US20160326563A1 - Recombinant n-glycosylated proteins from procaryotic cells - Google Patents
Recombinant n-glycosylated proteins from procaryotic cells Download PDFInfo
- Publication number
- US20160326563A1 US20160326563A1 US15/159,535 US201615159535A US2016326563A1 US 20160326563 A1 US20160326563 A1 US 20160326563A1 US 201615159535 A US201615159535 A US 201615159535A US 2016326563 A1 US2016326563 A1 US 2016326563A1
- Authority
- US
- United States
- Prior art keywords
- recombinant
- ssp
- protein
- glycosylated
- glycosylation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091006036 N-glycosylated proteins Proteins 0.000 title claims abstract description 10
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 126
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 120
- 150000001413 amino acids Chemical group 0.000 claims abstract description 32
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 29
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 28
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 16
- 241000589875 Campylobacter jejuni Species 0.000 claims description 57
- 108091035707 Consensus sequence Proteins 0.000 claims description 35
- 230000004988 N-glycosylation Effects 0.000 claims description 34
- 241000894006 Bacteria Species 0.000 claims description 33
- 108010089072 Dolichyl-diphosphooligosaccharide-protein glycotransferase Proteins 0.000 claims description 32
- 241000589876 Campylobacter Species 0.000 claims description 29
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 claims description 29
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 claims description 29
- 102000051366 Glycosyltransferases Human genes 0.000 claims description 21
- 108700023372 Glycosyltransferases Proteins 0.000 claims description 21
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 claims description 18
- 150000002482 oligosaccharides Chemical class 0.000 claims description 17
- 150000002632 lipids Chemical class 0.000 claims description 15
- 229920001542 oligosaccharide Polymers 0.000 claims description 15
- 239000012528 membrane Substances 0.000 claims description 14
- 241000607142 Salmonella Species 0.000 claims description 7
- 241000588722 Escherichia Species 0.000 claims description 6
- 241000589989 Helicobacter Species 0.000 claims description 6
- 241000589516 Pseudomonas Species 0.000 claims description 6
- 241000607768 Shigella Species 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 241000894007 species Species 0.000 claims description 6
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 5
- 108091005608 glycosylated proteins Proteins 0.000 claims description 5
- 102000035122 glycosylated proteins Human genes 0.000 claims description 5
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 239000003814 drug Substances 0.000 abstract description 12
- 239000013598 vector Substances 0.000 abstract description 12
- 235000018102 proteins Nutrition 0.000 description 100
- 210000004027 cell Anatomy 0.000 description 79
- 230000013595 glycosylation Effects 0.000 description 55
- 238000006206 glycosylation reaction Methods 0.000 description 48
- 241000588724 Escherichia coli Species 0.000 description 29
- 235000001014 amino acid Nutrition 0.000 description 26
- 229940024606 amino acid Drugs 0.000 description 25
- 230000001580 bacterial effect Effects 0.000 description 18
- 108090000765 processed proteins & peptides Proteins 0.000 description 16
- 239000013612 plasmid Substances 0.000 description 14
- 108010076504 Protein Sorting Signals Proteins 0.000 description 13
- 102000009016 Cholera Toxin Human genes 0.000 description 12
- 108010049048 Cholera Toxin Proteins 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 11
- 150000004676 glycans Chemical class 0.000 description 11
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 9
- 239000002953 phosphate buffered saline Substances 0.000 description 9
- 102000004196 processed proteins & peptides Human genes 0.000 description 9
- 230000035772 mutation Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 108010079246 OMPA outer membrane proteins Proteins 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000000284 extract Substances 0.000 description 7
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 7
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 6
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 6
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 125000003977 lipoyl group Chemical group S1SC(C([H])([H])C(C(C(C(=O)[*])([H])[H])([H])[H])([H])[H])([H])C([H])([H])C1([H])[H] 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002255 vaccination Methods 0.000 description 6
- 229960005486 vaccine Drugs 0.000 description 6
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 5
- 101710116435 Outer membrane protein Proteins 0.000 description 5
- 241001138501 Salmonella enterica Species 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 235000009582 asparagine Nutrition 0.000 description 5
- 229960001230 asparagine Drugs 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 238000003119 immunoblot Methods 0.000 description 5
- 210000001322 periplasm Anatomy 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 230000000069 prophylactic effect Effects 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 108090000288 Glycoproteins Proteins 0.000 description 4
- 102000003886 Glycoproteins Human genes 0.000 description 4
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 4
- 229930040373 Paraformaldehyde Natural products 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 229920006008 lipopolysaccharide Polymers 0.000 description 4
- 229920002866 paraformaldehyde Polymers 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 108010077805 Bacterial Proteins Proteins 0.000 description 3
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 3
- 108010067390 Viral Proteins Proteins 0.000 description 3
- 125000003275 alpha amino acid group Chemical group 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 229940009098 aspartate Drugs 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 238000010166 immunofluorescence Methods 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 239000012130 whole-cell lysate Substances 0.000 description 3
- UBOKASXZHPZFRZ-UHFFFAOYSA-N 2-phenyl-1h-indole-4,6-diamine Chemical compound N1C2=CC(N)=CC(N)=C2C=C1C1=CC=CC=C1 UBOKASXZHPZFRZ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108020000946 Bacterial DNA Proteins 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 108010058643 Fungal Proteins Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 108010013639 Peptidoglycan Proteins 0.000 description 2
- 102220485915 Putative uncharacterized protein DHRS4-AS1_C20S_mutation Human genes 0.000 description 2
- 102000004879 Racemases and epimerases Human genes 0.000 description 2
- 108090001066 Racemases and epimerases Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000051 modifying effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241001167018 Aroa Species 0.000 description 1
- 101100136076 Aspergillus oryzae (strain ATCC 42149 / RIB 40) pel1 gene Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108010071134 CRM197 (non-toxic variant of diphtheria toxin) Proteins 0.000 description 1
- 241000589877 Campylobacter coli Species 0.000 description 1
- 101100339292 Campylobacter jejuni subsp. jejuni serotype O:2 (strain ATCC 700819 / NCTC 11168) hisJ gene Proteins 0.000 description 1
- 241000589986 Campylobacter lari Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102100030497 Cytochrome c Human genes 0.000 description 1
- 108010075031 Cytochromes c Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101100491986 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) aromA gene Proteins 0.000 description 1
- 108010092408 Eosinophil Peroxidase Proteins 0.000 description 1
- 102100028471 Eosinophil peroxidase Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 241000272496 Galliformes Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- -1 IgM Proteins 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 102000002568 Multienzyme Complexes Human genes 0.000 description 1
- 108010093369 Multienzyme Complexes Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108700028353 OmpC Proteins 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010090127 Periplasmic Proteins Proteins 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 229940124842 Salmonella vaccine Drugs 0.000 description 1
- 108091058545 Secretory proteins Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000607764 Shigella dysenteriae Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 150000004716 alpha keto acids Chemical class 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 101150037081 aroA gene Proteins 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 150000002031 dolichols Chemical class 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002101 electrospray ionisation tandem mass spectrometry Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 244000078673 foodborn pathogen Species 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- QPJBWNIQKHGLAU-IQZHVAEDSA-N ganglioside GM1 Chemical compound O[C@@H]1[C@@H](O)[C@H](OC[C@H](NC(=O)CCCCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 QPJBWNIQKHGLAU-IQZHVAEDSA-N 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 101150026046 iga gene Proteins 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000074 matrix-assisted laser desorption--ionisation tandem time-of-flight detection Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 239000002062 molecular scaffold Substances 0.000 description 1
- 239000012120 mounting media Substances 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 101150040383 pel2 gene Proteins 0.000 description 1
- 101150050446 pelB gene Proteins 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 239000012056 semi-solid material Substances 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229940007046 shigella dysenteriae Drugs 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/005—Glycopeptides, glycoproteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/205—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Campylobacter (G)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/25—Shigella (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/034—Fusion polypeptide containing a localisation/targetting motif containing a motif for targeting to the periplasmic space of Gram negative bacteria as a soluble protein, i.e. signal sequence should be cleaved
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to recombinant N-glycosylated proteins, comprising one or more introduced N-glycosylated optimized amino acid consensus sequence(s), nucleic acids encoding these proteins as well as corresponding vectors and host cells.
- the present invention is directed to the use of said proteins, nucleic acids, vectors and host cells for preparing medicaments.
- the present invention provides methods for producing said proteins.
- N-linked protein glycosylation is an essential and conserved process occurring in the endoplasmic reticulum of eukaryotic organisms. It is important for protein folding, oligomerization, stability, quality control, sorting and transport of secretory and membrane proteins (Helenius, A., and Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019-1049).
- Protein glycosylation has a profound influence on the antigenicity, the stability and the half-life of a protein.
- glycosylation can assist the purification of proteins by chromatography, e.g. affinity chromatography with lectin ligands bound to a solid phase interacting with glycosylated moieties of the protein. It is therefore established practice to produce many glycosylated proteins recombinantly in eukaryotic cells to provide biologically and pharmaceutically useful glycosylation patterns.
- European Patent Application No. 03 702 276.1 (European Patent 1 481 057), an earlier invention of the present inventors, teaches a procaryotic organism into which is introduced a nucleic acid encoding for (i) specific glycosyltransferases for the assembly of an oligosaccharide on a lipid carrier, (ii) a recombinant target protein comprising a consensus sequence “N-X-S/T”, wherein X can be any amino acid except proline, and (iii) an oligosaccharyl transferase of C. jejuni (OTase) that covalently links said oligosaccharide to the consensus sequence of the target protein.
- Said procaryotic organism produces N-glycans with a specific structure which is defined by the type of the specific glycosyltransferases.
- N-glycosylation consensus sequence in a protein does allow for the N-glycosylation of recombinant target proteins in procaryotic organisms comprising the oligosaccharyl transferase (OTase) of C. jejuni , the N-glycosylation of some target proteins is often inefficient.
- the object of the present invention is to provide proteins as well as means and methods for producing such proteins having an optimized efficiency for N-glycosylation that can be produced in procaryotic organisms in vivo.
- Another object of the present invention aims at the more efficient introduction of N-glycans into recombinant proteins for modifying antigenicity, stability, biological, prophylactic and/or therapeutic activity of said proteins.
- a further object is the provision of a host cell that efficiently displays recombinant N-glycosylated proteins of the present invention on its surface.
- the present invention provides a recombinant N-glycosylated protein, comprising one or more of the following N-glycosylated optimized amino acid sequence(s):
- X and Z may be any natural amino acid except Pro, and wherein at least one of said N-glycosylated partial amino acid sequence(s) is introduced.
- partial amino acid sequence(s) as it is used in the context of the present invention will also be referred to as “optimized consensus sequence(s)”.
- the optimized consensus sequence is N-glycosylated by the oligosaccharyl transferase (OST, OTase) from Campylobacter spp., preferably C. jejuni , much more efficiently than the regular consensus sequence “N-X-S/T” known in the prior art.
- the term. “recombinant N-glycosylated protein” refers to any heterologous poly- or oligopeptide produced in a host cell that does not naturally comprise the nucleic acid encoding said protein. In the context of the present invention this term refers to a protein produced recombinantly in any host cell, e.g. an eukaryotic or prokaryotic host cell, preferably a procaryotic host cell, e.g.
- Escherichia ssp. Campylobacter ssp., Salmonella ssp., Shigella ssp., Helicobacter ssp., Pseudomonas ssp., Bacillus ssp., more preferably Escherichia coli, Campylobacter jejuni, Salmonella typhimurium etc., wherein the nucleic acid encoding said protein has been introduced into said host cell and wherein the encoded protein is N-glycosylated by the OTase from Campylobacter spp., preferably C. jejuni , said transferase enzyme naturally occurring in or being introduced recombinantly into said host cell.
- D, E, N, S and T denote aspartic acid, glutamic acid, asparagine, serine, and threonine, respectively.
- Proteins according to the invention differ from natural or prior art proteins in that one or more of the optimized consensus sequence(s) D/E-X-N-Z-S/T is/are introduced and N-glycosylated. Hence, the proteins of the present invention differ from the naturally occurring.
- C. jejuni proteins which also contain the optimized consensus sequence but do not comprise any additional (introduced) optimized consensus sequences.
- the introduction of the optimized consensus sequence can be accomplished by the addition, deletion and/or substitution of one or more amino acids.
- the addition, deletion and/or substitution of one or more amino acids for the purpose of introducing the optimized consensus sequence can be accomplished by chemical synthetic strategies well known to those skilled in the art such as solid phase-assisted chemical peptide synthesis.
- the proteins of the present invention can be prepared by standard recombinant techniques.
- the proteins of the present invention have the advantage that they may be produced with high efficiency and in any procaryotic host comprising a functional pgl operon from Campylobacter spp., preferably C. jejuni .
- Preferred alternative OTases from Campylobacter spp. for practicing the aspects and embodiments of the present invention are Campylobacter coli and Campylobacter lari (see Szymanski, C. M. and Wren, B. W. (2005). Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3: 225-237).
- the functional pgl operon may be present naturally when said procaryotic host is Campylobacter spp., preferably C. jejuni .
- the pgl operon can be transferred into cells and remain functional in said new cellular environment.
- the term “functional pgl operon from Campylobacter spp., preferably C. jejuni ” is meant to refer to the cluster of nucleic acids encoding the functional oligosaccharyl transferase (OTase) of Campylobacter spp., preferably C. jejuni , and one or more specific glycosyltransferases capable of assembling an oligosaccharide on a lipid carrier, and wherein said oligosaccharide can be transferred from the lipid carrier to the target protein having one or more optimized amino acid sequence(s): D/E-X N-Z-S/T by the OTase.
- OTase functional oligosaccharyl transferase
- the term “functional pgl operon from Campylobacter spp., preferably C. jejuni ” in the context of this invention does not necessarily refer to an operon as a singular transcriptional unit.
- the term merely requires the presence of the functional components for N-glycosylation of the recombinant protein in one host cell. These components may be transcribed as one or more separate mRNAs and may be regulated together or separately.
- the term also encompasses functional components positioned in genomic DNA and plasmid(s) in one host cell. For the purpose of efficiency, it is preferred that all components of the functional pgl operon are regulated and expressed simultaneously.
- oligosaccharyl transferase should originate from Campylobacter spp., preferably C. jejuni , and that the one or more specific glycosyltransferases capable of assembling an oligosaccharide on a lipid carrier may originate from the host cell or be introduced recombinantly into said host cell, the only functional limitation being that the oligosaccharide assembled by said glycosyltransferases can be transferred from the lipid carrier to the target protein having one or more optimized consensus sequences by the OTase.
- the selection of the host cell comprising specific glycosyltransferases naturally and/or incapacitating specific glycosyltransferases naturally present in said host as well as the introduction of heterologous specific glycosyltransferases will enable those skilled in the art to vary the N-glycans bound to the optimized N-glycosylation consensus site in the proteins of the present invention.
- the present invention provides for the individual design of N-glycan-patterns on the proteins of the present invention.
- the proteins can therefore be individualized in their N-glycan pattern to suit biological, pharmaceutical and purification needs.
- the proteins of the present invention may comprise one but also more than one, preferably at least two, preferably at least 3, more preferably at least 5 of said N-glycosylated optimized amino acid sequences.
- N-glycosylated optimized amino acid sequence(s) in the proteins of the present invention can be of advantage for increasing their antigenicity, increasing their stability, affecting their biological activity, prolonging their biological half-life and/or simplifying their purification.
- the optimized consensus sequence may include any amino acid except proline in position(s) X and Z.
- any amino acids is meant to encompass common and rare natural amino acids as well as synthetic amino acid derivatives and analogs that will still allow the optimized consensus sequence to be N-glycosylated by the OTase.
- Naturally occurring common and rare amino acids are preferred for X and Z.
- X and Z may be the same or different.
- X and Z may differ for each optimized consensus sequence in a protein according to the present invention.
- the N-glycan bound to the optimized consensus sequence will be determined by the specific glycosyltransferases and their interaction when assembling the oligosaccharide on a lipid carrier for transfer by the OTase.
- Those skilled in the art can design the N-glycan by varying the type(s) and amount of the specific glycosyltransferases present in the desired host cell.
- N-glycans are defined herein as mono-, oligo- or polysaccharides of variable compositions that are linked to an ⁇ -amide nitrogen of an asparagine residue in a protein via an N-glycosidic linkage.
- the N-glycans transferred by the OTase are assembled on an undecaprenol-pyrophosphate lipid-anchor that is present in the cytoplasmic membrane of gram-negative or positive bacteria. They are involved in the synthesis of O antigen, O polysaccharide and peptidoglycan (Bugg, T. D., and Brandish, P. E. (1994).
- the recombinant protein of the present invention comprises one or more N-glycans selected from the group of N-glycans from Campylobacter spp., preferably C. jejuni , the N-glycans derived from oligo- and polysaccharides transferred to O antigen forming O polysaccharide in Gram-negative bacteria or capsular polysaccharides from Gram-positive bacteria, preferably: P. aeruginosa O9, O11; E. coli O 7, O9, O16, O157 and Shigella dysenteriae O1 and engineered variants thereof obtained by inserting or deleting glycosyltransferases and epimerases affecting the polysaccharide structure.
- the recombinant protein of the present invention comprises two or more different N-glycans.
- different N-glycans on the same protein can prepared by controlling the timing of the expression of specific glycosyltransferases using early or late promoters or introducing factors for starting, silencing, enhancing and/or reducing the promoter activity of individual specific glycosyltransferases.
- Suitable promoters and factors governing their activity are available to those in the art routinely and will not be discussed further.
- the origin of the recombinant protein of the invention is derived from mammalian, bacterial, viral, fungal or plant proteins. More preferably, the protein is derived from mammalian, most preferably human proteins.
- the recombinant protein is derived from a bacterial, viral or fungal protein.
- the present invention provides for recombinant proteins wherein either the protein and/or the N-glycan(s) is (are) therapeutically and/or prophylactically active.
- the introduction of at least one optimized and N-glycosylated consensus sequence can modify or even introduce therapeutic and/or prophylactic activity in a protein.
- the introduced N-glycosylation(s) may have a modifying effect on the proteins biological activity and/or introduce new antigenic sites and/or may mask the protein to evade degrading steps and/or increase the half-life.
- the recombinant proteins of the present invention can be efficiently targeted to the outer membrane and/or surface of host cells, preferably bacteria, more preferably gram-negative bacteria.
- the recombinant protein of the invention further comprises at least one polypeptide sequence capable of targeting said recombinant protein to the outer membrane and/or cell surface of a bacterium, preferably a gram-negative bacterium.
- the recombinant protein of the invention is one, wherein said targeting polypeptide sequence is selected from the group consisting of type II signal peptides (Paetzel, M., Karla, A., Strynadka, N.C., and Dalbey, R. E. 2002. Signal peptidases. Chem Rev 102: 4549-4580.) or outer membrane proteins (reviewed in Wernerus, H., and Stahl, S. 2004. Biotechnological applications for surface-engineered bacteria. Biotechnol Appl Biochem 40: 209-228.), preferably selected from the group consisting of the full length protein or the signal peptides of OmpH1 from C. jejuni , JlpA from C.
- type II signal peptides Paetzel, M., Karla, A., Strynadka, N.C., and Dalbey, R. E. 2002. Signal peptidases. Chem Rev 102: 4549-4580.
- outer membrane proteins from E. coli preferably OmpS, OmpC, OmpA, OprF, PhoE, LamB, Lpp'OmpA (a fusion protein for surface display technology, see Francisco, J. A., Earhart, C. F., and Georgiou, G. 1992. Transport and anchoring of beta-lactamase to the external surface of Escherichia coli . Proc Natl Acad Sci USA 89: 2713-2717.), and the Inp protein from Pseudomonas aeruginosa.
- the present invention relates to a nucleic acid encoding a recombinant protein, according to the invention.
- said nucleic acid is a mRNA, a DNA or a PNA, more preferably a mRNA or a DNA, most preferably a DNA.
- the nucleic acid may comprise the sequence coding for said protein and, in addition, other sequences such as regulatory sequences, e.g. promoters, enhancers, stop codons, start codons and genes required to regulate the expression of the recombinant protein via the mentioned regulatory sequences, etc.
- nucleic acid encoding a recombinant protein according to the invention is directed to a nucleic acid comprising said coding sequence and optionally any further nucleic acid sequences regardless of the sequence information as long as the nucleic acid is capable of producing the recombinant protein of the invention in a host cell containing a functional pgl operon from Campylobacter spp., preferably C. jejuni .
- the present invention provides isolated and purified nucleic acids operably linked to a promoter, preferably linked to a promoter selected from the group consisting of known inducible and constitutive prokaryotic promoters, more preferably the tetracycline promoter, the arabinose promoter, the salicylate promoter, lac-, trc-, and tac promotors (Baneyx, F. (1999). Recombinant protein expression in Escherichia coli . Curr Opin Biotechnol 10, 411-421; Billman-Jacobe, H. (1996). Expression in bacteria other than Escherichia coli . Curr Opin Biotechnol 7, 500-504.). Said operably linked nucleic acids can be used for, e.g. vaccination.
- another aspect of the present invention relates to a host cell comprising a nucleic acid and/or a vector according to the present invention.
- the type of host cell is not limiting as long as it accommodates a functional pgl operon from C. jejuni and one or more nucleic acids coding for recombinant target protein(s) of the present invention.
- Preferred host cells are prokaryotic host cells, more preferably bacteria, most preferably those selected from the group consisting of Escherichia ssp., Campylobacter ssp., Salmonella ssp., Shigella ssp., Helicobacter ssp., Pseudomonas ssp., Bacillus ssp., preferably Escherichia coli , more preferably E. coli strains Top10, W3110, CLM24, BL21, SCM6 and SCM7 (Feldman et al., (2005). Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli . Proc.
- the host cell according to the invention is one that is useful for the targeting to the outer membrane and/or surface display of recombinant proteins according to the invention, preferably one, wherein said host cell is a recombinant gram-negative bacterium having:
- the host cell for the above embodiment is preferably selected from the group consisting of Escherichia ssp., Campylobacter ssp., Shigella ssp, Helicobacter ssp. and Pseudomonas ssp., Salmonella ssp., preferably E. coli , more preferably E. coli strains Top10, W3110, CLM24, BL21, SCM6 and SCM7, and S. enterica strains SL3261, SL3749 and SL3261 ⁇ waaL. (see Hoiseth, S. K., and Stocker, B. A. 1981. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines.
- proteins of the present invention may have a therapeutic or prophylactic activity by themselves and/or due to the introduced N-glycosylation′ sites, they can be used for the preparation of a medicament.
- the type of protein for practicing the invention is not limited and, therefore, proteins of the invention such as EPO, IFN-alpha, TNFalpha, IgG, IgM, IgA, interleukins, cytokines, viral and bacterial proteins for vaccination like C. jejuni proteins such as HisJ (Cj0734c), AcrA (Cj0367c), OmpH1 (Cj0982c), Diphteria toxin (CRM197), Cholera toxin, P.
- aeruginosa exoprotein to name just a few, and having introduced therein the optimized N-glycosylated consensus sequence are useful for preparing a medicament (Wyszynska, A., Raczko, A., Lis, M., and Jagusztyn-Krynicka, E. K. (2004). Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter . Vaccine 22, 1379-1389).
- nucleic acids and/or vectors according to the invention are also useful for the preparation of a medicament, preferably for use in gene therapy.
- a host cell according to the invention preferably one that has a phenotype comprising an N-glycosylated recombinant protein of the invention that is located in and/or on the outer membrane of a bacterium, preferably a gram-negative bacterium, more preferably one of the above-listed gram-negative bacteria, is particularly useful for the preparation of a medicament.
- a protein of the invention is used for the preparation of a medicament for the therapeutic and/or prophylactic vaccination of a subject in need thereof.
- the present invention relates to the use of a nucleic acid and/or a vector according to the invention for the preparation of a medicament for the therapeutic and/or prophylactic vaccination of a subject in need thereof, preferably by gene therapy.
- the host cells of the invention displaying said N-glycosylated recombinant proteins are particularly useful for preparing vaccines, because the displayed N-glycosylated proteins are abundantly present on the host cell's surface and well accessible by immune cells, in particular their hydrophilic N-glycans, and because the host cells have the added effect of an adjuvant, that, if alive, may even replicate to some extent and amplify its vaccination effects.
- the host cell for practicing the medical aspects of this invention is an attenuated or killed host cell.
- Another advantage of the use of the inventive host cells for preparing medicaments, preferably vaccines, is that they induce IgA antibodies due to the cellular component.
- said host cells are used according to the invention for inducing IgA antibodies in an animal, preferably a mammal, a rodent, ovine, equine, canine, bovine or a human.
- said subject in need of vaccination is avian, mammalian or fish, preferably mammalian, more preferably a mammal selected from the group consisting of cattle, sheep, equines, dogs, cats, and humans, most preferably humans.
- Fowls are also preferred.
- a further aspect of the present invention relates to a pharmaceutical composition, comprising at least one protein, at least one nucleic acid, a least one vector and/or at least one host cell according to the invention.
- a pharmaceutical composition comprising at least one protein, at least one nucleic acid, a least one vector and/or at least one host cell according to the invention.
- the preparation of medicaments comprising proteins or host cells, preferably attenuated or killed host cells, and the preparation of medicaments comprising nucleic acids and/or vectors for gene therapy are well known in the art.
- the preparation scheme for the final pharmaceutical composition and the mode and details of its administration will depend on the protein, the host cell, the nucleic acid and/or the vector employed.
- the pharmaceutical composition of the invention comprises a pharmaceutically acceptable excipient, diluent and/or adjuvant.
- the present invention provides for a pharmaceutical composition
- a pharmaceutical composition comprising at least one of the following, (i) a recombinant protein, a host cell, a nucleic acid and/or a recombinant vector being/encoding/expressing a recombinant protein according to the present invention, and (ii) a pharmaceutically acceptable excipient, diluent and/or adjuvant.
- excipients Suitable excipients, diluents and/or adjuvants are well-known in the art.
- An excipient or diluent may be a solid, semi-solid or liquid material which may serve as a vehicle or medium for the active ingredient.
- An excipient or diluent may be a solid, semi-solid or liquid material which may serve as a vehicle or medium for the active ingredient.
- One of ordinary skill in the art in the field of preparing compositions can readily select the proper form and mode of administration depending upon the particular characteristics of the product selected, the disease or condition to be treated, the stage of the disease or condition, and other relevant circumstances ( Remington's Pharmaceutical Sciences , Mack Publishing Co. (1990)).
- the proportion and nature of the pharmaceutically acceptable diluent or excipient are determined by the solubility and chemical properties of the pharmaceutically active compound selected, the chosen route of administration, and standard pharmaceutical practice.
- the pharmaceutical preparation may be adapted for oral, parenteral or topical use and may be administered to the patient in the form of tablets, capsules, suppositories, solution, suspensions, or the like.
- the pharmaceutically active compounds of the present invention while effective themselves, can be formulated and administered in the form of their pharmaceutically acceptable salts, such as acid addition salts or base addition salts, for purposes of stability, convenience of crystallization, increased solubility, and the like.
- a further aspect of the present invention is directed to a method for producing N-linked glycosylated proteins, comprising the steps of:
- the target protein is one of the above described recombinant proteins according to the invention.
- the functional pgl operon from Campylobacter spp. preferably C. jejuni , comprises nucleic acids coding for
- the present invention relates to a method for preparing a host cell according to the invention comprising the steps of:
- the recombinant procaryotic organism or host cell is preferably selected from the group of bacteria consisting of Escherichia ssp., Campylobacter ssp., Salmonella ssp., Shigella ssp., Helicobacter ssp., Pseudomonas ssp., Bacillus ssp., preferably Escherichia coli , preferably E. coli strains Top10, W3110, CLM24, BL21, SCM6 and SCM7, and S. enterica strains SL3261, SL3749 and SL3261 ⁇ waaL.
- Another preferred method for producing, isolating and/or purifying a recombinant protein according to the invention comprises the steps of:
- Exemplary methods for removing the outer membrane of a cell are suitable enzymatic treatment methods, osmotic shock detergent solubilisation and the French press method.
- the present invention relates to a method, wherein recombinant or natural specific glycosyltransferases from species other than Campylobacter spp., preferably C. jejuni , are selected from the group of glycosyltransferases and epimerases originating from bacteria, archea, and/or eukaryota that can be functionally expressed in said host cell.
- FIG. 1 illustrates the N-glycosylation of Lip proteins derived from constructs A to C (see example 1).
- E. coli Top 10 cells carrying a functional pgl operon from C. jejuni (Wacker et al., 2002, supra) and a plasmid coding for constructs A (lane 2), B (lane 1), and C (lane 3) or a mutant of construct C with the mutation D121A (lane 4). Proteins were expressed and purified from periplasmic extracts. Shown is the SDS-PAGE and Coomassie brilliant blue staining of the purified protein fractions.
- FIG. 2 shows the N-glycosylation analysis of the different proteins that were analyzed for the sequence specific N-glycosylation by the C. jejuni pgl operon (Wacker et al., 2002, supra) in CLM24 cells (Feldman et al., (2005). Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli . Proc. Natl. Acad. Sci. USA 102, 3016-3021) or Top10 cells (panel E lanes 1-6) or SCM7 cells (Alaimo, C., Catrein, I., Morf, L., Marolda, C.
- N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15, 361-367), whereas the bottom panels show immunoblots probed with R12 antiserum (Wacker et al., 2002, supra). + and ⁇ indicate the presence of the functional or mutant pgl operon in the cells.
- Panel A contains samples of the soluble wildtype AcrA with the pelB signal sequence and the hexa histag (lanes 1, 2), AcrA-N273Q (lane 3, 4), and AcrA-D121A (lane 5).
- Panel B AcrA (lanes 1, 2), AcrA-T145D (lane 3), AcrA-N123Q-N273Q-T145D (lanes 4, 5).
- Panel C AcrA-F115D-T145D (lanes 1, 2), AcrA-N123Q-N273Q-N272D (lanes 3, 4).
- Panel D AcrA-N273Q (lanes 1, 2), AcrA-N273Q-F122P (lanes 3, 4).
- Panel E CtxB (lanes 1, 2), CtxB-W88D (lanes 3, 4), CtxB-Q56/DSNIT (lanes 5, 6), and CtxB-W88D-Q56/DSNIT.
- FIG. 3 shows the engineering of multiple glycosylation sites in OmpH1.
- the ⁇ waaL strain SCM6 was co-transformed with plasmid pACYCpgl (encoding entire pgl locus) and plasmids expressing wild type OmpH1 (lane 1), OmpH1 N139S -myc (lane 2), OmpH1 KGN ⁇ NIT, HFGDD ⁇ DSNIT -myc (lane 3), OmpH1 RGD ⁇ NIT, HFGDD ⁇ DSNIT -myc (lane 4), OmpH1 KGN ⁇ NIT, RGD ⁇ NIT -myc (lane 5), OmpH1 KGN ⁇ NIT, RGD ⁇ NIT, HFGDD ⁇ DSNIT -myc (lane 6) or OmpH1 RGD ⁇ NIT,V83T -myc (lane 7).
- the cells were grown aerobically, induced with 0.5% arabinose for 3 hours prior to analysis.
- Whole cell lysates were TCA precipitated after equalizing the optical density of the cultures as described in the materials and methods section.
- the proteins were separated by 15% SDS-PAGE and transferred onto a PVDF membrane.
- First panel immunoblot of whole cell lysates probed with anti-myc tag antibodies.
- Bottom panel immunoblot of whole cell lysates probed with glycan-specific antiserum.
- the positions of unglycosylated- and glycosylated OmpH1 are indicated on the right.
- FIG. 4 Fluorescence microscopy of cells expressing various OmpH1 variants.
- Cultures of E. coli strains CLM24 or SCM6 containing the expression plasmid for the wild type OmpH1 and its variants were equalized to OD 600 of 0.25/ml.
- Cells were washed two times with phosphate-buffered saline (PBS), pH 7.4 and 100 ⁇ l cell suspensions was dropped onto gelatinized glass slides and incubated at room temperature (RT) for 30 min inside a humidified chamber. All subsequent steps in the whole-cell immunofluorescence labeling were done at room temperature inside a humidified chamber.
- PBS phosphate-buffered saline
- RT room temperature
- the unbound cells were removed and rest was fixed with 4% paraformaldehyde containing PBS for 30 min at RT. Importantly, paraformaldehyde is considered not to permeabilize cells but keeping the association by membranes intact.
- Fixed cells were washed two times with PBS and resuspended blocking buffer containing 5% BSA in PBS. After blocking, the cells were incubated with anti-myc monoclonal mouse IgG (1:50, Calbiochem) and/or anti-glycan antiserum (1:4000) for 1 h in 100 ⁇ l of PBS containing 5% BSA.
- the cells were washed three times with 100 ⁇ l of PBS for 5 min each and incubated with secondary anti-rabbit antibody conjugated to FITC (1:250, Jackson Immunoresearch Laboratories) and/or anti-mouse antibody conjugated to Cy3 (1:250, Jackson Immunoresearch Laboratories) for 1 h in 100 ⁇ l of PBS containing 5% BSA. If required, 4, 6-diamino-2-phenylindole (DAPI) (Sigma) (0.5 ⁇ g/ml) was added at the time of secondary antibody incubation to stain for bacterial DNA.
- DAPI 6-diamino-2-phenylindole
- the secondary antibody was rinsed from the cells PBS, and coverslips were mounted on slides by using vectashield (Vector Laboratories) mounting medium and sealed with nail polish. Fluorescence microscopy was performed by the using an Axioplan2 microscope (Carl Zeiss). Images were combined by using Adobe Photoshop, version CS2.
- C. jejuni glycoprotein AcrA is a periplasmic lipoprotein of 350 amino acid residues. It has been shown that secretion to the periplasm but not lipid-anchoring is a prerequisite for glycosylation (Nita-Lazar et al., 2005, supra).
- the signal for export can either be the native AcrA signal sequence or the heterologous PelB signal when expressed in E. coli .
- N117, N123, N147, N273, N274 the same two ones are used in C. jejuni and E.
- the elongated molecule contains three linearly arranged subdomains: an ⁇ -helical, anti-parallel coiled-coil which is held together at the base by a lipoyl domain, which is followed by a six-stranded ⁇ -barrel domain.
- the 23-28 residues at the N-terminus and 95-101 residues in the C-terminus are unstructured in the crystals.
- MexA and AcrA protein sequences are 29.3% identical and 50% similar. Thus, the two proteins likely exhibit a similar overall fold.
- lipoyl domains similar to MexA of P. aeruginosa and accordingly also in AcrA of C. jejuni form a compact protein that can be, individually expressed in E. coli (reviewed by Berg, A., and de Kok, A. (1997). 2-Oxo acid dehydrogenase multienzyme complexes. The central role of the lipoyl domain. Biol. Chem. 378, 617-634). To check which acceptor peptide sequence was required for N-glycosylation by the pgl machinery in E. coli the lipoyl domain of AcrA was taken. It was used as a molecular scaffold to transport peptides of different lengths to the periplasm and present them to the pgl machinery in vivo.
- a plasmid coding for the lipoyl domain was constructed and N-terminally fused to the signal sequence of OmpA (Choi, J. H., and Lee, S. Y. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli . Appl Microbiol Biotechnol 64, 625-635) and C-terminally to a hexa histag. Cloning was performed to place the gene expression under the control of the arabinose promoter. For the Lip domain borders amino acid positions were chosen that appeared at the same positions as the domain borders of the Lipoyl domain part in MexA.
- N-glycan stretches of the sequence were inserted between the two hammerhead-like parts of the Lip domain.
- the stretches consisted of sequences comprising the N-glycosylation site N123 of C. jejuni AcrA.
- the resulting open reading frames consisted of the sequences coding for the OmpA signal sequence, the N-terminal hammerhead-like part of AcrA (D60-D95, the numbering of the amino acids refers to the mature AcrA polypeptide sequence numbering), the different stretches containing the native N123 glycosylation site of AcrA (see below), the C-terminal hammerhead-like part of AcrA-Lip (L167-D210) and the C-terminal his-tag.
- Construct A contains A118-S130 resulting in a protein sequence of:
- sequence 1 MKKTAIAIAVALAGFATVAQAD VIIKPQVSGVIVNKLFKAGDKVKKGQTL FIIEQD Q
- ASK DFNRS KALFSQLDHTEIKAPFDGTIGDALVNIGDYVSAST TELVRVTNLNPIYAD GSHHHHHH .
- Construct B contains F122-E138 resulting in a protein sequence of:
- sequence 2 MKKTAIAIAVALAGFATVAQA DVIIKPQVSGVIVNKLFKAGDKVKKGQTL FIIEQD Q FNRSK ALFS Q SAISQKELDHTEIKAPFDGTIGDALVNIGDYVS ASTTELVRVINLNPIYAD GSHHHHHH .
- Construct C contains D121-A127 resulting in a protein sequence of:
- E. coli Top10 cells (Invitrogen, Carlsbad, Calif., USA) carrying pACYCpgl or pACYCpglmut (Wacker et al., 2002, supra) and a plasmid coding constructs A, B or C were grown in LB medium containing ampicillin and chloramphenicol up to an OD of 0.5 at 37° C. For induction 1/1000 volume 20% arabinose (w/v) solution was added and the cells were grown for another 2 hrs.
- the cells were then harvested by centrifugation and resuspended in 20 mM Tris/HCl, pH 8.5, 20% sucrose (w/v), 1 mM EDTA, 1 mM PMSF, and 1 g/l (w/v) lysozyme and incubated at 4° C. for 1 hr.
- Periplasmic extracts were obtained after pelletting of the spheroblasts and diluted with 1/9 volume (v/v) of 10 ⁇ buffer A (3 M NaCl, 0.5 M Tris/HCl, pH 8.0 and 0.1 M imidazole) and MgSO 4 added to 2.5 mM.
- Ni-affinity purification was performed on 1 ml Ni-Sepharose columns from Amersham Pharmacia Biotech (Uppsala, Sweden) in buffer A. Proteins were eluted in buffer A containing 0.25 M imidazole.
- FIG. 1 shows Coomassie brilliant blue stained SDS-PAGE gel of the peak elution fractions from the Ni-purified periplasmic extracts.
- construct B produced a prominent single protein species ( FIG. 1 , lane 1).
- Constructs A and C both lead, in addition to the prominent protein, to a second protein band with slower electrophoretic mobility ( FIG. 1 , lanes 2 and 3). That the heavier protein species was indeed glycosylated was proven by MALDI-TOF/TOF (not shown).
- the only amino acid missing in construct B but present in A and C was D121, the aspartate residue 2 positions N-terminally to the glycosylated N123.
- D121 plays an important role for glycosylation by the OTase.
- D121 is essential for glycosylation it was mutated to alanine in construct C.
- Expression analysis resulted in only one protein band ( FIG. 1 , lane 4), thus showing that D121 is important for glycosylation.
- an artificial peptide display protein can be glycosylated shows that a short peptide of the D/E-X-N-Y-S/T type contains all information for C. jejuni -borne N-glycosylation to occur.
- an aspartate to alanine mutation was inserted at position 121 (D121A, i.e. 2 residues before the glycosylated N123) in the full length soluble version of the AcrA protein and it was tested whether the site N123 could still be glycosylated in E. coli .
- this AcrA-D121A was expressed and its glycosylation status was analyzed.
- an engineered AcrA was used for the analysis. It differed from the original C. jejuni gene in that it contains the PelB signal sequence (Choi and Lee, 2004, supra) for secretion into the periplasm and a C-terminal hexa histag for purification.
- the assay to test the glycosylation status of AcrA and mutants thereof was as follows: expression of AcrA was induced with 0.02% arabinose in exponentially growing E. coli CLM24 (Feldman et al., 2005, supra) cells containing the plasmid-borne pgl operon in its active or inactive form (pACYCpgl or pACYCpglmut, see (Wacker et al., 2002, supra)) and a plasmid coding for AcrA (pAcrAper).
- periplasmic extracts were prepared as described above and analyzed by SDS-PAGE, electrotransfer and immunodetection with either anti-AcrA antiserum or R12 antiserum. The latter is specific for C. jejuni N-glycan containing proteins (Wacker et al., 2002, supra).
- the first two lanes of FIG. 2A show AcrA in the absence and presence of a functional pgl operon. Only one band appears in the absence but three in the presence of the functional pgl operon ( FIG. 2A , top panel). These correspond to unglycosylated AcrA (lane 1) and un-, mono- and diglycosylated AcrA (lane 2). That the two heavier proteins in lane 2 were glycosylated was confirmed by the R12 western blot (lane 2, bottom panel). When the mutant AcrA-N273Q was expressed the same way, only the monoglycosylated AcrA was detected in presence of the functional glycosylation pgl operon (lane 3).
- the lowest faint band is unglycosylated AcrA because it is also present in the absence of glycosylation (lane 1), the highest results in a strong signal probably due to the five antigenic determinants in a fourfold glycosylated AcrA.
- the two introduced sites at N117 and N147
- the two natively used sites (N123 and N273) are used and glycosylated by the pgl machinery.
- Expression of AcrA-N123Q-N273Q-N272D with and without the pgl operon demonstrated that a third artificially introduced glycosylation site, N274 (DNNST), was also recognized by the pgl operon ( FIG. 2C , lanes 3 and 4).
- a proline residue at +1 is thought to restrict the peptide in such a way that glycosylation is inhibited.
- a proline residue was introduced at that position of the first natively used site in a point mutant that had the second native site knocked out (AcrA-N273Q-F122P).
- the control expression of AcrA-N273Q showed a monoglycosylated protein in the presence of a functional pgl operon ( FIG. 2D , lane 1 and 2).
- AcrA-N273Q-F122P was not glycosylated ( FIG. 2D , lanes 3 and 4). This indicates that proline inhibited bacterial N-glycosylation when it constitutes the residue between the asparagine and the negatively charged residue of the ⁇ 2 position.
- a point mutation of W88 to D or a D insertion after W88 generated an optimized glycosylation site (DNNKT).
- the wildtype and W88D CtxB proteins containing the signal sequence and his-tag were expressed in E. coli Top 10 and other cell types in the presence and absence of the functional pgl locus from C. jejuni .
- periplasmic extracts from Top10 cells were analyzed by SDS-PAGE, electrotransfer and consecutive immunoblotting with a CtxB antiserum, only CtxB W88D produced a higher and thus glycosylated band in the pgl locus background ( FIG. 2E , compare lanes 3 and 4).
- a consensus sequence was also inserted by replacing G54 or Q56 of CtxB (the latter is denoted CtxB-Q56/DSNIT), i.e. in one of the loops that was reported to contribute to the ganglioside GM1 binding activity of CtxB.
- Lanes 5 and 6 of FIG. 2E demonstrate that the engineered protein (exemplified by the construct which contains the peptide sequence DSNIT instead of Q56 expressed in Top10 cells) produced a lower mobility and thus glycosylated band in glycosylation competent but not glycosylation-deficient cells when analyzed in the same way as described above. It was also demonstrated that a CtxB containing two manipulations, i.e.
- a potential application of the N-glycosylation in bacteria is the display of the glycan on the surface of a bacterial host cell in order to link the pheno- to the genotype and thereby select for specific genetic mutations.
- the OmpH1 protein was engineered in a way that it contained multiple optimized consensus sites according to the invention. The sites were engineered into loop regions of the protein as deduced from the known crystal structure (Muller, A., Thomas, G. H., Horler, R., Brannigan, J. A., Blagova, E., Levdikov, V. M., Fogg, M. J., Wilson, K. S., and Wilkinson, A. J. 2005.
- FIG. 3 shows the analysis of various OmpH1 variants harboring multiple glycosylation sequons in addition to the existing wild type sequon.
- OmpH1 variants were generated with three (lane 3, 4, 5 and 7) and four glycosylation sequons (lane 6).
- a wild type OmpH1 with only one glycosylation sequon and a mutant lacking the critical asparagine for glycosylation were also included in the experiment. All variants tested here did not only demonstrate a high level of glycosylation efficiency but also that every glycosylation sequon was utilized. The results were confirmed with Campylobacter N-glycan specific immuneserum ( FIG. 3 lower panel).
- the native glycosylation site in the protein is bold, the signal sequence underlined.
- the c-Myc- and N-glycan-specific immuneserum in combination with corresponding secondary antibodies conjugated to FITC and Cy3 were used to detect the protein (red fluorescence) and N-glycan (green) on the bacterial cell surface, respectively. Additionally, 4,6-diamino-2-phenylindole (DAPI, blue) was employed to, stain for bacterial DNA to unambiguously differentiate between bacterial cells and cellular debris. When the cells expressing wild type OmpH1 were stained, immunofluorescence specific to the protein as well as the N-glycan was detected ( FIG. 4 A).
- FIG. 4 is represented in grayscale, the first column is a merge picture of the other pictures of the same row.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention relates to recombinant N-glycosylated proteins, comprising one or more introduced N-glycosylated optimized amino acid sequence(s), nucleic acids encoding these proteins as well as corresponding vectors and host cells. In addition, the present invention is directed to the use of said proteins, nucleic acids, vectors and host cells for preparing medicaments. Furthermore, the present invention provides methods for producing said proteins.
Description
- The present invention relates to recombinant N-glycosylated proteins, comprising one or more introduced N-glycosylated optimized amino acid consensus sequence(s), nucleic acids encoding these proteins as well as corresponding vectors and host cells. In addition, the present invention is directed to the use of said proteins, nucleic acids, vectors and host cells for preparing medicaments. Furthermore, the present invention provides methods for producing said proteins.
- N-linked protein glycosylation is an essential and conserved process occurring in the endoplasmic reticulum of eukaryotic organisms. It is important for protein folding, oligomerization, stability, quality control, sorting and transport of secretory and membrane proteins (Helenius, A., and Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019-1049).
- Protein glycosylation has a profound influence on the antigenicity, the stability and the half-life of a protein. In addition, glycosylation can assist the purification of proteins by chromatography, e.g. affinity chromatography with lectin ligands bound to a solid phase interacting with glycosylated moieties of the protein. It is therefore established practice to produce many glycosylated proteins recombinantly in eukaryotic cells to provide biologically and pharmaceutically useful glycosylation patterns.
- Only within recent years it was demonstrated that a bacterium, the food-borne pathogen Campylobacter jejuni, can also N-glycosylate its proteins (Szymanski, et al. (1999). Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022-1030). The machinery required for glycosylation is encoded by 12 genes that are clustered in the so-called pgl locus. Disruption of N-glycosylation affects invasion and pathogenesis of C. jejuni but is not lethal as in most eukaryotic organisms (Burda P. and M. Aebi, (1999). The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426(2):239-57). It is possible to reconstitute the N-glycosylation of C. jejuni proteins by recombinantly expressing the pgl locus and acceptor glycoprotein in E. coli at the same time (Wacker et al. (2002). N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790-1793).
- European Patent Application No. 03 702 276.1 (
European Patent 1 481 057), an earlier invention of the present inventors, teaches a procaryotic organism into which is introduced a nucleic acid encoding for (i) specific glycosyltransferases for the assembly of an oligosaccharide on a lipid carrier, (ii) a recombinant target protein comprising a consensus sequence “N-X-S/T”, wherein X can be any amino acid except proline, and (iii) an oligosaccharyl transferase of C. jejuni (OTase) that covalently links said oligosaccharide to the consensus sequence of the target protein. Said procaryotic organism produces N-glycans with a specific structure which is defined by the type of the specific glycosyltransferases. - Even though the presence of the known N-glycosylation consensus sequence in a protein does allow for the N-glycosylation of recombinant target proteins in procaryotic organisms comprising the oligosaccharyl transferase (OTase) of C. jejuni, the N-glycosylation of some target proteins is often inefficient.
- The object of the present invention is to provide proteins as well as means and methods for producing such proteins having an optimized efficiency for N-glycosylation that can be produced in procaryotic organisms in vivo. Another object of the present invention aims at the more efficient introduction of N-glycans into recombinant proteins for modifying antigenicity, stability, biological, prophylactic and/or therapeutic activity of said proteins. A further object is the provision of a host cell that efficiently displays recombinant N-glycosylated proteins of the present invention on its surface.
- In a first aspect the present invention provides a recombinant N-glycosylated protein, comprising one or more of the following N-glycosylated optimized amino acid sequence(s):
-
D/E-X-N-Z-S/T, (optimized consensus sequence) - wherein X and Z may be any natural amino acid except Pro, and wherein at least one of said N-glycosylated partial amino acid sequence(s) is introduced.
- It was surprisingly found that the introduction of specific partial amino acid sequence(s) (optimized consensus sequence(s)) into proteins leads to proteins that are efficiently N-glycosylated by the oligosaccharyl transferase (OST, OTase) from Campylobacter spp., preferably C. jejuni, in these introduced positions.
- The term “partial amino acid sequence(s)” as it is used in the context of the present invention will also be referred to as “optimized consensus sequence(s)”. The optimized consensus sequence is N-glycosylated by the oligosaccharyl transferase (OST, OTase) from Campylobacter spp., preferably C. jejuni, much more efficiently than the regular consensus sequence “N-X-S/T” known in the prior art.
- In general, the term. “recombinant N-glycosylated protein” refers to any heterologous poly- or oligopeptide produced in a host cell that does not naturally comprise the nucleic acid encoding said protein. In the context of the present invention this term refers to a protein produced recombinantly in any host cell, e.g. an eukaryotic or prokaryotic host cell, preferably a procaryotic host cell, e.g. Escherichia ssp., Campylobacter ssp., Salmonella ssp., Shigella ssp., Helicobacter ssp., Pseudomonas ssp., Bacillus ssp., more preferably Escherichia coli, Campylobacter jejuni, Salmonella typhimurium etc., wherein the nucleic acid encoding said protein has been introduced into said host cell and wherein the encoded protein is N-glycosylated by the OTase from Campylobacter spp., preferably C. jejuni, said transferase enzyme naturally occurring in or being introduced recombinantly into said host cell.
- In accordance with the internationally accepted one letter code for amino acids the abbreviations D, E, N, S and T denote aspartic acid, glutamic acid, asparagine, serine, and threonine, respectively. Proteins according to the invention differ from natural or prior art proteins in that one or more of the optimized consensus sequence(s) D/E-X-N-Z-S/T is/are introduced and N-glycosylated. Hence, the proteins of the present invention differ from the naturally occurring. C. jejuni proteins which also contain the optimized consensus sequence but do not comprise any additional (introduced) optimized consensus sequences.
- The introduction of the optimized consensus sequence can be accomplished by the addition, deletion and/or substitution of one or more amino acids. The addition, deletion and/or substitution of one or more amino acids for the purpose of introducing the optimized consensus sequence can be accomplished by chemical synthetic strategies well known to those skilled in the art such as solid phase-assisted chemical peptide synthesis. Alternatively, and preferred for larger polypeptides, the proteins of the present invention can be prepared by standard recombinant techniques.
- The proteins of the present invention have the advantage that they may be produced with high efficiency and in any procaryotic host comprising a functional pgl operon from Campylobacter spp., preferably C. jejuni. Preferred alternative OTases from Campylobacter spp. for practicing the aspects and embodiments of the present invention are Campylobacter coli and Campylobacter lari (see Szymanski, C. M. and Wren, B. W. (2005). Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3: 225-237). The functional pgl operon may be present naturally when said procaryotic host is Campylobacter spp., preferably C. jejuni. However, as demonstrated before in the art and mentioned above, the pgl operon can be transferred into cells and remain functional in said new cellular environment.
- The term “functional pgl operon from Campylobacter spp., preferably C. jejuni” is meant to refer to the cluster of nucleic acids encoding the functional oligosaccharyl transferase (OTase) of Campylobacter spp., preferably C. jejuni, and one or more specific glycosyltransferases capable of assembling an oligosaccharide on a lipid carrier, and wherein said oligosaccharide can be transferred from the lipid carrier to the target protein having one or more optimized amino acid sequence(s): D/E-X N-Z-S/T by the OTase. It to be understood that the term “functional pgl operon from Campylobacter spp., preferably C. jejuni” in the context of this invention does not necessarily refer to an operon as a singular transcriptional unit. The term merely requires the presence of the functional components for N-glycosylation of the recombinant protein in one host cell. These components may be transcribed as one or more separate mRNAs and may be regulated together or separately. For example, the term also encompasses functional components positioned in genomic DNA and plasmid(s) in one host cell. For the purpose of efficiency, it is preferred that all components of the functional pgl operon are regulated and expressed simultaneously.
- It is important to realize that only the functional oligosaccharyl transferase (OTase) should originate from Campylobacter spp., preferably C. jejuni, and that the one or more specific glycosyltransferases capable of assembling an oligosaccharide on a lipid carrier may originate from the host cell or be introduced recombinantly into said host cell, the only functional limitation being that the oligosaccharide assembled by said glycosyltransferases can be transferred from the lipid carrier to the target protein having one or more optimized consensus sequences by the OTase. Hence, the selection of the host cell comprising specific glycosyltransferases naturally and/or incapacitating specific glycosyltransferases naturally present in said host as well as the introduction of heterologous specific glycosyltransferases will enable those skilled in the art to vary the N-glycans bound to the optimized N-glycosylation consensus site in the proteins of the present invention.
- As a result of the above, the present invention provides for the individual design of N-glycan-patterns on the proteins of the present invention. The proteins can therefore be individualized in their N-glycan pattern to suit biological, pharmaceutical and purification needs.
- In a preferred embodiment, the proteins of the present invention may comprise one but also more than one, preferably at least two, preferably at least 3, more preferably at least 5 of said N-glycosylated optimized amino acid sequences.
- The presence of one or more N-glycosylated optimized amino acid sequence(s) in the proteins of the present invention can be of advantage for increasing their antigenicity, increasing their stability, affecting their biological activity, prolonging their biological half-life and/or simplifying their purification.
- The optimized consensus sequence may include any amino acid except proline in position(s) X and Z. The term “any amino acids” is meant to encompass common and rare natural amino acids as well as synthetic amino acid derivatives and analogs that will still allow the optimized consensus sequence to be N-glycosylated by the OTase. Naturally occurring common and rare amino acids are preferred for X and Z. X and Z may be the same or different.
- It is noted that X and Z may differ for each optimized consensus sequence in a protein according to the present invention.
- The N-glycan bound to the optimized consensus sequence will be determined by the specific glycosyltransferases and their interaction when assembling the oligosaccharide on a lipid carrier for transfer by the OTase. Those skilled in the art can design the N-glycan by varying the type(s) and amount of the specific glycosyltransferases present in the desired host cell.
- N-glycans are defined herein as mono-, oligo- or polysaccharides of variable compositions that are linked to an ε-amide nitrogen of an asparagine residue in a protein via an N-glycosidic linkage. Preferably, the N-glycans transferred by the OTase are assembled on an undecaprenol-pyrophosphate lipid-anchor that is present in the cytoplasmic membrane of gram-negative or positive bacteria. They are involved in the synthesis of O antigen, O polysaccharide and peptidoglycan (Bugg, T. D., and Brandish, P. E. (1994). From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol Lett 119, 255-262; Valvano, M. A. (2003). Export of O-specific lipopolysaccharide.
Front Biosci 8, s452-471). - In a preferred embodiment, the recombinant protein of the present invention comprises one or more N-glycans selected from the group of N-glycans from Campylobacter spp., preferably C. jejuni, the N-glycans derived from oligo- and polysaccharides transferred to O antigen forming O polysaccharide in Gram-negative bacteria or capsular polysaccharides from Gram-positive bacteria, preferably: P. aeruginosa O9, O11; E. coli O7, O9, O16, O157 and Shigella dysenteriae O1 and engineered variants thereof obtained by inserting or deleting glycosyltransferases and epimerases affecting the polysaccharide structure.
- In a further preferred embodiment the recombinant protein of the present invention comprises two or more different N-glycans.
- For example, different N-glycans on the same protein can prepared by controlling the timing of the expression of specific glycosyltransferases using early or late promoters or introducing factors for starting, silencing, enhancing and/or reducing the promoter activity of individual specific glycosyltransferases. Suitable promoters and factors governing their activity are available to those in the art routinely and will not be discussed further.
- There is no limitation on the origin of the recombinant protein of the invention. Preferably said protein is derived from mammalian, bacterial, viral, fungal or plant proteins. More preferably, the protein is derived from mammalian, most preferably human proteins. For preparing antigenic recombinant proteins according to the invention, preferably for use as active components in vaccines, it is preferred that the recombinant protein is derived from a bacterial, viral or fungal protein.
- In a further preferred embodiment the present invention provides for recombinant proteins wherein either the protein and/or the N-glycan(s) is (are) therapeutically and/or prophylactically active. The introduction of at least one optimized and N-glycosylated consensus sequence can modify or even introduce therapeutic and/or prophylactic activity in a protein. In a more preferred embodiment it is the protein and/or the N-glycan(s) that is (are) immunogenically active. In this case the introduced N-glycosylation(s) may have a modifying effect on the proteins biological activity and/or introduce new antigenic sites and/or may mask the protein to evade degrading steps and/or increase the half-life.
- The recombinant proteins of the present invention can be efficiently targeted to the outer membrane and/or surface of host cells, preferably bacteria, more preferably gram-negative bacteria. For assisting the surface display and/or outer membrane localisation it is, preferred that the recombinant protein of the invention further comprises at least one polypeptide sequence capable of targeting said recombinant protein to the outer membrane and/or cell surface of a bacterium, preferably a gram-negative bacterium.
- In a preferred embodiment the recombinant protein of the invention is one, wherein said targeting polypeptide sequence is selected from the group consisting of type II signal peptides (Paetzel, M., Karla, A., Strynadka, N.C., and Dalbey, R. E. 2002. Signal peptidases. Chem Rev 102: 4549-4580.) or outer membrane proteins (reviewed in Wernerus, H., and Stahl, S. 2004. Biotechnological applications for surface-engineered bacteria. Biotechnol Appl Biochem 40: 209-228.), preferably selected from the group consisting of the full length protein or the signal peptides of OmpH1 from C. jejuni, JlpA from C. jejuni, outer membrane proteins from E. coli, preferably OmpS, OmpC, OmpA, OprF, PhoE, LamB, Lpp'OmpA (a fusion protein for surface display technology, see Francisco, J. A., Earhart, C. F., and Georgiou, G. 1992. Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. Proc Natl Acad Sci USA 89: 2713-2717.), and the Inp protein from Pseudomonas aeruginosa.
- In a different aspect, the present invention relates to a nucleic acid encoding a recombinant protein, according to the invention. Preferably, said nucleic acid is a mRNA, a DNA or a PNA, more preferably a mRNA or a DNA, most preferably a DNA. The nucleic acid may comprise the sequence coding for said protein and, in addition, other sequences such as regulatory sequences, e.g. promoters, enhancers, stop codons, start codons and genes required to regulate the expression of the recombinant protein via the mentioned regulatory sequences, etc. The term “nucleic acid encoding a recombinant protein according to the invention” is directed to a nucleic acid comprising said coding sequence and optionally any further nucleic acid sequences regardless of the sequence information as long as the nucleic acid is capable of producing the recombinant protein of the invention in a host cell containing a functional pgl operon from Campylobacter spp., preferably C. jejuni. More preferably, the present invention provides isolated and purified nucleic acids operably linked to a promoter, preferably linked to a promoter selected from the group consisting of known inducible and constitutive prokaryotic promoters, more preferably the tetracycline promoter, the arabinose promoter, the salicylate promoter, lac-, trc-, and tac promotors (Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10, 411-421; Billman-Jacobe, H. (1996). Expression in bacteria other than Escherichia coli.
Curr Opin Biotechnol 7, 500-504.). Said operably linked nucleic acids can be used for, e.g. vaccination. - Furthermore, another aspect of the present invention relates to a host cell comprising a nucleic acid and/or a vector according to the present invention. The type of host cell is not limiting as long as it accommodates a functional pgl operon from C. jejuni and one or more nucleic acids coding for recombinant target protein(s) of the present invention. Preferred host cells are prokaryotic host cells, more preferably bacteria, most preferably those selected from the group consisting of Escherichia ssp., Campylobacter ssp., Salmonella ssp., Shigella ssp., Helicobacter ssp., Pseudomonas ssp., Bacillus ssp., preferably Escherichia coli, more preferably E. coli strains Top10, W3110, CLM24, BL21, SCM6 and SCM7 (Feldman et al., (2005). Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. USA 102, 3016-3021; Alaimo, C., Catrein, I., Morf, L., Marolda, C. L., Callewaert, N., Valvano, M. A., Feldman, M. F., Aebi, M. (2006). Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO Journal 25, 967-976) and S. enterica strains SL3261 (Salmonella enterica sv. Typhimurium LT2 (delta) aroA, see Hoiseth, S. K., and Stocker, B. A. 1981, Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238-239), SL3749 (Salmonella enterica sv. Typhimurium LT2 waaL, see Kaniuk et al., J. Biol. Chem. 279: 36470-36480) and SL3261ΔwaaL.
- In a more preferred embodiment the host cell according to the invention is one that is useful for the targeting to the outer membrane and/or surface display of recombinant proteins according to the invention, preferably one, wherein said host cell is a recombinant gram-negative bacterium having:
- i) a genotype comprising nucleotide sequences encoding for
-
- a) at least one natural or recombinant specific glycosyltransferase for the assembly of an oligosaccharide on a lipid carrier,
- b) at least one natural or recombinant prokaryotic oligosaccharyl transferase (OTase) from Campylobacter spp., preferably C. jejuni,
- c) at least one recombinant protein according to the invention, preferably a protein further comprising a targeting polypeptide, and
ii) a phenotype comprising a recombinant N-glycosylated protein according to the invention that is located in and/or on the outer membrane of the gram-negative bacterium.
- The host cell for the above embodiment is preferably selected from the group consisting of Escherichia ssp., Campylobacter ssp., Shigella ssp, Helicobacter ssp. and Pseudomonas ssp., Salmonella ssp., preferably E. coli, more preferably E. coli strains Top10, W3110, CLM24, BL21, SCM6 and SCM7, and S. enterica strains SL3261, SL3749 and SL3261ΔwaaL. (see Hoiseth, S. K., and Stocker, B. A. 1981. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291: 238-239), SL3749 (Kaniuk, N. A., Vinogradov, E., and Whitfield, C. 2004. Investigation of the structural requirements in the lipopolysaccharide core acceptor for ligation of O antigens in the genus Salmonella: WaaL “ligase” is not the sole determinant of acceptor specificity. J Biol Chem 279: 36470-36480).
- Because preferred proteins of the present invention may have a therapeutic or prophylactic activity by themselves and/or due to the introduced N-glycosylation′ sites, they can be used for the preparation of a medicament. The type of protein for practicing the invention is not limited and, therefore, proteins of the invention such as EPO, IFN-alpha, TNFalpha, IgG, IgM, IgA, interleukins, cytokines, viral and bacterial proteins for vaccination like C. jejuni proteins such as HisJ (Cj0734c), AcrA (Cj0367c), OmpH1 (Cj0982c), Diphteria toxin (CRM197), Cholera toxin, P. aeruginosa exoprotein, to name just a few, and having introduced therein the optimized N-glycosylated consensus sequence are useful for preparing a medicament (Wyszynska, A., Raczko, A., Lis, M., and Jagusztyn-Krynicka, E. K. (2004). Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine 22, 1379-1389).
- In addition, the nucleic acids and/or vectors according to the invention are also useful for the preparation of a medicament, preferably for use in gene therapy.
- Moreover, a host cell according to the invention, preferably one that has a phenotype comprising an N-glycosylated recombinant protein of the invention that is located in and/or on the outer membrane of a bacterium, preferably a gram-negative bacterium, more preferably one of the above-listed gram-negative bacteria, is particularly useful for the preparation of a medicament.
- More preferably, a protein of the invention is used for the preparation of a medicament for the therapeutic and/or prophylactic vaccination of a subject in need thereof.
- In a more preferred embodiment the present invention relates to the use of a nucleic acid and/or a vector according to the invention for the preparation of a medicament for the therapeutic and/or prophylactic vaccination of a subject in need thereof, preferably by gene therapy.
- The host cells of the invention displaying said N-glycosylated recombinant proteins are particularly useful for preparing vaccines, because the displayed N-glycosylated proteins are abundantly present on the host cell's surface and well accessible by immune cells, in particular their hydrophilic N-glycans, and because the host cells have the added effect of an adjuvant, that, if alive, may even replicate to some extent and amplify its vaccination effects.
- Preferably, the host cell for practicing the medical aspects of this invention is an attenuated or killed host cell.
- Another advantage of the use of the inventive host cells for preparing medicaments, preferably vaccines, is that they induce IgA antibodies due to the cellular component.
- Preferably, said host cells are used according to the invention for inducing IgA antibodies in an animal, preferably a mammal, a rodent, ovine, equine, canine, bovine or a human.
- It is preferred that said subject in need of vaccination is avian, mammalian or fish, preferably mammalian, more preferably a mammal selected from the group consisting of cattle, sheep, equines, dogs, cats, and humans, most preferably humans. Fowls are also preferred.
- A further aspect of the present invention relates to a pharmaceutical composition, comprising at least one protein, at least one nucleic acid, a least one vector and/or at least one host cell according to the invention. The preparation of medicaments comprising proteins or host cells, preferably attenuated or killed host cells, and the preparation of medicaments comprising nucleic acids and/or vectors for gene therapy are well known in the art. The preparation scheme for the final pharmaceutical composition and the mode and details of its administration will depend on the protein, the host cell, the nucleic acid and/or the vector employed.
- In a preferred embodiment, the pharmaceutical composition of the invention comprises a pharmaceutically acceptable excipient, diluent and/or adjuvant.
- The present invention provides for a pharmaceutical composition comprising at least one of the following, (i) a recombinant protein, a host cell, a nucleic acid and/or a recombinant vector being/encoding/expressing a recombinant protein according to the present invention, and (ii) a pharmaceutically acceptable excipient, diluent and/or adjuvant.
- Suitable excipients, diluents and/or adjuvants are well-known in the art. An excipient or diluent may be a solid, semi-solid or liquid material which may serve as a vehicle or medium for the active ingredient. One of ordinary skill in the art in the field of preparing compositions can readily select the proper form and mode of administration depending upon the particular characteristics of the product selected, the disease or condition to be treated, the stage of the disease or condition, and other relevant circumstances (Remington's Pharmaceutical Sciences, Mack Publishing Co. (1990)). The proportion and nature of the pharmaceutically acceptable diluent or excipient are determined by the solubility and chemical properties of the pharmaceutically active compound selected, the chosen route of administration, and standard pharmaceutical practice. The pharmaceutical preparation may be adapted for oral, parenteral or topical use and may be administered to the patient in the form of tablets, capsules, suppositories, solution, suspensions, or the like. The pharmaceutically active compounds of the present invention, while effective themselves, can be formulated and administered in the form of their pharmaceutically acceptable salts, such as acid addition salts or base addition salts, for purposes of stability, convenience of crystallization, increased solubility, and the like.
- A further aspect of the present invention is directed to a method for producing N-linked glycosylated proteins, comprising the steps of:
- a) providing a recombinant organism, preferably a prokaryotic organism, comprising nucleic acids coding for
-
- i) a functional pgl operon from Campylobacter spp., preferably C. jejuni, and
- ii) at least one recombinant target protein comprising one or more of the following N-glycosylated optimized amino acid consensus sequence(s):
-
D/E-X-N-Z-S/T, -
- wherein X and Z may be any natural amino acid except Pro, and wherein at least one of said N-glycosylated optimized amino acid consensus sequence(s) is introduced, and
b) culturing the recombinant organism in a manner suitable for the production and N-glycosylation of the target protein(s).
- wherein X and Z may be any natural amino acid except Pro, and wherein at least one of said N-glycosylated optimized amino acid consensus sequence(s) is introduced, and
- Preferably, the target protein is one of the above described recombinant proteins according to the invention.
- In a preferred method of the invention, the functional pgl operon from Campylobacter spp., preferably C. jejuni, comprises nucleic acids coding for
-
- i) recombinant OTase from Campylobacter spp., preferably C. jejuni, and
- ii) recombinant and/or natural specific glycosyltransferases from Campylobacter spp., preferably C. jejuni, and/or
- iii) recombinant and/or natural specific glycosyltransferases from species other than Campylobacter spp.,
for the assembly of an oligosaccharide on a lipid carrier to be transferred to the target protein by the OTase.
- Moreover, in a preferred embodiment the present invention relates to a method for preparing a host cell according to the invention comprising the steps of:
- i) providing a gram-negative bacterium,
ii) introducing into said bacterium at least one nucleotide sequence encoding for -
- a) at least one recombinant specific glycosyltransferase for the assembly of an oligosaccharide on a lipid carrier, and/or
- b) at least one recombinant oligosaccharyl transferase (OTase) from Campylobacter spp., preferably C. jejuni, and/or
- c) at least one recombinant protein comprising one or more of the following N-glycosylated optimized amino acid consensus sequence(s):
-
D/E-X-N-Z-S/T, -
- wherein X and Z may be any natural amino acid except Pro, and wherein at least one of said N-glycosylated optimized amino acid consensus sequence(s) is introduced, and
iii) culturing said bacterium until at least one recombinant N-glycosylated protein coded by the nucleotide sequence of c) is located in and/or on the outer membrane of the gram-negative bacterium.
- wherein X and Z may be any natural amino acid except Pro, and wherein at least one of said N-glycosylated optimized amino acid consensus sequence(s) is introduced, and
- For practicing the preferred methods above, the recombinant procaryotic organism or host cell is preferably selected from the group of bacteria consisting of Escherichia ssp., Campylobacter ssp., Salmonella ssp., Shigella ssp., Helicobacter ssp., Pseudomonas ssp., Bacillus ssp., preferably Escherichia coli, preferably E. coli strains Top10, W3110, CLM24, BL21, SCM6 and SCM7, and S. enterica strains SL3261, SL3749 and SL3261ΔwaaL.
- Another preferred method for producing, isolating and/or purifying a recombinant protein according to the invention comprises the steps of:
- a) culturing a host cell according to claim 15 or 16,
b) removing the outer membrane of said recombinant gram-negative bacterium and
c) recovering said recombinant protein. - Exemplary methods for removing the outer membrane of a cell, preferably a prokaryotic cell, more preferably a gram-negative bacterial cell, are suitable enzymatic treatment methods, osmotic shock detergent solubilisation and the French press method.
- Most preferred, the present invention relates to a method, wherein recombinant or natural specific glycosyltransferases from species other than Campylobacter spp., preferably C. jejuni, are selected from the group of glycosyltransferases and epimerases originating from bacteria, archea, and/or eukaryota that can be functionally expressed in said host cell.
-
FIG. 1 illustrates the N-glycosylation of Lip proteins derived from constructs A to C (see example 1). E. coli Top 10 cells carrying a functional pgl operon from C. jejuni (Wacker et al., 2002, supra) and a plasmid coding for constructs A (lane 2), B (lane 1), and C (lane 3) or a mutant of construct C with the mutation D121A (lane 4). Proteins were expressed and purified from periplasmic extracts. Shown is the SDS-PAGE and Coomassie brilliant blue staining of the purified protein fractions. -
FIG. 2 shows the N-glycosylation analysis of the different proteins that were analyzed for the sequence specific N-glycosylation by the C. jejuni pgl operon (Wacker et al., 2002, supra) in CLM24 cells (Feldman et al., (2005). Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. USA 102, 3016-3021) or Top10 cells (panel E lanes 1-6) or SCM7 cells (Alaimo, C., Catrein, I., Morf, L., Marolda, C. L., Callewaert, N., Valvano, M. A., Feldman, M. F., Aebi, M. (2006). Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO Journal 25, 967-976) (panel E,lanes 7, 8) expressing said proteins from a plasmid. Shown are SDS-PAGE separated periplasmic extracts that were transferred to Nitrocellulose membrane and visualized with specific antisera. In panels A-D the top panel show immunoblots probed with anti AcrA antiserum (Wacker et al. 2002, supra; Nita-Lazar, M., Wacker, M., Schegg, B., Amber, S., and Aebi, M. (2005). The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15, 361-367), whereas the bottom panels show immunoblots probed with R12 antiserum (Wacker et al., 2002, supra). + and − indicate the presence of the functional or mutant pgl operon in the cells. Panel A contains samples of the soluble wildtype AcrA with the pelB signal sequence and the hexa histag (lanes 1, 2), AcrA-N273Q (lane 3, 4), and AcrA-D121A (lane 5). Panel B: AcrA (lanes 1, 2), AcrA-T145D (lane 3), AcrA-N123Q-N273Q-T145D (lanes 4, 5). Panel C: AcrA-F115D-T145D (lanes 1, 2), AcrA-N123Q-N273Q-N272D (lanes 3, 4). Panel D: AcrA-N273Q (lanes 1, 2), AcrA-N273Q-F122P (lanes 3, 4). Panel E: CtxB (lanes 1, 2), CtxB-W88D (lanes 3, 4), CtxB-Q56/DSNIT (lanes 5, 6), and CtxB-W88D-Q56/DSNIT. -
FIG. 3 shows the engineering of multiple glycosylation sites in OmpH1. The ΔwaaL strain SCM6 was co-transformed with plasmid pACYCpgl (encoding entire pgl locus) and plasmids expressing wild type OmpH1 (lane 1), OmpH1N139S-myc (lane 2), OmpH1KGN→NIT, HFGDD→DSNIT-myc (lane 3), OmpH1RGD→NIT, HFGDD→DSNIT-myc (lane 4), OmpH1KGN→NIT, RGD→NIT-myc (lane 5), OmpH1KGN→NIT, RGD→NIT, HFGDD→DSNIT-myc (lane 6) or OmpH1RGD→NIT,V83T-myc (lane 7). The cells were grown aerobically, induced with 0.5% arabinose for 3 hours prior to analysis. Whole cell lysates were TCA precipitated after equalizing the optical density of the cultures as described in the materials and methods section. The proteins were separated by 15% SDS-PAGE and transferred onto a PVDF membrane. First panel, immunoblot of whole cell lysates probed with anti-myc tag antibodies. Bottom panel, immunoblot of whole cell lysates probed with glycan-specific antiserum. The positions of unglycosylated- and glycosylated OmpH1 are indicated on the right. -
FIG. 4 . Fluorescence microscopy of cells expressing various OmpH1 variants. Cultures of E. coli strains CLM24 or SCM6 containing the expression plasmid for the wild type OmpH1 and its variants were equalized to OD600 of 0.25/ml. Cells were washed two times with phosphate-buffered saline (PBS), pH 7.4 and 100 μl cell suspensions was dropped onto gelatinized glass slides and incubated at room temperature (RT) for 30 min inside a humidified chamber. All subsequent steps in the whole-cell immunofluorescence labeling were done at room temperature inside a humidified chamber. The unbound cells were removed and rest was fixed with 4% paraformaldehyde containing PBS for 30 min at RT. Importantly, paraformaldehyde is considered not to permeabilize cells but keeping the compartimentalization by membranes intact. Fixed cells were washed two times with PBS and resuspended blocking buffer containing 5% BSA in PBS. After blocking, the cells were incubated with anti-myc monoclonal mouse IgG (1:50, Calbiochem) and/or anti-glycan antiserum (1:4000) for 1 h in 100 μl of PBS containing 5% BSA. The cells were washed three times with 100 μl of PBS for 5 min each and incubated with secondary anti-rabbit antibody conjugated to FITC (1:250, Jackson Immunoresearch Laboratories) and/or anti-mouse antibody conjugated to Cy3 (1:250, Jackson Immunoresearch Laboratories) for 1 h in 100 μl of PBS containing 5% BSA. If required, 4, 6-diamino-2-phenylindole (DAPI) (Sigma) (0.5 μg/ml) was added at the time of secondary antibody incubation to stain for bacterial DNA. The secondary antibody was rinsed from the cells PBS, and coverslips were mounted on slides by using vectashield (Vector Laboratories) mounting medium and sealed with nail polish. Fluorescence microscopy was performed by the using an Axioplan2 microscope (Carl Zeiss). Images were combined by using Adobe Photoshop, version CS2. SCM6 cells expressing OmpH1 (panel A), OmpH1N139S (panel B), OmpH1C208 (panel C), OmpH1KGN→NIT,HFGDD→DSNIT (panel D), OmpH1RGD→NIT,HFGDD→DSNIT (panel E), OmpH1KGN→NIT,RGD→NIT (panel F), OmpH1V83T,KGN→NIT (panel G), and OmpH1KGN→NIT,RGD→NIT,HFGDD→DSNIT (panel H). The first column is a merge of the pictures incolumns - The following examples serve to illustrate further the present invention and are not intended to limits its scope in any way.
- To optimize the acceptor protein requirements for N-glycosylation detailed studies were performed on the C. jejuni glycoprotein AcrA (Cj0367c). AcrA is a periplasmic lipoprotein of 350 amino acid residues. It has been shown that secretion to the periplasm but not lipid-anchoring is a prerequisite for glycosylation (Nita-Lazar et al., 2005, supra). The signal for export can either be the native AcrA signal sequence or the heterologous PelB signal when expressed in E. coli. Of the five potential N-linked glycosylation sequons (N117, N123, N147, N273, N274) the same two ones are used in C. jejuni and E. coli (N123 and N273 (Nita-Lazar et al., 2005, supra)). AcrA was chosen as model because it is the only periplasmic N-glycoprotein of C. jejuni for which detailed structural information is available. Recently, the crystal structure of an AcrA homologue, the MexA protein from the Gram-negative bacterium. P. aeruginosa, was published (Higgins et al., (2004). Structure of the periplasmic component of a bacterial drug efflux pump. Proc. Natl. Acad. Sci. USA 101, 9994-9999). Both proteins, are members of the so-called periplasmic efflux pump proteins (PEP, (Johnson, J. M. and Church, G. M. (1999). Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. J. Mol. Biol. 287, 695-715)). The elongated molecule contains three linearly arranged subdomains: an α-helical, anti-parallel coiled-coil which is held together at the base by a lipoyl domain, which is followed by a six-stranded β-barrel domain. The 23-28 residues at the N-terminus and 95-101 residues in the C-terminus are unstructured in the crystals. MexA and AcrA protein sequences are 29.3% identical and 50% similar. Thus, the two proteins likely exhibit a similar overall fold.
- It is known that lipoyl domains similar to MexA of P. aeruginosa and accordingly also in AcrA of C. jejuni form a compact protein that can be, individually expressed in E. coli (reviewed by Berg, A., and de Kok, A. (1997). 2-Oxo acid dehydrogenase multienzyme complexes. The central role of the lipoyl domain. Biol. Chem. 378, 617-634). To check which acceptor peptide sequence was required for N-glycosylation by the pgl machinery in E. coli the lipoyl domain of AcrA was taken. It was used as a molecular scaffold to transport peptides of different lengths to the periplasm and present them to the pgl machinery in vivo.
- Therefore, a plasmid coding for the lipoyl domain (Lip) was constructed and N-terminally fused to the signal sequence of OmpA (Choi, J. H., and Lee, S. Y. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64, 625-635) and C-terminally to a hexa histag. Cloning was performed to place the gene expression under the control of the arabinose promoter. For the Lip domain borders amino acid positions were chosen that appeared at the same positions as the domain borders of the Lipoyl domain part in MexA. To test different peptides for their ability to accept an N-glycan stretches of the sequence were inserted between the two hammerhead-like parts of the Lip domain. The stretches consisted of sequences comprising the N-glycosylation site N123 of C. jejuni AcrA. The resulting open reading frames consisted of the sequences coding for the OmpA signal sequence, the N-terminal hammerhead-like part of AcrA (D60-D95, the numbering of the amino acids refers to the mature AcrA polypeptide sequence numbering), the different stretches containing the native N123 glycosylation site of AcrA (see below), the C-terminal hammerhead-like part of AcrA-Lip (L167-D210) and the C-terminal his-tag.
- Construction of the plasmids was achieved by standard molecular biology techniques. Three stretches containing the native N123 glycosylation site of AcrA of different lengths were inserted between the two halves of Lip resulting in three different ORFs:
- Construct A contains A118-S130 resulting in a protein sequence of:
-
(sequence 1) MKKTAIAIAVALAGFATVAQADVIIKPQVSGVIVNKLFKAGDKVKKGQTL FIIEQDQASKDFNRSKALFSQLDHTEIKAPFDGTIGDALVNIGDYVSAST TELVRVTNLNPIYADGSHHHHHH. - Construct B contains F122-E138 resulting in a protein sequence of:
-
(sequence 2) MKKTAIAIAVALAGFATVAQADVIIKPQVSGVIVNKLFKAGDKVKKGQTL FIIEQDQ FNRSKALFSQSAISQKELDHTEIKAPFDGTIGDALVNIGDYVS ASTTELVRVINLNPIYADGSHHHHHH. - Construct C contains D121-A127 resulting in a protein sequence of:
-
(sequence 3) MKKTAIAIAVALAGFATVAQADVIIKPQVSGVIVNKLFKAGDKVKKGQTL FIIEQDQ DFNRSKALDHTEIKAPFDGTIGDALVNIGDYVSASTTELVRVT NLNPIYADGSHHHHHH. - The underlined stretches of sequence indicate the OmpA signal peptide, singly underlined residues were introduced for cloning reasons or to render the protein, resistant to degradation. Bold: glycosylation site corresponding to N123 of AcrA. Italics: hexa-histag. The corresponding genes were expressed under the control of the arabinose promoter in the backbone of the plasmid pEC415 (Schulz, H., Hennecke, H., and Thony-Meyer, L. (1998). Prototype of a heme chaperone essential for cytochrome c maturation. Science 281, 1197-1200).
- To check which of the three stretches triggered glycosylation of the Lip proteins protein expression experiments were performed. E. coli Top10 cells (Invitrogen, Carlsbad, Calif., USA) carrying pACYCpgl or pACYCpglmut (Wacker et al., 2002, supra) and a plasmid coding constructs A, B or C were grown in LB medium containing ampicillin and chloramphenicol up to an OD of 0.5 at 37° C. For
induction 1/1000volume 20% arabinose (w/v) solution was added and the cells were grown for another 2 hrs. The cells were then harvested by centrifugation and resuspended in 20 mM Tris/HCl, pH 8.5, 20% sucrose (w/v), 1 mM EDTA, 1 mM PMSF, and 1 g/l (w/v) lysozyme and incubated at 4° C. for 1 hr. Periplasmic extracts were obtained after pelletting of the spheroblasts and diluted with 1/9 volume (v/v) of 10× buffer A (3 M NaCl, 0.5 M Tris/HCl, pH 8.0 and 0.1 M imidazole) and MgSO4 added to 2.5 mM. Ni-affinity purification was performed on 1 ml Ni-Sepharose columns from Amersham Pharmacia Biotech (Uppsala, Sweden) in buffer A. Proteins were eluted in buffer A containing 0.25 M imidazole. -
FIG. 1 shows Coomassie brilliant blue stained SDS-PAGE gel of the peak elution fractions from the Ni-purified periplasmic extracts. The expression analysis showed that construct B produced a prominent single protein species (FIG. 1 , lane 1). Constructs A and C both lead, in addition to the prominent protein, to a second protein band with slower electrophoretic mobility (FIG. 1 ,lanes 2 and 3). That the heavier protein species was indeed glycosylated was proven by MALDI-TOF/TOF (not shown). The only amino acid missing in construct B but present in A and C was D121, theaspartate residue 2 positions N-terminally to the glycosylated N123. This demonstrates that D121 plays an important role for glycosylation by the OTase. To verify that D121 is essential for glycosylation it was mutated to alanine in construct C. Expression analysis resulted in only one protein band (FIG. 1 , lane 4), thus showing that D121 is important for glycosylation. Furthermore, the fact that an artificial peptide display protein can be glycosylated shows that a short peptide of the D/E-X-N-Y-S/T type contains all information for C. jejuni-borne N-glycosylation to occur. - To confirm the findings from the peptide display approach an aspartate to alanine mutation was inserted at position 121 (D121A, i.e. 2 residues before the glycosylated N123) in the full length soluble version of the AcrA protein and it was tested whether the site N123 could still be glycosylated in E. coli. In order to test this AcrA-D121A was expressed and its glycosylation status was analyzed. For the analysis an engineered AcrA was used. It differed from the original C. jejuni gene in that it contains the PelB signal sequence (Choi and Lee, 2004, supra) for secretion into the periplasm and a C-terminal hexa histag for purification. It has been shown that this AcrA variant gets secreted, signal peptide-cleaved and glycosylated as the lipid anchored, native protein (Nita-Lazar et al., 2005, supra). The following is the protein sequence of the soluble AcrA protein:
-
(sequence 4) MKYLLPTAAAGLLLLAAQPAMAMHMSKEEAPKIQMPPQPVTTMSAKSEDL PLSFTYPAKLVSDYDVIIKPQVSGVIVNKLFKAGDKVKKGQTLFIIEQDK FKASVDSAYGQALMAKATFENASKDFNRSKALFSKSAISQKEYDSSLATF NNSKASLASARAQLANARIDLDHTEIKAPFDGTIGDALVNIGDWSASTTE LVRVTNLNPIYADFFISDTDKLNLVRNTQSGKWDLDSIHANLNLNGETVQ GKLYFIDSVIDANSGTVKAKAVFDNNNSTLLPGAFATITSEGFIQKNGFK VPQIGVKQDQNDVYVLLVKNGKVEKSSVHISYQNNEYAIIDKGLQNGDKI ILDNFKKIQVGSEVKEIGAQLEHHHHHH - The underlined residues are the PelB signal peptide, italics the hexa-histag, and bold the two natural glycosylation sites at N123 and N273. A plasmid containing the ORF for the above protein in the pEC415 plasmid (Schulz et al., 1998) was constructed to produce pAcrAper.
- The assay to test the glycosylation status of AcrA and mutants thereof (see below) was as follows: expression of AcrA was induced with 0.02% arabinose in exponentially growing E. coli CLM24 (Feldman et al., 2005, supra) cells containing the plasmid-borne pgl operon in its active or inactive form (pACYCpgl or pACYCpglmut, see (Wacker et al., 2002, supra)) and a plasmid coding for AcrA (pAcrAper). After four hours of induction, periplasmic extracts were prepared as described above and analyzed by SDS-PAGE, electrotransfer and immunodetection with either anti-AcrA antiserum or R12 antiserum. The latter is specific for C. jejuni N-glycan containing proteins (Wacker et al., 2002, supra).
- The first two lanes of
FIG. 2A show AcrA in the absence and presence of a functional pgl operon. Only one band appears in the absence but three in the presence of the functional pgl operon (FIG. 2A , top panel). These correspond to unglycosylated AcrA (lane 1) and un-, mono- and diglycosylated AcrA (lane 2). That the two heavier proteins inlane 2 were glycosylated was confirmed by the R12 western blot (lane 2, bottom panel). When the mutant AcrA-N273Q was expressed the same way, only the monoglycosylated AcrA was detected in presence of the functional glycosylation pgl operon (lane 3). Unglycosylated AcrA was detected in absence of the functional pgl locus (lane 4). Analysis of the mutant AcrA-D121A produced only two bands, one of them glycosylated (lane 5) as observed with AcrA-N273Q inlane 3. This means that D121 is essential for efficient glycosylation at position 123-125. - To test if the introduction of an aspartate residue could generate a glycosylation site, AcrA mutants were generated in which the residue in the −2 position of the not used glycosylation sites in positions N117 and N147 of soluble AcrA were exchanged for aspartate (F115D, T145D). It was then tested whether the modified glycosylation sites could be glycosylated by the same assay as described in example 2. Both mutations were individually inserted either into the wildtype sequence of the soluble version of AcrA or in the double mutant in which both used glycosylation sites were deleted (N123Q and N273Q). Periplasmic extracts of cultures induced for 4 hrs were prepared, separated by SDS page and analyzed by Western blotting (
FIG. 2B ). As controls the samples of wildtype glycosylated and non glycosylated AcrA were run on the same gel (lanes 1 and 2). The T145D mutation affected the −2 position of the natively not used glycosylation sequon N147-S149. Upon expression of AcrA-T145D Western blotting with anti AcrA antiserum resulted in four bands, the highest of them with slower electrophoretic mobility than the doubly glycosylated protein in lane 2 (lane 3 inFIG. 2B ). The R12 blot confirmed that the fourth band was a triply glycosylated AcrA. Despite the low intensity towards anti AcrA the heaviest band gave the strongest signal with the glycosylation specific R12 antiserum. When the same mutant AcrA-T145D was expressed in the absence of the native N-glycosylation sequence (AcrA-N123Q-N273Q-T145D), only monoglycosylated AcrA was detected in the presence of a functional pgl operon (FIG. 2B , lane 4), that was missing in absence of a functional pgl operon (lane 5). This demonstrates that the heavier band inlane 4 was glycosylated. Hence, by simply introducing the T145D mutation an optimized glycosylation site was generated (DFNNS). - To further confirm that it is possible to, introduce a glycosylation site by inserting an aspartate residue in the −2 position, the natively not used sites N117-S119 and N274-T276 were changed to optimize N-glycosylation. For this purpose further mutants were generated (
FIG. 2C ). Expression of AcrA-F115D-T145D in the above described system, resulted in five protein species detected with the anti AcrA antiserum (lane 2). This is indicative for four glycosylations taking place on the same AcrA molecule. When the detection was performed with the C. jejuni N-glycan-specific R12 antiserum, a ladder of five bands was detected. The lowest faint band is unglycosylated AcrA because it is also present in the absence of glycosylation (lane 1), the highest results in a strong signal probably due to the five antigenic determinants in a fourfold glycosylated AcrA. Thus, the two introduced sites (at N117 and N147) and the two natively used sites (N123 and N273) are used and glycosylated by the pgl machinery. Expression of AcrA-N123Q-N273Q-N272D with and without the pgl operon demonstrated that a third artificially introduced glycosylation site, N274 (DNNST), was also recognized by the pgl operon (FIG. 2C ,lanes 3 and 4). - The above experiments confirm the finding that the bacterial N-glycosylation site recognized by the OTase of C. jejuni consists partly of the same consensus as the eukaryotic one (N-X-S/T, with X≠P) but, in addition, an aspartate in the −2 position is required for increasing efficiency. Furthermore, they demonstrate that it is possible to glycosylate a protein at a desired site by recombinantly introducing such an optimized consensus sequence.
- A further experiment was performed to test whether the −1 position in the bacterial glycosylation site exhibits the same restrictions as the +1 position in eukaryotes (Imperiali, B., and Shannon, K. L. (1991). Differences between Asn-Xaa-Thr-containing peptides: a comparison of solution conformation and substrate behaviour with oligosaccharyl-transferase. Biochemistry 30, 4374-4380; Rudd, P. M., and Dwek, R. A. (1997). Glycosylation: heterogeneity and the 3D structure of proteins. Crit. Rev. Biochem. Mol. Biol. 32, 1-100). A proline residue at +1 is thought to restrict the peptide in such a way that glycosylation is inhibited. To test if a similar effect could also be observed in the −1 position a proline residue was introduced at that position of the first natively used site in a point mutant that had the second native site knocked out (AcrA-N273Q-F122P). The control expression of AcrA-N273Q showed a monoglycosylated protein in the presence of a functional pgl operon (
FIG. 2D ,lane 1 and 2). However, AcrA-N273Q-F122P was not glycosylated (FIG. 2D ,lanes 3 and 4). This indicates that proline inhibited bacterial N-glycosylation when it constitutes the residue between the asparagine and the negatively charged residue of the −2 position. - Sequence alignments of all the sites known to be glycosylated by the C. jejuni pgl machinery indicate that they all comprise a D or E in the −2 position (Nita-Lazar et al., 2005, supra; Wacker et al., 2002, supra; Young et al., (2002). Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277, 42530-42539). Thus, it was established that the glycosylation consensus sequence for bacteria can be optimized by a negatively charged amino acid in the −2 position, resulting in D/E-X-N-Z-S/T, wherein X & Z≠P.
- To demonstrate that the primary sequence requirement (optimized consensus sequence) is sufficient for N-glycosylation in bacteria, it was tested whether a non-C. jejuni protein could be glycosylated by applying the above strategy. Cholera toxin B subunit (CtxB) was employed as a glycosylation target. The corresponding gene was amplified from Vibrio cholerae in such a way that it contained the coding sequence of the OmpA signal sequence on the N-terminus and a hexahistag at the C-terminus, just the same as constructs A through C in example 1. The resulting DNA was cloned to replace construct A in the plasmids employed in example 1. A point mutation of W88 to D or a D insertion after W88 generated an optimized glycosylation site (DNNKT). The wildtype and W88D CtxB proteins containing the signal sequence and his-tag were expressed in E. coli Top 10 and other cell types in the presence and absence of the functional pgl locus from C. jejuni. When periplasmic extracts from Top10 cells were analyzed by SDS-PAGE, electrotransfer and consecutive immunoblotting with a CtxB antiserum, only CtxB W88D produced a higher and thus glycosylated band in the pgl locus background (
FIG. 2E , comparelanes 3 and 4). A consensus sequence (DSNIT) was also inserted by replacing G54 or Q56 of CtxB (the latter is denoted CtxB-Q56/DSNIT), i.e. in one of the loops that was reported to contribute to the ganglioside GM1 binding activity of CtxB.Lanes FIG. 2E demonstrate that the engineered protein (exemplified by the construct which contains the peptide sequence DSNIT instead of Q56 expressed in Top10 cells) produced a lower mobility and thus glycosylated band in glycosylation competent but not glycosylation-deficient cells when analyzed in the same way as described above. It was also demonstrated that a CtxB containing two manipulations, i.e. the insertion of D after W88 as well as DSNIT replacing Q56, was double-glycosylated in SCM7 cells (Alaimo et al., EMBO Journal 25: 967-976 (2006)) (panel E,lanes 7 and 8). The double-glycosylated protein CtxB shown inlane 7 was Ni2+ affinity-purified and analyzed by ESI-MS/MS after in-gel trypsinization according to standard protocols. The expected glycopeptides were detected confirming that bacterial N-glycosylation can also be directed to a non-C. jejuni protein by mutating or inserting the optimized consensus sequence according to the invention for bacterial N-glycosylation (not shown). Examples of other suitable exemplary E. coli strains for practicing the present invention are W3110, CLM24, BL21 (Stratagene, La Jolla, Calif., USA), SCM6 and SCM7. - The amino acid sequence of the CtxB protein used here is indicated below (recombinant OmpA signal sequence underlined, hexa-histag italics, W88 bold):
-
(sequence 5) MKKTAIAIAVALAGFATVAQATPQNITDLCAEYHNTQIHTLNDKIFSYTE SLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTE AKVEKLCVVVNNKTPHAIAAISMANGSHHHHHH - A potential application of the N-glycosylation in bacteria is the display of the glycan on the surface of a bacterial host cell in order to link the pheno- to the genotype and thereby select for specific genetic mutations. To demonstrate that N-glycans can be presented on outer membrane proteins the OmpH1 protein was engineered in a way that it contained multiple optimized consensus sites according to the invention. The sites were engineered into loop regions of the protein as deduced from the known crystal structure (Muller, A., Thomas, G. H., Horler, R., Brannigan, J. A., Blagova, E., Levdikov, V. M., Fogg, M. J., Wilson, K. S., and Wilkinson, A. J. 2005. An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein. Mol. Microbiol. 57: 143-155). Previous experiments showed that the best glycosylation sequons were generated by the mutations V83T, K59N-G60I-N61T, R190N-G191I-D192T and H263D-F264S-G265N-D266I-D267T. For surface display it was desired to evaluate different combinations of those introduced sites in order to establish the most. N-glycan-specific sample. The combinations were generated in a wild type OmpH1 encoding plasmid construct and tested in a similar manner as described for AcrA.
FIG. 3 shows the analysis of various OmpH1 variants harboring multiple glycosylation sequons in addition to the existing wild type sequon. OmpH1 variants were generated with three (lane FIG. 3 lower panel). - The following is the protein sequence of the OmpH1 protein of Campylobacter jejuni (strain 81-176) with attached myc tag in italics:
-
(sequence 6) MKKILLSVLTTFVAWLAACGGNSDSKTLNSLDKIKQNGWRIGVFGDKPPF GYVDEKGNNQGYDIALAKRIAKELFGDENKVQFVLVEAANRVEFLKSNKV DIILANFTQTPERAEQVDFCLPYMKVALGVAVPKDSNITSVEDLKDKTLL LNKGTTADAYFTQDYPNIKTLKYDQNTETFAALMDKRGDALSHDNTLLFA WVKDHPDFKMGIKELGNKDVIAPAVKKGDKELKEFIDNLIIKLGQEQFFH KAYDETLKAHFGDDVKADDWIEGGKILEQKLISEEDL - The native glycosylation site in the protein is bold, the signal sequence underlined.
- In order to answer the question whether multiple glycosylated OmpH1 variants can be displayed on the surface of bacterial cells, immunofluorescence was performed on bacterial CLM24 or SCM6 (which is SCM7 ΔwaaL) cells expressing various OmpH1 variants. A wild type OmpH1 and a mutant lacking the critical asparagine for glycosylation were included in the experiment. In addition, a C20S mutant was constructed in order to retain the protein in the periplasm, thus serving as a control in the experiment. Immunostaining was carried out on the cells treated with paraformaldehyde. Paraformaldehyde fixes cells without destroying the cell structure or compartmentalization. The c-Myc- and N-glycan-specific immuneserum in combination with corresponding secondary antibodies conjugated to FITC and Cy3 were used to detect the protein (red fluorescence) and N-glycan (green) on the bacterial cell surface, respectively. Additionally, 4,6-diamino-2-phenylindole (DAPI, blue) was employed to, stain for bacterial DNA to unambiguously differentiate between bacterial cells and cellular debris. When the cells expressing wild type OmpH1 were stained, immunofluorescence specific to the protein as well as the N-glycan was detected (
FIG. 4 A). When a mutant lacking the critical asparagine N139S was stained with both anti-Myc- and N-glycan-specific immuneserum only the protein but not glycan specific signals were obtained (panel 4 B) indicating specificity of the N-glycan-specific immune serum. When the protein was retained within the periplasm as in the C20S mutant, no protein specific, red immunofluorescence was detected indicating that the antibodies were unable to diffuse within the cell and were competent enough to detect any surface phenomenon (panel 4 C). Next, cells expressing multiple OmpH1 variants different in glycosylation were stained: OmpH1KGN→NIT,HFGDD→DSNIT (panel 4 D), OmpH1RGD→NIT,HFGDD→DSNIT (panel 4 E), OmpH1KGN→NIT,RGD→NIT (panel 4 F), OmpH1V83T,KGN→NIT (panel 4 G) and OmpH1KGN→NIT,RGD→NIT,HFGDD→DSNIT (panel 4 H). All the OmpH1 variants were double-stained indicating the presence of glycosylated protein on the bacterial surface.FIG. 4 is represented in grayscale, the first column is a merge picture of the other pictures of the same row.
Claims (7)
1-27. (canceled)
28. A method for producing N-linked glycosylated proteins, comprising:
a) providing a recombinant prokaryotic organism comprising nucleic acids coding for
i) a functional pgl operon from Campylobacter jejuni, and
ii) at least one recombinant target protein comprising one or more of the following N-glycosylated optimized amino acid consensus sequence(s): D/E-X-N-Z-S/T, wherein X and Z may be any natural amino acid except Pro, and wherein at least one of said N-glycosylated optimized amino acid consensus sequence(s) is introduced, and
b) culturing the recombinant organism in a manner suitable for the production and N-glycosylation of the target protein(s).
29. The method of claim 28 , wherein the recombinant prokaryotic organism is selected from the group of bacteria consisting of Escherichia ssp., Campylobacter ssp., Salmonella ssp., Shigella ssp., Helicobacter ssp., Pseudomonas ssp., and Bacillus ssp.
30. The method of claim 28 , wherein the functional pgl operon from Campylobacter jejuni comprises nucleic acids coding for
i) recombinant oligosaccharyl transferase (OTase) from Campylobacter jejuni, and
ii) recombinant or natural specific glycosyltransferases from
(a) Campylobacter jejuni, or
(b) species other than Campylobacter spp., or
(c) both (a) and (b),
for the assembly of an oligosaccharide on a lipid carrier to be transferred to the target protein by the OTase.
31. A method for preparing a host cell, comprising the steps of:
i) providing a Gram-negative bacterium,
ii) introducing into said bacterium at least one nucleotide sequence encoding for
a) at least one recombinant specific glycosyltransferase for the assembly of an oligosaccharide on a lipid carrier,
b) at least one recombinant oligosaccharyl transferase (OTase) from Campylobacter jejuni, and/or
c) at least one recombinant protein comprising one or more of the following N-glycosylated optimized amino acid consensus sequence(s): D/E-X-N-Z-S/T, wherein X and Z may be any natural amino acid except Pro, and wherein at least one of said N-glycosylated optimized amino acid consensus sequence(s) is introduced, and
iii) culturing said bacterium until at least one recombinant N-glycosylated protein coded by the nucleotide sequence of c) is located in or on the outer membrane of the Gram-negative bacterium.
32. The method of claim 31 , wherein the host cell is selected from the group of bacteria consisting of Escherichia ssp., Campylobacter ssp., Salmonella ssp., Shigella ssp., Helicobacter ssp., Pseudomonas ssp., and Bacillus ssp.
33. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/159,535 US20160326563A1 (en) | 2005-05-11 | 2016-05-19 | Recombinant n-glycosylated proteins from procaryotic cells |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05010276.3 | 2005-05-11 | ||
EP05010276 | 2005-05-11 | ||
PCT/EP2006/004397 WO2006119987A2 (en) | 2005-05-11 | 2006-05-10 | Recombinant n-glycosylated proteins from procaryotic cells |
US11/920,175 US8753864B2 (en) | 2005-05-11 | 2006-05-10 | Recombinant N-glycosylated proteins from procaryotic cells |
US14/174,742 US9551019B2 (en) | 2005-05-11 | 2014-02-06 | Recombinant N-glycosylated proteins from procaryotic cells |
US15/159,535 US20160326563A1 (en) | 2005-05-11 | 2016-05-19 | Recombinant n-glycosylated proteins from procaryotic cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/174,742 Continuation US9551019B2 (en) | 2005-05-11 | 2014-02-06 | Recombinant N-glycosylated proteins from procaryotic cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160326563A1 true US20160326563A1 (en) | 2016-11-10 |
Family
ID=37396912
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/920,175 Active 2030-04-17 US8753864B2 (en) | 2005-05-11 | 2006-05-10 | Recombinant N-glycosylated proteins from procaryotic cells |
US14/174,742 Active US9551019B2 (en) | 2005-05-11 | 2014-02-06 | Recombinant N-glycosylated proteins from procaryotic cells |
US15/159,535 Abandoned US20160326563A1 (en) | 2005-05-11 | 2016-05-19 | Recombinant n-glycosylated proteins from procaryotic cells |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/920,175 Active 2030-04-17 US8753864B2 (en) | 2005-05-11 | 2006-05-10 | Recombinant N-glycosylated proteins from procaryotic cells |
US14/174,742 Active US9551019B2 (en) | 2005-05-11 | 2014-02-06 | Recombinant N-glycosylated proteins from procaryotic cells |
Country Status (19)
Country | Link |
---|---|
US (3) | US8753864B2 (en) |
EP (3) | EP2853600B1 (en) |
JP (3) | JP5356807B2 (en) |
KR (2) | KR101524636B1 (en) |
CN (2) | CN103396478B (en) |
AT (1) | ATE483027T1 (en) |
AU (1) | AU2006245969B8 (en) |
CA (1) | CA2607595C (en) |
CY (1) | CY1116285T1 (en) |
DE (1) | DE602006017207D1 (en) |
DK (2) | DK2311972T3 (en) |
ES (3) | ES2535084T3 (en) |
HK (3) | HK1113588A1 (en) |
HR (1) | HRP20150312T1 (en) |
IL (2) | IL187293A (en) |
PL (1) | PL2311972T3 (en) |
PT (2) | PT1888761E (en) |
SI (1) | SI2311972T1 (en) |
WO (1) | WO2006119987A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018140717A1 (en) * | 2017-01-27 | 2018-08-02 | University Of Florida Research Foundation Incorporated | A food safety vaccine to control salmonella enterica and reduce campylobacter in poultry |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7173003B2 (en) | 2001-10-10 | 2007-02-06 | Neose Technologies, Inc. | Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF |
US7214660B2 (en) | 2001-10-10 | 2007-05-08 | Neose Technologies, Inc. | Erythropoietin: remodeling and glycoconjugation of erythropoietin |
ES2258214T3 (en) | 2002-03-07 | 2006-08-16 | Eidgenossische Technische Hochschule Zurich | SYSTEM AND PROCEDURE FOR THE PRODUCTION OF RECOMBINANT GLUCOSYLED PROTEINS IN A PROCEDURAL GUEST. |
US8791070B2 (en) | 2003-04-09 | 2014-07-29 | Novo Nordisk A/S | Glycopegylated factor IX |
CA2522345A1 (en) | 2003-04-09 | 2004-11-18 | Neose Technologies, Inc. | Glycopegylation methods and proteins/peptides produced by the methods |
WO2005012484A2 (en) | 2003-07-25 | 2005-02-10 | Neose Technologies, Inc. | Antibody-toxin conjugates |
US8633157B2 (en) | 2003-11-24 | 2014-01-21 | Novo Nordisk A/S | Glycopegylated erythropoietin |
US20080305992A1 (en) | 2003-11-24 | 2008-12-11 | Neose Technologies, Inc. | Glycopegylated erythropoietin |
US20060040856A1 (en) | 2003-12-03 | 2006-02-23 | Neose Technologies, Inc. | Glycopegylated factor IX |
EP1765853B1 (en) | 2004-01-08 | 2015-10-28 | ratiopharm GmbH | O-linked glycosylation of G-CSF peptides |
NZ593986A (en) | 2004-03-03 | 2013-07-26 | Revance Therapeutics Inc | Compositions comprising a protein and a carrier for topical diagnostic and therapeutic transport |
US9211248B2 (en) | 2004-03-03 | 2015-12-15 | Revance Therapeutics, Inc. | Compositions and methods for topical application and transdermal delivery of botulinum toxins |
EP1771066A2 (en) | 2004-07-13 | 2007-04-11 | Neose Technologies, Inc. | Branched peg remodeling and glycosylation of glucagon-like peptide-1 glp-1 |
ES2572779T3 (en) | 2004-10-29 | 2016-06-02 | Ratiopharm Gmbh | Remodeling and glucopegilation of Fibroblast Growth Factor (FGF) |
ES2449195T3 (en) | 2005-01-10 | 2014-03-18 | Ratiopharm Gmbh | Glycopegylated granulocyte colony stimulating factor |
EP1861112A4 (en) | 2005-03-03 | 2009-07-22 | Revance Therapeutics Inc | COMPOSITIONS AND METHODS FOR TOPICAL APPLICATION AND TRANSDERMAL DELIVERY OF BOTULINUM TOXINS |
US20070154992A1 (en) | 2005-04-08 | 2007-07-05 | Neose Technologies, Inc. | Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants |
JP5216580B2 (en) | 2005-05-25 | 2013-06-19 | ノヴォ ノルディスク アー/エス | Glycopegylated factor IX |
US20070105755A1 (en) | 2005-10-26 | 2007-05-10 | Neose Technologies, Inc. | One pot desialylation and glycopegylation of therapeutic peptides |
WO2007056191A2 (en) | 2005-11-03 | 2007-05-18 | Neose Technologies, Inc. | Nucleotide sugar purification using membranes |
WO2008011633A2 (en) | 2006-07-21 | 2008-01-24 | Neose Technologies, Inc. | Glycosylation of peptides via o-linked glycosylation sequences |
US8969532B2 (en) | 2006-10-03 | 2015-03-03 | Novo Nordisk A/S | Methods for the purification of polypeptide conjugates comprising polyalkylene oxide using hydrophobic interaction chromatography |
JP2010523582A (en) | 2007-04-03 | 2010-07-15 | バイオジェネリクス アクチェンゲゼルシャフト | Treatment method using glycoPEGylated G-CSF |
MX2009013259A (en) | 2007-06-12 | 2010-01-25 | Novo Nordisk As | Improved process for the production of nucleotide sugars. |
EP2240595B2 (en) | 2008-01-03 | 2019-07-24 | Cornell Research Foundation, Inc. | Glycosylated protein expression in prokaryotes |
WO2009089396A2 (en) * | 2008-01-08 | 2009-07-16 | Neose Technologies, Inc. | Glycoconjugation of polypeptides using oligosaccharyltransferases |
SI2257307T1 (en) * | 2008-02-20 | 2018-09-28 | Glaxosmithkline Biologicals S.A. | Bioconjugates made from recombinant n-glycosylated proteins from procaryotic cells |
EP2626079A3 (en) | 2008-02-27 | 2014-03-05 | Novo Nordisk A/S | Conjungated factor VIII molecules |
WO2010108682A1 (en) * | 2009-03-27 | 2010-09-30 | Eidgenoessische Technische Hochschule Zürich | Salmonella enterica presenting c. jejuni n-glycan or derivatives thereof |
CN102724997B (en) * | 2009-11-19 | 2016-09-21 | 格林考瓦因有限公司 | The biosynthesis system of immunogenic polysaccharide is produced in prokaryotic cell |
PT2545081E (en) | 2010-02-11 | 2015-05-18 | Univ Alberta | N-linked glycan compounds |
SI2566507T1 (en) * | 2010-05-06 | 2018-04-30 | Glaxosmithkline Biologicals Sa | Capsular gram-positive bacteria bioconjugate vaccines |
ES2684087T3 (en) * | 2010-09-03 | 2018-10-01 | The Governors Of The University Of Alberta | Peptide containing multiple N-linked glycosylation droughts |
WO2013034664A1 (en) | 2011-09-06 | 2013-03-14 | Glycovaxyn Ag | Bioconjugate vaccines made in prokaryotic cells |
JP6412875B2 (en) | 2012-11-07 | 2018-10-24 | グラクソスミスクライン バイオロジカルズ ソシエテ アノニム | Production of recombinant vaccines in E. coli by enzymatic conjugation |
RU2711512C2 (en) | 2013-01-17 | 2020-01-17 | Экс4 Фамасьютиклз (Остриэ) ГмбХ | Recombinant antibody, pharmaceutical preparation, diagnostic preparation, method for identifying candidate antibody, method of treating, preventing and diagnosing subjects susceptible to risk of infection or suffering infections caused by multidrug-resistant strains of e.coli |
CA2923957C (en) | 2013-01-18 | 2021-08-31 | London School Of Hygiene And Tropical Medicine | Glycosylation method |
GB201301085D0 (en) | 2013-01-22 | 2013-03-06 | London School Hygiene & Tropical Medicine | Glycoconjugate Vaccine |
JP6273349B2 (en) | 2013-03-15 | 2018-01-31 | アジエリス ファーマシューティカル テクノロジーズ コンパニー リミテッド | Nitroxoline base addition salts and uses thereof |
CN105307677B (en) * | 2013-04-05 | 2019-08-02 | 阿尔伯塔大学理事会 | Campylobacter vaccine |
US11220676B2 (en) | 2013-10-11 | 2022-01-11 | Glaxosmithkline Biological Sa | Methods of host cell modification |
KR101855142B1 (en) | 2014-02-24 | 2018-05-08 | 글락소스미스클라인 바이오로지칼즈 에스.에이. | Novel polysaccharide and uses thereof |
HUE049806T2 (en) | 2014-04-17 | 2020-10-28 | Glaxosmithkline Biologicals Sa | Modified host cells and uses thereof |
JP6666901B2 (en) | 2014-08-08 | 2020-03-18 | グラクソスミスクライン バイオロジカルズ ソシエテ アノニム | Modified host cells for use in bioconjugate production |
HRP20220500T1 (en) * | 2014-12-30 | 2022-06-10 | Glaxosmithkline Biologicals Sa | Compositions and methods for protein glycosylation |
TWI715617B (en) | 2015-08-24 | 2021-01-11 | 比利時商葛蘭素史密斯克藍生物品公司 | Methods and compositions for immune protection against extra-intestinal pathogenic e. coli |
GB201518668D0 (en) | 2015-10-21 | 2015-12-02 | Glaxosmithkline Biolog Sa | Immunogenic Comosition |
GB201610599D0 (en) | 2016-06-17 | 2016-08-03 | Glaxosmithkline Biologicals Sa | Immunogenic Composition |
AR109621A1 (en) | 2016-10-24 | 2018-12-26 | Janssen Pharmaceuticals Inc | FORMULATIONS OF VACCINES AGAINST GLUCOCONJUGADOS OF EXPEC |
GB201712678D0 (en) | 2017-08-07 | 2017-09-20 | Glaxosmithkline Biologicals Sa | Process for the manipulation of nucleic acids |
WO2019035916A1 (en) | 2017-08-15 | 2019-02-21 | Northwestern University | Design of protein glycosylation sites by rapid expression and characterization of n-glycosyltransferases |
GB201721582D0 (en) | 2017-12-21 | 2018-02-07 | Glaxosmithkline Biologicals Sa | S aureus antigens and immunogenic compositions |
GB201721576D0 (en) | 2017-12-21 | 2018-02-07 | Glaxosmithkline Biologicals Sa | Hla antigens and glycoconjugates thereof |
TW202003023A (en) | 2018-03-12 | 2020-01-16 | 美商詹森藥物公司 | Vaccines against urinary tract infections |
US11530432B2 (en) | 2018-03-19 | 2022-12-20 | Northwestern University | Compositions and methods for rapid in vitro synthesis of bioconjugate vaccines in vitro via production and N-glycosylation of protein carriers in detoxified prokaryotic cell lysates |
US11725224B2 (en) | 2018-04-16 | 2023-08-15 | Northwestern University | Methods for co-activating in vitro non-standard amino acid (nsAA) incorporation and glycosylation in crude cell lysates |
US12098433B2 (en) | 2018-08-03 | 2024-09-24 | Northwestern University | On demand, portable, cell-free molecular sensing platform |
CN113227125A (en) | 2018-12-12 | 2021-08-06 | 葛兰素史密丝克莱恩生物有限公司 | Modified carrier proteins for O-linked glycosylation |
RS64521B1 (en) | 2019-03-18 | 2023-09-29 | Janssen Pharmaceuticals Inc | PROCEDURES FOR THE PRODUCTION OF E. COLI O-ANTIGEN POLYSACCHARIDE BIOCONJUGATE, THEIR COMPOSITIONS AND PROCEDURE FOR THEIR APPLICATION |
KR102532707B1 (en) * | 2019-03-18 | 2023-05-12 | 얀센 파마슈티칼즈, 인코포레이티드 | Bioconjugates of Escherichia coli O-antigen polysaccharides, methods of making the same, and methods of using the same |
EP3757217A1 (en) | 2019-06-27 | 2020-12-30 | GlaxoSmithKline Biologicals S.A. | Methods for protein purification |
EP3770269A1 (en) | 2019-07-23 | 2021-01-27 | GlaxoSmithKline Biologicals S.A. | Quantification of bioconjugate glycosylation |
EP3777884A1 (en) | 2019-08-15 | 2021-02-17 | GlaxoSmithKline Biologicals S.A. | Immunogenic composition |
US12226410B2 (en) | 2019-10-18 | 2025-02-18 | Northwestern University | Methods for enhancing cellular clearance of pathological molecules via activation of the cellular protein ykt6 |
HRP20241370T1 (en) | 2020-01-16 | 2024-12-20 | Janssen Pharmaceuticals, Inc. | IMUTANT FIMH, ITS COMPOSITIONS AND ITS USE |
BR112022024294A2 (en) | 2020-06-18 | 2023-02-28 | Glaxosmithkline Biologicals Sa | SHIGELLA-TETRAVALENT BIOCONJUGATE (SHIGELLA4V)". |
CA3185642A1 (en) | 2020-06-25 | 2021-12-30 | Glaxosmithkline Biologicals Sa | Modified exotoxin a proteins |
TW202227128A (en) | 2020-09-17 | 2022-07-16 | 美商詹森藥物公司 | Multivalent vaccine compositions and uses thereof |
AU2022207740B2 (en) | 2021-01-12 | 2024-06-06 | Janssen Pharmaceuticals, Inc. | Fimh mutants, compositions therewith and use thereof |
IL307247A (en) | 2021-04-01 | 2023-11-01 | Janssen Pharmaceuticals Inc | Production of E. Coli O18 bioconjugates |
WO2023118033A1 (en) | 2021-12-22 | 2023-06-29 | Glaxosmithkline Biologicals Sa | Vaccine |
GB202302579D0 (en) | 2023-02-23 | 2023-04-12 | Glaxosmithkline Biologicals Sa | Immunogenic composition |
WO2025032535A2 (en) | 2023-08-09 | 2025-02-13 | Glaxosmithkline Biologicals Sa | Modified proteins |
WO2025032534A2 (en) | 2023-08-09 | 2025-02-13 | Glaxosmithkline Biologicals Sa | Modified proteins |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020127219A1 (en) * | 1999-12-30 | 2002-09-12 | Okkels Jens Sigurd | Lysosomal enzymes and lysosomal enzyme activators |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3584198D1 (en) | 1984-08-01 | 1991-10-31 | Boehringer Ingelheim Int | NEW GENETIC SEQUENCES CODED BY TYPE I INTERFERON PEPTIDES AND THESE PRODUCING ORGANISMS. |
US5643758A (en) | 1987-03-10 | 1997-07-01 | New England Biolabs, Inc. | Production and purification of a protein fused to a binding protein |
EP0698103A1 (en) | 1993-05-14 | 1996-02-28 | PHARMACIA & UPJOHN COMPANY | CLONED DNA ENCODING A UDP-GALNAc:POLYPEPTIDE,N-ACETYLGALACTOS AMINYLTRANSFERASE |
US6503744B1 (en) | 1999-02-01 | 2003-01-07 | National Research Council Of Canada | Campylobacter glycosyltransferases for biosynthesis of gangliosides and ganglioside mimics |
JP2003524395A (en) | 1999-03-02 | 2003-08-19 | ヒューマン ジノーム サイエンシーズ, インコーポレイテッド | Manipulation of the intracellular sialylation pathway |
HUP0302299A2 (en) | 2000-05-12 | 2003-10-28 | Neose Technologies, Inc. | In vitro fucosylation recombinant glycopeptides |
AU7765801A (en) | 2000-06-30 | 2002-01-08 | Flanders Interuniversity Inst | Protein glycosylation modification in pichia pastoris |
DE10113573A1 (en) * | 2001-03-20 | 2002-02-28 | Messer Griesheim Gmbh | Process for the regeneration of sulfuric acid from sulfur-containing residues |
KR20130101592A (en) | 2002-03-07 | 2013-09-13 | 아이드게노쉬쉐 테흐니쉐 호흐슐레 쥬리히 | System and method for the production of recombinant glycosylated protein in a prokaryotic host |
ES2258214T3 (en) | 2002-03-07 | 2006-08-16 | Eidgenossische Technische Hochschule Zurich | SYSTEM AND PROCEDURE FOR THE PRODUCTION OF RECOMBINANT GLUCOSYLED PROTEINS IN A PROCEDURAL GUEST. |
US7598354B2 (en) * | 2002-08-01 | 2009-10-06 | National Research Council Of Canada | Campylobacter glycans and glycopeptides |
-
2006
- 2006-05-10 ES ES10179208.3T patent/ES2535084T3/en active Active
- 2006-05-10 JP JP2008510495A patent/JP5356807B2/en active Active
- 2006-05-10 KR KR1020147001671A patent/KR101524636B1/en active Active
- 2006-05-10 ES ES14199949T patent/ES2703061T3/en active Active
- 2006-05-10 SI SI200631910T patent/SI2311972T1/en unknown
- 2006-05-10 CA CA2607595A patent/CA2607595C/en active Active
- 2006-05-10 AT AT06753552T patent/ATE483027T1/en active
- 2006-05-10 DK DK10179208T patent/DK2311972T3/en active
- 2006-05-10 DE DE602006017207T patent/DE602006017207D1/en active Active
- 2006-05-10 EP EP14199949.0A patent/EP2853600B1/en active Active
- 2006-05-10 CN CN201310241471.7A patent/CN103396478B/en active Active
- 2006-05-10 EP EP10179208.3A patent/EP2311972B1/en active Active
- 2006-05-10 DK DK06753552.6T patent/DK1888761T3/en active
- 2006-05-10 PT PT06753552T patent/PT1888761E/en unknown
- 2006-05-10 US US11/920,175 patent/US8753864B2/en active Active
- 2006-05-10 PL PL10179208T patent/PL2311972T3/en unknown
- 2006-05-10 ES ES06753552T patent/ES2353814T3/en active Active
- 2006-05-10 PT PT101792083T patent/PT2311972E/en unknown
- 2006-05-10 WO PCT/EP2006/004397 patent/WO2006119987A2/en active Application Filing
- 2006-05-10 KR KR1020077028970A patent/KR101408653B1/en active Active
- 2006-05-10 CN CN200680020861XA patent/CN101360831B/en active Active
- 2006-05-10 AU AU2006245969A patent/AU2006245969B8/en active Active
- 2006-05-10 EP EP06753552A patent/EP1888761B1/en active Active
-
2007
- 2007-11-11 IL IL187293A patent/IL187293A/en active IP Right Grant
-
2008
- 2008-08-14 HK HK08109020.7A patent/HK1113588A1/en unknown
-
2011
- 2011-10-19 HK HK11111186.8A patent/HK1156983A1/en unknown
-
2012
- 2012-01-06 JP JP2012001342A patent/JP5687637B2/en active Active
-
2013
- 2013-06-10 IL IL226857A patent/IL226857A/en not_active IP Right Cessation
- 2013-12-03 JP JP2013250586A patent/JP5827303B2/en active Active
-
2014
- 2014-02-06 US US14/174,742 patent/US9551019B2/en active Active
-
2015
- 2015-03-18 HR HRP20150312TT patent/HRP20150312T1/en unknown
- 2015-04-15 CY CY20151100351T patent/CY1116285T1/en unknown
- 2015-06-09 HK HK15105466.7A patent/HK1205193A1/en unknown
-
2016
- 2016-05-19 US US15/159,535 patent/US20160326563A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020127219A1 (en) * | 1999-12-30 | 2002-09-12 | Okkels Jens Sigurd | Lysosomal enzymes and lysosomal enzyme activators |
Non-Patent Citations (1)
Title |
---|
Wacker M. (2002, updated) N-linked protein glycosylation: from eukaryotes to bacteria, A dissertation for Doctor of Natural Science, Swiss Federal Institute of Technology Zurich, pages 1-90. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018140717A1 (en) * | 2017-01-27 | 2018-08-02 | University Of Florida Research Foundation Incorporated | A food safety vaccine to control salmonella enterica and reduce campylobacter in poultry |
US20200009240A1 (en) * | 2017-01-27 | 2020-01-09 | University Of Florida Research Foundation, Incorporated | A food safety vaccine to control salmonella enterica and reduce campylobacter in poultry |
US11000583B2 (en) * | 2017-01-27 | 2021-05-11 | University Of Florida Research Foundation, Incorporated | Food safety vaccine to control Salmonella enterica and reduce campylobacter in poultry |
US11766475B2 (en) | 2017-01-27 | 2023-09-26 | University Of Florida Research Foundation, Incorporated | Food safety vaccine to control Salmonella enterica and reduce Campylobacter in poultry |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9551019B2 (en) | Recombinant N-glycosylated proteins from procaryotic cells | |
US11944675B2 (en) | Bioconjugates made from recombinant N-glycosylated proteins from procaryotic cells | |
AU2011218682B2 (en) | Recombinant N-glycosylated proteins from procaryotic cells | |
AU2014200938A1 (en) | Recombinant n-glycosylated proteins from procaryotic cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ETH ZUERICH, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AEBI, MARKUS;KOWARIK, MICHAEL;AHUJA, UMESH;SIGNING DATES FROM 20090918 TO 20090928;REEL/FRAME:038736/0308 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |