US20160172195A1 - Nanostructures having low defect density and methods of forming thereof - Google Patents
Nanostructures having low defect density and methods of forming thereof Download PDFInfo
- Publication number
- US20160172195A1 US20160172195A1 US14/997,108 US201614997108A US2016172195A1 US 20160172195 A1 US20160172195 A1 US 20160172195A1 US 201614997108 A US201614997108 A US 201614997108A US 2016172195 A1 US2016172195 A1 US 2016172195A1
- Authority
- US
- United States
- Prior art keywords
- self
- nucleic acids
- substrate
- assembled
- assembled nucleic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0338—Process specially adapted to improve the resolution of the mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00031—Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0332—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0335—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0337—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3081—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3083—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/3086—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76868—Forming or treating discontinuous thin films, e.g. repair, enhancement or reinforcement of discontinuous thin films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0147—Film patterning
- B81C2201/0149—Forming nanoscale microstructures using auto-arranging or self-assembling material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/10—Applying interconnections to be used for carrying current between separate components within a device
- H01L2221/1068—Formation and after-treatment of conductors
- H01L2221/1094—Conducting structures comprising nanotubes or nanowires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present disclosure in various embodiments, relates generally to nanostructures comprising self-assembled nucleic acids and exhibiting low defect density, and to methods of preparing such nano structures.
- a continuing goal of integrated circuit fabrication is to decrease the dimensions thereof.
- Integrated circuit dimensions can be decreased by reducing the dimensions and spacing of the constituent features or structures. For example, by decreasing the dimensions and spacing of semiconductor features (e.g., storage capacitors, access transistors, access lines) of a memory device, the overall dimensions of the memory device may be decreased while maintaining or increasing the storage capacity of the memory device.
- semiconductor features e.g., storage capacitors, access transistors, access lines
- Self-assembled block copolymer lithography is useful for fabrication of semiconductor structures having dimensions of less than 50 nm, there are still problems that must be addressed.
- Self-assembled block copolymer materials may not provide nanostructures exhibiting sufficiently low defect levels.
- Self-assembled nucleic acids have been researched for forming semiconductor devices.
- the specificity of complementary base pairing in nucleic acids provides self-assembled nucleic acids that may be used for self-assembled nucleic acid lithography processes.
- FIG. 1 is a flowchart diagram showing a method of forming nanostructures in accordance with one embodiment of the present disclosure
- FIG. 2A shows self-assembled “multi-stranded” nucleic acids according to one embodiment of the present disclosure
- FIG. 2B shows self-assembled “scaffolded” nucleic acids according to one embodiment of the present disclosure
- FIG. 2C shows self-assembled “single-stranded” nucleic acids according to one embodiment of the present disclosure.
- FIGS. 3A-3C are cross-sectional views of various stages of using self-assembled nucleic acids as nano-scale templates or masks to transfer the desired pattern to the substrate, according to one embodiment of the present disclosure.
- nucleic acid means and includes a polymeric form of nucleotides (e.g., polynucleotides and oligonucleotides) of any length that comprises purine and pyrimidine bases, or chemically or biochemically modified purine and pyrimidine bases.
- Nucleic acids may comprise single stranded sequences, double stranded sequences, or portions of both double stranded or single stranded sequences.
- the nucleic acid may include ribonucleic acid (RNA), deoxyribonucleic acid (DNA), peptide nucleic acid (PNA), or combinations thereof.
- the backbone of the polynucleotide may comprise sugars and phosphate groups as may typically be found in RNA or DNA, or modified sugar and/or phosphate groups.
- the polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs.
- the term “substrate” means and includes a base material or a construction upon which additional materials are formed.
- the substrates may include glass, mica, polystyrene, polypropylene, polyamides, polyesters, polyacrylates, polyvinylchloride, polycarbonate, fluoropolymers, fluorinated ethylene propylene, polyvinylidene, polydimethylsiloxane, silicon, metals (e.g., gold, silver, titanium), and stainless steel.
- the substrate may be a semiconductor substrate, a base semiconductor material on a supporting structure, a metal electrode, or a semiconductor substrate having one or more materials, structures or regions formed thereon.
- the semiconductor substrate may be a conventional silicon substrate, or other bulk substrate comprising a layer of semiconductive material.
- the term “bulk substrate” means and includes not only silicon wafers, but also silicon-on-insulator (SOI) substrates, silicon-on-sapphire (SOS) substrates and silicon-on-glass (SOG) substrates, epitaxial layers of silicon on a base semiconductor foundation, or other semiconductor or optoelectronic materials, such as silicon-germanium (Si 1-x Ge x , where x is, for example, a mole fraction between 0.2 and 0.8), germanium (Ge), gallium arsenide (GaAs), gallium nitride (GaN), or indium phosphide (InP), among others.
- SOI silicon-on-insulator
- SOS silicon-on-sapphire
- SOOG silicon-on-glass
- epitaxial layers of silicon on a base semiconductor foundation or other semiconductor or optoelectronic materials, such as silicon-germanium (Si 1-x Ge x , where x is, for example, a mole fraction between
- a method of forming nanostructure may comprise forming self-assembled nucleic acids on at least a portion of a substrate, and repairing defects in the self-assembled nucleic acids using at least one repair enzyme.
- the method may include process acts as shown in flow diagram 100 of FIG. 1 .
- nucleic acids configured and formulated to form the predetermined self-assembled structures may be designed and synthesized ( 101 ). Upon dissolving the nucleic acids into a solution, nucleic acids may form the predetermined self-assembled structures through a complementary base pairing mechanism ( 102 ). Then, a pattern of self-assembled nucleic acids may be formed on at least a portion of a substrate ( 103 ). These self-assembled nucleic acids on the substrate may include at least one defect. Optionally, the defects and the density of defects may be determined ( 104 ) using any conventional techniques.
- the defects in the self-assembled nucleic acids may be repaired using at least one repair enzyme ( 105 ), to provide a nanostructure comprising self-assembled nucleic acids on at least a portion of the substrate exhibiting a reduced defect density.
- the repairing of defects ( 104 ) may be repeated as desired until a desired, reduced threshold level of defect density is achieved. Once the threshold level of defect density is achieved, the resulting pattern of the self-assembled nucleic acids may be transferred to the substrate ( 106 ).
- a computer software program may be used to design and identify the nucleic acid sequences that are capable of self-assembling into the desired structures.
- the nucleic acids may be non-naturally occurring nucleic acids.
- the length and chemical makeup of the nucleic acid sequences may be selected depending on the desired self-assembled structures to be formed.
- nucleic acids may be synthesized using automated DNA synthesizer and phosphoramidite chemistry procedures.
- the nucleic acids may be dissolved into a solution. Upon dissolving in the solution, the nucleic acids may self-assemble into the desired self-assembled structures through a complementary base pairing mechanism. Various self-assembled nucleic acids may be used in the present disclosure.
- nucleic acids may self-assemble into a “multi-stranded” structure that is composed entirely of short oligonucleotide strands.
- self-assembled nucleic acids 201 are composed of short oligonucleotide strands 201 a , 201 b and 201 c.
- nucleic acids may self-assemble into a “scaffolded” structure.
- the self-assembled “scaffolded” structure is composed of a long single stranded polynucleotide (“scaffold strand”) that is folded and bonded by a number of short strands of nucleic acids (“helper strands”) into the desired structures.
- self-assembled nucleic acids 202 are composed of a scaffold strand 202 a that is folded and fixed into a certain structure by the helper strands 202 b , 202 b ′, and 202 b′′.
- nucleic acids may self-assemble into a “single-stranded” structure that is composed substantially of one long scaffold strand and few or no helper strands.
- the self-assembled nucleic acid 203 is composed of one long scaffold strand 203 a.
- FIGS. 2A-2C show non-limiting example of the self-assembled nucleic acids, and that other self-assembled nucleic acids may be recognized by one skilled in the art.
- the self-assembled nucleic acids may be formed on at least a portion of a substrate using any conventional techniques.
- the self-assembled nucleic acids may be formed on a substantially entire exposed surface of a substrate. Then, portions of the self-assembled nucleic acids on the substrate may be selectively removed, leaving the self-assembled nucleic acids only on the desired portions of the substrate.
- the self-assembled nucleic acids on the substrate may be selectively removed using conventional mask techniques.
- the self-assembled nucleic acids may be formed on the patterned regions of carbon on a silicon oxide background over a substrate.
- the self-assembled nucleic acids may be applied onto at least a portion of the substrate by contacting at least a portion of the substrate with a solution comprising the self-assembled nucleic acids.
- a solution comprising self-assembled nucleic acids may be applied to at least a portion of the substrate by spraying or coating techniques, or by dipping the substrate in a solution comprising self-assembled nucleic acids.
- the self-assembled nucleic acids may be formed on at least a portion of a substrate by covalently coupling the self-assembled nucleic acids to the substrate.
- the nucleic acids in the self-assembled nucleic acids may include a coupling functional group formulated and configured to form covalent bond with the substrate.
- the coupling functional group on the nucleic acid may be a primary amine.
- the coupling functional group on the nucleic acid may be an amine derivatized with a thiolation reagent such as succinimidyl 3-(2-pyridyldithio)propionate (SPDP).
- SPDP succinimidyl 3-(2-pyridyldithio)propionate
- the coupling functional group on the nucleic acid may be dialdehyde derivatives of Schiff's base reaction.
- the substrate when the substrate is glass or silicon dioxide (SiO 2 ), the substrate may be treated with dilute sodium hydroxide solution. Then, the substrate may be contacted with a solution of self-assembled nucleic acids that comprises 3-aminopropyltriethoxysilane (APS) group, to covalently couple the self-assembled nucleic acids to the substrate via the APS group.
- APS 3-aminopropyltriethoxysilane
- the self-assembled nucleic acids may be formed on at least a portion of substrate by ionic attraction using any conventional techniques.
- magnesium ions Mg 2+
- Mg 2+ may be added to an aqueous solution of self-assembled nucleic acids.
- the positive charge Mg 2+ attracts the negative charges on self-assembled nucleic acids, as well as the negative portions of the substrate.
- Mg 2+ ions function to adhere the self-assembled nucleic acids to the negative portions of the substrate.
- At least a portion of the substrate may be exposed to a solution comprising self-assembled nucleic acids to provide a nanostructure that comprises self-assembled nucleic acids on at least a portion of the substrate. Then, the nanostructure may be exposed again to a solution comprising self-assembled nucleic acids. The exposure to the solution comprising self-assembled nucleic acids may be repeated until the desired thickness of the self-assembled nucleic acids on at least a portion of the substrate is achieved.
- the defect level which may also be characterized as defect density, of the features on the substrate may then be determined, the defect level corresponding to defects in the pattern of self-assembled nucleic acids.
- the defects may be determined using any conventional technique such as optical or e-beam based metrology techniques, and therefore such techniques are not described in detail herein.
- the defects in the pattern of self-assembled nucleic acids may be repaired using at least one repair enzyme.
- the self-assembled nucleic acids on at least a portion of the substrate may be contacted with a solution comprising at least one repair enzyme.
- the self-assembled nucleic acids on the at least a portion of the substrate may be exposed to a repair solution comprising at least one repair enzyme by spraying or coating the self-assembled nucleic acids with the repair solution, or by dipping the substrate in the repair solution comprising at least one repair enzyme.
- the repair enzyme may be selected based at least in part on the identified defects in the pattern of self-assembled nucleic acids.
- the repair enzyme may be dissolved in an appropriate solvent, such as water, methanol, ethanol, or combinations thereof.
- the repair solution may include a sufficient concentration of the repair enzyme to repair the defects.
- the defects in the self-assembled nucleic acids on the at least a portion of substrate may be repaired by various mechanisms.
- the defects may be repaired by at least one of following mechanisms:
- the type of repair enzyme may be selected by a person of ordinary skill in the art. Additionally, the repair enzyme may be formulated and configured to selectively repair certain defects in the self-assembled nucleic acids.
- the repair enzyme may include an enzyme in a metallo- ⁇ -lactamase superfamily.
- the repair enzymes in this superfamily usually bind a zinc ion (Zn 2+ ), but in a few cases bind an iron ion (Fe 2+ ), and catalyze the cleavage of C—N, O ⁇ O, C—S, and/or P—O bonds.
- These repair enzymes repair a defect that involves two divalent metal ion binding sites.
- Non-limiting example of such repair enzymes may include ⁇ -lactamase, oxidoreductase (rubredoxin/oxygen, ROO), glyoxalase II, or artemis/DNA nuclease.
- the repair enzyme may include an enzyme in a haloacid dehalogenase superfamily.
- the repair enzymes in this superfamily catalyze the cleavage and formation of C—Cl, C—P, and/or P—O bonds.
- These repair enzymes repair a defect that involves aspartate nucleophile and a general base.
- Non-limiting example of such repair enzymes may include haloacid dehalogenase, phosphonatase, Ca 2+ -ATpase, or DNA 3′-phosphatase.
- the repair enzyme may include an enzyme in an Fe (II)/ ⁇ -ketoglutarate-dependent dioxygenase superfamily.
- the repair enzymes in this superfamily catalyze the cleavage of C—S and C—N bonds, or formation of C—N, C—O, and C—S heterocycle structure.
- These repair enzymes repair a defect that involves a single divalent metal ion binding site.
- Non-limiting example of such repair enzymes may include clavimate synthase, isopenicillin synthase, taurine dioxygenase, or AlkB.
- a method of forming a nanostructure comprises forming a pattern of self-assembled nucleic acids on at least a portion of a substrate. The method further comprises exposing the pattern of self-assembled nucleic acids on the at least a portion of the substrate to at least one repair enzyme to repair defects in the self-assembled nucleic acids.
- the repairing of defects in the self-assembled nucleic acids on at least a portion of a substrate may be repeated until a desired, reduced threshold level of the defect density is achieved.
- the defects may be repaired by repeatedly exposing the self-assembled nucleic acids on the substrate to the repair solution.
- the repair solution may be contacted with the self-assembled nucleic acids between one time and ten times. As the concentration of repair enzyme in a repair solution decreases, a freshly made solution of the repair enzyme having a higher concentration may be employed in substitution for the initial repair solution.
- a method of forming a nanostructure comprises forming self-assembled nucleic acids on at least a portion of a substrate, wherein the self-assembled nucleic acids exhibits an initial defect density.
- the method further comprises contacting the self-assembled nucleic acids on the at least a portion of a substrate with a solution comprising at least one repair enzyme to repair defects in the self-assembled nucleic acids.
- the method further comprises repeating the repair of defects in the self-assembled nucleic acids until a desired, reduced threshold level of defect density is achieved.
- the defect in the self-assembled nucleic acids on at least a portion of a substrate may be repaired using more than one repair enzyme.
- the self-assembled nucleic acid on the at least a portion of a substrate may be exposed to repair solutions including different repair enzymes simultaneously or consecutively to lower the defect density in the self-assembled nucleic acids on the at least a portion of a substrate.
- a method of decreasing a defect density in self-assembled nucleic acids on at least a portion of a substrate comprises repairing defects in self-assembled nucleic acids on at least a portion of a substrate by exposure to at least one repair enzyme.
- the resulting pattern of the self-assembled nucleic acids may be transferred to the substrate.
- the self-assembled nucleic acids may function as nano-scale templates or masks having operative dimensions of less than about 50 nm to transfer the desired pattern to the substrate.
- FIGS. 3A-3C show various stages for a method of using the self-assembled nucleic acids as nano-scale templates or masks to transfer the desired pattern to the substrate.
- FIG. 3A shows a semiconductor structure 300 that includes a substrate 301 , a hardmask material 303 overlying the substrate 301 , and a pattern of self-assembled nucleic acids 302 over the hardmask material 303 .
- the pattern of self-assembled nucleic acids 302 is transferred to the hardmask material 303 , thus the pattern of self-assembled nucleic acids 302 may function as a nano-scale template.
- At least a portion of the substrate 301 may be selectively removed using the self-assembled nucleic acids 302 as the template/mask to protect at least a portion of the substrate 301 from an etchant (such term being non-limiting, and encompassing liquid and gaseous fluid compositions suitable to remove substrate material exposed through apertures in the template) to provide a semiconductor structure 400 that includes a modified substrate 401 and the overlying mask comprising the pattern of self-assembled nucleic acids 302 and the hardmask material 303 . Then, as shown in FIG. 3C , the self-assembled nucleic acids 302 and the hardmask material 303 may be removed.
- the self-assembled nucleic acids 302 may be removed by a heat treatment at a temperature of from about 90° C. to about 200° C., or by an acidic solution.
- a method of forming a nanostructure comprises forming a mask comprising a pattern of self-assembled nucleic acids over at least a portion of substrate surface, and removing at least a portion of the substrate exposed through the pattern of the mask.
- the modified substrate 401 may be further processed for the fabrication of components on the substrate, such as by way of non-limiting example, silicon nanowires, gold nanoparticles, semiconductive quantum dots, or fluorescent quantum dots.
- a method of forming a nanostructure comprises forming a mask comprising a pattern of self-assembled nucleic acids over at least a portion of a substrate surface.
- the method further comprises forming a nanocomponent on at least a portion of the substrate exposed through the pattern in the mask.
- the nanocomponent comprises a material selected from the group consisting of nanowires, gold nanoparticles, semiconductive quantum dots, and fluorescent quantum dots.
- the self-assembled nucleic acids may be used to form features on the substrate having dimensions of less than about 50 nm and exhibiting a low defect density.
- the features on the substrate may have dimensions of less than about 40 nm, less than about 30 nm, less than about 20 nm, or less than about 10 nm.
- the nanostructure comprising self-assembled nucleic acids may be subjected to further processing for fabrication of the desired devices. In some embodiments, the self-assembled nucleic acids may be removed during further processing acts.
- a semiconductor structure comprises a pattern of self-assembled nucleic acids defining a template having at least one aperture therethrough, the at least one aperture comprising at least one dimension of less than about 50 nm.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 14/151,635, filed Jan. 9, 2014, pending, the disclosure of which is hereby incorporated herein in its entirety by this reference.
- The present disclosure, in various embodiments, relates generally to nanostructures comprising self-assembled nucleic acids and exhibiting low defect density, and to methods of preparing such nano structures.
- A continuing goal of integrated circuit fabrication is to decrease the dimensions thereof. Integrated circuit dimensions can be decreased by reducing the dimensions and spacing of the constituent features or structures. For example, by decreasing the dimensions and spacing of semiconductor features (e.g., storage capacitors, access transistors, access lines) of a memory device, the overall dimensions of the memory device may be decreased while maintaining or increasing the storage capacity of the memory device.
- As the dimensions and spacing of semiconductor device features become smaller, conventional lithographic processes become increasingly more difficult and expensive to conduct. Therefore, significant challenges are encountered in the fabrication of nanostructures, particularly structures having a feature dimension (e.g., critical dimension) less than a resolution limit of conventional photolithography techniques (currently about 50 nm). It is possible to fabricate semiconductor structures of such feature dimensions using a conventional lithographic process, such as shadow mask lithography and e-beam lithography. However, use of such processes is limited because the exposure tools are extremely expensive or extremely slow and, further, may not be amenable to formation of structures having dimensions of less than 50 nm.
- The development of new processes, as well as materials useful in such processes, is of increasing importance to make the fabrication of small-scale devices easier, less expensive, and more versatile. One example of a method of fabricating small-scale devices that addresses some of the drawbacks of conventional lithographic techniques is self-assembled block copolymer lithography.
- Although self-assembled block copolymer lithography is useful for fabrication of semiconductor structures having dimensions of less than 50 nm, there are still problems that must be addressed. Self-assembled block copolymer materials may not provide nanostructures exhibiting sufficiently low defect levels.
- Self-assembled nucleic acids have been researched for forming semiconductor devices. The specificity of complementary base pairing in nucleic acids provides self-assembled nucleic acids that may be used for self-assembled nucleic acid lithography processes.
-
FIG. 1 is a flowchart diagram showing a method of forming nanostructures in accordance with one embodiment of the present disclosure; -
FIG. 2A shows self-assembled “multi-stranded” nucleic acids according to one embodiment of the present disclosure; -
FIG. 2B shows self-assembled “scaffolded” nucleic acids according to one embodiment of the present disclosure; -
FIG. 2C shows self-assembled “single-stranded” nucleic acids according to one embodiment of the present disclosure; and -
FIGS. 3A-3C are cross-sectional views of various stages of using self-assembled nucleic acids as nano-scale templates or masks to transfer the desired pattern to the substrate, according to one embodiment of the present disclosure. - The following description provides specific details, such as material types, material thicknesses, and processing conditions in order to provide a thorough description of embodiments of the disclosure. However, a person of ordinary skill in the art will understand that embodiments of the present disclosure may be practiced without employing these specific details. Indeed, the embodiments of the present disclosure may be practiced in conjunction with conventional fabrication techniques employed in the industry.
- In addition, the description provided herein does not form a complete process flow for forming nanostructures. Only those process acts and structures necessary to understand the embodiments of the present disclosure are described in detail below. Additional acts to form the complete nanostructures may be performed by conventional fabrication techniques. Also the drawings accompanying the application are for illustrative purposes only, and are thus not necessarily drawn to scale. Elements common between figures may retain the same numerical designation. Furthermore, while the materials described and illustrated herein may be formed as layers, the materials are not limited thereto and may be formed in other three-dimensional configurations.
- As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
- As used herein, the term “nucleic acid” means and includes a polymeric form of nucleotides (e.g., polynucleotides and oligonucleotides) of any length that comprises purine and pyrimidine bases, or chemically or biochemically modified purine and pyrimidine bases. Nucleic acids may comprise single stranded sequences, double stranded sequences, or portions of both double stranded or single stranded sequences. As non-limiting example, the nucleic acid may include ribonucleic acid (RNA), deoxyribonucleic acid (DNA), peptide nucleic acid (PNA), or combinations thereof. The backbone of the polynucleotide may comprise sugars and phosphate groups as may typically be found in RNA or DNA, or modified sugar and/or phosphate groups. Furthermore, the polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs.
- As used herein, the term “substrate” means and includes a base material or a construction upon which additional materials are formed. Non-limiting example of the substrates may include glass, mica, polystyrene, polypropylene, polyamides, polyesters, polyacrylates, polyvinylchloride, polycarbonate, fluoropolymers, fluorinated ethylene propylene, polyvinylidene, polydimethylsiloxane, silicon, metals (e.g., gold, silver, titanium), and stainless steel.
- In some embodiments, the substrate may be a semiconductor substrate, a base semiconductor material on a supporting structure, a metal electrode, or a semiconductor substrate having one or more materials, structures or regions formed thereon. By way of non-limiting example, the semiconductor substrate may be a conventional silicon substrate, or other bulk substrate comprising a layer of semiconductive material. As used herein, the term “bulk substrate” means and includes not only silicon wafers, but also silicon-on-insulator (SOI) substrates, silicon-on-sapphire (SOS) substrates and silicon-on-glass (SOG) substrates, epitaxial layers of silicon on a base semiconductor foundation, or other semiconductor or optoelectronic materials, such as silicon-germanium (Si1-xGex, where x is, for example, a mole fraction between 0.2 and 0.8), germanium (Ge), gallium arsenide (GaAs), gallium nitride (GaN), or indium phosphide (InP), among others. Furthermore, when reference is made to a “substrate” in the following description, previous process acts may have been conducted to form materials, regions, or junctions in or on the base semiconductor structure or foundation.
- In one embodiment, a method of forming nanostructure may comprise forming self-assembled nucleic acids on at least a portion of a substrate, and repairing defects in the self-assembled nucleic acids using at least one repair enzyme. As a non-limiting example, the method may include process acts as shown in flow diagram 100 of
FIG. 1 . - As shown in the
FIG. 1 , nucleic acids configured and formulated to form the predetermined self-assembled structures may be designed and synthesized (101). Upon dissolving the nucleic acids into a solution, nucleic acids may form the predetermined self-assembled structures through a complementary base pairing mechanism (102). Then, a pattern of self-assembled nucleic acids may be formed on at least a portion of a substrate (103). These self-assembled nucleic acids on the substrate may include at least one defect. Optionally, the defects and the density of defects may be determined (104) using any conventional techniques. The defects in the self-assembled nucleic acids may be repaired using at least one repair enzyme (105), to provide a nanostructure comprising self-assembled nucleic acids on at least a portion of the substrate exhibiting a reduced defect density. The repairing of defects (104) may be repeated as desired until a desired, reduced threshold level of defect density is achieved. Once the threshold level of defect density is achieved, the resulting pattern of the self-assembled nucleic acids may be transferred to the substrate (106). - A computer software program may be used to design and identify the nucleic acid sequences that are capable of self-assembling into the desired structures. The nucleic acids may be non-naturally occurring nucleic acids. The length and chemical makeup of the nucleic acid sequences may be selected depending on the desired self-assembled structures to be formed.
- Any conventional techniques may be used to synthesize nucleic acids, and therefore such techniques are not described in detail herein. By way of non-limiting example, the nucleic acids may be synthesized using automated DNA synthesizer and phosphoramidite chemistry procedures.
- Once synthesized, the nucleic acids may be dissolved into a solution. Upon dissolving in the solution, the nucleic acids may self-assemble into the desired self-assembled structures through a complementary base pairing mechanism. Various self-assembled nucleic acids may be used in the present disclosure.
- In some embodiments, nucleic acids may self-assemble into a “multi-stranded” structure that is composed entirely of short oligonucleotide strands. For example, as shown in
FIG. 2A , self-assemblednucleic acids 201 are composed ofshort oligonucleotide strands - In some embodiments, nucleic acids may self-assemble into a “scaffolded” structure. The self-assembled “scaffolded” structure is composed of a long single stranded polynucleotide (“scaffold strand”) that is folded and bonded by a number of short strands of nucleic acids (“helper strands”) into the desired structures. For example, as shown in
FIG. 2B , self-assemblednucleic acids 202 are composed of ascaffold strand 202 a that is folded and fixed into a certain structure by thehelper strands - In some embodiments, nucleic acids may self-assemble into a “single-stranded” structure that is composed substantially of one long scaffold strand and few or no helper strands. For example, as shown in
FIG. 2C , the self-assemblednucleic acid 203 is composed of onelong scaffold strand 203 a. - It is understood that
FIGS. 2A-2C show non-limiting example of the self-assembled nucleic acids, and that other self-assembled nucleic acids may be recognized by one skilled in the art. - The self-assembled nucleic acids may be formed on at least a portion of a substrate using any conventional techniques. In some embodiments, the self-assembled nucleic acids may be formed on a substantially entire exposed surface of a substrate. Then, portions of the self-assembled nucleic acids on the substrate may be selectively removed, leaving the self-assembled nucleic acids only on the desired portions of the substrate. By way of non-limiting example, the self-assembled nucleic acids on the substrate may be selectively removed using conventional mask techniques. In some embodiments, the self-assembled nucleic acids may be formed on the patterned regions of carbon on a silicon oxide background over a substrate.
- In some embodiments, the self-assembled nucleic acids may be applied onto at least a portion of the substrate by contacting at least a portion of the substrate with a solution comprising the self-assembled nucleic acids. By way of non-limiting example, a solution comprising self-assembled nucleic acids may be applied to at least a portion of the substrate by spraying or coating techniques, or by dipping the substrate in a solution comprising self-assembled nucleic acids.
- In some embodiments, the self-assembled nucleic acids may be formed on at least a portion of a substrate by covalently coupling the self-assembled nucleic acids to the substrate. The nucleic acids in the self-assembled nucleic acids may include a coupling functional group formulated and configured to form covalent bond with the substrate. By way of example only, when the substrate is gold, silver, silicon dioxide or aluminum metalized features, the coupling functional group on the nucleic acid may be a primary amine. When the substrate is metal, the coupling functional group on the nucleic acid may be an amine derivatized with a thiolation reagent such as succinimidyl 3-(2-pyridyldithio)propionate (SPDP). When the substrate is silicon dioxide, the coupling functional group on the nucleic acid may be dialdehyde derivatives of Schiff's base reaction. By way of a non-limiting example, when the substrate is glass or silicon dioxide (SiO2), the substrate may be treated with dilute sodium hydroxide solution. Then, the substrate may be contacted with a solution of self-assembled nucleic acids that comprises 3-aminopropyltriethoxysilane (APS) group, to covalently couple the self-assembled nucleic acids to the substrate via the APS group.
- In some embodiments, the self-assembled nucleic acids may be formed on at least a portion of substrate by ionic attraction using any conventional techniques. By way of a non-limiting example, magnesium ions (Mg2+) may be added to an aqueous solution of self-assembled nucleic acids. The positive charge Mg2+ attracts the negative charges on self-assembled nucleic acids, as well as the negative portions of the substrate. Thus, Mg2+ ions function to adhere the self-assembled nucleic acids to the negative portions of the substrate.
- In addition to forming the self-assembled nucleic acids on at least a portion of a substrate via covalent bonds or ionic attractions as described above, one of ordinary skill in the art recognizes that other known bonding techniques between the self-assembled nucleic acids and a substrate may be used.
- In some embodiments, at least a portion of the substrate may be exposed to a solution comprising self-assembled nucleic acids to provide a nanostructure that comprises self-assembled nucleic acids on at least a portion of the substrate. Then, the nanostructure may be exposed again to a solution comprising self-assembled nucleic acids. The exposure to the solution comprising self-assembled nucleic acids may be repeated until the desired thickness of the self-assembled nucleic acids on at least a portion of the substrate is achieved.
- The defect level, which may also be characterized as defect density, of the features on the substrate may then be determined, the defect level corresponding to defects in the pattern of self-assembled nucleic acids. The defects may be determined using any conventional technique such as optical or e-beam based metrology techniques, and therefore such techniques are not described in detail herein.
- The defects in the pattern of self-assembled nucleic acids may be repaired using at least one repair enzyme. The self-assembled nucleic acids on at least a portion of the substrate may be contacted with a solution comprising at least one repair enzyme. By way of non-limiting example, the self-assembled nucleic acids on the at least a portion of the substrate may be exposed to a repair solution comprising at least one repair enzyme by spraying or coating the self-assembled nucleic acids with the repair solution, or by dipping the substrate in the repair solution comprising at least one repair enzyme. The repair enzyme may be selected based at least in part on the identified defects in the pattern of self-assembled nucleic acids. The repair enzyme may be dissolved in an appropriate solvent, such as water, methanol, ethanol, or combinations thereof. The repair solution may include a sufficient concentration of the repair enzyme to repair the defects.
- The defects in the self-assembled nucleic acids on the at least a portion of substrate may be repaired by various mechanisms. By way of non-limiting example, the defects may be repaired by at least one of following mechanisms:
-
- (a) a single step mechanism that involves a direct reversal by a single enzyme, such as photolyase enzyme or O-6-methyl-DNA alkyltransferase enzyme;
- (b) a single-step or multi-step mechanism that involves base excision, such as using glycosylase enzymes; and
- (c) a multi-step mechanism that involves pleiotropic specificities from multiple protein components.
- With knowledge of the specific nucleic acids to be used in the self-assembled nucleic acids, the type of repair enzyme may be selected by a person of ordinary skill in the art. Additionally, the repair enzyme may be formulated and configured to selectively repair certain defects in the self-assembled nucleic acids.
- In some embodiments, the repair enzyme may include an enzyme in a metallo-β-lactamase superfamily. The repair enzymes in this superfamily usually bind a zinc ion (Zn2+), but in a few cases bind an iron ion (Fe2+), and catalyze the cleavage of C—N, O═O, C—S, and/or P—O bonds. These repair enzymes repair a defect that involves two divalent metal ion binding sites. Non-limiting example of such repair enzymes may include β-lactamase, oxidoreductase (rubredoxin/oxygen, ROO), glyoxalase II, or artemis/DNA nuclease.
- In some embodiments, the repair enzyme may include an enzyme in a haloacid dehalogenase superfamily. The repair enzymes in this superfamily catalyze the cleavage and formation of C—Cl, C—P, and/or P—O bonds. These repair enzymes repair a defect that involves aspartate nucleophile and a general base. Non-limiting example of such repair enzymes may include haloacid dehalogenase, phosphonatase, Ca2+-ATpase, or DNA 3′-phosphatase.
- In some embodiments, the repair enzyme may include an enzyme in an Fe (II)/α-ketoglutarate-dependent dioxygenase superfamily. The repair enzymes in this superfamily catalyze the cleavage of C—S and C—N bonds, or formation of C—N, C—O, and C—S heterocycle structure. These repair enzymes repair a defect that involves a single divalent metal ion binding site. Non-limiting example of such repair enzymes may include clavimate synthase, isopenicillin synthase, taurine dioxygenase, or AlkB.
- Accordingly, a method of forming a nanostructure comprises forming a pattern of self-assembled nucleic acids on at least a portion of a substrate. The method further comprises exposing the pattern of self-assembled nucleic acids on the at least a portion of the substrate to at least one repair enzyme to repair defects in the self-assembled nucleic acids.
- The repairing of defects in the self-assembled nucleic acids on at least a portion of a substrate may be repeated until a desired, reduced threshold level of the defect density is achieved. The defects may be repaired by repeatedly exposing the self-assembled nucleic acids on the substrate to the repair solution. By way of example only, the repair solution may be contacted with the self-assembled nucleic acids between one time and ten times. As the concentration of repair enzyme in a repair solution decreases, a freshly made solution of the repair enzyme having a higher concentration may be employed in substitution for the initial repair solution.
- Accordingly, a method of forming a nanostructure comprises forming self-assembled nucleic acids on at least a portion of a substrate, wherein the self-assembled nucleic acids exhibits an initial defect density. The method further comprises contacting the self-assembled nucleic acids on the at least a portion of a substrate with a solution comprising at least one repair enzyme to repair defects in the self-assembled nucleic acids. The method further comprises repeating the repair of defects in the self-assembled nucleic acids until a desired, reduced threshold level of defect density is achieved.
- In some embodiments, the defect in the self-assembled nucleic acids on at least a portion of a substrate may be repaired using more than one repair enzyme. In such embodiments, the self-assembled nucleic acid on the at least a portion of a substrate may be exposed to repair solutions including different repair enzymes simultaneously or consecutively to lower the defect density in the self-assembled nucleic acids on the at least a portion of a substrate.
- Accordingly, a method of decreasing a defect density in self-assembled nucleic acids on at least a portion of a substrate comprises repairing defects in self-assembled nucleic acids on at least a portion of a substrate by exposure to at least one repair enzyme.
- Once the threshold level of the defect density is achieved, the resulting pattern of the self-assembled nucleic acids may be transferred to the substrate. The self-assembled nucleic acids may function as nano-scale templates or masks having operative dimensions of less than about 50 nm to transfer the desired pattern to the substrate.
-
FIGS. 3A-3C show various stages for a method of using the self-assembled nucleic acids as nano-scale templates or masks to transfer the desired pattern to the substrate. -
FIG. 3A shows asemiconductor structure 300 that includes asubstrate 301, ahardmask material 303 overlying thesubstrate 301, and a pattern of self-assemblednucleic acids 302 over thehardmask material 303. InFIG. 3B , the pattern of self-assemblednucleic acids 302 is transferred to thehardmask material 303, thus the pattern of self-assemblednucleic acids 302 may function as a nano-scale template. At least a portion of thesubstrate 301 may be selectively removed using the self-assemblednucleic acids 302 as the template/mask to protect at least a portion of thesubstrate 301 from an etchant (such term being non-limiting, and encompassing liquid and gaseous fluid compositions suitable to remove substrate material exposed through apertures in the template) to provide asemiconductor structure 400 that includes a modifiedsubstrate 401 and the overlying mask comprising the pattern of self-assemblednucleic acids 302 and thehardmask material 303. Then, as shown inFIG. 3C , the self-assemblednucleic acids 302 and thehardmask material 303 may be removed. By way of example only, the self-assemblednucleic acids 302 may be removed by a heat treatment at a temperature of from about 90° C. to about 200° C., or by an acidic solution. - Accordingly, a method of forming a nanostructure comprises forming a mask comprising a pattern of self-assembled nucleic acids over at least a portion of substrate surface, and removing at least a portion of the substrate exposed through the pattern of the mask.
- The modified
substrate 401 may be further processed for the fabrication of components on the substrate, such as by way of non-limiting example, silicon nanowires, gold nanoparticles, semiconductive quantum dots, or fluorescent quantum dots. - Accordingly, a method of forming a nanostructure comprises forming a mask comprising a pattern of self-assembled nucleic acids over at least a portion of a substrate surface. The method further comprises forming a nanocomponent on at least a portion of the substrate exposed through the pattern in the mask. The nanocomponent comprises a material selected from the group consisting of nanowires, gold nanoparticles, semiconductive quantum dots, and fluorescent quantum dots.
- In some embodiments, the self-assembled nucleic acids may be used to form features on the substrate having dimensions of less than about 50 nm and exhibiting a low defect density. By way of example only, the features on the substrate may have dimensions of less than about 40 nm, less than about 30 nm, less than about 20 nm, or less than about 10 nm. The nanostructure comprising self-assembled nucleic acids may be subjected to further processing for fabrication of the desired devices. In some embodiments, the self-assembled nucleic acids may be removed during further processing acts.
- Accordingly, a semiconductor structure comprises a pattern of self-assembled nucleic acids defining a template having at least one aperture therethrough, the at least one aperture comprising at least one dimension of less than about 50 nm.
- While the present disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, the present disclosure is not intended to be limited to the particular forms disclosed. Rather, the present disclosure is to cover all modifications, equivalents, and alternatives falling within the scope of the present disclosure as defined by the following appended claims and their legal equivalents.
Claims (17)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/997,108 US20160172195A1 (en) | 2014-01-09 | 2016-01-15 | Nanostructures having low defect density and methods of forming thereof |
US15/606,601 US9911609B2 (en) | 2014-01-09 | 2017-05-26 | Methods of forming nanostructures having low defect density |
US15/889,598 US10121662B2 (en) | 2014-01-09 | 2018-02-06 | Methods of forming structures and methods of decreasing defect density |
US16/178,760 US10607836B2 (en) | 2014-01-09 | 2018-11-02 | Methods of forming structures |
US16/834,766 US11335558B2 (en) | 2014-01-09 | 2020-03-30 | Methods of forming structures utilizing self-assembling nucleic acids |
US17/660,532 US11923197B2 (en) | 2014-01-09 | 2022-04-25 | Methods of forming nanostructures utilizing self-assembled nucleic acids |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/151,635 US9275871B2 (en) | 2014-01-09 | 2014-01-09 | Nanostructures having low defect density and methods of forming thereof |
US14/997,108 US20160172195A1 (en) | 2014-01-09 | 2016-01-15 | Nanostructures having low defect density and methods of forming thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/151,635 Division US9275871B2 (en) | 2014-01-09 | 2014-01-09 | Nanostructures having low defect density and methods of forming thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/606,601 Continuation US9911609B2 (en) | 2014-01-09 | 2017-05-26 | Methods of forming nanostructures having low defect density |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160172195A1 true US20160172195A1 (en) | 2016-06-16 |
Family
ID=53495762
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/151,635 Active 2034-01-27 US9275871B2 (en) | 2014-01-09 | 2014-01-09 | Nanostructures having low defect density and methods of forming thereof |
US14/997,108 Abandoned US20160172195A1 (en) | 2014-01-09 | 2016-01-15 | Nanostructures having low defect density and methods of forming thereof |
US15/606,601 Active US9911609B2 (en) | 2014-01-09 | 2017-05-26 | Methods of forming nanostructures having low defect density |
US15/889,598 Active US10121662B2 (en) | 2014-01-09 | 2018-02-06 | Methods of forming structures and methods of decreasing defect density |
US16/178,760 Active US10607836B2 (en) | 2014-01-09 | 2018-11-02 | Methods of forming structures |
US16/834,766 Active 2034-05-09 US11335558B2 (en) | 2014-01-09 | 2020-03-30 | Methods of forming structures utilizing self-assembling nucleic acids |
US17/660,532 Active US11923197B2 (en) | 2014-01-09 | 2022-04-25 | Methods of forming nanostructures utilizing self-assembled nucleic acids |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/151,635 Active 2034-01-27 US9275871B2 (en) | 2014-01-09 | 2014-01-09 | Nanostructures having low defect density and methods of forming thereof |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/606,601 Active US9911609B2 (en) | 2014-01-09 | 2017-05-26 | Methods of forming nanostructures having low defect density |
US15/889,598 Active US10121662B2 (en) | 2014-01-09 | 2018-02-06 | Methods of forming structures and methods of decreasing defect density |
US16/178,760 Active US10607836B2 (en) | 2014-01-09 | 2018-11-02 | Methods of forming structures |
US16/834,766 Active 2034-05-09 US11335558B2 (en) | 2014-01-09 | 2020-03-30 | Methods of forming structures utilizing self-assembling nucleic acids |
US17/660,532 Active US11923197B2 (en) | 2014-01-09 | 2022-04-25 | Methods of forming nanostructures utilizing self-assembled nucleic acids |
Country Status (1)
Country | Link |
---|---|
US (7) | US9275871B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9911609B2 (en) | 2014-01-09 | 2018-03-06 | Micron Technology, Inc. | Methods of forming nanostructures having low defect density |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019195633A1 (en) | 2018-04-04 | 2019-10-10 | Ignite Biosciences, Inc. | Methods of generating nanoarrays and microarrays |
EP4244382A1 (en) | 2020-11-11 | 2023-09-20 | Nautilus Subsidiary, Inc. | Affinity reagents having enhanced binding and detection characteristics |
IL305336B1 (en) | 2021-03-11 | 2025-05-01 | Nautilus Subsidiary Inc | Systems and methods for biomolecule retention |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7977177B2 (en) * | 2008-10-09 | 2011-07-12 | Sungkyunkwan University Foundation For Corporate Collaboration | Methods of forming nano-devices using nanostructures having self-assembly characteristics |
US20120135158A1 (en) * | 2009-05-26 | 2012-05-31 | Sharp Kabushiki Kaisha | Methods and systems for electric field deposition of nanowires and other devices |
US20140061798A1 (en) * | 2012-09-05 | 2014-03-06 | Commissariat A L'energie Atomique Et Aux Ene Alt | Microelectronic device with isolation trenches extending under an active area |
US20140151759A1 (en) * | 2012-12-03 | 2014-06-05 | Stmicroelectronics, Inc. | Facet-free strained silicon transistor |
US20140220655A1 (en) * | 2011-07-01 | 2014-08-07 | President And Fellows Of Harvard College | Method for forming nanoparticles having predetermined shapes |
US20160155660A1 (en) * | 2013-07-11 | 2016-06-02 | Portland State University | Method for patterning sub-50-nanometers structures |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6569382B1 (en) | 1991-11-07 | 2003-05-27 | Nanogen, Inc. | Methods apparatus for the electronic, homogeneous assembly and fabrication of devices |
US6652808B1 (en) | 1991-11-07 | 2003-11-25 | Nanotronics, Inc. | Methods for the electronic assembly and fabrication of devices |
JPH09246625A (en) * | 1996-03-08 | 1997-09-19 | Agency Of Ind Science & Technol | Patternizing method for functional material and patternized functional material |
IL121312A (en) | 1997-07-14 | 2001-09-13 | Technion Res & Dev Foundation | Microelectronic components, their fabrication and electronic networks comprising them |
AU2003287618A1 (en) * | 2002-11-12 | 2004-06-03 | Nanoink, Inc. | Methods and apparatus for ink delivery to nanolithographic probe systems |
US7820227B2 (en) * | 2003-12-11 | 2010-10-26 | University Of Maryland, College Park | Biolithographical deposition and materials and devices formed therefrom |
US7842793B2 (en) | 2005-06-14 | 2010-11-30 | The California Institute Of Technology | Methods of making nucleic acid nanostructures |
WO2010040091A1 (en) * | 2008-10-03 | 2010-04-08 | Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University | Novel dna nanostructures that promote cell-cell interaction and use thereof |
US9275871B2 (en) | 2014-01-09 | 2016-03-01 | Micron Technology, Inc. | Nanostructures having low defect density and methods of forming thereof |
-
2014
- 2014-01-09 US US14/151,635 patent/US9275871B2/en active Active
-
2016
- 2016-01-15 US US14/997,108 patent/US20160172195A1/en not_active Abandoned
-
2017
- 2017-05-26 US US15/606,601 patent/US9911609B2/en active Active
-
2018
- 2018-02-06 US US15/889,598 patent/US10121662B2/en active Active
- 2018-11-02 US US16/178,760 patent/US10607836B2/en active Active
-
2020
- 2020-03-30 US US16/834,766 patent/US11335558B2/en active Active
-
2022
- 2022-04-25 US US17/660,532 patent/US11923197B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7977177B2 (en) * | 2008-10-09 | 2011-07-12 | Sungkyunkwan University Foundation For Corporate Collaboration | Methods of forming nano-devices using nanostructures having self-assembly characteristics |
US20120135158A1 (en) * | 2009-05-26 | 2012-05-31 | Sharp Kabushiki Kaisha | Methods and systems for electric field deposition of nanowires and other devices |
US20140220655A1 (en) * | 2011-07-01 | 2014-08-07 | President And Fellows Of Harvard College | Method for forming nanoparticles having predetermined shapes |
US20140061798A1 (en) * | 2012-09-05 | 2014-03-06 | Commissariat A L'energie Atomique Et Aux Ene Alt | Microelectronic device with isolation trenches extending under an active area |
US20140151759A1 (en) * | 2012-12-03 | 2014-06-05 | Stmicroelectronics, Inc. | Facet-free strained silicon transistor |
US20160155660A1 (en) * | 2013-07-11 | 2016-06-02 | Portland State University | Method for patterning sub-50-nanometers structures |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9911609B2 (en) | 2014-01-09 | 2018-03-06 | Micron Technology, Inc. | Methods of forming nanostructures having low defect density |
US10121662B2 (en) | 2014-01-09 | 2018-11-06 | Micron Technology, Inc. | Methods of forming structures and methods of decreasing defect density |
US10607836B2 (en) | 2014-01-09 | 2020-03-31 | Micron Technology, Inc. | Methods of forming structures |
US11335558B2 (en) | 2014-01-09 | 2022-05-17 | Micron Technology, Inc. | Methods of forming structures utilizing self-assembling nucleic acids |
US11923197B2 (en) | 2014-01-09 | 2024-03-05 | Micron Technology, Inc. | Methods of forming nanostructures utilizing self-assembled nucleic acids |
Also Published As
Publication number | Publication date |
---|---|
US10121662B2 (en) | 2018-11-06 |
US20170263456A1 (en) | 2017-09-14 |
US9275871B2 (en) | 2016-03-01 |
US11335558B2 (en) | 2022-05-17 |
US9911609B2 (en) | 2018-03-06 |
US20150194316A1 (en) | 2015-07-09 |
US10607836B2 (en) | 2020-03-31 |
US20180247815A1 (en) | 2018-08-30 |
US20190074183A1 (en) | 2019-03-07 |
US11923197B2 (en) | 2024-03-05 |
US20200251339A1 (en) | 2020-08-06 |
US20220262623A1 (en) | 2022-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11923197B2 (en) | Methods of forming nanostructures utilizing self-assembled nucleic acids | |
TWI739984B (en) | Schemes for selective deposition for patterning applications | |
TWI621584B (en) | Scalable nucleic acid-based nanofabrication | |
JP4825863B2 (en) | Manufacture of graphene nanodevices | |
USRE50029E1 (en) | Methods of forming nanostructures using self-assembled nucleic acids, and nanostructures therof | |
WO2018026920A1 (en) | Textured surfaces for polynucleotide synthesis | |
US20080280099A1 (en) | Silicon Substrates with Thermal Oxide Windows for Transmission Electron Microscopy | |
US8299227B2 (en) | Method of immobilizing and stretching a nucleic acid on a substrate | |
He et al. | A top-down fabrication process for vertical hollow silicon nanopillars | |
CN117836054A (en) | Flow cell and method for producing the same | |
US10915023B2 (en) | Nitrogen heterocycle-containing monolayers on metal oxides for binding biopolymers | |
US9228069B2 (en) | Sub-10-nanometer nanostructures engineered from giant surfactants | |
KR101830476B1 (en) | Method of Forming Regular Array of Metal Nanoparticles | |
JP2016129220A (en) | Manufacturing method of nanowire | |
EP4479554A1 (en) | Flow cells and methods | |
CN108873602A (en) | A method of the production mask plate based on DNA paper folding nanostructure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001 Effective date: 20180629 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001 Effective date: 20190731 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001 Effective date: 20190731 Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001 Effective date: 20190731 |