US20160281333A1 - Work cycle monitoring system - Google Patents
Work cycle monitoring system Download PDFInfo
- Publication number
- US20160281333A1 US20160281333A1 US15/175,608 US201615175608A US2016281333A1 US 20160281333 A1 US20160281333 A1 US 20160281333A1 US 201615175608 A US201615175608 A US 201615175608A US 2016281333 A1 US2016281333 A1 US 2016281333A1
- Authority
- US
- United States
- Prior art keywords
- bowl
- controller
- work cycle
- machine
- apron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 67
- 230000008447 perception Effects 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 description 8
- 230000033001 locomotion Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/64—Buckets cars, i.e. having scraper bowls
- E02F3/65—Component parts, e.g. drives, control devices
- E02F3/651—Hydraulic or pneumatic drives; Electric or electro-mechanical control devices
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/64—Buckets cars, i.e. having scraper bowls
- E02F3/65—Component parts, e.g. drives, control devices
- E02F3/654—Scraper bowls and components mounted on them
- E02F3/657—Means to prevent the spilling of dredged material, e.g. apron, baffle
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/264—Sensors and their calibration for indicating the position of the work tool
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/267—Diagnosing or detecting failure of vehicles
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/64—Buckets cars, i.e. having scraper bowls
- E02F3/6409—Self-propelled scrapers
- E02F3/6436—Self-propelled scrapers with scraper bowls with an ejector having translational movement for dumping the soil
Definitions
- the present disclosure relates to a work cycle monitoring system. More particularly, the present disclosure relates to the work cycle monitoring system for a machine.
- Machines such as, a wheel tractor scraper, include various stages in a single work cycle.
- a typical work cycle may include stages such as an empty bowl stage, a material loading stage, a material hauling stage, and a material unloading stage.
- machine performance metrics it may be required to automatically identify each of the different stages of the work cycle in order to monitor operations of the machine. For example, for determining machine performance metrics such as machine productivity, machine efficiency, depreciation value, maintenance schedule, cycle efficiency, and so on, different stages of the work cycle of the machine may need to be identified based on current activities being performed. Further, time spent by the machine during each of these stages of the work cycle may also need to be monitored.
- machine performance metrics such as machine productivity, machine efficiency, depreciation value, maintenance schedule, cycle efficiency, and so on
- different stages of the work cycle of the machine may need to be identified based on current activities being performed. Further, time spent by the machine during each of these stages of the work cycle may also need to be monitored.
- U.S. Pat. No. 8,635,792 describes a cycle counter for a wheeled tractor scraper.
- the cycle counter includes an ejector to push material from a bowl of the wheeled tractor scraper.
- the cycle counter includes a sensor configured to generate a pressure signal indicative of a position of the ejector.
- the cycle counter also includes a controller in communication with the sensor.
- the controller is configured to determine movement of the ejector toward a full dump position based on the pressure signal.
- the controller is also configured to record completion of a cycle for the wheeled tractor scraper after the ejector has reached the full dump position only if a value of the pressure signal exceeded a threshold value during movement of the ejector toward the full dump position.
- a work cycle monitoring system for a machine.
- the machine includes a bowl and an apron associated therewith.
- the work cycle monitoring system includes a perception sensor provided in association with the bowl of the machine.
- the perception sensor is configured to generate a signal indicative of a view of the bowl.
- the work cycle monitoring system also includes a controller coupled to the perception sensor.
- the controller is configured to receive the signal indicative of the view of the bowl from the perception sensor.
- the controller is configured to determine a position of the apron based on the received signal.
- the controller is also configured to determine a level of material within the bowl based on the received signal.
- the controller is further configured to identify a current stage of a work cycle of the machine based on the determined position of the apron and the determined level of the material.
- FIG. 1 is a side view of an exemplary machine, according to one embodiment of the present disclosure
- FIG. 2 is a top view of the machine of FIG. 1 , according to one embodiment of the present disclosure
- FIG. 3 is a schematic representation of a work cycle monitoring system of the machine, according to one embodiment of the present disclosure
- FIG. 4 is an exemplary dataset illustrating different stages of a work cycle of the machine, according to one embodiment of the present disclosure.
- FIG. 5 is a flowchart of a method of working of the work cycle monitoring system, according to one embodiment of the present disclosure.
- an exemplary machine 10 is illustrated. More specifically, the machine 10 is a wheel tractor scraper. The machine 10 performs activities such as excavation, transportation of material from one location to another, and so on. The machine 10 may be related to an industry such as construction, agriculture, transportation, mining, material handling, waste management, and so on.
- the machine 10 includes a frame 12 .
- the frame 12 supports one or more components of the machine 10 .
- the machine 10 includes an enclosure 14 provided on the frame 12 .
- the enclosure 14 houses a power source (not shown) provided on the frame 12 .
- the power source may be any power source known in the art such as an internal combustion engine, batteries, motor, and so on.
- the power source may provide power to the machine 10 for mobility and operational requirements.
- the machine 10 includes an operator cabin 16 provided on the frame 12 .
- the operator cabin 16 may include various components and/or controls provided therein.
- the operator cabin 16 may include a seat, a steering, levers, pedals, a joystick, switches, knobs, an operator interface, gauges, a display unit, an audio unit, and so on.
- the controls may be adapted to control an operation of the machine 10 .
- the machine 10 also includes a set of wheels 18 coupled to the frame 12 .
- the Wheels 18 support the machine 10 on ground.
- the heels 18 also provide mobility to the machine 10 on the ground.
- the machine 10 may include a transmission system (not shown) coupled between the power source and the wheels 18 .
- the transmission system may include various components such as a clutch, gears, bearings, shafts, axles, and so on.
- the transmission system may transfer motive power from the power source to the wheels 18 .
- the machine 10 further includes a bowl 20 provided on the frame 12 .
- the bowl 20 receives the material therein for transportation from one location to another.
- the bowl 20 includes an apron 22 .
- the apron 22 moves between an open position “O” and a closed position “C”, represented by appropriately labeled arrows in the accompanying figures.
- O open position
- C closed position
- the apron 22 allows entry of the material into the bowl 20 .
- the apron 22 prevents exit of the material received into the bowl 20 and also prevents further entry of new material into the bowl 20 .
- the bowl 20 may include an ejector 24 .
- the ejector 24 moves between a retracted position “R” and an extended position “E”, represented by appropriately labeled arrows in the accompanying figures.
- the ejector 24 allows entry of the material into the bowl 20
- the ejector 24 is in the extended position “E”
- the ejector 24 transfers the material outside the bowl 20 through the apron 22 .
- the apron 22 may be moved to the open position “O”. Simultaneously, the bowl 20 may scrape the ground as the machine 10 moves in a forward direction “F”. As a result, the material may be received into the bowl 20 through the apron 22 . During this process, the ejector 24 may be in the retracted position “R”. As the bowl 20 may reach its full capacity, the apron 22 may be moved to the closed position “C” in order to prevent over filling of the bowl 20 and/or prevent spillage of the material received into the bowl 20 .
- the material received into the bowl 20 may then be transported to a desired location with the apron 22 in the closed position “C” and the ejector 24 in the retracted position “R”.
- the apron 22 may be moved to the open position “O”.
- the material may start flowing out of the bowl 20 through the apron 22 .
- the ejector 24 may he moved to the extended position “E” in order to force the material out of the bowl 20 through the apron 22 .
- the machine 10 may include various components and/or systems (not shown) provided on the frame 12 and/or within the enclosure 14 such as a fuel delivery system, an air supply system, a cooling system, a lubrication system, an electrical/electronic control system, a rectifier, an inverter, batteries, a safety system, a drive control system, a steering system, a brake control system, a turbocharger, an exhaust gas recirculation system, an exhaust aftertreatment system, a regenerative braking system, peripheries, and so on based on application requirements without limiting the scope of the disclosure.
- a fuel delivery system such as a fuel delivery system, an air supply system, a cooling system, a lubrication system, an electrical/electronic control system, a rectifier, an inverter, batteries, a safety system, a drive control system, a steering system, a brake control system, a turbocharger, an exhaust gas recirculation system, an exhaust aftertreatment system, a regenerative braking
- the work cycle monitoring system 26 includes a perception sensor 28 .
- the perception sensor 28 is coupled to the frame 12 of the machine 10 .
- the perception sensor 28 is provided in association with the bowl 20 in a manner such that the bowl 20 is located within a field of view 30 of the perception sensor 28 .
- the perception sensor 28 is configured to generate a signal indicative of a view of the bowl 20 . More specifically, the perception sensor 28 is configured to generate a signal indicative of a view of the material received within the bowl 20 .
- the perception sensor 28 may include one or more systems including, but not limited to, a camera system such as a monocular camera, a stereo camera, and so on, a Light Detection And Ranging (LiDAR/LADAR) system, a radar system, a Sound Navigation And Ranging (SONAR) system, and a structured light type sensor without any limitation.
- the perception sensor 28 has the predefined field of view 30 such that the perception sensor 28 generates two dimensional or three dimensional data points for a region of the bowl 20 of the machine 10 falling within the field of view 30 of the perception sensor 28 .
- the field of view 30 of the perception sensor 28 may vary based on a variety of factors including, but not limited to, range capability of the perception sensor 28 and mounting location of the perception sensor 28 on the machine 10 .
- the perception sensor 28 is mounted on the machine 10 such that minimum occlusions lie within the field of view 30 of the perception sensor 28 , so that the perception sensor 28 may capture an unobstructed or close to unobstructed view of the bowl
- the work cycle monitoring system 26 further includes a controller 32 .
- the controller 32 is coupled to the perception sensor 28 .
- the controller 32 is configured to receive the signal indicative of the view of the bowl 20 from the perception sensor 28 .
- the controller 32 is configured to determine the position of the apron 22 based on the received signal. More specifically, the controller 32 may locate or determine the position of the apron 22 using known data processing algorithms on the signals or data received from the perception sensor 28 .
- the data processing algorithms may include image recognition, object recognition, motion detection, and so on.
- the controller 32 may determine the position of the apron 22 based on one or more sensors (not shown) associated with the apron 22 such as a pressure sensor, a proximity sensor, a motion sensor, and so on.
- the controller 32 may be configured to determine the position of the ejector 24 based on the received signal. More specifically, the controller 32 may locate or determine the position of the ejector 24 using known data processing algorithms on the signals or data received from the perception sensor 28 .
- the data processing algorithms may include image recognition, object recognition, motion detection, and so on.
- the controller 32 may determine the position of the ejector 24 based on one or more sensors (not shown) associated with the ejector 24 such as a pressure sensor, a proximity sensor, a motion sensor, and so on.
- the controller 32 is configured to determine a level of the material within the bowl 20 based on the received signal. More specifically, the controller 32 may determine the level of the material within the bowl 20 based on a height of the material within the bowl 20 . The controller 32 may determine the height of the material within the bowl 20 using known data processing algorithms on the signals or data received from the perception sensor 28 .
- the data processing algorithms may include image recognition, object recognition, motion detection, and so on.
- the controller 32 may determine the level of the material within the bowl 20 based on an estimation of a volume of the material within the bowl 20 . More specifically, the volume of the material within the bowl 20 may be correlated to the height of the material within the bowl 20 .
- the correlation may be a dataset stored in a memory (not shown) of the controller 32 or a database 34 coupled to the controller 32 .
- the dataset may include various values of the volume of the material within the bowl 20 for different values of the height of the material within the bowl 20 .
- the correlation may be a mathematical expression between the volume of the material within the bowl 20 and the height of the material within the bowl 20 .
- the controller 32 may determine the level of the material within the bowl 20 based on a load of the material within the bowl 20 .
- the load of the material within the bowl 20 may be determined based on a signal generated by a pressure sensor (not shown) coupled to a hydraulic/pneumatic cylinder (not shown) associated with the bowl 20 More specifically, the load of the material within the bowl 20 may be correlated to the level of the material within the bowl 20 .
- the correlation may be a dataset stored in the memory of the controller 32 or the database 34 coupled to the controller 32 .
- the dataset may include various values of the level of the material within the bowl 20 for different values of the load of the material within the bowl 20 .
- the correlation may be a mathematical expression between the level of the material within the bowl 20 and the load of the material within the bowl 20 .
- the controller 32 may be configured to determine a state of the bowl 20 at different stages of the loading and the unloading process. For example, when the controller 32 may determine zero or close to negligible height of the material and, as such, an absence of the material within the bowl 20 , the controller 32 may determine the state of the bowl 20 as empty. As the controller 32 determines an increasing height of the material within the bowl 20 , the controller 32 may identify that the bowl 20 is being loaded. Also, as the controller 32 determines a decreasing height of the material within the bowl 20 , the controller 32 may identify that the bowl 20 is being unloaded. Further, if the controller 32 determines a constant height of the material within the bowl 20 , the controller 32 may identify the state of the bowl 20 as filled.
- the controller 32 is further configured to identify a current stage of a work cycle of the machine 10 based on the determined position of the apron 22 , the determined position of the ejector 24 , and the determined level of the material within the bowl 20 . In the situation when the position of the ejector 24 is not considered by the controller 32 , the controller 32 may be configured to identify the current stage of the work cycle of the machine 10 based on the determined position of the apron 22 and the determined level of the material within the bowl 20 .
- the controller 32 may identify the current stage of the work cycle based on a correlation.
- the correlation may be a mathematical expression between the current stage of the work cycle, the determined position of the apron 22 , the determined position of the ejector 24 , and the determined level of the material within the bowl 20 .
- the correlation may be a mathematical expression between the current stage of the work cycle, the determined position of the apron 22 , and the determined level of the material within the bowl 20 .
- the controller 32 may identify the current stage of the work cycle based on a dataset stored in the memory of the controller 32 or the database 34 coupled to the controller 32 .
- the dataset may include various stages of the work cycle for different positions of the apron 22 , different positions of the ejector 24 , and different levels of the material within the bowl 20 .
- an exemplary dataset 36 is illustrated showing the different stages of the work cycle that are identified by the controller 32 during the loading and the unloading process of the material from the bowl 20 .
- stage 38 when the controller 32 determines that the apron 22 is in the open position “O” or the closed position “C”, the ejector 24 is in the retracted position “R”, and the bowl 20 is in the empty state, the controller 32 identifies the current stage of the work cycle as an “EMPTY BOWL” stage.
- the controller 32 determines that the apron 22 is in the open position “O”, the ejector 24 is in the retracted position “R”, and the bowl 20 is in the loading state, the controller 32 identifies the current stage of the work cycle as a “MATERIAL LOADING” stage.
- the controller 32 determines that the apron 22 is in the closed position “C”, the ejector 24 is in the retracted position “R”, and the bowl 20 is in the tilled state, the controller 32 identifies the current stage of the work cycle as a “MATERIAL HAULING” stage.
- the controller 32 determines that the apron 22 is in the open position “O”, the ejector 24 is in the extended position “E”, and the bowl 20 is in either the empty state or the unloading state, the controller 32 identifies the current stage of the work cycle as a “MATERIAL UNLOADING” stage.
- terminologies used herein to describe the position of the apron 22 , the position of the ejector 24 , the state of the bowl 20 , and or the current stage of the work cycle is merely exemplary. In other embodiments, the terminologies may include any other numerical, alphabetical, and/or alphanumeric values. Also, the number of stages of the work cycle described herein is merely exemplary. In other embodiments, the work cycle may include any number of different stages based on application requirements and without any limitation.
- the controller 32 is further configured to monitor a duration of the current stage of the work cycle of the machine 10 . More specifically, the controller 32 is configured to monitor an amount of time spent on each of the stages of the work cycle of the machine 10 such as the “EMPTY BOWL” stage, the “MATERIAL LOADING” stage, the “MATERIAL HAULING” stage, and the “MATERIAL UNLOADING” stage.
- the controller 32 may be configured to display the current stage of the work cycle and/or the duration of the current stage of the work cycle on a display unit 46 .
- the work cycle monitoring system 26 may include the display unit 46 coupled to the controller 32 .
- the display unit 46 may be provided within the operator cabin 16 .
- the display unit 46 may be any display unit known in the art such as a CRT monitor, a LED monitor, a LCD monitor, and so on.
- the display unit 46 may be configured to display text, images, video feeds, and so on including, but not limited to, the current stage of the work cycle, the duration of the current stage of the work cycle, notifications, warnings, tutorials, machine status, and camera feeds to an operator.
- the controller 32 may be configured to store a log of the current stage of the work cycle and/or the duration of the current stage of the work cycle in the memory of the controller 32 or the database 34 coupled to the controller 32 .
- the controller 32 may be an electronic controller that operates in a logical fashion to perform operations, execute control algorithms, store and retrieve data and other desired operations.
- the controller 32 may include or access memory, secondary storage devices, processors, and any other components for running an application.
- the memory and secondary storage devices may be in the form of read-only memory (ROM) or random access memory (RAM) or integrated circuitry that is accessible by the controller 32 .
- ROM read-only memory
- RAM random access memory
- Various other circuits may be associated with the controller 32 such as power supply circuitry, signal conditioning circuitry, driver circuitry, and other types of circuitry.
- the controller 32 may be a single controller or may include more than one controller disposed to control various functions and/or features of the machine 10 .
- controller is meant to be used in its broadest sense to include one or more controllers and/or microprocessors that may be associated with the machine 10 and that may cooperate in controlling various functions and operations of the machine 10 .
- the functionality of the controller 32 may be implemented in hardware and/or software without regard to the functionality.
- the present disclosure relates to the work cycle monitoring system 26 .
- a method 48 of working of the work cycle monitoring system 26 is illustrated.
- the controller 32 receives the signal indicative of the view of the bowl 20 from the perception sensor 28 .
- the controller 32 determines the position of the apron 22 based on the received signal using any known data processing method.
- the controller 32 determines the level of the material within the bowl 20 based on the received signal using any known data processing method.
- the controller 32 identifies the current stage of the work cycle of the machine 10 based on the determined position of the apron 22 and the determined level of the material within the bowl 20 .
- the controller 32 may identify the current stage of the work cycle of the machine 10 based on the determined position of the apron 22 , the determined position of the ejector 24 , and the determined level of the material within the bowl 20 .
- the perception sensor 28 is mounted on the frame 12 of the machine 10 such that the perception sensor 28 may not contact the material and/or other moving parts of the machine 10 . As a result, damage to the perception sensor 28 may be prevented in turn reducing replacement cost thereof.
- the perception sensor 28 provides a real time and non-occluded monitoring of the bowl 20 to the controller 32 . Further, the controller 32 provides the current stage of the work cycle to the operator. As a result, the work cycle monitoring system 26 provides a real time monitoring of the work cycle for accurate control thereof.
- machine productivity, machine efficiency, fuel efficiency, and so on may be significantly improved by accurately controlling the work cycle. Additionally, the real time indication of the current stage of the work cycle to the operator may also reduce training duration and/or effort for novice operators. Additionally, monitoring the duration of each of the current stage of the work cycle may be further utilized for estimation of performance metrics such as, machine/operator productivity, machine/operator efficiency, fuel efficiency, work cycle efficiency, determining a depreciation value, determining a maintenance schedule, and so on.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- General Factory Administration (AREA)
Abstract
A work cycle monitoring system for a machine having a howl and an apron is provided. The work cycle monitoring system includes a perception sensor provided in association with the bowl of the machine. The perception sensor is configured to generate a signal indicative of a view of the bowl. The work cycle monitoring system also includes a controller coupled to the perception sensor. The controller is configured to receive the signal indicative of the view of the bowl from the perception sensor. The controller is configured to determine a position of the apron and a level of material within the bowl based on the received signal. The controller is further configured to identify a current stage of a work cycle of the machine based on the determined position of the apron and the determined level of the material.
Description
- The present disclosure relates to a work cycle monitoring system. More particularly, the present disclosure relates to the work cycle monitoring system for a machine.
- Machines such as, a wheel tractor scraper, include various stages in a single work cycle. For example, a typical work cycle may include stages such as an empty bowl stage, a material loading stage, a material hauling stage, and a material unloading stage.
- For determining machine performance metrics, it may be required to automatically identify each of the different stages of the work cycle in order to monitor operations of the machine. For example, for determining machine performance metrics such as machine productivity, machine efficiency, depreciation value, maintenance schedule, cycle efficiency, and so on, different stages of the work cycle of the machine may need to be identified based on current activities being performed. Further, time spent by the machine during each of these stages of the work cycle may also need to be monitored.
- U.S. Pat. No. 8,635,792 describes a cycle counter for a wheeled tractor scraper. The cycle counter includes an ejector to push material from a bowl of the wheeled tractor scraper. The cycle counter includes a sensor configured to generate a pressure signal indicative of a position of the ejector. The cycle counter also includes a controller in communication with the sensor. The controller is configured to determine movement of the ejector toward a full dump position based on the pressure signal. The controller is also configured to record completion of a cycle for the wheeled tractor scraper after the ejector has reached the full dump position only if a value of the pressure signal exceeded a threshold value during movement of the ejector toward the full dump position.
- In an aspect of the present disclosure, a work cycle monitoring system for a machine is provided. The machine includes a bowl and an apron associated therewith. The work cycle monitoring system includes a perception sensor provided in association with the bowl of the machine. The perception sensor is configured to generate a signal indicative of a view of the bowl. The work cycle monitoring system also includes a controller coupled to the perception sensor. The controller is configured to receive the signal indicative of the view of the bowl from the perception sensor. The controller is configured to determine a position of the apron based on the received signal. The controller is also configured to determine a level of material within the bowl based on the received signal. The controller is further configured to identify a current stage of a work cycle of the machine based on the determined position of the apron and the determined level of the material.
- Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.
-
FIG. 1 is a side view of an exemplary machine, according to one embodiment of the present disclosure; -
FIG. 2 is a top view of the machine ofFIG. 1 , according to one embodiment of the present disclosure; -
FIG. 3 is a schematic representation of a work cycle monitoring system of the machine, according to one embodiment of the present disclosure; -
FIG. 4 is an exemplary dataset illustrating different stages of a work cycle of the machine, according to one embodiment of the present disclosure; and -
FIG. 5 is a flowchart of a method of working of the work cycle monitoring system, according to one embodiment of the present disclosure. - Referring to
FIGS. 1 and 2 , anexemplary machine 10 is illustrated. More specifically, themachine 10 is a wheel tractor scraper. Themachine 10 performs activities such as excavation, transportation of material from one location to another, and so on. Themachine 10 may be related to an industry such as construction, agriculture, transportation, mining, material handling, waste management, and so on. - The
machine 10 includes aframe 12. Theframe 12 supports one or more components of themachine 10. Themachine 10 includes anenclosure 14 provided on theframe 12. Theenclosure 14 houses a power source (not shown) provided on theframe 12. The power source may be any power source known in the art such as an internal combustion engine, batteries, motor, and so on. The power source may provide power to themachine 10 for mobility and operational requirements. - The
machine 10 includes anoperator cabin 16 provided on theframe 12. Theoperator cabin 16 may include various components and/or controls provided therein. Theoperator cabin 16 may include a seat, a steering, levers, pedals, a joystick, switches, knobs, an operator interface, gauges, a display unit, an audio unit, and so on. The controls may be adapted to control an operation of themachine 10. - The
machine 10 also includes a set ofwheels 18 coupled to theframe 12. The Wheels 18 support themachine 10 on ground. Theheels 18 also provide mobility to themachine 10 on the ground. Also, themachine 10 may include a transmission system (not shown) coupled between the power source and thewheels 18. The transmission system may include various components such as a clutch, gears, bearings, shafts, axles, and so on. The transmission system may transfer motive power from the power source to thewheels 18. - The
machine 10 further includes abowl 20 provided on theframe 12. Thebowl 20 receives the material therein for transportation from one location to another. Thebowl 20 includes anapron 22. Theapron 22 moves between an open position “O” and a closed position “C”, represented by appropriately labeled arrows in the accompanying figures. When theapron 22 is in the open position “O”, theapron 22 allows entry of the material into thebowl 20. When t theapron 22 is in the closed position “C”, theapron 22 prevents exit of the material received into thebowl 20 and also prevents further entry of new material into thebowl 20. - Additionally or optionally, the
bowl 20 may include anejector 24. Theejector 24 moves between a retracted position “R” and an extended position “E”, represented by appropriately labeled arrows in the accompanying figures. When theejector 24 is in the retracted position “R”, theejector 24 allows entry of the material into thebowl 20, When theejector 24 is in the extended position “E”, theejector 24 transfers the material outside thebowl 20 through theapron 22. - During a loading process, the
apron 22 may be moved to the open position “O”. Simultaneously, thebowl 20 may scrape the ground as themachine 10 moves in a forward direction “F”. As a result, the material may be received into thebowl 20 through theapron 22. During this process, theejector 24 may be in the retracted position “R”. As thebowl 20 may reach its full capacity, theapron 22 may be moved to the closed position “C” in order to prevent over filling of thebowl 20 and/or prevent spillage of the material received into thebowl 20. - The material received into the
bowl 20 may then be transported to a desired location with theapron 22 in the closed position “C” and theejector 24 in the retracted position “R”. During an unloading process, theapron 22 may be moved to the open position “O”. As a result, the material may start flowing out of thebowl 20 through theapron 22. Simultaneously, theejector 24 may he moved to the extended position “E” in order to force the material out of thebowl 20 through theapron 22. - Additionally, the
machine 10 may include various components and/or systems (not shown) provided on theframe 12 and/or within theenclosure 14 such as a fuel delivery system, an air supply system, a cooling system, a lubrication system, an electrical/electronic control system, a rectifier, an inverter, batteries, a safety system, a drive control system, a steering system, a brake control system, a turbocharger, an exhaust gas recirculation system, an exhaust aftertreatment system, a regenerative braking system, peripheries, and so on based on application requirements without limiting the scope of the disclosure. - Referring to
FIG. 3 , a schematic representation of a workcycle monitoring system 26 for thebowl 20 of themachine 10 is illustrated. The workcycle monitoring system 26 includes aperception sensor 28. Referring toFIGS. 1 and 2 , theperception sensor 28 is coupled to theframe 12 of themachine 10. Theperception sensor 28 is provided in association with thebowl 20 in a manner such that thebowl 20 is located within a field ofview 30 of theperception sensor 28. Theperception sensor 28 is configured to generate a signal indicative of a view of thebowl 20. More specifically, theperception sensor 28 is configured to generate a signal indicative of a view of the material received within thebowl 20. - The
perception sensor 28 may include one or more systems including, but not limited to, a camera system such as a monocular camera, a stereo camera, and so on, a Light Detection And Ranging (LiDAR/LADAR) system, a radar system, a Sound Navigation And Ranging (SONAR) system, and a structured light type sensor without any limitation. Theperception sensor 28 has the predefined field ofview 30 such that theperception sensor 28 generates two dimensional or three dimensional data points for a region of thebowl 20 of themachine 10 falling within the field ofview 30 of theperception sensor 28. The field ofview 30 of theperception sensor 28 may vary based on a variety of factors including, but not limited to, range capability of theperception sensor 28 and mounting location of theperception sensor 28 on themachine 10. Theperception sensor 28 is mounted on themachine 10 such that minimum occlusions lie within the field ofview 30 of theperception sensor 28, so that theperception sensor 28 may capture an unobstructed or close to unobstructed view of thebowl 20 of themachine 10. - The work
cycle monitoring system 26 further includes acontroller 32. Thecontroller 32 is coupled to theperception sensor 28. Thecontroller 32 is configured to receive the signal indicative of the view of thebowl 20 from theperception sensor 28. Thecontroller 32 is configured to determine the position of theapron 22 based on the received signal. More specifically, thecontroller 32 may locate or determine the position of theapron 22 using known data processing algorithms on the signals or data received from theperception sensor 28. The data processing algorithms may include image recognition, object recognition, motion detection, and so on. In other embodiments, thecontroller 32 may determine the position of theapron 22 based on one or more sensors (not shown) associated with theapron 22 such as a pressure sensor, a proximity sensor, a motion sensor, and so on. - Similarly, in a situation when the
bowl 20 includes theejector 24, thecontroller 32 may be configured to determine the position of theejector 24 based on the received signal. More specifically, thecontroller 32 may locate or determine the position of theejector 24 using known data processing algorithms on the signals or data received from theperception sensor 28. The data processing algorithms may include image recognition, object recognition, motion detection, and so on. In other embodiments, thecontroller 32 may determine the position of theejector 24 based on one or more sensors (not shown) associated with theejector 24 such as a pressure sensor, a proximity sensor, a motion sensor, and so on. - Further, the
controller 32 is configured to determine a level of the material within thebowl 20 based on the received signal. More specifically, thecontroller 32 may determine the level of the material within thebowl 20 based on a height of the material within thebowl 20. Thecontroller 32 may determine the height of the material within thebowl 20 using known data processing algorithms on the signals or data received from theperception sensor 28. The data processing algorithms may include image recognition, object recognition, motion detection, and so on. - In other embodiments, the
controller 32 may determine the level of the material within thebowl 20 based on an estimation of a volume of the material within thebowl 20. More specifically, the volume of the material within thebowl 20 may be correlated to the height of the material within thebowl 20. The correlation may be a dataset stored in a memory (not shown) of thecontroller 32 or adatabase 34 coupled to thecontroller 32. The dataset may include various values of the volume of the material within thebowl 20 for different values of the height of the material within thebowl 20. In another embodiment, the correlation may be a mathematical expression between the volume of the material within thebowl 20 and the height of the material within thebowl 20. - In yet another embodiment, the
controller 32 may determine the level of the material within thebowl 20 based on a load of the material within thebowl 20. The load of the material within thebowl 20 may be determined based on a signal generated by a pressure sensor (not shown) coupled to a hydraulic/pneumatic cylinder (not shown) associated with thebowl 20 More specifically, the load of the material within thebowl 20 may be correlated to the level of the material within thebowl 20. The correlation may be a dataset stored in the memory of thecontroller 32 or thedatabase 34 coupled to thecontroller 32. The dataset may include various values of the level of the material within thebowl 20 for different values of the load of the material within thebowl 20. In another embodiment, the correlation may be a mathematical expression between the level of the material within thebowl 20 and the load of the material within thebowl 20. - Based on the determined level of the material within the
bowl 20, thecontroller 32 may be configured to determine a state of thebowl 20 at different stages of the loading and the unloading process. For example, when thecontroller 32 may determine zero or close to negligible height of the material and, as such, an absence of the material within thebowl 20, thecontroller 32 may determine the state of thebowl 20 as empty. As thecontroller 32 determines an increasing height of the material within thebowl 20, thecontroller 32 may identify that thebowl 20 is being loaded. Also, as thecontroller 32 determines a decreasing height of the material within thebowl 20, thecontroller 32 may identify that thebowl 20 is being unloaded. Further, if thecontroller 32 determines a constant height of the material within thebowl 20, thecontroller 32 may identify the state of thebowl 20 as filled. - The
controller 32 is further configured to identify a current stage of a work cycle of themachine 10 based on the determined position of theapron 22, the determined position of theejector 24, and the determined level of the material within thebowl 20. In the situation when the position of theejector 24 is not considered by thecontroller 32, thecontroller 32 may be configured to identify the current stage of the work cycle of themachine 10 based on the determined position of theapron 22 and the determined level of the material within thebowl 20. - In one embodiment, the
controller 32 may identify the current stage of the work cycle based on a correlation. The correlation may be a mathematical expression between the current stage of the work cycle, the determined position of theapron 22, the determined position of theejector 24, and the determined level of the material within thebowl 20. In the situation when theejector 24 may be omitted, the correlation may be a mathematical expression between the current stage of the work cycle, the determined position of theapron 22, and the determined level of the material within thebowl 20. - In another embodiment, the
controller 32 may identify the current stage of the work cycle based on a dataset stored in the memory of thecontroller 32 or thedatabase 34 coupled to thecontroller 32. The dataset may include various stages of the work cycle for different positions of theapron 22, different positions of theejector 24, and different levels of the material within thebowl 20. - Referring to
FIG. 4 , anexemplary dataset 36 is illustrated showing the different stages of the work cycle that are identified by thecontroller 32 during the loading and the unloading process of the material from thebowl 20. Atstage 38, when thecontroller 32 determines that theapron 22 is in the open position “O” or the closed position “C”, theejector 24 is in the retracted position “R”, and thebowl 20 is in the empty state, thecontroller 32 identifies the current stage of the work cycle as an “EMPTY BOWL” stage. Atstage 40, when thecontroller 32 determines that theapron 22 is in the open position “O”, theejector 24 is in the retracted position “R”, and thebowl 20 is in the loading state, thecontroller 32 identifies the current stage of the work cycle as a “MATERIAL LOADING” stage. - At
stage 42, when thecontroller 32 determines that theapron 22 is in the closed position “C”, theejector 24 is in the retracted position “R”, and thebowl 20 is in the tilled state, thecontroller 32 identifies the current stage of the work cycle as a “MATERIAL HAULING” stage. Atstage 44, when thecontroller 32 determines that theapron 22 is in the open position “O”, theejector 24 is in the extended position “E”, and thebowl 20 is in either the empty state or the unloading state, thecontroller 32 identifies the current stage of the work cycle as a “MATERIAL UNLOADING” stage. - It should be noted that terminologies used herein to describe the position of the
apron 22, the position of theejector 24, the state of thebowl 20, and or the current stage of the work cycle is merely exemplary. In other embodiments, the terminologies may include any other numerical, alphabetical, and/or alphanumeric values. Also, the number of stages of the work cycle described herein is merely exemplary. In other embodiments, the work cycle may include any number of different stages based on application requirements and without any limitation. - The
controller 32 is further configured to monitor a duration of the current stage of the work cycle of themachine 10. More specifically, thecontroller 32 is configured to monitor an amount of time spent on each of the stages of the work cycle of themachine 10 such as the “EMPTY BOWL” stage, the “MATERIAL LOADING” stage, the “MATERIAL HAULING” stage, and the “MATERIAL UNLOADING” stage. - In one embodiment, the
controller 32 may be configured to display the current stage of the work cycle and/or the duration of the current stage of the work cycle on adisplay unit 46. Accordingly, the workcycle monitoring system 26 may include thedisplay unit 46 coupled to thecontroller 32. Thedisplay unit 46 may be provided within theoperator cabin 16. Thedisplay unit 46 may be any display unit known in the art such as a CRT monitor, a LED monitor, a LCD monitor, and so on. Thedisplay unit 46 may be configured to display text, images, video feeds, and so on including, but not limited to, the current stage of the work cycle, the duration of the current stage of the work cycle, notifications, warnings, tutorials, machine status, and camera feeds to an operator. - In another embodiment, the
controller 32 may be configured to store a log of the current stage of the work cycle and/or the duration of the current stage of the work cycle in the memory of thecontroller 32 or thedatabase 34 coupled to thecontroller 32. - The
controller 32 may be an electronic controller that operates in a logical fashion to perform operations, execute control algorithms, store and retrieve data and other desired operations. Thecontroller 32 may include or access memory, secondary storage devices, processors, and any other components for running an application. The memory and secondary storage devices may be in the form of read-only memory (ROM) or random access memory (RAM) or integrated circuitry that is accessible by thecontroller 32. Various other circuits may be associated with thecontroller 32 such as power supply circuitry, signal conditioning circuitry, driver circuitry, and other types of circuitry. Thecontroller 32 may be a single controller or may include more than one controller disposed to control various functions and/or features of themachine 10. The term “controller” is meant to be used in its broadest sense to include one or more controllers and/or microprocessors that may be associated with themachine 10 and that may cooperate in controlling various functions and operations of themachine 10. The functionality of thecontroller 32 may be implemented in hardware and/or software without regard to the functionality. - The present disclosure relates to the work
cycle monitoring system 26. Referring toFIG. 5 , amethod 48 of working of the workcycle monitoring system 26 is illustrated. Atstep 50, thecontroller 32 receives the signal indicative of the view of thebowl 20 from theperception sensor 28. Atstep 52, thecontroller 32 determines the position of theapron 22 based on the received signal using any known data processing method. Atstep 54, thecontroller 32 determines the level of the material within thebowl 20 based on the received signal using any known data processing method. Atstep 56, thecontroller 32 identifies the current stage of the work cycle of themachine 10 based on the determined position of theapron 22 and the determined level of the material within thebowl 20. In a situation when thebowl 20 includes theejector 24, thecontroller 32 may identify the current stage of the work cycle of themachine 10 based on the determined position of theapron 22, the determined position of theejector 24, and the determined level of the material within thebowl 20. - The
perception sensor 28 is mounted on theframe 12 of themachine 10 such that theperception sensor 28 may not contact the material and/or other moving parts of themachine 10. As a result, damage to theperception sensor 28 may be prevented in turn reducing replacement cost thereof. Theperception sensor 28 provides a real time and non-occluded monitoring of thebowl 20 to thecontroller 32. Further, thecontroller 32 provides the current stage of the work cycle to the operator. As a result, the workcycle monitoring system 26 provides a real time monitoring of the work cycle for accurate control thereof. - Also, due to real time indication of the current stage of the work cycle to the operator, machine productivity, machine efficiency, fuel efficiency, and so on may be significantly improved by accurately controlling the work cycle. Additionally, the real time indication of the current stage of the work cycle to the operator may also reduce training duration and/or effort for novice operators. Additionally, monitoring the duration of each of the current stage of the work cycle may be further utilized for estimation of performance metrics such as, machine/operator productivity, machine/operator efficiency, fuel efficiency, work cycle efficiency, determining a depreciation value, determining a maintenance schedule, and so on.
- While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of the disclosure. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.
Claims (3)
1. A work cycle monitoring system for a machine, the machine including a bowl and an apron associated therewith, the work cycle monitoring system comprising:
a perception sensor provided in association with the bowl of the machine, the perception sensor configured to generate a signal indicative of a view of the bowl; and
a controller coupled to the perception sensor, the controller configured to:
receive the signal indicative of the view of the bowl from the perception sensor;
determine a position of the apron based on the received signal;
determine a level of material within the bowl based on the received signal; and
identify a current stage of a work cycle of the machine based, at least in part, on the determined position of the apron and the determined level of the material.
2. The work cycle monitoring system of claim 1 , wherein the controller is further configured to:
determine a position of an ejector of the bowl based on the received signal.
3. The work cycle monitoring system of claim 1 , wherein the controller is further configured to:
monitor a duration of the current stage of the work cycle of the machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/175,608 US20160281333A1 (en) | 2016-06-07 | 2016-06-07 | Work cycle monitoring system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/175,608 US20160281333A1 (en) | 2016-06-07 | 2016-06-07 | Work cycle monitoring system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160281333A1 true US20160281333A1 (en) | 2016-09-29 |
Family
ID=56973998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/175,608 Abandoned US20160281333A1 (en) | 2016-06-07 | 2016-06-07 | Work cycle monitoring system |
Country Status (1)
Country | Link |
---|---|
US (1) | US20160281333A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111324092A (en) * | 2018-12-13 | 2020-06-23 | 卡特彼勒公司 | Managing field productivity using telemetry data |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6336068B1 (en) * | 2000-09-20 | 2002-01-01 | Caterpillar Inc. | Control system for wheel tractor scrapers |
US20070267225A1 (en) * | 2006-05-19 | 2007-11-22 | Congdon Thomas M | Auger loading apparatus and machine with same |
US20080155866A1 (en) * | 2006-12-28 | 2008-07-03 | Caterpillar Inc. | System for automatically loading a scraper |
US20090043460A1 (en) * | 2007-08-09 | 2009-02-12 | Caterpillar Inc. | Wheel tractor scraper production optimization |
US20090062993A1 (en) * | 2007-08-30 | 2009-03-05 | Caterpillar Inc. | Excavating system utilizing machine-to-machine communication |
US20120144704A1 (en) * | 2010-12-14 | 2012-06-14 | Cone Ramona D | Cycle counter for wheeled tractor scraper |
US8386134B2 (en) * | 2007-09-28 | 2013-02-26 | Caterpillar Inc. | Machine to-machine communication system for payload control |
US20130158817A1 (en) * | 2011-12-20 | 2013-06-20 | Caterpillar Inc. | Controlling a bowl of a scraper |
US20140237868A1 (en) * | 2013-02-28 | 2014-08-28 | Caterpillar Inc. | Load estimator for scraper |
US20150339810A1 (en) * | 2014-05-20 | 2015-11-26 | General Electric Company | Method and system for detecting a damaged component of a machine |
US9204106B2 (en) * | 2011-06-07 | 2015-12-01 | Komatsu Ltd. | Load display device for dump truck |
US20160053460A1 (en) * | 2014-08-25 | 2016-02-25 | CNH Industrial America, LLC | System and method for automatically controlling a lift assembly of a work vehicle |
-
2016
- 2016-06-07 US US15/175,608 patent/US20160281333A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6336068B1 (en) * | 2000-09-20 | 2002-01-01 | Caterpillar Inc. | Control system for wheel tractor scrapers |
US20070267225A1 (en) * | 2006-05-19 | 2007-11-22 | Congdon Thomas M | Auger loading apparatus and machine with same |
US20080155866A1 (en) * | 2006-12-28 | 2008-07-03 | Caterpillar Inc. | System for automatically loading a scraper |
US20090043460A1 (en) * | 2007-08-09 | 2009-02-12 | Caterpillar Inc. | Wheel tractor scraper production optimization |
US20090062993A1 (en) * | 2007-08-30 | 2009-03-05 | Caterpillar Inc. | Excavating system utilizing machine-to-machine communication |
US8386134B2 (en) * | 2007-09-28 | 2013-02-26 | Caterpillar Inc. | Machine to-machine communication system for payload control |
US20120144704A1 (en) * | 2010-12-14 | 2012-06-14 | Cone Ramona D | Cycle counter for wheeled tractor scraper |
US9204106B2 (en) * | 2011-06-07 | 2015-12-01 | Komatsu Ltd. | Load display device for dump truck |
US20130158817A1 (en) * | 2011-12-20 | 2013-06-20 | Caterpillar Inc. | Controlling a bowl of a scraper |
US20140237868A1 (en) * | 2013-02-28 | 2014-08-28 | Caterpillar Inc. | Load estimator for scraper |
US20150339810A1 (en) * | 2014-05-20 | 2015-11-26 | General Electric Company | Method and system for detecting a damaged component of a machine |
US20160053460A1 (en) * | 2014-08-25 | 2016-02-25 | CNH Industrial America, LLC | System and method for automatically controlling a lift assembly of a work vehicle |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111324092A (en) * | 2018-12-13 | 2020-06-23 | 卡特彼勒公司 | Managing field productivity using telemetry data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160289927A1 (en) | Bowl monitoring system | |
US10106951B2 (en) | System and method for automatic dump control | |
CN101680542B (en) | Controller of vehicle with hydrostatic continuously variable transmission | |
US10037634B2 (en) | System and method for idle state determination | |
JPH1136381A (en) | Method and equipment for determining maintenance time for machinery | |
US8700274B1 (en) | Method of determining when a bed of a hauling machine is empty | |
US20180305900A1 (en) | Method for controlling the engine speed of a utility vehicle | |
US20170113591A1 (en) | System and method for controlling movement of implement | |
CN105209996A (en) | Vehicle and operator guidance by pattern recognition | |
US11401700B2 (en) | Hydraulic oil monitoring system and hydraulic oil monitoring method | |
US8903612B2 (en) | Method of determining when a payload loading event is occurring in a hauling machine | |
US20160281333A1 (en) | Work cycle monitoring system | |
CN105493128A (en) | Remote server | |
ZA202304551B (en) | System and method for monitoring machine operations at a worksite | |
US20240336236A1 (en) | Selectively implementing automated cleaning routines during unloading cycles for transport vehicles | |
US10311599B2 (en) | System and method for diagnosis of lighting system | |
US10208773B2 (en) | System for hydraulic pump health monitoring | |
CN112309113A (en) | Vehicle load monitoring method, device, system, medium and equipment | |
US11352767B2 (en) | Engine power management strategy | |
US11802613B1 (en) | Locking differential energy management for work vehicles | |
EP3883831A1 (en) | Monitoring machine brake performance | |
US20160263950A1 (en) | Tire health monitoring system | |
CN113829826A (en) | Emergency braking control method and device combined with air suspension and electronic equipment | |
US11358576B2 (en) | Brake power derating | |
US12195942B2 (en) | Work cycle identification for scrapers and corresponding feature automation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CATERPILLAR INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, QI;GROTH, BRYAN LEE;STRATTON, KENNETH;AND OTHERS;SIGNING DATES FROM 20160523 TO 20160527;REEL/FRAME:038834/0256 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |