US20160380805A1 - Mobile communication method, mobile station, and radio base station - Google Patents
Mobile communication method, mobile station, and radio base station Download PDFInfo
- Publication number
- US20160380805A1 US20160380805A1 US15/258,206 US201615258206A US2016380805A1 US 20160380805 A1 US20160380805 A1 US 20160380805A1 US 201615258206 A US201615258206 A US 201615258206A US 2016380805 A1 US2016380805 A1 US 2016380805A1
- Authority
- US
- United States
- Prior art keywords
- radio base
- base station
- cell
- mobile station
- station enb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0011—Control or signalling for completing the hand-off for data sessions of end-to-end connection
- H04W36/0033—Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0654—Management of faults, events, alarms or notifications using network fault recovery
- H04L41/0668—Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0654—Management of faults, events, alarms or notifications using network fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/34—Reselection control
- H04W36/36—Reselection control by user or terminal equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/30—Reselection being triggered by specific parameters by measured or perceived connection quality data
- H04W36/305—Handover due to radio link failure
Definitions
- the present invention relates to a mobile communication method, a mobile station, and a radio base station.
- Heterogeneous Network HetNet
- HetNet a plurality of picocells are located in a conventional macrocell so that traffics such as hot spot are absorbed in the picocells while a coverage is ensured in the macrocell, thereby increasing the capacity of the entire network.
- CGI Cell Global Identity
- FIG. 6 illustrates a reconnect ion procedure in the LTE Release 8/9/10 systems.
- step S 3001 when detecting RLF (Radio Link Failure) in cell # 1 under a radio base station eNB#1, a mobile station UE starts a reconnection procedure for a radio base station eNB#2 managing cell # 2 selected in a cell selection processing.
- RLF Radio Link Failure
- the reconnection destination radio base station eNB#2 is managing “UE Context” for the mobile station UE, the reconnection procedure is successfully performed.
- step S 3005 the radio base station eNB#2 compares “source PCI”, “source C-RNTI (Cell-Radio Network Temporary Identity” or “short MAC-I” transferred from the radio base station eNB#1 in a “HO preparation processing (step S 3002 )” with “source PCI”, “source C-RNTI” or “Short MAC-I” contained in “RRCConnectionReestablishmentRequest” transmitted by the mobile station UE, thereby performing a “matching processing (mobile station UE designating processing)” and a “verification processing” on “UE Context.”
- the radio base station eNB#1 transfers a security parameter (such as algorithm, KeNB* or NCC) to the radio base station eNB#2 in the “HO preparation processing (step S 3002 ).”
- a security parameter such as algorithm, KeNB* or NCC
- the security parameter is required to keep security between the mobile station UE and the radio base station eNB#2 after completion of the reconnection procedure.
- step S 3006 the radio base station eNB#2 transmits “RRCConnectionReestablishmerrt” to the mobile station UE.
- step S 3007 communication after “RRCConnectionReestablishmentComplete” in step S 3007 is made with a security processing (“ciphering” or “integrity protection”).
- SRB1 (Signaling Radio Beater 1)” is set by “RRCConnectionReestablishment” in step S 3006 , and then “SRB2” or “DRB (Dedicated Radio Bearer)” is reconfigured by “RRCReconfiguration” in step S 3011 and the communication is continued.
- the routing in the network is switched by “S1 path switch request” in step S 3008 and “S1 path switch response” in step S 3009 .
- the radio base station eNB#2 transmits “RRCConnectionReestablishmentReject”, instead of “RRCConnectionReestablishment” to the mobile station UE in step S 3006 .
- the mobile station UE When receiving “RRCConnectionReestablishmentReject”, the mobile station UE transits to an “Idle state.”
- Non-Patent Literature 1 3GPP R3-100239
- Non-Patent Literature 2 3GPP R3-100240
- Non-Patent Literature 3 3GPP R3-100241
- the radio base station eNB#2 does not manage “UE Context” for the mobile station UE, the reconnection procedure for the mobile station UE will fail in the LTE system.
- the present invention has been made in terms of the above problem, and it is an object thereof to provide a mobile communication method capable of successfully performing a reconnection procedure even when a reconnection destination radio base station does not manage “UE Context” for a mobile communication UE, a mobile station, and a radio base station.
- a first aspect of the present invention is a mobile communication method, the method including a step A in which when detecting a radio link failure in a first cell under a first radio base station, a mobile station starts a reconnection procedure for a second radio base station managing a second cell selected in a cell selection processing, a step B in which the mobile station transmits CGI of the first cell to the second radio base station in the reconnection procedure, and a step C in which in the reconnection procedure, when not managing context information of the mobile station, the second radio base station acquires context information of the mobile station from the first radio base station managing the first cell designated based on the CGI.
- a second aspect of the present invention is a mobile station, the mobile station including a control unit configured to start a reconnection procedure for a second radio base station managing a second cell selected in a cell selection processing when detecting a radio link failure in a first cell under a first radio base station, and a transmission unit configured to transmit CGI of the first cell to the second radio base station in the reconnection procedure.
- a third aspect of the present invention is a radio base station which operates as a second radio base station when a mobile station starts a reconnection procedure for the second radio base station managing a second cell selected in a cell selection processing when detecting a radio link failure in a first cell under a first radio base station, wherein the radio base station includes a reception unit configured to acquire context information of the mobile station from the first radio base station managing the first cell designated based on CGI of the first cell transmitted by the mobile station when not managing the context information for the mobile station in the reconnection procedure.
- FIG. 1 is a configuration diagram of an entire mobile communication system according to a first embodiment of the present invention.
- FIG. 2 is a functional block diagram of a mobile station according to the first embodiment of the present invention.
- FIG. 3 is a functional block diagram of a radio base station according to the first embodiment of the present invention.
- FIG. 4 is a diagram for explaining operations of the mobile communication system according to the first embodiment of the present invention.
- FIG. 5 is a diagram for explaining operations of a mobile communication system according to a second embodiment of the present invention.
- FIG. 6 is a diagram for explaining operations of a conventional mobile communication system.
- a mobile communication system according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4 .
- the mobile communication system is a mobile communication system in the LTE system (or LTE-Advanced system)and includes a mobility management node MME (Mobility Management Entity), a radio base station eNB#1 for managing cell # 1 , and a radio base station eNB#2 for managing cell # 2 as illustrated in FIG. 1 .
- MME Mobility Management Entity
- eNB#1 Radio base station
- eNB#2 Radio base station eNB#2 for managing cell # 2 as illustrated in FIG. 1 .
- the present embodiment will be described by way of a case in which when detecting RLF in cell # 1 under the radio base station eNB#1, a mobile station UE starts a reconnection procedure for the radio base station eNB#2 managing cell # 2 selected in a cell selection processing.
- the mobile station UE includes a control unit 11 , a transmission unit 12 , and a reception unit 13 .
- control unit 11 when detecting RLF in cell # 1 under the radio base station eNB#1, the control unit 11 performs the cell selection processing and starts the reconnection procedure for the radio base station eNB#2 managing cell # 2 selected in the cell selection processing.
- the transmission unit 12 is configured to transmit various signals to the radio base station eNB#1/eNB#2.
- the transmission unit 12 is configured to transmit CGI of cell # 1 to the radio base station eNB#2 in the above reconnection procedure.
- the transmission unit 12 may be configured to transmit “CGI available” indicating whether CGI of cell # 1 can be transmitted to the radio base station eNB#2 via “RRCConnectionReestablishment Request.”
- the transmission unit 12 may be configured to transmit “CGI available” by an 1-bit flag in “RRCConnectionReestablishment Request.”
- the reception unit 13 is configured to receive various signals from the radio base station eNB#1/eNB#2.
- the reception unit 13 is configured to receive “CGI request” for requesting to transmit CGI of cell # 1 from the radio base station eNB#2.
- the reception unit 13 may be configured to receive “CGI request” from, the radio base station eNB#2 via “RRCConnectionReestablishment.”
- reception unit 13 receives “RRCConnectionReestablishment” containing “CGI request”
- the transmission unit 12 transmits CGI of cell # 1 to the radio base station eNB#2 via “RRCConnectionReestablishmentComplete”
- the reception unit 13 may be configured to receive “CGI request” by an 1-bit flag in “RRCConnectionReestablishment.”
- the transmission unit 12 may be configured not to perform a security processing on “RRCConnectionReestablishmentComplete” containing CGI of cell # 1 .
- the transmission unit 12 is configured to perform the security processing on “RRCConnectionReestablishmentComplete” not containing CGI of cell # 1 .
- the transmission unit 12 may be configured to transmit CGI of cell # 1 to the radio base station eNB#2 via other message or the like transmitted on “RRCConnectionReestablishment Request” or DCCB (Dedicated Common Control Channel/SRB1).
- the radio base station eNB includes a reception unit 21 , a transmission unit 22 , and a context management unit 23 .
- the context management unit 23 is configured to manage “UE Context” for each mobile station UE.
- the context management unit 23 is configured to manage “UE Context” for a mobile station UE transferred in the “HO Preparation processing” performed by a neighboring radio base station eNB.
- the reception unit 21 is configured to receive various signals from the mobile station UE, and the transmission unit 22 is configured to transmit various signals to the mobile station UE.
- the reception unit 21 in the radio base station eNB#2 is configured to acquire “UE Context” for the mobile station UE from the radio base station eNB#1 managing cell # 1 designated based on CGI of cell # 1 transmitted by the mobile station UE.
- the transmission unit 22 in the radio bass station eNB#2 is configured to transmit “CGI request” requesting to transmit CGI of cell # 1 to the mobile station US via “RRCConnectionReestablishment.”
- the transmission unit 22 in the radio base station eNB#1 determines whether “UE Context” matching with “source C-RNTI” and “short MAC-I” contained in “X2 RLF report” is managed by the context management unit 23 , only when determining that it is managed, performs the “HO preparation processing” on the radio base station eNB#2.
- the mobile station UE when detecting RLF in cell # 1 under the radio base station eNB#1 in step S 1001 , the mobile station UE transmits “RRCConnectionReestablishmentRequest” containing “source PCI”, “source C-RNTI”, “short MAC-I” and “CSG available” to the radio base station eNB#2 managing cell # 2 selected in the cell selection processing in step S 1002 .
- the radio base station eNB#2 transmits “RRCConnectionReestablishment” containing “CGI request” requesting to transmit CGI of cell # 1 to the mobile station UE in step S 1003 .
- step S 1004 the mobile station UE transmits “RRCConnectionReestablishmentComplete” containing CGI (or “source CGI”) of cell # 1 to the radio base station eNB#2.
- the mobile station UE does not perform the security processing (particularly, “ciphering”) on “RRCConnectionReestablishmentComplete” containing CGI of cell # 1 unlike conventional “RRCConnectionReestablishmentComplete.”
- the mobile station UE can determine whether to perform the security processing based on whether “CGI request” is transmitted by an 1-bit flag in “RRCConnectionReestablishment.”
- step S 1005 the radio base station eNB#2 designates the radio base station eNB#1 based on CGI of cell # 1 , and transmits “X2 RLF report” containing “source PCI”, “source C-RNTI”, and “short MAC-I” to the radio base station eNB#1.
- step S 1006 the radio base station eNB#1 performs the “matching processing” and the “verification processing” on “UE Context” for the mobile station UE.
- the radio base station eNB#1 transmits “X2 HO preparation” containing the security parameter to the radio base station eNB#2 in step S 1007 .
- step S 1008 the radio base station eNB#2 transmits “X2 HO preparation ack” to the radio base station eNB#1.
- the radio base station eNB#2 can acquire the security parameter, and thus uses “EEC SecurityModeCommand” to notify the security parameter to the mobile station UE in step S 1009 .
- step S 1010 the mobile station UE transmits “RRC SecurityModeComplete” to the radio base station eNB#2.
- step S 1011 the radio base station eNB#2 transmits “S1 path switch request” to the mobility management node MME, and in step S 1012 , the mobility management node MME transmits “S1 path switch complete” to the radio base station eNB#2.
- step S 1013 the radio base station eNB#2 transmits “X2 UE Context release” to the radio base station eNB#1.
- step S 1014 the radio base station eNB#2 transmits “RRCConnectionReconfiguration” for setting SRB, DRB or the like to the mobile station UE, and in step S 1015 , the mobile station UE transmits “RRCConnectionReconfigurationComplete” to the radio base station eNB#2.
- step S 1016 RRC connection is established between the mobile station UE and the radio base station eNB#2 (cell # 2 ).
- RRC SecurityModeCommand and “RRC SecurityModeComplete” are not transmitted and received in the above reconnection procedure, while in the mobile communication system according to the present embodiment, the security processing is not activated in steps S 1003 and S 1004 and thus “RRC SecurityModeCommand” and “RRC SecurityModeComplete” are configured to be transmitted and received at this timing.
- CGI request or “source CGI (CGI of cell # 1 )” may be transmitted and received via a dedicated message.
- RRCConnectionReestablishmentComplete and “RRCConnectionReestablishment” may be transmitted and received similarly as in the conventional LTE system.
- the security processing can be started for transmitting and receiving “RRCConnectionReestablishmentComplete” and “RRCConnectionReestablishment”, and thus “RRC SecurityModeCommand” and “RRC SecurityModeComplete” do not need to be transmitted and received.
- the radio base station eNB#2 can acquire “UE Context” for the mobile station UE from the radio base station eNB#1 based on CGI of the first cell acquired from the mobile station UE, and thus the above reconnection procedure can be successfully performed even when “UE Context” for the mobile station UE is not previously managed in the radio base station eNB#2.
- the radio base station eNB#2 can designate the radio base station eNB#1 managing “UE Context” for the mobile station UE based on CGI of the first cell, and thus the above reconnection procedure can be successfully performed even when “UE Context” for the mobile station UE is not previously managed in the radio base station eNB#2 under an environment in which many cells (such as picocells) using the same PCI are present.
- a mobile communication system according to a first variant of the present invention will be described below with reference to FIG. 5 in terms of the differences from the mobile communication system
- the mobile station UE when detecting RLF in cell # 1 (picocell) under the radio base station eNB#1 in step S 2001 , the mobile station UE transmits “RRCConnectionReestablishmentRequest” containing “source PCI”, “source C-RNTI” and “short MAC-I” to the radio base station eNB#2 managing cell # 2 (macrocell) selected in the cell selection processing in step S 2002 .
- step S 2003 when not managing “UE Context” for the mobile station UE, the radio base station eNB#2 transmits “X2 RLF report” containing “source PCI”, “source C-RNTI” and “short MAC-I” to all the neighboring radio base stations eNB.
- step S 2004 the radio base station eNB having received “X2 RLF report” performs the “matching processing” and the “verification processing” on “UE Context” for the mobile station UE based on “source C-RNTI” and “short MAC-I” contained in “X2 RLF report.”
- each radio base station eNB (such as radio base station eNB#1) transmits “X2 HO preparation” containing the security parameter to the radio base station eNB#2 in step S 2005 .
- step S 2006 the radio base station eNB#2 transmits “X2 HO preparation ack” to the radio base station eNB#1.
- the radio base station eNB#2 since the radio base station eNB#2 can acquire the security parameter, in step S 2007 , it uses “RRC SecurityModeCommand” to notify the security parameter to the mobile station UE.
- step S 2008 the mobile station UE transmits “RRC SecurityModeComplete” to the radio base station eNB#2.
- step S 2009 the radio base station eNB#2 transmits “S1 path switch request” to the mobility management node MME, and in step S 2010 , the mobility management node MME transmits “S1 path switch complete” to the radio base station eNB#2.
- step S 2011 the radio base station eNB#2 transmits “X2 UE context release” to the radio base station eNB#1.
- step S 2012 the radio base station eNB#2 transmits “RRCConnectionReconfiguration” for setting SRB2, DRB or the like to the mobile station UE, and in step S 2013 , the mobile station UE transmits “RRCConnectionReconfigurationComplete” to the radio base station eNB#2.
- step S 2014 RRC connection is established between the mobile station UE and the radio base station eNB#2 (cell # 2 ).
- the radio base station eNB#2 since there is configured such that the radio base station eNB#2 transmits “X2 ELF report” containing “source PCI”, “source C-RNTI” and “short MAC-I” to all the neighboring radio base stations eNB and the radio base station eNB#1 managing “UE Context” matching with “source C-RNTI” and “short MAC-I” contained in “X2 RLF report” transmits “UE Context (security parameter)” for the mobile station UE to the radio base station eNB#2, even if “UE Context” for the mobile station UE is not previously managed in the radio base station eNB#2 under an environment many cells (such as picocells) using the same PCI are present, the above reconnection procedure can be successfully performed.
- UE Context security parameter
- the first property of the present embodiment is a mobile communication method, the method including a step A in which when the mobile station UE detects RLF (radio link failure) in cell # 1 (first cell) under the radio base station eNB#1 (first radio base station), the reconnection procedure is started for the radio base station eNB#2 (second radio base station) managing cell # 2 selected In the cell selection processing, a step B in which the mobile station UE transmits CGI of cell # 1 to the radio base station eNB#2 in the reconnection procedure, and a step C in which when not managing “UE Context (context information)” for the mobile station UE, the radio base station eNB#2 acquires “UE Context” for the mobile station UE from the radio base station eNB#1 managing cell # 1 designated based on CGI in the reconnection procedure.
- RLF radio link failure
- the step B may include a step B1 in which the mobile station UE transmits “CGI available (transmission enable/disable information)” indicating whether CGI of cell # 1 can be transmitted to the radio base station eNB#2 via “RRCConnectionReestablishmentRequest (reconnection request signal)”, a step B2 in which when the received “CGI available” indicates that CGI of cell # 1 can be transmitted, the radio base station eNB#2 transmits “CGI request (request information)” for requesting to transmit CGI of cell # 1 to the mobile station UE via “RRCConnectionReestablishment (reconnection signal)”, and a step B3 in which the mobile station UE transmits CGI of cell # 1 to the radio base station eNB#2 via “RRCConnectionReestablishmentComplete (reconnection complete signal)” in response to “CGI request.”
- CGI available transmission enable/disable information
- step B3 the mobile station UE may not perform the security processing on “RRCConnectionReestablishmentComplete.”
- the second property of the present embodiment is a mobile station UE, which includes the control unit 11 configured to start the reconnection procedure for the radio base station eNB#2 managing cell # 2 selected in the cell selection processing when detecting RLF in cell # 1 under the radio base station eNB#1, and the transmission unit 12 configured to transmit CGI of cell # 1 to the radio base station eNB#2.
- the transmission unit 12 is configured to transmit “CGI available” to the radio base station eNB#2 via “RRCConnectionReestablishmentRequest”, and the transmission unit 12 may be configured to transmit CGI of cell # 1 to the radio base station eNB#2 via “RRCConnectionReestablishmentComplete” when receiving “CGI request” from the radio base station eNB#2.
- the transmission unit 12 may be configured not to perform the security processing on “RRCConnectionReestablishmentComplete.”
- the third property of the present embodiment is a radio base station eNB which operates as the radio base station eNB#2 when the mobile station US starts the reconnection procedure for the radio base station eNB#2 managing cell # 2 selected in the cell selection processing when detecting RLF in cell # 1 under the radio base station eNB#1, wherein the radio base station includes the reception unit 21 configured to acquire “UE Context” for the mobile station UE from the radio base station eNB#1 managing cell # 1 designated based on CGI of cell # 1 transmitted by the mobile station UE when not managing “UE Context” for the mobile station UE in the reconnection procedure.
- the radio base station eNB may include the transmission unit 22 configured to transmit “CGI request” for requesting to transmit CGI of cell # 1 to the mobile station UE via “RRCConnectionReestablishment” when the reception unit 21 receives “CGI available” via “RRCConnectionReestablishmentRequest” from the mobile station UE and when the received “CGI available” indicates that CGI of cell # 1 can be transmitted.
- the operations of the mobile station UE and the radio base stations eNB#1/eNB#2 may be performed in hardware, may be performed in software modules executed by the processor, or may be performed in a combination of both.
- the software modules may be provided in any storage medium such as RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable ROM), register, hard disk, removable disk, or CD-ROM.
- RAM Random Access Memory
- flash memory ROM (Read Only Memory)
- EPROM Erasable Programmable ROM
- EEPROM Electrically Erasable and Programmable ROM
- register hard disk, removable disk, or CD-ROM.
- the storage medium is connected to a processor such that the processor can read/write information from/into the storage medium.
- the storage medium may be integrated in the processor.
- the storage medium and the processor may be provided inside ASIC.
- the ASIC may be provided in the mobile station UE and the radio base stations eNB#1/eNB#2,
- the storage medium and the processor may be provided as discrete components inside the mobile station UE and the radio base stations eNB#1/eNB#2.
- a mobile communication method capable of successfully performing a reconnection procedure even when a connection destination radio base station does not manage “UE Context” for a mobile station UE, a mobile station, and a radio base station.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A reconnection procedure is successfully performed even when a connection destination radio base station does not manage “UE Context” for a mobile station UE. A mobile communication method according to the present invention includes a step B in which the mobile station UE transmits CGI of cell #1 to a radio base station eNB#2 in the reconnection procedure, and a step C in which the radio base station eNB#2 acquires “UE Context” for the mobile station UE from a radio base station eNB#1 managing cell #1 designated based on the CGI when not managing “UE Context” for the mobile station UE in the reconnection procedure.
Description
- The present application is a continuation application of and, thereby, claims benefit under 35 U.S.C. §120 to U.S. patent application Ser. No. 14/129,466 filed on Dec. 26, 2013, titled, “MOBILE COMMUNICATION METHOD, MOBILE STATION, AND RADIO BASE STATION,” which is a national stage application of PCT Application No. PCT/JP2012/066122, filed on Jun. 25, 2012, which claims priority to Japanese Patent Application No. 2011-144419 filed on Jun. 29, 2011, The contents of the priority applications are incorporated by reference in their entirety.
- The present invention relates to a mobile communication method, a mobile station, and a radio base station.
- In recent years, there is discussed “Heterogeneous Network (HetNet)” as one method for increasing a network capacity for increasing traffics.
- In “HetNet”, a plurality of picocells are located in a conventional macrocell so that traffics such as hot spot are absorbed in the picocells while a coverage is ensured in the macrocell, thereby increasing the capacity of the entire network.
- In this way, when a large number of picocells are located, many picocells using the same PCI (Physical Cell Identity) are likely to be present in an area (or a neighboring area) of one macrocell (radio base station eNB). Therefore, there is a problem that the macrocell (radio base station eNB) cannot uniquely designate a picocell due to the neighboring picocells with only the PCI.
- Handover from macrocell to picocell (or femtocell), or “issue on PCI confusion” for “inbound HO” is defined in its solution in the LTE (Long Term Evolution) Release-9 system.
- With the solution, CGI (Cell Global Identity) of a neighboring picocell (femtocell) with better reception quality is reported from a mobile station UE, thereby uniquely determining a handover-destination cell in the macrocell (radio base station eNB).
-
FIG. 6 illustrates a reconnect ion procedure in the LTE Release 8/9/10 systems. - As illustrated in
FIG. 6 , in the LTE Release 8/9/10 systems, in step S3001, when detecting RLF (Radio Link Failure) incell # 1 under a radio base station eNB#1, a mobile station UE starts a reconnection procedure for a radio base station eNB#2 managingcell # 2 selected in a cell selection processing. - At this time, if the reconnection destination radio base station eNB#2 is managing “UE Context” for the mobile station UE, the reconnection procedure is successfully performed.
- In step S3005, the radio base station eNB#2 compares “source PCI”, “source C-RNTI (Cell-Radio Network Temporary Identity” or “short MAC-I” transferred from the radio base station eNB#1 in a “HO preparation processing (step S3002)” with “source PCI”, “source C-RNTI” or “Short MAC-I” contained in “RRCConnectionReestablishmentRequest” transmitted by the mobile station UE, thereby performing a “matching processing (mobile station UE designating processing)” and a “verification processing” on “UE Context.”
- The radio base station eNB#1 transfers a security parameter (such as algorithm, KeNB* or NCC) to the radio base station eNB#2 in the “HO preparation processing (step S3002).”
- The security parameter is required to keep security between the mobile station UE and the radio base station eNB#2 after completion of the reconnection procedure.
- When the mobile station UE is designated and verified, in step S3006, the radio base station eNB#2 transmits “RRCConnectionReestablishmerrt” to the mobile station UE.
- Then, communication after “RRCConnectionReestablishmentComplete” in step S3007 is made with a security processing (“ciphering” or “integrity protection”).
- “SRB1 (Signaling Radio Beater 1)” is set by “RRCConnectionReestablishment” in step S3006, and then “SRB2” or “DRB (Dedicated Radio Bearer)” is reconfigured by “RRCReconfiguration” in step S3011 and the communication is continued.
- The routing in the network is switched by “S1 path switch request” in step S3008 and “S1 path switch response” in step S3009.
- Herein, if the “matching processing” and the “verification processing” in step S3005 fail, the radio base station eNB#2 transmits “RRCConnectionReestablishmentReject”, instead of “RRCConnectionReestablishment” to the mobile station UE in step S3006.
- When receiving “RRCConnectionReestablishmentReject”, the mobile station UE transits to an “Idle state.”
- As described above, when the radio base station eNB#2 does not manage “UE Context” for the mobile station UE, the reconnection procedure for the mobile station UE will fail in the LTE system.
- The present invention has been made in terms of the above problem, and it is an object thereof to provide a mobile communication method capable of successfully performing a reconnection procedure even when a reconnection destination radio base station does not manage “UE Context” for a mobile communication UE, a mobile station, and a radio base station.
- A first aspect of the present invention is a mobile communication method, the method including a step A in which when detecting a radio link failure in a first cell under a first radio base station, a mobile station starts a reconnection procedure for a second radio base station managing a second cell selected in a cell selection processing, a step B in which the mobile station transmits CGI of the first cell to the second radio base station in the reconnection procedure, and a step C in which in the reconnection procedure, when not managing context information of the mobile station, the second radio base station acquires context information of the mobile station from the first radio base station managing the first cell designated based on the CGI.
- A second aspect of the present invention is a mobile station, the mobile station including a control unit configured to start a reconnection procedure for a second radio base station managing a second cell selected in a cell selection processing when detecting a radio link failure in a first cell under a first radio base station, and a transmission unit configured to transmit CGI of the first cell to the second radio base station in the reconnection procedure.
- A third aspect of the present invention is a radio base station which operates as a second radio base station when a mobile station starts a reconnection procedure for the second radio base station managing a second cell selected in a cell selection processing when detecting a radio link failure in a first cell under a first radio base station, wherein the radio base station includes a reception unit configured to acquire context information of the mobile station from the first radio base station managing the first cell designated based on CGI of the first cell transmitted by the mobile station when not managing the context information for the mobile station in the reconnection procedure.
-
FIG. 1 is a configuration diagram of an entire mobile communication system according to a first embodiment of the present invention. -
FIG. 2 is a functional block diagram of a mobile station according to the first embodiment of the present invention. -
FIG. 3 is a functional block diagram of a radio base station according to the first embodiment of the present invention. -
FIG. 4 is a diagram for explaining operations of the mobile communication system according to the first embodiment of the present invention. -
FIG. 5 is a diagram for explaining operations of a mobile communication system according to a second embodiment of the present invention. -
FIG. 6 is a diagram for explaining operations of a conventional mobile communication system. - (Mobile Communication System According to First Embodiment of the Present Invention)
- A mobile communication system according to a first embodiment of the present invention will be described with reference to
FIGS. 1 to 4 . - The mobile communication system according to the present embodiment is a mobile communication system in the LTE system (or LTE-Advanced system)and includes a mobility management node MME (Mobility Management Entity), a radio base station eNB#1 for managing
cell # 1, and a radio base station eNB#2 for managingcell # 2 as illustrated inFIG. 1 . - The present embodiment will be described by way of a case in which when detecting RLF in
cell # 1 under the radio base station eNB#1, a mobile station UE starts a reconnection procedure for the radio base station eNB#2 managingcell # 2 selected in a cell selection processing. - As illustrated in
FIG. 2 , the mobile station UE according to the present embodiment includes acontrol unit 11, a transmission unit 12, and areception unit 13. - There is configured such that when detecting RLF in
cell # 1 under the radio base station eNB#1, thecontrol unit 11 performs the cell selection processing and starts the reconnection procedure for the radio base station eNB#2 managingcell # 2 selected in the cell selection processing. - The transmission unit 12 is configured to transmit various signals to the radio base station eNB#1/eNB#2.
- For example, the transmission unit 12 is configured to transmit CGI of
cell # 1 to the radio base station eNB#2 in the above reconnection procedure. - The transmission unit 12 may be configured to transmit “CGI available” indicating whether CGI of
cell # 1 can be transmitted to the radio base station eNB#2 via “RRCConnectionReestablishment Request.” - For example, the transmission unit 12 may be configured to transmit “CGI available” by an 1-bit flag in “RRCConnectionReestablishment Request.”
- The
reception unit 13 is configured to receive various signals from the radio base station eNB#1/eNB#2. - For example, the
reception unit 13 is configured to receive “CGI request” for requesting to transmit CGI ofcell # 1 from the radio base station eNB#2. - Specifically, the
reception unit 13 may be configured to receive “CGI request” from, the radio base station eNB#2 via “RRCConnectionReestablishment.” - Further, there may be configured such that when the
reception unit 13 receives “RRCConnectionReestablishment” containing “CGI request”, the transmission unit 12 transmits CGI ofcell # 1 to the radio base station eNB#2 via “RRCConnectionReestablishmentComplete” - For example, the
reception unit 13 may be configured to receive “CGI request” by an 1-bit flag in “RRCConnectionReestablishment.” - The transmission unit 12 may be configured not to perform a security processing on “RRCConnectionReestablishmentComplete” containing CGI of
cell # 1. - Herein, the transmission unit 12 is configured to perform the security processing on “RRCConnectionReestablishmentComplete” not containing CGI of
cell # 1. - The transmission unit 12 may be configured to transmit CGI of
cell # 1 to the radio base station eNB#2 via other message or the like transmitted on “RRCConnectionReestablishment Request” or DCCB (Dedicated Common Control Channel/SRB1). - As illustrated in
FIG. 3 , the radio base station eNB according to the present embodiment includes areception unit 21, a transmission unit 22, and a context management unit 23. - The context management unit 23 is configured to manage “UE Context” for each mobile station UE.
- Specifically, the context management unit 23 is configured to manage “UE Context” for a mobile station UE transferred in the “HO Preparation processing” performed by a neighboring radio base station eNB.
- The
reception unit 21 is configured to receive various signals from the mobile station UE, and the transmission unit 22 is configured to transmit various signals to the mobile station UE. - In the reconnection procedure, when the context management unit 23 in the radio base station eNB#2 does not manage “UE Context” for the mobile station UE, the
reception unit 21 in the radio base station eNB#2 is configured to acquire “UE Context” for the mobile station UE from the radio base station eNB#1 managingcell # 1 designated based on CGI ofcell # 1 transmitted by the mobile station UE. - When the
reception unit 21 in the radio base station eNB#2 receives “CGI available” from the mobile station UE via “RRCConnectionReestablishmentRequest” and when the received “CGI available” indicates whether CGI ofcell # 1 can be transmitted, the transmission unit 22 in the radio bass station eNB#2 is configured to transmit “CGI request” requesting to transmit CGI ofcell # 1 to the mobile station US via “RRCConnectionReestablishment.” - There is configured such that when the
reception unit 21 in the radio base station eNB#1 receives “X2 RLF report” from the radio base station eNB#2, the transmission unit 22 in the radio base station eNB#1 determines whether “UE Context” matching with “source C-RNTI” and “short MAC-I” contained in “X2 RLF report” is managed by the context management unit 23, only when determining that it is managed, performs the “HO preparation processing” on the radio base station eNB#2. - Exemplary specific operations of the mobile communication system according to the present embodiment will be described below with reference to
FIG. 4 . - As illustrated in
FIG. 4 , when detecting RLF incell # 1 under the radio basestation eNB# 1 in step S1001, the mobile station UE transmits “RRCConnectionReestablishmentRequest” containing “source PCI”, “source C-RNTI”, “short MAC-I” and “CSG available” to the radio basestation eNB# 2 managingcell # 2 selected in the cell selection processing in step S1002. - When the received “CSG available” indicates that CGI of
cell # 1 can be transmitted, the radio basestation eNB# 2 transmits “RRCConnectionReestablishment” containing “CGI request” requesting to transmit CGI ofcell # 1 to the mobile station UE in step S1003. - In step S1004, the mobile station UE transmits “RRCConnectionReestablishmentComplete” containing CGI (or “source CGI”) of
cell # 1 to the radio basestation eNB# 2. - Herein, the mobile station UE does not perform the security processing (particularly, “ciphering”) on “RRCConnectionReestablishmentComplete” containing CGI of
cell # 1 unlike conventional “RRCConnectionReestablishmentComplete.” - This is because the radio base
station eNB# 2 is not provided with a security parameter at this time and thus the radio basestation eNB# 2 cannot decipher the security processing (“deciphering”). - The mobile station UE can determine whether to perform the security processing based on whether “CGI request” is transmitted by an 1-bit flag in “RRCConnectionReestablishment.”
- In step S1005, the radio base
station eNB# 2 designates the radio basestation eNB# 1 based on CGI ofcell # 1, and transmits “X2 RLF report” containing “source PCI”, “source C-RNTI”, and “short MAC-I” to the radio basestation eNB# 1. - In step S1006, the radio base
station eNB# 1 performs the “matching processing” and the “verification processing” on “UE Context” for the mobile station UE. - Herein, only when successfully performing the “matching processing” and the “verification processing” on “UE Context” for the mobile station UE, or only when managing “UE Context” for the mobile station UE, the radio base
station eNB# 1 transmits “X2 HO preparation” containing the security parameter to the radio basestation eNB# 2 in step S1007. - In step S1008, the radio base
station eNB# 2 transmits “X2 HO preparation ack” to the radio basestation eNB# 1. - Herein, the radio base
station eNB# 2 can acquire the security parameter, and thus uses “EEC SecurityModeCommand” to notify the security parameter to the mobile station UE in step S1009. - In step S1010, the mobile station UE transmits “RRC SecurityModeComplete” to the radio base
station eNB# 2. - In step S1011, the radio base
station eNB# 2 transmits “S1 path switch request” to the mobility management node MME, and in step S1012, the mobility management node MME transmits “S1 path switch complete” to the radio basestation eNB# 2. - In step S1013, the radio base
station eNB# 2 transmits “X2 UE Context release” to the radio basestation eNB# 1. - In step S1014, the radio base
station eNB# 2 transmits “RRCConnectionReconfiguration” for setting SRB, DRB or the like to the mobile station UE, and in step S1015, the mobile station UE transmits “RRCConnectionReconfigurationComplete” to the radio basestation eNB# 2. - Consequently, in step S1016, RRC connection is established between the mobile station UE and the radio base station eNB#2 (cell #2).
- In the conventional LTE system, “RRC SecurityModeCommand” and “RRC SecurityModeComplete” are not transmitted and received in the above reconnection procedure, while in the mobile communication system according to the present embodiment, the security processing is not activated in steps S1003 and S1004 and thus “RRC SecurityModeCommand” and “RRC SecurityModeComplete” are configured to be transmitted and received at this timing.
- Consequently, the security processing can be applied in the communication after “RRCConnectionReconfiguration” in step S1014.
- “CGI request” or “source CGI (CGI of cell #1)” may be transmitted and received via a dedicated message.
- In this case, after the radio base
station eNB# 2 acquires CGI ofcell # 1 via a dedicated message, “RRCConnectionReestablishmentComplete” and “RRCConnectionReestablishment” may be transmitted and received similarly as in the conventional LTE system. - In this case, the security processing can be started for transmitting and receiving “RRCConnectionReestablishmentComplete” and “RRCConnectionReestablishment”, and thus “RRC SecurityModeCommand” and “RRC SecurityModeComplete” do not need to be transmitted and received.
- With the mobile communication system according to the present embodiment, in the above reconnection procedure, the radio base
station eNB# 2 can acquire “UE Context” for the mobile station UE from the radio basestation eNB# 1 based on CGI of the first cell acquired from the mobile station UE, and thus the above reconnection procedure can be successfully performed even when “UE Context” for the mobile station UE is not previously managed in the radio basestation eNB# 2. - With the mobile communication system according to the present embodiment; the radio base
station eNB# 2 can designate the radio basestation eNB# 1 managing “UE Context” for the mobile station UE based on CGI of the first cell, and thus the above reconnection procedure can be successfully performed even when “UE Context” for the mobile station UE is not previously managed in the radio basestation eNB# 2 under an environment in which many cells (such as picocells) using the same PCI are present. - (First Variant)
- A mobile communication system according to a first variant of the present invention will be described below with reference to
FIG. 5 in terms of the differences from the mobile communication system - It is assumed that many cells (such as picocells) using the same PCI are present in the mobile communication system according to the first variant of the present invention.
- As illustrated in
FIG. 5 , when detecting RLF in cell #1 (picocell) under the radio basestation eNB# 1 in step S2001, the mobile station UE transmits “RRCConnectionReestablishmentRequest” containing “source PCI”, “source C-RNTI” and “short MAC-I” to the radio basestation eNB# 2 managing cell #2 (macrocell) selected in the cell selection processing in step S2002. - In step S2003, when not managing “UE Context” for the mobile station UE, the radio base
station eNB# 2 transmits “X2 RLF report” containing “source PCI”, “source C-RNTI” and “short MAC-I” to all the neighboring radio base stations eNB. - In step S2004, the radio base station eNB having received “X2 RLF report” performs the “matching processing” and the “verification processing” on “UE Context” for the mobile station UE based on “source C-RNTI” and “short MAC-I” contained in “X2 RLF report.”
- Only when successfully performing the “matching processing” and the “verification processing” on “UE Context” for the mobile station UE, or only when managing “UE Context” matching with “source C-RNTI” and “source MAC-I” contained In “X2 ELF report”, each radio base station eNB (such as radio base station eNB#1) transmits “X2 HO preparation” containing the security parameter to the radio base
station eNB# 2 in step S2005. - In step S2006, the radio base
station eNB# 2 transmits “X2 HO preparation ack” to the radio basestation eNB# 1. - Herein, since the radio base
station eNB# 2 can acquire the security parameter, in step S2007, it uses “RRC SecurityModeCommand” to notify the security parameter to the mobile station UE. - In step S2008, the mobile station UE transmits “RRC SecurityModeComplete” to the radio base
station eNB# 2. - In step S2009, the radio base
station eNB# 2 transmits “S1 path switch request” to the mobility management node MME, and in step S2010, the mobility management node MME transmits “S1 path switch complete” to the radio basestation eNB# 2. - In step S2011, the radio base
station eNB# 2 transmits “X2 UE context release” to the radio basestation eNB# 1. - In step S2012, the radio base
station eNB# 2 transmits “RRCConnectionReconfiguration” for setting SRB2, DRB or the like to the mobile station UE, and in step S2013, the mobile station UE transmits “RRCConnectionReconfigurationComplete” to the radio basestation eNB# 2. - Consequently, in step S2014, RRC connection is established between the mobile station UE and the radio base station eNB#2 (cell #2).
- With the mobile communication system according to the first variant, since there is configured such that the radio base
station eNB# 2 transmits “X2 ELF report” containing “source PCI”, “source C-RNTI” and “short MAC-I” to all the neighboring radio base stations eNB and the radio basestation eNB# 1 managing “UE Context” matching with “source C-RNTI” and “short MAC-I” contained in “X2 RLF report” transmits “UE Context (security parameter)” for the mobile station UE to the radio basestation eNB# 2, even if “UE Context” for the mobile station UE is not previously managed in the radio basestation eNB# 2 under an environment many cells (such as picocells) using the same PCI are present, the above reconnection procedure can be successfully performed. - The properties of the present embodiment described above may be expressed as follows.
- The first property of the present embodiment is a mobile communication method, the method including a step A in which when the mobile station UE detects RLF (radio link failure) in cell #1 (first cell) under the radio base station eNB#1 (first radio base station), the reconnection procedure is started for the radio base station eNB#2 (second radio base station) managing
cell # 2 selected In the cell selection processing, a step B in which the mobile station UE transmits CGI ofcell # 1 to the radio basestation eNB# 2 in the reconnection procedure, and a step C in which when not managing “UE Context (context information)” for the mobile station UE, the radio basestation eNB# 2 acquires “UE Context” for the mobile station UE from the radio basestation eNB# 1 managingcell # 1 designated based on CGI in the reconnection procedure. - In the first property of the present embodiment, the step B may include a step B1 in which the mobile station UE transmits “CGI available (transmission enable/disable information)” indicating whether CGI of
cell # 1 can be transmitted to the radio basestation eNB# 2 via “RRCConnectionReestablishmentRequest (reconnection request signal)”, a step B2 in which when the received “CGI available” indicates that CGI ofcell # 1 can be transmitted, the radio basestation eNB# 2 transmits “CGI request (request information)” for requesting to transmit CGI ofcell # 1 to the mobile station UE via “RRCConnectionReestablishment (reconnection signal)”, and a step B3 in which the mobile station UE transmits CGI ofcell # 1 to the radio basestation eNB# 2 via “RRCConnectionReestablishmentComplete (reconnection complete signal)” in response to “CGI request.” - In the first property of the present embodiment, in step B3, the mobile station UE may not perform the security processing on “RRCConnectionReestablishmentComplete.”
- The second property of the present embodiment is a mobile station UE, which includes the
control unit 11 configured to start the reconnection procedure for the radio basestation eNB# 2 managingcell # 2 selected in the cell selection processing when detecting RLF incell # 1 under the radio basestation eNB# 1, and the transmission unit 12 configured to transmit CGI ofcell # 1 to the radio basestation eNB# 2. - In the second property of the present embodiment, the transmission unit 12 is configured to transmit “CGI available” to the radio base
station eNB# 2 via “RRCConnectionReestablishmentRequest”, and the transmission unit 12 may be configured to transmit CGI ofcell # 1 to the radio basestation eNB# 2 via “RRCConnectionReestablishmentComplete” when receiving “CGI request” from the radio basestation eNB# 2. - In the second property of the present embodiment, the transmission unit 12 may be configured not to perform the security processing on “RRCConnectionReestablishmentComplete.”
- The third property of the present embodiment is a radio base station eNB which operates as the radio base
station eNB# 2 when the mobile station US starts the reconnection procedure for the radio basestation eNB# 2 managingcell # 2 selected in the cell selection processing when detecting RLF incell # 1 under the radio basestation eNB# 1, wherein the radio base station includes thereception unit 21 configured to acquire “UE Context” for the mobile station UE from the radio basestation eNB# 1 managingcell # 1 designated based on CGI ofcell # 1 transmitted by the mobile station UE when not managing “UE Context” for the mobile station UE in the reconnection procedure. - In the third property of the present embodiment, the radio base station eNB may include the transmission unit 22 configured to transmit “CGI request” for requesting to transmit CGI of
cell # 1 to the mobile station UE via “RRCConnectionReestablishment” when thereception unit 21 receives “CGI available” via “RRCConnectionReestablishmentRequest” from the mobile station UE and when the received “CGI available” indicates that CGI ofcell # 1 can be transmitted. - The operations of the mobile station UE and the radio base
stations eNB# 1/eNB# 2 may be performed in hardware, may be performed in software modules executed by the processor, or may be performed in a combination of both. - The software modules may be provided in any storage medium such as RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable ROM), register, hard disk, removable disk, or CD-ROM.
- The storage medium is connected to a processor such that the processor can read/write information from/into the storage medium. The storage medium may be integrated in the processor. The storage medium and the processor may be provided inside ASIC. The ASIC may be provided in the mobile station UE and the radio base
stations eNB# 1/eNB# 2, The storage medium and the processor may be provided as discrete components inside the mobile station UE and the radio basestations eNB# 1/eNB# 2. - The present invention has been described above in detail with reference to the embodiment, but it is clear to those skilled in the art that the present invention is not limited to the embodiment described in the present specification. The present invention can be modified and changed in its forms without departing from the spirit and scope of the present invention defined in Claims. Therefore, the description of the present specification intends to be exemplary only, and does not intend to limit the present invention.
- As described above, according to the present invention, it is possible to provide a mobile communication method capable of successfully performing a reconnection procedure even when a connection destination radio base station does not manage “UE Context” for a mobile station UE, a mobile station, and a radio base station.
-
- UE: Mobile station
-
eNB# 1, eNB#2: Radio base station - 11: Control unit
- 12, 22; Transmission unit
- 13, 21: Reception unit
- 23: Context management unit
Claims (4)
1. A mobile communication method comprising:
a step A in which when detecting a radio link failure in a first cell under a first radio base station, a mobile station starts a reconnection procedure for a second radio base station managing a second cell selected in a cell selection processing;
a step B in which in the reconnection procedure, the second radio base station transmits ELF report to the first radio base station;
and
a step C in which in the reconnection procedure, when managing context information of the mobile station matching with information contained in the RLF report, the first radio base station performs HO preparation processing and transmits the context information of the mobile station to the second radio base station,
2. The mobile communication method according to claim 1 , wherein the information contained in the RLF report includes PCI, C-RNTI and short MAC-I therein.
3. The mobile communication method according to claim 1 , wherein in the step B, the second radio base station designates the first radio base station using a cell identity transmitted from the mobile station.
4. The mobile communication method according to claim 1 , wherein the RLF report and the HO preparation processing are performed through X2 interface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/258,206 US20160380805A1 (en) | 2011-06-29 | 2016-09-07 | Mobile communication method, mobile station, and radio base station |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011144419A JP5893859B2 (en) | 2011-06-29 | 2011-06-29 | Mobile communication method, mobile station and radio base station |
JP2011-144419 | 2011-06-29 | ||
PCT/JP2012/066122 WO2013002166A1 (en) | 2011-06-29 | 2012-06-25 | Mobile communication method, mobile station, and wireless base station |
US201314129466A | 2013-12-26 | 2013-12-26 | |
US15/258,206 US20160380805A1 (en) | 2011-06-29 | 2016-09-07 | Mobile communication method, mobile station, and radio base station |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/129,466 Continuation US9467331B2 (en) | 2011-06-29 | 2012-06-25 | Mobile communication method, mobile station, and radio base station |
PCT/JP2012/066122 Continuation WO2013002166A1 (en) | 2011-06-29 | 2012-06-25 | Mobile communication method, mobile station, and wireless base station |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160380805A1 true US20160380805A1 (en) | 2016-12-29 |
Family
ID=47424060
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/129,466 Active 2032-09-30 US9467331B2 (en) | 2011-06-29 | 2012-06-25 | Mobile communication method, mobile station, and radio base station |
US15/258,206 Abandoned US20160380805A1 (en) | 2011-06-29 | 2016-09-07 | Mobile communication method, mobile station, and radio base station |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/129,466 Active 2032-09-30 US9467331B2 (en) | 2011-06-29 | 2012-06-25 | Mobile communication method, mobile station, and radio base station |
Country Status (4)
Country | Link |
---|---|
US (2) | US9467331B2 (en) |
JP (1) | JP5893859B2 (en) |
CN (1) | CN103748924B (en) |
WO (1) | WO2013002166A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019033327A1 (en) * | 2017-08-17 | 2019-02-21 | Qualcomm Incorporated | Techniques and apparatuses for identifying a candidate cell for radio connection reestablishment |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114449603B (en) | 2012-12-24 | 2024-06-07 | 北京三星通信技术研究有限公司 | Base station in wireless communication system and method executed thereby |
EP2782409A1 (en) | 2013-03-20 | 2014-09-24 | Panasonic Intellectual Property Corporation of America | Deterministic UE behaviour for CSI/SRS Reporting during DRX |
WO2014190021A2 (en) * | 2013-05-21 | 2014-11-27 | Nokia Corporation | Call re-establishment in a multi-layer heterogeneous network |
JP6562571B2 (en) * | 2014-10-23 | 2019-08-21 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Radio resource control RRC connection method and apparatus, and RRC reconnection method and apparatus |
US9730264B2 (en) | 2014-12-10 | 2017-08-08 | Telefonaktiebolaget L M Ericsson (Publ) | Systems and methods providing improved success rate for RRC connection reestablishments |
AU2017386034B2 (en) * | 2016-12-30 | 2020-10-08 | Huawei Technologies Co., Ltd. | Link re-establishment method, apparatus, and system |
KR20180122935A (en) * | 2017-05-04 | 2018-11-14 | 삼성전자주식회사 | A method for managing measurement report/event in ue autonomous handover and signaling network |
CN115515196A (en) | 2017-05-04 | 2022-12-23 | 三星电子株式会社 | Method for measurement report event operation and network signaling in UE autonomous handover |
CN113329406B (en) * | 2018-09-28 | 2022-09-06 | 中兴通讯股份有限公司 | System and method for radio resource control management in a shared network |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2007100108A1 (en) * | 2006-03-03 | 2009-07-23 | 株式会社エヌ・ティ・ティ・ドコモ | Base station and handover control method |
US9094880B2 (en) * | 2008-06-19 | 2015-07-28 | Qualcomm Incorporated | Access terminal assisted node identifier confusion resolution using a time gap |
US9002356B2 (en) * | 2009-05-04 | 2015-04-07 | Qualcomm Incorporated | Access mode-based access control |
-
2011
- 2011-06-29 JP JP2011144419A patent/JP5893859B2/en active Active
-
2012
- 2012-06-25 US US14/129,466 patent/US9467331B2/en active Active
- 2012-06-25 CN CN201280031595.6A patent/CN103748924B/en active Active
- 2012-06-25 WO PCT/JP2012/066122 patent/WO2013002166A1/en active Application Filing
-
2016
- 2016-09-07 US US15/258,206 patent/US20160380805A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019033327A1 (en) * | 2017-08-17 | 2019-02-21 | Qualcomm Incorporated | Techniques and apparatuses for identifying a candidate cell for radio connection reestablishment |
Also Published As
Publication number | Publication date |
---|---|
CN103748924B (en) | 2017-05-10 |
JP5893859B2 (en) | 2016-03-23 |
JP2013012918A (en) | 2013-01-17 |
WO2013002166A1 (en) | 2013-01-03 |
CN103748924A (en) | 2014-04-23 |
US9467331B2 (en) | 2016-10-11 |
US20140204733A1 (en) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9467331B2 (en) | Mobile communication method, mobile station, and radio base station | |
JP7302648B2 (en) | Wireless terminal and method | |
US11032701B2 (en) | Multi-RAT access stratum security | |
US10433188B2 (en) | Control apparatus, base station apparatus, radio terminal, and method for updating neighbour relation table | |
ES2720298T3 (en) | User equipment and procedures for rapid recovery of handover failure in a 3GPP LTE network | |
KR101215231B1 (en) | RRC messages and procedures | |
US20190313273A1 (en) | Apparatus and method for a mobile telecommunications system | |
RU2679537C2 (en) | Method, device and system for processing rrc radio resource control message | |
CN107710862B (en) | Supporting minimization of service disruption with device-to-device based user equipment-to-network relaying | |
US20110124358A1 (en) | Mobile communication method | |
US10880943B2 (en) | Method, terminal, base station, and storage medium for handling radio link failure | |
CN105557006A (en) | Security key generation and management method of PDCP distributed structure for supporting dual connectivity | |
JP5660141B2 (en) | Wireless communication system, relay station, base station, and wireless communication method | |
EP2317795B1 (en) | Method of handling proximity information transmission and related communication device | |
CN110651530B (en) | Methods and associated entities for supporting mobility during low activity states | |
US9402195B2 (en) | Operation of base station in a cellular communications network | |
US9820196B2 (en) | Mobile communication system, radio base station, and mobile station | |
US20150245254A1 (en) | Mobile communication method and mobile station | |
US20120300693A1 (en) | Mobile communication system and radio base station | |
WO2014112437A1 (en) | Terminal device, base station device, communications system, and communications method | |
US20240406846A1 (en) | Managing ue measurements in an idle or inactive state | |
CN116456507A (en) | Communication method, communication device and communication system | |
US9668174B2 (en) | Mobile communication method | |
WO2015064456A1 (en) | Mobile communication method and wireless base station | |
CN117354890A (en) | Communication method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |