US20160314985A1 - Cobalt etch back - Google Patents
Cobalt etch back Download PDFInfo
- Publication number
- US20160314985A1 US20160314985A1 US14/749,285 US201514749285A US2016314985A1 US 20160314985 A1 US20160314985 A1 US 20160314985A1 US 201514749285 A US201514749285 A US 201514749285A US 2016314985 A1 US2016314985 A1 US 2016314985A1
- Authority
- US
- United States
- Prior art keywords
- layer
- substrate
- boron
- canceled
- cycles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 16
- 239000010941 cobalt Substances 0.000 title claims abstract description 16
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 97
- 239000000758 substrate Substances 0.000 claims abstract description 88
- 239000007789 gas Substances 0.000 claims abstract description 79
- 230000004913 activation Effects 0.000 claims abstract description 57
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052796 boron Inorganic materials 0.000 claims abstract description 55
- 150000004820 halides Chemical class 0.000 claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 claims abstract description 52
- 239000002184 metal Substances 0.000 claims abstract description 52
- 239000000463 material Substances 0.000 claims abstract description 36
- 239000000654 additive Substances 0.000 claims abstract description 29
- 230000000996 additive effect Effects 0.000 claims abstract description 25
- 229910015844 BCl3 Inorganic materials 0.000 claims abstract description 12
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 claims abstract description 12
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910015845 BBr3 Inorganic materials 0.000 claims abstract description 4
- 229910015900 BF3 Inorganic materials 0.000 claims abstract description 3
- 229910016280 BI3 Inorganic materials 0.000 claims abstract description 3
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 claims abstract description 3
- YMEKEHSRPZAOGO-UHFFFAOYSA-N boron triiodide Chemical compound IB(I)I YMEKEHSRPZAOGO-UHFFFAOYSA-N 0.000 claims abstract description 3
- 230000008569 process Effects 0.000 claims description 60
- 238000012545 processing Methods 0.000 claims description 33
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910052755 nonmetal Inorganic materials 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- 229910052754 neon Inorganic materials 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910017843 NF3 Inorganic materials 0.000 claims 1
- 238000000151 deposition Methods 0.000 abstract description 45
- 238000005530 etching Methods 0.000 abstract description 27
- 239000010410 layer Substances 0.000 description 102
- 238000001994 activation Methods 0.000 description 51
- 235000012431 wafers Nutrition 0.000 description 41
- 230000008021 deposition Effects 0.000 description 39
- 238000000231 atomic layer deposition Methods 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 14
- 239000000376 reactant Substances 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 8
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 7
- 238000001020 plasma etching Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000009616 inductively coupled plasma Methods 0.000 description 6
- 238000010926 purge Methods 0.000 description 6
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 5
- 230000001351 cycling effect Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- -1 cobalt Chemical class 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 238000010884 ion-beam technique Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000011112 process operation Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005531 etching kinetic Methods 0.000 description 1
- 238000005111 flow chemistry technique Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
- H01L21/30655—Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32899—Multiple chambers, e.g. cluster tools
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32926—Software, data control or modelling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3081—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32135—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
- H01L21/32136—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/27—Manufacturing methods
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
Definitions
- Interconnects may be formed with copper, capped by liners such as tantalum and/or tantalum nitride, or may be formed with tungsten.
- a copper interconnect may result in electromigration, which can lead to void formation and device failure and tungsten interconnects may have a higher resistivity.
- interconnects formed using other metals are of interest.
- One aspect involves a method of processing a substrate in a chamber, the method including (a) exposing the substrate to a boron-containing halide gas and an additive selected from the group consisting of hydrogen-containing and halogen-containing gases for a duration sufficient to selectively deposit a first layer of boron-containing halide material on a surface of a mask and a second layer of boron-containing halide material on a surface of a metal on the substrate, whereby the first layer is thicker than the second layer, and (b) exposing the substrate to an activation gas and an activation source.
- the duration of (a) may be between about 5 seconds and about 60 seconds.
- the method may further include repeating (a) and (b) in a first set of cycles to deposit the boron-containing halide layer on the substrate. In some embodiments, the method may further include repeating (a) and (b) in a second set of cycles to etch metal.
- the substrate may be etched to form contacts. In some embodiments, the substrate is etched by subtractive etch on a blanket layer of a metal.
- the duration of (a) during the second set of cycles may be shorter than the duration of (a) during the first set of cycles. In some embodiments, the duration of (b) during the second set of cycles is longer than the duration of (b) during the first set of cycles. The number of cycles in the second set may be different from the number of cycles in the first set.
- a bias is applied during (b). In some embodiments, a bias is applied during (b) at a first bias power during the first set of cycles, and a second bias power during the second set of cycles. In some embodiments, the first bias power may be between about 20 Vb and about 100 Vb. In some embodiments, the second bias power may be between about 30 Vb and about 150 Vb. The first bias power may be greater than the second bias power. In some embodiments, the first bias power is less than the second bias power.
- the additive may be any of H 2 , CH 4 , CF 4 , NF 3 , Cl 2 , and combinations thereof.
- the activation gas includes argon.
- the activation gas may be any of Ar, H 2 , CH 4 , CF 4 , He, Ne, Xe, NF 3 , and combinations thereof.
- the boron-containing halide gas may be any of BCl 3 , BBr 3 , BF 3 , and BI 3 .
- the metal may be any of cobalt, iron, manganese, nickel, platinum, palladium, ruthenium, and combinations thereof.
- the metal surface is recessed relative to the mask surface.
- the method further includes prior to performing (a) or (b), wet etching the substrate to partially recess the metal.
- the activation source is a plasma.
- the plasma power is between about 100 W and about 1500 W.
- the substrate is patterned.
- the chamber pressure may be between about 2 mT and about 90 mT.
- the method includes purging the chamber between exposures.
- substantially no compounds are re-deposited onto sidewalls of features on the substrate.
- roughness of the surface of the metal is less than about 5 nm RMS.
- exposing the substrate to the activation source may include ion beam etching or reactive ion etching.
- (a) and (b) are performed without breaking vacuum.
- (a) and (b) are performed in the same chamber.
- (a) and (b) are performed in different modules of the same apparatus.
- At least one of (a) and (b) includes a self-limiting reaction.
- the mask includes a non-metal.
- the mask includes another metal different from the composition of the metal.
- an apparatus for processing a substrate including: (a) one or more process chambers, each process chamber including a chuck; (b) one or more gas inlets into the process chambers and associated flow-control hardware; and (c) a controller having at least one processor and a memory, whereby the at least one processor and the memory are communicatively connected with one another, the at least one processor is at least operatively connected with the flow-control hardware, and the memory stores computer-executable instructions for controlling the at least one processor to at least control the flow-control hardware by: (i) flowing a boron-containing halide gas and an additive to one of the one or more process chambers, for a duration sufficient to selectively deposit a first layer of boron-containing halide material on a surface of a mask and a second layer of boron-containing halide material on a surface of a metal on the substrate, wherein the additive may be any of hydrogen-containing and halogen-containing gases, whereby the first layer is thicker than the
- the boron-containing halide gas, the additive, and the activation gas are flowed without breaking vacuum.
- the apparatus includes a plasma generator.
- the apparatus generates an inductively coupled plasma.
- the apparatus generates a capacitively coupled plasma.
- the activation source is a plasma.
- FIG. 1 is a process flow diagram depicting operations of a method performed in accordance with disclosed embodiments.
- FIGS. 2A-2D are schematic illustrations of an example of a gate structure processed in accordance with disclosed embodiments.
- FIGS. 3A-3D are schematic illustrations of an example of subtractive etching in accordance with disclosed embodiments.
- FIG. 4 is a schematic illustration of an example of a chamber suitable for performing disclosed embodiments.
- FIG. 5 is a schematic illustration of an example of a tool suitable for performing disclosed embodiments.
- FIGS. 6A and 6B are images of substrates used in experiments.
- FIG. 7 is a graph depicting etch rates for performing disclosed embodiments in an experiment.
- BEOL back-end-of line
- RC resistance-capacitance
- interconnects are formed with copper, using dual damascene processing techniques and copper interconnects are capped by liners, such as a tantalum and/or tantalum nitride liner.
- liners such as a tantalum and/or tantalum nitride liner.
- One of the major concerns with copper interconnect structures is that they are highly susceptible to electromigration, which can lead to void formation and device failure.
- Some processes involve high-k metal gate filling with tungsten, and tungsten may also be used to form a metal contact to a source/drain contact.
- tungsten has a high sheet resistance compared to metals such as cobalt, particularly in small features. Small features may have a technology node less than about 10 nm. This and other issues have led to interest in the use of other metals as interconnects.
- Co cobalt
- Replacing copper with Co introduces its own processing challenges, including, for example, etching of Co.
- Co can be etched back using a wet process.
- the wet etch rate can be variable with changes in feature size.
- the wet process may cause the surface of the substrate to be significantly rough, e.g., rougher than a surface etched by a dry process.
- Etching back Co using anisotropic plasma etching has proven to be very difficult as the etch products are almost all or often non-volatile. Non-volatile etch products may result in re-deposition of the etch products or defects on other exposed components of the substrate. These re-deposited defects contain metal and are difficult if not impossible to remove. As a result, plasma etching of this metal is often conventionally achieved with physical sputtering, which unfortunately leads to etch selectivity so poor that the process cannot be used in production.
- FIG. 1 provides a process flow diagram for performing operations in accordance with disclosed embodiments.
- a substrate or wafer is provided.
- the substrate may be a silicon wafer, e.g., a 200-mm wafer, a 300-mm wafer, or a 450-mm wafer, including wafers having one or more layers of material, such as dielectric, conducting, or semi-conducting material, deposited thereon.
- the substrate may include a Co layer.
- the substrate is patterned.
- a patterned substrate may include a variety of topography across the substrate.
- partially fabricated gates may be present on the substrate.
- a substrate may include a Co layer with a hard mask deposited over the Co layer.
- the hard mask may already be patterned.
- the substrate may also be prepared by partially wet etching the Co to form a pattern whereby Co is partially recessed.
- a patterned substrate may have “features” such as vias or contact holes, which may be characterized by one or more of narrow and/or re-entrant openings, constrictions within the features, and high aspect ratios.
- the features may be formed in one or more of the above described layers.
- a feature is a hole or via in a semiconductor substrate or a layer on the substrate.
- Another example is a trench in a substrate or layer.
- the feature may have an under-layer, such as a barrier layer or adhesion layer.
- under-layers include dielectric layers and conducting layers, e.g., silicon oxides, silicon nitrides, silicon carbides, metal oxides, metal nitrides, metal carbides, and metal layers.
- types of substrates fabricated from performing disclosed embodiments may depend on the aspect ratio of various features on the substrate prior to performing disclosed embodiments.
- features on a substrate provided in operation 102 may have an aspect ratio of at least about 2:1, at least about 4:1, at least about 6:1, at least about 10:1, or higher.
- the feature may also have a dimension near the opening, e.g., an opening diameter or line width of between about 10 nm to 500 nm, for example between about 25 nm and about 300 nm.
- Disclosed methods may be performed on substrates with features having an opening less than about 150 nm.
- a via, trench or other recessed feature may be referred to as an unfilled feature or a feature.
- the feature profile may narrow gradually and/or include an overhang at the feature opening.
- a re-entrant profile is one that narrows from the bottom, closed end, or interior of the feature to the feature opening.
- a re-entrant profile may be generated by asymmetric etching kinetics during patterning and/or the overhang due to non-conformal film step coverage in the previous film deposition, such as deposition of a diffusion barrier.
- the feature may have a width smaller in the opening at the top of the feature than the width of the bottom of the feature.
- Features as described herein may be on a substrate to be etched per disclosed embodiments such as described herein with respect to FIG. 1 .
- the substrate is exposed to a boron-containing halide gas to selectively deposit a boron-containing halide layer on the substrate such that more material is deposited on some metal or non-metal surfaces, such as on a hard mask or other type of mask, than on other metal surfaces.
- a boron-containing halide layer may also be referred to herein as a boron-containing halide material or polymer.
- the term “halide” as used herein may also be referred to as “halogen-containing.”
- a boron-containing halide layer is a boron-containing halogen-containing layer.
- Metals for which there may be a thinner boron-containing halide layer deposited may include non-volatile metals, such as cobalt (Co), iron (Fe), manganese (Mn), nickel (Ni), platinum (Pt), palladium (Pd), and ruthenium (Ru).
- non-volatile metals such as cobalt (Co), iron (Fe), manganese (Mn), nickel (Ni), platinum (Pt), palladium (Pd), and ruthenium (Ru).
- the substrate may also be exposed to an additive.
- the additive may help material build-up of the boron-containing halide layer on the mask, or may also increase a metal etch as described herein.
- the additive may improve recessing a Co metal, such as by increasing the etch rate of Co.
- Example additives include H 2 , CH 4 , CF 4 , NF 3 , and Cl 2 .
- the ratio of additive flow to boron-containing halide gas flow may be between about 5% and about 50%, depending on the gas chemistry used.
- boron may be helpful to achieve etch selectivity of metal to a gate mask as described herein.
- using a boron-containing halide may improve selectivity of etching Co to a gate mask.
- a boron-containing halide gas deposits boron-containing halide material, which is more easily removed by stripping or using a wet etch process.
- the material selectively deposits thicker on a mask material than on a metal material such as Co.
- the mask may include nitrogen, oxygen, carbon, and titanium atoms.
- the mask is an ashable hard mask made primarily of carbon material.
- the mask is a TiN layer.
- deposition in this operation is non-conformal.
- the selective deposition is dependent on the aspect ratio of the feature.
- various disclosed embodiments may be suitable for selectively depositing a boron-containing halide material on substrates having an aspect ratio of between about 1:1 and about 10:1.
- Operation 104 is performed for a duration between about 5 seconds and about 60 seconds.
- the duration of operation 104 may be controlled to selectively deposit a boron-containing halide layer.
- exposure to the boron-containing halide gas for too long of a duration may result in non-selective deposition.
- the duration may depend on the aspect ratio and/or the size of the opening where a metal such as Co will be etched. For example, for some substrates having certain aspect ratios, a duration that is too long may result in the thickness of the deposited film on mask surfaces being approximately equal to the thickness of the deposited film on surfaces of a metal to be etched.
- the boron-containing halide layer on the hard mask material is deposited to a thickness between about 1 nm and about 20 nm. In some embodiments, the boron-containing halide layer on cobalt is deposited to a thickness between about 2 nm and about 10 nm.
- the substrate is exposed to an activation gas and an activation source, such as a plasma.
- the activation gas may include one or more reactive or non-reactive gases, such as argon (Ar), hydrogen (H 2 ), methane (CH 4 ), carbon tetrafluoride (CF 4 ), nitrogen trifluoride (NF 3 ), helium (He), neon (Ne), or xenon (Xe).
- argon (Ar) hydrogen
- H 2 hydrogen
- methane CH 4
- carbon tetrafluoride CF 4
- nitrogen trifluoride NF 3
- He helium
- Ne neon
- Xe xenon
- Using one or more activation gases may facilitate uniformity and selectivity in the formation of a BX x chemisorption layer (where X may be a halide, such as chlorine, bromine, or iodine and x may be an integer or other number depicting stoichiometry of the chemisorption layer).
- the additive flowed in operation 104 may be flowed during operation 106 .
- the additive may improve removal of the deposited boron-containing halide layer, increase metal etch rate, and/or smoothen the surface of the metal.
- the additive may be flowed during operation 106 to smooth a Co layer or to further etch a Co layer as described herein.
- the ratio of additive flow to boron-containing halide gas flow may be between about 5% and about 50%, depending on the gas chemistry used.
- the plasma may be an in situ or remote plasma.
- the plasma may be generated using a power between about 100 W and about 1500 W.
- a low bias is also applied during operation 106 .
- the bias may be set at about 50 Vb, but may be modulated to achieve various etch rates and extent of etch.
- alternative activation sources other than plasma may be used.
- reactive ion etching or ion beam etching may be used instead of a plasma.
- Activation sources such as plasma, reactive ion etching, and ion beam etching, may ionize the activation gas to form an activated activation gas to react with the substrate.
- Operation 106 may be performed for a duration between about 10 and about 60 seconds.
- operations 104 and 106 are optionally repeated in cycles.
- operation 104 and 106 may be repeated to provide a net deposition of a boron-containing halide layer on the substrate.
- operations 104 and 106 are repeated to provide a net etch of the boron-containing halide layer and metal on the substrate. Since the boron-containing halide layer deposited on mask surfaces is thicker than on metal surfaces, the boron-containing halide material on the metal is etched completely before the boron-containing halide material deposited on the mask surfaces. As a result, as etching continues in multiple cycles, the boron-containing halide layer protects the hard mask from degrading, while the exposed metal layers are etched.
- Some disclosed embodiments may involve integrating atomic layer deposition (ALD) and atomic layer etch (ALE) processes, which may be performed without breaking vacuum.
- deposition during operation 104 is conformal.
- Operation 104 may be performed in a self-limiting reaction.
- operation 104 is deposited using ALD.
- ALD is a technique that deposits thin layers of material using sequential self-limiting reactions.
- ALD may be performed using any suitable technique.
- ALD may be performed with plasma, or may be performed thermally. Operation 104 may be performed in cycles.
- an ALD cycle is the minimum set of operations used to perform a surface deposition reaction one time.
- the result of one cycle is production of at least a partial silicon-containing film layer on a substrate surface.
- an ALD cycle includes operations to deliver and adsorb at least one reactant to the substrate surface, and then react the adsorbed reactant with one or more reactants to form the partial layer of film.
- the cycle may include certain ancillary operations such as sweeping one of the reactants or byproducts and/or treating the partial film as deposited.
- a cycle contains one instance of a unique sequence of operations.
- an ALD cycle may include the following operations: (i) delivery/adsorption of a precursor or first reactant in a chamber, (ii) purging of the precursor from the chamber, (iii) delivery of a second reactant and an optional plasma, and (iv) purging of plasma and byproducts from the chamber.
- operation 106 initiates a self-limiting etch of the substrate.
- a combination of an activated activation gas, plasma, and activated halides from the surface of the substrate as deposited in operation 104 may perform an atomic layer etch.
- the concept of an “ALE cycle” is relevant to the discussion of various embodiments herein.
- an ALE cycle is the minimum set of operations used to perform an etch process one time, such as etching a monolayer. The result of one cycle is that at least some of a film layer on a substrate surface is etched.
- an ALE cycle includes a modification operation to form a modified layer, followed by a removal operation to remove or etch only this modified layer.
- the cycle may include certain ancillary operations such as sweeping one of the reactants or byproducts.
- a cycle contains one instance of a unique sequence of operations.
- an ALE cycle may include the following operations: (i) delivery of a reactant gas to a chamber, (ii) purging of the reactant gas from the chamber, (iii) delivery of a removal gas and an optional plasma, and (iv) purging of the chamber.
- etching may be performed nonconformally.
- FIGS. 2A-2D depicts a Co interconnect 201 a in a gate structure 200 .
- the structure 200 is composed of two regions of hard mask 205 overlying two regions of gate material 203 , with the Co interconnect 201 a situated between the two regions of gate material 203 on a substrate 210 .
- the material of the hard mask 205 may be a non-metal in various embodiments.
- the material of the hard mask 205 may include a metal in various embodiments.
- the hard mask material may be a metal different from that of the Co interconnect 201 a.
- the material of the hard mask 205 may be titanium nitride or tantalum nitride.
- the hard mask 205 and gate material 203 may also generally be separated by dielectric spacers, not shown in the figure so as not to detract from a simple illustration of a process in accordance with this disclosure.
- the Co interconnect 201 a is partially recessed back by a wet process so that the top of the Co interconnect 201 a is etched more and lower than the top of the interface between the hard mask 205 and the gate material 203 .
- a BCl 3 deposition can be used to form a BCl x layer 207 over substrate 200 .
- 207 a refers to the part of the BCl x layer 207 that is deposited on top of the hard mask 205
- 207 b refers to the part of the BCl x layer 207 that is deposited on top of the Co interconnect 201 a.
- the part of the BCl x layer 207 a formed on top of the hard mask 205 during the deposition step is thicker than the part of the BCl x layer 207 b that formed on top of the Co interconnect 201 a.
- the composition of BCl x layer 207 a may be different from the composition of BCl x layer 207 b at the interface with the Co interconnect 201 a, and such composition difference may contribute to the selectivity as described below.
- composition and thickness difference is believed to be due to a combination of chemical and mechanical factors.
- the deposition chemistry of BCl 3 with additives such as H 2 , CH 4 , CF 4 , NF 3 , and Cl 2 preferentially deposits on the hard mask 205 due at least in part to the reaction/attachment of boron with N, O, or C in the material of the hard mask 205 .
- Chlorine in the deposition chemistry reacts/attaches to the surface of the Co interconnect 201 a, and boron can also attach to chlorine in subsequent exposures, but the reaction generally proceeds more slowly on the surface of the Co interconnect 201 a than at the surface of the hard mask 205 , and the recessed aspect of the surface of the Co interconnect 201 a further slows film growth, resulting in differentiation in the thickness of the deposited BCl x layer 207 . Accordingly, the part of the BCl x layer 207 a that formed on top of the hard mask 205 is thicker than the part of the BCl x layer 207 b that formed on the top of the Co interconnect 201 a.
- BCl 3 used in this process can be replaced with other halide chemistry that can provide comparable deposition and activation functions, such as BBr 3 or BI 3 or BF 3 .
- the sidewalls of the BCl x layer 207 remains on the substrate after etching; that is, some of the BCl x layer 207 remains on the sidewall of the hard mask 205 and partially on the sidewall of the gate material 203 after the Co interconnect 201 a is etched.
- the BCl x layer 207 serves both as a protective barrier and a source of reactive species to form etch products.
- the part of the BCl x layer 207 b on the Co interconnect 201 a is activated with ion energy and reacts with Co to form etch products.
- An activation gas such as argon optionally in combination with other gases, such as H 2 , CH 4 , CF 4 , Cl 2 , or NF 3 , facilitates uniformity and selectivity in the formation of a BCl x chemisorption layer 217 .
- Alternative activation gases can include other inert gases such as He, Ne, and Xe.
- Disclosed embodiments also reduce re-deposition of etch products (e.g., allowing non-deposition of sputtered species that may be used during activation). Note that since a thicker layer was deposited over the hard mask 205 , some BCl x chemisorption layer 217 remains on these surfaces, while the entirety of the part of the BCl x layer 207 b on the surface of the Co interconnect 201 a is etched completely as shown in FIG. 2C , thereby exposing the surface of the Co interconnect 201 a.
- the deposition ( FIG. 2B ) and activation ( FIG. 2C ) steps are repeated in a number of cycles in such a way that the Co interconnect 201 a is etched without causing damage to the hard mask 205 , until the desired Co etch depth is achieved, represented by FIG. 2D .
- the cycling process may involve:
- X may be between about 1 and about 10 cycles, or between about 1 and about 6 cycles, while Y may be between about 20 and about 30 cycles.
- the deposition time 1 associated with performing a net deposition process may be between about 5 and about 60 seconds.
- the activation time 2 associated with performing a net deposition process may be between about 10 and about 60 seconds.
- the deposition time 3 associated with performing a net etch process may be between about 5 and about 60 seconds.
- the activation time 4 associated with performing a net etch process may be between about 10 and about 60 seconds.
- the bias voltage during deposition is generally zero, but a low bias can also be used as long as it does not prevent the formation of the BCl x layer.
- a suitable bias during the activation step is about 50 Vb, but it can be altered to achieve the desired result.
- Activation energy and bias voltage may also be varied from cycle to cycle.
- a cycling process performed in accordance with disclosed embodiments may include:
- X may be between about 1 and about 10 cycles, or between about 1 and about 6 cycles, while Y may be between about 20 and about 30 cycles.
- Bias voltage 1 may be between about 20 Vb and about 100 Vb and bias voltage 2 may be between about 30 Vb and about 150 Vb.
- the pressure for both deposition and activation operations may be about 2 mT to about 90 mT.
- the plasma source power can be from about 100 W to 1500 W.
- some residual BCl x may remain on the hard mask once the Co etch is complete at the end of the activation step as described above. In this way, the Co etch can proceed without damage to the hard mask. This result can be further facilitated by tailoring the activation/etch chemistry and conditions such that the part of the BCl x layer on the hard mask etches no faster, for example slower, than the part of the BCl x layer on the Co interconnect.
- disclosed embodiments may reduce surface roughness to less than 5 nm RMS and may yield at least a 50% improvement in smoothness relative to wet-etched or sputtered surfaces. Without being bound by a particular theory, it is believed that the rough surface of a metal after a wet etch is smoothed by disclosed embodiments due to the etching of protrusions and hills on the surface of the metal that were formed after a wet etch.
- the cyclic deposition and activation operations may be conducted without breaking vacuum, including in the same chamber, or in different chamber modules of a tool.
- disclosed embodiments may be integrated with other processes such as ion beam etching, and reactive ion etching.
- FIGS. 3A-3D provide an example etching scheme for subtractive etch. Subtractive etching may be performed on a blanket Co layer.
- FIG. 3A shows a schematic illustration of an example substrate 300 with a blanket Co layer 303 over an etch stop layer 310 .
- a hard mask 305 is deposited over the blanket Co layer 303 and patterned.
- the hard mask 305 may include a non-metal or a metal. In various embodiments, the hard mask 305 is a metal different from that of the blanket Co layer 303 .
- substrate 300 is exposed to a boron-containing halide gas, such as BCl 3 , and an additive, as described above with respect to operation 104 in FIG. 1 .
- a BCl x layer 307 is selectively deposited such that the part of the BCl x layer 307 a deposited on the hard mask 305 is thicker than the part of the BCl x layer 307 b deposited on the blanket Co layer 303 .
- FIG. 3C shows a partially etched Co layer 313 having a recessed portion in the center between the sidewalls of the hard masks 305 and the partially etched BCl x layer 317 after the substrate 300 in FIG. 3B is exposed to an activation gas and BCl x layer 307 is etched to form the partially etched BCl x layer 317 .
- the BCl x layer 307 etches at a certain etch rate, since the amount of the part of the BCl x layer 307 a on the hard mask 305 is thicker than the amount of the part of the BCl x layer 307 b deposited on the blanket Co layer 303 in FIG.
- the etch may continue into the blanket Co layer 313 while continuing to etch the partially etched BCl x layer 317 , thereby protecting the hard mask 305 from degradation and damage.
- the substrate 300 in FIG. 3C is exposed to an activation gas such as argon and a plasma to etch the substrate 300 .
- operations 104 and 106 may be repeated to deposit boron-containing halide material and an additive, and expose the substrate to an activation gas and a plasma in cycles.
- deposition durations may be greater than activation gas exposure durations to deposit more boron-containing halide material.
- the activation gas exposure duration may be greater than deposition duration to allow more etching of the substrate.
- FIG. 3D shows the completely subtractively etched Co 313 after performing sufficient cycles of operations 104 and 106 .
- ICP reactors which, in certain embodiments, may be suitable for cyclic deposition and activation processes, including atomic layer etching (ALE) operations and atomic layer deposition (ALD) operations, are now described.
- ALE atomic layer etching
- ALD atomic layer deposition
- ICP reactors have also been described in U.S. Patent Application Publication No. 2014/0170853, filed Dec. 10, 2013, and titled “IMAGE REVERSAL WITH AHM GAP FILL FOR MULTIPLE PATTERNING,” hereby incorporated by reference in its entirety and for all purposes.
- ICP reactors are described herein, in some embodiments, it should be understood that capacitively coupled plasma reactors may also be used.
- FIG. 4 schematically shows a cross-sectional view of an inductively coupled plasma integrated etching and deposition apparatus 400 appropriate for implementing certain embodiments herein, an example of which is a Kiyo® reactor, produced by Lam Research Corp. of Fremont, Calif.
- the inductively coupled plasma apparatus 400 includes an overall process chamber 424 structurally defined by chamber walls 401 and a window 411 .
- the chamber walls 401 may be fabricated from stainless steel or aluminum.
- the window 411 may be fabricated from quartz or other dielectric material.
- An optional internal plasma grid 450 divides the overall process chamber into an upper sub-chamber 402 and a lower sub-chamber 403 .
- plasma grid 450 may be removed, thereby utilizing a chamber space made of sub-chambers 402 and 403 .
- a chuck 417 is positioned within the lower sub-chamber 403 near the bottom inner surface.
- the chuck 417 is configured to receive and hold a semiconductor wafer 419 upon which the etching and deposition processes are performed.
- the chuck 417 can be an electrostatic chuck for supporting the wafer 419 when present.
- an edge ring (not shown) surrounds chuck 417 , and has an upper surface that is approximately planar with a top surface of the wafer 419 , when present over chuck 417 .
- the chuck 417 also includes electrostatic electrodes for chucking and dechucking the wafer 419 .
- a filter and DC clamp power supply (not shown) may be provided for this purpose.
- Other control systems for lifting the wafer 419 off the chuck 417 can also be provided.
- the chuck 417 can be electrically charged using an RF power supply 423 .
- the RF power supply 423 is connected to matching circuitry 421 through a connection 427 .
- the matching circuitry 421 is connected to the chuck 417 through a connection 425 . In this manner, the RF power supply 423 is connected to the chuck 417 .
- a bias power of the electrostatic chuck may be set at about 50 Vb or may be set at a different bias power depending on the process performed in accordance with disclosed embodiments.
- the bias power may be between about 20 Vb and about 100 Vb, or between about 30 Vb and about 150 Vb.
- Elements for plasma generation include a coil 433 is positioned above window 411 .
- a coil is not used in disclosed embodiments.
- the coil 433 is fabricated from an electrically conductive material and includes at least one complete turn.
- the example of a coil 433 shown in FIG. 4 includes three turns.
- the cross-sections of coil 433 are shown with symbols, and coils having an “X” extend rotationally into the page, while coils having a “ ⁇ ” extend rotationally out of the page.
- Elements for plasma generation also include an RF power supply 441 configured to supply RF power to the coil 433 .
- the RF power supply 441 is connected to matching circuitry 439 through a connection 445 .
- the matching circuitry 439 is connected to the coil 433 through a connection 443 . In this manner, the RF power supply 441 is connected to the coil 433 .
- An optional Faraday shield 449 a is positioned between the coil 433 and the window 411 . The Faraday shield 449 a may be maintained in a spaced apart relationship relative to the coil 433 . In some embodiments, the Faraday shield 449 a is disposed immediately above the window 411 . In some embodiments, the Faraday shield 449 b is between the window 411 and the chuck 417 . In some embodiments, the Faraday shield 449 b is not maintained in a spaced apart relationship relative to the coil 433 .
- the Faraday shield 449 b may be directly below the window 411 without a gap.
- the coil 433 , the Faraday shield 449 a, and the window 411 are each configured to be substantially parallel to one another.
- the Faraday shield 449 a may prevent metal or other species from depositing on the window 411 of the process chamber 424 .
- Process gases may be flowed into the process chamber through one or more main gas flow inlets 460 positioned in the upper sub-chamber 402 and/or through one or more side gas flow inlets 470 .
- main gas flow inlets 460 positioned in the upper sub-chamber 402 and/or through one or more side gas flow inlets 470 .
- similar gas flow inlets may be used to supply process gases to a capacitively coupled plasma processing chamber.
- a vacuum pump e.g., a one or two stage mechanical dry pump and/or turbomolecular pump 440 , may be used to draw process gases out of the process chamber 424 and to maintain a pressure within the process chamber 424 .
- the vacuum pump may be used to evacuate the lower sub-chamber 403 during a purge operation of ALD.
- a valve-controlled conduit may be used to fluidically connect the vacuum pump to the process chamber 424 so as to selectively control application of the vacuum environment provided by the vacuum pump. This may be done employing a closed-loop-controlled flow restriction device, such as a throttle valve (not shown) or a pendulum valve (not shown), during operational plasma processing.
- a vacuum pump and valve controlled fluidic connection to the capacitively coupled plasma processing chamber may also be employed.
- one or more process gases such as a boron-containing halide gas, additive, or activation gas, may be supplied through the gas flow inlets 460 and/or 470 .
- process gas may be supplied only through the main gas flow inlet 460 , or only through the side gas flow inlet 470 .
- the gas flow inlets shown in the figure may be replaced by more complex gas flow inlets, one or more showerheads, for example.
- the Faraday shield 449 a and/or optional grid 450 may include internal channels and holes that allow delivery of process gases to the process chamber 424 . Either or both of Faraday shield 449 a and optional grid 450 may serve as a showerhead for delivery of process gases.
- a liquid vaporization and delivery system may be situated upstream of the process chamber 424 , such that once a liquid reactant or precursor is vaporized, the vaporized reactant or precursor is introduced into the process chamber 424 via a gas flow inlet 460 and/or 470 .
- Radio frequency power is supplied from the RF power supply 441 to the coil 433 to cause an RF current to flow through the coil 433 .
- the RF current flowing through the coil 433 generates an electromagnetic field about the coil 433 .
- the electromagnetic field generates an inductive current within the upper sub-chamber 402 .
- the physical and chemical interactions of various generated ions and radicals with the wafer 419 etch features of and selectively deposit layers on the wafer 419 .
- the inductive current acts on the gas present in the upper sub-chamber 402 to generate an electron-ion plasma in the upper sub-chamber 402 .
- the optional internal plasma grid 450 limits the amount of hot electrons in the lower sub-chamber 403 .
- the apparatus 400 is designed and operated such that the plasma present in the lower sub-chamber 403 is an ion-ion plasma.
- Both the upper electron-ion plasma and the lower ion-ion plasma may contain positive and negative ions, though the ion-ion plasma will have a greater ratio of negative ions to positive ions.
- Volatile etching and/or deposition byproducts may be removed from the lower sub-chamber 403 through port 422 .
- the chuck 417 disclosed herein may operate at elevated temperatures ranging between about 10° C. and about 250° C. The temperature will depend on the process operation and specific recipe.
- Apparatus 400 may be coupled to facilities (not shown) when installed in a clean room or a fabrication facility.
- Facilities include plumbing that provide processing gases, vacuum, temperature control, and environmental particle control. These facilities are coupled to apparatus 400 , when installed in the target fabrication facility.
- apparatus 400 may be coupled to a transfer chamber that allows robotics to transfer semiconductor wafers into and out of apparatus 400 using typical automation.
- a system controller 430 (which may include one or more physical or logical controllers) controls some or all of the operations of a process chamber 424 .
- the system controller 430 may include one or more memory devices and one or more processors.
- the apparatus 400 includes a switching system for controlling flow rates and durations when disclosed embodiments are performed.
- the apparatus 400 may have a switching time of up to about 500 ms, or up to about 750 ms. Switching time may depend on the flow chemistry, recipe chosen, reactor architecture, and other factors.
- the system controller 430 is part of a system, which may be part of the above-described examples.
- Such systems can include semiconductor processing equipment, including a processing tool or tools, chamber or chambers, a platform or platforms for processing, and/or specific processing components (a wafer pedestal, a gas flow system, etc.).
- These systems may be integrated with electronics for controlling their operation before, during, and after processing of a semiconductor wafer or substrate.
- the electronics may be integrated into the system controller 430 , which may control various components or subparts of the system or systems.
- the system controller may be programmed to control any of the processes disclosed herein, including the delivery of processing gases, temperature settings (e.g., heating and/or cooling), pressure settings, vacuum settings, power settings, radio frequency (RF) generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, positional and operation settings, wafer transfers into and out of a tool and other transfer tools and/or load locks connected to or interfaced with a specific system.
- temperature settings e.g., heating and/or cooling
- pressure settings e.g., vacuum settings, power settings, radio frequency (RF) generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, positional and operation settings
- RF radio frequency
- the system controller 430 may be defined as electronics having various integrated circuits, logic, memory, and/or software that receive instructions, issue instructions, control operation, enable cleaning operations, enable endpoint measurements, and the like.
- the integrated circuits may include chips in the form of firmware that store program instructions, digital signal processors (DSPs), chips defined as application specific integrated circuits (ASICs), and/or one or more microprocessors, or microcontrollers that execute program instructions (e.g., software).
- Program instructions may be instructions communicated to the controller in the form of various individual settings (or program files), defining operational parameters for carrying out a particular process on or for a semiconductor wafer or to a system.
- the operational parameters may, in some embodiments, be part of a recipe defined by process engineers to accomplish one or more processing steps during the fabrication or removal of one or more layers, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits, and/or dies of a wafer.
- the system controller 430 may be a part of or coupled to a computer that is integrated with, coupled to the system, otherwise networked to the system, or a combination thereof.
- the controller may be in the “cloud” or all or a part of a fab host computer system, which can allow for remote access of the wafer processing.
- the computer may enable remote access to the system to monitor current progress of fabrication operations, examine a history of past fabrication operations, examine trends or performance metrics from a plurality of fabrication operations, to change parameters of current processing, to set processing steps to follow a current processing, or to start a new process.
- a remote computer e.g.
- a server can provide process recipes to a system over a network, which may include a local network or the Internet.
- the remote computer may include a user interface that enables entry or programming of parameters and/or settings, which are then communicated to the system from the remote computer.
- the system controller 430 receives instructions in the form of data, which specify parameters for each of the processing steps to be performed during one or more operations. It should be understood that the parameters may be specific to the type of process to be performed and the type of tool that the controller is configured to interface with or control.
- the system controller 430 may be distributed, such as by including one or more discrete controllers that are networked together and working towards a common purpose, such as the processes and controls described herein.
- An example of a distributed controller for such purposes would be one or more integrated circuits on a chamber in communication with one or more integrated circuits located remotely (such as at the platform level or as part of a remote computer) that combine to control a process on the chamber.
- example systems may include a plasma etch chamber or module, a deposition chamber or module, a spin-rinse chamber or module, a metal plating chamber or module, a clean chamber or module, a bevel edge etch chamber or module, a physical vapor deposition (PVD) chamber or module, a chemical vapor deposition (CVD) chamber or module, an ALD chamber or module, an ALE chamber or module, an ion implantation chamber or module, a track chamber or module, and any other semiconductor processing systems that may be associated or used in the fabrication and/or manufacturing of semiconductor wafers.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- ALD atomic layer deposition
- ALE atomic layer deposition
- the controller might communicate with one or more of other tool circuits or modules, other tool components, cluster tools, other tool interfaces, adjacent tools, neighboring tools, tools located throughout a factory, a main computer, another controller, or tools used in material transport that bring containers of wafers to and from tool locations and/or load ports in a semiconductor manufacturing factory.
- FIG. 5 depicts a semiconductor process cluster architecture with various modules that interface with a vacuum transfer module 538 (VTM).
- VTM vacuum transfer module
- the arrangement of various modules to “transfer” wafers among multiple storage facilities and processing modules may be referred to as a “cluster tool architecture” system.
- Airlock 530 also known as a loadlock or transfer module, interfaces with the VTM 538 which, in turn, interfaces with four processing modules 520 a - 520 d, which may be individual optimized to perform various fabrication processes.
- processing modules 520 a - 520 d may be implemented to perform substrate etching, deposition, ion implantation, wafer cleaning, sputtering, and/or other semiconductor processes.
- ALD and ALE are performed in the same module.
- ALD and ALE are performed in different modules of the same tool.
- One or more of the substrate etching processing modules may be implemented as disclosed herein, i.e., for depositing conformal films, selectively depositing films by ALD, etching patterns, etching metal, and other suitable functions in accordance with the disclosed embodiments.
- Airlock 530 and processing modules 520 a - 520 d may be referred to as “stations.” Each station has a facet 536 that interfaces the station to VTM 538 . Inside each facet, sensors 1 - 18 are used to detect the passing of wafer 526 when moved between respective stations.
- Robot 522 transfers wafer 526 between stations.
- robot 522 has one arm, and in another embodiment, robot 522 has two arms, where each arm has an end effector 524 to pick wafers such as wafer 526 for transport.
- Front-end robot 532 in atmospheric transfer module (ATM) 540 , is used to transfer wafers 526 from cassette or Front Opening Unified Pod (FOUP) 534 in Load Port Module (LPM) 542 to airlock 530 .
- Module center 528 inside processing modules 520 a - 520 d is one location for placing wafer 526 .
- Aligner 544 in ATM 540 is used to align wafers.
- a wafer is placed in one of the FOUPs 534 in the LPM 542 .
- Front-end robot 532 transfers the wafer from the FOUP 534 to an aligner 544 , which allows the wafer 526 to be properly centered before it is etched or processed.
- the wafer 526 is moved by the front-end robot 532 into an airlock 530 . Because the airlock 530 has the ability to match the environment between an ATM 540 and a VTM 538 , the wafer 526 is able to move between the two pressure environments without being damaged. From the airlock 530 , the wafer 526 is moved by robot 522 through VTM 538 and into one of the processing modules 520 a - 520 d.
- the robot 522 uses end effectors 524 on each of its arms. Once the wafer 526 has been processed, it is moved by robot 522 from the processing modules 520 a - 520 d to the airlock 530 . From here, the wafer 526 may be moved by the front-end robot 532 to one of the FOUPs 534 or to the aligner 544 .
- the computer controlling the wafer movement can be local to the cluster architecture, or can be located external to the cluster architecture in the manufacturing floor, or in a remote location and connected to the cluster architecture via a network.
- a controller as described above with respect to FIG. 4 may be implemented with the tool in FIG. 5 .
- the substrate including a previously recessed cobalt layer (recessed by a wet etch) with a hard mask deposited and patterned over it was exposed to BCl 3 and an additive to deposit a BCl x layer on the substrate, and then the substrate was exposed to an activation gas and a plasma was turned on.
- the substrate was exposed to alternate pulses of BCl 3 with additive and activation gas with plasma for 20 cycles.
- the etched substrate was then evaluated for roughness. An image was taken of the resulting substrate as shown in FIG. 6B and the thickness was measured at 80.2 nm.
- the substrate exhibits a smooth surface of less than 5 nm RMS and at least a 50% improvement in smoothness.
- a substrate having a blanket cobalt layer to be etched and a deposited and patterned hard mask over the cobalt layer was exposed to BCl 3 and an additive.
- the substrate was then exposed to an activation gas and a plasma.
- the substrate was exposed to cycles of BCl 3 with additive and activation gas with plasma for over 20 cycles.
- the cycles etched cobalt in a mostly linear pattern at an etch rate of about 1.4422 nm/cycle.
- Data points and a linear model for the cobalt removal amount over number of cycles are depicted in FIG. 7 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Drying Of Semiconductors (AREA)
- ing And Chemical Polishing (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
- This application claims benefit of U.S. Provisional Patent Application No. 62/152,715, filed Apr. 24, 2015, and titled “COBALT ETCH BACK,” which is incorporated by reference herein in its entirety and for all purposes.
- Semiconductor fabrication processes include fabrication of interconnects to form circuits. Interconnects may be formed with copper, capped by liners such as tantalum and/or tantalum nitride, or may be formed with tungsten. However, a copper interconnect may result in electromigration, which can lead to void formation and device failure and tungsten interconnects may have a higher resistivity. As a result, interconnects formed using other metals are of interest.
- Provided herein are methods of processing substrates. One aspect involves a method of processing a substrate in a chamber, the method including (a) exposing the substrate to a boron-containing halide gas and an additive selected from the group consisting of hydrogen-containing and halogen-containing gases for a duration sufficient to selectively deposit a first layer of boron-containing halide material on a surface of a mask and a second layer of boron-containing halide material on a surface of a metal on the substrate, whereby the first layer is thicker than the second layer, and (b) exposing the substrate to an activation gas and an activation source. The duration of (a) may be between about 5 seconds and about 60 seconds.
- The method may further include repeating (a) and (b) in a first set of cycles to deposit the boron-containing halide layer on the substrate. In some embodiments, the method may further include repeating (a) and (b) in a second set of cycles to etch metal. The substrate may be etched to form contacts. In some embodiments, the substrate is etched by subtractive etch on a blanket layer of a metal.
- The duration of (a) during the second set of cycles may be shorter than the duration of (a) during the first set of cycles. In some embodiments, the duration of (b) during the second set of cycles is longer than the duration of (b) during the first set of cycles. The number of cycles in the second set may be different from the number of cycles in the first set.
- In various embodiments, a bias is applied during (b). In some embodiments, a bias is applied during (b) at a first bias power during the first set of cycles, and a second bias power during the second set of cycles. In some embodiments, the first bias power may be between about 20 Vb and about 100 Vb. In some embodiments, the second bias power may be between about 30 Vb and about 150 Vb. The first bias power may be greater than the second bias power. In some embodiments, the first bias power is less than the second bias power.
- The additive may be any of H2, CH4, CF4, NF3, Cl2, and combinations thereof. In various embodiments, the activation gas includes argon. In some embodiments, the activation gas may be any of Ar, H2, CH4, CF4, He, Ne, Xe, NF3, and combinations thereof.
- The boron-containing halide gas may be any of BCl3, BBr3, BF3, and BI3. In various embodiments, the metal may be any of cobalt, iron, manganese, nickel, platinum, palladium, ruthenium, and combinations thereof.
- In some embodiments, the metal surface is recessed relative to the mask surface. In various embodiments, the method further includes prior to performing (a) or (b), wet etching the substrate to partially recess the metal.
- In various embodiments, the activation source is a plasma. In various embodiments, the plasma power is between about 100 W and about 1500 W. In some embodiments, the substrate is patterned. The chamber pressure may be between about 2 mT and about 90 mT. In various embodiments, the method includes purging the chamber between exposures.
- In some embodiments, substantially no compounds are re-deposited onto sidewalls of features on the substrate. In various embodiments, roughness of the surface of the metal is less than about 5 nm RMS.
- In some embodiments, during (b), exposing the substrate to the activation source may include ion beam etching or reactive ion etching. In various embodiments, (a) and (b) are performed without breaking vacuum. In some embodiments, (a) and (b) are performed in the same chamber. In some embodiments, (a) and (b) are performed in different modules of the same apparatus.
- In various embodiments, at least one of (a) and (b) includes a self-limiting reaction. In various embodiments, the mask includes a non-metal. In some embodiments, the mask includes another metal different from the composition of the metal.
- Another aspect involves an apparatus for processing a substrate, the apparatus including: (a) one or more process chambers, each process chamber including a chuck; (b) one or more gas inlets into the process chambers and associated flow-control hardware; and (c) a controller having at least one processor and a memory, whereby the at least one processor and the memory are communicatively connected with one another, the at least one processor is at least operatively connected with the flow-control hardware, and the memory stores computer-executable instructions for controlling the at least one processor to at least control the flow-control hardware by: (i) flowing a boron-containing halide gas and an additive to one of the one or more process chambers, for a duration sufficient to selectively deposit a first layer of boron-containing halide material on a surface of a mask and a second layer of boron-containing halide material on a surface of a metal on the substrate, wherein the additive may be any of hydrogen-containing and halogen-containing gases, whereby the first layer is thicker than the second layer; and (ii) flowing an activation gas to one of the one or more process chambers and igniting an activation source. In various embodiments, the boron-containing halide gas, the additive, and the activation gas are flowed without breaking vacuum. In various embodiments, the apparatus includes a plasma generator. In some embodiments, the apparatus generates an inductively coupled plasma. In some embodiments, the apparatus generates a capacitively coupled plasma. In various embodiments, the activation source is a plasma.
- These and other aspects are described further below with reference to the drawings.
-
FIG. 1 is a process flow diagram depicting operations of a method performed in accordance with disclosed embodiments. -
FIGS. 2A-2D are schematic illustrations of an example of a gate structure processed in accordance with disclosed embodiments. -
FIGS. 3A-3D are schematic illustrations of an example of subtractive etching in accordance with disclosed embodiments. -
FIG. 4 is a schematic illustration of an example of a chamber suitable for performing disclosed embodiments. -
FIG. 5 is a schematic illustration of an example of a tool suitable for performing disclosed embodiments. -
FIGS. 6A and 6B are images of substrates used in experiments. -
FIG. 7 is a graph depicting etch rates for performing disclosed embodiments in an experiment. - In the following description, numerous specific details are set forth to provide a thorough understanding of the presented embodiments. The disclosed embodiments may be practiced without some or all of these specific details. In other instances, well-known process operations have not been described in detail to not unnecessarily obscure the disclosed embodiments. While the disclosed embodiments will be described in conjunction with the specific embodiments, it will be understood that it is not intended to limit the disclosed embodiments.
- In semiconductor fabrication, a primary role of back-end-of line (BEOL) is to form interconnects to connect discrete devices to create functional circuits. As device feature size and hence interconnects continue to shrink, there is a growing challenge in preventing degradation of interconnect performance due at least in part to an increase in resistance-capacitance (RC) delay.
- Typically, interconnects are formed with copper, using dual damascene processing techniques and copper interconnects are capped by liners, such as a tantalum and/or tantalum nitride liner. One of the major concerns with copper interconnect structures is that they are highly susceptible to electromigration, which can lead to void formation and device failure. Some processes involve high-k metal gate filling with tungsten, and tungsten may also be used to form a metal contact to a source/drain contact. However, tungsten has a high sheet resistance compared to metals such as cobalt, particularly in small features. Small features may have a technology node less than about 10 nm. This and other issues have led to interest in the use of other metals as interconnects.
- Provided herein are methods of using cobalt (Co) as an interconnect material. Cobalt filling may reduce the formation of voids in features, and amongst other things, reduce electromigration concerns.
- Replacing copper with Co introduces its own processing challenges, including, for example, etching of Co. Currently, Co can be etched back using a wet process. However, the wet etch rate can be variable with changes in feature size. In addition, the wet process may cause the surface of the substrate to be significantly rough, e.g., rougher than a surface etched by a dry process. Etching back Co using anisotropic plasma etching has proven to be very difficult as the etch products are almost all or often non-volatile. Non-volatile etch products may result in re-deposition of the etch products or defects on other exposed components of the substrate. These re-deposited defects contain metal and are difficult if not impossible to remove. As a result, plasma etching of this metal is often conventionally achieved with physical sputtering, which unfortunately leads to etch selectivity so poor that the process cannot be used in production.
- This disclosure provides a selective plasma etch of Co.
FIG. 1 provides a process flow diagram for performing operations in accordance with disclosed embodiments. Inoperation 102, a substrate or wafer is provided. The substrate may be a silicon wafer, e.g., a 200-mm wafer, a 300-mm wafer, or a 450-mm wafer, including wafers having one or more layers of material, such as dielectric, conducting, or semi-conducting material, deposited thereon. In examples provided herein, the substrate may include a Co layer. - In various embodiments, the substrate is patterned. In some embodiments, a patterned substrate may include a variety of topography across the substrate. In some embodiments, partially fabricated gates may be present on the substrate. For example, a substrate may include a Co layer with a hard mask deposited over the Co layer. In some embodiments, the hard mask may already be patterned. The substrate may also be prepared by partially wet etching the Co to form a pattern whereby Co is partially recessed.
- A patterned substrate may have “features” such as vias or contact holes, which may be characterized by one or more of narrow and/or re-entrant openings, constrictions within the features, and high aspect ratios. The features may be formed in one or more of the above described layers. One example of a feature is a hole or via in a semiconductor substrate or a layer on the substrate. Another example is a trench in a substrate or layer. In various embodiments, the feature may have an under-layer, such as a barrier layer or adhesion layer. Non-limiting examples of under-layers include dielectric layers and conducting layers, e.g., silicon oxides, silicon nitrides, silicon carbides, metal oxides, metal nitrides, metal carbides, and metal layers.
- In various embodiments, types of substrates fabricated from performing disclosed embodiments may depend on the aspect ratio of various features on the substrate prior to performing disclosed embodiments. In some embodiments, features on a substrate provided in
operation 102 may have an aspect ratio of at least about 2:1, at least about 4:1, at least about 6:1, at least about 10:1, or higher. The feature may also have a dimension near the opening, e.g., an opening diameter or line width of between about 10 nm to 500 nm, for example between about 25 nm and about 300 nm. Disclosed methods may be performed on substrates with features having an opening less than about 150 nm. A via, trench or other recessed feature may be referred to as an unfilled feature or a feature. According to various embodiments, the feature profile may narrow gradually and/or include an overhang at the feature opening. A re-entrant profile is one that narrows from the bottom, closed end, or interior of the feature to the feature opening. A re-entrant profile may be generated by asymmetric etching kinetics during patterning and/or the overhang due to non-conformal film step coverage in the previous film deposition, such as deposition of a diffusion barrier. In various examples, the feature may have a width smaller in the opening at the top of the feature than the width of the bottom of the feature. Features as described herein may be on a substrate to be etched per disclosed embodiments such as described herein with respect toFIG. 1 . - In
operation 104, the substrate is exposed to a boron-containing halide gas to selectively deposit a boron-containing halide layer on the substrate such that more material is deposited on some metal or non-metal surfaces, such as on a hard mask or other type of mask, than on other metal surfaces. A boron-containing halide layer may also be referred to herein as a boron-containing halide material or polymer. The term “halide” as used herein may also be referred to as “halogen-containing.” In various embodiments, a boron-containing halide layer is a boron-containing halogen-containing layer. Metals for which there may be a thinner boron-containing halide layer deposited may include non-volatile metals, such as cobalt (Co), iron (Fe), manganese (Mn), nickel (Ni), platinum (Pt), palladium (Pd), and ruthenium (Ru). - During
operation 104, the substrate may also be exposed to an additive. The additive may help material build-up of the boron-containing halide layer on the mask, or may also increase a metal etch as described herein. In some embodiments, the additive may improve recessing a Co metal, such as by increasing the etch rate of Co. Example additives include H2, CH4, CF4, NF3, and Cl2. The ratio of additive flow to boron-containing halide gas flow may be between about 5% and about 50%, depending on the gas chemistry used. - Without being bound by a particular theory, it is believed that boron may be helpful to achieve etch selectivity of metal to a gate mask as described herein. For example, using a boron-containing halide may improve selectivity of etching Co to a gate mask. A boron-containing halide gas deposits boron-containing halide material, which is more easily removed by stripping or using a wet etch process.
- In various embodiments, the material selectively deposits thicker on a mask material than on a metal material such as Co. For example, the mask may include nitrogen, oxygen, carbon, and titanium atoms. In some embodiments, the mask is an ashable hard mask made primarily of carbon material. In some embodiments, the mask is a TiN layer. In various embodiments, deposition in this operation is non-conformal. In some embodiments, the selective deposition is dependent on the aspect ratio of the feature. For example, various disclosed embodiments may be suitable for selectively depositing a boron-containing halide material on substrates having an aspect ratio of between about 1:1 and about 10:1.
-
Operation 104 is performed for a duration between about 5 seconds and about 60 seconds. In various embodiments, the duration ofoperation 104 may be controlled to selectively deposit a boron-containing halide layer. In some embodiments, exposure to the boron-containing halide gas for too long of a duration may result in non-selective deposition. The duration may depend on the aspect ratio and/or the size of the opening where a metal such as Co will be etched. For example, for some substrates having certain aspect ratios, a duration that is too long may result in the thickness of the deposited film on mask surfaces being approximately equal to the thickness of the deposited film on surfaces of a metal to be etched. - In some embodiments, the boron-containing halide layer on the hard mask material is deposited to a thickness between about 1 nm and about 20 nm. In some embodiments, the boron-containing halide layer on cobalt is deposited to a thickness between about 2 nm and about 10 nm.
- In
operation 106, the substrate is exposed to an activation gas and an activation source, such as a plasma. The activation gas may include one or more reactive or non-reactive gases, such as argon (Ar), hydrogen (H2), methane (CH4), carbon tetrafluoride (CF4), nitrogen trifluoride (NF3), helium (He), neon (Ne), or xenon (Xe). As further described below, the combination of activation gases activated by a plasma may react with the boron-containing halide layer on the surface of the substrate to form etch products. Using one or more activation gases may facilitate uniformity and selectivity in the formation of a BXx chemisorption layer (where X may be a halide, such as chlorine, bromine, or iodine and x may be an integer or other number depicting stoichiometry of the chemisorption layer). In some embodiments, the additive flowed inoperation 104 may be flowed duringoperation 106. The additive may improve removal of the deposited boron-containing halide layer, increase metal etch rate, and/or smoothen the surface of the metal. For example, the additive may be flowed duringoperation 106 to smooth a Co layer or to further etch a Co layer as described herein. The ratio of additive flow to boron-containing halide gas flow may be between about 5% and about 50%, depending on the gas chemistry used. - The plasma may be an in situ or remote plasma. The plasma may be generated using a power between about 100 W and about 1500 W. In some embodiments, a low bias is also applied during
operation 106. For example, the bias may be set at about 50 Vb, but may be modulated to achieve various etch rates and extent of etch. In some embodiments, alternative activation sources other than plasma may be used. In some embodiments, reactive ion etching or ion beam etching may be used instead of a plasma. Activation sources, such as plasma, reactive ion etching, and ion beam etching, may ionize the activation gas to form an activated activation gas to react with the substrate.Operation 106 may be performed for a duration between about 10 and about 60 seconds. - In
operation 108,operations operation operations - Some disclosed embodiments may involve integrating atomic layer deposition (ALD) and atomic layer etch (ALE) processes, which may be performed without breaking vacuum. For example, in some embodiments of
FIG. 1 , deposition duringoperation 104 is conformal.Operation 104 may be performed in a self-limiting reaction. For example, in some embodiments,operation 104 is deposited using ALD. ALD is a technique that deposits thin layers of material using sequential self-limiting reactions. ALD may be performed using any suitable technique. In various embodiments, ALD may be performed with plasma, or may be performed thermally.Operation 104 may be performed in cycles. - The concept of an “ALD cycle” is relevant to the discussion of various embodiments herein. Generally an ALD cycle is the minimum set of operations used to perform a surface deposition reaction one time. The result of one cycle is production of at least a partial silicon-containing film layer on a substrate surface. Typically, an ALD cycle includes operations to deliver and adsorb at least one reactant to the substrate surface, and then react the adsorbed reactant with one or more reactants to form the partial layer of film. The cycle may include certain ancillary operations such as sweeping one of the reactants or byproducts and/or treating the partial film as deposited. Generally, a cycle contains one instance of a unique sequence of operations. As an example, an ALD cycle may include the following operations: (i) delivery/adsorption of a precursor or first reactant in a chamber, (ii) purging of the precursor from the chamber, (iii) delivery of a second reactant and an optional plasma, and (iv) purging of plasma and byproducts from the chamber.
- In some embodiments,
operation 106 initiates a self-limiting etch of the substrate. For example, a combination of an activated activation gas, plasma, and activated halides from the surface of the substrate as deposited inoperation 104 may perform an atomic layer etch. The concept of an “ALE cycle” is relevant to the discussion of various embodiments herein. Generally an ALE cycle is the minimum set of operations used to perform an etch process one time, such as etching a monolayer. The result of one cycle is that at least some of a film layer on a substrate surface is etched. Typically, an ALE cycle includes a modification operation to form a modified layer, followed by a removal operation to remove or etch only this modified layer. The cycle may include certain ancillary operations such as sweeping one of the reactants or byproducts. Generally, a cycle contains one instance of a unique sequence of operations. As an example, an ALE cycle may include the following operations: (i) delivery of a reactant gas to a chamber, (ii) purging of the reactant gas from the chamber, (iii) delivery of a removal gas and an optional plasma, and (iv) purging of the chamber. In some embodiments, etching may be performed nonconformally. - An example process is described below with reference to
FIGS. 2A-2D , which depicts aCo interconnect 201 a in agate structure 200. Referring toFIG. 2A , in this embodiment, after Co fill and planarization (e.g., by chemical mechanical polishing (CMP)), thestructure 200 is composed of two regions ofhard mask 205 overlying two regions ofgate material 203, with the Co interconnect 201 a situated between the two regions ofgate material 203 on asubstrate 210. The material of thehard mask 205 may be a non-metal in various embodiments. The material of thehard mask 205 may include a metal in various embodiments. The hard mask material may be a metal different from that of the Co interconnect 201 a. In some embodiments, the material of thehard mask 205 may be titanium nitride or tantalum nitride. Thehard mask 205 andgate material 203 may also generally be separated by dielectric spacers, not shown in the figure so as not to detract from a simple illustration of a process in accordance with this disclosure. As shown inFIG. 2A , the Co interconnect 201 a is partially recessed back by a wet process so that the top of the Co interconnect 201 a is etched more and lower than the top of the interface between thehard mask 205 and thegate material 203. - In
FIG. 2B , plasma etching with cyclic steps of deposition using a boron-containing halide chemistry and activation using reactive or non-reactive gases is carried out to further recess the Co interconnect 201 a. Referring toFIG. 2B , a BCl3 deposition can be used to form a BClx layer 207 oversubstrate 200. As shown in the Figure, 207 a refers to the part of the BClx layer 207 that is deposited on top of thehard mask 205, while 207 b refers to the part of the BClx layer 207 that is deposited on top of the Co interconnect 201 a. - Note that the part of the BClx layer 207 a formed on top of the
hard mask 205 during the deposition step is thicker than the part of the BClx layer 207 b that formed on top of the Co interconnect 201 a. The composition of BClx layer 207 a may be different from the composition of BClx layer 207 b at the interface with the Co interconnect 201 a, and such composition difference may contribute to the selectivity as described below. - Without limiting the disclosure by any particular theory of operation, the composition and thickness difference is believed to be due to a combination of chemical and mechanical factors. The deposition chemistry of BCl3 with additives such as H2, CH4, CF4, NF3, and Cl2 preferentially deposits on the
hard mask 205 due at least in part to the reaction/attachment of boron with N, O, or C in the material of thehard mask 205. Chlorine in the deposition chemistry reacts/attaches to the surface of the Co interconnect 201 a, and boron can also attach to chlorine in subsequent exposures, but the reaction generally proceeds more slowly on the surface of the Co interconnect 201 a than at the surface of thehard mask 205, and the recessed aspect of the surface of the Co interconnect 201 a further slows film growth, resulting in differentiation in the thickness of the deposited BClx layer 207. Accordingly, the part of the BClx layer 207 a that formed on top of thehard mask 205 is thicker than the part of the BClx layer 207 b that formed on the top of the Co interconnect 201 a. This differentiation in deposition thickness is most pronounced in the early cycles of the deposition, particularly at the interface. Deposition, activation, and/or etch strategies can be tailored accordingly, as discussed with reference to the cycling of various operations as described below and above with respect toFIG. 1 . In other embodiments, BCl3 used in this process can be replaced with other halide chemistry that can provide comparable deposition and activation functions, such as BBr3 or BI3 or BF3. Note that in various embodiments, the sidewalls of the BClx layer 207 remains on the substrate after etching; that is, some of the BClx layer 207 remains on the sidewall of thehard mask 205 and partially on the sidewall of thegate material 203 after the Co interconnect 201 a is etched. - The BClx layer 207 serves both as a protective barrier and a source of reactive species to form etch products. Referring to
FIG. 2C , during activation, the part of the BClx layer 207 b on the Co interconnect 201 a is activated with ion energy and reacts with Co to form etch products. An activation gas, such as argon optionally in combination with other gases, such as H2, CH4, CF4, Cl2, or NF3, facilitates uniformity and selectivity in the formation of a BClx chemisorption layer 217. Alternative activation gases can include other inert gases such as He, Ne, and Xe. Disclosed embodiments also reduce re-deposition of etch products (e.g., allowing non-deposition of sputtered species that may be used during activation). Note that since a thicker layer was deposited over thehard mask 205, some BClx chemisorption layer 217 remains on these surfaces, while the entirety of the part of the BClx layer 207 b on the surface of the Co interconnect 201 a is etched completely as shown inFIG. 2C , thereby exposing the surface of the Co interconnect 201 a. - The deposition (
FIG. 2B ) and activation (FIG. 2C ) steps are repeated in a number of cycles in such a way that the Co interconnect 201 a is etched without causing damage to thehard mask 205, until the desired Co etch depth is achieved, represented byFIG. 2D . For example, generally, the cycling process may involve: -
- a. (
deposition time 1+activation time 2)*X cycles, for the first few cycles to focus more on deposition build-up on the hard mask;
followed by, - b. (
deposition time 3+activation time 4)*Y cycles, once some differentiation of the deposition build-up on the mask is obtained, and the subsequent cycling can focus more on Co removal.
- a. (
- For the above formulas, X may be between about 1 and about 10 cycles, or between about 1 and about 6 cycles, while Y may be between about 20 and about 30 cycles. The
deposition time 1 associated with performing a net deposition process may be between about 5 and about 60 seconds. Theactivation time 2 associated with performing a net deposition process may be between about 10 and about 60 seconds. Thedeposition time 3 associated with performing a net etch process may be between about 5 and about 60 seconds. Theactivation time 4 associated with performing a net etch process may be between about 10 and about 60 seconds. - The bias voltage during deposition is generally zero, but a low bias can also be used as long as it does not prevent the formation of the BClx layer. A suitable bias during the activation step is about 50 Vb, but it can be altered to achieve the desired result.
- Activation energy and bias voltage may also be varied from cycle to cycle. For example, a cycling process performed in accordance with disclosed embodiments may include:
-
- a. (deposition+activation at bias voltage 1)*X cycles, for the first few cycles to focus more on deposition build-up on the hard mask;
followed by, - b. (deposition+activation at bias voltage 2)*Y cycles, once some differentiation of the deposition build-up on the mask is obtained, and the subsequent cycling can focus more on Co removal.
- a. (deposition+activation at bias voltage 1)*X cycles, for the first few cycles to focus more on deposition build-up on the hard mask;
- For the above formulas, X may be between about 1 and about 10 cycles, or between about 1 and about 6 cycles, while Y may be between about 20 and about 30 cycles.
Bias voltage 1 may be between about 20 Vb and about 100 Vb andbias voltage 2 may be between about 30 Vb and about 150 Vb. - The pressure for both deposition and activation operations may be about 2 mT to about 90 mT. The plasma source power can be from about 100 W to 1500 W.
- To reduce the damage to the hard mask and achieve desired selectivity, some residual BClx may remain on the hard mask once the Co etch is complete at the end of the activation step as described above. In this way, the Co etch can proceed without damage to the hard mask. This result can be further facilitated by tailoring the activation/etch chemistry and conditions such that the part of the BClx layer on the hard mask etches no faster, for example slower, than the part of the BClx layer on the Co interconnect.
- This technology significantly improves both selectivity of Co etch and resulting Co surface roughness. For example, disclosed embodiments may reduce surface roughness to less than 5 nm RMS and may yield at least a 50% improvement in smoothness relative to wet-etched or sputtered surfaces. Without being bound by a particular theory, it is believed that the rough surface of a metal after a wet etch is smoothed by disclosed embodiments due to the etching of protrusions and hills on the surface of the metal that were formed after a wet etch.
- In some embodiments, the cyclic deposition and activation operations may be conducted without breaking vacuum, including in the same chamber, or in different chamber modules of a tool. In various embodiments, disclosed embodiments may be integrated with other processes such as ion beam etching, and reactive ion etching.
- Disclosed embodiments are not limited to etching Co interconnects, but can also be applied to blanket (subtractive) Co etches.
FIGS. 3A-3D provide an example etching scheme for subtractive etch. Subtractive etching may be performed on a blanket Co layer.FIG. 3A shows a schematic illustration of anexample substrate 300 with ablanket Co layer 303 over anetch stop layer 310. Ahard mask 305 is deposited over theblanket Co layer 303 and patterned. Thehard mask 305 may include a non-metal or a metal. In various embodiments, thehard mask 305 is a metal different from that of theblanket Co layer 303. - In
FIG. 3B ,substrate 300 is exposed to a boron-containing halide gas, such as BCl3, and an additive, as described above with respect tooperation 104 inFIG. 1 . A BClx layer 307 is selectively deposited such that the part of the BClx layer 307 a deposited on thehard mask 305 is thicker than the part of the BClx layer 307 b deposited on theblanket Co layer 303. -
FIG. 3C shows a partially etchedCo layer 313 having a recessed portion in the center between the sidewalls of thehard masks 305 and the partially etched BClx layer 317 after thesubstrate 300 inFIG. 3B is exposed to an activation gas and BClx layer 307 is etched to form the partially etched BClx layer 317. Note that while the BClx layer 307 etches at a certain etch rate, since the amount of the part of the BClx layer 307 a on thehard mask 305 is thicker than the amount of the part of the BClx layer 307 b deposited on theblanket Co layer 303 inFIG. 3B , the etch may continue into theblanket Co layer 313 while continuing to etch the partially etched BClx layer 317, thereby protecting thehard mask 305 from degradation and damage. Note that in various embodiments, thesubstrate 300 inFIG. 3C is exposed to an activation gas such as argon and a plasma to etch thesubstrate 300. - As described above with respect to
FIG. 1 ,operations -
FIG. 3D shows the completely subtractively etchedCo 313 after performing sufficient cycles ofoperations - Although specific examples of applications of disclosed embodiments are described herein, it will be understood that other applications for etching any non-volatile metals may be performed using disclosed embodiments.
- Inductively coupled plasma (ICP) reactors which, in certain embodiments, may be suitable for cyclic deposition and activation processes, including atomic layer etching (ALE) operations and atomic layer deposition (ALD) operations, are now described. Such ICP reactors have also been described in U.S. Patent Application Publication No. 2014/0170853, filed Dec. 10, 2013, and titled “IMAGE REVERSAL WITH AHM GAP FILL FOR MULTIPLE PATTERNING,” hereby incorporated by reference in its entirety and for all purposes. Although ICP reactors are described herein, in some embodiments, it should be understood that capacitively coupled plasma reactors may also be used.
-
FIG. 4 schematically shows a cross-sectional view of an inductively coupled plasma integrated etching anddeposition apparatus 400 appropriate for implementing certain embodiments herein, an example of which is a Kiyo® reactor, produced by Lam Research Corp. of Fremont, Calif. The inductively coupledplasma apparatus 400 includes anoverall process chamber 424 structurally defined bychamber walls 401 and awindow 411. Thechamber walls 401 may be fabricated from stainless steel or aluminum. Thewindow 411 may be fabricated from quartz or other dielectric material. An optionalinternal plasma grid 450 divides the overall process chamber into anupper sub-chamber 402 and alower sub-chamber 403. In most embodiments,plasma grid 450 may be removed, thereby utilizing a chamber space made ofsub-chambers chuck 417 is positioned within thelower sub-chamber 403 near the bottom inner surface. Thechuck 417 is configured to receive and hold asemiconductor wafer 419 upon which the etching and deposition processes are performed. Thechuck 417 can be an electrostatic chuck for supporting thewafer 419 when present. In some embodiments, an edge ring (not shown) surroundschuck 417, and has an upper surface that is approximately planar with a top surface of thewafer 419, when present overchuck 417. Thechuck 417 also includes electrostatic electrodes for chucking and dechucking thewafer 419. A filter and DC clamp power supply (not shown) may be provided for this purpose. Other control systems for lifting thewafer 419 off thechuck 417 can also be provided. Thechuck 417 can be electrically charged using anRF power supply 423. TheRF power supply 423 is connected to matchingcircuitry 421 through aconnection 427. The matchingcircuitry 421 is connected to thechuck 417 through aconnection 425. In this manner, theRF power supply 423 is connected to thechuck 417. In various embodiments, a bias power of the electrostatic chuck may be set at about 50 Vb or may be set at a different bias power depending on the process performed in accordance with disclosed embodiments. For example, the bias power may be between about 20 Vb and about 100 Vb, or between about 30 Vb and about 150 Vb. - Elements for plasma generation include a
coil 433 is positioned abovewindow 411. In some embodiments, a coil is not used in disclosed embodiments. Thecoil 433 is fabricated from an electrically conductive material and includes at least one complete turn. The example of acoil 433 shown inFIG. 4 includes three turns. The cross-sections ofcoil 433 are shown with symbols, and coils having an “X” extend rotationally into the page, while coils having a “” extend rotationally out of the page. Elements for plasma generation also include anRF power supply 441 configured to supply RF power to thecoil 433. In general, theRF power supply 441 is connected to matchingcircuitry 439 through aconnection 445. The matchingcircuitry 439 is connected to thecoil 433 through aconnection 443. In this manner, theRF power supply 441 is connected to thecoil 433. An optional Faraday shield 449 a is positioned between thecoil 433 and thewindow 411. TheFaraday shield 449 a may be maintained in a spaced apart relationship relative to thecoil 433. In some embodiments, the Faraday shield 449 a is disposed immediately above thewindow 411. In some embodiments, theFaraday shield 449 b is between thewindow 411 and thechuck 417. In some embodiments, theFaraday shield 449 b is not maintained in a spaced apart relationship relative to thecoil 433. For example, theFaraday shield 449 b may be directly below thewindow 411 without a gap. Thecoil 433, the Faraday shield 449 a, and thewindow 411 are each configured to be substantially parallel to one another. TheFaraday shield 449 a may prevent metal or other species from depositing on thewindow 411 of theprocess chamber 424. - Process gases (e.g. boron-containing halide gas, BCl3, Cl2, Ar, CH4, CF4, NF3, etc.) may be flowed into the process chamber through one or more main
gas flow inlets 460 positioned in theupper sub-chamber 402 and/or through one or more sidegas flow inlets 470. Likewise, though not explicitly shown, similar gas flow inlets may be used to supply process gases to a capacitively coupled plasma processing chamber. A vacuum pump, e.g., a one or two stage mechanical dry pump and/orturbomolecular pump 440, may be used to draw process gases out of theprocess chamber 424 and to maintain a pressure within theprocess chamber 424. For example, the vacuum pump may be used to evacuate thelower sub-chamber 403 during a purge operation of ALD. A valve-controlled conduit may be used to fluidically connect the vacuum pump to theprocess chamber 424 so as to selectively control application of the vacuum environment provided by the vacuum pump. This may be done employing a closed-loop-controlled flow restriction device, such as a throttle valve (not shown) or a pendulum valve (not shown), during operational plasma processing. Likewise, a vacuum pump and valve controlled fluidic connection to the capacitively coupled plasma processing chamber may also be employed. - During operation of the
apparatus 400, one or more process gases such as a boron-containing halide gas, additive, or activation gas, may be supplied through thegas flow inlets 460 and/or 470. In certain embodiments, process gas may be supplied only through the maingas flow inlet 460, or only through the sidegas flow inlet 470. In some cases, the gas flow inlets shown in the figure may be replaced by more complex gas flow inlets, one or more showerheads, for example. TheFaraday shield 449 a and/oroptional grid 450 may include internal channels and holes that allow delivery of process gases to theprocess chamber 424. Either or both of Faraday shield 449 a andoptional grid 450 may serve as a showerhead for delivery of process gases. In some embodiments, a liquid vaporization and delivery system may be situated upstream of theprocess chamber 424, such that once a liquid reactant or precursor is vaporized, the vaporized reactant or precursor is introduced into theprocess chamber 424 via agas flow inlet 460 and/or 470. - Radio frequency power is supplied from the
RF power supply 441 to thecoil 433 to cause an RF current to flow through thecoil 433. The RF current flowing through thecoil 433 generates an electromagnetic field about thecoil 433. The electromagnetic field generates an inductive current within theupper sub-chamber 402. The physical and chemical interactions of various generated ions and radicals with thewafer 419 etch features of and selectively deposit layers on thewafer 419. - If the
plasma grid 450 is used such that there is both anupper sub-chamber 402 and alower sub-chamber 403, the inductive current acts on the gas present in theupper sub-chamber 402 to generate an electron-ion plasma in theupper sub-chamber 402. The optionalinternal plasma grid 450 limits the amount of hot electrons in thelower sub-chamber 403. In some embodiments, theapparatus 400 is designed and operated such that the plasma present in thelower sub-chamber 403 is an ion-ion plasma. - Both the upper electron-ion plasma and the lower ion-ion plasma may contain positive and negative ions, though the ion-ion plasma will have a greater ratio of negative ions to positive ions. Volatile etching and/or deposition byproducts may be removed from the
lower sub-chamber 403 throughport 422. Thechuck 417 disclosed herein may operate at elevated temperatures ranging between about 10° C. and about 250° C. The temperature will depend on the process operation and specific recipe. -
Apparatus 400 may be coupled to facilities (not shown) when installed in a clean room or a fabrication facility. Facilities include plumbing that provide processing gases, vacuum, temperature control, and environmental particle control. These facilities are coupled toapparatus 400, when installed in the target fabrication facility. Additionally,apparatus 400 may be coupled to a transfer chamber that allows robotics to transfer semiconductor wafers into and out ofapparatus 400 using typical automation. - In some embodiments, a system controller 430 (which may include one or more physical or logical controllers) controls some or all of the operations of a
process chamber 424. Thesystem controller 430 may include one or more memory devices and one or more processors. In some embodiments, theapparatus 400 includes a switching system for controlling flow rates and durations when disclosed embodiments are performed. In some embodiments, theapparatus 400 may have a switching time of up to about 500 ms, or up to about 750 ms. Switching time may depend on the flow chemistry, recipe chosen, reactor architecture, and other factors. - In some implementations, the
system controller 430 is part of a system, which may be part of the above-described examples. Such systems can include semiconductor processing equipment, including a processing tool or tools, chamber or chambers, a platform or platforms for processing, and/or specific processing components (a wafer pedestal, a gas flow system, etc.). These systems may be integrated with electronics for controlling their operation before, during, and after processing of a semiconductor wafer or substrate. The electronics may be integrated into thesystem controller 430, which may control various components or subparts of the system or systems. The system controller, depending on the processing parameters and/or the type of system, may be programmed to control any of the processes disclosed herein, including the delivery of processing gases, temperature settings (e.g., heating and/or cooling), pressure settings, vacuum settings, power settings, radio frequency (RF) generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, positional and operation settings, wafer transfers into and out of a tool and other transfer tools and/or load locks connected to or interfaced with a specific system. - Broadly speaking, the
system controller 430 may be defined as electronics having various integrated circuits, logic, memory, and/or software that receive instructions, issue instructions, control operation, enable cleaning operations, enable endpoint measurements, and the like. The integrated circuits may include chips in the form of firmware that store program instructions, digital signal processors (DSPs), chips defined as application specific integrated circuits (ASICs), and/or one or more microprocessors, or microcontrollers that execute program instructions (e.g., software). Program instructions may be instructions communicated to the controller in the form of various individual settings (or program files), defining operational parameters for carrying out a particular process on or for a semiconductor wafer or to a system. The operational parameters may, in some embodiments, be part of a recipe defined by process engineers to accomplish one or more processing steps during the fabrication or removal of one or more layers, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits, and/or dies of a wafer. - The
system controller 430, in some implementations, may be a part of or coupled to a computer that is integrated with, coupled to the system, otherwise networked to the system, or a combination thereof. For example, the controller may be in the “cloud” or all or a part of a fab host computer system, which can allow for remote access of the wafer processing. The computer may enable remote access to the system to monitor current progress of fabrication operations, examine a history of past fabrication operations, examine trends or performance metrics from a plurality of fabrication operations, to change parameters of current processing, to set processing steps to follow a current processing, or to start a new process. In some examples, a remote computer (e.g. a server) can provide process recipes to a system over a network, which may include a local network or the Internet. The remote computer may include a user interface that enables entry or programming of parameters and/or settings, which are then communicated to the system from the remote computer. In some examples, thesystem controller 430 receives instructions in the form of data, which specify parameters for each of the processing steps to be performed during one or more operations. It should be understood that the parameters may be specific to the type of process to be performed and the type of tool that the controller is configured to interface with or control. Thus as described above, thesystem controller 430 may be distributed, such as by including one or more discrete controllers that are networked together and working towards a common purpose, such as the processes and controls described herein. An example of a distributed controller for such purposes would be one or more integrated circuits on a chamber in communication with one or more integrated circuits located remotely (such as at the platform level or as part of a remote computer) that combine to control a process on the chamber. - Without limitation, example systems may include a plasma etch chamber or module, a deposition chamber or module, a spin-rinse chamber or module, a metal plating chamber or module, a clean chamber or module, a bevel edge etch chamber or module, a physical vapor deposition (PVD) chamber or module, a chemical vapor deposition (CVD) chamber or module, an ALD chamber or module, an ALE chamber or module, an ion implantation chamber or module, a track chamber or module, and any other semiconductor processing systems that may be associated or used in the fabrication and/or manufacturing of semiconductor wafers.
- As noted above, depending on the process step or steps to be performed by the tool, the controller might communicate with one or more of other tool circuits or modules, other tool components, cluster tools, other tool interfaces, adjacent tools, neighboring tools, tools located throughout a factory, a main computer, another controller, or tools used in material transport that bring containers of wafers to and from tool locations and/or load ports in a semiconductor manufacturing factory.
-
FIG. 5 depicts a semiconductor process cluster architecture with various modules that interface with a vacuum transfer module 538 (VTM). The arrangement of various modules to “transfer” wafers among multiple storage facilities and processing modules may be referred to as a “cluster tool architecture” system.Airlock 530, also known as a loadlock or transfer module, interfaces with theVTM 538 which, in turn, interfaces with four processing modules 520 a-520 d, which may be individual optimized to perform various fabrication processes. By way of example, processing modules 520 a-520 d may be implemented to perform substrate etching, deposition, ion implantation, wafer cleaning, sputtering, and/or other semiconductor processes. In some embodiments, ALD and ALE are performed in the same module. In some embodiments, ALD and ALE are performed in different modules of the same tool. One or more of the substrate etching processing modules (any of 520 a-520 d) may be implemented as disclosed herein, i.e., for depositing conformal films, selectively depositing films by ALD, etching patterns, etching metal, and other suitable functions in accordance with the disclosed embodiments.Airlock 530 and processing modules 520 a-520 d may be referred to as “stations.” Each station has afacet 536 that interfaces the station toVTM 538. Inside each facet, sensors 1-18 are used to detect the passing ofwafer 526 when moved between respective stations. -
Robot 522transfers wafer 526 between stations. In one embodiment,robot 522 has one arm, and in another embodiment,robot 522 has two arms, where each arm has anend effector 524 to pick wafers such aswafer 526 for transport. Front-end robot 532, in atmospheric transfer module (ATM) 540, is used to transferwafers 526 from cassette or Front Opening Unified Pod (FOUP) 534 in Load Port Module (LPM) 542 toairlock 530.Module center 528 inside processing modules 520 a-520 d is one location for placingwafer 526.Aligner 544 inATM 540 is used to align wafers. - In an exemplary processing method, a wafer is placed in one of the
FOUPs 534 in theLPM 542. Front-end robot 532 transfers the wafer from theFOUP 534 to analigner 544, which allows thewafer 526 to be properly centered before it is etched or processed. After being aligned, thewafer 526 is moved by the front-end robot 532 into anairlock 530. Because theairlock 530 has the ability to match the environment between anATM 540 and aVTM 538, thewafer 526 is able to move between the two pressure environments without being damaged. From theairlock 530, thewafer 526 is moved byrobot 522 throughVTM 538 and into one of the processing modules 520 a-520 d. In order to achieve this wafer movement, therobot 522 usesend effectors 524 on each of its arms. Once thewafer 526 has been processed, it is moved byrobot 522 from the processing modules 520 a-520 d to theairlock 530. From here, thewafer 526 may be moved by the front-end robot 532 to one of theFOUPs 534 or to thealigner 544. - It should be noted that the computer controlling the wafer movement can be local to the cluster architecture, or can be located external to the cluster architecture in the manufacturing floor, or in a remote location and connected to the cluster architecture via a network. A controller as described above with respect to
FIG. 4 may be implemented with the tool inFIG. 5 . - An experiment was conducted and smoothness of substrates was evaluated. A blanket film stack on a silicon substrate including an oxide, titanium nitride as an adhesion layer, and 100 nm of cobalt was evaluated prior to etch. An image was taken as shown in
FIG. 6A , which shows various lumps and grains across the surface of the substrate, and at the interface between various layers, suggesting high roughness. Measurements were taken as shown, which showed thicknesses of 110 nm, 113 nm, 112 nm, and 111 nm. The substrate was then etched using disclosed embodiments. The substrate including a previously recessed cobalt layer (recessed by a wet etch) with a hard mask deposited and patterned over it was exposed to BCl3 and an additive to deposit a BClx layer on the substrate, and then the substrate was exposed to an activation gas and a plasma was turned on. The substrate was exposed to alternate pulses of BCl3 with additive and activation gas with plasma for 20 cycles. The etched substrate was then evaluated for roughness. An image was taken of the resulting substrate as shown inFIG. 6B and the thickness was measured at 80.2 nm. The substrate exhibits a smooth surface of less than 5 nm RMS and at least a 50% improvement in smoothness. - An experiment was conducted and etch rate of disclosed embodiments were measured. A substrate having a blanket cobalt layer to be etched and a deposited and patterned hard mask over the cobalt layer was exposed to BCl3 and an additive. The substrate was then exposed to an activation gas and a plasma. The substrate was exposed to cycles of BCl3 with additive and activation gas with plasma for over 20 cycles. The cycles etched cobalt in a mostly linear pattern at an etch rate of about 1.4422 nm/cycle. Data points and a linear model for the cobalt removal amount over number of cycles are depicted in
FIG. 7 . - Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. It should be noted that there are many alternative ways of implementing the processes, systems, and apparatus of the present embodiments. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the embodiments are not to be limited to the details given herein.
Claims (33)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/749,285 US9870899B2 (en) | 2015-04-24 | 2015-06-24 | Cobalt etch back |
JP2016082061A JP6964964B2 (en) | 2015-04-24 | 2016-04-15 | How to process the substrate in the chamber and its equipment |
SG10201603092RA SG10201603092RA (en) | 2015-04-24 | 2016-04-19 | Cobalt etch back |
KR1020160048382A KR20160126890A (en) | 2015-04-24 | 2016-04-20 | Cobalt etch back |
TW105112529A TWI692034B (en) | 2015-04-24 | 2016-04-22 | Cobalt etch back |
CN201610255293.7A CN106067442B (en) | 2015-04-24 | 2016-04-22 | Cobalt etches deeply |
US15/824,987 US10784086B2 (en) | 2015-04-24 | 2017-11-28 | Cobalt etch back |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562152715P | 2015-04-24 | 2015-04-24 | |
US14/749,285 US9870899B2 (en) | 2015-04-24 | 2015-06-24 | Cobalt etch back |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/824,987 Division US10784086B2 (en) | 2015-04-24 | 2017-11-28 | Cobalt etch back |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160314985A1 true US20160314985A1 (en) | 2016-10-27 |
US9870899B2 US9870899B2 (en) | 2018-01-16 |
Family
ID=57146883
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/749,285 Active US9870899B2 (en) | 2015-04-24 | 2015-06-24 | Cobalt etch back |
US15/824,987 Active 2036-02-02 US10784086B2 (en) | 2015-04-24 | 2017-11-28 | Cobalt etch back |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/824,987 Active 2036-02-02 US10784086B2 (en) | 2015-04-24 | 2017-11-28 | Cobalt etch back |
Country Status (6)
Country | Link |
---|---|
US (2) | US9870899B2 (en) |
JP (1) | JP6964964B2 (en) |
KR (1) | KR20160126890A (en) |
CN (1) | CN106067442B (en) |
SG (1) | SG10201603092RA (en) |
TW (1) | TWI692034B (en) |
Cited By (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9805941B2 (en) | 2015-01-12 | 2017-10-31 | Lam Research Corporation | Integrating atomic scale processes: ALD (atomic layer deposition) and ALE (atomic layer etch) |
US9806252B2 (en) | 2015-04-20 | 2017-10-31 | Lam Research Corporation | Dry plasma etch method to pattern MRAM stack |
US9831124B1 (en) * | 2016-10-28 | 2017-11-28 | Globalfoundries Inc. | Interconnect structures |
US9837312B1 (en) * | 2016-07-22 | 2017-12-05 | Lam Research Corporation | Atomic layer etching for enhanced bottom-up feature fill |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9972504B2 (en) | 2015-08-07 | 2018-05-15 | Lam Research Corporation | Atomic layer etching of tungsten for enhanced tungsten deposition fill |
US9978564B2 (en) | 2012-09-21 | 2018-05-22 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US9984858B2 (en) | 2015-09-04 | 2018-05-29 | Lam Research Corporation | ALE smoothness: in and outside semiconductor industry |
US9991128B2 (en) | 2016-02-05 | 2018-06-05 | Lam Research Corporation | Atomic layer etching in continuous plasma |
US9997371B1 (en) | 2017-04-24 | 2018-06-12 | Lam Research Corporation | Atomic layer etch methods and hardware for patterning applications |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10032606B2 (en) | 2012-08-02 | 2018-07-24 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10062587B2 (en) | 2012-07-18 | 2018-08-28 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US10062578B2 (en) | 2011-03-14 | 2018-08-28 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US10096487B2 (en) | 2015-08-19 | 2018-10-09 | Lam Research Corporation | Atomic layer etching of tungsten and other metals |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10186428B2 (en) | 2016-11-11 | 2019-01-22 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10199215B2 (en) * | 2015-09-22 | 2019-02-05 | Applied Materials, Inc. | Apparatus and method for selective deposition |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10269566B2 (en) | 2016-04-29 | 2019-04-23 | Lam Research Corporation | Etching substrates using ale and selective deposition |
US10276434B1 (en) | 2018-01-02 | 2019-04-30 | International Business Machines Corporation | Structure and method using metal spacer for insertion of variable wide line implantation in SADP/SAQP integration |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
WO2019089196A1 (en) * | 2017-10-31 | 2019-05-09 | Lam Research Corporation | Etching metal oxide substrates using ale and selective deposition |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10304693B2 (en) | 2014-12-04 | 2019-05-28 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10424464B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
WO2019217584A1 (en) * | 2018-05-09 | 2019-11-14 | Tokyo Electron Limited | Methods and systems for patterning of low aspect ratio stacks |
CN110473782A (en) * | 2018-05-11 | 2019-11-19 | 东京毅力科创株式会社 | Engraving method and Etaching device |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10497567B2 (en) * | 2017-08-07 | 2019-12-03 | Applied Materials, Inc. | Method of enhanced selectivity of hard mask using plasma treatments |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10515815B2 (en) | 2017-11-21 | 2019-12-24 | Lam Research Corporation | Atomic layer deposition and etch in a single plasma chamber for fin field effect transistor formation |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10546748B2 (en) | 2017-02-17 | 2020-01-28 | Lam Research Corporation | Tin oxide films in semiconductor device manufacturing |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10559461B2 (en) | 2017-04-19 | 2020-02-11 | Lam Research Corporation | Selective deposition with atomic layer etch reset |
US10559475B2 (en) | 2016-02-04 | 2020-02-11 | Lam Research Corporation | Control of directionality in atomic layer etching |
US10566212B2 (en) | 2016-12-19 | 2020-02-18 | Lam Research Corporation | Designer atomic layer etching |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10607867B2 (en) | 2015-08-06 | 2020-03-31 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10658174B2 (en) | 2017-11-21 | 2020-05-19 | Lam Research Corporation | Atomic layer deposition and etch for reducing roughness |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10727073B2 (en) | 2016-02-04 | 2020-07-28 | Lam Research Corporation | Atomic layer etching 3D structures: Si and SiGe and Ge smoothness on horizontal and vertical surfaces |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10734238B2 (en) | 2017-11-21 | 2020-08-04 | Lam Research Corporation | Atomic layer deposition and etch in a single plasma chamber for critical dimension control |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10784086B2 (en) | 2015-04-24 | 2020-09-22 | Lam Research Corporation | Cobalt etch back |
US10811310B2 (en) | 2018-10-31 | 2020-10-20 | International Business Machines Corporation | Metal spacer self aligned double patterning with airgap integration |
US10818494B2 (en) | 2018-09-07 | 2020-10-27 | Globalfoundries Inc. | Metal on metal multiple patterning |
US10825726B2 (en) | 2018-10-16 | 2020-11-03 | International Business Machines Corporation | Metal spacer self aligned multi-patterning integration |
US10832909B2 (en) | 2017-04-24 | 2020-11-10 | Lam Research Corporation | Atomic layer etch, reactive precursors and energetic sources for patterning applications |
US20200357634A1 (en) * | 2017-09-29 | 2020-11-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for Manufacturing a Semiconductor Device |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US11024508B2 (en) | 2019-04-05 | 2021-06-01 | Tokyo Electron Limited | Independent control of etching and passivation gas components for highly selective silicon oxide/silicon nitride etching |
US11031245B2 (en) | 2016-06-28 | 2021-06-08 | Lan Research Corporation | Tin oxide thin film spacers in semiconductor device manufacturing |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11069564B2 (en) | 2019-04-09 | 2021-07-20 | International Business Machines Corporation | Double metal patterning |
US11088019B2 (en) | 2017-02-13 | 2021-08-10 | Lam Research Corporation | Method to create air gaps |
US11107727B2 (en) | 2019-05-10 | 2021-08-31 | International Business Machines Corporation | Double metal double patterning with vias extending into dielectric |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US11355353B2 (en) | 2018-01-30 | 2022-06-07 | Lam Research Corporation | Tin oxide mandrels in patterning |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11450513B2 (en) | 2018-03-30 | 2022-09-20 | Lam Research Corporation | Atomic layer etching and smoothing of refractory metals and other high surface binding energy materials |
US20220359214A1 (en) * | 2021-05-04 | 2022-11-10 | Applied Materials, Inc. | Metal etch in high aspect-ratio features |
US11551938B2 (en) | 2019-06-27 | 2023-01-10 | Lam Research Corporation | Alternating etch and passivation process |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US20230083577A1 (en) * | 2021-09-13 | 2023-03-16 | Applied Materials, Inc. | Recessed metal etching methods |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US11987876B2 (en) | 2018-03-19 | 2024-05-21 | Lam Research Corporation | Chamfer-less via integration scheme |
WO2024155468A1 (en) * | 2023-01-19 | 2024-07-25 | Applied Materials, Inc. | Dry etch of boron-containing material |
US12051589B2 (en) | 2016-06-28 | 2024-07-30 | Lam Research Corporation | Tin oxide thin film spacers in semiconductor device manufacturing |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10115601B2 (en) * | 2016-02-03 | 2018-10-30 | Tokyo Electron Limited | Selective film formation for raised and recessed features using deposition and etching processes |
US10796912B2 (en) * | 2017-05-16 | 2020-10-06 | Lam Research Corporation | Eliminating yield impact of stochastics in lithography |
US10763083B2 (en) | 2017-10-06 | 2020-09-01 | Lam Research Corporation | High energy atomic layer etching |
US10446394B2 (en) | 2018-01-26 | 2019-10-15 | Lam Research Corporation | Spacer profile control using atomic layer deposition in a multiple patterning process |
US10763429B2 (en) | 2018-10-12 | 2020-09-01 | International Business Machines Corporation | Self-aligned ion beam etch sputter mask for magnetoresistive random access memory |
WO2020102085A1 (en) | 2018-11-14 | 2020-05-22 | Lam Research Corporation | Methods for making hard masks useful in next-generation lithography |
US10982335B2 (en) * | 2018-11-15 | 2021-04-20 | Tokyo Electron Limited | Wet atomic layer etching using self-limiting and solubility-limited reactions |
KR102731166B1 (en) | 2018-12-20 | 2024-11-18 | 램 리써치 코포레이션 | Dry development of resists |
US12125711B2 (en) | 2019-03-18 | 2024-10-22 | Lam Research Corporation | Reducing roughness of extreme ultraviolet lithography resists |
WO2020223011A1 (en) | 2019-04-30 | 2020-11-05 | Lam Research Corporation | Atomic layer etch and selective deposition process for extreme ultraviolet lithography resist improvement |
TWI869221B (en) | 2019-06-26 | 2025-01-01 | 美商蘭姆研究公司 | Photoresist development with halide chemistries |
WO2021021486A1 (en) | 2019-07-31 | 2021-02-04 | Lam Research Corporation | Chemical etch nonvolatile materials for mram patterning |
JP7300945B2 (en) | 2019-09-13 | 2023-06-30 | 東京エレクトロン株式会社 | Recording medium for recording cleaning method and cleaning program |
US11139201B2 (en) | 2019-11-04 | 2021-10-05 | International Business Machines Corporation | Top via with hybrid metallization |
US11854876B2 (en) * | 2019-12-20 | 2023-12-26 | Asm Ip Holding B.V. | Systems and methods for cobalt metalization |
WO2021146138A1 (en) | 2020-01-15 | 2021-07-22 | Lam Research Corporation | Underlayer for photoresist adhesion and dose reduction |
WO2021173557A1 (en) | 2020-02-28 | 2021-09-02 | Lam Research Corporation | Multi-layer hardmask for defect reduction in euv patterning |
US20230045336A1 (en) | 2020-07-07 | 2023-02-09 | Lam Research Corporation | Integrated dry processes for patterning radiation photoresist patterning |
KR20220152755A (en) | 2021-05-10 | 2022-11-17 | 삼성전자주식회사 | Atomic layer ehching method and semiconductor device manufacturing method using the same |
TWI790028B (en) * | 2021-12-09 | 2023-01-11 | 財團法人工業技術研究院 | Deposition apparatus and deposition method |
US11961716B2 (en) | 2021-12-09 | 2024-04-16 | Industrial Technology Research Institute | Atomic layer deposition method |
KR102681951B1 (en) | 2023-10-31 | 2024-07-05 | 인하대학교 산학협력단 | Method for Dry Etching of Cobalt Thin Films |
KR102688217B1 (en) | 2023-10-31 | 2024-07-25 | 인하대학교 산학협력단 | Method for High Density Plasma Etching of Cobalt Thin Films |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6177353B1 (en) * | 1998-09-15 | 2001-01-23 | Infineon Technologies North America Corp. | Metallization etching techniques for reducing post-etch corrosion of metal lines |
US6482745B1 (en) * | 1998-01-13 | 2002-11-19 | Applied Materials, Inc. | Etching methods for anisotropic platinum profile |
US20040209476A1 (en) * | 2003-04-17 | 2004-10-21 | Applied Materials, Inc. | Method of fabricating a magneto-resistive random access memory (MRAM) device |
US20060009040A1 (en) * | 2004-07-09 | 2006-01-12 | Kazuhiro Tomioka | Method for manufacturing semiconductor device |
Family Cites Families (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4252801A (en) * | 1980-01-04 | 1981-02-24 | E. R. Squibb & Sons, Inc. | Morpholinyl acetamide derivatives and use thereof |
JPH061769B2 (en) * | 1983-08-10 | 1994-01-05 | 株式会社日立製作所 | Alumina film patterning method |
US5298451A (en) | 1991-04-30 | 1994-03-29 | Texas Instruments Incorporated | Recessed and sidewall-sealed poly-buffered LOCOS isolation methods |
JPH06151382A (en) | 1992-11-11 | 1994-05-31 | Toshiba Corp | Dry etching method |
DE4241045C1 (en) | 1992-12-05 | 1994-05-26 | Bosch Gmbh Robert | Process for anisotropic etching of silicon |
JPH06326060A (en) | 1993-05-12 | 1994-11-25 | Hitachi Ltd | Working method of surface of solid |
US6022806A (en) | 1994-03-15 | 2000-02-08 | Kabushiki Kaisha Toshiba | Method of forming a film in recess by vapor phase growth |
DE19681602T1 (en) | 1995-10-19 | 1998-11-26 | Massachusetts Inst Technology | Process for removing metal |
US6323132B1 (en) | 1998-01-13 | 2001-11-27 | Applied Materials, Inc. | Etching methods for anisotropic platinum profile |
US8696875B2 (en) | 1999-10-08 | 2014-04-15 | Applied Materials, Inc. | Self-ionized and inductively-coupled plasma for sputtering and resputtering |
US6458694B2 (en) | 2000-01-24 | 2002-10-01 | Ebara Corporation | High energy sputtering method for forming interconnects |
JP3662472B2 (en) | 2000-05-09 | 2005-06-22 | エム・エフエスアイ株式会社 | Substrate surface treatment method |
US6677242B1 (en) | 2000-08-12 | 2004-01-13 | Applied Materials Inc. | Integrated shallow trench isolation approach |
US6527855B2 (en) | 2000-10-10 | 2003-03-04 | Rensselaer Polytechnic Institute | Atomic layer deposition of cobalt from cobalt metallorganic compounds |
US20020058409A1 (en) | 2000-11-16 | 2002-05-16 | Ching-Te Lin | Elimination of overhang in liner/barrier/seed layers using post-deposition sputter etch |
US6448192B1 (en) | 2001-04-16 | 2002-09-10 | Motorola, Inc. | Method for forming a high dielectric constant material |
JP4429605B2 (en) | 2001-05-04 | 2010-03-10 | 東京エレクトロン株式会社 | Ionized PVD method and apparatus with sequential deposition and etching |
US8110489B2 (en) | 2001-07-25 | 2012-02-07 | Applied Materials, Inc. | Process for forming cobalt-containing materials |
US7115516B2 (en) | 2001-10-09 | 2006-10-03 | Applied Materials, Inc. | Method of depositing a material layer |
AU2003223472A1 (en) | 2002-05-14 | 2003-12-02 | Tokyo Electron Limited | PLASMA ETCHING OF Cu-CONTAINING LAYERS |
US6884730B2 (en) * | 2002-07-02 | 2005-04-26 | Headway Technologies, Inc. | Method of etching a film of magnetic material and method of manufacturing a thin-film magnetic head |
TWI303090B (en) | 2002-08-13 | 2008-11-11 | Lam Res Corp | Method for in-situ monitoring of patterned substrate processing using reflectometry |
US6933239B2 (en) | 2003-01-13 | 2005-08-23 | Applied Materials, Inc. | Method for removing conductive residue |
JP2004332045A (en) | 2003-05-07 | 2004-11-25 | Renesas Technology Corp | Method for dry-etching multilayered film material |
US7341946B2 (en) | 2003-11-10 | 2008-03-11 | Novellus Systems, Inc. | Methods for the electrochemical deposition of copper onto a barrier layer of a work piece |
US20050233555A1 (en) * | 2004-04-19 | 2005-10-20 | Nagarajan Rajagopalan | Adhesion improvement for low k dielectrics to conductive materials |
CN100576474C (en) * | 2004-07-20 | 2009-12-30 | 应用材料股份有限公司 | Atomic layer deposition of tantalum-containing materials using tantalum precursor TAIMATA |
US7196955B2 (en) | 2005-01-12 | 2007-03-27 | Hewlett-Packard Development Company, L.P. | Hardmasks for providing thermally assisted switching of magnetic memory elements |
US7235492B2 (en) | 2005-01-31 | 2007-06-26 | Applied Materials, Inc. | Low temperature etchant for treatment of silicon-containing surfaces |
JP4860219B2 (en) | 2005-02-14 | 2012-01-25 | 東京エレクトロン株式会社 | Substrate processing method, electronic device manufacturing method, and program |
US7214626B2 (en) | 2005-08-24 | 2007-05-08 | United Microelectronics Corp. | Etching process for decreasing mask defect |
US20070087581A1 (en) | 2005-09-09 | 2007-04-19 | Varian Semiconductor Equipment Associates, Inc. | Technique for atomic layer deposition |
US7795148B2 (en) | 2006-03-28 | 2010-09-14 | Tokyo Electron Limited | Method for removing damaged dielectric material |
US20070238301A1 (en) | 2006-03-28 | 2007-10-11 | Cabral Stephen H | Batch processing system and method for performing chemical oxide removal |
US7368393B2 (en) | 2006-04-20 | 2008-05-06 | International Business Machines Corporation | Chemical oxide removal of plasma damaged SiCOH low k dielectrics |
US7416989B1 (en) | 2006-06-30 | 2008-08-26 | Novellus Systems, Inc. | Adsorption based material removal process |
KR100905278B1 (en) | 2007-07-19 | 2009-06-29 | 주식회사 아이피에스 | Thin film deposition apparatus, thin film deposition method and gap-fill method of semiconductor device |
KR101330707B1 (en) | 2007-07-19 | 2013-11-19 | 삼성전자주식회사 | Method of forming Semiconducotr Device |
US8247030B2 (en) | 2008-03-07 | 2012-08-21 | Tokyo Electron Limited | Void-free copper filling of recessed features using a smooth non-agglomerated copper seed layer |
US7948044B2 (en) | 2008-04-09 | 2011-05-24 | Magic Technologies, Inc. | Low switching current MTJ element for ultra-high STT-RAM and a method for making the same |
US8252194B2 (en) | 2008-05-02 | 2012-08-28 | Micron Technology, Inc. | Methods of removing silicon oxide |
US9034768B2 (en) | 2010-07-09 | 2015-05-19 | Novellus Systems, Inc. | Depositing tungsten into high aspect ratio features |
US8124531B2 (en) | 2009-08-04 | 2012-02-28 | Novellus Systems, Inc. | Depositing tungsten into high aspect ratio features |
US20110139748A1 (en) | 2009-12-15 | 2011-06-16 | University Of Houston | Atomic layer etching with pulsed plasmas |
US8227344B2 (en) | 2010-02-26 | 2012-07-24 | Tokyo Electron Limited | Hybrid in-situ dry cleaning of oxidized surface layers |
US9373500B2 (en) | 2014-02-21 | 2016-06-21 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications |
TWI509695B (en) * | 2010-06-10 | 2015-11-21 | Asm Int | Method for selectively depositing film on substrate |
WO2012023537A1 (en) | 2010-08-19 | 2012-02-23 | 株式会社 アルバック | Dry etching method and method of manufacturing semiconductor device |
KR101739987B1 (en) | 2010-12-28 | 2017-05-26 | 에스케이 텔레콤주식회사 | Video Encoding/Decoding Method and Apparatus Using Feature Vector of Adjacent Block |
US8546263B2 (en) | 2011-04-27 | 2013-10-01 | Applied Materials, Inc. | Method of patterning of magnetic tunnel junctions |
US8617411B2 (en) | 2011-07-20 | 2013-12-31 | Lam Research Corporation | Methods and apparatus for atomic layer etching |
US9666414B2 (en) | 2011-10-27 | 2017-05-30 | Applied Materials, Inc. | Process chamber for etching low k and other dielectric films |
US8808561B2 (en) | 2011-11-15 | 2014-08-19 | Lam Research Coporation | Inert-dominant pulsing in plasma processing systems |
US20130129922A1 (en) | 2011-11-21 | 2013-05-23 | Qualcomm Mems Technologies, Inc. | Batch processing for electromechanical systems and equipment for same |
US8633115B2 (en) | 2011-11-30 | 2014-01-21 | Applied Materials, Inc. | Methods for atomic layer etching |
US8883028B2 (en) | 2011-12-28 | 2014-11-11 | Lam Research Corporation | Mixed mode pulsing etching in plasma processing systems |
JP2014049466A (en) * | 2012-08-29 | 2014-03-17 | Tokyo Electron Ltd | Etching processing method and substrate processing apparatus |
JP5918108B2 (en) | 2012-11-16 | 2016-05-18 | 東京エレクトロン株式会社 | Plasma processing method and plasma processing apparatus |
US9362133B2 (en) | 2012-12-14 | 2016-06-07 | Lam Research Corporation | Method for forming a mask by etching conformal film on patterned ashable hardmask |
US20140214474A1 (en) * | 2013-01-25 | 2014-07-31 | Marcello Balduccini | Aggregation of customer requirements |
US20140349469A1 (en) | 2013-05-22 | 2014-11-27 | Qualcomm Mems Technologies, Inc. | Processing for electromechanical systems and equipment for same |
JP6170754B2 (en) | 2013-06-18 | 2017-07-26 | 株式会社日立国際電気 | Semiconductor device manufacturing method, substrate processing apparatus, and program |
US9362163B2 (en) | 2013-07-30 | 2016-06-07 | Lam Research Corporation | Methods and apparatuses for atomic layer cleaning of contacts and vias |
US20150111374A1 (en) | 2013-10-18 | 2015-04-23 | International Business Machines Corporation | Surface treatment in a dep-etch-dep process |
JP6347695B2 (en) | 2013-11-20 | 2018-06-27 | 東京エレクトロン株式会社 | Method for etching a layer to be etched |
US9214334B2 (en) | 2014-02-18 | 2015-12-15 | Lam Research Corporation | High growth rate process for conformal aluminum nitride |
US9257638B2 (en) | 2014-03-27 | 2016-02-09 | Lam Research Corporation | Method to etch non-volatile metal materials |
US9773683B2 (en) | 2014-06-09 | 2017-09-26 | American Air Liquide, Inc. | Atomic layer or cyclic plasma etching chemistries and processes |
TWI593015B (en) | 2014-07-10 | 2017-07-21 | 東京威力科創股份有限公司 | Methods for high precision etching of substrates |
FR3023971B1 (en) | 2014-07-18 | 2016-08-05 | Commissariat Energie Atomique | METHOD FOR FORMING SPACERS OF A GRID OF A TRANSISTOR |
US9349637B2 (en) | 2014-08-21 | 2016-05-24 | Lam Research Corporation | Method for void-free cobalt gap fill |
US9362131B2 (en) | 2014-08-29 | 2016-06-07 | Applied Materials, Inc. | Fast atomic layer etch process using an electron beam |
US9627608B2 (en) | 2014-09-11 | 2017-04-18 | Lam Research Corporation | Dielectric repair for emerging memory devices |
US9609730B2 (en) * | 2014-11-12 | 2017-03-28 | Lam Research Corporation | Adjustment of VUV emission of a plasma via collisional resonant energy transfer to an energy absorber gas |
US10170324B2 (en) * | 2014-12-04 | 2019-01-01 | Lam Research Corporation | Technique to tune sidewall passivation deposition conformality for high aspect ratio cylinder etch |
JP2018500767A (en) | 2014-12-18 | 2018-01-11 | ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate | Novel method of atomic layer etching (ALE) using sequential self-controlled thermal reaction |
US9576811B2 (en) | 2015-01-12 | 2017-02-21 | Lam Research Corporation | Integrating atomic scale processes: ALD (atomic layer deposition) and ALE (atomic layer etch) |
US9806252B2 (en) * | 2015-04-20 | 2017-10-31 | Lam Research Corporation | Dry plasma etch method to pattern MRAM stack |
US9870899B2 (en) * | 2015-04-24 | 2018-01-16 | Lam Research Corporation | Cobalt etch back |
SG10201604524PA (en) | 2015-06-05 | 2017-01-27 | Lam Res Corp | ATOMIC LAYER ETCHING OF GaN AND OTHER III-V MATERIALS |
US9449843B1 (en) | 2015-06-09 | 2016-09-20 | Applied Materials, Inc. | Selectively etching metals and metal nitrides conformally |
US9922839B2 (en) | 2015-06-23 | 2018-03-20 | Lam Research Corporation | Low roughness EUV lithography |
US9972504B2 (en) | 2015-08-07 | 2018-05-15 | Lam Research Corporation | Atomic layer etching of tungsten for enhanced tungsten deposition fill |
US9520821B1 (en) * | 2015-08-19 | 2016-12-13 | Nidec Motor Corporation | System and method for optimizing flux regulation in electric motors |
US10096487B2 (en) | 2015-08-19 | 2018-10-09 | Lam Research Corporation | Atomic layer etching of tungsten and other metals |
US9984858B2 (en) | 2015-09-04 | 2018-05-29 | Lam Research Corporation | ALE smoothness: in and outside semiconductor industry |
KR20170050056A (en) | 2015-10-29 | 2017-05-11 | 삼성전자주식회사 | Method of forming patterns for semiconductor device |
US10727073B2 (en) | 2016-02-04 | 2020-07-28 | Lam Research Corporation | Atomic layer etching 3D structures: Si and SiGe and Ge smoothness on horizontal and vertical surfaces |
US9991128B2 (en) | 2016-02-05 | 2018-06-05 | Lam Research Corporation | Atomic layer etching in continuous plasma |
US9837312B1 (en) | 2016-07-22 | 2017-12-05 | Lam Research Corporation | Atomic layer etching for enhanced bottom-up feature fill |
US10566212B2 (en) | 2016-12-19 | 2020-02-18 | Lam Research Corporation | Designer atomic layer etching |
US10559461B2 (en) | 2017-04-19 | 2020-02-11 | Lam Research Corporation | Selective deposition with atomic layer etch reset |
US9997371B1 (en) * | 2017-04-24 | 2018-06-12 | Lam Research Corporation | Atomic layer etch methods and hardware for patterning applications |
US10832909B2 (en) | 2017-04-24 | 2020-11-10 | Lam Research Corporation | Atomic layer etch, reactive precursors and energetic sources for patterning applications |
-
2015
- 2015-06-24 US US14/749,285 patent/US9870899B2/en active Active
-
2016
- 2016-04-15 JP JP2016082061A patent/JP6964964B2/en active Active
- 2016-04-19 SG SG10201603092RA patent/SG10201603092RA/en unknown
- 2016-04-20 KR KR1020160048382A patent/KR20160126890A/en not_active Withdrawn
- 2016-04-22 TW TW105112529A patent/TWI692034B/en active
- 2016-04-22 CN CN201610255293.7A patent/CN106067442B/en active Active
-
2017
- 2017-11-28 US US15/824,987 patent/US10784086B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482745B1 (en) * | 1998-01-13 | 2002-11-19 | Applied Materials, Inc. | Etching methods for anisotropic platinum profile |
US6177353B1 (en) * | 1998-09-15 | 2001-01-23 | Infineon Technologies North America Corp. | Metallization etching techniques for reducing post-etch corrosion of metal lines |
US20040209476A1 (en) * | 2003-04-17 | 2004-10-21 | Applied Materials, Inc. | Method of fabricating a magneto-resistive random access memory (MRAM) device |
US20060009040A1 (en) * | 2004-07-09 | 2006-01-12 | Kazuhiro Tomioka | Method for manufacturing semiconductor device |
Cited By (181)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US10062578B2 (en) | 2011-03-14 | 2018-08-28 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US10062587B2 (en) | 2012-07-18 | 2018-08-28 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US10032606B2 (en) | 2012-08-02 | 2018-07-24 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US10354843B2 (en) | 2012-09-21 | 2019-07-16 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US11264213B2 (en) | 2012-09-21 | 2022-03-01 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US9978564B2 (en) | 2012-09-21 | 2018-05-22 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US11024486B2 (en) | 2013-02-08 | 2021-06-01 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10490418B2 (en) | 2014-10-14 | 2019-11-26 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10796922B2 (en) | 2014-10-14 | 2020-10-06 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10707061B2 (en) | 2014-10-14 | 2020-07-07 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US10304693B2 (en) | 2014-12-04 | 2019-05-28 | Lam Research Corporation | Technique to deposit sidewall passivation for high aspect ratio cylinder etch |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9805941B2 (en) | 2015-01-12 | 2017-10-31 | Lam Research Corporation | Integrating atomic scale processes: ALD (atomic layer deposition) and ALE (atomic layer etch) |
US10515816B2 (en) | 2015-01-12 | 2019-12-24 | Lam Research Corporation | Integrating atomic scale processes: ALD (atomic layer deposition) and ALE (atomic layer etch) |
US10186426B2 (en) | 2015-01-12 | 2019-01-22 | Lam Research Corporation | Integrating atomic scale processes: ALD (atomic layer deposition) and ale (atomic layer etch) |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US12009228B2 (en) | 2015-02-03 | 2024-06-11 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US10749103B2 (en) | 2015-04-20 | 2020-08-18 | Lam Research Corporation | Dry plasma etch method to pattern MRAM stack |
US10374144B2 (en) | 2015-04-20 | 2019-08-06 | Lam Research Corporation | Dry plasma etch method to pattern MRAM stack |
US9806252B2 (en) | 2015-04-20 | 2017-10-31 | Lam Research Corporation | Dry plasma etch method to pattern MRAM stack |
US10784086B2 (en) | 2015-04-24 | 2020-09-22 | Lam Research Corporation | Cobalt etch back |
US11158527B2 (en) | 2015-08-06 | 2021-10-26 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10607867B2 (en) | 2015-08-06 | 2020-03-31 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10424464B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US9972504B2 (en) | 2015-08-07 | 2018-05-15 | Lam Research Corporation | Atomic layer etching of tungsten for enhanced tungsten deposition fill |
US11069535B2 (en) | 2015-08-07 | 2021-07-20 | Lam Research Corporation | Atomic layer etch of tungsten for enhanced tungsten deposition fill |
US10424463B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10096487B2 (en) | 2015-08-19 | 2018-10-09 | Lam Research Corporation | Atomic layer etching of tungsten and other metals |
US11476093B2 (en) | 2015-08-27 | 2022-10-18 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US9984858B2 (en) | 2015-09-04 | 2018-05-29 | Lam Research Corporation | ALE smoothness: in and outside semiconductor industry |
US10304659B2 (en) | 2015-09-04 | 2019-05-28 | Lam Research Corporation | Ale smoothness: in and outside semiconductor industry |
US10199215B2 (en) * | 2015-09-22 | 2019-02-05 | Applied Materials, Inc. | Apparatus and method for selective deposition |
US10559475B2 (en) | 2016-02-04 | 2020-02-11 | Lam Research Corporation | Control of directionality in atomic layer etching |
US10727073B2 (en) | 2016-02-04 | 2020-07-28 | Lam Research Corporation | Atomic layer etching 3D structures: Si and SiGe and Ge smoothness on horizontal and vertical surfaces |
US9991128B2 (en) | 2016-02-05 | 2018-06-05 | Lam Research Corporation | Atomic layer etching in continuous plasma |
US10685836B2 (en) | 2016-04-29 | 2020-06-16 | Lam Research Corporation | Etching substrates using ALE and selective deposition |
US10269566B2 (en) | 2016-04-29 | 2019-04-23 | Lam Research Corporation | Etching substrates using ale and selective deposition |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US11735441B2 (en) | 2016-05-19 | 2023-08-22 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US11784047B2 (en) | 2016-06-28 | 2023-10-10 | Lam Research Corporation | Tin oxide thin film spacers in semiconductor device manufacturing |
US11031245B2 (en) | 2016-06-28 | 2021-06-08 | Lan Research Corporation | Tin oxide thin film spacers in semiconductor device manufacturing |
US11183383B2 (en) | 2016-06-28 | 2021-11-23 | Lam Research Corporation | Tin oxide thin film spacers in semiconductor device manufacturing |
US12051589B2 (en) | 2016-06-28 | 2024-07-30 | Lam Research Corporation | Tin oxide thin film spacers in semiconductor device manufacturing |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US12057329B2 (en) | 2016-06-29 | 2024-08-06 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9837312B1 (en) * | 2016-07-22 | 2017-12-05 | Lam Research Corporation | Atomic layer etching for enhanced bottom-up feature fill |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US11049698B2 (en) | 2016-10-04 | 2021-06-29 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10541113B2 (en) | 2016-10-04 | 2020-01-21 | Applied Materials, Inc. | Chamber with flow-through source |
US10224180B2 (en) | 2016-10-04 | 2019-03-05 | Applied Materials, Inc. | Chamber with flow-through source |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US10319603B2 (en) | 2016-10-07 | 2019-06-11 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US9831124B1 (en) * | 2016-10-28 | 2017-11-28 | Globalfoundries Inc. | Interconnect structures |
US10186428B2 (en) | 2016-11-11 | 2019-01-22 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10770346B2 (en) | 2016-11-11 | 2020-09-08 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10600639B2 (en) | 2016-11-14 | 2020-03-24 | Applied Materials, Inc. | SiN spacer profile patterning |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US11721558B2 (en) | 2016-12-19 | 2023-08-08 | Lam Research Corporation | Designer atomic layer etching |
US10566213B2 (en) | 2016-12-19 | 2020-02-18 | Lam Research Corporation | Atomic layer etching of tantalum |
US11239094B2 (en) | 2016-12-19 | 2022-02-01 | Lam Research Corporation | Designer atomic layer etching |
US10566212B2 (en) | 2016-12-19 | 2020-02-18 | Lam Research Corporation | Designer atomic layer etching |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10903052B2 (en) | 2017-02-03 | 2021-01-26 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10529737B2 (en) | 2017-02-08 | 2020-01-07 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10325923B2 (en) | 2017-02-08 | 2019-06-18 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US11637037B2 (en) | 2017-02-13 | 2023-04-25 | Lam Research Corporation | Method to create air gaps |
US12112980B2 (en) | 2017-02-13 | 2024-10-08 | Lam Research Corporation | Method to create air gaps |
US11088019B2 (en) | 2017-02-13 | 2021-08-10 | Lam Research Corporation | Method to create air gaps |
US12094711B2 (en) | 2017-02-17 | 2024-09-17 | Lam Research Corporation | Tin oxide films in semiconductor device manufacturing |
US11322351B2 (en) | 2017-02-17 | 2022-05-03 | Lam Research Corporation | Tin oxide films in semiconductor device manufacturing |
US10546748B2 (en) | 2017-02-17 | 2020-01-28 | Lam Research Corporation | Tin oxide films in semiconductor device manufacturing |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US10559461B2 (en) | 2017-04-19 | 2020-02-11 | Lam Research Corporation | Selective deposition with atomic layer etch reset |
US10998187B2 (en) | 2017-04-19 | 2021-05-04 | Lam Research Corporation | Selective deposition with atomic layer etch reset |
US9997371B1 (en) | 2017-04-24 | 2018-06-12 | Lam Research Corporation | Atomic layer etch methods and hardware for patterning applications |
US10832909B2 (en) | 2017-04-24 | 2020-11-10 | Lam Research Corporation | Atomic layer etch, reactive precursors and energetic sources for patterning applications |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11361939B2 (en) | 2017-05-17 | 2022-06-14 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11915950B2 (en) | 2017-05-17 | 2024-02-27 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10593553B2 (en) | 2017-08-04 | 2020-03-17 | Applied Materials, Inc. | Germanium etching systems and methods |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10497567B2 (en) * | 2017-08-07 | 2019-12-03 | Applied Materials, Inc. | Method of enhanced selectivity of hard mask using plasma treatments |
US11101136B2 (en) | 2017-08-07 | 2021-08-24 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US20200357634A1 (en) * | 2017-09-29 | 2020-11-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for Manufacturing a Semiconductor Device |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
WO2019089196A1 (en) * | 2017-10-31 | 2019-05-09 | Lam Research Corporation | Etching metal oxide substrates using ale and selective deposition |
US10515815B2 (en) | 2017-11-21 | 2019-12-24 | Lam Research Corporation | Atomic layer deposition and etch in a single plasma chamber for fin field effect transistor formation |
US10658174B2 (en) | 2017-11-21 | 2020-05-19 | Lam Research Corporation | Atomic layer deposition and etch for reducing roughness |
US10734238B2 (en) | 2017-11-21 | 2020-08-04 | Lam Research Corporation | Atomic layer deposition and etch in a single plasma chamber for critical dimension control |
US11170997B2 (en) | 2017-11-21 | 2021-11-09 | Lam Research Corporation | Atomic layer deposition and etch for reducing roughness |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US12148597B2 (en) | 2017-12-19 | 2024-11-19 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10276434B1 (en) | 2018-01-02 | 2019-04-30 | International Business Machines Corporation | Structure and method using metal spacer for insertion of variable wide line implantation in SADP/SAQP integration |
US10714389B2 (en) | 2018-01-02 | 2020-07-14 | Elpis Technologies, Inc. | Structure and method using metal spacer for insertion of variable wide line implantation in SADP/SAQP integration |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10861676B2 (en) | 2018-01-08 | 2020-12-08 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US11355353B2 (en) | 2018-01-30 | 2022-06-07 | Lam Research Corporation | Tin oxide mandrels in patterning |
US12183589B2 (en) | 2018-01-30 | 2024-12-31 | Lam Research Corporation | Tin oxide mandrels in patterning |
US10699921B2 (en) | 2018-02-15 | 2020-06-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US11004689B2 (en) | 2018-03-12 | 2021-05-11 | Applied Materials, Inc. | Thermal silicon etch |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US11987876B2 (en) | 2018-03-19 | 2024-05-21 | Lam Research Corporation | Chamfer-less via integration scheme |
US11450513B2 (en) | 2018-03-30 | 2022-09-20 | Lam Research Corporation | Atomic layer etching and smoothing of refractory metals and other high surface binding energy materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10748769B2 (en) | 2018-05-09 | 2020-08-18 | Tokyo Electron Limited | Methods and systems for patterning of low aspect ratio stacks |
WO2019217584A1 (en) * | 2018-05-09 | 2019-11-14 | Tokyo Electron Limited | Methods and systems for patterning of low aspect ratio stacks |
CN110473782A (en) * | 2018-05-11 | 2019-11-19 | 东京毅力科创株式会社 | Engraving method and Etaching device |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10818494B2 (en) | 2018-09-07 | 2020-10-27 | Globalfoundries Inc. | Metal on metal multiple patterning |
US11398378B2 (en) | 2018-09-07 | 2022-07-26 | Globalfoundries Inc. | Metal on metal multiple patterning |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US10825726B2 (en) | 2018-10-16 | 2020-11-03 | International Business Machines Corporation | Metal spacer self aligned multi-patterning integration |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US10811310B2 (en) | 2018-10-31 | 2020-10-20 | International Business Machines Corporation | Metal spacer self aligned double patterning with airgap integration |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US11024508B2 (en) | 2019-04-05 | 2021-06-01 | Tokyo Electron Limited | Independent control of etching and passivation gas components for highly selective silicon oxide/silicon nitride etching |
US11069564B2 (en) | 2019-04-09 | 2021-07-20 | International Business Machines Corporation | Double metal patterning |
US11107727B2 (en) | 2019-05-10 | 2021-08-31 | International Business Machines Corporation | Double metal double patterning with vias extending into dielectric |
US12293919B2 (en) | 2019-06-27 | 2025-05-06 | Lam Research Corporation | Alternating etch and passivation process |
US11551938B2 (en) | 2019-06-27 | 2023-01-10 | Lam Research Corporation | Alternating etch and passivation process |
US11848212B2 (en) | 2019-06-27 | 2023-12-19 | Lam Research Corporation | Alternating etch and passivation process |
US11631589B2 (en) * | 2021-05-04 | 2023-04-18 | Applied Materials, Inc. | Metal etch in high aspect-ratio features |
US20220359214A1 (en) * | 2021-05-04 | 2022-11-10 | Applied Materials, Inc. | Metal etch in high aspect-ratio features |
US20230083577A1 (en) * | 2021-09-13 | 2023-03-16 | Applied Materials, Inc. | Recessed metal etching methods |
WO2024155468A1 (en) * | 2023-01-19 | 2024-07-25 | Applied Materials, Inc. | Dry etch of boron-containing material |
Also Published As
Publication number | Publication date |
---|---|
TW201709332A (en) | 2017-03-01 |
CN106067442B (en) | 2019-09-20 |
US9870899B2 (en) | 2018-01-16 |
TWI692034B (en) | 2020-04-21 |
JP6964964B2 (en) | 2021-11-10 |
KR20160126890A (en) | 2016-11-02 |
US10784086B2 (en) | 2020-09-22 |
SG10201603092RA (en) | 2016-11-29 |
CN106067442A (en) | 2016-11-02 |
JP2016208027A (en) | 2016-12-08 |
US20180102236A1 (en) | 2018-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10784086B2 (en) | Cobalt etch back | |
US11069535B2 (en) | Atomic layer etch of tungsten for enhanced tungsten deposition fill | |
US11721558B2 (en) | Designer atomic layer etching | |
US10515816B2 (en) | Integrating atomic scale processes: ALD (atomic layer deposition) and ALE (atomic layer etch) | |
US10304659B2 (en) | Ale smoothness: in and outside semiconductor industry | |
US9837312B1 (en) | Atomic layer etching for enhanced bottom-up feature fill | |
US11062897B2 (en) | Metal doped carbon based hard mask removal in semiconductor fabrication | |
US11742212B2 (en) | Directional deposition in etch chamber | |
US9620376B2 (en) | Self limiting lateral atomic layer etch | |
US11270890B2 (en) | Etching carbon layer using doped carbon as a hard mask | |
KR20250026848A (en) | Integrated high aspect ratio etching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LAM RESEARCH CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YANG, JIALING;ZHOU, BAOSUO;SHEN, MEIHUA;AND OTHERS;SIGNING DATES FROM 20150617 TO 20150619;REEL/FRAME:035900/0658 |
|
AS | Assignment |
Owner name: LAM RESEARCH CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHOU, BAOSUO;LILL, THORSTEN;SIGNING DATES FROM 20150904 TO 20150908;REEL/FRAME:036536/0903 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |