+

US20160281333A1 - Work cycle monitoring system - Google Patents

Work cycle monitoring system Download PDF

Info

Publication number
US20160281333A1
US20160281333A1 US15/175,608 US201615175608A US2016281333A1 US 20160281333 A1 US20160281333 A1 US 20160281333A1 US 201615175608 A US201615175608 A US 201615175608A US 2016281333 A1 US2016281333 A1 US 2016281333A1
Authority
US
United States
Prior art keywords
bowl
controller
work cycle
machine
apron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/175,608
Inventor
Qi Wang
Bryan Lee Groth
Kenneth Stratton
Brian Allen Byers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Priority to US15/175,608 priority Critical patent/US20160281333A1/en
Assigned to CATERPILLAR INC. reassignment CATERPILLAR INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STRATTON, KENNETH, BYERS, BRIAN ALLEN, GROTH, BRYAN LEE, WANG, QI
Publication of US20160281333A1 publication Critical patent/US20160281333A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/64Buckets cars, i.e. having scraper bowls
    • E02F3/65Component parts, e.g. drives, control devices
    • E02F3/651Hydraulic or pneumatic drives; Electric or electro-mechanical control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/64Buckets cars, i.e. having scraper bowls
    • E02F3/65Component parts, e.g. drives, control devices
    • E02F3/654Scraper bowls and components mounted on them
    • E02F3/657Means to prevent the spilling of dredged material, e.g. apron, baffle
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/64Buckets cars, i.e. having scraper bowls
    • E02F3/6409Self-propelled scrapers
    • E02F3/6436Self-propelled scrapers with scraper bowls with an ejector having translational movement for dumping the soil

Definitions

  • the present disclosure relates to a work cycle monitoring system. More particularly, the present disclosure relates to the work cycle monitoring system for a machine.
  • Machines such as, a wheel tractor scraper, include various stages in a single work cycle.
  • a typical work cycle may include stages such as an empty bowl stage, a material loading stage, a material hauling stage, and a material unloading stage.
  • machine performance metrics it may be required to automatically identify each of the different stages of the work cycle in order to monitor operations of the machine. For example, for determining machine performance metrics such as machine productivity, machine efficiency, depreciation value, maintenance schedule, cycle efficiency, and so on, different stages of the work cycle of the machine may need to be identified based on current activities being performed. Further, time spent by the machine during each of these stages of the work cycle may also need to be monitored.
  • machine performance metrics such as machine productivity, machine efficiency, depreciation value, maintenance schedule, cycle efficiency, and so on
  • different stages of the work cycle of the machine may need to be identified based on current activities being performed. Further, time spent by the machine during each of these stages of the work cycle may also need to be monitored.
  • U.S. Pat. No. 8,635,792 describes a cycle counter for a wheeled tractor scraper.
  • the cycle counter includes an ejector to push material from a bowl of the wheeled tractor scraper.
  • the cycle counter includes a sensor configured to generate a pressure signal indicative of a position of the ejector.
  • the cycle counter also includes a controller in communication with the sensor.
  • the controller is configured to determine movement of the ejector toward a full dump position based on the pressure signal.
  • the controller is also configured to record completion of a cycle for the wheeled tractor scraper after the ejector has reached the full dump position only if a value of the pressure signal exceeded a threshold value during movement of the ejector toward the full dump position.
  • a work cycle monitoring system for a machine.
  • the machine includes a bowl and an apron associated therewith.
  • the work cycle monitoring system includes a perception sensor provided in association with the bowl of the machine.
  • the perception sensor is configured to generate a signal indicative of a view of the bowl.
  • the work cycle monitoring system also includes a controller coupled to the perception sensor.
  • the controller is configured to receive the signal indicative of the view of the bowl from the perception sensor.
  • the controller is configured to determine a position of the apron based on the received signal.
  • the controller is also configured to determine a level of material within the bowl based on the received signal.
  • the controller is further configured to identify a current stage of a work cycle of the machine based on the determined position of the apron and the determined level of the material.
  • FIG. 1 is a side view of an exemplary machine, according to one embodiment of the present disclosure
  • FIG. 2 is a top view of the machine of FIG. 1 , according to one embodiment of the present disclosure
  • FIG. 3 is a schematic representation of a work cycle monitoring system of the machine, according to one embodiment of the present disclosure
  • FIG. 4 is an exemplary dataset illustrating different stages of a work cycle of the machine, according to one embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method of working of the work cycle monitoring system, according to one embodiment of the present disclosure.
  • an exemplary machine 10 is illustrated. More specifically, the machine 10 is a wheel tractor scraper. The machine 10 performs activities such as excavation, transportation of material from one location to another, and so on. The machine 10 may be related to an industry such as construction, agriculture, transportation, mining, material handling, waste management, and so on.
  • the machine 10 includes a frame 12 .
  • the frame 12 supports one or more components of the machine 10 .
  • the machine 10 includes an enclosure 14 provided on the frame 12 .
  • the enclosure 14 houses a power source (not shown) provided on the frame 12 .
  • the power source may be any power source known in the art such as an internal combustion engine, batteries, motor, and so on.
  • the power source may provide power to the machine 10 for mobility and operational requirements.
  • the machine 10 includes an operator cabin 16 provided on the frame 12 .
  • the operator cabin 16 may include various components and/or controls provided therein.
  • the operator cabin 16 may include a seat, a steering, levers, pedals, a joystick, switches, knobs, an operator interface, gauges, a display unit, an audio unit, and so on.
  • the controls may be adapted to control an operation of the machine 10 .
  • the machine 10 also includes a set of wheels 18 coupled to the frame 12 .
  • the Wheels 18 support the machine 10 on ground.
  • the heels 18 also provide mobility to the machine 10 on the ground.
  • the machine 10 may include a transmission system (not shown) coupled between the power source and the wheels 18 .
  • the transmission system may include various components such as a clutch, gears, bearings, shafts, axles, and so on.
  • the transmission system may transfer motive power from the power source to the wheels 18 .
  • the machine 10 further includes a bowl 20 provided on the frame 12 .
  • the bowl 20 receives the material therein for transportation from one location to another.
  • the bowl 20 includes an apron 22 .
  • the apron 22 moves between an open position “O” and a closed position “C”, represented by appropriately labeled arrows in the accompanying figures.
  • O open position
  • C closed position
  • the apron 22 allows entry of the material into the bowl 20 .
  • the apron 22 prevents exit of the material received into the bowl 20 and also prevents further entry of new material into the bowl 20 .
  • the bowl 20 may include an ejector 24 .
  • the ejector 24 moves between a retracted position “R” and an extended position “E”, represented by appropriately labeled arrows in the accompanying figures.
  • the ejector 24 allows entry of the material into the bowl 20
  • the ejector 24 is in the extended position “E”
  • the ejector 24 transfers the material outside the bowl 20 through the apron 22 .
  • the apron 22 may be moved to the open position “O”. Simultaneously, the bowl 20 may scrape the ground as the machine 10 moves in a forward direction “F”. As a result, the material may be received into the bowl 20 through the apron 22 . During this process, the ejector 24 may be in the retracted position “R”. As the bowl 20 may reach its full capacity, the apron 22 may be moved to the closed position “C” in order to prevent over filling of the bowl 20 and/or prevent spillage of the material received into the bowl 20 .
  • the material received into the bowl 20 may then be transported to a desired location with the apron 22 in the closed position “C” and the ejector 24 in the retracted position “R”.
  • the apron 22 may be moved to the open position “O”.
  • the material may start flowing out of the bowl 20 through the apron 22 .
  • the ejector 24 may he moved to the extended position “E” in order to force the material out of the bowl 20 through the apron 22 .
  • the machine 10 may include various components and/or systems (not shown) provided on the frame 12 and/or within the enclosure 14 such as a fuel delivery system, an air supply system, a cooling system, a lubrication system, an electrical/electronic control system, a rectifier, an inverter, batteries, a safety system, a drive control system, a steering system, a brake control system, a turbocharger, an exhaust gas recirculation system, an exhaust aftertreatment system, a regenerative braking system, peripheries, and so on based on application requirements without limiting the scope of the disclosure.
  • a fuel delivery system such as a fuel delivery system, an air supply system, a cooling system, a lubrication system, an electrical/electronic control system, a rectifier, an inverter, batteries, a safety system, a drive control system, a steering system, a brake control system, a turbocharger, an exhaust gas recirculation system, an exhaust aftertreatment system, a regenerative braking
  • the work cycle monitoring system 26 includes a perception sensor 28 .
  • the perception sensor 28 is coupled to the frame 12 of the machine 10 .
  • the perception sensor 28 is provided in association with the bowl 20 in a manner such that the bowl 20 is located within a field of view 30 of the perception sensor 28 .
  • the perception sensor 28 is configured to generate a signal indicative of a view of the bowl 20 . More specifically, the perception sensor 28 is configured to generate a signal indicative of a view of the material received within the bowl 20 .
  • the perception sensor 28 may include one or more systems including, but not limited to, a camera system such as a monocular camera, a stereo camera, and so on, a Light Detection And Ranging (LiDAR/LADAR) system, a radar system, a Sound Navigation And Ranging (SONAR) system, and a structured light type sensor without any limitation.
  • the perception sensor 28 has the predefined field of view 30 such that the perception sensor 28 generates two dimensional or three dimensional data points for a region of the bowl 20 of the machine 10 falling within the field of view 30 of the perception sensor 28 .
  • the field of view 30 of the perception sensor 28 may vary based on a variety of factors including, but not limited to, range capability of the perception sensor 28 and mounting location of the perception sensor 28 on the machine 10 .
  • the perception sensor 28 is mounted on the machine 10 such that minimum occlusions lie within the field of view 30 of the perception sensor 28 , so that the perception sensor 28 may capture an unobstructed or close to unobstructed view of the bowl
  • the work cycle monitoring system 26 further includes a controller 32 .
  • the controller 32 is coupled to the perception sensor 28 .
  • the controller 32 is configured to receive the signal indicative of the view of the bowl 20 from the perception sensor 28 .
  • the controller 32 is configured to determine the position of the apron 22 based on the received signal. More specifically, the controller 32 may locate or determine the position of the apron 22 using known data processing algorithms on the signals or data received from the perception sensor 28 .
  • the data processing algorithms may include image recognition, object recognition, motion detection, and so on.
  • the controller 32 may determine the position of the apron 22 based on one or more sensors (not shown) associated with the apron 22 such as a pressure sensor, a proximity sensor, a motion sensor, and so on.
  • the controller 32 may be configured to determine the position of the ejector 24 based on the received signal. More specifically, the controller 32 may locate or determine the position of the ejector 24 using known data processing algorithms on the signals or data received from the perception sensor 28 .
  • the data processing algorithms may include image recognition, object recognition, motion detection, and so on.
  • the controller 32 may determine the position of the ejector 24 based on one or more sensors (not shown) associated with the ejector 24 such as a pressure sensor, a proximity sensor, a motion sensor, and so on.
  • the controller 32 is configured to determine a level of the material within the bowl 20 based on the received signal. More specifically, the controller 32 may determine the level of the material within the bowl 20 based on a height of the material within the bowl 20 . The controller 32 may determine the height of the material within the bowl 20 using known data processing algorithms on the signals or data received from the perception sensor 28 .
  • the data processing algorithms may include image recognition, object recognition, motion detection, and so on.
  • the controller 32 may determine the level of the material within the bowl 20 based on an estimation of a volume of the material within the bowl 20 . More specifically, the volume of the material within the bowl 20 may be correlated to the height of the material within the bowl 20 .
  • the correlation may be a dataset stored in a memory (not shown) of the controller 32 or a database 34 coupled to the controller 32 .
  • the dataset may include various values of the volume of the material within the bowl 20 for different values of the height of the material within the bowl 20 .
  • the correlation may be a mathematical expression between the volume of the material within the bowl 20 and the height of the material within the bowl 20 .
  • the controller 32 may determine the level of the material within the bowl 20 based on a load of the material within the bowl 20 .
  • the load of the material within the bowl 20 may be determined based on a signal generated by a pressure sensor (not shown) coupled to a hydraulic/pneumatic cylinder (not shown) associated with the bowl 20 More specifically, the load of the material within the bowl 20 may be correlated to the level of the material within the bowl 20 .
  • the correlation may be a dataset stored in the memory of the controller 32 or the database 34 coupled to the controller 32 .
  • the dataset may include various values of the level of the material within the bowl 20 for different values of the load of the material within the bowl 20 .
  • the correlation may be a mathematical expression between the level of the material within the bowl 20 and the load of the material within the bowl 20 .
  • the controller 32 may be configured to determine a state of the bowl 20 at different stages of the loading and the unloading process. For example, when the controller 32 may determine zero or close to negligible height of the material and, as such, an absence of the material within the bowl 20 , the controller 32 may determine the state of the bowl 20 as empty. As the controller 32 determines an increasing height of the material within the bowl 20 , the controller 32 may identify that the bowl 20 is being loaded. Also, as the controller 32 determines a decreasing height of the material within the bowl 20 , the controller 32 may identify that the bowl 20 is being unloaded. Further, if the controller 32 determines a constant height of the material within the bowl 20 , the controller 32 may identify the state of the bowl 20 as filled.
  • the controller 32 is further configured to identify a current stage of a work cycle of the machine 10 based on the determined position of the apron 22 , the determined position of the ejector 24 , and the determined level of the material within the bowl 20 . In the situation when the position of the ejector 24 is not considered by the controller 32 , the controller 32 may be configured to identify the current stage of the work cycle of the machine 10 based on the determined position of the apron 22 and the determined level of the material within the bowl 20 .
  • the controller 32 may identify the current stage of the work cycle based on a correlation.
  • the correlation may be a mathematical expression between the current stage of the work cycle, the determined position of the apron 22 , the determined position of the ejector 24 , and the determined level of the material within the bowl 20 .
  • the correlation may be a mathematical expression between the current stage of the work cycle, the determined position of the apron 22 , and the determined level of the material within the bowl 20 .
  • the controller 32 may identify the current stage of the work cycle based on a dataset stored in the memory of the controller 32 or the database 34 coupled to the controller 32 .
  • the dataset may include various stages of the work cycle for different positions of the apron 22 , different positions of the ejector 24 , and different levels of the material within the bowl 20 .
  • an exemplary dataset 36 is illustrated showing the different stages of the work cycle that are identified by the controller 32 during the loading and the unloading process of the material from the bowl 20 .
  • stage 38 when the controller 32 determines that the apron 22 is in the open position “O” or the closed position “C”, the ejector 24 is in the retracted position “R”, and the bowl 20 is in the empty state, the controller 32 identifies the current stage of the work cycle as an “EMPTY BOWL” stage.
  • the controller 32 determines that the apron 22 is in the open position “O”, the ejector 24 is in the retracted position “R”, and the bowl 20 is in the loading state, the controller 32 identifies the current stage of the work cycle as a “MATERIAL LOADING” stage.
  • the controller 32 determines that the apron 22 is in the closed position “C”, the ejector 24 is in the retracted position “R”, and the bowl 20 is in the tilled state, the controller 32 identifies the current stage of the work cycle as a “MATERIAL HAULING” stage.
  • the controller 32 determines that the apron 22 is in the open position “O”, the ejector 24 is in the extended position “E”, and the bowl 20 is in either the empty state or the unloading state, the controller 32 identifies the current stage of the work cycle as a “MATERIAL UNLOADING” stage.
  • terminologies used herein to describe the position of the apron 22 , the position of the ejector 24 , the state of the bowl 20 , and or the current stage of the work cycle is merely exemplary. In other embodiments, the terminologies may include any other numerical, alphabetical, and/or alphanumeric values. Also, the number of stages of the work cycle described herein is merely exemplary. In other embodiments, the work cycle may include any number of different stages based on application requirements and without any limitation.
  • the controller 32 is further configured to monitor a duration of the current stage of the work cycle of the machine 10 . More specifically, the controller 32 is configured to monitor an amount of time spent on each of the stages of the work cycle of the machine 10 such as the “EMPTY BOWL” stage, the “MATERIAL LOADING” stage, the “MATERIAL HAULING” stage, and the “MATERIAL UNLOADING” stage.
  • the controller 32 may be configured to display the current stage of the work cycle and/or the duration of the current stage of the work cycle on a display unit 46 .
  • the work cycle monitoring system 26 may include the display unit 46 coupled to the controller 32 .
  • the display unit 46 may be provided within the operator cabin 16 .
  • the display unit 46 may be any display unit known in the art such as a CRT monitor, a LED monitor, a LCD monitor, and so on.
  • the display unit 46 may be configured to display text, images, video feeds, and so on including, but not limited to, the current stage of the work cycle, the duration of the current stage of the work cycle, notifications, warnings, tutorials, machine status, and camera feeds to an operator.
  • the controller 32 may be configured to store a log of the current stage of the work cycle and/or the duration of the current stage of the work cycle in the memory of the controller 32 or the database 34 coupled to the controller 32 .
  • the controller 32 may be an electronic controller that operates in a logical fashion to perform operations, execute control algorithms, store and retrieve data and other desired operations.
  • the controller 32 may include or access memory, secondary storage devices, processors, and any other components for running an application.
  • the memory and secondary storage devices may be in the form of read-only memory (ROM) or random access memory (RAM) or integrated circuitry that is accessible by the controller 32 .
  • ROM read-only memory
  • RAM random access memory
  • Various other circuits may be associated with the controller 32 such as power supply circuitry, signal conditioning circuitry, driver circuitry, and other types of circuitry.
  • the controller 32 may be a single controller or may include more than one controller disposed to control various functions and/or features of the machine 10 .
  • controller is meant to be used in its broadest sense to include one or more controllers and/or microprocessors that may be associated with the machine 10 and that may cooperate in controlling various functions and operations of the machine 10 .
  • the functionality of the controller 32 may be implemented in hardware and/or software without regard to the functionality.
  • the present disclosure relates to the work cycle monitoring system 26 .
  • a method 48 of working of the work cycle monitoring system 26 is illustrated.
  • the controller 32 receives the signal indicative of the view of the bowl 20 from the perception sensor 28 .
  • the controller 32 determines the position of the apron 22 based on the received signal using any known data processing method.
  • the controller 32 determines the level of the material within the bowl 20 based on the received signal using any known data processing method.
  • the controller 32 identifies the current stage of the work cycle of the machine 10 based on the determined position of the apron 22 and the determined level of the material within the bowl 20 .
  • the controller 32 may identify the current stage of the work cycle of the machine 10 based on the determined position of the apron 22 , the determined position of the ejector 24 , and the determined level of the material within the bowl 20 .
  • the perception sensor 28 is mounted on the frame 12 of the machine 10 such that the perception sensor 28 may not contact the material and/or other moving parts of the machine 10 . As a result, damage to the perception sensor 28 may be prevented in turn reducing replacement cost thereof.
  • the perception sensor 28 provides a real time and non-occluded monitoring of the bowl 20 to the controller 32 . Further, the controller 32 provides the current stage of the work cycle to the operator. As a result, the work cycle monitoring system 26 provides a real time monitoring of the work cycle for accurate control thereof.
  • machine productivity, machine efficiency, fuel efficiency, and so on may be significantly improved by accurately controlling the work cycle. Additionally, the real time indication of the current stage of the work cycle to the operator may also reduce training duration and/or effort for novice operators. Additionally, monitoring the duration of each of the current stage of the work cycle may be further utilized for estimation of performance metrics such as, machine/operator productivity, machine/operator efficiency, fuel efficiency, work cycle efficiency, determining a depreciation value, determining a maintenance schedule, and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Factory Administration (AREA)

Abstract

A work cycle monitoring system for a machine having a howl and an apron is provided. The work cycle monitoring system includes a perception sensor provided in association with the bowl of the machine. The perception sensor is configured to generate a signal indicative of a view of the bowl. The work cycle monitoring system also includes a controller coupled to the perception sensor. The controller is configured to receive the signal indicative of the view of the bowl from the perception sensor. The controller is configured to determine a position of the apron and a level of material within the bowl based on the received signal. The controller is further configured to identify a current stage of a work cycle of the machine based on the determined position of the apron and the determined level of the material.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a work cycle monitoring system. More particularly, the present disclosure relates to the work cycle monitoring system for a machine.
  • BACKGROUND
  • Machines such as, a wheel tractor scraper, include various stages in a single work cycle. For example, a typical work cycle may include stages such as an empty bowl stage, a material loading stage, a material hauling stage, and a material unloading stage.
  • For determining machine performance metrics, it may be required to automatically identify each of the different stages of the work cycle in order to monitor operations of the machine. For example, for determining machine performance metrics such as machine productivity, machine efficiency, depreciation value, maintenance schedule, cycle efficiency, and so on, different stages of the work cycle of the machine may need to be identified based on current activities being performed. Further, time spent by the machine during each of these stages of the work cycle may also need to be monitored.
  • U.S. Pat. No. 8,635,792 describes a cycle counter for a wheeled tractor scraper. The cycle counter includes an ejector to push material from a bowl of the wheeled tractor scraper. The cycle counter includes a sensor configured to generate a pressure signal indicative of a position of the ejector. The cycle counter also includes a controller in communication with the sensor. The controller is configured to determine movement of the ejector toward a full dump position based on the pressure signal. The controller is also configured to record completion of a cycle for the wheeled tractor scraper after the ejector has reached the full dump position only if a value of the pressure signal exceeded a threshold value during movement of the ejector toward the full dump position.
  • SUMMARY OF THE DISCLOSURE
  • In an aspect of the present disclosure, a work cycle monitoring system for a machine is provided. The machine includes a bowl and an apron associated therewith. The work cycle monitoring system includes a perception sensor provided in association with the bowl of the machine. The perception sensor is configured to generate a signal indicative of a view of the bowl. The work cycle monitoring system also includes a controller coupled to the perception sensor. The controller is configured to receive the signal indicative of the view of the bowl from the perception sensor. The controller is configured to determine a position of the apron based on the received signal. The controller is also configured to determine a level of material within the bowl based on the received signal. The controller is further configured to identify a current stage of a work cycle of the machine based on the determined position of the apron and the determined level of the material.
  • Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view of an exemplary machine, according to one embodiment of the present disclosure;
  • FIG. 2 is a top view of the machine of FIG. 1, according to one embodiment of the present disclosure;
  • FIG. 3 is a schematic representation of a work cycle monitoring system of the machine, according to one embodiment of the present disclosure;
  • FIG. 4 is an exemplary dataset illustrating different stages of a work cycle of the machine, according to one embodiment of the present disclosure; and
  • FIG. 5 is a flowchart of a method of working of the work cycle monitoring system, according to one embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • Referring to FIGS. 1 and 2, an exemplary machine 10 is illustrated. More specifically, the machine 10 is a wheel tractor scraper. The machine 10 performs activities such as excavation, transportation of material from one location to another, and so on. The machine 10 may be related to an industry such as construction, agriculture, transportation, mining, material handling, waste management, and so on.
  • The machine 10 includes a frame 12. The frame 12 supports one or more components of the machine 10. The machine 10 includes an enclosure 14 provided on the frame 12. The enclosure 14 houses a power source (not shown) provided on the frame 12. The power source may be any power source known in the art such as an internal combustion engine, batteries, motor, and so on. The power source may provide power to the machine 10 for mobility and operational requirements.
  • The machine 10 includes an operator cabin 16 provided on the frame 12. The operator cabin 16 may include various components and/or controls provided therein. The operator cabin 16 may include a seat, a steering, levers, pedals, a joystick, switches, knobs, an operator interface, gauges, a display unit, an audio unit, and so on. The controls may be adapted to control an operation of the machine 10.
  • The machine 10 also includes a set of wheels 18 coupled to the frame 12. The Wheels 18 support the machine 10 on ground. The heels 18 also provide mobility to the machine 10 on the ground. Also, the machine 10 may include a transmission system (not shown) coupled between the power source and the wheels 18. The transmission system may include various components such as a clutch, gears, bearings, shafts, axles, and so on. The transmission system may transfer motive power from the power source to the wheels 18.
  • The machine 10 further includes a bowl 20 provided on the frame 12. The bowl 20 receives the material therein for transportation from one location to another. The bowl 20 includes an apron 22. The apron 22 moves between an open position “O” and a closed position “C”, represented by appropriately labeled arrows in the accompanying figures. When the apron 22 is in the open position “O”, the apron 22 allows entry of the material into the bowl 20. When t the apron 22 is in the closed position “C”, the apron 22 prevents exit of the material received into the bowl 20 and also prevents further entry of new material into the bowl 20.
  • Additionally or optionally, the bowl 20 may include an ejector 24. The ejector 24 moves between a retracted position “R” and an extended position “E”, represented by appropriately labeled arrows in the accompanying figures. When the ejector 24 is in the retracted position “R”, the ejector 24 allows entry of the material into the bowl 20, When the ejector 24 is in the extended position “E”, the ejector 24 transfers the material outside the bowl 20 through the apron 22.
  • During a loading process, the apron 22 may be moved to the open position “O”. Simultaneously, the bowl 20 may scrape the ground as the machine 10 moves in a forward direction “F”. As a result, the material may be received into the bowl 20 through the apron 22. During this process, the ejector 24 may be in the retracted position “R”. As the bowl 20 may reach its full capacity, the apron 22 may be moved to the closed position “C” in order to prevent over filling of the bowl 20 and/or prevent spillage of the material received into the bowl 20.
  • The material received into the bowl 20 may then be transported to a desired location with the apron 22 in the closed position “C” and the ejector 24 in the retracted position “R”. During an unloading process, the apron 22 may be moved to the open position “O”. As a result, the material may start flowing out of the bowl 20 through the apron 22. Simultaneously, the ejector 24 may he moved to the extended position “E” in order to force the material out of the bowl 20 through the apron 22.
  • Additionally, the machine 10 may include various components and/or systems (not shown) provided on the frame 12 and/or within the enclosure 14 such as a fuel delivery system, an air supply system, a cooling system, a lubrication system, an electrical/electronic control system, a rectifier, an inverter, batteries, a safety system, a drive control system, a steering system, a brake control system, a turbocharger, an exhaust gas recirculation system, an exhaust aftertreatment system, a regenerative braking system, peripheries, and so on based on application requirements without limiting the scope of the disclosure.
  • Referring to FIG. 3, a schematic representation of a work cycle monitoring system 26 for the bowl 20 of the machine 10 is illustrated. The work cycle monitoring system 26 includes a perception sensor 28. Referring to FIGS. 1 and 2, the perception sensor 28 is coupled to the frame 12 of the machine 10. The perception sensor 28 is provided in association with the bowl 20 in a manner such that the bowl 20 is located within a field of view 30 of the perception sensor 28. The perception sensor 28 is configured to generate a signal indicative of a view of the bowl 20. More specifically, the perception sensor 28 is configured to generate a signal indicative of a view of the material received within the bowl 20.
  • The perception sensor 28 may include one or more systems including, but not limited to, a camera system such as a monocular camera, a stereo camera, and so on, a Light Detection And Ranging (LiDAR/LADAR) system, a radar system, a Sound Navigation And Ranging (SONAR) system, and a structured light type sensor without any limitation. The perception sensor 28 has the predefined field of view 30 such that the perception sensor 28 generates two dimensional or three dimensional data points for a region of the bowl 20 of the machine 10 falling within the field of view 30 of the perception sensor 28. The field of view 30 of the perception sensor 28 may vary based on a variety of factors including, but not limited to, range capability of the perception sensor 28 and mounting location of the perception sensor 28 on the machine 10. The perception sensor 28 is mounted on the machine 10 such that minimum occlusions lie within the field of view 30 of the perception sensor 28, so that the perception sensor 28 may capture an unobstructed or close to unobstructed view of the bowl 20 of the machine 10.
  • The work cycle monitoring system 26 further includes a controller 32. The controller 32 is coupled to the perception sensor 28. The controller 32 is configured to receive the signal indicative of the view of the bowl 20 from the perception sensor 28. The controller 32 is configured to determine the position of the apron 22 based on the received signal. More specifically, the controller 32 may locate or determine the position of the apron 22 using known data processing algorithms on the signals or data received from the perception sensor 28. The data processing algorithms may include image recognition, object recognition, motion detection, and so on. In other embodiments, the controller 32 may determine the position of the apron 22 based on one or more sensors (not shown) associated with the apron 22 such as a pressure sensor, a proximity sensor, a motion sensor, and so on.
  • Similarly, in a situation when the bowl 20 includes the ejector 24, the controller 32 may be configured to determine the position of the ejector 24 based on the received signal. More specifically, the controller 32 may locate or determine the position of the ejector 24 using known data processing algorithms on the signals or data received from the perception sensor 28. The data processing algorithms may include image recognition, object recognition, motion detection, and so on. In other embodiments, the controller 32 may determine the position of the ejector 24 based on one or more sensors (not shown) associated with the ejector 24 such as a pressure sensor, a proximity sensor, a motion sensor, and so on.
  • Further, the controller 32 is configured to determine a level of the material within the bowl 20 based on the received signal. More specifically, the controller 32 may determine the level of the material within the bowl 20 based on a height of the material within the bowl 20. The controller 32 may determine the height of the material within the bowl 20 using known data processing algorithms on the signals or data received from the perception sensor 28. The data processing algorithms may include image recognition, object recognition, motion detection, and so on.
  • In other embodiments, the controller 32 may determine the level of the material within the bowl 20 based on an estimation of a volume of the material within the bowl 20. More specifically, the volume of the material within the bowl 20 may be correlated to the height of the material within the bowl 20. The correlation may be a dataset stored in a memory (not shown) of the controller 32 or a database 34 coupled to the controller 32. The dataset may include various values of the volume of the material within the bowl 20 for different values of the height of the material within the bowl 20. In another embodiment, the correlation may be a mathematical expression between the volume of the material within the bowl 20 and the height of the material within the bowl 20.
  • In yet another embodiment, the controller 32 may determine the level of the material within the bowl 20 based on a load of the material within the bowl 20. The load of the material within the bowl 20 may be determined based on a signal generated by a pressure sensor (not shown) coupled to a hydraulic/pneumatic cylinder (not shown) associated with the bowl 20 More specifically, the load of the material within the bowl 20 may be correlated to the level of the material within the bowl 20. The correlation may be a dataset stored in the memory of the controller 32 or the database 34 coupled to the controller 32. The dataset may include various values of the level of the material within the bowl 20 for different values of the load of the material within the bowl 20. In another embodiment, the correlation may be a mathematical expression between the level of the material within the bowl 20 and the load of the material within the bowl 20.
  • Based on the determined level of the material within the bowl 20, the controller 32 may be configured to determine a state of the bowl 20 at different stages of the loading and the unloading process. For example, when the controller 32 may determine zero or close to negligible height of the material and, as such, an absence of the material within the bowl 20, the controller 32 may determine the state of the bowl 20 as empty. As the controller 32 determines an increasing height of the material within the bowl 20, the controller 32 may identify that the bowl 20 is being loaded. Also, as the controller 32 determines a decreasing height of the material within the bowl 20, the controller 32 may identify that the bowl 20 is being unloaded. Further, if the controller 32 determines a constant height of the material within the bowl 20, the controller 32 may identify the state of the bowl 20 as filled.
  • The controller 32 is further configured to identify a current stage of a work cycle of the machine 10 based on the determined position of the apron 22, the determined position of the ejector 24, and the determined level of the material within the bowl 20. In the situation when the position of the ejector 24 is not considered by the controller 32, the controller 32 may be configured to identify the current stage of the work cycle of the machine 10 based on the determined position of the apron 22 and the determined level of the material within the bowl 20.
  • In one embodiment, the controller 32 may identify the current stage of the work cycle based on a correlation. The correlation may be a mathematical expression between the current stage of the work cycle, the determined position of the apron 22, the determined position of the ejector 24, and the determined level of the material within the bowl 20. In the situation when the ejector 24 may be omitted, the correlation may be a mathematical expression between the current stage of the work cycle, the determined position of the apron 22, and the determined level of the material within the bowl 20.
  • In another embodiment, the controller 32 may identify the current stage of the work cycle based on a dataset stored in the memory of the controller 32 or the database 34 coupled to the controller 32. The dataset may include various stages of the work cycle for different positions of the apron 22, different positions of the ejector 24, and different levels of the material within the bowl 20.
  • Referring to FIG. 4, an exemplary dataset 36 is illustrated showing the different stages of the work cycle that are identified by the controller 32 during the loading and the unloading process of the material from the bowl 20. At stage 38, when the controller 32 determines that the apron 22 is in the open position “O” or the closed position “C”, the ejector 24 is in the retracted position “R”, and the bowl 20 is in the empty state, the controller 32 identifies the current stage of the work cycle as an “EMPTY BOWL” stage. At stage 40, when the controller 32 determines that the apron 22 is in the open position “O”, the ejector 24 is in the retracted position “R”, and the bowl 20 is in the loading state, the controller 32 identifies the current stage of the work cycle as a “MATERIAL LOADING” stage.
  • At stage 42, when the controller 32 determines that the apron 22 is in the closed position “C”, the ejector 24 is in the retracted position “R”, and the bowl 20 is in the tilled state, the controller 32 identifies the current stage of the work cycle as a “MATERIAL HAULING” stage. At stage 44, when the controller 32 determines that the apron 22 is in the open position “O”, the ejector 24 is in the extended position “E”, and the bowl 20 is in either the empty state or the unloading state, the controller 32 identifies the current stage of the work cycle as a “MATERIAL UNLOADING” stage.
  • It should be noted that terminologies used herein to describe the position of the apron 22, the position of the ejector 24, the state of the bowl 20, and or the current stage of the work cycle is merely exemplary. In other embodiments, the terminologies may include any other numerical, alphabetical, and/or alphanumeric values. Also, the number of stages of the work cycle described herein is merely exemplary. In other embodiments, the work cycle may include any number of different stages based on application requirements and without any limitation.
  • The controller 32 is further configured to monitor a duration of the current stage of the work cycle of the machine 10. More specifically, the controller 32 is configured to monitor an amount of time spent on each of the stages of the work cycle of the machine 10 such as the “EMPTY BOWL” stage, the “MATERIAL LOADING” stage, the “MATERIAL HAULING” stage, and the “MATERIAL UNLOADING” stage.
  • In one embodiment, the controller 32 may be configured to display the current stage of the work cycle and/or the duration of the current stage of the work cycle on a display unit 46. Accordingly, the work cycle monitoring system 26 may include the display unit 46 coupled to the controller 32. The display unit 46 may be provided within the operator cabin 16. The display unit 46 may be any display unit known in the art such as a CRT monitor, a LED monitor, a LCD monitor, and so on. The display unit 46 may be configured to display text, images, video feeds, and so on including, but not limited to, the current stage of the work cycle, the duration of the current stage of the work cycle, notifications, warnings, tutorials, machine status, and camera feeds to an operator.
  • In another embodiment, the controller 32 may be configured to store a log of the current stage of the work cycle and/or the duration of the current stage of the work cycle in the memory of the controller 32 or the database 34 coupled to the controller 32.
  • The controller 32 may be an electronic controller that operates in a logical fashion to perform operations, execute control algorithms, store and retrieve data and other desired operations. The controller 32 may include or access memory, secondary storage devices, processors, and any other components for running an application. The memory and secondary storage devices may be in the form of read-only memory (ROM) or random access memory (RAM) or integrated circuitry that is accessible by the controller 32. Various other circuits may be associated with the controller 32 such as power supply circuitry, signal conditioning circuitry, driver circuitry, and other types of circuitry. The controller 32 may be a single controller or may include more than one controller disposed to control various functions and/or features of the machine 10. The term “controller” is meant to be used in its broadest sense to include one or more controllers and/or microprocessors that may be associated with the machine 10 and that may cooperate in controlling various functions and operations of the machine 10. The functionality of the controller 32 may be implemented in hardware and/or software without regard to the functionality.
  • INDUSTRIAL APPLICABILITY
  • The present disclosure relates to the work cycle monitoring system 26. Referring to FIG. 5, a method 48 of working of the work cycle monitoring system 26 is illustrated. At step 50, the controller 32 receives the signal indicative of the view of the bowl 20 from the perception sensor 28. At step 52, the controller 32 determines the position of the apron 22 based on the received signal using any known data processing method. At step 54, the controller 32 determines the level of the material within the bowl 20 based on the received signal using any known data processing method. At step 56, the controller 32 identifies the current stage of the work cycle of the machine 10 based on the determined position of the apron 22 and the determined level of the material within the bowl 20. In a situation when the bowl 20 includes the ejector 24, the controller 32 may identify the current stage of the work cycle of the machine 10 based on the determined position of the apron 22, the determined position of the ejector 24, and the determined level of the material within the bowl 20.
  • The perception sensor 28 is mounted on the frame 12 of the machine 10 such that the perception sensor 28 may not contact the material and/or other moving parts of the machine 10. As a result, damage to the perception sensor 28 may be prevented in turn reducing replacement cost thereof. The perception sensor 28 provides a real time and non-occluded monitoring of the bowl 20 to the controller 32. Further, the controller 32 provides the current stage of the work cycle to the operator. As a result, the work cycle monitoring system 26 provides a real time monitoring of the work cycle for accurate control thereof.
  • Also, due to real time indication of the current stage of the work cycle to the operator, machine productivity, machine efficiency, fuel efficiency, and so on may be significantly improved by accurately controlling the work cycle. Additionally, the real time indication of the current stage of the work cycle to the operator may also reduce training duration and/or effort for novice operators. Additionally, monitoring the duration of each of the current stage of the work cycle may be further utilized for estimation of performance metrics such as, machine/operator productivity, machine/operator efficiency, fuel efficiency, work cycle efficiency, determining a depreciation value, determining a maintenance schedule, and so on.
  • While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of the disclosure. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.

Claims (3)

What is claimed is:
1. A work cycle monitoring system for a machine, the machine including a bowl and an apron associated therewith, the work cycle monitoring system comprising:
a perception sensor provided in association with the bowl of the machine, the perception sensor configured to generate a signal indicative of a view of the bowl; and
a controller coupled to the perception sensor, the controller configured to:
receive the signal indicative of the view of the bowl from the perception sensor;
determine a position of the apron based on the received signal;
determine a level of material within the bowl based on the received signal; and
identify a current stage of a work cycle of the machine based, at least in part, on the determined position of the apron and the determined level of the material.
2. The work cycle monitoring system of claim 1, wherein the controller is further configured to:
determine a position of an ejector of the bowl based on the received signal.
3. The work cycle monitoring system of claim 1, wherein the controller is further configured to:
monitor a duration of the current stage of the work cycle of the machine.
US15/175,608 2016-06-07 2016-06-07 Work cycle monitoring system Abandoned US20160281333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/175,608 US20160281333A1 (en) 2016-06-07 2016-06-07 Work cycle monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/175,608 US20160281333A1 (en) 2016-06-07 2016-06-07 Work cycle monitoring system

Publications (1)

Publication Number Publication Date
US20160281333A1 true US20160281333A1 (en) 2016-09-29

Family

ID=56973998

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/175,608 Abandoned US20160281333A1 (en) 2016-06-07 2016-06-07 Work cycle monitoring system

Country Status (1)

Country Link
US (1) US20160281333A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111324092A (en) * 2018-12-13 2020-06-23 卡特彼勒公司 Managing field productivity using telemetry data

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336068B1 (en) * 2000-09-20 2002-01-01 Caterpillar Inc. Control system for wheel tractor scrapers
US20070267225A1 (en) * 2006-05-19 2007-11-22 Congdon Thomas M Auger loading apparatus and machine with same
US20080155866A1 (en) * 2006-12-28 2008-07-03 Caterpillar Inc. System for automatically loading a scraper
US20090043460A1 (en) * 2007-08-09 2009-02-12 Caterpillar Inc. Wheel tractor scraper production optimization
US20090062993A1 (en) * 2007-08-30 2009-03-05 Caterpillar Inc. Excavating system utilizing machine-to-machine communication
US20120144704A1 (en) * 2010-12-14 2012-06-14 Cone Ramona D Cycle counter for wheeled tractor scraper
US8386134B2 (en) * 2007-09-28 2013-02-26 Caterpillar Inc. Machine to-machine communication system for payload control
US20130158817A1 (en) * 2011-12-20 2013-06-20 Caterpillar Inc. Controlling a bowl of a scraper
US20140237868A1 (en) * 2013-02-28 2014-08-28 Caterpillar Inc. Load estimator for scraper
US20150339810A1 (en) * 2014-05-20 2015-11-26 General Electric Company Method and system for detecting a damaged component of a machine
US9204106B2 (en) * 2011-06-07 2015-12-01 Komatsu Ltd. Load display device for dump truck
US20160053460A1 (en) * 2014-08-25 2016-02-25 CNH Industrial America, LLC System and method for automatically controlling a lift assembly of a work vehicle

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336068B1 (en) * 2000-09-20 2002-01-01 Caterpillar Inc. Control system for wheel tractor scrapers
US20070267225A1 (en) * 2006-05-19 2007-11-22 Congdon Thomas M Auger loading apparatus and machine with same
US20080155866A1 (en) * 2006-12-28 2008-07-03 Caterpillar Inc. System for automatically loading a scraper
US20090043460A1 (en) * 2007-08-09 2009-02-12 Caterpillar Inc. Wheel tractor scraper production optimization
US20090062993A1 (en) * 2007-08-30 2009-03-05 Caterpillar Inc. Excavating system utilizing machine-to-machine communication
US8386134B2 (en) * 2007-09-28 2013-02-26 Caterpillar Inc. Machine to-machine communication system for payload control
US20120144704A1 (en) * 2010-12-14 2012-06-14 Cone Ramona D Cycle counter for wheeled tractor scraper
US9204106B2 (en) * 2011-06-07 2015-12-01 Komatsu Ltd. Load display device for dump truck
US20130158817A1 (en) * 2011-12-20 2013-06-20 Caterpillar Inc. Controlling a bowl of a scraper
US20140237868A1 (en) * 2013-02-28 2014-08-28 Caterpillar Inc. Load estimator for scraper
US20150339810A1 (en) * 2014-05-20 2015-11-26 General Electric Company Method and system for detecting a damaged component of a machine
US20160053460A1 (en) * 2014-08-25 2016-02-25 CNH Industrial America, LLC System and method for automatically controlling a lift assembly of a work vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111324092A (en) * 2018-12-13 2020-06-23 卡特彼勒公司 Managing field productivity using telemetry data

Similar Documents

Publication Publication Date Title
US20160289927A1 (en) Bowl monitoring system
US10106951B2 (en) System and method for automatic dump control
CN101680542B (en) Controller of vehicle with hydrostatic continuously variable transmission
US10037634B2 (en) System and method for idle state determination
JPH1136381A (en) Method and equipment for determining maintenance time for machinery
US8700274B1 (en) Method of determining when a bed of a hauling machine is empty
US20180305900A1 (en) Method for controlling the engine speed of a utility vehicle
US20170113591A1 (en) System and method for controlling movement of implement
CN105209996A (en) Vehicle and operator guidance by pattern recognition
US11401700B2 (en) Hydraulic oil monitoring system and hydraulic oil monitoring method
US8903612B2 (en) Method of determining when a payload loading event is occurring in a hauling machine
US20160281333A1 (en) Work cycle monitoring system
CN105493128A (en) Remote server
ZA202304551B (en) System and method for monitoring machine operations at a worksite
US20240336236A1 (en) Selectively implementing automated cleaning routines during unloading cycles for transport vehicles
US10311599B2 (en) System and method for diagnosis of lighting system
US10208773B2 (en) System for hydraulic pump health monitoring
CN112309113A (en) Vehicle load monitoring method, device, system, medium and equipment
US11352767B2 (en) Engine power management strategy
US11802613B1 (en) Locking differential energy management for work vehicles
EP3883831A1 (en) Monitoring machine brake performance
US20160263950A1 (en) Tire health monitoring system
CN113829826A (en) Emergency braking control method and device combined with air suspension and electronic equipment
US11358576B2 (en) Brake power derating
US12195942B2 (en) Work cycle identification for scrapers and corresponding feature automation

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATERPILLAR INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, QI;GROTH, BRYAN LEE;STRATTON, KENNETH;AND OTHERS;SIGNING DATES FROM 20160523 TO 20160527;REEL/FRAME:038834/0256

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载