US20160312268A1 - Method of preparing a reaction mixture and related products - Google Patents
Method of preparing a reaction mixture and related products Download PDFInfo
- Publication number
- US20160312268A1 US20160312268A1 US15/139,738 US201615139738A US2016312268A1 US 20160312268 A1 US20160312268 A1 US 20160312268A1 US 201615139738 A US201615139738 A US 201615139738A US 2016312268 A1 US2016312268 A1 US 2016312268A1
- Authority
- US
- United States
- Prior art keywords
- solution
- reagent solution
- reagent
- color
- pcr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 239000011541 reaction mixture Substances 0.000 title claims abstract description 26
- 239000000243 solution Substances 0.000 claims abstract description 179
- 239000003086 colorant Substances 0.000 claims abstract description 95
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 90
- 238000003752 polymerase chain reaction Methods 0.000 claims abstract description 50
- 230000008569 process Effects 0.000 claims abstract description 24
- 238000002156 mixing Methods 0.000 claims abstract description 22
- 239000011259 mixed solution Substances 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 14
- 238000003556 assay Methods 0.000 claims abstract description 13
- 238000002944 PCR assay Methods 0.000 claims abstract description 12
- 239000012472 biological sample Substances 0.000 claims abstract description 3
- 239000000523 sample Substances 0.000 claims description 62
- 239000000203 mixture Substances 0.000 claims description 54
- 238000003753 real-time PCR Methods 0.000 claims description 53
- 238000002835 absorbance Methods 0.000 claims description 48
- 239000012149 elution buffer Substances 0.000 claims description 11
- 230000005284 excitation Effects 0.000 claims description 11
- 239000000872 buffer Substances 0.000 claims description 9
- NLIVDORGVGAOOJ-MAHBNPEESA-M xylene cyanol Chemical compound [Na+].C1=C(C)C(NCC)=CC=C1C(\C=1C(=CC(OS([O-])=O)=CC=1)OS([O-])=O)=C\1C=C(C)\C(=[NH+]/CC)\C=C/1 NLIVDORGVGAOOJ-MAHBNPEESA-M 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 239000012141 concentrate Substances 0.000 claims description 5
- IHZXTIBMKNSJCJ-UHFFFAOYSA-N 3-{[(4-{[4-(dimethylamino)phenyl](4-{ethyl[(3-sulfophenyl)methyl]amino}phenyl)methylidene}cyclohexa-2,5-dien-1-ylidene)(ethyl)azaniumyl]methyl}benzene-1-sulfonate Chemical compound C=1C=C(C(=C2C=CC(C=C2)=[N+](C)C)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S(O)(=O)=O)=C1 IHZXTIBMKNSJCJ-UHFFFAOYSA-N 0.000 claims description 2
- OLQIKGSZDTXODA-UHFFFAOYSA-N 4-[3-(4-hydroxy-2-methylphenyl)-1,1-dioxo-2,1$l^{6}-benzoxathiol-3-yl]-3-methylphenol Chemical compound CC1=CC(O)=CC=C1C1(C=2C(=CC(O)=CC=2)C)C2=CC=CC=C2S(=O)(=O)O1 OLQIKGSZDTXODA-UHFFFAOYSA-N 0.000 claims description 2
- MPVDXIMFBOLMNW-ISLYRVAYSA-N 7-hydroxy-8-[(E)-phenyldiazenyl]naphthalene-1,3-disulfonic acid Chemical compound OC1=CC=C2C=C(S(O)(=O)=O)C=C(S(O)(=O)=O)C2=C1\N=N\C1=CC=CC=C1 MPVDXIMFBOLMNW-ISLYRVAYSA-N 0.000 claims description 2
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 claims description 2
- FRPHFZCDPYBUAU-UHFFFAOYSA-N Bromocresolgreen Chemical compound CC1=C(Br)C(O)=C(Br)C=C1C1(C=2C(=C(Br)C(O)=C(Br)C=2)C)C2=CC=CC=C2S(=O)(=O)O1 FRPHFZCDPYBUAU-UHFFFAOYSA-N 0.000 claims description 2
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 claims description 2
- WXLFIFHRGFOVCD-UHFFFAOYSA-L azophloxine Chemical compound [Na+].[Na+].OC1=C2C(NC(=O)C)=CC(S([O-])(=O)=O)=CC2=CC(S([O-])(=O)=O)=C1N=NC1=CC=CC=C1 WXLFIFHRGFOVCD-UHFFFAOYSA-L 0.000 claims description 2
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 claims description 2
- OBRMNDMBJQTZHV-UHFFFAOYSA-N cresol red Chemical compound C1=C(O)C(C)=CC(C2(C3=CC=CC=C3S(=O)(=O)O2)C=2C=C(C)C(O)=CC=2)=C1 OBRMNDMBJQTZHV-UHFFFAOYSA-N 0.000 claims description 2
- KHLVKKOJDHCJMG-QDBORUFSSA-L indigo carmine Chemical compound [Na+].[Na+].N/1C2=CC=C(S([O-])(=O)=O)C=C2C(=O)C\1=C1/NC2=CC=C(S(=O)(=O)[O-])C=C2C1=O KHLVKKOJDHCJMG-QDBORUFSSA-L 0.000 claims description 2
- 229960003988 indigo carmine Drugs 0.000 claims description 2
- 235000012738 indigotine Nutrition 0.000 claims description 2
- 239000004179 indigotine Substances 0.000 claims description 2
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 claims description 2
- 235000012752 quinoline yellow Nutrition 0.000 claims description 2
- 239000004172 quinoline yellow Substances 0.000 claims description 2
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 claims description 2
- 229940051201 quinoline yellow Drugs 0.000 claims description 2
- 235000012739 red 2G Nutrition 0.000 claims description 2
- 239000012898 sample dilution Substances 0.000 claims description 2
- 238000011529 RT qPCR Methods 0.000 claims 5
- 239000012488 sample solution Substances 0.000 abstract description 12
- 239000000975 dye Substances 0.000 description 75
- 238000006243 chemical reaction Methods 0.000 description 53
- 239000012723 sample buffer Substances 0.000 description 21
- 239000000047 product Substances 0.000 description 20
- 238000001514 detection method Methods 0.000 description 19
- 238000010790 dilution Methods 0.000 description 19
- 239000012895 dilution Substances 0.000 description 19
- 230000000007 visual effect Effects 0.000 description 15
- 239000013615 primer Substances 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 11
- 108020004707 nucleic acids Proteins 0.000 description 10
- 150000007523 nucleic acids Chemical class 0.000 description 10
- 102000039446 nucleic acids Human genes 0.000 description 10
- 230000003595 spectral effect Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000000862 absorption spectrum Methods 0.000 description 7
- 238000010804 cDNA synthesis Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000003623 enhancer Substances 0.000 description 6
- 239000007850 fluorescent dye Substances 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 238000011481 absorbance measurement Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000013024 dilution buffer Substances 0.000 description 5
- 238000001502 gel electrophoresis Methods 0.000 description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000002987 primer (paints) Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000011535 reaction buffer Substances 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000012807 PCR reagent Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001917 fluorescence detection Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000002751 oligonucleotide probe Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 108091093088 Amplicon Proteins 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 239000001045 blue dye Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000012160 loading buffer Substances 0.000 description 2
- AJDUTMFFZHIJEM-UHFFFAOYSA-N n-(9,10-dioxoanthracen-1-yl)-4-[4-[[4-[4-[(9,10-dioxoanthracen-1-yl)carbamoyl]phenyl]phenyl]diazenyl]phenyl]benzamide Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2NC(=O)C(C=C1)=CC=C1C(C=C1)=CC=C1N=NC(C=C1)=CC=C1C(C=C1)=CC=C1C(=O)NC1=CC=CC2=C1C(=O)C1=CC=CC=C1C2=O AJDUTMFFZHIJEM-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- 239000001043 yellow dye Substances 0.000 description 2
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 244000132059 Carica parviflora Species 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000001821 nucleic acid purification Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001060 yellow colorant Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6846—Common amplification features
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/29—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using visual detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
Definitions
- the invention relates to pipetting of (bio)chemical reagents.
- the invention relates to a method of pipetting of reagents to microwells for Polymerase Chain Reaction (PCR) amplification, in particular quantitative PCR (qPCR) amplification.
- PCR Polymerase Chain Reaction
- qPCR quantitative PCR
- the invention relates to new products for aiding pipetting.
- all necessary components i.e. reagents
- One of the components that usually must be added separately is the sample under study.
- the number of samples, tubes or sample wells in a microtiter plate can be hundreds or even thousands per setup.
- U.S. Pat. No. 6,942,964 discloses a product using a pipetting aid dye which is also used as a gel loading and tracking dye. The colorant has been incorporated with the polymerase, which helps the user to see whether the polymerase has been pipetted to the PCR mix or master mix.
- a similar product is BioLine Accuzyme Red.
- USB Corporation's RubyTaq features a polymerase including a mixture of two dyes which are separated during the agarose gel run: magenta (runs between 500 by [2% gels] and 1500 by [0.8% gels]) and yellow (runs less than 10 bp).
- Fermentas and Promega have also added a colorant to the enzyme reaction buffer. Fermentas' DreamTaqTM Green reaction buffer can be seen as green, but the color separates into a blue and yellow bands during gel electrophoresis. Promega GoTaq and GoTaq Green Mastermix behave similarly.
- NEB provides a product (Crimson Taq) featuring a dye Acid red added to the DNA polymerase reaction buffer.
- the product also uses 6% dextran as a density enhancer.
- Qiagen's CoralLoad dye is available both as a concentrate in a separate tube for being added to an uncolored master mix, and also as an optional ready-made 10 ⁇ PCR buffer. It contains two gel tracking dyes (orange and red).
- KR 2002/0045167 discloses freeze-dried PCR mixes containing a colorant to confirm dissolution of the PCR components.
- U.S. Pat. No. 6,153,412 discloses also freeze-died reaction mixtures which are used for identifying the existence of a lyophilized PCR reagent and to ensure complete mixing of the PCR reagent and the test sample.
- U.S. Pat. No. 5,565,339 discloses the use of a dye in a hot start wax, which does not dissolve into the reaction mixture.
- Absolute Blue QPCR Master Mix contains an inert blue dye to ease pipetting in reaction set-up.
- WO 2007/088506 discloses a dyed master mix.
- ROX passive reference dye included in their qPCR products.
- the purpose of the dye is to provide a steady fluorescence level which can be used to normalize against any non PCR related fluorescence variation between the different reactions and in one sample during a reaction.
- the method is also suggested to normalize at least partly against deviations in pipetting accuracy.
- Colorants used in end-point PCR are generally not compatible with quantitative PCR (qPCR). This is usually because they prevent real-time optical measurements of the ongoing reaction.
- the dyes typically have a spectrum which overlaps with the detection wavelengths of qPCR fluorescence or their absorbance is too high.
- General requirements for the dyes used include non-inhibitory effect on the PCR reaction or stability in the reaction pH.
- reagent solutions are mixed for obtaining the final mixture which is subjected to PCR.
- the invention is based on the idea of coloring the reagent solutions with different initial colorants, which, upon mixing produce a distinguishable color different from the colors of the initial colorants.
- the method comprises
- one of the reagent solutions is a sample solution, that is, a solution containing or intended to receive a biological sample to be amplified in the PCR assay, and the other of the reagent solutions contains some other at least one other substance required for performing the assay, for example the polymerase solution or master mix.
- the sample solution may be a buffered solution (hereinafter “a sample buffer solution”).
- a sample buffer solution a buffered solution
- a microwell having a first color indicates that there is only sample solution without other reagents, e.g. master mix, in the well.
- a microwell with second color indicates that master mix has been added but there is no sample yet.
- a microwell with third color implies that sample has been properly added to the master mix. The inspection of the color can be made visually or by automatic optical means.
- one of the reagent solutions is an elution buffer, such an elution buffer used in combination with a nucleic acid purification kit.
- one of the reagent solutions is a dilution buffer used to facilitate lysis of a solid-state sample to release nucleic acids.
- the reagent solution can also be used to dilute, digest or precipitate released components before PCR.
- one of the reagent solutions is a solution used in cDNA synthesis reaction, reverse transcriptase reaction or bisulphite reaction.
- one of the reagent solutions is some other solution used for preparing the sample for the PCR process.
- the invention also provides a new use of dyes for producing two or more colored PCR reagent solutions, which are capable of forming a mixed solution having a color distinguishable from the initial colors of the reagent solutions.
- a particular aim of the invention is to achieve a pipetting aid solution which is compatible with quantitative PCR. This is achieved by using such colorants and colorant concentrations which do not significantly disturb the fluorescent processes, i.e. excitation and emission, or optical detection used in qPCR.
- the reaction mixture subjected to qPCR is transparent or translucent at least at the qPCR excitation and emission wavelengths. This generally means that the maximum absorbance of the of the reaction mixture is less than 0.5, in particular less than 0.15 (measured using 1 mm light path) and that the absorption window of the colorant does not overlap, at least significantly, with the excitation or emission wavelengths of the fluorescent qPCR dye(s) or modified DNA oligonucleotide probe(s) used.
- a reaction mixture for quantitative PCR is prepared, the reaction mixture comprising fluorescent dye, primer or probe, and wherein the absorbance peaks of any of said colorants do not overlap with the emission or excitation wavelength of said fluorescent dye, primer or probe. If overlap exists, it should not significantly weaken the qPCR signal, generally implying that the total absorbance of the reaction mixture at said wavelengths is less than 0.05, preferably less than 0.03, in particular less than 0.1.
- the invention provides considerable advantages. As the initial solutions and the resultant solution are mutually of different colors, one not only distinguish between the initial solutions, but also between the initial solutions and their mixture.
- the colors make it easier to see if there is any liquid splashed or spilled in wrong places where they could potentially cause contamination, microwell sealing problems etc.
- any liquid in the sealing contact can compromise the seal and thus the whole PCR assay.
- the present invention can also be used together with the mechanical solutions to lower their error rate even more, if the pipetting steps performed are visualized using the colorants.
- dyes and other colorants used in the present manner can help keeping track in reaction setup and especially during loading reagents into reaction plate.
- the approach provides considerable help and increased certainty for pipetting samples.
- the present solutions may be free of density enhancer or contain only minor amounts of density enhancer (i.e. less than required for gel electrophoresis).
- one or more additional reagent solutions comprising additional colorants providing the solutions different colors.
- the solutions are capable of forming, on mixing, additional solutions having, due to said additional colorants, further distinguishable colors.
- the invention can be used not only for aiding the pipetting in one particular stage of the process, e.g. pipetting of the of the sample to master mix, but also for aiding the pipetting during other steps, in particular the steps previous or subsequent to the sample pipetting step.
- the method may comprise providing a third reagent solution comprising at least one further substance required for performing said assay, the third reagent solution containing a third colorant providing the solution a fourth color different from the first, second and third colors mentioned above, and mixing the third reagent solution with the first and second reagent solutions for providing a mixed reagent solution having, due to said first, second and third colorants, a fifth color different from the first, second, third and fourth colors.
- the first reagent solution may be a sample
- the third reagent solution may be a primer solution.
- the order of application is not essential, unless otherwise defined in assay instructions.
- the method may comprise providing a third reagent solution containing third colorant providing the solution a fourth color different from the first, second and third colors, and individually mixing the first reagent solution with said second and third reagent solutions for obtaining first and second mixed solutions having third and fifth colors, respectively, different from each other and the first, second and fourth colors.
- the second reagent solution may contain one set of primers and the third reagent solution may contain a second set of primers.
- the colors of all initial ingredients and all resultant mixtures are unique.
- the two above mentioned embodiments can also be chained such that the second and third reagent solutions are ultimately individually mixed with a reagent solution which is itself prepared by mixing at least two different colored reagent solutions.
- a reagent solution which is itself prepared by mixing at least two different colored reagent solutions.
- a “reagent solution” is any solution containing at least one reagent needed or advantageously used for PCR purposes. Most typical ingredients are polymerase, nucleotide, primer, ions, magnesium, other salt, pH buffering agent, dNTPs or fluorescent qPCR dye or probe, oligonucleotide, nucleic acid binding agent, a nucleic acid template.
- the reagent may also be other polymerase reaction additive, which has an influence on the polymerase reaction or its monitoring.
- sample solution covers both buffered and non-buffered sample solutions which are still free of template or into which the template to be amplified using PCR has already been added, unless otherwise specified.
- sample solution is covered by the term “reagent solution”.
- master mix refers to a mixture of all or most of the ingredients or factors necessary for PCR to occur, typically all except for the template and primers which are sample and amplicon specific.
- Commercially available master mixes are usually concentrated solutions.
- a master mix may contain all the reagents common to multiple samples, but it may also be constructed for one sample only. Using master mixes helps to reduce pipetting errors and variations between samples due to differences between pipetted volumes. It also minimizes the time spent for pipetting.
- a qPCR master mix is a master mix intended for performing a qPCR reaction. Thus, it may contain fluorescent dye or fluorescently tagged oligonucleotide primers or probes.
- premix refers to a master mix that contains all the necessary components for a PCR reaction except for the template.
- color herein means any detectable spectral response (of a solution) to white light in the visual range.
- White, black, and shades of gray are herein counted as colors.
- an absorbance higher than about 0.01 (1 mm light path) gives a visually perceivable color for a solution whereas an absorbance higher than about 0.001 (1 mm light path) can be relatively easily detected by hardware-based spectral detection means.
- different colors means that the colors are distinguishable, preferably by the naked eye, but at least with spectral detection means.
- “different colors” may have maximum peaks in their absorption spectrum separated by at least 30 nm.
- the different colors are selected from the groups of: red, yellow, blue or cyan, magenta, yellow and visually distinguishable combinations and shades thereof, such as green, orange, and violet.
- colorant means any substance which is capable of being homogeneously mixed or dissolved within a solution and capable of giving the solution a perceivable color.
- the colorant is a dye, in particular an aqueous dye, preferably a non-oxidizing aqueous dye.
- transparent or “translucent” colorant-containing solution refers, in particular, to a solution which has an optical transmission window at at least some fluorescence excitation and/or emission wavelengths that can be used for performing qPCR, the wavelengths depending on the fluorophores, fluorescent dye(s), and/or modified DNA oligonucleotide probe(s) contained in the reaction mixture.
- the excitation wavelength is between 350 and 690 nm, in particular between 490 and 650 nm.
- the emission wavelength is typically between 350 nm-730 nm, in particular 515 nm-680 nm.
- a transparent solution is optically essentially non-diffusive, whereas a translucent solution passes light diffusely.
- sample refers to a solid material or a solution that contains the nucleic acid of interest or is to be analyzed for the presence of nucleic acid of interest.
- dilution buffer refers to a solution that can be used for sample pretreatment before PCR setup. Pretreatment can include sample lysis for releasing nucleic acids, dilution, binding, chemical lysis, precipitation and enzymatic digestion of some components.
- preparative process refers to any reaction, pipetting step or pretreatment which yields a product which can in total or in part be used as a sample in a subsequent PCR reaction.
- the third color is a chromatic combination of the first and second colors of the solutions.
- the third color may be produced as a sum spectrum of the spectra of the first and second colors.
- FRET fluorescence resonance energy transfer
- FIG. 1A shows in cross-sectional view three microwells containing colored sample buffer, colored reagent solution and their colored mixture, respectively.
- FIG. 1B shows a top view of a microtiter plate containing empty wells and wells containing colored sample buffer, colored reagent solution, their colored mixture and wells with optically clear liquid.
- FIGS. 2 a and 2 b illustrate as a flow chart exemplary ways of carrying out the invention.
- FIG. 3 shows a flow chart of the present process according to one embodiment of the invention.
- FIGS. 4 a -4 d show standard series obtained with master mix and sample with ( 4 a and 4 b ) and without ( 4 c and 4 d ) pipetting aid dyes.
- FIGS. 5 a -5 d show absorbance spectra relating to a absorbance measurement example.
- FIGS. 6 a -6 c and 7 a -7 c illustrate the use of colorant in a cDNA synthesis reaction.
- the invention provides, according to one embodiment, a dye combination that helps keeping track of pipetting master mix, samples and mixing of these, in the pipetting phase of (q)PCR process.
- the dyes are preferably optimized so that they will have minimal effect on qPCR reaction (e.g. will not influence the sample or DNA polymerase used) and will not significantly affect optical detection of fluorescence.
- the dyes used are compatible with the qPCR assay.
- Typical fluorophores used for qPCR purposes include Alexa 350, FAMTM, TETTM, VICTM, JOETM, HEXTM, CY®3, TAMRATM, ROXTM, Texas Red®, CY®5, CY®5.5 and Quasar®705, the emission and excitation wavelengths of which are shown in Table 1.
- FIG. 1A illustrates the basic principle of the invention.
- the microwell 12 A contains colored sample buffer 14 A having a first color (horizontal lines).
- the microwell 12 B contains colored master mix 14 B having a second color (vertical lines).
- the microwell 12 C contains colored mixture of the sample buffer and colored master mix, having a third color (horizontal and vertical lines) resulting from the first and second colors.
- FIG. 1B illustrates a microtiter plate 10 which, in addition to the solutions shown and marked as in FIG. 1A , contains empty wells 12 and non-colored liquid 14 D having no color (dots).
- a diluted reaction mixture 14 E which is achieved by diluting the initial reaction mixture 14 C with the non-colored liquid 14 D, the diluted reaction mixture having the same basic color as the initial reaction mixture 14 C, but with increased transparency, i.e. reduced absorbance (sparse horizontal and vertical lines).
- the degree of dilution can be monitored according to one embodiment of the invention.
- the dyes can preferably be both detected and distinguished from each other visually, i.e. by naked eye.
- the different colors are spectrally relatively densely distributed and no special equipment is needed.
- colors more finely distributed on the spectral scale can be used, without compromising the ability to distinguish between different colors.
- the combination comprises a blue master mix and yellow sample buffer. When mixed together these form clearly green solution. Blue color in the plate indicates that master mix has been added but there is no sample yet. When sample is added color turns green. If solution in the well is yellow it means that there is only sample without mastermix.
- the blue dye comprises Xylene cyanol.
- the yellow dye comprises Quinoline yellow. These dyes have been found to be compatible with the polymerase and sample buffer, respectively.
- the dyes are strong enough to give a visually perceivable color for the respective solutions, but weak enough not to disturb fluorescence detection and/or weak enough not to interfere with gel electrophoresis migration tracking with other dyes commonly used for that purpose.
- the above mentioned Xylene cyanol and Quinolene yellow belong to this group of dyes.
- a conventional loading buffer with electrophoresis dye can be added to the amplified mixture. Moderate dyeing also maintains the general visual appearance of the solutions transparent or translucent.
- a suitable concentration of the dye depends on the dye itself.
- the concentration of the dye in the initial solution is adjusted to result in an absorbance of 0.001-0.5 at its maximum absorption wavelength (1 mm light path).
- the concentration of the dye is adjusted to result in an absorbance of 0.01-0.5, in particular 0.03-0.5, at its maximum absorption wavelength (1 mm light path).
- the absorbance is 0.03-0.15, which ensures both visual detectability of the color and negligible or small effect on the qPCR measurement even if the absorbance peak would slightly overlap with the qPCR excitation and/or emission wavelengths.
- the total absorbance at the qPCR excitation and/or emission wavelength is less than 0.05, preferably less than 0.03, in particular less than 0.01 (1 mm light path), regardless of the maximum absorbance.
- the two (or more) initial solutions have differently colored dyes, there is no significant cumulative absorbance at any particular wavelength.
- the above absorbances are the preferred absorbance of solutions diluted to the desired PCR processing concentration. If the solutions are delivered as concentrates, the preferred absorbances are respectively higher.
- At least one of the solutions is provided with dye, which is both suitable to be used in qPCR (i.e. does not affect the fluorescence detection at the wavelengths used) and strong enough to detected in gel electrophoresis, and runs on an appropriate distance at the gel with respect to the samples.
- dye which is both suitable to be used in qPCR (i.e. does not affect the fluorescence detection at the wavelengths used) and strong enough to detected in gel electrophoresis, and runs on an appropriate distance at the gel with respect to the samples.
- a separate loading buffer is not necessarily needed.
- the sample buffer containing a dye may be delivered either as a dilute or concentration, depending on the intended use.
- FIG. 2 illustrates the general concept of pipetting a colored sample solution (step 20 ) and at least one reagent solution (step 21 , optionally 22 ) into a single container and mixing the solutions (step 23 ). The color of the mixed solution is checked (step 24 ) before subjecting the mixture to PCR (step 25 ). It should be noted that there may be other pipetting and processing steps which are not shown in FIG. 2 for simplicity.
- a plurality of colored sample buffer solutions in which different colorants are used to give the sample buffers different colors.
- mixing the plurality of colored sample buffers with the same colored reagent mixture yields reaction mixtures of different colors.
- a yellow sample buffer and a red sample buffer mixed with a blue master mix could give green and magenta reaction mixtures, from which one can immediately verify not only the proper mixing, but also the type of the sample.
- a master mix and a plurality of colored primer mixes in which different colorants are used to give the mixes different colors (master mix: color 1 , primer mixes: color 2 and color 3 ). Combining the primer mixes with the mister mix yields still different colored mixes (colors 4 and 6 ). Further, by adding a colored sample (color 7 ) to the mixes obtained, distinguishable PCR solutions are obtained (colors 8 and 9 ). In each case of the process, the color of the solutions is indicative of the contents of the solution.
- a plurality of master mixes or other premixes (steps 31 , 32 ) which are provided with different colorants to render the premixes differently colored (say, premix 1 : color 2 , premix 2 : color 3 , . . . premix n: color n+1) and a sample having a further color (color 1 ) (step 30 ).
- the premixes are individually mixed with the sample (steps 33 a , 33 b ) and the colors of the resulting solutions are checked (steps 34 a , 34 b ).
- the colors are preferably chosen so that each combination of a premix solution and sample solution solutions yields a unique color rendering the solutions distinguishable from each other and the initial premix and sample solutions.
- a plurality of initial solutions each containing a component needed in the PCR reaction, e.g. polymerase, primer, ions, dNTPs or fluorescent qPCR dye or probe, or other additives
- a component needed in the PCR reaction e.g. polymerase, primer, ions, dNTPs or fluorescent qPCR dye or probe, or other additives
- different colorants to render the solutions differently colored (say, solution 1 : color 2 , solution 2 : color 3 , . . . solution n: color n+1) and a sample having a further color (color 1 ).
- the colors are preferably chosen so that each combination of solutions yields a unique color rendering the solutions distinguishable from the other solutions.
- Nucleic acids for molecular biology experiments are usually purified from complex sample material. There are various methods for purification including methods based on extraction, precipitation, hybridization and different modes of chromatography or filtering etc. In most of the techniques nucleic acids are either dissolved or eluted in selected solution. Precipitated nucleic acids can be dissolved in a variety of solutions. When using other method that are based on other DNA interactions there are more requirements for the elution buffer such as suitable ionic strength. Purification methods based on DNA binding to silica in high ionic strength conditions are widely used. Bound DNA is eluted from silica matrix with low ionic strength buffer or with pure water.
- kits based on the silica binding method are available and usually the kit contains the elution buffer.
- the colorant can be included in the elution buffer or the buffer provided with the kit can be replaced with the colored buffer. By doing this, the user does not have to add the color in a separate step.
- the sample buffer containing the dye can be used as a sample elution buffer in combination with many commercial or homebrew DNA purification kits.
- the elution buffer provided with many of the available kits can be just simply replaced with the sample buffer containing the dye.
- a small amount of dye concentrate can be added in the elution buffer provided with the kit without diluting the sample too much.
- the other colored reagent solution may be any other solution needed for the process, as discussed above.
- New enzyme technology has made it possible to significantly simplify sample preparation for PCR and it is even possible to put the unpurified sample directly to the PCR.
- the sample needs to be separated in to several reactions and it is often preferable to be able to store some of the sample for possible repeats or other purposes.
- direct PCR protocols where sample is lysed and dissolved in a special sample buffer are very popular.
- the dilution buffer may contain different agents that lyse the sample.
- a colorant can be added to the dilution buffer to make subsequent pipetting steps easier.
- the other colored reagent solution may be any other solution needed for the process, as discussed above.
- RNA sample Before qPCR the RNA sample must be reverse transcribed before the qPCR step. Reverse transcription and qPCR reaction can be combined and performed subsequently in same reaction mixture. However usually the condition is a compromise and not optimal for either of the two reactions. In most cases it is more optimal to do separate reverse transcription reaction and use the created cDNA as a template in a separate qPCR reaction. In reverse transcription reaction setup there are the same challenges of keeping track of samples during pipetting as described for qPCR. An embodiment of the invention describes how colorant can be used in cDNA synthesis reaction to overcome this challenge.
- Two cDNA synthesis reaction series were prepared one with the yellow colorant, in final concentration of 10 fold compared to the concentration instructed for the qPCR, the other without the additional dye.
- HeLa total RNA dilution series with 1000 ng, 500 ng, 10 ng 1 ng, 100 pg and 10 pg dilutions were used as template. Reactions were otherwise done according to the manual (Product number F-470, Finnzymes). A 1.5 ⁇ l aliquot of each reaction was then used as a template in qPCR with DyNAmo SYBR Flash qPCR master mix.
- FIGS. 6 a -6 c and 7 a -7 c two standard curves were created, the first ( FIG. 6 c ) representing the series with the added dye and the other ( FIG. 7 c ) without the dye.
- the results show that cDNA synthesis can be performed in presence of colorant and the quantitative nature of the reaction is maintained.
- the dye can be brought into the reaction with the transcriptase, with the sample, with the buffer solution or separately as a concentrate.
- dye can also be added to any component taking part in a bisulphite treatment prior to mixing the sample thereby obtained with a second reaction solution.
- the dye can be present not only when mixing the final PCR reaction mixture but also in preparative process steps, in particular those relating to sample preparation, such as reverse transcription reaction (e.g. in cDNA synthesis), bisulfite reaction, sample elution or sample dilution.
- sample preparation such as reverse transcription reaction (e.g. in cDNA synthesis), bisulfite reaction, sample elution or sample dilution.
- the dye can be introduced also into these reactions in various ways, for example, with the enzyme, with reaction buffer, with the sample or separately.
- At least one colored solution is brought when mixing the final reaction solution, e.g. with the polymerase or master mix.
- FIG. 2 b illustrates, at a general level, the principle of introducing at least one colored reagent solution (step 20 ′) to the process prior to at least one preparative process step 29 ′.
- the pretreatment may involve the introduction of one or more other substances too (step 28 ′).
- the process can be continued similarly to as explained above, by mixing the product (or aliquot thereof) of the preparative process step with second colored reagent solution (steps 21 ′ and 23 ′), checking the color of the mixed solution (step 24 ′) and proceeding to (q)PCR (step 25 ′).
- the different colors are distinguishable by the naked eye.
- hardware-aided optical measurements capable of distinguishing between colors can be utilized too.
- condition of one or more microwells to be pipetted is checked at least once during the pipetting process automatically by optical means capable of spectral resolution.
- condition of the microwells is automatically checked at least two times in different stages of the pipetting process. Preferably such checking is carried out after every separate pipetting step.
- the concentration of the colorant decreases and the color of a colored solution become weaker due to every addition of non-colored, i.e. optically clear, liquids.
- addition of colored substances changes the shade of the color.
- the strength and/or shade of color of a solution within a well is indicative of the stage of pipetting.
- the above mentioned monitoring is carried out using a computer program, which is adapted to compare the measured spectral responses after the desired pipetting steps with predefined limits for these steps. Such limits are designed to reflect the correct shade and/or strength of the color of the solution, taking into account the reagents added. A microwell, for which the measured value is not within an accepted range, is flagged incorrectly pipetted.
- the detection of the color of a solution is preferably based on absorbance measurement.
- the detection instrumentation which may be an in integral part of an automatic pipetting apparatus or a (q)PCR thermal cycling apparatus, for example, contains absorbance measurement means, i.e. a light source, a light detector and means for determining the absorbance of the contents of a microwell at least at one wavelength or wavelength range.
- the absorbance measurement means comprise a spectrophotometer.
- the detection instrumentation is contained in a separate apparatus to which the reaction solutions can be transferred either automatically or manually after critical pipetting steps.
- a quick plate read is carried out before the plate is transferred for further processing.
- the invention also provides an apparatus for monitoring pipetting, comprising means for receiving a microtiter plate containing a plurality of microwells and means for measuring the optical absorbance of contents of the microwells.
- the means for detecting the absorbance are adapted to detect the spectral absorbance profile of the sample (for color detection) and/or color intensity of the sample (for dilution detection).
- the apparatus is capable of both the above mentioned functions for being able to monitor the entire pipetting process.
- the optical detection means are preferably connected to a computing unit which analyses and stores the measured absorbances and performs a calculation or comparison of the measurement data with pre-stored data.
- the detection instrumentation may contain a microplate-receiving block which can be cooled for keeping the temperature of the reactions solutions low enough. For most hot-start polymerases cooling is not necessary.
- Automatic detection is of particular assistance when the volume of the reaction vessel is small, that is, less than 5 ⁇ l, in particular less than 1 ⁇ l, as reliable visual observation of both the color and volume of the solutions is more difficult in these cases.
- microwells may be separate or be contained in microtiter strips or plates of any known type.
- the wells are manufactured from transparent material, allowing the visual inspection or spectral measurements to be carried out through the wall of the well.
- Xylene cyanol as a colorant was added to DyNAmo Flash SYBR® green qPCR and DyNAmo Flash Probe qPCR master mixes from (Finnzymes, Finland) in the concentration of 0.0026% (w/v). The result was a clearly blue transparent solution.
- Quinolene yellow was added to a sample buffer in the concentration of 0,00174% (w/v).
- the sample buffer contained 1 mM Tris-HCl pH 8.5 and 0.1 mM EDTA. As a result, a clearly yellow transparent solution was obtained.
- the colored sample buffer and the colored master mix were mixed, resulting in a clearly green transparent mixture.
- FIGS. 4 a -4 d show standard series obtained with master mix and sample with ( FIGS. 4 a and 4 b ) and without ( 4 c and 4 d ) the pipetting aid dyes of Example 1. Both series were done by amplifying human genomic DNA sequence with DyNAmo Flash Probe master mix according to the protocol in the product manual. Primer sequences were ACCTCCAAACTGGCTGTAAC and ATCTCCTCCTCATTGCAAAG. Detection was based on hydrolysis probe with a sequence TGGCCCCTTGAAGACAGCAG. Amplicon size was 121 bp.
- the resulting solution is ready to be subjected to (q)PCR.
- the reagents are preferably centrifuged to the bottoms of the wells.
- Measurements were performed with Nanodrop ND-1000 spectrophotometer, which uses 1 mm and 0.1 mm light paths.
- Tables 1-7 show the results obtained with preferred dyes to be used with FAM or SYBR, whereas Tables 4-7 show comparative examples obtained with commercially available colored PCR solutions.
- the absorbance maxima of the solutions of Tables 1-3 are relatively far from the fluorescent wavelengths of FAM and SYBR dyes.
- the absorbance spectrum (1 ⁇ dilution) of the reaction mixture of Table 3 is shown in FIG. 5 a . From the data is can be concluded, that the dyes tested proved to be suitable to be used in the initial solutions and also together in a qPCR reaction mixture as colorants with these fluorescent dyes.
- the buffer of Table 4 has absorbance maximum at 510 nm which is close to FAM and SYBR fluorescence maxima. Absorbance would decrease qPCR signals with these dyes significantly. Thus, the use of this mix in qPCR would not be feasible.
- the mix of Table 5 has very strong absorbance at 419 nm. As the absorbance peaks are not very sharp it also has significant absorbance at 495 nm (0.17 with 1 mm light path), which is the range where FAM and SYBR dyes are excited. Absorbance would decrease qPCR signals with these dyes.
- the absorbance spectrum (1 ⁇ dilution) is shown in FIG. 5 c .
- the mix of Table 6 has very strong absorbance at 485 nm. As the absorbance peaks are not very sharp it also has significant absorbance at 495 nm (0.982 with 1 mm light path), which is the range where FAM and SYBR dyes are excited. Absorbance would decrease qPCR signals with these dyes significantly.
- the absorbance spectrum (1 ⁇ dilution) is shown in FIG. 5 d .
- the mix of Table 7 has very strong absorbance at 475 nm. As the absorbance peaks are not very sharp it also has significant absorbance at 495 nm (0.393 with 1 mm light path), which is the range where FAM and SYBR dyes are excited. Absorbance would decrease qPCR signals with these dyes significantly.
- the absorbance spectrum (1 ⁇ dilution) is shown in FIG. 5 b.
- Perceivable range is dependent on the wavelength but in general color providing a absorbance above 0.01-0.1 with 1 mm light path seems to be visually distinguishable from the clear liquid. When absorbance is raised to 0.1-0.2, the color appears very clear to the eye. However, sophisticated instruments are more sensitive and thus dyes providing absorbance above 0.001 could be used when e.g. a spectrophotometer is used for color measurement.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
The invention relates to a method of preparing a reaction mixture for Polymerase Chain Reaction (PCR) assay and a solution set for PCR. The method comprises providing a sample solution comprising a biological sample to be amplified in said PCR assay and first colorant providing the solution a first color, providing a reagent solution comprising at least one other substance required for performing said assay and second colorant providing the solution a second color different from the first color, and mixing the sample solution and the first reagent solution for providing a mixed solution to be subjected to the PCR process, the mixed solution having, due to said first and second colorants, a third color different from the first and second colors. The invention significantly aids in pipetting PCR assays.
Description
- This application claims priority to copending U.S. application Ser. No. 13/499,518, which is a national stage application of PCT/FI2010/050772 filed Oct. 4, 2010, which claims priority to Finnish application Ser. No. 20096013 filed Oct. 2, 2009, each of which is expressly incorporated by reference herein in its entirety.
- The invention relates to pipetting of (bio)chemical reagents. In particular, the invention relates to a method of pipetting of reagents to microwells for Polymerase Chain Reaction (PCR) amplification, in particular quantitative PCR (qPCR) amplification. In addition, the invention relates to new products for aiding pipetting.
- When pipetting the PCR reaction, all necessary components, i.e. reagents, can be added to the reaction tube one by one, or preferably by first combining at least some of them as a master mix followed by dividing this mixture to multiple samples. One of the components that usually must be added separately is the sample under study. The number of samples, tubes or sample wells in a microtiter plate can be hundreds or even thousands per setup.
- Adding reagents correctly, i.e. in the right order and amount, is crucial for obtaining valid results not only in PCR but also in many other (bio)chemical reactions. Failed experiments result in loss of time and money. Economic importance can be huge. This is because of waste of ingredients, plastic ware and personnel working hours. Moreover, delays in obtaining the results of the experiments may be significant. There have been various solutions to this well-known problem.
- There are mechanical solutions to the problem. The art acknowledges various automated pipetting robots, multichannel pipettes and guidance systems (e.g. Finnzymes Piko® Light Plate, BioTx Well Aware™) used with sample tubes and plates.
- For several years there have also been available PCR master mixes or buffers that contain some visible dye to help pipetting and tracking of electrophoresis runs. These mixes typically also have some component to increase density of the solution to help in electrophoresis gel loading.
- U.S. Pat. No. 6,942,964 discloses a product using a pipetting aid dye which is also used as a gel loading and tracking dye. The colorant has been incorporated with the polymerase, which helps the user to see whether the polymerase has been pipetted to the PCR mix or master mix. A similar product is BioLine Accuzyme Red.
- USB Corporation's RubyTaq features a polymerase including a mixture of two dyes which are separated during the agarose gel run: magenta (runs between 500 by [2% gels] and 1500 by [0.8% gels]) and yellow (runs less than 10 bp).
- Fermentas and Promega have also added a colorant to the enzyme reaction buffer. Fermentas' DreamTaq™ Green reaction buffer can be seen as green, but the color separates into a blue and yellow bands during gel electrophoresis. Promega GoTaq and GoTaq Green Mastermix behave similarly.
- There are also products available where the dye added to the polymerase is not intended to help in the electrophoresis phase. Examples include ABgene Red® Hot.
- NEB provides a product (Crimson Taq) featuring a dye Acid red added to the DNA polymerase reaction buffer. The product also uses 6% dextran as a density enhancer.
- Qiagen's CoralLoad dye is available both as a concentrate in a separate tube for being added to an uncolored master mix, and also as an optional ready-made 10× PCR buffer. It contains two gel tracking dyes (orange and red).
- KR 2002/0045167 discloses freeze-dried PCR mixes containing a colorant to confirm dissolution of the PCR components. U.S. Pat. No. 6,153,412 discloses also freeze-died reaction mixtures which are used for identifying the existence of a lyophilized PCR reagent and to ensure complete mixing of the PCR reagent and the test sample. U.S. Pat. No. 5,565,339, on the other hand, discloses the use of a dye in a hot start wax, which does not dissolve into the reaction mixture.
- Absolute Blue QPCR Master Mix contains an inert blue dye to ease pipetting in reaction set-up.
- Also WO 2007/088506 discloses a dyed master mix.
- Applied Biosystems has ROX passive reference dye included in their qPCR products. The purpose of the dye is to provide a steady fluorescence level which can be used to normalize against any non PCR related fluorescence variation between the different reactions and in one sample during a reaction. The method is also suggested to normalize at least partly against deviations in pipetting accuracy.
- All but the three last ones of the products mentioned above are suggested to be used only in traditional end point PCR. In addition to the colorants, they typically contain a density enhancer to get the sample material into the bottom of the gel wells (see e.g. U.S. Pat. No. 6,942,964). Without the density enhancer, samples would disperse into the surrounding liquid.
- Colorants used in end-point PCR are generally not compatible with quantitative PCR (qPCR). This is usually because they prevent real-time optical measurements of the ongoing reaction. In particular, the dyes typically have a spectrum which overlaps with the detection wavelengths of qPCR fluorescence or their absorbance is too high. General requirements for the dyes used include non-inhibitory effect on the PCR reaction or stability in the reaction pH.
- An additional disadvantage of the above mentioned solutions in which the dye is provided in the master mix or in the polymerase is that they are not able to provide help for pipetting the samples (i.e. in PCR the material to be amplified). Sample pipetting is, however, the step where keeping track of the process is most important, and most difficult.
- The various mechanical systems available cannot solve the problem entirely. They are expensive and pipetting errors cannot always be seen visually mainly because of volume differences, which means the error might not be detected until after obtaining failed results.
- Thus, there is a need for enhanced pipetting aids. In particular, there is a need for such pipetting aids which can also be applied for the sample pipetting phase.
- It is an aim of the invention to provide a novel solution for aiding pipetting during preparation of PCR assays and in particular for making the detection of errors in various stages of pipetting easier.
- The aim of the invention is achieved by the invention as defined in the independent claims.
- In the pipetting stage of PCR assays, at least two reagent solutions are mixed for obtaining the final mixture which is subjected to PCR. The invention is based on the idea of coloring the reagent solutions with different initial colorants, which, upon mixing produce a distinguishable color different from the colors of the initial colorants.
- Thus, one can tell directly by the color of the solution, whether it is the first reagent solution, the second reagent solution or the mixture of these.
- More specifically, the method comprises
-
- providing a first reagent solution comprising at least one substance required for performing the assay and a first colorant providing the solution a first color,
- providing a second reagent solution comprising at least one other substance required for performing said assay and a second colorant providing the solution a second color different from the first color,
- mixing the first and second reagent solutions for providing a mixed solution to be subjected to the PCR process, the mixed solution having, due to said first and second colorants, a third color different from the first and second colors.
- In a typical application, one of the reagent solutions is a sample solution, that is, a solution containing or intended to receive a biological sample to be amplified in the PCR assay, and the other of the reagent solutions contains some other at least one other substance required for performing the assay, for example the polymerase solution or master mix. The sample solution may be a buffered solution (hereinafter “a sample buffer solution”). Thus, a microwell having a first color indicates that there is only sample solution without other reagents, e.g. master mix, in the well. A microwell with second color indicates that master mix has been added but there is no sample yet. Finally, a microwell with third color implies that sample has been properly added to the master mix. The inspection of the color can be made visually or by automatic optical means.
- In one embodiment, one of the reagent solutions is an elution buffer, such an elution buffer used in combination with a nucleic acid purification kit.
- In one embodiment, one of the reagent solutions is a dilution buffer used to facilitate lysis of a solid-state sample to release nucleic acids. The reagent solution can also be used to dilute, digest or precipitate released components before PCR. Thus, it is possible to use the invention when pipetting direct PCR assays.
- In further embodiments, one of the reagent solutions is a solution used in cDNA synthesis reaction, reverse transcriptase reaction or bisulphite reaction.
- In one embodiment, one of the reagent solutions is some other solution used for preparing the sample for the PCR process.
- The invention also provides a new use of dyes for producing two or more colored PCR reagent solutions, which are capable of forming a mixed solution having a color distinguishable from the initial colors of the reagent solutions.
- Further embodiments are the subject of the dependent claims.
- A particular aim of the invention is to achieve a pipetting aid solution which is compatible with quantitative PCR. This is achieved by using such colorants and colorant concentrations which do not significantly disturb the fluorescent processes, i.e. excitation and emission, or optical detection used in qPCR. In particular, the reaction mixture subjected to qPCR is transparent or translucent at least at the qPCR excitation and emission wavelengths. This generally means that the maximum absorbance of the of the reaction mixture is less than 0.5, in particular less than 0.15 (measured using 1 mm light path) and that the absorption window of the colorant does not overlap, at least significantly, with the excitation or emission wavelengths of the fluorescent qPCR dye(s) or modified DNA oligonucleotide probe(s) used.
- In one embodiment, a reaction mixture for quantitative PCR is prepared, the reaction mixture comprising fluorescent dye, primer or probe, and wherein the absorbance peaks of any of said colorants do not overlap with the emission or excitation wavelength of said fluorescent dye, primer or probe. If overlap exists, it should not significantly weaken the qPCR signal, generally implying that the total absorbance of the reaction mixture at said wavelengths is less than 0.05, preferably less than 0.03, in particular less than 0.1.
- The invention provides considerable advantages. As the initial solutions and the resultant solution are mutually of different colors, one not only distinguish between the initial solutions, but also between the initial solutions and their mixture.
- In addition, from colored solutions one can be quickly perceive whether the solutions have been properly mixed and whether there are significant deviations from the desired reaction volume.
- Moreover, the colors make it easier to see if there is any liquid splashed or spilled in wrong places where they could potentially cause contamination, microwell sealing problems etc. Especially with adhesive sealing films applied on microtiter plates before thermal cycling, any liquid in the sealing contact can compromise the seal and thus the whole PCR assay.
- The present invention can also be used together with the mechanical solutions to lower their error rate even more, if the pipetting steps performed are visualized using the colorants. When using pipetting robots, it is possible to add a quality check step based on optical detection after desired steps, or the volume and color of the reagents can be quickly checked visually.
- For the above reasons, dyes and other colorants used in the present manner can help keeping track in reaction setup and especially during loading reagents into reaction plate. Thus, the approach provides considerable help and increased certainty for pipetting samples.
- In qPCR there is no need to load the amplified products into a gel after a PCR reaction. Thus, a density enhancer is not needed. Consequently, the present solutions may be free of density enhancer or contain only minor amounts of density enhancer (i.e. less than required for gel electrophoresis).
- According to one embodiment, there is provided, in addition to the above mentioned first and second reagent solutions, one or more additional reagent solutions comprising additional colorants providing the solutions different colors. The solutions are capable of forming, on mixing, additional solutions having, due to said additional colorants, further distinguishable colors. Thus, the invention can be used not only for aiding the pipetting in one particular stage of the process, e.g. pipetting of the of the sample to master mix, but also for aiding the pipetting during other steps, in particular the steps previous or subsequent to the sample pipetting step.
- In more detail, the method may comprise providing a third reagent solution comprising at least one further substance required for performing said assay, the third reagent solution containing a third colorant providing the solution a fourth color different from the first, second and third colors mentioned above, and mixing the third reagent solution with the first and second reagent solutions for providing a mixed reagent solution having, due to said first, second and third colorants, a fifth color different from the first, second, third and fourth colors. In particular, the first reagent solution may be a sample, the second reaction solution the master mix and the third reagent solution may be a primer solution. The order of application is not essential, unless otherwise defined in assay instructions.
- Alternatively, to the above the method may comprise providing a third reagent solution containing third colorant providing the solution a fourth color different from the first, second and third colors, and individually mixing the first reagent solution with said second and third reagent solutions for obtaining first and second mixed solutions having third and fifth colors, respectively, different from each other and the first, second and fourth colors. For example, the second reagent solution may contain one set of primers and the third reagent solution may contain a second set of primers. In this embodiment too, the colors of all initial ingredients and all resultant mixtures are unique.
- The two above mentioned embodiments can also be chained such that the second and third reagent solutions are ultimately individually mixed with a reagent solution which is itself prepared by mixing at least two different colored reagent solutions. Other kinds of combinations are possible too.
- A “reagent solution” is any solution containing at least one reagent needed or advantageously used for PCR purposes. Most typical ingredients are polymerase, nucleotide, primer, ions, magnesium, other salt, pH buffering agent, dNTPs or fluorescent qPCR dye or probe, oligonucleotide, nucleic acid binding agent, a nucleic acid template. The reagent may also be other polymerase reaction additive, which has an influence on the polymerase reaction or its monitoring.
- The term “sample solution” covers both buffered and non-buffered sample solutions which are still free of template or into which the template to be amplified using PCR has already been added, unless otherwise specified. The term “sample solution” is covered by the term “reagent solution”.
- The term “master mix” refers to a mixture of all or most of the ingredients or factors necessary for PCR to occur, typically all except for the template and primers which are sample and amplicon specific. Commercially available master mixes are usually concentrated solutions. A master mix may contain all the reagents common to multiple samples, but it may also be constructed for one sample only. Using master mixes helps to reduce pipetting errors and variations between samples due to differences between pipetted volumes. It also minimizes the time spent for pipetting.
- A qPCR master mix is a master mix intended for performing a qPCR reaction. Thus, it may contain fluorescent dye or fluorescently tagged oligonucleotide primers or probes.
- The term “premix” refers to a master mix that contains all the necessary components for a PCR reaction except for the template.
- The term “color” herein means any detectable spectral response (of a solution) to white light in the visual range. Thus, there is at least one wavelength range in the absorbance spectrum of the solution which provides a colored visual appearance for the solution (in contrast to the nearly 100% transmittance of water). White, black, and shades of gray are herein counted as colors. As will be shown later, an absorbance higher than about 0.01 (1 mm light path) gives a visually perceivable color for a solution whereas an absorbance higher than about 0.001 (1 mm light path) can be relatively easily detected by hardware-based spectral detection means.
- The term “different colors” means that the colors are distinguishable, preferably by the naked eye, but at least with spectral detection means. In particular, “different colors” may have maximum peaks in their absorption spectrum separated by at least 30 nm. Preferably, the different colors are selected from the groups of: red, yellow, blue or cyan, magenta, yellow and visually distinguishable combinations and shades thereof, such as green, orange, and violet.
- The term “colorant” means any substance which is capable of being homogeneously mixed or dissolved within a solution and capable of giving the solution a perceivable color. According to one embodiment, the colorant is a dye, in particular an aqueous dye, preferably a non-oxidizing aqueous dye.
- The terms “transparent” or “translucent” colorant-containing solution refers, in particular, to a solution which has an optical transmission window at at least some fluorescence excitation and/or emission wavelengths that can be used for performing qPCR, the wavelengths depending on the fluorophores, fluorescent dye(s), and/or modified DNA oligonucleotide probe(s) contained in the reaction mixture. Typically, the excitation wavelength is between 350 and 690 nm, in particular between 490 and 650 nm. The emission wavelength is typically between 350 nm-730 nm, in particular 515 nm-680 nm. A transparent solution is optically essentially non-diffusive, whereas a translucent solution passes light diffusely.
- The term “sample” refers to a solid material or a solution that contains the nucleic acid of interest or is to be analyzed for the presence of nucleic acid of interest.
- The term “dilution buffer” refers to a solution that can be used for sample pretreatment before PCR setup. Pretreatment can include sample lysis for releasing nucleic acids, dilution, binding, chemical lysis, precipitation and enzymatic digestion of some components.
- The term “preparative process” refers to any reaction, pipetting step or pretreatment which yields a product which can in total or in part be used as a sample in a subsequent PCR reaction.
- Typically the third color, achieved by mixing the solutions with the first and second colorants, is a chromatic combination of the first and second colors of the solutions. Thus, the third color may be produced as a sum spectrum of the spectra of the first and second colors. However, it is not excluded that the third color is formed through a more complex process, e.g. reaction of the first and second colorants, or due to a fluorescent process, e.g. fluorescence resonance energy transfer (FRET), provided that the fluorescence wavelengths differ from those of qPCR fluorophores used.
- Next, embodiments and advantages of the invention are described in more detail with reference to the attached drawings.
-
FIG. 1A shows in cross-sectional view three microwells containing colored sample buffer, colored reagent solution and their colored mixture, respectively. -
FIG. 1B shows a top view of a microtiter plate containing empty wells and wells containing colored sample buffer, colored reagent solution, their colored mixture and wells with optically clear liquid. -
FIGS. 2a and 2b illustrate as a flow chart exemplary ways of carrying out the invention. -
FIG. 3 shows a flow chart of the present process according to one embodiment of the invention. -
FIGS. 4a-4d show standard series obtained with master mix and sample with (4 a and 4 b) and without (4 c and 4 d) pipetting aid dyes. -
FIGS. 5a-5d show absorbance spectra relating to a absorbance measurement example. -
FIGS. 6a-6c and 7a-7c illustrate the use of colorant in a cDNA synthesis reaction. - To make plate setup easier, the invention provides, according to one embodiment, a dye combination that helps keeping track of pipetting master mix, samples and mixing of these, in the pipetting phase of (q)PCR process. Thus, the dyes are preferably optimized so that they will have minimal effect on qPCR reaction (e.g. will not influence the sample or DNA polymerase used) and will not significantly affect optical detection of fluorescence. In other words, the dyes used are compatible with the qPCR assay.
- Typical fluorophores used for qPCR purposes include
Alexa 350, FAM™, TET™, VIC™, JOE™, HEX™,CY® 3, TAMRA™, ROX™, Texas Red®,CY® 5, CY®5.5 and Quasar®705, the emission and excitation wavelengths of which are shown in Table 1. -
TABLE 1 Dye Ex Em Alexa 350 350 440 FAM 494 518 JOE 520 548 VIC 538 554 HEX 535 556 Cy3 552 570 TAMRA 565 580 Cy3.5 581 596 Texas Red 583 603 ROX 585 605 Cy5 643 667 Cy5.5 675 694 Quasar705 690 705 -
FIG. 1A illustrates the basic principle of the invention. Themicrowell 12A containscolored sample buffer 14A having a first color (horizontal lines). Themicrowell 12B containscolored master mix 14B having a second color (vertical lines). Themicrowell 12C contains colored mixture of the sample buffer and colored master mix, having a third color (horizontal and vertical lines) resulting from the first and second colors. -
FIG. 1B illustrates amicrotiter plate 10 which, in addition to the solutions shown and marked as inFIG. 1A , containsempty wells 12 and non-colored liquid 14D having no color (dots). In addition, there is shown a dilutedreaction mixture 14E, which is achieved by diluting theinitial reaction mixture 14C with the non-colored liquid 14D, the diluted reaction mixture having the same basic color as theinitial reaction mixture 14C, but with increased transparency, i.e. reduced absorbance (sparse horizontal and vertical lines). As will be described later in more detail, not only the color, but also the degree of dilution can be monitored according to one embodiment of the invention. - The dyes can preferably be both detected and distinguished from each other visually, i.e. by naked eye. Thus, the different colors are spectrally relatively densely distributed and no special equipment is needed. However, in automatic devices utilizing optical spectral detectors or computer vision, also colors more finely distributed on the spectral scale can be used, without compromising the ability to distinguish between different colors.
- According to one embodiment, the combination comprises a blue master mix and yellow sample buffer. When mixed together these form clearly green solution. Blue color in the plate indicates that master mix has been added but there is no sample yet. When sample is added color turns green. If solution in the well is yellow it means that there is only sample without mastermix. According to one embodiment, the blue dye comprises Xylene cyanol. According to one embodiment, the yellow dye comprises Quinoline yellow. These dyes have been found to be compatible with the polymerase and sample buffer, respectively.
- Other potential dyes comprise Brilliant Blue, Patent Blue, Indigocarmine,
Acid Red 1, m-Cresol Purple, Cresol Red, Neutral Red, Bromocresol Green,Acid Violet 5, Bromo phenol blue, and Orange G. Other potential dyes are listed in U.S. Pat. No. 6,942,964. - According to one embodiment, the dyes are strong enough to give a visually perceivable color for the respective solutions, but weak enough not to disturb fluorescence detection and/or weak enough not to interfere with gel electrophoresis migration tracking with other dyes commonly used for that purpose. For example, the above mentioned Xylene cyanol and Quinolene yellow belong to this group of dyes. Thus, if the colored amplified reaction mixture is subjected to end-point gel electrophoresis analysis, the colorants do not have an influence on the analysis. Instead of that, a conventional loading buffer with electrophoresis dye can be added to the amplified mixture. Moderate dyeing also maintains the general visual appearance of the solutions transparent or translucent.
- A suitable concentration of the dye depends on the dye itself. According to one embodiment, directed to machine-aided color detection, the concentration of the dye in the initial solution is adjusted to result in an absorbance of 0.001-0.5 at its maximum absorption wavelength (1 mm light path). According to an embodiment directed to visual color detection, the concentration of the dye is adjusted to result in an absorbance of 0.01-0.5, in particular 0.03-0.5, at its maximum absorption wavelength (1 mm light path). According to a most preferred embodiment, the absorbance is 0.03-0.15, which ensures both visual detectability of the color and negligible or small effect on the qPCR measurement even if the absorbance peak would slightly overlap with the qPCR excitation and/or emission wavelengths. It is preferred, if such overlap exists, that the total absorbance at the qPCR excitation and/or emission wavelength is less than 0.05, preferably less than 0.03, in particular less than 0.01 (1 mm light path), regardless of the maximum absorbance. As the two (or more) initial solutions have differently colored dyes, there is no significant cumulative absorbance at any particular wavelength. It should also be noted that the above absorbances are the preferred absorbance of solutions diluted to the desired PCR processing concentration. If the solutions are delivered as concentrates, the preferred absorbances are respectively higher.
- According to an alternative embodiment, at least one of the solutions is provided with dye, which is both suitable to be used in qPCR (i.e. does not affect the fluorescence detection at the wavelengths used) and strong enough to detected in gel electrophoresis, and runs on an appropriate distance at the gel with respect to the samples. Thus, a separate loading buffer is not necessarily needed.
- The sample buffer containing a dye may be delivered either as a dilute or concentration, depending on the intended use.
-
FIG. 2 illustrates the general concept of pipetting a colored sample solution (step 20) and at least one reagent solution (step 21, optionally 22) into a single container and mixing the solutions (step 23). The color of the mixed solution is checked (step 24) before subjecting the mixture to PCR (step 25). It should be noted that there may be other pipetting and processing steps which are not shown inFIG. 2 for simplicity. - Several embodiments taking advantage of the general idea of the invention are explained below.
- According to one embodiment, there are provided a plurality of colored sample buffer solutions, in which different colorants are used to give the sample buffers different colors. According to a further embodiment, mixing the plurality of colored sample buffers with the same colored reagent mixture yields reaction mixtures of different colors. Thus, in a multi-sample PCR assay, one can distinguish between different samples based on the color of the solution. For example, a yellow sample buffer and a red sample buffer mixed with a blue master mix could give green and magenta reaction mixtures, from which one can immediately verify not only the proper mixing, but also the type of the sample.
- According to one embodiment, there are provided a master mix and a plurality of colored primer mixes, in which different colorants are used to give the mixes different colors (master mix:
color 1, primer mixes:color 2 and color 3). Combining the primer mixes with the mister mix yields still different colored mixes (colors 4 and 6). Further, by adding a colored sample (color 7) to the mixes obtained, distinguishable PCR solutions are obtained (colors 8 and 9). In each case of the process, the color of the solutions is indicative of the contents of the solution. - As illustrated in
FIG. 3 , according to one embodiment, there are provided a plurality of master mixes or other premixes (steps 31, 32) which are provided with different colorants to render the premixes differently colored (say, premix 1:color 2, premix 2:color 3, . . . premix n: color n+1) and a sample having a further color (color 1) (step 30). The premixes are individually mixed with the sample (steps steps FIG. 3 for simplicity. - More generally, there may be provided a plurality of initial solutions (each containing a component needed in the PCR reaction, e.g. polymerase, primer, ions, dNTPs or fluorescent qPCR dye or probe, or other additives) which are provided with different colorants to render the solutions differently colored (say, solution 1:
color 2, solution 2:color 3, . . . solution n: color n+1) and a sample having a further color (color 1). The colors are preferably chosen so that each combination of solutions yields a unique color rendering the solutions distinguishable from the other solutions. - Selected variations of the invention having high utility value are described below.
- Use of Dye in Elution Buffer
- Nucleic acids for molecular biology experiments are usually purified from complex sample material. There are various methods for purification including methods based on extraction, precipitation, hybridization and different modes of chromatography or filtering etc. In most of the techniques nucleic acids are either dissolved or eluted in selected solution. Precipitated nucleic acids can be dissolved in a variety of solutions. When using other method that are based on other DNA interactions there are more requirements for the elution buffer such as suitable ionic strength. Purification methods based on DNA binding to silica in high ionic strength conditions are widely used. Bound DNA is eluted from silica matrix with low ionic strength buffer or with pure water. Many kits based on the silica binding method are available and usually the kit contains the elution buffer. To reduce the number of pipetting steps in the experiment workflow, the colorant can be included in the elution buffer or the buffer provided with the kit can be replaced with the colored buffer. By doing this, the user does not have to add the color in a separate step.
- For example, the sample buffer containing the dye can be used as a sample elution buffer in combination with many commercial or homebrew DNA purification kits. The elution buffer provided with many of the available kits can be just simply replaced with the sample buffer containing the dye. Alternatively, a small amount of dye concentrate can be added in the elution buffer provided with the kit without diluting the sample too much.
- The other colored reagent solution may be any other solution needed for the process, as discussed above.
- Use of Dye in Dilution Buffer (Direct PCR)
- New enzyme technology has made it possible to significantly simplify sample preparation for PCR and it is even possible to put the unpurified sample directly to the PCR. However in many experiments the sample needs to be separated in to several reactions and it is often preferable to be able to store some of the sample for possible repeats or other purposes. Thus direct PCR protocols where sample is lysed and dissolved in a special sample buffer are very popular. In these so called dilution protocols the dilution buffer may contain different agents that lyse the sample. In addition to these agents a colorant can be added to the dilution buffer to make subsequent pipetting steps easier.
- The other colored reagent solution may be any other solution needed for the process, as discussed above.
- To demonstrate this embodiment, two set of extractions from bovine milk samples were done with a kit based on DNA binding to silica. One following the guidelines and the other set where the elution buffer was replaced with 1× sample buffer with yellow dye. Purified samples were used in qPCR and qPCR results of the described two sets were compared. No significant difference was observed.
- Use of Dye in Reverse Transcription Reaction
- Majority of real time PCR is done for gene expression studies. In these experiments the nucleic acid of interest is RNA and thus not directly suitable template for normal qPCR. Before qPCR the RNA sample must be reverse transcribed before the qPCR step. Reverse transcription and qPCR reaction can be combined and performed subsequently in same reaction mixture. However usually the condition is a compromise and not optimal for either of the two reactions. In most cases it is more optimal to do separate reverse transcription reaction and use the created cDNA as a template in a separate qPCR reaction. In reverse transcription reaction setup there are the same challenges of keeping track of samples during pipetting as described for qPCR. An embodiment of the invention describes how colorant can be used in cDNA synthesis reaction to overcome this challenge.
- The use of colorant in cDNA synthesis reaction has also been demonstrated as follows:
- Two cDNA synthesis reaction series were prepared one with the yellow colorant, in final concentration of 10 fold compared to the concentration instructed for the qPCR, the other without the additional dye. HeLa total RNA dilution series with 1000 ng, 500 ng, 10 ng 1 ng, 100 pg and 10 pg dilutions were used as template. Reactions were otherwise done according to the manual (Product number F-470, Finnzymes). A 1.5 μl aliquot of each reaction was then used as a template in qPCR with DyNAmo SYBR Flash qPCR master mix.
- With reference to
FIGS. 6a-6c and 7a-7c , two standard curves were created, the first (FIG. 6c ) representing the series with the added dye and the other (FIG. 7c ) without the dye. The results show that cDNA synthesis can be performed in presence of colorant and the quantitative nature of the reaction is maintained. - In practice, the dye can be brought into the reaction with the transcriptase, with the sample, with the buffer solution or separately as a concentrate.
- Use of Dye in Bisulphite Reactions
- Similarly to what is discussed above, dye can also be added to any component taking part in a bisulphite treatment prior to mixing the sample thereby obtained with a second reaction solution.
- As can be seen from the above examples, the dye can be present not only when mixing the final PCR reaction mixture but also in preparative process steps, in particular those relating to sample preparation, such as reverse transcription reaction (e.g. in cDNA synthesis), bisulfite reaction, sample elution or sample dilution. These examples are not limiting and, as understood by a person skilled in the art, the dye can be introduced also into these reactions in various ways, for example, with the enzyme, with reaction buffer, with the sample or separately.
- As there is color present also in the preparative process steps, pipetting of these steps is facilitated too. However, according to a preferred embodiment, at least one colored solution is brought when mixing the final reaction solution, e.g. with the polymerase or master mix.
-
FIG. 2b illustrates, at a general level, the principle of introducing at least one colored reagent solution (step 20′) to the process prior to at least onepreparative process step 29′. The pretreatment may involve the introduction of one or more other substances too (step 28′). After pretreatment, the process can be continued similarly to as explained above, by mixing the product (or aliquot thereof) of the preparative process step with second colored reagent solution (steps 21′ and 23′), checking the color of the mixed solution (step 24′) and proceeding to (q)PCR (step 25′). - Monitoring of the pipetting process is described below.
- Preferably, the different colors are distinguishable by the naked eye. However, hardware-aided optical measurements capable of distinguishing between colors can be utilized too.
- According to one embodiment, the condition of one or more microwells to be pipetted is checked at least once during the pipetting process automatically by optical means capable of spectral resolution.
- According to one embodiment, the condition of the microwells is automatically checked at least two times in different stages of the pipetting process. Preferably such checking is carried out after every separate pipetting step.
- The concentration of the colorant decreases and the color of a colored solution become weaker due to every addition of non-colored, i.e. optically clear, liquids. On the other hand, addition of colored substances changes the shade of the color. Thus, the strength and/or shade of color of a solution within a well is indicative of the stage of pipetting. By automatic measurement of the spectral response of the microwell(s), the progress of the pipetting process can be monitored.
- According to one embodiment, the above mentioned monitoring is carried out using a computer program, which is adapted to compare the measured spectral responses after the desired pipetting steps with predefined limits for these steps. Such limits are designed to reflect the correct shade and/or strength of the color of the solution, taking into account the reagents added. A microwell, for which the measured value is not within an accepted range, is flagged incorrectly pipetted.
- The detection of the color of a solution is preferably based on absorbance measurement. The detection instrumentation, which may be an in integral part of an automatic pipetting apparatus or a (q)PCR thermal cycling apparatus, for example, contains absorbance measurement means, i.e. a light source, a light detector and means for determining the absorbance of the contents of a microwell at least at one wavelength or wavelength range. Preferably, the absorbance measurement means comprise a spectrophotometer. By means of the invention, the reliability of pipetting and PCR assay can be improved, as even small changes in shades and strengths of colors, and thus in the contents of the wells can be detected.
- According to an alternative embodiment, the detection instrumentation is contained in a separate apparatus to which the reaction solutions can be transferred either automatically or manually after critical pipetting steps. In the separate apparatus, a quick plate read is carried out before the plate is transferred for further processing.
- Thus, the invention also provides an apparatus for monitoring pipetting, comprising means for receiving a microtiter plate containing a plurality of microwells and means for measuring the optical absorbance of contents of the microwells. The means for detecting the absorbance are adapted to detect the spectral absorbance profile of the sample (for color detection) and/or color intensity of the sample (for dilution detection). Preferably, the apparatus is capable of both the above mentioned functions for being able to monitor the entire pipetting process. The optical detection means are preferably connected to a computing unit which analyses and stores the measured absorbances and performs a calculation or comparison of the measurement data with pre-stored data.
- The detection instrumentation may contain a microplate-receiving block which can be cooled for keeping the temperature of the reactions solutions low enough. For most hot-start polymerases cooling is not necessary.
- Automatic detection is of particular assistance when the volume of the reaction vessel is small, that is, less than 5 μl, in particular less than 1 μl, as reliable visual observation of both the color and volume of the solutions is more difficult in these cases.
- The microwells may be separate or be contained in microtiter strips or plates of any known type. Preferably, the wells are manufactured from transparent material, allowing the visual inspection or spectral measurements to be carried out through the wall of the well.
- Xylene cyanol as a colorant was added to DyNAmo Flash SYBR® green qPCR and DyNAmo Flash Probe qPCR master mixes from (Finnzymes, Finland) in the concentration of 0.0026% (w/v). The result was a clearly blue transparent solution. Quinolene yellow was added to a sample buffer in the concentration of 0,00174% (w/v). The sample buffer contained 1 mM Tris-HCl pH 8.5 and 0.1 mM EDTA. As a result, a clearly yellow transparent solution was obtained.
- The colored sample buffer and the colored master mix were mixed, resulting in a clearly green transparent mixture.
-
FIGS. 4a-4d show standard series obtained with master mix and sample with (FIGS. 4a and 4b ) and without (4 c and 4 d) the pipetting aid dyes of Example 1. Both series were done by amplifying human genomic DNA sequence with DyNAmo Flash Probe master mix according to the protocol in the product manual. Primer sequences were ACCTCCAAACTGGCTGTAAC and ATCTCCTCCTCATTGCAAAG. Detection was based on hydrolysis probe with a sequence TGGCCCCTTGAAGACAGCAG. Amplicon size was 121 bp. - From the mutual similarity of the amplification curves (
FIGS. 4a and 4c ) and standard curves (FIGS. 4b and 4d ) can be seen that presence of the dye does not affect the reaction efficiency or significantly affect fluorescence intensities. - The present invention was utilized to implement the following pipetting sequence:
-
- A colored (blue) 2× mix was thoroughly mixed with primers and probes, additives and water for obtaining a premix for several reactions.
- The premix was pipetted to several wells of a microtiter plate (15 μl/well).
- Colored (yellow) DNA sample solutions were pipetted onto the premixes (5 μl/well).
- The color of the resulting solution was manually checked to be correct (green).
- After the above steps, the resulting solution is ready to be subjected to (q)PCR. For qPCR, the reagents are preferably centrifuged to the bottoms of the wells.
- Absorbance of different dilutions of the dyes used in the examples above and dilutions of existing colored master mixes were measured and compared to visual observation to assess the visually perceivable range in different wavelengths. The purpose was in particular to determine visually perceivable absorbance range with different dyes and also check if commercially available dyes would be suitable to be used with FAM and SYBR fluorescent dyes which are probably the most popular dyes used in qPCR.
- Measurements were performed with Nanodrop ND-1000 spectrophotometer, which uses 1 mm and 0.1 mm light paths.
- The results, including visual detectability of color, absorbance maxima and absorbances of the samples as well as types of the solutions and dyes used in the experiments are shown in Tables 1-7 below. Tables 1-3 show the results obtained with preferred dyes to be used with FAM or SYBR, whereas Tables 4-7 show comparative examples obtained with commercially available colored PCR solutions.
- In the Tables, the following denotations are used:
-
- +++ strong color
- ++ color easy to see
- + weak color but visible in normal laboratory environment by naked eye
- − color not visible in normal laboratory environment by naked eye
- For cases denoted with asterisk (*), the absorbance peak was not completely well-defined or clear.
-
TABLE 1 Absorbance Visual maximum Product Dilution color nm (λmax) A (1 mm) A (1 cm) Reagent color 500x +++ 615 Finnzymes 50x +++ 615 1.63 5x ++ 615 0.179 Xylene cyanol (XC) 1x ++ 615 0.037 0.302 0.5x + 615 0.2x − 615 0.013 0.04x 615 -
TABLE 2 Visual Product Dilution color nm (λmax) A (1 mm) A (1 cm) Sample buffer 500x +++ 413 Finnzymes 50x +++ 413 5x ++ 413 0.578 Quinolene yellow 1x ++ 413 0.124 1.163 (QY) 0.2x + 413 0.026* 0.186 0.04x − 413 0.022* 0.02x 413 -
TABLE 3 Visual Product Dilution color nm (λmax) A (1 mm) A (1 cm) Colored reaction mix 1x ++ 413 0.128 Finnzymes 0.2x + 413 0.032 0.186 0.1x + 413 0.015 0.059 G7 0.04x − 413 - The absorbance maxima of the solutions of Tables 1-3 are relatively far from the fluorescent wavelengths of FAM and SYBR dyes. The absorbance spectrum (1× dilution) of the reaction mixture of Table 3 is shown in
FIG. 5a . From the data is can be concluded, that the dyes tested proved to be suitable to be used in the initial solutions and also together in a qPCR reaction mixture as colorants with these fluorescent dyes. -
TABLE 4 Visual Product Dilution color nm (λmax) A (1 mm) A (1 cm) Crimson Taq buffer 5x +++ 510 1.804 NEB 1x ++ 510 0.406 0.5x ++ 510 0.213 CT 0.1x + 510 0.046 0.02x + 510 0.013* 0.01x +/− 510 0.005x − 510 - The buffer of Table 4 has absorbance maximum at 510 nm which is close to FAM and SYBR fluorescence maxima. Absorbance would decrease qPCR signals with these dyes significantly. Thus, the use of this mix in qPCR would not be feasible.
-
TABLE 5 Visual Product Dilution color nm (λmax) A (1 mm) A (1 cm) Green GoTaq 5x +++ 419 Promega 1x ++ 419 1.183 0.5x ++ 419 0.527 GT 0.1x ++ 419 0.130 0.02x + 419 0.029* 0.01x + 419 0.014* 0.005x − - The mix of Table 5 has very strong absorbance at 419 nm. As the absorbance peaks are not very sharp it also has significant absorbance at 495 nm (0.17 with 1 mm light path), which is the range where FAM and SYBR dyes are excited. Absorbance would decrease qPCR signals with these dyes. The absorbance spectrum (1× dilution) is shown in
FIG. 5c . -
TABLE 6 Visual Product Dilution color nm (λmax) A (1 mm) A (1 cm) Quick-Load mm 2x +++ 478 1.922* NEB 1x ++ 485 1.000 0.5x ++ 485 0.516 QL 0.1x + 485 0.103 0.02x + 485 0.025 0.01x − 485 0.012* 0.005x 0.001x 0.0005x - The mix of Table 6 has very strong absorbance at 485 nm. As the absorbance peaks are not very sharp it also has significant absorbance at 495 nm (0.982 with 1 mm light path), which is the range where FAM and SYBR dyes are excited. Absorbance would decrease qPCR signals with these dyes significantly. The absorbance spectrum (1× dilution) is shown in
FIG. 5d . -
TABLE 7 Visual Product Dilution color nm (λmax) A (1 mm) A (1 cm) Coral Load 10x +++ Qiagen 1x ++ 475 0.407 0.5x ++ 475 0.202 CL 0.1x + 475 0.043* 0.04x + 475 0.018 0.02x − - The mix of Table 7 has very strong absorbance at 475 nm. As the absorbance peaks are not very sharp it also has significant absorbance at 495 nm (0.393 with 1 mm light path), which is the range where FAM and SYBR dyes are excited. Absorbance would decrease qPCR signals with these dyes significantly. The absorbance spectrum (1× dilution) is shown in
FIG. 5 b. - Perceivable range is dependent on the wavelength but in general color providing a absorbance above 0.01-0.1 with 1 mm light path seems to be visually distinguishable from the clear liquid. When absorbance is raised to 0.1-0.2, the color appears very clear to the eye. However, sophisticated instruments are more sensitive and thus dyes providing absorbance above 0.001 could be used when e.g. a spectrophotometer is used for color measurement.
- Use of instrument for checking the reaction setup volume by color detection enables more diluted colors to be used for that purpose minimizing possible negative effects that the colors might have. For example in qPCR the range of dyes that could be used without significantly affecting fluorescence detection would be increased.
- The embodiments and examples above and the attached drawings are for illustrative purposes. The scope of the invention should be evaluated on the basis of the following claims taking equivalents into account.
Claims (21)
1-34. (canceled)
35. A method of preparing a reaction mixture for Polymerase Chain Reaction (PCR) assay, comprising:
(i) providing a first reagent solution comprising at least one substance for performing said assay,
(ii) providing a second reagent solution comprising at least one other substance for performing said assay,
(iii) mixing the first and second reagent solutions for providing a mixed solution to be subjected to the PCR process,
wherein the first reagent solution contains first colorant providing the first reagent solution a first color; the second reagent solution contains second colorant providing the solution a second color different from the first color; said mixing yields a mixed solution having, due to said first and second colorants, a third color different from the first and second colors; and
wherein the third color is detected visually.
36. The method of claim 35 , further comprising providing a third reagent solution comprising at least one further substance for performing said assay, the third reagent solution containing a third colorant providing the solution a fourth color different from the first, second and third colors; and
mixing the third reagent solution with the first and second reagent solutions for providing a mixed reagent solution having, due to said first, second and third colorants, a fifth color different from the first, second, third and fourth colors.
37. The method of claim 35 , further comprising providing a third reagent solution containing third colorant providing the solution a fourth color different from the first, second and third colors; and
individually mixing the first reagent solution with said second and third reagent solutions for obtaining first and second mixed solutions having third and fifth colors, respectively, different from each other and the first, second and fourth colors.
38. The method of claim 37 , wherein the first reagent solution is a PCR or qPCR master mix, the second reagent solution contains a first set of primers and the third reagent solution contains a second set of primers different from the first set of primers.
39. The method of claim 35 , wherein the first reagent solution comprises at least one substance for the PCR assay, which is a polymerase, a primer, a plurality of dNTPs, a fluorescent qPCR dye, or a probe.
40. The method of claim 39 , wherein the second reagent solution comprises at least one other substance not in the first reagent solution and for the PCR assay, which is a polymerase, a primer, a plurality of dNTPs, a fluorescent qPCR dye, or a probe.
41. The method of claim 40 , wherein the first reagent solution comprises a polymerase or a polymerase buffer; and the second reagent solution comprises at least one of primers, a probe, and a sample.
42. The method of claim 35 , wherein the reaction mixture is for use in a quantitative PCR assay.
43. The method of claim 42 , wherein the reaction mixture comprises a fluorescent agent, and wherein the absorbance peaks of the colorants do not overlap with the emission or excitation wavelength of the fluorescent agent or the total absorbances of the reaction mixture at the emission or excitation wavelengths of the fluorescent agent are less than 0.05 when measured with a 1 mm light path.
44. The method of claim 42 , wherein the mixed solution is translucent.
45. The method of claim 42 , wherein the mixed solution is transparent.
46. The method of claim 35 , wherein the first reagent solution or the second reagent solution further comprises a biological sample to be amplified in the PCR assay.
47. The method of claim 35 , wherein the first reagent solution or the second reagent solution is a PCR master mix, a qPCR master mix, a PCR premix or a qPCR premix.
48. The method of claim 35 , wherein the first reagent solution or the second reagent solution further comprises a sample elution buffer.
49. The method of claim 35 , wherein the first reagent solution or the second reagent solution further comprises a sample dilution buffer.
50. The method of claim 35 , wherein at least one of the first and second colorants is selected from Quinoline yellow, Xylene cyanol, Brilliant Blue, Patent Blue, Indigocarmine, Acid Red 1, m-Cresol Purple, Cresol Red, Neutral Red, Bromocresol Green, Acid Violet 5, Bromo phenol blue, and Orange G.
51. The method of claim 35 , wherein at least one of the first reagent solution or the second reagent solution is a concentrate.
52. The method of claim 35 , further comprising subjecting the mixed solution to a quantitative PCR process.
53. The method of claim 38 , further comprising subjecting the mixed solution to a quantitative PCR process.
54. The method of claim 35 , wherein the mixing is carried out by pipetting the reagent solutions to one or more wells of a microtiter strip or plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/139,738 US20160312268A1 (en) | 2009-10-02 | 2016-04-27 | Method of preparing a reaction mixture and related products |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20096013 | 2009-10-02 | ||
FI20096013A FI20096013A7 (en) | 2009-10-02 | 2009-10-02 | Method for preparing a reaction mixture and related products |
US13/499,518 US8663925B2 (en) | 2009-10-02 | 2010-10-04 | Method of preparing a reaction mixture and related products |
PCT/FI2010/050772 WO2011039425A1 (en) | 2009-10-02 | 2010-10-04 | Method of preparing a reaction mixture and related products |
US14/195,088 US9416417B2 (en) | 2009-10-02 | 2014-03-03 | Method of preparing a reaction mixture and related products |
US15/139,738 US20160312268A1 (en) | 2009-10-02 | 2016-04-27 | Method of preparing a reaction mixture and related products |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/195,088 Division US9416417B2 (en) | 2009-10-02 | 2014-03-03 | Method of preparing a reaction mixture and related products |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160312268A1 true US20160312268A1 (en) | 2016-10-27 |
Family
ID=41263431
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/499,518 Active US8663925B2 (en) | 2009-10-02 | 2010-10-04 | Method of preparing a reaction mixture and related products |
US13/078,720 Active 2034-07-19 US9422604B2 (en) | 2009-10-02 | 2011-04-01 | Sample processing apparatus and method |
US14/195,088 Active US9416417B2 (en) | 2009-10-02 | 2014-03-03 | Method of preparing a reaction mixture and related products |
US15/139,738 Abandoned US20160312268A1 (en) | 2009-10-02 | 2016-04-27 | Method of preparing a reaction mixture and related products |
US15/210,075 Active US10006086B2 (en) | 2009-10-02 | 2016-07-14 | Sample processing apparatus and method |
US15/989,926 Active US10626461B2 (en) | 2009-10-02 | 2018-05-25 | Sample processing apparatus and method |
US16/815,520 Abandoned US20200308643A1 (en) | 2009-10-02 | 2020-03-11 | Sample Processing Apparatus and Method |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/499,518 Active US8663925B2 (en) | 2009-10-02 | 2010-10-04 | Method of preparing a reaction mixture and related products |
US13/078,720 Active 2034-07-19 US9422604B2 (en) | 2009-10-02 | 2011-04-01 | Sample processing apparatus and method |
US14/195,088 Active US9416417B2 (en) | 2009-10-02 | 2014-03-03 | Method of preparing a reaction mixture and related products |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/210,075 Active US10006086B2 (en) | 2009-10-02 | 2016-07-14 | Sample processing apparatus and method |
US15/989,926 Active US10626461B2 (en) | 2009-10-02 | 2018-05-25 | Sample processing apparatus and method |
US16/815,520 Abandoned US20200308643A1 (en) | 2009-10-02 | 2020-03-11 | Sample Processing Apparatus and Method |
Country Status (12)
Country | Link |
---|---|
US (7) | US8663925B2 (en) |
EP (1) | EP2483422B2 (en) |
JP (6) | JP5965317B2 (en) |
KR (3) | KR101836454B1 (en) |
CN (1) | CN102712951B (en) |
AU (1) | AU2010302557A1 (en) |
BR (1) | BR112012007707A2 (en) |
CA (1) | CA2775972A1 (en) |
FI (1) | FI20096013A7 (en) |
NZ (1) | NZ598973A (en) |
WO (1) | WO2011039425A1 (en) |
ZA (1) | ZA201202302B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10006086B2 (en) | 2009-10-02 | 2018-06-26 | Thermo Fisher Scientific Baltics Uab | Sample processing apparatus and method |
US12065698B2 (en) | 2009-10-02 | 2024-08-20 | Thermo Fisher Scientific Baltics Uab | Sample processing apparatus and method |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012131167A1 (en) * | 2011-04-01 | 2012-10-04 | Finnzymes Oy | Sample processing apparatus and method |
CN103733074B (en) * | 2011-04-08 | 2016-06-15 | 斯多克斯生物有限公司 | For the system and method for continuous-flow PCR system |
WO2013100350A1 (en) | 2011-12-28 | 2013-07-04 | Samsung Electronics Co., Ltd. | Image processing apparatus, upgrade apparatus, display system including the same, and control method thereof |
US9034606B2 (en) * | 2012-08-23 | 2015-05-19 | New England Biolabs, Inc. | Detection of an amplification reaction product using pH-sensitive dyes |
CN105392862B (en) * | 2013-10-10 | 2019-04-02 | 生物辐射实验室股份有限公司 | Compound visible colorant and method for quantitative amplification |
US20150176060A1 (en) * | 2013-12-20 | 2015-06-25 | Roche Molecular Systems, Inc. | Method For Coding Of Multiple PCR Reactions For Assay Recognition |
US20160053302A1 (en) * | 2014-04-22 | 2016-02-25 | Roche Molecular Systems, Inc. | Method for visual identification of pcr solutions for accurate reaction setup |
WO2016109329A2 (en) * | 2014-12-30 | 2016-07-07 | Water Lens, LLC | Compositions, apparatus and methods for determining ph of an analyte solution |
CN108368495B (en) * | 2015-12-22 | 2022-05-13 | 豪夫迈·罗氏有限公司 | Composition with heat-labile dye |
US10626383B2 (en) | 2016-01-15 | 2020-04-21 | Thermo Fisher Scientific Baltics Uab | Thermophilic DNA polymerase mutants |
EP3645710A1 (en) | 2017-06-26 | 2020-05-06 | Thermo Fisher Scientific Baltics Uab | Thermophilic dna polymerase mutants |
JP7531277B2 (en) | 2017-06-27 | 2024-08-09 | ライフ テクノロジーズ ホールディングス プライベート リミテッド | Method for analyzing liquid samples, microplate reader, and computer program |
EP3728633A1 (en) | 2017-12-22 | 2020-10-28 | Thermo Fisher Scientific Baltics Uab | Polymerase chain reaction composition comprising amines |
US20190270975A1 (en) | 2018-03-01 | 2019-09-05 | New England Biolabs, Inc. | High Throughput Reaction Assembly |
JP2019203797A (en) * | 2018-05-23 | 2019-11-28 | 栄研化学株式会社 | Reagent identification management method and inspection device |
WO2022039228A1 (en) * | 2020-08-21 | 2022-02-24 | 東洋紡株式会社 | Improved multiplex pcr testing method |
WO2022059555A1 (en) * | 2020-09-15 | 2022-03-24 | 東洋紡株式会社 | Improved multiplex pcr testing method |
JP2023058901A (en) * | 2021-10-14 | 2023-04-26 | 株式会社三共 | game machine |
JP2023058903A (en) * | 2021-10-14 | 2023-04-26 | 株式会社三共 | game machine |
JP2023058900A (en) * | 2021-10-14 | 2023-04-26 | 株式会社三共 | game machine |
JP2023058902A (en) * | 2021-10-14 | 2023-04-26 | 株式会社三共 | game machine |
JP2023058899A (en) * | 2021-10-14 | 2023-04-26 | 株式会社三共 | game machine |
GB2630305A (en) | 2023-05-22 | 2024-11-27 | Thermo Fisher Scientific Baltics Uab | Reverse transcriptase with improved properties |
CN116837077A (en) * | 2023-07-07 | 2023-10-03 | 苏州依科赛生物科技股份有限公司 | Method for indicating existence of solution in qPCR reaction program |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3957436A (en) | 1974-04-29 | 1976-05-18 | Kallestad Laboratories, Inc. | Resultant color step indicator |
JPS53142521A (en) | 1977-05-16 | 1978-12-12 | Eiken Chemical | Radioimmunoassay method |
US4354376A (en) | 1980-03-03 | 1982-10-19 | Medical Laboratory Automation, Inc. | Kit for calibrating pipettes |
US5565339A (en) | 1992-10-08 | 1996-10-15 | Hoffmann-La Roche Inc. | Compositions and methods for inhibiting dimerization of primers during storage of polymerase chain reaction reagents |
WO1995006137A1 (en) * | 1993-08-27 | 1995-03-02 | Australian Red Cross Society | Detection of genes |
US5952210A (en) | 1994-06-03 | 1999-09-14 | G. D. Searle & Company | Nucleic acids and expression vectors encoding human leukotiene C4 synthase |
CA2203828A1 (en) | 1994-10-31 | 1996-05-09 | Beth Israel Hospital Association | Assays, devices and kits for determining male fertility |
US5861251A (en) | 1996-10-15 | 1999-01-19 | Bioneer Corporation | Lyophilized reagent for polymerase chain reaction |
JP3587284B2 (en) * | 1997-09-08 | 2004-11-10 | タカラバイオ株式会社 | Dye-containing agent for genetic engineering |
US6153412A (en) | 1998-12-07 | 2000-11-28 | Bioneer Corporation | Lyophilized reagent for polymerase chain reaction |
EP1057653A1 (en) | 1999-06-04 | 2000-12-06 | I.P.T. - Impression Printing Technologies B.V. | Method of producing color changes |
US6942964B1 (en) | 1999-07-09 | 2005-09-13 | Sigma-Aldrich Co. | Tracer reagents that enhance reaction-product analysis |
US6350588B1 (en) * | 1999-07-20 | 2002-02-26 | Micrology Laboratories, Llc | Test media and quantitative or qualitative method for identification and differentiation of biological materials in a test sample |
KR20020045167A (en) | 2000-12-08 | 2002-06-19 | 이경회 | Method for analyzing gene information and finding personality using PCR |
US6741365B2 (en) | 2001-12-12 | 2004-05-25 | Artel, Inc. | Photometric calibration of liquid volumes |
US20030146115A1 (en) | 2002-02-01 | 2003-08-07 | Sharp David R. | Multiple compartment mixing unit dose |
US20050053950A1 (en) * | 2003-09-08 | 2005-03-10 | Enrique Zudaire Ubani | Protocol and software for multiplex real-time PCR quantification based on the different melting temperatures of amplicons |
US7130050B2 (en) * | 2004-08-19 | 2006-10-31 | Sacchi Fabricio De Araujo | Device of verifying and reading color, and a process of verifying and reading color in liquids |
US20060228801A1 (en) | 2005-03-30 | 2006-10-12 | Ben Fryer | Integator system and method for rapidly determining effectiveness of a germicidal treatment |
US7754873B2 (en) | 2005-07-16 | 2010-07-13 | Zymo Research Corporation | Isolation of nucleic acid using colored buffers |
US8003405B2 (en) * | 2005-12-16 | 2011-08-23 | Artel, Inc. | Calibrating dispensing device performance for complex and/or non-aqueous liquids |
ITTO20060063A1 (en) | 2006-01-31 | 2007-08-01 | Clonit S R L | KIT FOR THE AMPLIFICATION OF NUCLEIC ACIDS. |
GB0603190D0 (en) * | 2006-02-16 | 2006-03-29 | Enigma Diagnostics Ltd | Detection system |
EP2020449B1 (en) * | 2006-04-24 | 2012-09-26 | Sigma Alimentos, S.A. De C.V. | Method for detection and multiple, simultaneous quantification of pathogens by means of real-time polymerase chain reaction |
WO2007137291A1 (en) * | 2006-05-23 | 2007-11-29 | Molecular Detection, Inc. | Ambient temperature stable kits for molecular diagnostics |
EP2061894A4 (en) * | 2006-09-14 | 2010-05-05 | Dna Polymerase Technology Inc | Use of taq polymerase mutant enzymes for dna amplification in the presence of pcr inhibitors |
FR2918459B1 (en) | 2007-07-04 | 2009-12-04 | Inodiag | IN VITRO MULTIPLEX SEROLOGICAL DIAGNOSTIC METHOD FOR SPIROCHET INFECTIONS |
FR2918754B1 (en) | 2007-07-13 | 2010-05-14 | Rd Biotech | METHOD FOR THE PRODUCTION OF BIOLOGICAL TESTS BY IMMUNODOSING AND TECHNICAL KIT FOR ITS IMPLEMENTATION |
CN102224257A (en) * | 2008-11-21 | 2011-10-19 | 皇家飞利浦电子股份有限公司 | Real time multiplex pcr detection on solid surfaces using double stranded nucleic acid specific dyes |
US8906306B2 (en) | 2009-04-09 | 2014-12-09 | Roche Molecular Systems, Inc. | Fluid transfer control for real-time PCR |
US8674080B2 (en) * | 2009-04-09 | 2014-03-18 | Roche Molecular Systems, Inc. | Dye composition for liquid transfer control |
CA2752760C (en) * | 2009-04-15 | 2019-12-24 | Biocartis Sa | Optical detection system for monitoring rtpcr reaction |
FI20096013A7 (en) | 2009-10-02 | 2011-04-03 | Finnzymes Oy | Method for preparing a reaction mixture and related products |
-
2009
- 2009-10-02 FI FI20096013A patent/FI20096013A7/en not_active Application Discontinuation
-
2010
- 2010-10-04 EP EP10777044.8A patent/EP2483422B2/en active Active
- 2010-10-04 BR BR112012007707A patent/BR112012007707A2/en not_active IP Right Cessation
- 2010-10-04 KR KR1020127011415A patent/KR101836454B1/en active Active
- 2010-10-04 CA CA2775972A patent/CA2775972A1/en not_active Abandoned
- 2010-10-04 KR KR1020197017509A patent/KR102164504B1/en active Active
- 2010-10-04 US US13/499,518 patent/US8663925B2/en active Active
- 2010-10-04 AU AU2010302557A patent/AU2010302557A1/en not_active Abandoned
- 2010-10-04 KR KR1020187006084A patent/KR101992997B1/en active Active
- 2010-10-04 WO PCT/FI2010/050772 patent/WO2011039425A1/en active Application Filing
- 2010-10-04 NZ NZ598973A patent/NZ598973A/en not_active IP Right Cessation
- 2010-10-04 CN CN201080044691.5A patent/CN102712951B/en active Active
- 2010-10-04 JP JP2012531466A patent/JP5965317B2/en active Active
-
2011
- 2011-04-01 US US13/078,720 patent/US9422604B2/en active Active
-
2012
- 2012-03-29 ZA ZA2012/02302A patent/ZA201202302B/en unknown
-
2014
- 2014-03-03 US US14/195,088 patent/US9416417B2/en active Active
-
2016
- 2016-03-08 JP JP2016044897A patent/JP6250722B2/en active Active
- 2016-04-27 US US15/139,738 patent/US20160312268A1/en not_active Abandoned
- 2016-07-14 US US15/210,075 patent/US10006086B2/en active Active
-
2017
- 2017-11-22 JP JP2017224863A patent/JP6522717B2/en active Active
-
2018
- 2018-05-25 US US15/989,926 patent/US10626461B2/en active Active
-
2019
- 2019-04-24 JP JP2019082601A patent/JP6911073B2/en active Active
-
2020
- 2020-03-11 US US16/815,520 patent/US20200308643A1/en not_active Abandoned
-
2021
- 2021-07-07 JP JP2021112819A patent/JP7322102B2/en active Active
-
2023
- 2023-05-10 JP JP2023077872A patent/JP2023102788A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10006086B2 (en) | 2009-10-02 | 2018-06-26 | Thermo Fisher Scientific Baltics Uab | Sample processing apparatus and method |
US10626461B2 (en) | 2009-10-02 | 2020-04-21 | Thermo Fisher Scientific Baltics Uab | Sample processing apparatus and method |
US12065698B2 (en) | 2009-10-02 | 2024-08-20 | Thermo Fisher Scientific Baltics Uab | Sample processing apparatus and method |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9416417B2 (en) | Method of preparing a reaction mixture and related products | |
JP6831628B2 (en) | Detection of amplification reaction products using pH-sensitive dyes | |
US12065698B2 (en) | Sample processing apparatus and method | |
WO2012131167A1 (en) | Sample processing apparatus and method | |
Novi et al. | Visualization Methods for Loop Mediated Isothermal Amplification (LAMP) Assays. | |
US10526536B2 (en) | Compositions with thermolabile dyes | |
CN119506449A (en) | A SLAMP primer set and kit for detecting Salmonella | |
CN119753181A (en) | SLAMP primer group and kit for detecting haemophilus influenzae | |
CN119753182A (en) | SLAMP primer group and kit for detecting vibrio parahaemolyticus | |
CN119932162A (en) | LAMP visual detection color reagent and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |