taken together these results identify miR-127 as a tumor suppressor gene, supporting our findings of decreased expression in patient serum.
- It is to be noted that there is a limited amount of published data regarding the extraction of quality miRNA from serum. Despite experiencing RNA degradation as well as genomic DNA contamination (results not shown), the inventors found that only 400 ng of total RNA are required for the TaqMan Array Human MicroRNA. Additionally, given that the amplicons of interest are approximately 25-30 nucleotides, the inventors determined that some degradation of the RNA is tolerable.
- Also, the inventors herein have also determined that the controls used in real-time PCR account for both cross contamination by reagents (no template control) as well as genomic DNA contamination (RT minus control).
- Since the microarray chips typically only utilize up to about 5 μg of sample, the real-time based method described herein does not require extracting large amounts of pure RNA from serum. The inventors herein show for the first time that a real-time PCT method can be to obtain a miRNA profile on serum RNA.
- The practice of the present invention will employ, unless otherwise indicated, conventional methods of pharmacology, chemistry, biochemistry, recombinant DNA techniques and immunology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Handbook of Experimental Immunology, Vols. I-IV (D. M. Weir and C. C. Blackwell eds., Blackwell Scientific Publications); A. L. Lehninger, Biochemistry (Worth Publishers, Inc., current addition); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Methods In Enzymology (S. Colowick and N. Kaplan eds., Academic Press, Inc.).
- As such, the definitions herein are provided for further explanation and are not to be construed as limiting.
- The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
- A “marker” and “biomarker” is a gene and/or protein and/or functional variants thereof to whose altered level of expression in a tissue or cell from its expression level in normal or healthy tissue or cell is associated with a disorder and/or disease state.
- The “normal” level of expression of a marker is the level of expression of the marker in cells of a human subject or patient not afflicted with a disorder and/or disease state.
- An “over-expression” or “significantly higher level of expression” of a marker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and in certain embodiments, at least twice, and in other embodiments, three, four, five or ten times the expression level of the marker in a control sample (e.g., sample from a healthy subject not having the marker associated disorder and/or disease state) and in certain embodiments, the average expression level of the marker in several control samples.
- A “significantly lower level of expression” of a marker refers to an expression level in a test sample that is at least twice, and in certain embodiments, three, four, five or ten times lower than the expression level of the marker in a control sample (e.g., sample from a healthy subject not having the marker associated disorder and/or disease state) and in certain embodiments, the average expression level of the marker in several control samples.
- A kit is any manufacture (e.g. a package or container) comprising at least one reagent, e.g., a probe, for specifically detecting the expression of a marker. The kit may be promoted, distributed or sold as a unit for performing the methods of the present invention.
- “Proteins” encompass marker proteins and their fragments; variant marker proteins and their fragments; peptides and polypeptides comprising an at least 15 amino acid segment of a marker or variant marker protein; and fusion proteins comprising a marker or variant marker protein, or an at least 15 amino acid segment of a marker or variant marker protein.
- The compositions, kits and methods described herein have the following non-limiting uses, among others:
- 1) assessing whether a subject is afflicted with a disorder and/or disease state;
- 2) assessing the stage of a disorder and/or disease state in a subject;
- 3) assessing the grade of a disorder and/or disease state in a subject;
- 4) assessing the nature of a disorder and/or disease state in a subject;
- 5) assessing the potential to develop a disorder and/or disease state in a subject;
- 6) assessing the histological type of cells associated with a disorder and/or disease state in a subject;
- 7) making antibodies, antibody fragments or antibody derivatives that are useful for treating a disorder and/or disease state in a subject;
- 8) assessing the presence of a disorder and/or disease state in a subject's cells;
- 9) assessing the efficacy of one or more test compounds for inhibiting a disorder and/or disease state in a subject;
- 10) assessing the efficacy of a therapy for inhibiting a disorder and/or disease state in a subject;
- 11) monitoring the progression of a disorder and/or disease state in a subject;
- 12) selecting a composition or therapy for inhibiting a disorder and/or disease state in a subject;
- 13) treating a subject afflicted with a disorder and/or disease state;
- 14) inhibiting a disorder and/or disease state in a subject;
- 15) assessing the harmful potential of a test compound; and
- 16) preventing the onset of a disorder and/or disease state in a subject at risk therefor.
- Screening Methods
- Animal models can be created to enable screening of therapeutic agents useful for treating or preventing a disorder and/or disease state in a subject. Accordingly, the methods are useful for identifying therapeutic agents for treating or preventing a disorder and/or disease state in a subject. The methods comprise administering a candidate agent to an animal model made by the methods described herein, and assessing at least one response in the animal model as compared to a control animal model to which the candidate agent has not been administered. If at least one response is reduced in symptoms or delayed in onset, the candidate agent is an agent for treating or preventing the disease.
- The candidate agents may be pharmacologic agents already known in the art or may be agents previously unknown to have any pharmacological activity. The agents may be naturally arising or designed in the laboratory. They may be isolated from microorganisms, animals or plants, or may be produced recombinantly, or synthesized by any suitable chemical method. They may be small molecules, nucleic acids, proteins, peptides or peptidomimetics. In certain embodiments, candidate agents are small organic compounds having a molecular weight of more than 50 and less than about 2,500 Daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins. Candidate agents are also found among biomolecules including, but not limited to: peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.
- Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. There are, for example, numerous means available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides and oligopeptides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and may be used to produce combinatorial libraries. In certain embodiments, the candidate agents can be obtained using any of the numerous approaches in combinatorial library methods art, including, by non-limiting example: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection.
- In certain further embodiments, certain pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs.
- The same methods for identifying therapeutic agents for treating a disorder and/or disease state in a subject can also be used to validate lead compounds/agents generated from in vitro studies.
- The candidate agent may be an agent that up- or down-regulates one or more of a disorder and/or disease state in a subject response pathway. In certain embodiments, the candidate agent may be an antagonist that affects such pathway.
- Methods for Treating a Disorder and/or Disease State
- There is provided herein methods for treating, inhibiting, relieving or reversing a disorder and/or disease state response. In the methods described herein, an agent that interferes with a signaling cascade is administered to an individual in need thereof, such as, but not limited to, subjects in whom such complications are not yet evident and those who already have at least one such response.
- In the former instance, such treatment is useful to prevent the occurrence of such response and/or reduce the extent to which they occur. In the latter instance, such treatment is useful to reduce the extent to which such response occurs, prevent their further development or reverse the response.
- In certain embodiments, the agent that interferes with the response cascade may be an antibody specific for such response.
- Expression of Biomarker(s)
- Expression of a marker can be inhibited in a number of ways, including, by way of a non-limiting example, an antisense oligonucleotide can be provided to the disease cells in order to inhibit transcription, translation, or both, of the marker(s). Alternately, a polynucleotide encoding an antibody, an antibody derivative, or an antibody fragment which specifically binds a marker protein, and operably linked with an appropriate promoter/regulator region, can be provided to the cell in order to generate intracellular antibodies which will inhibit the function or activity of the protein. The expression and/or function of a marker may also be inhibited by treating the disease cell with an antibody, antibody derivative or antibody fragment that specifically binds a marker protein. Using the methods described herein, a variety of molecules, particularly including molecules sufficiently small that they are able to cross the cell membrane, can be screened in order to identify molecules which inhibit expression of a marker or inhibit the function of a marker protein. The compound so identified can be provided to the subject in order to inhibit disease cells of the subject.
- Any marker or combination of markers, as well as any certain markers in combination with the markers, may be used in the compositions, kits and methods described herein. In general, it is desirable to use markers for which the difference between the level of expression of the marker in disease cells and the level of expression of the same marker in normal system cells is as great as possible. Although this difference can be as small as the limit of detection of the method for assessing expression of the marker, it is desirable that the difference be at least greater than the standard error of the assessment method, and, in certain embodiments, a difference of at least 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, 20-, 100-, 500-, 1000-fold or greater than the level of expression of the same marker in normal tissue.
- It is recognized that certain marker proteins are secreted to the extracellular space surrounding the cells. These markers are used in certain embodiments of the compositions, kits and methods, owing to the fact that such marker proteins can be detected in a body fluid sample, which may be more easily collected from a human subject than a tissue biopsy sample. In addition, in vivo techniques for detection of a marker protein include introducing into a subject a labeled antibody directed against the protein. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
- In order to determine whether any particular marker protein is a secreted protein, the marker protein is expressed in, for example, a mammalian cell, such as a human cell line, extracellular fluid is collected, and the presence or absence of the protein in the extracellular fluid is assessed (e.g. using a labeled antibody which binds specifically with the protein).
- It will be appreciated that subject samples containing such cells may be used in the methods described herein. In these embodiments, the level of expression of the marker can be assessed by assessing the amount (e.g., absolute amount or concentration) of the marker in a sample. The cell sample can, of course, be subjected to a variety of post-collection preparative and storage techniques (e.g., nucleic acid and/or protein extraction, fixation, storage, freezing, ultrafiltration, concentration, evaporation, centrifugation, etc.) prior to assessing the amount of the marker in the sample.
- It will also be appreciated that the markers may be shed from the cells into, for example, the respiratory system, digestive system, the blood stream and/or interstitial spaces. The shed markers can be tested, for example, by examining the sputum, BAL, serum, plasma, urine, stool, etc.
- The compositions, kits and methods can be used to detect expression of marker proteins having at least one portion which is displayed on the surface of cells which express it. For example, immunological methods may be used to detect such proteins on whole cells, or computer-based sequence analysis methods may be used to predict the presence of at least one extracellular domain (i.e., including both secreted proteins and proteins having at least one cell-surface domain). Expression of a marker protein having at least one portion which is displayed on the surface of a cell which expresses it may be detected without necessarily lysing the cell (e.g., using a labeled antibody which binds specifically with a cell-surface domain of the protein).
- Expression of a marker may be assessed by any of a wide variety of methods for detecting expression of a transcribed nucleic acid or protein. Non-limiting examples of such methods include immunological methods for detection of secreted, cell-surface, cytoplasmic or nuclear proteins, protein purification methods, protein function or activity assays, nucleic acid hybridization methods, nucleic acid reverse transcription methods and nucleic acid amplification methods.
- In a particular embodiment, expression of a marker is assessed using an antibody (e.g., a radio-labeled, chromophore-labeled, fluorophore-labeled or enzyme-labeled antibody), an antibody derivative (e.g., an antibody conjugated with a substrate or with the protein or ligand of a protein-ligand pair), or an antibody fragment (e.g., a single-chain antibody, an isolated antibody hypervariable domain, etc.) which binds specifically with a marker protein or fragment thereof, including a marker protein which has undergone all or a portion of its normal post-translational modification.
- In another particular embodiment, expression of a marker is assessed by preparing mRNA/cDNA (i.e., a transcribed polynucleotide) from cells in a subject sample, and by hybridizing the mRNA/cDNA with a reference polynucleotide which is a complement of a marker nucleic acid, or a fragment thereof. cDNA can, optionally, be amplified using any of a variety of polymerase chain reaction methods prior to hybridization with the reference polynucleotide; preferably, it is not amplified. Expression of one or more markers can likewise be detected using quantitative PCR to assess the level of expression of the marker(s). Alternatively, any of the many methods of detecting mutations or variants (e.g., single nucleotide polymorphisms, deletions, etc.) of a marker may be used to detect occurrence of a marker in a subject.
- In a related embodiment, a mixture of transcribed polynucleotides obtained from the sample is contacted with a substrate having fixed thereto a polynucleotide complementary to or homologous with at least a portion (e.g., at least 7, 10, 15, 20, 25, 30, 40, 50, 100, 500, or more nucleotide residues) of a marker nucleic acid. If polynucleotides complementary to or homologous with are differentially detectable on the substrate (e.g., detectable using different chromophores or fluorophores, or fixed to different selected positions), then the levels of expression of a plurality of markers can be assessed simultaneously using a single substrate (e.g., a “gene chip” microarray of polynucleotides fixed at selected positions). When a method of assessing marker expression is used which involves hybridization of one nucleic acid with another, it is desired that the hybridization be performed under stringent hybridization conditions.
- In certain embodiments, the biomarker assays can be performed using mass spectrometry or surface plasmon resonance. In various embodiments, the method of identifying an agent active against a disorder and/or disease state in a subject can include one or more of: a) providing a sample of cells containing one or more markers or derivative thereof; b) preparing an extract from such cells; c) mixing the extract with a labeled nucleic acid probe containing a marker binding site; and, d) determining the formation of a complex between the marker and the nucleic acid probe in the presence or absence of the test agent. The determining step can include subjecting said extract/nucleic acid probe mixture to an electrophoretic mobility shift assay.
- In certain embodiments, the determining step comprises an assay selected from an enzyme linked immunoabsorption assay (ELISA), fluorescence based assays and ultra high throughput assays, for example surface plasmon resonance (SPR) or fluorescence correlation spectroscopy (FCS) assays. In such embodiments, the SPR sensor is useful for direct real-time observation of biomolecular interactions since SPR is sensitive to minute refractive index changes at a metal-dielectric surface. SPR is a surface technique that is sensitive to changes of 105 to 10−6 refractive index (RI) units within approximately 200 nm of the SPR sensor/sample interface. Thus, SPR spectroscopy is useful for monitoring the growth of thin organic films deposited on the sensing layer.
- Because the compositions, kits, and methods rely on detection of a difference in expression levels of one or more markers, it is desired that the level of expression of the marker is significantly greater than the minimum detection limit of the method used to assess expression in at least one of normal cells and cancer-affected cells.
- It is understood that by routine screening of additional subject samples using one or more of the markers, it will be realized that certain of the markers are over-expressed in cells of various types, including a specific disorder and/or disease state in a subject.
- In addition, as a greater number of subject samples are assessed for expression of the markers and the outcomes of the individual subjects from whom the samples were obtained are correlated, it will also be confirmed that altered expression of certain of the markers are strongly correlated with a disorder and/or disease state in a subject and that altered expression of other markers are strongly correlated with other diseases. The compositions, kits, and methods are thus useful for characterizing one or more of the stage, grade, histological type, and nature of a disorder and/or disease state in a subject.
- When the compositions, kits, and methods are used for characterizing one or more of the stage, grade, histological type, and nature of a disorder and/or disease state in a subject, it is desired that the marker or panel of markers is selected such that a positive result is obtained in at least about 20%, and in certain embodiments, at least about 40%, 60%, or 80%, and in substantially all subjects afflicted with a disorder and/or disease state of the corresponding stage, grade, histological type, or nature. The marker or panel of markers invention can be selected such that a positive predictive value of greater than about 10% is obtained for the general population (in a non-limiting example, coupled with an assay specificity greater than 80%).
- When a plurality of markers are used in the compositions, kits, and methods, the level of expression of each marker in a subject sample can be compared with the normal level of expression of each of the plurality of markers in non-disorder and/or non-disease samples of the same type, either in a single reaction mixture (i.e. using reagents, such as different fluorescent probes, for each marker) or in individual reaction mixtures corresponding to one or more of the markers. In one embodiment, a significantly increased level of expression of more than one of the plurality of markers in the sample, relative to the corresponding normal levels, is an indication that the subject is afflicted with a disorder and/or disease state. When a plurality of markers is used, 2, 3, 4, 5, 8, 10, 12, 15, 20, 30, or 50 or more individual markers can be used; in certain embodiments, the use of fewer markers may be desired.
- In order to maximize the sensitivity of the compositions, kits, and methods (i.e. by interference attributable to cells of system origin in a subject sample), it is desirable that the marker used therein be a marker which has a restricted tissue distribution, e.g., normally not expressed in a non-system tissue.
- It is recognized that the compositions, kits, and methods will be of particular utility to subjects having an enhanced risk of developing a disorder and/or disease state in a subject and their medical advisors. Subjects recognized as having an enhanced risk of developing a disorder and/or disease include, for example, subjects having a familial history of such disorder or disease.
- The level of expression of a marker in normal human system tissue can be assessed in a variety of ways. In one embodiment, this normal level of expression is assessed by assessing the level of expression of the marker in a portion of system cells which appear to be normal and by comparing this normal level of expression with the level of expression in a portion of the system cells which is suspected of being abnormal. Alternately, and particularly as further information becomes available as a result of routine performance of the methods described herein, population-average values for normal expression of the markers may be used. In other embodiments, the ‘normal’ level of expression of a marker may be determined by assessing expression of the marker in a subject sample obtained from a non-afflicted subject, from a subject sample obtained from a subject before the suspected onset of a disorder and/or disease state in the subject, from archived subject samples, and the like.
- There is also provided herein compositions, kits, and methods for assessing the presence of disorder and/or disease state cells in a sample (e.g. an archived tissue sample or a sample obtained from a subject). These compositions, kits, and methods are substantially the same as those described above, except that, where necessary, the compositions, kits, and methods are adapted for use with samples other than subject samples. For example, when the sample to be used is a parafinized, archived human tissue sample, it can be necessary to adjust the ratio of compounds in the compositions, in the kits, or the methods used to assess levels of marker expression in the sample.
- Kits and Reagents
- The kits are useful for assessing the presence of disease cells (e.g. in a sample such as a subject sample). The kit comprises a plurality of reagents, each of which is capable of binding specifically with a marker nucleic acid or protein. Suitable reagents for binding with a marker protein include antibodies, antibody derivatives, antibody fragments, and the like. Suitable reagents for binding with a marker nucleic acid (e.g. a genomic DNA, an MRNA, a spliced MRNA, a cDNA, or the like) include complementary nucleic acids. For example, the nucleic acid reagents may include oligonucleotides (labeled or non-labeled) fixed to a substrate, labeled oligonucleotides not bound with a substrate, pairs of PCR primers, molecular beacon probes, and the like.
- The kits may optionally comprise additional components useful for performing the methods described herein. By way of example, the kit may comprise fluids (e.g. SSC buffer) suitable for annealing complementary nucleic acids or for binding an antibody with a protein with which it specifically binds, one or more sample compartments, an instructional material which describes performance of the method, a sample of normal system cells, a sample of cancer-related disease cells, and the like.
- Methods of Producing Antibodies
- There is also provided herein a method of making an isolated hybridoma which produces an antibody useful for assessing whether a subject is afflicted with a disorder and/or disease state. In this method, a protein or peptide comprising the entirety or a segment of a marker protein is synthesized or isolated (e.g. by purification from a cell in which it is expressed or by transcription and translation of a nucleic acid encoding the protein or peptide in vivo or in vitro). A vertebrate, for example, a mammal such as a mouse, rat, rabbit, or sheep, is immunized using the protein or peptide. The vertebrate may optionally (and preferably) be immunized at least one additional time with the protein or peptide, so that the vertebrate exhibits a robust immune response to the protein or peptide. Splenocytes are isolated from the immunized vertebrate and fused with an immortalized cell line to form hybridomas, using any of a variety of methods. Hybridomas formed in this manner are then screened using standard methods to identify one or more hybridomas which produce an antibody which specifically binds with the marker protein or a fragment thereof. There is also provided herein hybridomas made by this method and antibodies made using such hybridomas.
- Methods of Assessing Efficacy
- There is also provided herein a method of assessing the efficacy of a test compound for inhibiting disease cells. As described above, differences in the level of expression of the markers correlate with the abnormal state of the subject's cells. Although it is recognized that changes in the levels of expression of certain of the markers likely result from the abnormal state of such cells, it is likewise recognized that changes in the levels of expression of other of the markers induce, maintain, and promote the abnormal state of those cells. Thus, compounds which inhibit a disorder and/or disease state in a subject will cause the level of expression of one or more of the markers to change to a level nearer the normal level of expression for that marker (i.e. the level of expression for the marker in normal cells).
- This method thus comprises comparing expression of a marker in a first cell sample and maintained in the presence of the test compound and expression of the marker in a second cell sample and maintained in the absence of the test compound. A significantly reduced expression of a marker in the presence of the test compound is an indication that the test compound inhibits a related disease. The cell samples may, for example, be aliquots of a single sample of normal cells obtained from a subject, pooled samples of normal cells obtained from a subject, cells of a normal cell line, aliquots of a single sample of related disease cells obtained from a subject, pooled samples of related disease cells obtained from a subject, cells of a related disease cell line, or the like.
- In one embodiment, the samples are cancer-related disease cells obtained from a subject and a plurality of compounds believed to be effective for inhibiting various cancer-related diseases are tested in order to identify the compound which is likely to best inhibit the cancer-related disease in the subject.
- This method may likewise be used to assess the efficacy of a therapy for inhibiting a related disease in a subject. In this method, the level of expression of one or more markers in a pair of samples (one subjected to the therapy, the other not subjected to the therapy) is assessed. As with the method of assessing the efficacy of test compounds, if the therapy induces a significantly lower level of expression of a marker then the therapy is efficacious for inhibiting a cancer-related disease. As above, if samples from a selected subject are used in this method, then alternative therapies can be assessed in vitro in order to select a therapy most likely to be efficacious for inhibiting a cancer-related disease in the subject.
- As described herein, the abnormal state of human cells is correlated with changes in the levels of expression of the markers. There is also provided a method for assessing the harmful potential of a test compound. This method comprises maintaining separate aliquots of human cells in the presence and absence of the test compound. Expression of a marker in each of the aliquots is compared. A significantly higher level of expression of a marker in the aliquot maintained in the presence of the test compound (relative to the aliquot maintained in the absence of the test compound) is an indication that the test compound possesses a harmful potential. The relative harmful potential of various test compounds can be assessed by comparing the degree of enhancement or inhibition of the level of expression of the relevant markers, by comparing the number of markers for which the level of expression is enhanced or inhibited, or by comparing both. Various aspects are described in further detail in the following subsections.
- Isolated Proteins and Antibodies
- One aspect pertains to isolated marker proteins and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise antibodies directed against a marker protein or a fragment thereof. In one embodiment, the native marker protein can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, a protein or peptide comprising the whole or a segment of the marker protein is produced by recombinant DNA techniques. Alternative to recombinant expression, such protein or peptide can be synthesized chemically using standard peptide synthesis techniques.
- An “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. Thus, protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a “contaminating protein”).
- When the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation. When the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.
- Biologically active portions of a marker protein include polypeptides comprising amino acid sequences sufficiently identical to or derived from the amino acid sequence of the marker protein, which include fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the corresponding full-length protein. A biologically active portion of a marker protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length. Moreover, other biologically active portions, in which other regions of the marker protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of the marker protein. In certain embodiments, useful proteins are substantially identical (e.g., at least about 40%, and in certain embodiments, 50%, 60%, 70%, 80%, 90%, 95%, or 99%) to one of these sequences and retain the functional activity of the corresponding naturally-occurring marker protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.
- In addition, libraries of segments of a marker protein can be used to generate a variegated population of polypeptides for screening and subsequent selection of variant marker proteins or segments thereof.
- Predictive Medicine
- There is also provided herein uses of the animal models and markers in the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, there is also provided herein diagnostic assays for determining the level of expression of one or more marker proteins or nucleic acids, in order to determine whether an individual is at risk of developing a particular disorder and/or disease. Such assays can be used for prognostic or predictive purposes to thereby prophylactically treat an individual prior to the onset of the disorder and/or disease.
- In another aspect, the methods are useful for at least periodic screening of the same individual to see if that individual has been exposed to chemicals or toxins that change his/her expression patterns.
- Yet another aspect pertains to monitoring the influence of agents (e.g., drugs or other compounds) administered either to inhibit a disorder and/or disease or to treat or prevent any other disorder (e.g., in order to understand any system effects that such treatment may have) on the expression or activity of a marker in clinical trials.
- Pharmaceutical Compositions
- The compounds may be in a formulation for administration topically, locally or systemically in a suitable pharmaceutical carrier. Remington's Pharmaceutical Sciences, 15th Edition by E. W. Martin (Mark Publishing Company, 1975), discloses typical carriers and methods of preparation. The compound may also be encapsulated in suitable biocompatible microcapsules, microparticles or microspheres formed of biodegradable or non-biodegradable polymers or proteins or liposomes for targeting to cells. Such systems are well known to those skilled in the art and may be optimized for use with the appropriate nucleic acid.
- Various methods for nucleic acid delivery are described, for example in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York; and Ausubel et al., 1994, Current Protocols in Molecular Biology, John Wiley & Sons, New York. Such nucleic acid delivery systems comprise the desired nucleic acid, by way of example and not by limitation, in either “naked” form as a “naked” nucleic acid, or formulated in a vehicle suitable for delivery, such as in a complex with a cationic molecule or a liposome forming lipid, or as a component of a vector, or a component of a pharmaceutical composition. The nucleic acid delivery system can be provided to the cell either directly, such as by contacting it with the cell, or indirectly, such as through the action of any biological process.
- Formulations for topical administration may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, or thickeners can be used as desired.
- Formulations suitable for parenteral administration, such as, for example, by intraarticular (in the joints), intravenous, intramuscular, intradermal, intraperitoneal, and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions, solutions or emulsions that can include suspending agents, solubilizers, thickening agents, dispersing agents, stabilizers, and preservatives. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. Those of skill in the art can readily determine the various parameters for preparing and formulating the compositions without resort to undue experimentation. The compound can be used alone or in combination with other suitable components.
- In general, methods of administering compounds, including nucleic acids, are well known in the art. In particular, the routes of administration already in use for nucleic acid therapeutics, along with formulations in current use, provide preferred routes of administration and formulation for the nucleic acids selected will depend of course, upon factors such as the particular formulation, the severity of the state of the subject being treated, and the dosage required for therapeutic efficacy. As generally used herein, an “effective amount” is that amount which is able to treat one or more symptoms of the disorder, reverse the progression of one or more symptoms of the disorder, halt the progression of one or more symptoms of the disorder, or prevent the occurrence of one or more symptoms of the disorder in a subject to whom the formulation is administered, as compared to a matched subject not receiving the compound. The actual effective amounts of compound can vary according to the specific compound or combination thereof being utilized, the particular composition formulated, the mode of administration, and the age, weight, condition of the individual, and severity of the symptoms or condition being treated.
- Any acceptable method known to one of ordinary skill in the art may be used to administer a formulation to the subject. The administration may be localized (i.e., to a particular region, physiological system, tissue, organ, or cell type) or systemic, depending on the condition being treated.
- Pharmacogenomics
- The markers are also useful as pharmacogenomic markers. As used herein, a “pharmacogenomic marker” is an objective biochemical marker whose expression level correlates with a specific clinical drug response or susceptibility in a subject. The presence or quantity of the pharmacogenomic marker expression is related to the predicted response of the subject and more particularly the subject's tumor to therapy with a specific drug or class of drugs. By assessing the presence or quantity of the expression of one or more pharmacogenomic markers in a subject, a drug therapy which is most appropriate for the subject, or which is predicted to have a greater degree of success, may be selected.
- Monitoring Clinical Trials
- Monitoring the influence of agents (e.g., drug compounds) on the level of expression of a marker can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent to affect marker expression can be monitored in clinical trials of subjects receiving treatment for a cancer-related disease.
- In one non-limiting embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) comprising the steps of:
- i) obtaining a pre-administration sample from a subject prior to administration of the agent;
- ii) detecting the level of expression of one or more selected markers in the pre-administration sample;
- iii) obtaining one or more post-administration samples from the subject;
- iv) detecting the level of expression of the marker(s) in the post-administration samples;
- v) comparing the level of expression of the marker(s) in the pre-administration sample with the level of expression of the marker(s) in the post-administration sample or samples; and
- vi) altering the administration of the agent to the subject accordingly.
- For example, increased expression of the marker gene(s) during the course of treatment may indicate ineffective dosage and the desirability of increasing the dosage. Conversely, decreased expression of the marker gene(s) may indicate efficacious treatment and no need to change dosage.
- Electronic Apparatus Readable Media, Systems, Arrays and Methods of Using Same
- As used herein, “electronic apparatus readable media” refers to any suitable medium for storing, holding or containing data or information that can be read and accessed directly by an electronic apparatus. Such media can include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as compact disc; electronic storage media such as RAM, ROM, EPROM, EEPROM and the like; and general hard disks and hybrids of these categories such as magnetic/optical storage media. The medium is adapted or configured for having recorded thereon a marker as described herein.
- As used herein, the term “electronic apparatus” is intended to include any suitable computing or processing apparatus or other device configured or adapted for storing data or information. Examples of electronic apparatus suitable for use with the present invention include stand-alone computing apparatus; networks, including a local area network (LAN), a wide area network (WAN) Internet, Intranet, and Extranet; electronic appliances such as personal digital assistants (PDAs), cellular phone, pager and the like; and local and distributed processing systems.
- As used herein, “recorded” refers to a process for storing or encoding information on the electronic apparatus readable medium. Those skilled in the art can readily adopt any method for recording information on media to generate materials comprising the markers described herein.
- A variety of software programs and formats can be used to store the marker information of the present invention on the electronic apparatus readable medium. Any number of data processor structuring formats (e.g., text file or database) may be employed in order to obtain or create a medium having recorded thereon the markers. By providing the markers in readable form, one can routinely access the marker sequence information for a variety of purposes. For example, one skilled in the art can use the nucleotide or amino acid sequences in readable form to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the sequences which match a particular target sequence or target motif.
- Thus, there is also provided herein a medium for holding instructions for performing a method for determining whether a subject has a cancer-related disease or a pre-disposition to a cancer-related disease, wherein the method comprises the steps of determining the presence or absence of a marker and based on the presence or absence of the marker, determining whether the subject has a cancer-related disease or a pre-disposition to a cancer-related disease and/or recommending a particular treatment for a cancer-related disease or pre-cancer-related disease condition.
- There is also provided herein an electronic system and/or in a network, a method for determining whether a subject has a cancer-related disease or a pre-disposition to a cancer-related disease associated with a marker wherein the method comprises the steps of determining the presence or absence of the marker, and based on the presence or absence of the marker, determining whether the subject has a particular disorder and/or disease or a pre-disposition to such disorder and/or disease, and/or recommending a particular treatment for such disease or disease and/or such pre-cancer-related disease condition. The method may further comprise the step of receiving phenotypic information associated with the subject and/or acquiring from a network phenotypic information associated with the subject.
- Also provided herein is a network, a method for determining whether a subject has a disorder and/or disease or a pre-disposition to a disorder and/or disease associated with a marker, the method comprising the steps of receiving information associated with the marker, receiving phenotypic information associated with the subject, acquiring information from the network corresponding to the marker and/or disorder and/or disease, and based on one or more of the phenotypic information, the marker, and the acquired information, determining whether the subject has a disorder and/or disease or a pre-disposition thereto. The method may further comprise the step of recommending a particular treatment for the disorder and/or disease or pre-disposition thereto.
- There is also provided herein a business method for determining whether a subject has a disorder and/or disease or a pre-disposition thereto, the method comprising the steps of receiving information associated with the marker, receiving phenotypic information associated with the subject, acquiring information from the network corresponding to the marker and/or a disorder and/or disease, and based on one or more of the phenotypic information, the marker, and the acquired information, determining whether the subject has a disorder and/or disease or a pre-disposition thereto. The method may further comprise the step of recommending a particular treatment therefor.
- There is also provided herein an array that can be used to assay expression of one or more genes in the array. In one embodiment, the array can be used to assay gene expression in a tissue to ascertain tissue specificity of genes in the array. In this manner, up to about 7000 or more genes can be simultaneously assayed for expression. This allows a profile to be developed showing a battery of genes specifically expressed in one or more tissues.
- In addition to such qualitative determination, there is provided herein the quantitation of gene expression. Thus, not only tissue specificity, but also the level of expression of a battery of genes in the tissue is ascertainable. Thus, genes can be grouped on the basis of their tissue expression per se and level of expression in that tissue. This is useful, for example, in ascertaining the relationship of gene expression between or among tissues. Thus, one tissue can be perturbed and the effect on gene expression in a second tissue can be determined. In this context, the effect of one cell type on another cell type in response to a biological stimulus can be determined.
- Such a determination is useful, for example, to know the effect of cell-cell interaction at the level of gene expression. If an agent is administered therapeutically to treat one cell type but has an undesirable effect on another cell type, the method provides an assay to determine the molecular basis of the undesirable effect and thus provides the opportunity to co-administer a counteracting agent or otherwise treat the undesired effect. Similarly, even within a single cell type, undesirable biological effects can be determined at the molecular level. Thus, the effects of an agent on expression of other than the target gene can be ascertained and counteracted.
- In another embodiment, the array can be used to monitor the time course of expression of one or more genes in the array. This can occur in various biological contexts, as disclosed herein, for example development of a disorder and/or disease, progression thereof, and processes, such as cellular transformation associated therewith.
- The array is also useful for ascertaining the effect of the expression of a gene or the expression of other genes in the same cell or in different cells. This provides, for example, for a selection of alternate molecular targets for therapeutic intervention if the ultimate or downstream target cannot be regulated.
- The array is also useful for ascertaining differential expression patterns of one or more genes in normal and abnormal cells. This provides a battery of genes that could serve as a molecular target for diagnosis or therapeutic intervention.
- Surrogate Markers
- The markers may serve as surrogate markers for one or more disorders or disease states or for conditions leading up thereto. As used herein, a “surrogate marker” is an objective biochemical marker which correlates with the absence or presence of a disease or disorder, or with the progression of a disease or disorder. The presence or quantity of such markers is independent of the disease. Therefore, these markers may serve to indicate whether a particular course of treatment is effective in lessening a disease state or disorder. Surrogate markers are of particular use when the presence or extent of a disease state or disorder is difficult to assess through standard methodologies, or when an assessment of disease progression is desired before a potentially dangerous clinical endpoint is reached.
- The markers are also useful as pharmacodynamic markers. As used herein, a “pharmacodynamic marker” is an objective biochemical marker which correlates specifically with drug effects. The presence or quantity of a pharmacodynamic marker is not related to the disease state or disorder for which the drug is being administered; therefore, the presence or quantity of the marker is indicative of the presence or activity of the drug in a subject. For example, a pharmacodynamic marker may be indicative of the concentration of the drug in a biological tissue, in that the marker is either expressed or transcribed or not expressed or transcribed in that tissue in relationship to the level of the drug. In this fashion, the distribution or uptake of the drug may be monitored by the pharmacodynamic marker. Similarly, the presence or quantity of the pharmacodynamic marker may be related to the presence or quantity of the metabolic product of a drug, such that the presence or quantity of the marker is indicative of the relative breakdown rate of the drug in vivo.
- Pharmacodynamic markers are of particular use in increasing the sensitivity of detection of drug effects, particularly when the drug is administered in low doses. Since even a small amount of a drug may be sufficient to activate multiple rounds of marker transcription or expression, the amplified marker may be in a quantity which is more readily detectable than the drug itself. Also, the marker may be more easily detected due to the nature of the marker itself; for example, using the methods described herein, antibodies may be employed in an immune-based detection system for a protein marker, or marker-specific radiolabeled probes may be used to detect a mRNA marker. Furthermore, the use of a pharmacodynamic marker may offer mechanism-based prediction of risk due to drug treatment beyond the range of possible direct observations.
- Protocols for Testing
- The method of testing for a disorder and/or disease may comprise, for example measuring the expression level of each marker gene in a biological sample from a subject over time and comparing the level with that of the marker gene in a control biological sample.
- When the marker gene is one of the genes described herein and the expression level is differentially expressed (for examples, higher or lower than that in the control), the subject is judged to be affected with a disorder and/or disease. When the expression level of the marker gene falls within the permissible range, the subject is unlikely to be affected therewith.
- The standard value for the control may be pre-determined by measuring the expression level of the marker gene in the control, in order to compare the expression levels. For example, the standard value can be determined based on the expression level of the above-mentioned marker gene in the control. For example, in certain embodiments, the permissible range is taken as ±2S.D. based on the standard value. Once the standard value is determined, the testing method may be performed by measuring only the expression level in a biological sample from a subject and comparing the value with the determined standard value for the control.
- Expression levels of marker genes include transcription of the marker genes to mRNA, and translation into proteins. Therefore, one method of testing for a disorder and/or disease is performed based on a comparison of the intensity of expression of mRNA corresponding to the marker genes, or the expression level of proteins encoded by the marker genes.
- The measurement of the expression levels of marker genes in the testing for a disorder and/or disease can be carried out according to various gene analysis methods. Specifically, one can use, for example, a hybridization technique using nucleic acids that hybridize to these genes as probes, or a gene amplification technique using DNA that hybridize to the marker genes as primers.
- The probes or primers used for the testing can be designed based on the nucleotide sequences of the marker genes. The identification numbers for the nucleotide sequences of the respective marker genes are described herein.
- Further, it is to be understood that genes of higher animals generally accompany polymorphism in a high frequency. There are also many molecules that produce isoforms comprising mutually different amino acid sequences during the splicing process. Any gene associated with a cancer-related disease that has an activity similar to that of a marker gene is included in the marker genes, even if it has nucleotide sequence differences due to polymorphism or being an isoform.
- It is also to be understood that the marker genes can include homologs of other species in addition to humans. Thus, unless otherwise specified, the expression “marker gene” refers to a homolog of the marker gene unique to the species or a foreign marker gene which has been introduced into an individual.
- Also, it is to be understood that a “homolog of a marker gene” refers to a gene derived from a species other than a human, which can hybridize to the human marker gene as a probe under stringent conditions. Such stringent conditions are known to one skilled in the art who can select an appropriate condition to produce an equal stringency experimentally or empirically.
- A polynucleotide comprising the nucleotide sequence of a marker gene or a nucleotide sequence that is complementary to the complementary strand of the nucleotide sequence of a marker gene and has at least 15 nucleotides, can be used as a primer or probe. Thus, a “complementary strand” means one strand of a double stranded DNA with respect to the other strand and which is composed of A:T (U for RNA) and G:C base pairs.
- In addition, “complementary” means not only those that are completely complementary to a region of at least 15 continuous nucleotides, but also those that have a nucleotide sequence homology of at least 40% in certain instances, 50% in certain instances, 60% in certain instances, 70% in certain instances, 80% in certain instances, 90% in certain instances, and 95% in certain instances, or higher. The degree of homology between nucleotide sequences can be determined by an algorithm, BLAST, etc.
- Such polynucleotides are useful as a probe to detect a marker gene, or as a primer to amplify a marker gene. When used as a primer, the polynucleotide comprises usually 15 bp to 100 bp, and in certain embodiments 15 bp to 35 bp of nucleotides. When used as a probe, a DNA comprises the whole nucleotide sequence of the marker gene (or the complementary strand thereof), or a partial sequence thereof that has at least 15 bp nucleotides. When used as a primer, the 3′ region must be complementary to the marker gene, while the 5′ region can be linked to a restriction enzyme-recognition sequence or a tag.
- “Polynucleotides” may be either DNA or RNA. These polynucleotides may be either synthetic or naturally-occurring. Also, DNA used as a probe for hybridization is usually labeled. Those skilled in the art readily understand such labeling methods. Herein, the term “oligonucleotide” means a polynucleotide with a relatively low degree of polymerization. Oligonucleotides are included in polynucleotides.
- Tests for a disorder and/or disease using hybridization techniques can be performed using, for example, Northern hybridization, dot blot hybridization, or the DNA microarray technique. Furthermore, gene amplification techniques, such as the RT-PCR method may be used. By using the PCR amplification monitoring method during the gene amplification step in RT-PCR, one can achieve a more quantitative analysis of the expression of a marker gene.
- In the PCR gene amplification monitoring method, the detection target (DNA or reverse transcript of RNA) is hybridized to probes that are labeled with a fluorescent dye and a quencher which absorbs the fluorescence. When the PCR proceeds and Taq polymerase degrades the probe with its 5′-3′ exonuclease activity, the fluorescent dye and the quencher draw away from each other and the fluorescence is detected. The fluorescence is detected in real time. By simultaneously measuring a standard sample in which the copy number of a target is known, it is possible to determine the copy number of the target in the subject sample with the cycle number where PCR amplification is linear. Also, one skilled in the art recognizes that the PCR amplification monitoring method can be carried out using any suitable method.
- The method of testing for a cancer-related disease can be also carried out by detecting a protein encoded by a marker gene. Hereinafter, a protein encoded by a marker gene is described as a “marker protein.” For such test methods, for example, the Western blotting method, the immunoprecipitation method, and the ELISA method may be employed using an antibody that binds to each marker protein.
- Antibodies used in the detection that bind to the marker protein may be produced by any suitable technique. Also, in order to detect a marker protein, such an antibody may be appropriately labeled. Alternatively, instead of labeling the antibody, a substance that specifically binds to the antibody, for example, protein A or protein G, may be labeled to detect the marker protein indirectly. More specifically, such a detection method can include the ELISA method.
- A protein or a partial peptide thereof used as an antigen may be obtained, for example, by inserting a marker gene or a portion thereof into an expression vector, introducing the construct into an appropriate host cell to produce a transformant, culturing the transformant to express the recombinant protein, and purifying the expressed recombinant protein from the culture or the culture supernatant. Alternatively, the amino acid sequence encoded by a gene or an oligopeptide comprising a portion of the amino acid sequence encoded by a full-length cDNA are chemically synthesized to be used as an immunogen.
- Furthermore, a test for a cancer-related disease can be performed using as an index not only the expression level of a marker gene but also the activity of a marker protein in a biological sample. Activity of a marker protein means the biological activity intrinsic to the protein. Various methods can be used for measuring the activity of each protein.
- Even if a subject is not diagnosed as being affected with a disorder and/or disease in a routine test in spite of symptoms suggesting these diseases, whether or not such a subject is suffering from a disorder and/or disease can be easily determined by performing a test according to the methods described herein.
- More specifically, in certain embodiments, when the marker gene is one of the genes described herein, an increase or decrease in the expression level of the marker gene in a subject whose symptoms suggest at least a susceptibility to a disorder and/or disease indicates that the symptoms are primarily caused thereby.
- In addition, the tests are useful to determine whether a disorder and/or disease are improving in a subject. In other words, the methods described herein can be used to judge the therapeutic effect of a treatment therefor. Furthermore, when the marker gene is one of the genes described herein, an increase or decrease in the expression level of the marker gene in a subject, who has been diagnosed as being affected thereby, implies that the disease has progressed more.
- The severity and/or susceptibility to a disorder and/or disease may also be determined based on the difference in expression levels. For example, when the marker gene is one of the genes described herein, the degree of increase in the expression level of the marker gene is correlated with the presence and/or severity of a disorder and/or disease.
- Animal Models
- Animal models for a disorder and/or disease where the expression level of one or more marker genes or a gene functionally equivalent to the marker gene has been elevated in the animal model can also be made. A “functionally equivalent gene” as used herein generally is a gene that encodes a protein having an activity similar to a known activity of a protein encoded by the marker gene. A representative example of a functionally equivalent gene includes a counterpart of a marker gene of a subject animal, which is intrinsic to the animal.
- The animal model is useful for detecting physiological changes due to a disorder and/or disease. In certain embodiments, the animal model is useful to reveal additional functions of marker genes and to evaluate drugs whose targets are the marker genes.
- An animal model can be created by controlling the expression level of a counterpart gene or administering a counterpart gene. The method can include creating an animal model by controlling the expression level of a gene selected from the group of genes described herein. In another embodiment, the method can include creating an animal model by administering the protein encoded by a gene described herein, or administering an antibody against the protein. It is to be also understood, that in certain other embodiments, the marker can be over-expressed such that the marker can then be measured using appropriate methods. In another embodiment, an animal model can be created by introducing a gene selected from such groups of genes, or by administering a protein encoded by such a gene. In another embodiment, a disorder and/or disease can be induced by suppressing the expression of a gene selected from such groups of genes or the activity of a protein encoded by such a gene. An antisense nucleic acid, a ribozyme, or an RNAi can be used to suppress the expression. The activity of a protein can be controlled effectively by administering a substance that inhibits the activity, such as an antibody.
- The animal model is useful to elucidate the mechanism underlying a disorder and/or disease and also to test the safety of compounds obtained by screening. For example, when an animal model develops the symptoms of a particular disorder and/or disease, or when a measured value involved in certain a disorder and/or disease alters in the animal, a screening system can be constructed to explore compounds having activity to alleviate the disease.
- As used herein, the expression “an increase in the expression level” refers to any one of the following: where a marker gene introduced as a foreign gene is expressed artificially; where the transcription of a marker gene intrinsic to the subject animal and the translation thereof into the protein are enhanced; or where the hydrolysis of the protein, which is the translation product, is suppressed.
- As used herein, the expression “a decrease in the expression level” refers to either the state in which the transcription of a marker gene of the subject animal and the translation thereof into the protein are inhibited, or the state in which the hydrolysis of the protein, which is the translation product, is enhanced. The expression level of a gene can be determined, for example, by a difference in signal intensity on a DNA chip. Furthermore, the activity of the translation product—the protein—can be determined by comparing with that in the normal state.
- It is also within the contemplated scope that the animal model can include transgenic animals, including, for example animals where a marker gene has been introduced and expressed artificially; marker gene knockout animals; and knock-in animals in which another gene has been substituted for a marker gene. A transgenic animal, into which an antisense nucleic acid of a marker gene, a ribozyme, a polynucleotide having an RNAi effect, or a DNA functioning as a decoy nucleic acid or such has been introduced, can be used as the transgenic animal. Such transgenic animals also include, for example, animals in which the activity of a marker protein has been enhanced or suppressed by introducing a mutation(s) into the coding region of the gene, or the amino acid sequence has been modified to become resistant or susceptible to hydrolysis. Mutations in an amino acid sequence include substitutions, deletions, insertions, and additions.
- Examples of Expression
- In addition, the expression itself of a marker gene can be controlled by introducing a mutation(s) into the transcriptional regulatory region of the gene. Those skilled in the art understand such amino acid substitutions. Also, the number of amino acids that are mutated is not particularly restricted, as long as the activity is maintained. Normally, it is within 50 amino acids, in certain non-limiting embodiments, within 30 amino acids, within 10 amino acids, or within 3 amino acids. The site of mutation may be any site, as long as the activity is maintained.
- In yet another aspect, there is provided herein screening methods for candidate compounds for therapeutic agents to treat a particular disorder and/or disease. One or more marker genes are selected from the group of genes described herein. A therapeutic agent for a cancer-related disease can be obtained by selecting a compound capable of increasing or decreasing the expression level of the marker gene(s).
- It is to be understood that the expression “a compound that increases the expression level of a gene” refers to a compound that promotes any one of the steps of gene transcription, gene translation, or expression of a protein activity. On the other hand, the expression “a compound that decreases the expression level of a gene”, as used herein, refers to a compound that inhibits any one of these steps.
- In particular aspects, the method of screening for a therapeutic agent for a disorder and/or disease can be carried out either in vivo or in vitro. This screening method can be performed, for example, by:
- 1) administering a candidate compound to an animal subject;
- 2) measuring the expression level of a marker gene(s) in a biological sample from the animal subject; or
- 3) selecting a compound that increases or decreases the expression level of a marker gene(s) as compared to that in a control with which the candidate compound has not been contacted.
- In still another aspect, there is provided herein a method to assess the efficacy of a candidate compound for a pharmaceutical agent on the expression level of a marker gene(s) by contacting an animal subject with the candidate compound and monitoring the effect of the compound on the expression level of the marker gene(s) in a biological sample derived from the animal subject. The variation in the expression level of the marker gene(s) in a biological sample derived from the animal subject can be monitored using the same technique as used in the testing method described above. Furthermore, based on the evaluation, a candidate compound for a pharmaceutical agent can be selected by screening.
- All patents, patent applications and references cited herein are incorporated in their entirety by reference. While the invention has been described and exemplified in sufficient detail for those skilled in this art to make and use it, various alternatives, modifications and improvements should be apparent without departing from the spirit and scope of the invention. One skilled in the art readily appreciates that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein.
- Certain Nucleobase Sequences
- Nucleobase sequences of mature miRNAs and their corresponding stem-loop sequences described herein are the sequences found in miRBase, an online searchable database of miRNA sequences and annotation, found at http://microrna.sanger.ac.uk/. Entries in the miRBase Sequence database represent a predicted hairpin portion of a miRNA transcript (the stem-loop), with information on the location and sequence of the mature miRNA sequence. The miRNA stem-loop sequences in the database are not strictly precursor miRNAs (pre-miRNAs), and may in some instances include the pre-miRNA and some flanking sequence from the presumed primary transcript. The miRNA nucleobase sequences described herein encompass any version of the miRNA, including the sequences described in Release 10.0 of the miRBase sequence database and sequences described in any earlier Release of the miRBase sequence database. A sequence database release may result in the re-naming of certain miRNAs. A sequence database release may result in a variation of a mature miRNA sequence. The compounds that may encompass such modified oligonucleotides may be complementary to any nucleobase sequence version of the miRNAs described herein.
- It is understood that any nucleobase sequence set forth herein is independent of any modification to a sugar moiety, an internucleoside linkage, or a nucleobase. It is further understood that a nucleobase sequence comprising U's also encompasses the same nucleobase sequence wherein ‘U’ is replaced by ‘T’ at one or more positions having ‘U’. Conversely, it is understood that a nucleobase sequence comprising T's also encompasses the same nucleobase sequence wherein ‘T’ is replaced by ‘U’ at one or more positions having ‘T’.
- In certain embodiments, a modified oligonucleotide has a nucleobase sequence that is complementary to a miRNA or a precursor thereof, meaning that the nucleobase sequence of a modified oligonucleotide is a least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical to the complement of a miRNA or precursor thereof over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more nucleobases, or that the two sequences hybridize under stringent hybridization conditions. Accordingly, in certain embodiments the nucleobase sequence of a modified oligonucleotide may have one or more mismatched basepairs with respect to its target miRNA or target miRNA precursor sequence, and is capable of hybridizing to its target sequence. In certain embodiments, a modified oligonucleotide has a nucleobase sequence that is 100% complementary to a miRNA or a precursor thereof. In certain embodiments, the nucleobase sequence of a modified oligonucleotide has full-length complementary to a miRNA.
- miRNA (miR) Therapies
- In some embodiments, the present invention provides microRNAs that inhibit the expression of one or more genes in a subject. MicroRNA expression profiles can serve as a new class of cancer biomarkers.
- Included herein are methods of inhibiting gene expression and/or activity using one or more MiRs. In some embodiments, the miR(s) inhibit the expression of a protein. In other embodiments, the miRNA(s) inhibits gene activity (e.g., cell invasion activity).
- The miRNA can be isolated from cells or tissues, recombinantly produced, or synthesized in vitro by a variety of techniques well known to one of ordinary skill in the art. In one embodiment, miRNA is isolated from cells or tissues. Techniques for isolating miRNA from cells or tissues are well known to one of ordinary skill in the art. For example, miRNA can be isolated from total RNA using the mirVana miRNA isolation kit from Ambion, Inc. Another technique utilizes the flashIPAGE™ Fractionator System (Ambion, Inc.) for PAGE purification of small nucleic acids.
- For the use of miRNA therapeutics, it is understood by one of ordinary skill in the art that nucleic acids administered in vivo are taken up and distributed to cells and tissues.
- The nucleic acid may be delivered in a suitable manner which enables tissue-specific uptake of the agent and/or nucleic acid delivery system. The formulations described herein can supplement treatment conditions by any known conventional therapy, including, but not limited to, antibody administration, vaccine administration, administration of cytotoxic agents, natural amino acid polypeptides, nucleic acids, nucleotide analogues, and biologic response modifiers. Two or more combined compounds may be used together or sequentially.
- Certain embodiments of the invention provide pharmaceutical compositions containing (a) one or more nucleic acid or small molecule compounds and (b) one or more other chemotherapeutic agents.
- “Subject” means a human or non-human animal selected for treatment or therapy. “Subject suspected of having” means a subject exhibiting one or more clinical indicators of a disorder, disease or condition.
- “Preventing” or “prevention” refers to delaying or forestalling the onset, development or progression of a condition or disease for a period of time, including weeks, months, or years. “Treatment” or “treat” means the application of one or more specific procedures used for the cure or amelioration of a disorder and/or disease. In certain embodiments, the specific procedure is the administration of one or more pharmaceutical agents.
- “Amelioration” means a lessening of severity of at least one indicator of a condition or disease. In certain embodiments, amelioration includes a delay or slowing in the progression of one or more indicators of a condition or disease. The severity of indicators may be determined by subjective or objective measures which are known to those skilled in the art.
- “Subject in need thereof” means a subject identified as in need of a therapy or treatment.
- “Administering” means providing a pharmaceutical agent or composition to a subject, and includes, but is not limited to, administering by a medical professional and self-administering.
- “Parenteral administration” means administration through injection or infusion. Parenteral administration includes, but is not limited to, subcutaneous administration, intravenous administration, intramuscular administration, intra-arterial administration, and intracranial administration. “Subcutaneous administration” means administration just below the skin.
- “Improves function” means the changes function toward normal parameters. In certain embodiments, function is assessed by measuring molecules found in a subject's bodily fluids. Pharmaceutical composition” means a mixture of substances suitable for administering to an individual that includes a pharmaceutical agent. For example, a pharmaceutical composition may comprise a modified oligonucleotide and a sterile aqueous solution.
- “Target nucleic acid,” “target RNA,” “target RNA transcript” and “nucleic acid target” all mean a nucleic acid capable of being targeted by antisense compounds. Targeting” means the process of design and selection of nucleobase sequence that will hybridize to a target nucleic acid and induce a desired effect. “Targeted to” means having a nucleobase sequence that will allow hybridization to a target nucleic acid to induce a desired effect. In certain embodiments, a desired effect is reduction of a target nucleic acid.
- “Modulation” means to a perturbation of function or activity. In certain embodiments, modulation means an increase in gene expression. In certain embodiments, modulation means a decrease in gene expression.
- “Expression” means any functions and steps by which a gene's coded information is converted into structures present and operating in a cell.
- “Region” means a portion of linked nucleosides within a nucleic acid. In certain embodiments, a modified oligonucleotide has a nucleobase sequence that is complementary to a region of a target nucleic acid. For example, in certain such embodiments a modified oligonucleotide is complementary to a region of a miRNA stem-loop sequence. In certain such embodiments, a modified oligonucleotide is 100% identical to a region of a miRNA sequence.
- “Segment” means a smaller or sub-portion of a region.
- “Nucleobase sequence” means the order of contiguous nucleobases, in a 5′ to 3′ orientation, independent of any sugar, linkage, and/or nucleobase modification.
- “Contiguous nucleobases” means nucleobases immediately adjacent to each other in a nucleic acid.
- “Nucleobase complementarity” means the ability of two nucleobases to pair non-covalently via hydrogen bonding. “Complementary” means a first nucleobase sequence is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical, or is 100% identical, to the complement of a second nucleobase sequence over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more nucleobases, or that the two sequences hybridize under stringent hybridization conditions. In certain embodiments a modified oligonucleotide that has a nucleobase sequence which is 100% complementary to a miRNA, or precursor thereof, may not be 100% complementary to the miRNA, or precursor thereof, over the entire length of the modified oligonucleotide.
- “Complementarity” means the nucleobase pairing ability between a first nucleic acid and a second nucleic acid. “Full-length complementarity” means each nucleobase of a first nucleic acid is capable of pairing with each nucleobase at a corresponding position in a second nucleic acid. For example, in certain embodiments, a modified oligonucleotide wherein each nucleobase has complementarity to a nucleobase in an miRNA has full-length complementarity to the miRNA.
- “Percent complementary” means the number of complementary nucleobases in a nucleic acid divided by the length of the nucleic acid. In certain embodiments, percent complementarity of a modified oligonucleotide means the number of nucleobases that are complementary to the target nucleic acid, divided by the number of nucleobases of the modified oligonucleotide. In certain embodiments, percent complementarity of a modified oligonucleotide means the number of nucleobases that are complementary to a miRNA, divided by the number of nucleobases of the modified oligonucleotide.
- “Percent region bound” means the percent of a region complementary to an oligonucleotide region. Percent region bound is calculated by dividing the number of nucleobases of the target region that are complementary to the oligonucleotide by the length of the target region. In certain embodiments, percent region bound is at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
- “Percent identity” means the number of nucleobases in first nucleic acid that are identical to nucleobases at corresponding positions in a second nucleic acid, divided by the total number of nucleobases in the first nucleic acid.
- “Substantially identical” used herein may mean that a first and second nucleobase sequence are at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical, or 100% identical, over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more nucleobases.
- “Hybridize” means the annealing of complementary nucleic acids that occurs through nucleobase complementarity.
- “Mismatch” means a nucleobase of a first nucleic acid that is not capable of pairing with a nucleobase at a corresponding position of a second nucleic acid.
- “Non-complementary nucleobase” means two nucleobases that are not capable of pairing through hydrogen bonding.
- “Identical” means having the same nucleobase sequence.
- “miRNA” or “miR” means a non-coding RNA between 18 and 25 nucleobases in length which hybridizes to and regulates the expression of a coding RNA. In certain embodiments, a miRNA is the product of cleavage of a pre-miRNA by the enzyme Dicer. Examples of miRNAs are found in the miRNA database known as miRBase (http://microrna.sanger.ac.uk/).
- “Pre-miRNA” or “pre-miR” means a non-coding RNA having a hairpin structure, which contains a miRNA. In certain embodiments, a pre-miRNA is the product of cleavage of a pri-miR by the double-stranded RNA-specific ribonuclease known as Drosha.
- “Stem-loop sequence” means an RNA having a hairpin structure and containing a mature miRNA sequence. Pre-miRNA sequences and stem-loop sequences may overlap. Examples of stem-loop sequences are found in the miRNA database known as miRBase (microrna.sanger.ac.uk/.
- “miRNA precursor” means a transcript that originates from a genomic DNA and that comprises a non-coding, structured RNA comprising one or more miRNA sequences. For example, in certain embodiments a miRNA precursor is a pre-miRNA. In certain embodiments, a miRNA precursor is a pri-miRNA.
- “Antisense compound” means a compound having a nucleobase sequence that will allow hybridization to a target nucleic acid. In certain embodiments, an antisense compound is an oligonucleotide having a nucleobase sequence complementary to a target nucleic acid.
- “Oligonucleotide” means a polymer of linked nucleosides, each of which can be modified or unmodified, independent from one another. “Naturally occurring internucleoside linkage” means a 3′ to 5′ phosphodiester linkage between nucleosides. “Natural nucleobase” means a nucleobase that is unmodified relative to its naturally occurring form. “miR antagonist”+means an agent designed to interfere with or inhibit the activity of a miRNA. In certain embodiments, a miR antagonist comprises an antisense compound targeted to a miRNA. In certain embodiments, a miR antagonist comprises a modified oligonucleotide having a nucleobase sequence that is complementary to the nucleobase sequence of a miRNA, or a precursor thereof. In certain embodiments, an miR antagonist comprises a small molecule, or the like that interferes with or inhibits the activity of an miRNA.
- The methods and reagents described herein are representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Modifications therein and other uses will occur to those skilled in the art. These modifications are encompassed within the spirit of the invention and are defined by the scope of the claims. It will also be readily apparent to a person skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention.
- It should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modifications and variations of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.
- While the invention has been described with reference to various and preferred embodiments, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the essential scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof.
- The publication and other material used herein to illuminate the invention or provide additional details respecting the practice of the invention, are incorporated by reference herein, and for convenience are provided in the following bibliography.
- Citation of the any of the documents recited herein is not intended as an admission that any of the foregoing is pertinent prior art. All statements as to the date or representation as to the contents of these documents is based on the information available to the applicant and does not constitute any admission as to the correctness of the dates or contents of these documents.
- 1. Jemal A, Siegel R, Ward E, et al. Cancer statistics. CA Cancer J Clin 2008; 58(2):71-96.
- 2. Cannistra S A. Cancer of the ovary. N Engl J Med 2004; 351(24):2519-29.
- 3. Myers E R, Bastian L A, Havrilesky L J, et al. Management of adnexal masses. Evid Rep/Technol Assess 2006(130):1-145.
- 4. Jacobs I J, Menon U. Progress and challenges in screening for early detection of ovarian cancer. Mol Cell Proteomics 2004; 3(4):355-66.
- 5. Jacobs I, Davies A P, Bridge J, et al. Prevalence screening for ovarian cancer in post-menopausal women by CA-125 measurement and ultrasonography. BMJ 1993; 306:1030-4.
- 6. Olivier R I, Lubsen-Brandsma M A, Verhoef S, van Beurden M. CA125 and transvaginal ultrasound monitoring in high-risk women cannot prevent the diagnosis of advanced ovarian cancer.
Gynecol Oncol 2006; 100(1):20-6. - 7. Jannot G, Simard M J. Tumor-related microRNAs functions in Caenorhabditis elegans.
Oncogene 2006; 25(46):6197-201. - 8. Johnson S M, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120(5):635-47.
- 9. Cimmino A, Calin G A, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S a 2005; 102(39): 13944-9.
- 10. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the P IEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133(2):647-58.
- 11. Mendell J T. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133(2):217-22.
- 12. Iorio M V, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67(18):8699-707.
- 13. Nam E J, Yoon H, Kim S W, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008; 14(9):2690-5.
- 14. Zhang L, Volinia S, Bonome T, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA 2008; 105(19):7004-9.
- 15. Chim S S, Shing T K, Hung E C, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 2008; 54(3):482-90.
- 16. Feng G, Li G, Gentil-Perret A, Tostain J, Genin C. Elevated serum-circulating RNA in patients with conventional renal cell cancer. Anticancer Res 2008; 28(1A):321-6.
- 17. Lawrie C H, Gal S, Dunlop H M, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141(5):672-5.
- 18. Taylor D D, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110(1):13-21.
- 19. Volinia S, Calin G A, Liu C G, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl
Acad Sci USA 2006; 103(7):2257-61. - 20. Chan J A, Krichevsky A M, Kosik K S. MicroRNA-21 is an anti apoptotic factor in human glioblastoma cells. Cancer Res 2005; 65:6029-33.
- 21. Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008; 18(3):350-9.
- 22. Secord A A, Lee P S, Darcy K M, et al, Gynecologic Oncology Group. Maspin expression in epithelial ovarian cancer and associations with poor prognosis: a gynecologic oncology group study.
Gynecol Oncol 2006; 101 (3):390-7. - 23. He L, Thomson J M, Hemann M T, et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435(7043):828-33.
- 24. Petrocca F, Visone R, Onelli M R, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2008; 13(3):272-86.
- 25. Tavazoie S F, Alarcón C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451 (7175):147-52.
- 26. Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007; 104(40):15805-10.
- 27. Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells.
Cancer Cell 2006; 9(6):435-43. - 28. Tili E, Michaille J J, Calin G A. Expression and function of micro-RNAs in immune cells during normal or disease state. Int J Med Sci 2008; 5(2): 73-9.
Claims (5)
1. A method for treating an ovarian cancer in a subject, the method comprising: administering to the subject in need thereof a therapeutically effective amount of an ovarian receptor agonist comprising: an inhibitor of one or more of: miR-21, miR-92, miR-93, miR-126, and miR-29a, or functional variants thereof.
2. The method of claim 1 , wherein the inhibitor comprises one or more of anti-miR-21, anti-miR-92, anti-miR-93, anti-miR-126, and anti-miR-29a.
3. A method for treating an ovarian cancer in a subject, the method comprising:
administering to the subject in need thereof a therapeutically effective amount of an ovarian receptor agonist comprising: an inducer of one or more of: miR-155, miR-127, and miR-99b, or functional variants thereof.
4. Use of a nucleic acid molecule chosen from one or more of: miR-21, mi-R92, miR-93, miR-126, miR-29a, miR-155, miR-127, and miR-99b, or functional variants thereof among the miR, for the manufacture of a medicament for the treatment of an ovarian cancer.
5. The use according to claim 4 , wherein the drug comprises a nucleic acid molecule presenting a sequence chosen from one or more of: miR-21, miR-92, miR-93, miR-126, miR-29a, miR-155, miR-127, and miR-99b, or functional variants thereof among the miR.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/294,867 US20170037412A1 (en) | 2008-12-05 | 2016-10-17 | MicroRNA-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Ovarian Cancer Using a Real-Time PCR Platform |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12012308P | 2008-12-05 | 2008-12-05 | |
PCT/US2009/038214 WO2010065156A1 (en) | 2008-12-05 | 2009-03-25 | Microrna-based methods and compositions for the diagnosis and treatment of ovarian cancer |
US201113132583A | 2011-06-29 | 2011-06-29 | |
US14/284,992 US9499869B2 (en) | 2008-12-05 | 2014-05-22 | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of ovarian cancer using a real-time PCR platform |
US15/294,867 US20170037412A1 (en) | 2008-12-05 | 2016-10-17 | MicroRNA-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Ovarian Cancer Using a Real-Time PCR Platform |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/284,992 Continuation US9499869B2 (en) | 2008-12-05 | 2014-05-22 | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of ovarian cancer using a real-time PCR platform |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170037412A1 true US20170037412A1 (en) | 2017-02-09 |
Family
ID=42233538
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/132,583 Abandoned US20110275534A1 (en) | 2008-12-05 | 2009-03-25 | MicroRNA-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Ovarian Cancer Using a Real-Time PCR Platform |
US14/284,992 Expired - Fee Related US9499869B2 (en) | 2008-12-05 | 2014-05-22 | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of ovarian cancer using a real-time PCR platform |
US15/294,867 Abandoned US20170037412A1 (en) | 2008-12-05 | 2016-10-17 | MicroRNA-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Ovarian Cancer Using a Real-Time PCR Platform |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/132,583 Abandoned US20110275534A1 (en) | 2008-12-05 | 2009-03-25 | MicroRNA-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Ovarian Cancer Using a Real-Time PCR Platform |
US14/284,992 Expired - Fee Related US9499869B2 (en) | 2008-12-05 | 2014-05-22 | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of ovarian cancer using a real-time PCR platform |
Country Status (7)
Country | Link |
---|---|
US (3) | US20110275534A1 (en) |
EP (1) | EP2373815A4 (en) |
JP (1) | JP2012510813A (en) |
CN (1) | CN102292456A (en) |
AU (2) | AU2009322907B2 (en) |
CA (1) | CA2745746A1 (en) |
WO (1) | WO2010065156A1 (en) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2617581A1 (en) | 2005-08-01 | 2007-02-08 | The Ohio State University Research Foundation | Microrna-based methods for the diagnosis of breast cancer |
EP2468893B1 (en) | 2006-01-05 | 2015-03-11 | The Ohio State University Research Foundation | MicroRNA-based methods and compositions for the diagnosis and treatment of pancreatic cancer |
AU2007205234B2 (en) | 2006-01-05 | 2012-07-12 | The Ohio State University Research Foundation | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of lung cancer |
CN101384273B (en) | 2006-01-05 | 2013-07-10 | 俄亥俄州立大学研究基金会 | Microrna expression abnormalities in pancreatic endocrine and acinar tumors |
AU2007227423B2 (en) | 2006-03-20 | 2013-11-07 | The Ohio State University Research Foundation | MicroRNA fingerprints during human megakaryocytopoiesis |
ES2447850T3 (en) | 2006-07-13 | 2014-03-13 | The Ohio State University Research Foundation | Methods and compositions based on micro-RNA for the prognosis and treatment of diseases related to the colon |
WO2008097277A2 (en) | 2006-09-19 | 2008-08-14 | The Ohio State University Research Foundation | Tcl1 expression in chronic lymphocytic leukemia (cll) regulated by mir-29 and mir-181 |
CA2667617A1 (en) | 2006-11-01 | 2008-05-08 | The Ohio State University Research Foundation | Microrna expression signature for predicting survival and metastases in hepatocellular carcinoma |
CA2674895A1 (en) | 2007-01-31 | 2008-08-07 | The Ohio State University Research Foundation | Microrna-based methods and compositions for the diagnosis, prognosis and treatment of acute myeloid leukemia (aml) |
EP2559773B1 (en) | 2007-06-08 | 2015-04-22 | The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services | Methods for determining a hepatocellular carcinoma subtype |
CA2690749A1 (en) | 2007-06-15 | 2008-12-24 | The Ohio State University Research Foundation | Oncogenic all-1 fusion proteins for targeting drosha-mediated microrna processing |
WO2009018303A2 (en) | 2007-07-31 | 2009-02-05 | The Ohio State University Research Foundation | Methods for reverting methylation by targeting dnmt3a and dnmt3b |
CN103866008B (en) | 2007-08-03 | 2016-06-29 | 俄亥俄州立大学研究基金会 | The super conservative region of coding NCRNA |
ES2562078T3 (en) | 2007-08-22 | 2016-03-02 | The Ohio State University Research Foundation | Methods and compositions for inducing deregulation of phosphorylation of EphA7 and ERK in acute human leukemia |
AU2008316577B2 (en) | 2007-10-26 | 2014-04-10 | The Ohio State University Research Foundation | Methods for identifying fragile histidine triad (FHIT) interaction and uses thereof |
EP3064584A3 (en) * | 2008-02-28 | 2016-12-07 | The Ohio State University Research Foundation | Micro rna-based methods and compositions for the diagnosis, prognosis and treatmentof gastric cancer |
WO2009152300A1 (en) | 2008-06-11 | 2009-12-17 | The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services | Use of mir-26 family as a predictive marker of hepatocellular carcinoma and responsiveness to therapy |
CA2781547A1 (en) | 2009-11-23 | 2011-05-26 | The Ohio State University | Materials and methods useful for affecting tumor cell growth, migration and invasion |
US9624491B2 (en) * | 2010-02-26 | 2017-04-18 | Memorial Sloan Kettering Cancer Center | Methods and compositions for the detection and treatment of cancer involving miRNAs and miRNA inhibitors and targets |
ES2606146T3 (en) | 2010-11-12 | 2017-03-22 | The Ohio State University Research Foundation | Methods related to microRNA-21 and repair of disappearance in colorectal cancer |
JP2014500258A (en) | 2010-11-15 | 2014-01-09 | ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション | Controlled release mucoadhesion system |
CA2828772A1 (en) | 2011-03-07 | 2012-09-13 | The Ohio State University | Mutator activity induced by microrna-155 (mir-155) links inflammation and cancer |
WO2012135814A2 (en) * | 2011-03-31 | 2012-10-04 | University Of Houston | Microrna29a,b,c as a tumor suppressor and sensitizing agent for chemotherapy |
EP2766500A4 (en) * | 2011-10-14 | 2015-10-14 | Univ Ohio State | METHODS AND MATERIALS RELATED TO OVARIAN CANCER |
EP2790735A4 (en) * | 2011-12-13 | 2015-12-09 | Ohio State Innovation Foundation | Methods and compositions related to mir-21 and mir-29a, exosome inhibition, and cancer metastasis |
AU2013209477B2 (en) | 2012-01-20 | 2016-12-08 | The Ohio State University | Breast cancer biomarker signatures for invasiveness and prognosis |
WO2014071226A1 (en) | 2012-11-02 | 2014-05-08 | The Regents Of The University Of California | Methods and systems for determining a likelihood of adverse prostate cancer pathology |
CN104123480B (en) * | 2013-04-27 | 2017-03-08 | 中国科学院上海生命科学研究院 | New microRNA screening technique, checking system and its application |
KR101508580B1 (en) | 2013-05-14 | 2015-04-07 | 연세대학교 산학협력단 | Method for Predicting or Diagnosing Recurrent Ovarian Cancer |
CN103952465A (en) * | 2013-12-10 | 2014-07-30 | 长沙赢润生物技术有限公司 | Plasma microRNA analysis based method for diagnosis of ovarian cancer |
KR101784714B1 (en) | 2014-08-19 | 2017-10-12 | 주식회사 엠모니터 | Mirna biomarker for dignosing recurrent ovarian cancer or predicting recurrence of ovarain cancer and its use |
EP3340996B1 (en) * | 2015-08-28 | 2022-02-23 | The Trustees of Columbia University in the City of New York | Systems and methods for matching oncology signatures |
EP3147370A1 (en) | 2015-09-28 | 2017-03-29 | Rheinische Friedrich-Wilhelms-Universität Bonn | Exosomal microrna in serum as an indicator for the activation of brown and beige fat tissue (bat) |
CN105177173A (en) * | 2015-11-02 | 2015-12-23 | 崔长友 | miRNA (microribonucleic acid) biomarkers and detection kit for ovarian cancer diagnosis |
KR102527830B1 (en) | 2016-03-17 | 2023-05-02 | 벡톤 디킨슨 앤드 컴퍼니 | Cell sorting using a high throughput fluorescence flow cytometer |
CN105695612A (en) * | 2016-04-19 | 2016-06-22 | 中南大学 | Method for detecting expression of microRNA-126-5p in myocardial damage |
CN106520924A (en) * | 2016-10-14 | 2017-03-22 | 浙江大学 | Primer set and detection method for detecting ovarian cancer |
US11236337B2 (en) | 2016-11-01 | 2022-02-01 | The Research Foundation For The State University Of New York | 5-halouracil-modified microRNAs and their use in the treatment of cancer |
US11584932B2 (en) | 2016-11-01 | 2023-02-21 | The Research Foundation For The State University Of New York | 5-halouracil-modified microRNAs and their use in the treatment of cancer |
EP3565903A4 (en) * | 2017-01-09 | 2020-12-23 | Dana-Farber Cancer Institute, Inc. | Circulating microrna signatures for ovarian cancer |
EP3681895A4 (en) | 2017-09-13 | 2021-05-26 | Becton, Dickinson and Company | Methods and compositions for extracting nucleic acids using ferric oxide particles |
CA3103846A1 (en) * | 2018-07-05 | 2020-01-09 | Universite De Caen Normandie | Predictive and prognostic use of a mirna for high grade serous ovarian carcinoma therapeutic care |
KR20210137828A (en) * | 2020-05-11 | 2021-11-18 | 의료법인 성광의료재단 | Method of ovarian cancer diagnosis using machine learning model and system applying thereof |
CN112626209A (en) * | 2020-12-22 | 2021-04-09 | 绵竹市人民医院 | miRNA marker for ovarian cancer diagnosis, application thereof and diagnosis kit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050182005A1 (en) * | 2004-02-13 | 2005-08-18 | Tuschl Thomas H. | Anti-microRNA oligonucleotide molecules |
US20080306006A1 (en) * | 2006-01-05 | 2008-12-11 | The Ohio State University | MicroRna-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Solid Cancers |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2617581A1 (en) * | 2005-08-01 | 2007-02-08 | The Ohio State University Research Foundation | Microrna-based methods for the diagnosis of breast cancer |
DK2038432T3 (en) * | 2006-06-30 | 2017-04-03 | Rosetta Genomics Ltd | METHOD OF DETECTING AND QUANTIFYING A TARGET NUCLEIC ACID GENERATED BY RT-PCR BY MIRNA |
-
2009
- 2009-03-25 AU AU2009322907A patent/AU2009322907B2/en not_active Ceased
- 2009-03-25 CA CA2745746A patent/CA2745746A1/en not_active Abandoned
- 2009-03-25 WO PCT/US2009/038214 patent/WO2010065156A1/en active Application Filing
- 2009-03-25 CN CN2009801553409A patent/CN102292456A/en active Pending
- 2009-03-25 US US13/132,583 patent/US20110275534A1/en not_active Abandoned
- 2009-03-25 JP JP2011539528A patent/JP2012510813A/en active Pending
- 2009-03-25 EP EP09830750A patent/EP2373815A4/en not_active Withdrawn
-
2014
- 2014-05-22 US US14/284,992 patent/US9499869B2/en not_active Expired - Fee Related
-
2016
- 2016-06-25 AU AU2016204376A patent/AU2016204376A1/en not_active Abandoned
- 2016-10-17 US US15/294,867 patent/US20170037412A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050182005A1 (en) * | 2004-02-13 | 2005-08-18 | Tuschl Thomas H. | Anti-microRNA oligonucleotide molecules |
US20080306006A1 (en) * | 2006-01-05 | 2008-12-11 | The Ohio State University | MicroRna-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Solid Cancers |
Non-Patent Citations (4)
Title |
---|
Iorio et al. (Cancer Res. 2007 Vol. 67:8699-8707, plus Supplementary Table S3). * |
Nam et al. (Clin Cancer Res. 2008 Vol. 14:2690-2695). * |
Saito et al. (Cancer Cell, 2006 Vol. 9:435-443). * |
Zhang et al. (PNAS, 2008 Vol. 105, No. 19:7004-7009, plus Supplementary Data and DataSet 1) * |
Also Published As
Publication number | Publication date |
---|---|
AU2009322907A1 (en) | 2011-07-28 |
EP2373815A4 (en) | 2012-09-26 |
AU2009322907B2 (en) | 2016-05-05 |
EP2373815A1 (en) | 2011-10-12 |
US9499869B2 (en) | 2016-11-22 |
AU2016204376A1 (en) | 2016-07-14 |
US20110275534A1 (en) | 2011-11-10 |
WO2010065156A1 (en) | 2010-06-10 |
CN102292456A (en) | 2011-12-21 |
JP2012510813A (en) | 2012-05-17 |
US20140256591A1 (en) | 2014-09-11 |
CA2745746A1 (en) | 2010-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9499869B2 (en) | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of ovarian cancer using a real-time PCR platform | |
EP2799557B1 (en) | MiR-32 antagonists for increasing responsiveness of prostate cancer to apoptosis | |
EP2257647B1 (en) | Micro rna-based methods and compositions for the diagnosis of gastric cancer | |
AU2009219203B2 (en) | MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia (AML) and uses thereof | |
JP5778708B2 (en) | MicroRNA-based methods and compositions for the diagnosis and treatment of colon cancer-related diseases | |
US20120283310A1 (en) | MicroRNA Signatures Associated with Human Chronic Lymphocytic Leukemia (CLL) and Uses Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE OHIO STATE UNIVERSITY, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COHN, DAVID E.;RESNICK, KIMBERLY E.;ALDER, HANSJUERG;AND OTHERS;SIGNING DATES FROM 20110609 TO 20110613;REEL/FRAME:040030/0158 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |