+

US20160370104A1 - Refrigerator and beverage supplying method using the same - Google Patents

Refrigerator and beverage supplying method using the same Download PDF

Info

Publication number
US20160370104A1
US20160370104A1 US14/879,055 US201514879055A US2016370104A1 US 20160370104 A1 US20160370104 A1 US 20160370104A1 US 201514879055 A US201514879055 A US 201514879055A US 2016370104 A1 US2016370104 A1 US 2016370104A1
Authority
US
United States
Prior art keywords
valve
beverage container
lever
beverage
mounting hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/879,055
Inventor
Sung Jin Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WiniaDaewoo Co Ltd
Original Assignee
Dongbu Daewoo Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongbu Daewoo Electronics Corp filed Critical Dongbu Daewoo Electronics Corp
Assigned to DONGBU DAEWOO ELECTRONICS CORPORATION reassignment DONGBU DAEWOO ELECTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YANG, SUNG JIN
Publication of US20160370104A1 publication Critical patent/US20160370104A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • F25D23/126Water cooler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D3/00Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D3/0009Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes provided with cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D3/00Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D3/0025Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes provided with dispensing valves actuated by the receptacle to be filled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D3/00Apparatus or devices for controlling flow of liquids under gravity from storage containers for dispensing purposes
    • B67D3/0058Details
    • B67D3/008Supports
    • B67D3/0083Supports for the liquid container
    • B67D3/0087Supports for the liquid container the beverage container being stored in a rack or shelf
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/04Doors; Covers with special compartments, e.g. butter conditioners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/02Details of doors or covers not otherwise covered
    • F25D2323/021French doors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/122General constructional features not provided for in other groups of this subclass the refrigerator is characterised by a water tank for the water/ice dispenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles

Definitions

  • the present invention relates to refrigerators and beverage dispensers in refrigerators.
  • Refrigerators are electrical appliances capable of maintaining a storage chamber below room temperature. Food can be stored in a refrigerator in a cold or frozen state.
  • the interior of the refrigerator is cooled by cold air circulation.
  • Cold air is produced through heat exchange with a refrigerant in a refrigeration cycle that includes a compression-condensation-expansion-evaporation process.
  • the cold air supplied into the refrigerator is distributed to the interior of the refrigerator by convection to obtain a desired storage temperature.
  • a refrigerator typically has a rectangular main body with doors located in the front.
  • the main body may include a refrigerating chamber and a freezing chamber, each having its own door.
  • the refrigerator may include a plurality of drawers, shelves, storage boxes for sorting and storing food or other objects, etc.
  • FIG. 1 is a perspective view showing a conventional refrigerator 1 .
  • the refrigerator 1 includes a main body including a food storage space and a door 2 coupled to the main body.
  • a tray 4 is provided on the inside of the door 2 , which is suitable for storing beverage containers 5 .
  • the tray 4 defines a storage space 3 and has a support member 4 .
  • carbonic acid may evaporate in a few days after opening the beverage container 5 , which causes the carbonated beverage to taste bad.
  • the door 2 may be open a long a time, which causes loss in cooling performance of the refrigerator 1 .
  • the refrigerator comprises: a main body having a food storage space defined therein; a door for selectively shielding the food storage space; a storage unit formed at an inside of the door for storing a beverage container; a supporting unit disposed at the storage unit for supporting the beverage container upward, the supporting unit having a first mounting hole; a valve coupled to a mouth of the beverage container for selectively allowing beverage contained in the beverage container to be supplied to an outside of the beverage container, at least a portion of the valve being located in the first mounting hole; and a lever provided under the supporting unit in a state of being coupled to the valve for cooperating with the valve such that external force directed in an outward direction of the door is applied to the lever, wherein when the external force directed in the outward direction of the door is applied to the lever, the valve allows the beverage to be supplied to the outside of the beverage container through the mouth of the beverage container.
  • the supporting unit is provided with a fixing recess, and an end of the mouth of the beverage container is inserted into the fixing recess.
  • the valve has an insertion recess on its upper end thereof with, into which the mouth is inserted.
  • the mouth has a thread on its outer circumferential surface.
  • the insertion recess has a spiral portion coupled to the thread on its inner circumferential surface.
  • an upper end of the valve is located higher than a lower end of the supporting unit, and a lower end of the valve is located lower than the lower end of the supporting unit.
  • an outer diameter of the upper end of the valve is greater than a diameter of the first mounting hole.
  • An outer diameter of the lower end of the valve is less than the diameter of the first mounting hole.
  • valve comprises: a stationary unit directly coupled to the mouth, the stationary unit having a flow channel, the stationary unit being placed in the first mounting hole; a moving unit configured to move upward and downward for selectively opening and closing the flow channel; and an elastic body for providing downward elastic force to the moving unit when the moving unit moves upward, and the lever is coupled to the moving unit.
  • the lever pushes the moving unit upward such that the moving unit moves upward, the flow channel is opened, and the beverage is supplied to the outside of the beverage container through the flow channel.
  • lever turns when the external force directed in the outward direction of the door is applied to one portion of the lever, and the other portion of the lever pushes the moving unit upward when the lever turns.
  • the lever comprises: a first portion having a second mounting hole, one end of the first portion located in an inward direction of the door being rotatably coupled to one side of the refrigerator; and a second portion extending downward from the other end of the first portion, the external force directed in the outward direction of the door being applied to the second portion, and the moving unit extends through the second mounting hole from top to bottom, an outer diameter of an upper end of the moving unit being greater than a diameter of the second mounting hole, an outer diameter of a lower end of the moving unit being less than the diameter of the second mounting hole.
  • An embodiment includes beverage supplying method, the method comprising: coupling a valve to a mouth of a beverage container, from which a cap has been removed; storing the beverage container, to which the valve is coupled, in a storage unit formed at an inside of a door of a refrigerator; applying external force directed in an outward direction of the door to a lever cooperating with the valve; operating the valve using the applied external force directed in the outward direction of the door; and supplying beverage in the beverage container to an outside of the beverage container according to the operation of the valve.
  • beverage container is stored in the storage unit with the mouth facing downward.
  • FIG. 1 is a perspective view showing a conventional refrigerator
  • FIG. 2 is a view showing the inside of a door of an exemplary refrigerator according to an embodiment of the present invention
  • FIG. 3 is an enlarged perspective view of an exemplary supporting unit shown in FIG. 2 according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view of an exemplary valve shown in FIG. 2 according to an embodiment of the present invention.
  • FIG. 5 is a view showing a state in which a beverage container is stored according to an embodiment of the present invention.
  • FIG. 6 is a view showing a state in which beverage in the beverage container is dispensed to the outside according to an embodiment of the present invention.
  • FIG. 7 is a flowchart showing a beverage supplying method according to an embodiment of the present invention.
  • FIG. 2 shows the inside of a door of an exemplary refrigerator according to an embodiment of the present invention.
  • FIG. 3 is an enlarged perspective view of a supporting unit shown in FIG. 2 .
  • a storage unit 110 for beverage containers is disposed on the inside of a door 100 .
  • the storage unit 110 may be in a recess on the inside of the front door 100 , or on a supporting unit 120 protruding from the inside of the door 100 .
  • the supporting unit 120 on the storage unit 110 may support the beverage container 5 upward.
  • the beverage container 5 may be stored upside down. That is, the top of the beverage container 5 faces downward, and the bottom of the beverage container 5 faces upward.
  • a fixing recess 129 is formed in the supporting unit 120 .
  • the fixing recess 129 may have various shapes, e.g., a bowl shape.
  • the top of the beverage container 5 may be inserted into the fixing recess 129 .
  • the beverage container 5 is positioned without the risk of falling to the left or the right.
  • the storage unit 110 may have a retaining bar extending from the inside of the door 100 in left and right directions of the door 100 .
  • the retaining bar can further prevent the beverage container 5 from falling.
  • a valve 130 is disposed in a first mounting hole 125 shown in FIG. 3 .
  • the valve 130 may be inserted into the first mounting hole 125 from above.
  • the upper end of the valve 130 may be located higher than the first mounting hole 125
  • the lower end of the valve 130 may be located lower than the first mounting hole 125 .
  • the upper end of the valve 130 may be located higher than the lower end of the supporting unit 120
  • the lower end of the valve 130 may be located lower than the lower end of the supporting unit 120 .
  • valve 130 may be coupled to the mouth of the beverage container 5 .
  • the valve controls dispensing of beverage to the outside.
  • a lever 140 may be used under the supporting unit 120 .
  • An external force directed in an outward direction of the door (a direction moving toward the paper in FIG. 2 ) may be applied to the lever 140 .
  • the external force may be passed to the lever 140 .
  • the lever 140 may be coupled to the valve.
  • the valve 130 may open and allow the beverage in the beverage container 5 to be dispensed out of the beverage container 5 .
  • FIG. 4 is an exploded perspective view of the valve shown in FIG. 2 .
  • the valve 130 may include a first body 131 , a second body 133 , a third body 135 , a gate 136 , an elastic body 134 , and at least one packing member 132 and 137 .
  • the upper end of the first body 131 may be a portion that is directly coupled to the mouth of the beverage container 5 .
  • An insertion recess 131 a may be formed at the upper end of the first body 131 , and at least a portion of the mouth of the beverage container 5 may be inserted into the insertion recess 131 a .
  • Each beverage container 5 has a thread for coupling with a cap.
  • the insertion recess 131 a may be disposed on the inner circumferential surface with a spiral portion 131 b , which is coupled to the thread.
  • the mouth of the beverage container 5 may be coupled to the insertion recess 131 a after or while being inserted into the insertion recess 131 a.
  • the insertion recess 131 a may have a flow channel 131 c near the center of its lower part.
  • the beverage introduced to the insertion recess 131 a from the beverage container 5 may flow downward under the first body 131 through the flow channel 131 c .
  • a packing member for preventing leakage of the beverage may be disposed at the lower part of the insertion recess 131 a.
  • a step portion 131 d may be formed at the first body 131 .
  • the outer diameter of the upper end of the first body 131 may be greater than that of the lower end of the first body 131 .
  • the step portion 131 d may be formed due to the difference in outer diameter between the upper and lower ends of the first body 131 .
  • the outer diameter of the upper end of the first body 131 may be greater than the diameter of the first mounting hole 125
  • the outer diameter of the lower end of the first body 131 may be less than the diameter of the first mounting hole 125 .
  • the second body 133 may be located under the first body 131 .
  • the second body 133 may be formed in the shape of a pipe that extends vertically.
  • the second body 133 may be coupled between the flow channel 131 c extending from the first body 131 and a flow channel 135 c formed in the third body 135 , which will be further described below.
  • the elastic body 134 such as a coil spring, may be disposed on the outer circumferential surface of the second body 133 . When the valve is operated, the elastic body 134 may be pushed upward by the third body 135 . When an external force applied to the third body 135 is removed, the elastic body 134 may provide downward elastic force (restoring force) to the third body 135 such that the third body 135 returns to the initial position thereof.
  • the third body 135 is mostly located under the second body 133 . However, a portion of the third body 135 may extend upward through the second body 133 such that the portion of the third body 135 is located above the second body 133 .
  • an upwardly extending stem 135 a may be disposed proximate to the center of the third body 135 .
  • An upper end 135 b of the stem 135 a may be coupled to the gate 136 . More specifically, the stem 135 a may extend upward through the center of the second body 133 , which has a pipe shape. Consequently, the upper end 135 b of the stem 135 a may be located in the insertion recess 131 a of the first body 131 .
  • the gate 136 may be coupled to the upper end 135 b of the stem 135 a in the insertion recess 131 a .
  • the gate 136 may move upward or downward to selectively open and close the flow channel 131 c.
  • the beverage passing through the first body 131 and the second body 133 from the beverage container 4 may finally be dispensed to the outside through the flow channel 135 c of the third body 135 .
  • the packing member 137 for preventing leakage of the beverage may be provided at the lower part of the third body 135 .
  • a step portion 135 d may also be formed at the third body 135 .
  • the outer diameter of the upper end of the third body 135 may be greater than that of the lower end of the third body 135 .
  • the step portion 135 d may be formed by a difference in outer diameter between the upper and lower ends of the third body 135 .
  • the outer diameter of the upper end of the third body 135 may be greater than that of a second mounting hole 145 formed at the lever 140 , and the outer diameter of the lower end of the third body 135 may be less than that of the second mounting hole 145 .
  • the third body 135 may be inserted into the second mounting hole 145 from above.
  • the lever 140 may transmit the external force to the step portion 135 d such that the third body 135 moves upward.
  • the first body 131 and the packing member 132 may correspond to a stationary unit.
  • the stationary unit may be a portion that is directly coupled to the mouth of the beverage container 5 , is provided with the flow channel 131 c , and is placed in the first mounting hole 125 of the supporting unit 120 .
  • the stationary unit may remain stationary while in use.
  • the third body 135 and the gate may correspond to a moving unit.
  • the moving unit may be a portion that moves upward and downward for selectively opening and closing the flow channel 131 c .
  • the gate 136 may close the flow channel 131 c in the insertion recess 1431 a , and then open the flow channel 131 c according to an upward movement of the moving unit, including the gate 136 .
  • the flow channel 131 c is opened, the beverage in the beverage container 5 may flow downward through the flow channel 131 c .
  • the elastic body 134 may be compressed upward to provide a downward elastic force (restoring force) to the moving unit.
  • the second body 133 may correspond to the stationary unit or the moving part based on the design of the valve 130 .
  • FIG. 5 shows a state in which the beverage container is stored in accordance with an embodiment of the present disclosure.
  • FIG. 2 shows the front view of the inside of the door 100 .
  • FIG. 5 shows the side view of the inside of the door 100 .
  • the left side may be an inward direction of the door, and the right side may be an outward direction of the door.
  • the beverage in the beverage container 5 may not be dispensed to the outside.
  • the mouth 6 of the beverage container 5 may be inserted and coupled into the valve 130 , more specifically the insertion recess 131 a formed at the upper end of the first body 1 .
  • the thread formed at the outer circumferential surface of the mouth 6 may engage with the spiral portion 131 b formed at the inner circumferential surface of the insertion recess 131 a .
  • the beverage container may be fixed to the valve, whereby the beverage container 5 may be prevented from falling.
  • the step portion 131 d is formed on the first body 131 .
  • the first body 131 may be supported upward by the supporting unit 120 when inserted into the first insertion hole 125 from the above.
  • the gate 136 in the insertion recess 131 a closes the flow channel 131 c of the first body 131 while covering a bottom surface of the insertion recess 131 a . Consequently, the beverage in the beverage container 5 is not discharged under the first body 131 even when the beverage is introduced into the insertion recess 131 a through the mouth 6 .
  • the lever 140 may be mainly divided into two portions.
  • the second mounting hole 145 is formed on a first portion 141 .
  • the first portion 141 may extend approximately horizontally.
  • One end (the left end in FIG. 5 ) of the first portion 141 may be turnably coupled to one side of the refrigerator. Consequently, the first portion 141 may turn about a pivot 149 .
  • one end of the first portion 141 is hingedly coupled to the outside surface of the supporting unit 120 (see FIG. 2 ).
  • the step portion 135 d may be formed on the lower end of the third body 135 of the valve 130 , and the third body 135 may extend through the second mounting hole 145 from top to bottom.
  • the external force may be transferred to the third body 135 through the step portion 135 d .
  • the third body 135 may move upward, which will be described in more detail with reference to FIG. 6 .
  • the second portion 142 may be a panel extending downward from the other end (the right end in FIG. 5 ) of the first portion 141 .
  • the user may apply an external force directed in the outward direction (the left direction in FIG. 5 ) of the door to the second portion 142 , and then the lever 140 may turn about the pivot 149 .
  • FIG. 6 shows a state in which the beverage in the beverage container is supplied to the outside in accordance with an embodiment of the present disclosure.
  • an external force directed in the outward direction (the right direction in FIG. 6 ) of the door may be applied to the lever 140 .
  • the user may push a cup in the outward direction of the door in a state in which the side of the cup is in contact with the second portion 142 of the lever 140 .
  • the lever 140 may turn about the pivot 149 (in a counterclockwise direction in FIG. 6 ).
  • the other end (the right end in FIG. 6 ) of the first portion 141 of the lever 140 may move upward from the position shown in FIG. 5 .
  • the other end of the first portion 141 may push the third body 135 upward through the step portion 135 d .
  • the third body 135 may also move upward.
  • the stem 135 a and the gate 136 coupled to the upper end 135 b of the stem 135 a may also move upward.
  • a space is generated between the gate 136 and the bottom surface of the insertion recess 131 a .
  • the beverage in the beverage container 5 may be introduced into the flow channel 131 c through the space.
  • the beverage introduced into the flow channel 131 c may be supplied to the outside through the second body 133 and the flow channel 135 c of the third body 135 .
  • the beverage may be directly supplied into the cup through the valve 130 .
  • FIG. 7 is a flowchart showing an exemplary beverage dispensing method according to an embodiment of the present invention.
  • the cap of the beverage container 5 may be removed, and then the valve 130 may be coupled to the mouth 6 of the beverage container 5 (S 10 ).
  • the beverage container 5 may be in a state in which the beverage container 5 is not upside down, i.e. a state in which the mouth 6 is directed upward, and the valve 130 may be coupled to the mouth 6 in a state in which the valve 130 is upside down, which is the opposite of the state described with reference to FIGS. 2 to 6 . That is, the mouth 6 may be coupled to the spiral portion 131 b formed at the inner circumferential surface of the insertion recess 131 a in a state in which the insertion recess 131 a of the first body 131 is directed downward.
  • the beverage container 5 coupled to the valve 130 may be placed in the storage unit 110 in a state in which the beverage container 5 is upside down (S 20 ).
  • the end of the mouth 6 of the beverage container 5 and the valve 130 may be located at the bottom.
  • the valve 130 may be inserted into the first mounting hole 125 of the supporting unit 120 from above.
  • the step portion 131 d of the first body 131 may be caught by the supporting unit 120 .
  • the valve 130 may be placed in the first mounting hole 125 and may be supported upward by the supporting unit 120 .
  • the supporting unit 120 may be detachably mounted to the door 100 , and the valve 130 may be coupled into the first mounting hole 125 of the supporting unit 120 .
  • the supporting unit 120 which has been separated from the door 100 , may be located above the beverage container 5 , which is not upside down after removal of the cap, in a state of being upside down (i.e. the fixing recess 129 is directed downward). In this state, the end of the mouth 6 of the beverage container 5 may be inserted into the fixing recess 129 . Subsequently, the beverage container 5 may be rotated to couple the mouth 6 and the valve 130 . After the coupling between the mouth 6 and the valve 130 is achieved, the supporting unit 120 may be turned upside down again (i.e. the fixing recess 129 is directed upward) and then mounted to the door 100 .
  • an external force directed in the outward direction of the door may be applied to the lever 140 (S 30 ).
  • the valve is operated (S 40 ), and the beverage in the beverage container 5 may flow downward and then be dispensed into the cup (S 50 ), as previously described with reference with FIG. 6 .
  • the beverage container 5 needs not be taken out of the refrigerator by the user for consuming the beverage, and the time for the door 100 being open is reduced as compared with a conventional refrigerator.
  • the overall cooling efficiency of the refrigerator is improved and power consumption is reduced.
  • the beverage container 5 is stored upside down, if a carbonated beverage is contained in the beverage container 5 , the evaporation of carbonic acid can be reduced.
  • Embodiments of the present disclosure enable a user to get beverage from a beverage container stored on the inside of a door of the refrigerator without taking out the beverage container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Dispensing Beverages (AREA)

Abstract

A refrigerator having a storage unit disposed on the inside of a door and capable of dispensing beverage from a beverage container stored in the storage unit. A supporting unit is disposed on the storage unit for supporting the beverage container downward. The supporting unit has a first mounting hole. A valve is coupled to a mouth of the beverage container for selectively allowing beverage contained in the beverage container to be dispensed. At least a portion of the valve is located in the first mounting hole. A lever is disposed under the supporting unit and coupled to the valve. When an external force is applied to the lever, the valve is open and allows the beverage to be supplied to the outside of the beverage container through the mouth of the beverage container.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to Korean Patent Application No. 10-2015-0086323, filed Jun. 18, 2015, hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to refrigerators and beverage dispensers in refrigerators.
  • BACKGROUND OF THE INVENTION
  • Refrigerators are electrical appliances capable of maintaining a storage chamber below room temperature. Food can be stored in a refrigerator in a cold or frozen state.
  • The interior of the refrigerator is cooled by cold air circulation. Cold air is produced through heat exchange with a refrigerant in a refrigeration cycle that includes a compression-condensation-expansion-evaporation process. The cold air supplied into the refrigerator is distributed to the interior of the refrigerator by convection to obtain a desired storage temperature.
  • A refrigerator typically has a rectangular main body with doors located in the front. The main body may include a refrigerating chamber and a freezing chamber, each having its own door. The refrigerator may include a plurality of drawers, shelves, storage boxes for sorting and storing food or other objects, etc.
  • FIG. 1 is a perspective view showing a conventional refrigerator 1. As shown in FIG. 1, the refrigerator 1 includes a main body including a food storage space and a door 2 coupled to the main body. A tray 4 is provided on the inside of the door 2, which is suitable for storing beverage containers 5. The tray 4 defines a storage space 3 and has a support member 4.
  • However, it is not easy for children, the old, or the weak to directly take large and heavy beverage containers (e.g., as shown by 5) out of the refrigerator as the beverage container may drop.
  • In addition, if an opened carbonated beverage is contained in a beverage container 5, carbonic acid may evaporate in a few days after opening the beverage container 5, which causes the carbonated beverage to taste bad.
  • Furthermore, during the course that a beverage container 5 is taken out and then placed back, the door 2 may be open a long a time, which causes loss in cooling performance of the refrigerator 1.
  • SUMMARY OF THE INVENTION
  • Therefore, it would be advantageous to provide a refrigerator providing easy access for users to obtain beverage from a beverage container stored on the inside of a door of the refrigerator without taking out the beverage container.
  • According to an embodiment of the present invention, the refrigerator comprises: a main body having a food storage space defined therein; a door for selectively shielding the food storage space; a storage unit formed at an inside of the door for storing a beverage container; a supporting unit disposed at the storage unit for supporting the beverage container upward, the supporting unit having a first mounting hole; a valve coupled to a mouth of the beverage container for selectively allowing beverage contained in the beverage container to be supplied to an outside of the beverage container, at least a portion of the valve being located in the first mounting hole; and a lever provided under the supporting unit in a state of being coupled to the valve for cooperating with the valve such that external force directed in an outward direction of the door is applied to the lever, wherein when the external force directed in the outward direction of the door is applied to the lever, the valve allows the beverage to be supplied to the outside of the beverage container through the mouth of the beverage container.
  • Further, the supporting unit is provided with a fixing recess, and an end of the mouth of the beverage container is inserted into the fixing recess.
  • Further, the valve has an insertion recess on its upper end thereof with, into which the mouth is inserted. The mouth has a thread on its outer circumferential surface. The insertion recess has a spiral portion coupled to the thread on its inner circumferential surface.
  • Further, an upper end of the valve is located higher than a lower end of the supporting unit, and a lower end of the valve is located lower than the lower end of the supporting unit.
  • Further, an outer diameter of the upper end of the valve is greater than a diameter of the first mounting hole. An outer diameter of the lower end of the valve is less than the diameter of the first mounting hole. The valve is supported upward by the supporting unit in a state of being inserted into the first mounting hole from above.
  • Further, the valve comprises: a stationary unit directly coupled to the mouth, the stationary unit having a flow channel, the stationary unit being placed in the first mounting hole; a moving unit configured to move upward and downward for selectively opening and closing the flow channel; and an elastic body for providing downward elastic force to the moving unit when the moving unit moves upward, and the lever is coupled to the moving unit.
  • Further, wherein, when the external force directed in the outward direction of the door is applied to the lever, the lever pushes the moving unit upward such that the moving unit moves upward, the flow channel is opened, and the beverage is supplied to the outside of the beverage container through the flow channel.
  • Further, the lever turns when the external force directed in the outward direction of the door is applied to one portion of the lever, and the other portion of the lever pushes the moving unit upward when the lever turns.
  • Further, the lever comprises: a first portion having a second mounting hole, one end of the first portion located in an inward direction of the door being rotatably coupled to one side of the refrigerator; and a second portion extending downward from the other end of the first portion, the external force directed in the outward direction of the door being applied to the second portion, and the moving unit extends through the second mounting hole from top to bottom, an outer diameter of an upper end of the moving unit being greater than a diameter of the second mounting hole, an outer diameter of a lower end of the moving unit being less than the diameter of the second mounting hole.
  • An embodiment includes beverage supplying method, the method comprising: coupling a valve to a mouth of a beverage container, from which a cap has been removed; storing the beverage container, to which the valve is coupled, in a storage unit formed at an inside of a door of a refrigerator; applying external force directed in an outward direction of the door to a lever cooperating with the valve; operating the valve using the applied external force directed in the outward direction of the door; and supplying beverage in the beverage container to an outside of the beverage container according to the operation of the valve.
  • Further, the beverage container is stored in the storage unit with the mouth facing downward.
  • The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the present invention, as defined solely by the claims, will become apparent in the non-limiting detailed description set forth below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present invention will be better understood from a reading of the following detailed description, taken in conjunction with the accompanying drawing figures in which like reference characters designate like elements and in which:
  • FIG. 1 is a perspective view showing a conventional refrigerator;
  • FIG. 2 is a view showing the inside of a door of an exemplary refrigerator according to an embodiment of the present invention;
  • FIG. 3 is an enlarged perspective view of an exemplary supporting unit shown in FIG. 2 according to an embodiment of the present invention;
  • FIG. 4 is an exploded perspective view of an exemplary valve shown in FIG. 2 according to an embodiment of the present invention;
  • FIG. 5 is a view showing a state in which a beverage container is stored according to an embodiment of the present invention;
  • FIG. 6 is a view showing a state in which beverage in the beverage container is dispensed to the outside according to an embodiment of the present invention; and
  • FIG. 7 is a flowchart showing a beverage supplying method according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 2 shows the inside of a door of an exemplary refrigerator according to an embodiment of the present invention. FIG. 3 is an enlarged perspective view of a supporting unit shown in FIG. 2.
  • As shown in FIG. 2, a storage unit 110 for beverage containers is disposed on the inside of a door 100. The storage unit 110 may be in a recess on the inside of the front door 100, or on a supporting unit 120 protruding from the inside of the door 100.
  • The supporting unit 120 on the storage unit 110 may support the beverage container 5 upward. As shown, the beverage container 5 may be stored upside down. That is, the top of the beverage container 5 faces downward, and the bottom of the beverage container 5 faces upward.
  • More specifically, as shown in FIG. 3, a fixing recess 129 is formed in the supporting unit 120. The fixing recess 129 may have various shapes, e.g., a bowl shape. The top of the beverage container 5 may be inserted into the fixing recess 129. As shown, the beverage container 5 is positioned without the risk of falling to the left or the right.
  • The storage unit 110 may have a retaining bar extending from the inside of the door 100 in left and right directions of the door 100. The retaining bar can further prevent the beverage container 5 from falling.
  • A valve 130 is disposed in a first mounting hole 125 shown in FIG. 3. For example, the valve 130 may be inserted into the first mounting hole 125 from above. The upper end of the valve 130 may be located higher than the first mounting hole 125, and the lower end of the valve 130 may be located lower than the first mounting hole 125. In other words, the upper end of the valve 130 may be located higher than the lower end of the supporting unit 120, and the lower end of the valve 130 may be located lower than the lower end of the supporting unit 120.
  • In addition, the valve 130 may be coupled to the mouth of the beverage container 5. The valve controls dispensing of beverage to the outside.
  • A lever 140 may be used under the supporting unit 120. An external force directed in an outward direction of the door (a direction moving toward the paper in FIG. 2) may be applied to the lever 140. For example, when a user pushes a cup in the outward direction of the door when the side of the cup is in contact with a second portion 142 of the lever 140, the external force may be passed to the lever 140.
  • The lever 140 may be coupled to the valve. When an external force in the outward direction of the door is applied to the lever 140 as described above, the valve 130 may open and allow the beverage in the beverage container 5 to be dispensed out of the beverage container 5.
  • FIG. 4 is an exploded perspective view of the valve shown in FIG. 2. As shown in FIG. 4, the valve 130 may include a first body 131, a second body 133, a third body 135, a gate 136, an elastic body 134, and at least one packing member 132 and 137.
  • The upper end of the first body 131 may be a portion that is directly coupled to the mouth of the beverage container 5. An insertion recess 131 a may be formed at the upper end of the first body 131, and at least a portion of the mouth of the beverage container 5 may be inserted into the insertion recess 131 a. Each beverage container 5 has a thread for coupling with a cap. The insertion recess 131 a may be disposed on the inner circumferential surface with a spiral portion 131 b, which is coupled to the thread. The mouth of the beverage container 5 may be coupled to the insertion recess 131 a after or while being inserted into the insertion recess 131 a.
  • The insertion recess 131 a may have a flow channel 131 c near the center of its lower part. The beverage introduced to the insertion recess 131 a from the beverage container 5 may flow downward under the first body 131 through the flow channel 131 c. A packing member for preventing leakage of the beverage may be disposed at the lower part of the insertion recess 131 a.
  • A step portion 131 d may be formed at the first body 131. As shown, the outer diameter of the upper end of the first body 131 may be greater than that of the lower end of the first body 131. The step portion 131 d may be formed due to the difference in outer diameter between the upper and lower ends of the first body 131. In addition, the outer diameter of the upper end of the first body 131 may be greater than the diameter of the first mounting hole 125, and the outer diameter of the lower end of the first body 131 may be less than the diameter of the first mounting hole 125. As a result, the first body 131 may be inserted into the first mounting hole 125 from above, but may be located in the first mounting hole 125, since the step portion 131 d is supported upward by the supporting unit 120.
  • The second body 133 may be located under the first body 131. The second body 133 may be formed in the shape of a pipe that extends vertically. The second body 133 may be coupled between the flow channel 131 c extending from the first body 131 and a flow channel 135 c formed in the third body 135, which will be further described below. The elastic body 134, such as a coil spring, may be disposed on the outer circumferential surface of the second body 133. When the valve is operated, the elastic body 134 may be pushed upward by the third body 135. When an external force applied to the third body 135 is removed, the elastic body 134 may provide downward elastic force (restoring force) to the third body 135 such that the third body 135 returns to the initial position thereof.
  • The third body 135 is mostly located under the second body 133. However, a portion of the third body 135 may extend upward through the second body 133 such that the portion of the third body 135 is located above the second body 133. Specifically, an upwardly extending stem 135 a may be disposed proximate to the center of the third body 135. An upper end 135 b of the stem 135 a may be coupled to the gate 136. More specifically, the stem 135 a may extend upward through the center of the second body 133, which has a pipe shape. Consequently, the upper end 135 b of the stem 135 a may be located in the insertion recess 131 a of the first body 131. The gate 136 may be coupled to the upper end 135 b of the stem 135 a in the insertion recess 131 a. The gate 136 may move upward or downward to selectively open and close the flow channel 131 c.
  • The beverage passing through the first body 131 and the second body 133 from the beverage container 4 may finally be dispensed to the outside through the flow channel 135 c of the third body 135. The packing member 137 for preventing leakage of the beverage may be provided at the lower part of the third body 135.
  • In addition, a step portion 135 d may also be formed at the third body 135. As shown, the outer diameter of the upper end of the third body 135 may be greater than that of the lower end of the third body 135. The step portion 135 d may be formed by a difference in outer diameter between the upper and lower ends of the third body 135. In addition, the outer diameter of the upper end of the third body 135 may be greater than that of a second mounting hole 145 formed at the lever 140, and the outer diameter of the lower end of the third body 135 may be less than that of the second mounting hole 145. As a result, the third body 135 may be inserted into the second mounting hole 145 from above. As will be described in greater detail, when an external force is applied to the lever 140, the lever 140 may transmit the external force to the step portion 135 d such that the third body 135 moves upward.
  • The first body 131 and the packing member 132 may correspond to a stationary unit. The stationary unit may be a portion that is directly coupled to the mouth of the beverage container 5, is provided with the flow channel 131 c, and is placed in the first mounting hole 125 of the supporting unit 120. The stationary unit may remain stationary while in use.
  • The third body 135 and the gate may correspond to a moving unit. The moving unit may be a portion that moves upward and downward for selectively opening and closing the flow channel 131 c. For example, the gate 136 may close the flow channel 131 c in the insertion recess 1431 a, and then open the flow channel 131 c according to an upward movement of the moving unit, including the gate 136. When the flow channel 131 c is opened, the beverage in the beverage container 5 may flow downward through the flow channel 131 c. In addition, when the moving unit moves upward, the elastic body 134 may be compressed upward to provide a downward elastic force (restoring force) to the moving unit.
  • For reference, the second body 133 may correspond to the stationary unit or the moving part based on the design of the valve 130.
  • FIG. 5 shows a state in which the beverage container is stored in accordance with an embodiment of the present disclosure. FIG. 2 shows the front view of the inside of the door 100. FIG. 5 shows the side view of the inside of the door 100. In FIG. 5, the left side may be an inward direction of the door, and the right side may be an outward direction of the door. In the state shown in FIG. 5, the beverage in the beverage container 5 may not be dispensed to the outside.
  • The mouth 6 of the beverage container 5, from which the cap has been removed, may be inserted and coupled into the valve 130, more specifically the insertion recess 131 a formed at the upper end of the first body 1. As previously described, the thread formed at the outer circumferential surface of the mouth 6 may engage with the spiral portion 131 b formed at the inner circumferential surface of the insertion recess 131 a. As a result, the beverage container may be fixed to the valve, whereby the beverage container 5 may be prevented from falling.
  • The step portion 131 d is formed on the first body 131. The first body 131 may be supported upward by the supporting unit 120 when inserted into the first insertion hole 125 from the above.
  • The gate 136 in the insertion recess 131 a closes the flow channel 131 c of the first body 131 while covering a bottom surface of the insertion recess 131 a. Consequently, the beverage in the beverage container 5 is not discharged under the first body 131 even when the beverage is introduced into the insertion recess 131 a through the mouth 6.
  • The lever 140 may be mainly divided into two portions. The second mounting hole 145 is formed on a first portion 141. The first portion 141 may extend approximately horizontally. One end (the left end in FIG. 5) of the first portion 141 may be turnably coupled to one side of the refrigerator. Consequently, the first portion 141 may turn about a pivot 149. In this embodiment, one end of the first portion 141 is hingedly coupled to the outside surface of the supporting unit 120 (see FIG. 2). As shown, the step portion 135 d may be formed on the lower end of the third body 135 of the valve 130, and the third body 135 may extend through the second mounting hole 145 from top to bottom. When an external force directed in the outward direction of the door is applied to the lever 140 and the first portion 141 turns about the pivot 149, the external force may be transferred to the third body 135 through the step portion 135 d. As a result, the third body 135 may move upward, which will be described in more detail with reference to FIG. 6.
  • The second portion 142 may be a panel extending downward from the other end (the right end in FIG. 5) of the first portion 141. The user may apply an external force directed in the outward direction (the left direction in FIG. 5) of the door to the second portion 142, and then the lever 140 may turn about the pivot 149.
  • FIG. 6 shows a state in which the beverage in the beverage container is supplied to the outside in accordance with an embodiment of the present disclosure.
  • First, an external force directed in the outward direction (the right direction in FIG. 6) of the door may be applied to the lever 140. For example, the user may push a cup in the outward direction of the door in a state in which the side of the cup is in contact with the second portion 142 of the lever 140. When the external force directed in the outward direction of the door is applied to the second portion 142 of the lever 140 by the user's operation, the lever 140 may turn about the pivot 149 (in a counterclockwise direction in FIG. 6). According to the turning of the lever 140, the other end (the right end in FIG. 6) of the first portion 141 of the lever 140 may move upward from the position shown in FIG. 5. When moving upward, the other end of the first portion 141 may push the third body 135 upward through the step portion 135 d. As a result, the third body 135 may also move upward. Due to the upward movement of the third body 135, the stem 135 a and the gate 136 coupled to the upper end 135 b of the stem 135 a may also move upward. According to the upward movement of the gate 136, a space is generated between the gate 136 and the bottom surface of the insertion recess 131 a. As a result, the beverage in the beverage container 5 may be introduced into the flow channel 131 c through the space. The beverage introduced into the flow channel 131 c may be supplied to the outside through the second body 133 and the flow channel 135 c of the third body 135. When the user applies the external force to the lever 140 using the cup, therefore, the beverage may be directly supplied into the cup through the valve 130.
  • FIG. 7 is a flowchart showing an exemplary beverage dispensing method according to an embodiment of the present invention.
  • First, the cap of the beverage container 5 may be removed, and then the valve 130 may be coupled to the mouth 6 of the beverage container 5 (S10). At this time, the beverage container 5 may be in a state in which the beverage container 5 is not upside down, i.e. a state in which the mouth 6 is directed upward, and the valve 130 may be coupled to the mouth 6 in a state in which the valve 130 is upside down, which is the opposite of the state described with reference to FIGS. 2 to 6. That is, the mouth 6 may be coupled to the spiral portion 131 b formed at the inner circumferential surface of the insertion recess 131 a in a state in which the insertion recess 131 a of the first body 131 is directed downward. The beverage container 5 coupled to the valve 130 may be placed in the storage unit 110 in a state in which the beverage container 5 is upside down (S20). In other words, the end of the mouth 6 of the beverage container 5 and the valve 130 may be located at the bottom. The valve 130 may be inserted into the first mounting hole 125 of the supporting unit 120 from above. At this time, the step portion 131 d of the first body 131 may be caught by the supporting unit 120. As a result, the valve 130 may be placed in the first mounting hole 125 and may be supported upward by the supporting unit 120.
  • In another embodiment, the supporting unit 120 may be detachably mounted to the door 100, and the valve 130 may be coupled into the first mounting hole 125 of the supporting unit 120. The supporting unit 120, which has been separated from the door 100, may be located above the beverage container 5, which is not upside down after removal of the cap, in a state of being upside down (i.e. the fixing recess 129 is directed downward). In this state, the end of the mouth 6 of the beverage container 5 may be inserted into the fixing recess 129. Subsequently, the beverage container 5 may be rotated to couple the mouth 6 and the valve 130. After the coupling between the mouth 6 and the valve 130 is achieved, the supporting unit 120 may be turned upside down again (i.e. the fixing recess 129 is directed upward) and then mounted to the door 100.
  • When the user opens the door 100 and pushes a cup in the outward direction of the door so that the cup is in contact with the second portion 142 of the lever 140 in order to get beverage from the beverage container 5, an external force directed in the outward direction of the door may be applied to the lever 140 (S30). When the external force directed in the outward direction of the door is applied to the lever 140, the valve is operated (S40), and the beverage in the beverage container 5 may flow downward and then be dispensed into the cup (S50), as previously described with reference with FIG. 6.
  • In the refrigerator and the beverage supplying method according to the embodiments as described above, it is possible to get beverage from a bulky and heavy beverage container 5 without directly taking the beverage container 5 out of the refrigerator. Consequently, it is possible to protect children, the old, or the weak from injuries which may be caused while taking the beverage container 5 out of the refrigerator.
  • In addition, as the beverage container 5 needs not be taken out of the refrigerator by the user for consuming the beverage, and the time for the door 100 being open is reduced as compared with a conventional refrigerator. Advantageously, the overall cooling efficiency of the refrigerator is improved and power consumption is reduced.
  • Furthermore, because the beverage container 5 is stored upside down, if a carbonated beverage is contained in the beverage container 5, the evaporation of carbonic acid can be reduced.
  • Embodiments of the present disclosure enable a user to get beverage from a beverage container stored on the inside of a door of the refrigerator without taking out the beverage container.
  • Although certain preferred embodiments and methods have been disclosed herein, it will be apparent from the foregoing disclosure to those skilled in the art that variations and modifications of such embodiments and methods may be made without departing from the spirit and scope of the invention. It is intended that the invention shall be limited only to the extent required by the appended claims and the rules and principles of applicable law.

Claims (20)

What is claimed is:
1. A refrigerator comprising:
a door; and
a storage unit located the door for storing a beverage container, wherein the storage unit comprises:
a supporting unit for supporting the beverage container, the supporting unit comprising a first mounting hole;
a valve operable to be coupled to a mouth of the beverage container for selectively enabling beverage contained in the beverage container to be dispensed from the beverage container, wherein at least a portion of the valve is located in the first mounting hole; and
a lever disposed under the supporting unit and coupled to the valve, wherein, when an external force directed in the outward direction of the door is applied to the lever, the valve enables the beverage to be dispensed from the beverage container through the mouth of the beverage container.
2. The refrigerator according to claim 1, wherein:
the supporting unit comprises a fixing recess; and
an end of the mouth of the beverage container is inserted into the fixing recess.
3. The refrigerator according to claim 2, wherein:
the valve comprises an insertion recess on an upper end of the valve;
the mouth comprises an outer circumferential surface having a thread; and
the insertion recess comprises a spiral portion coupled to a thread on an inner circumferential surface of the insertion recess.
4. The refrigerator according to claim 1, wherein the upper end of the valve is located higher than a lower end of the supporting unit; and a lower end of the valve is located lower than the lower end of the supporting unit.
5. The refrigerator according to claim 4, wherein:
an outer diameter of the upper end of the valve is greater than a diameter of the first mounting hole;
an outer diameter of the lower end of the valve is less than the diameter of the first mounting hole; and
the valve is supported upward by the supporting unit when the valve is inserted into the first mounting hole from above.
6. The refrigerator according to claim 1, wherein the valve comprises:
a stationary unit directly coupled to the mouth, the stationary unit comprising a flow channel and disposed in the first mounting hole;
a moving unit configured to move upward and downward for selectively opening and closing the flow channel; and
an elastic body configured to provide a downward elastic force to the moving unit when the moving unit moves upward, and
wherein the lever is coupled to the moving unit.
7. The refrigerator according to claim 6, wherein, when the external force directed in the outward direction of the door is applied to the lever, the lever is operable to push the moving unit upward to open the flow channel and dispense beverage from the beverage container through the flow channel.
8. The refrigerator according to claim 7, wherein:
the lever turns when the external force directed in the outward direction of the door is applied to one portion of the lever; and the other portion of the lever pushes the moving unit upward when the lever turns.
9. The refrigerator according to claim 6, wherein the lever comprises:
a first portion comprising a second mounting hole, wherein one end of the first portion located in an inward direction of the door is turnably coupled to one side of the refrigerator; and
a second portion extending downward from another end of the first portion, wherein the external force directed in the outward direction of the door is applied to the second portion, and wherein the moving unit extends through the second mounting hole from top to bottom, wherein further an outer diameter of an upper end of the moving unit is greater than a diameter of the second mounting hole, and wherein further an outer diameter of a lower end of the moving unit is less than the diameter of the second mounting hole.
10. A beverage supplying, the method comprising:
coupling a valve disposed in a refrigerator to a mouth of a beverage container;
after the coupling, storing the beverage container in a storage unit formed on an inside of a door of a refrigerator;
applying an external force directed in an outward direction of the door to a lever coupled to the valve;
opening the valve in response to the applied external force directed in the outward direction of the door; and
dispensing beverage from the beverage container to an outside of the beverage container when the valve is open.
11. The beverage supplying method according to claim 10, wherein the beverage container is stored in the storage unit with the mouth directed downward.
12. A refrigerator comprising:
a door; and
a beverage dispenser disposed on an inside of the door, the beverage dispenser comprising:
a supporting unit for supporting a beverage container, the supporting unit comprising a first mounting hole; and
a valve installed in the supporting unit,
wherein the value is operable to be coupled to a mouth of the beverage container for selectively dispensing beverage therefrom to an outside of the beverage container, and wherein further at least a portion of the valve is disposed in the first mounting hole.
13. The refrigerator according to claim 12, wherein the beverage dispenser further comprises:
a lever disposed under the supporting unit and coupled to the valve, wherein, when the lever is subject to an external force, the valve enables the beverage to be dispensed from the beverage container through a mouth of the beverage container.
14. The refrigerator according to claim 12, wherein:
the valve comprises an insertion recess on an upper end of the valve;
the mouth comprises an outer circumferential surface with a thread; and
the insertion recess comprises a spiral portion coupled to a thread on an inner circumferential surface of the insertion recess.
15. The refrigerator according to claim 12, wherein:
the upper end of the valve is located higher than a lower end of the supporting unit; and a lower end of the valve is located lower than the lower end of the supporting unit.
16. The refrigerator according to claim 15, wherein:
an outer diameter of the upper end of the valve is greater than a diameter of the first mounting hole;
an outer diameter of the lower end of the valve is less than the diameter of the first mounting hole; and
the valve is supported upward by the supporting unit when the valve is inserted into the first mounting hole from above.
17. The refrigerator according to claim 12, wherein the valve comprises:
a stationary unit directly coupled to the mouth, the stationary unit comprising a flow channel and disposed in the first mounting hole;
a moving unit configured to move upward and downward for selectively opening and closing the flow channel; and
an elastic body configured to apply a downward elastic force to the moving unit when the moving unit moves upward, and
wherein the lever is coupled to the moving unit.
18. The refrigerator according to claim 17, wherein, when the external force directed in the outward direction of the door is applied to the lever, the lever pushes the moving unit upward to open the flow channel and dispense the beverage from the beverage container through the flow channel.
19. The refrigerator according to claim 18, wherein:
the lever is configured to turn when the external force directed in the outward direction of the door is applied to one portion of the lever; and the other portion of the lever is configured to push the moving unit upward when the lever turns.
20. The refrigerator according to claim 17, wherein the lever comprises:
a first portion comprising a second mounting hole, wherein one end of the first portion located in an inward direction of the door is rotatably coupled to one side of the refrigerator; and
a second portion extending downward from the other end of the first portion, wherein the external force directed in the outward direction of the door is applied to the second portion, and
wherein the moving unit extends through the second mounting hole from top to bottom, wherein an outer diameter of an upper end of the moving unit is greater than a diameter of the second mounting hole, and wherein further an outer diameter of a lower end of the moving unit is less than the diameter of the second mounting hole.
US14/879,055 2015-06-18 2015-10-08 Refrigerator and beverage supplying method using the same Abandoned US20160370104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150086323 2015-06-18
KR10-2015-0086323 2015-06-18

Publications (1)

Publication Number Publication Date
US20160370104A1 true US20160370104A1 (en) 2016-12-22

Family

ID=57587861

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/879,055 Abandoned US20160370104A1 (en) 2015-06-18 2015-10-08 Refrigerator and beverage supplying method using the same

Country Status (2)

Country Link
US (1) US20160370104A1 (en)
CN (1) CN106257224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180119821A1 (en) * 2016-10-27 2018-05-03 Bsh Hausgeraete Gmbh Refrigeration appliance with beverage dispenser and valve assembly for a container of the dispenser
US10301161B2 (en) * 2016-10-27 2019-05-28 Bsh Hausgeraete Gmbh Container-value subassembly for a beverage dispenser and refrigeration device having the container-valve subassembly
US20200009589A1 (en) * 2018-07-05 2020-01-09 Shenzhen Global Egrow E-Commerce Co., LTD Anti-backflow extrusion liquid container

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743106A (en) * 1996-05-31 1998-04-28 Daewoo Electronics Co., Ltd. Water dispenser of a refrigerator
US5791517A (en) * 1996-02-21 1998-08-11 Menachem M. Deren Beverage dispenser device
US5791523A (en) * 1995-12-19 1998-08-11 Samsung Electronics Co., Ltd. Beverage dispensing apparatus for a refrigerator
US5857596A (en) * 1996-06-29 1999-01-12 Daewoo Electronics Co., Ltd. Water dispenser of a refrigerator
US5862952A (en) * 1996-05-16 1999-01-26 Daewoo Electronics Co., Ltd. Water dispenser of a refrigerator
US20020069935A1 (en) * 2000-09-26 2002-06-13 Marco Maritan Drink dispenser device for domestic refrigerators
US20030097314A1 (en) * 2000-06-08 2003-05-22 Crisp Harry Lee Beverage disensing apparatus having fluid director
US20090008357A1 (en) * 2006-07-05 2009-01-08 Kazem Azodi Fizz retaining device for beverage containers
US8382661B2 (en) * 2008-08-22 2013-02-26 Fujifilm Corporation Endoscope sucking operation apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0109849Y1 (en) * 1994-10-21 1996-05-17 Samsung Electronics Co Ltd Water supplying device for a refrigerator
KR19980030890A (en) * 1996-10-30 1998-07-25 배순훈 Refrigerator Cook-chill System
KR19980023829U (en) * 1996-10-31 1998-07-25 양재신 Frame for electronic device installation on the bus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791523A (en) * 1995-12-19 1998-08-11 Samsung Electronics Co., Ltd. Beverage dispensing apparatus for a refrigerator
US5791517A (en) * 1996-02-21 1998-08-11 Menachem M. Deren Beverage dispenser device
US5862952A (en) * 1996-05-16 1999-01-26 Daewoo Electronics Co., Ltd. Water dispenser of a refrigerator
US5743106A (en) * 1996-05-31 1998-04-28 Daewoo Electronics Co., Ltd. Water dispenser of a refrigerator
US5857596A (en) * 1996-06-29 1999-01-12 Daewoo Electronics Co., Ltd. Water dispenser of a refrigerator
US20030097314A1 (en) * 2000-06-08 2003-05-22 Crisp Harry Lee Beverage disensing apparatus having fluid director
US20020069935A1 (en) * 2000-09-26 2002-06-13 Marco Maritan Drink dispenser device for domestic refrigerators
US20090008357A1 (en) * 2006-07-05 2009-01-08 Kazem Azodi Fizz retaining device for beverage containers
US8382661B2 (en) * 2008-08-22 2013-02-26 Fujifilm Corporation Endoscope sucking operation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180119821A1 (en) * 2016-10-27 2018-05-03 Bsh Hausgeraete Gmbh Refrigeration appliance with beverage dispenser and valve assembly for a container of the dispenser
US10301161B2 (en) * 2016-10-27 2019-05-28 Bsh Hausgeraete Gmbh Container-value subassembly for a beverage dispenser and refrigeration device having the container-valve subassembly
US10415709B2 (en) * 2016-10-27 2019-09-17 Bsh Hausgeraete Gmbh Refrigeration appliance with beverage dispenser and valve assembly for a container of the dispenser
US20200009589A1 (en) * 2018-07-05 2020-01-09 Shenzhen Global Egrow E-Commerce Co., LTD Anti-backflow extrusion liquid container

Also Published As

Publication number Publication date
CN106257224A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
US9828229B2 (en) Refrigerator and beverage supplying method using the same
KR20040084297A (en) Dispenser in refrigerator
KR101618129B1 (en) Refrigerator
US7958742B2 (en) Dispenser and refrigerator having the same
US8651598B2 (en) Accommodation container and refrigerator having the same
KR101923471B1 (en) Refrigerator
EP3401620B1 (en) Refrigerator
US20070289669A1 (en) Dispenser and refrigerator having the same
US20120042671A1 (en) Refrigerator
US8147016B2 (en) Can receiving apparatus and refrigerator having the same
US20160370104A1 (en) Refrigerator and beverage supplying method using the same
KR20100061185A (en) Refrigerator having diepenser
KR100983136B1 (en) Refrigerator with a dispenser
US20160370103A1 (en) Refrigerator having locking device for ice bucket and method for installing locking device for ice bucket
KR20080006268U (en) Refrigerator
KR100504917B1 (en) Dispenser in refrigerator
KR101271961B1 (en) A fixing structure for vegetables room door in refrigerator
KR100951286B1 (en) Refrigerator
KR20160040802A (en) Refriferator
KR20030041351A (en) structure for decrease temperature difference in storage of kim-chi refrigerator
KR100688659B1 (en) Refrigerator
KR100829124B1 (en) Kimchi Refrigerator with Automatic Rice Dispenser
KR100430217B1 (en) Water tank for dispenser of refrigerator
KR101153136B1 (en) Water supply structure for refrigerator
KR20070111629A (en) Refrigerator

Legal Events

Date Code Title Description
AS Assignment

Owner name: DONGBU DAEWOO ELECTRONICS CORPORATION, KOREA, REPU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YANG, SUNG JIN;REEL/FRAME:036762/0118

Effective date: 20150930

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载