+

US20160108784A1 - White smoke reduction system for diesel vehicle - Google Patents

White smoke reduction system for diesel vehicle Download PDF

Info

Publication number
US20160108784A1
US20160108784A1 US14/687,850 US201514687850A US2016108784A1 US 20160108784 A1 US20160108784 A1 US 20160108784A1 US 201514687850 A US201514687850 A US 201514687850A US 2016108784 A1 US2016108784 A1 US 2016108784A1
Authority
US
United States
Prior art keywords
white smoke
doc
smoke reduction
dpf
reduction system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/687,850
Inventor
Sung Mu Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Assigned to HYUNDAI MOTOR COMPANY reassignment HYUNDAI MOTOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, SUNG MU
Publication of US20160108784A1 publication Critical patent/US20160108784A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/063Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present disclosure relate to a white smoke reduction system, and particularly, to a white smoke reduction system capable of discharging sulfur oxide and water, which generate white smoke, at different temperature sections to suppress the sulfur oxide from reacting with the water.
  • FIG. 1 is a diagram illustrating a configuration of an exhaust line in a typical diesel vehicle.
  • An engine 10 , a diesel oxidation catalyst (DOC) 20 , and a diesel particulate filter (DPF) 30 are sequentially provided at a set interval in the exhaust line of the typical diesel vehicle.
  • DOC diesel oxidation catalyst
  • DPF diesel particulate filter
  • sulfuric acid (H 2 SO 4 ) in the form of steam is generated by the combination of sulfur oxide (SO 2 ) and H 2 O in the process of removing particulate matter (PM) from the DPF 30 .
  • the sulfuric acid (H 2 SO 4 ) in the form of steam is cooled, and a particle size thereof is increased when the exhaust gas is discharged to the air, thus causing light scattering and white smoke.
  • An aspect of the present inventive concept is directed to a white smoke reduction system for a diesel vehicle, capable of discharging sulfur oxide (SO 2 ) and water (H 2 O), which cause generation of white smoke by their reaction, at different temperature sections to suppress the sulfur oxide from reacting with the water.
  • SO 2 sulfur oxide
  • H 2 O water
  • a white smoke reduction system for a diesel vehicle which reduces white smoke generated from a diesel vehicle, includes a diesel oxidation catalyst (DOC) mounted on an exhaust line which is connected to an engine to oxidize exhaust gas through a catalyst.
  • a filter module is connected to a rear end of the DOC to collect particulate matter contained in the exhaust gas and is coated with a ceria (CeO 2 ) ingredient such that sulfur oxide is separated at a temperature equal to or more than 600° C.
  • the filer module may be a diesel particulate filter (DPF) connected to the rear end of the DOC.
  • DPF diesel particulate filter
  • the DPF may be coated with the ceria ingredient.
  • the filer module may include a DPF connected to the rear end of the DOC and a white smoke reduction catalyst connected to a rear end of the DPF.
  • the white smoke reduction catalyst may have a carrier through which the exhaust gas passes, and which is coated with the ceria ingredient.
  • Platinum (Pt) may be contained in the coating material coated on the DOC.
  • the coating material coated on the DOC may include alumina (Al 2 O 3 ) and zeolite.
  • the coating amount of the ceria ingredient may be 50% or more of the amount of the coating material coated on the DOC.
  • FIG. 1 is a diagram illustrating a configuration of an exhaust line in a typical diesel vehicle.
  • FIG. 2 is a diagram illustrating a configuration of a white smoke reduction system for a diesel vehicle according an embodiment of the present inventive concept.
  • FIG. 4 is a graph indicating an increased temperature of a DPF, an SO 2 concentration, and white smoke generation according to post-injection in a comparative example.
  • FIG. 2 is a diagram illustrating a configuration of a white smoke reduction system for a diesel vehicle according an embodiment of the present inventive concept.
  • FIG. 3 is a diagram illustrating a configuration of a white smoke reduction system for a diesel vehicle according another embodiment of the present inventive concept.
  • the engine 10 generates a driving force according to starting of a diesel vehicle, and serves to forcibly increase an exhaust temperature by performing post-injection according to control signals applied from an engine control unit (ECU) during regeneration of soot.
  • ECU engine control unit
  • the DOC 20 reduces CO, HC, and the particulate matter in the exhaust gas discharged by driving of the engine 10 , and converts NO into NO 2 . Particularly, the DOC 20 also functions to adsorb a sulfur ingredient onto a coating layer in the form of SO 2 .
  • the DOC 20 comprises a carrier made of a ceramic or metal material, and a surface of the carrier is coated with one or more of alumina (Al 2 O 3 ), zeolite, and platinum (Pt) made of a catalytic material.
  • a diesel particulate filter (hereinafter, referred to as “DPF”) includes a plurality of porous partition walls and collects the particulate matter passing through the DOC 20 .
  • the filter module 100 includes a DPF 110 which is arranged at the rear end of the DOC 20 and coated with the ceria ingredient.
  • an amount of the ceria ingredient coated on the DPF 110 may be 10% or more of an amount of a coating material coated on the DOC 20 when Pt is contained in the coating material coated on the DOC 20 .
  • a separation temperature of the SO 2 may not be maintained at 600° or more due to a poor influence of the ceria ingredient.
  • an amount of the ceria ingredient coated on the DPF 110 may be 50% or more of the amount of the coating material coated on the DOC 20 .
  • the filter module 200 includes a conventional DPF 210 arranged at the rear end of the DOC 20 and a carrier 220 which is arranged at a rear end of the DPF 210 and coated with the ceria ingredient.
  • the carrier 220 may be realized in a filter form having various shapes such that the exhaust gas may pass through the carrier 220 .
  • An amount of the ceria ingredient coated on the carrier 220 may be 10% or more of the amount of the coating material coated on the DOC 20 when Pt is contained in the coating material coated on the DOC 20 , similar to the amount of the ceria ingredient coated on the DPF 110 .
  • an amount of the ceria ingredient coated on the carrier 220 may be 50% or more of the amount of the coating material coated on the DOC 20 .
  • the fuel used in the diesel engine 10 contains a predetermined sulfur ingredient, and sulfur oxide (SO 2 ) is generated in the combustion process.
  • SO 2 sulfur oxide
  • the sulfur oxide is present in exhaust gas in a state of absorbing water.
  • the sulfur oxide is adsorbed onto the DOC 20 and the DPF 30 at a low temperature equal to or less than 400° C. during discharge of the exhaust gas, and is collected. Subsequently, when the temperatures of the DOC 20 and the DPF 30 are increased by the post-injection, the adsorbed sulfur oxide is separated and sulfuric acid (H 2 SO 4 ) in the form of gas is generated by reaction of the separated SO 2 and pyrolyzed H 2 O due to high temperature. A temperature of the generated sulfuric acid is decreased while the sulfuric acid is discharged to the air together with the exhaust gas, and thus, the sulfuric acid is discharged in the form of white smoke.
  • sulfuric acid H 2 SO 4
  • the post-injection is performed on the exhaust line configured of the conventional DOC 20 and DPF 30 .
  • the post-injection is performed on the exhaust line having the DOC 20 and the ceria-coated DPF 110 according to the embodiment of the present inventive concept.
  • the results according to these examples are shown in FIGS. 4 and 5 .
  • FIG. 4 is a graph indicating an increased temperature of the DPF, the SO 2 concentration, and the white smoke generation according to the post-injection in the comparative example.
  • FIG. 5 is a graph indicating an increased temperature of the DPF, the SO 2 concentration, and the white smoke generation according to the post-injection in the embodiment example.
  • opacity is increased to 50% while a large quantity of sulfur oxide (SO 2 ) is discharged in a case in which a temperature T 5 measured at a front end of the DPF 30 when the temperature of the DPF 30 increases by the post-injection is between 400° C. and 600° C., and thus, a large quantity of white smoke is discharged.
  • SO 2 sulfur oxide
  • the sulfur oxide collected at a low temperature (a temperature equal to or less than 400° C.) when the DPF 30 is forcibly regenerated is separated in quantity between a temperature of 400° C. and 600° C., and sulfuric acid (H 2 SO 4 ) is excessively generated by reaction of the sulfur oxide (SO 2 ) with H 2 O, which is present as a compound in the exhaust line, as the temperature of the H 2 O increases. Consequently, a large quantity of white smoke is discharged.
  • the sulfur oxide is separated at a temperature equal to or more than 600° C. instead of the conventional temperature of 400° C. to 600° C., and the H 2 O is discharged.
  • the sulfur oxide is separated in a state in which the H 2 O is beforehand exhausted at a temperature less than the separation temperature of the sulfur oxide, the sulfur oxide is suppressed from reacting with the H 2 O. Therefore, it may be possible to suppress the generation of the white smoke while the sulfuric acid (H 2 SO 4 ) generated by the reaction of the sulfur oxide (SO 2 ) and the H 2 O is discharged to the air.
  • An experimental result in which the post-injection is performed on the exhaust line having the DOC 20 , the DPF 210 , and the ceria-coated carrier 220 according to another embodiment also shows a pattern which is nearly similar to the above-mentioned experimental result in FIG. 5 .
  • sulfur oxide and water may be discharged at different points of time by coating a ceria ingredient on a diesel particulate filter (DPF) or on a carrier which is separately installed at a rear end of the DPF such that sulfur oxide is separated at a higher temperature than a temperature section at which the water is discharged.
  • DPF diesel particulate filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

A white smoke reduction system for a diesel vehicle reduces white smoke generated from a diesel vehicle. The white smoke reduction system includes a diesel oxidation catalyst (DOC) mounted on an exhaust line connected to an engine to oxidize exhaust gas through a catalyst. A filter module is connected to a rear end of the DOC to collect particulate matter contained in the exhaust gas and is coated with a ceria (CeO2) ingredient such that sulfur oxide is separated at a temperature equal to or more than 600° C.

Description

    CROSS-REFERENCE(S) TO RELATED APPLICATIONS
  • The present application claims the benefit of priority to Korean Patent Application Number 10-2014-0139782 filed in the Korean Intellectual Property Office on Oct. 16, 2014, the entire contents of which application are incorporated herein for all purposes by this reference.
  • TECHNICAL FIELD
  • The present disclosure relate to a white smoke reduction system, and particularly, to a white smoke reduction system capable of discharging sulfur oxide and water, which generate white smoke, at different temperature sections to suppress the sulfur oxide from reacting with the water.
  • BACKGROUND
  • Exhaust gas discharged from diesel engine vehicles significantly contains a variety of oxide and particulate matter, compared to gasoline engine vehicles. In recent years, efforts to reduce such noxious exhaust gas are ongoing.
  • FIG. 1 is a diagram illustrating a configuration of an exhaust line in a typical diesel vehicle. An engine 10, a diesel oxidation catalyst (DOC) 20, and a diesel particulate filter (DPF) 30 are sequentially provided at a set interval in the exhaust line of the typical diesel vehicle.
  • Particularly, in the diesel engine using fuel which contains 50 ppm or more of sulfur, sulfuric acid (H2SO4) in the form of steam is generated by the combination of sulfur oxide (SO2) and H2O in the process of removing particulate matter (PM) from the DPF 30. For this reason, the sulfuric acid (H2SO4) in the form of steam is cooled, and a particle size thereof is increased when the exhaust gas is discharged to the air, thus causing light scattering and white smoke.
  • A large quantity of white smoke is generated by evaporation of water contained in sulfuric acid (H2SO4) into steam when the sulfuric acid containing water is exposed at high temperature (for instance, approximately 400° C. to 600° C. during regeneration of the DPF) while being collected in a catalyst, an exhaust pipe, a muffler, etc. during traveling of the vehicle. Thus, reduction of the white smoke is performed through engine control.
  • A variety of white smoke reduction methods are currently proposed during regeneration of the DPF. However, such methods are not relatively effective since reducing white smoke through control of an engine or exhaust gas after-treatment device under a certain temperature.
  • Accordingly, a technique for controlling a temperature variation rate when the temperature of the exhaust gas after-treatment device increases according to a vehicle speed has been recently proposed.
  • However, since the conventional white smoke technique and the white smoke technique disclosed are performed through control of the engine or exhaust gas after-treatment device, the techniques require significant accuracy in controlling the engine or exhaust gas after-treatment device.
  • The matters described as the related art have been provided only for assisting the understanding for the background of the present disclosure and should not be considered as corresponding to the related art already known to those skilled in the art.
  • SUMMARY
  • An aspect of the present inventive concept is directed to a white smoke reduction system for a diesel vehicle, capable of discharging sulfur oxide (SO2) and water (H2O), which cause generation of white smoke by their reaction, at different temperature sections to suppress the sulfur oxide from reacting with the water.
  • Other objects and advantages of the present disclosure can be understood by the following description, and become apparent with reference to the embodiments of the present inventive concept. Also, it is obvious to those skilled in the art to which the present invention pertains that the objects and advantages of the present disclosure can be realized by the means as claimed and combinations thereof.
  • In accordance with an embodiment of the present inventive concept, a white smoke reduction system for a diesel vehicle, which reduces white smoke generated from a diesel vehicle, includes a diesel oxidation catalyst (DOC) mounted on an exhaust line which is connected to an engine to oxidize exhaust gas through a catalyst. A filter module is connected to a rear end of the DOC to collect particulate matter contained in the exhaust gas and is coated with a ceria (CeO2) ingredient such that sulfur oxide is separated at a temperature equal to or more than 600° C.
  • The filer module may be a diesel particulate filter (DPF) connected to the rear end of the DOC. The DPF may be coated with the ceria ingredient.
  • The filer module may include a DPF connected to the rear end of the DOC and a white smoke reduction catalyst connected to a rear end of the DPF. The white smoke reduction catalyst may have a carrier through which the exhaust gas passes, and which is coated with the ceria ingredient.
  • A coating amount of the ceria ingredient may be 10% or more of an amount of a coating material coated on the DOC. The DPF includes a plurality of porous partition walls and collects the particulate matter passing through the DOC.
  • Platinum (Pt) may be contained in the coating material coated on the DOC.
  • The coating material coated on the DOC may include alumina (Al2O3) and zeolite. The coating amount of the ceria ingredient may be 50% or more of the amount of the coating material coated on the DOC.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram illustrating a configuration of an exhaust line in a typical diesel vehicle.
  • FIG. 2 is a diagram illustrating a configuration of a white smoke reduction system for a diesel vehicle according an embodiment of the present inventive concept.
  • FIG. 3 is a diagram illustrating a configuration of a white smoke reduction system for a diesel vehicle according another embodiment of the present inventive concept.
  • FIG. 4 is a graph indicating an increased temperature of a DPF, an SO2 concentration, and white smoke generation according to post-injection in a comparative example.
  • FIG. 5 is a graph indicating an increased temperature of a DPF, an SO2 concentration, and white smoke generation according to post-injection in an embodiment example.
  • DETAILED DESCRIPTION
  • Exemplary embodiments of the present inventive concept will be described below in more detail with reference to the accompanying drawings. The present inventive concept may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present disclosure to those skilled in the art. Throughout the disclosure, like reference numerals refer to like parts throughout the various figures and embodiments of the present inventive concept.
  • FIG. 2 is a diagram illustrating a configuration of a white smoke reduction system for a diesel vehicle according an embodiment of the present inventive concept. FIG. 3 is a diagram illustrating a configuration of a white smoke reduction system for a diesel vehicle according another embodiment of the present inventive concept.
  • As shown in the drawings, the white smoke reduction system for a diesel vehicle according the embodiments of the present inventive concept includes a diesel oxidation catalyst (DOC) 20 which is mounted on an exhaust line connected to an engine 10 to oxidize exhaust gas through a catalyst. A filter module 100 or 200 is connected to a rear end of the DOC 20 to collect particulate matter contained in the exhaust gas and is coated with a ceria (CeO2) ingredient such that sulfur oxide (SO2) is separated at a temperature equal to or more than 600° C.
  • The engine 10 generates a driving force according to starting of a diesel vehicle, and serves to forcibly increase an exhaust temperature by performing post-injection according to control signals applied from an engine control unit (ECU) during regeneration of soot.
  • Here, the post-injection is to additionally inject fuel into high-temperature exhaust gas immediately after explosion in the intake, compression, and explosion/exhaust strokes of the engine 10 to increase the temperature of the exhaust gas according to additional combustion. The post-injection is performed under regeneration condition determination according to an accumulated amount of particulate matter (PM).
  • The DOC 20 reduces CO, HC, and the particulate matter in the exhaust gas discharged by driving of the engine 10, and converts NO into NO2. Particularly, the DOC 20 also functions to adsorb a sulfur ingredient onto a coating layer in the form of SO2.
  • In this case, the DOC 20 comprises a carrier made of a ceramic or metal material, and a surface of the carrier is coated with one or more of alumina (Al2O3), zeolite, and platinum (Pt) made of a catalytic material.
  • The filter module 100 or 200 improves a conventional diesel particulate filer (DPF). The filter module 100 or 200 physically collects the particulate matter in the exhaust gas, and combusts and reduces the particulate matter when the post-injection is performed. Particularly, the filter module 100 or 200 separates the SO2 at a temperature equal to or more than 600° C. using the ceria ingredient in the present disclosure.
  • A diesel particulate filter (hereinafter, referred to as “DPF”) includes a plurality of porous partition walls and collects the particulate matter passing through the DOC 20.
  • As shown in FIG. 2, the filter module 100 according to an exemplary embodiment includes a DPF 110 which is arranged at the rear end of the DOC 20 and coated with the ceria ingredient.
  • In this case, an amount of the ceria ingredient coated on the DPF 110 may be 10% or more of an amount of a coating material coated on the DOC 20 when Pt is contained in the coating material coated on the DOC 20.
  • If the amount of the ceria ingredient is less than 10% of an amount of the coating material coated on the DOC 20, a separation temperature of the SO2 may not be maintained at 600° or more due to a poor influence of the ceria ingredient.
  • However, when Pt is not contained in the coating material coated on the DOC 20 and the coating material mainly contains alumina (Al2O3) and zeolite, an amount of the ceria ingredient coated on the DPF 110 may be 50% or more of the amount of the coating material coated on the DOC 20.
  • As shown in FIG. 3, the filter module 200 according to another embodiment includes a conventional DPF 210 arranged at the rear end of the DOC 20 and a carrier 220 which is arranged at a rear end of the DPF 210 and coated with the ceria ingredient.
  • In this case, the carrier 220 may be realized in a filter form having various shapes such that the exhaust gas may pass through the carrier 220.
  • An amount of the ceria ingredient coated on the carrier 220 may be 10% or more of the amount of the coating material coated on the DOC 20 when Pt is contained in the coating material coated on the DOC 20, similar to the amount of the ceria ingredient coated on the DPF 110. In addition, when Pt is not contained in the coating material coated on the DOC 20, and the coating material mainly contains Al2O3 and zeolite, an amount of the ceria ingredient coated on the carrier 220 may be 50% or more of the amount of the coating material coated on the DOC 20.
  • Performance of the white smoke reduction system for a diesel vehicle as described above according to the present disclosure will be described according to comparison of a comparative example and an embodiment example.
  • First, a white smoke generator in the diesel vehicle is simply described.
  • The fuel used in the diesel engine 10 contains a predetermined sulfur ingredient, and sulfur oxide (SO2) is generated in the combustion process. The sulfur oxide is present in exhaust gas in a state of absorbing water.
  • The sulfur oxide is adsorbed onto the DOC 20 and the DPF 30 at a low temperature equal to or less than 400° C. during discharge of the exhaust gas, and is collected. Subsequently, when the temperatures of the DOC 20 and the DPF 30 are increased by the post-injection, the adsorbed sulfur oxide is separated and sulfuric acid (H2SO4) in the form of gas is generated by reaction of the separated SO2 and pyrolyzed H2O due to high temperature. A temperature of the generated sulfuric acid is decreased while the sulfuric acid is discharged to the air together with the exhaust gas, and thus, the sulfuric acid is discharged in the form of white smoke.
  • Next, an SO2 concentration and white smoke generation in exhaust gas are compared according to the comparative example and the embodiment example.
  • In the comparative example, the post-injection is performed on the exhaust line configured of the conventional DOC 20 and DPF 30. In the embodiment example, the post-injection is performed on the exhaust line having the DOC 20 and the ceria-coated DPF 110 according to the embodiment of the present inventive concept. The results according to these examples are shown in FIGS. 4 and 5.
  • FIG. 4 is a graph indicating an increased temperature of the DPF, the SO2 concentration, and the white smoke generation according to the post-injection in the comparative example. FIG. 5 is a graph indicating an increased temperature of the DPF, the SO2 concentration, and the white smoke generation according to the post-injection in the embodiment example.
  • As seen in the comparative example of FIG. 4, it is identified that opacity is increased to 50% while a large quantity of sulfur oxide (SO2) is discharged in a case in which a temperature T5 measured at a front end of the DPF 30 when the temperature of the DPF 30 increases by the post-injection is between 400° C. and 600° C., and thus, a large quantity of white smoke is discharged.
  • In other words, the sulfur oxide collected at a low temperature (a temperature equal to or less than 400° C.) when the DPF 30 is forcibly regenerated is separated in quantity between a temperature of 400° C. and 600° C., and sulfuric acid (H2SO4) is excessively generated by reaction of the sulfur oxide (SO2) with H2O, which is present as a compound in the exhaust line, as the temperature of the H2O increases. Consequently, a large quantity of white smoke is discharged.
  • On the other hand, as seen in the embodiment example of FIG. 5, it is identified that a large quantity of sulfur oxide (SO2) is discharged in a case in which the temperature T5 measured at a front end of the DPF 110 when the temperature of the DPF 110 increases by the post-injection is equal to or more than 600° C. (620° C. to 650° C.), but opacity is maintained to the level of 10% or less, and thus, discharge of white smoke is suppressed.
  • This is because the sulfur oxide collected at a low temperature (a temperature equal to or less than 400° C.) when the DPF 110 is forcibly regenerated is separated in quantity at a temperature equal to or more than 600° C., but H2O, which is collected as a compound in the exhaust line, is discharged and exhausted, and thus, H2O gas amount decreases rapidly at a temperature section equal to or more than 600° C. Thus, since an amount of H2O to be reacted remarkable decreases even though the sulfur oxide (SO2) separated at the temperature section equal to or more than 600° C. is discharged, the reaction of the sulfur oxide (SO2) and the H2O is suppressed so that the white smoke is nearly invisible with the naked eye.
  • Accordingly, according to the comparison of the above-mentioned comparative example and embodiment example, when the ceria-coated DPF 100 is applied, the sulfur oxide is separated at a temperature equal to or more than 600° C. instead of the conventional temperature of 400° C. to 600° C., and the H2O is discharged. Thus, since the sulfur oxide is separated in a state in which the H2O is beforehand exhausted at a temperature less than the separation temperature of the sulfur oxide, the sulfur oxide is suppressed from reacting with the H2O. Therefore, it may be possible to suppress the generation of the white smoke while the sulfuric acid (H2SO4) generated by the reaction of the sulfur oxide (SO2) and the H2O is discharged to the air.
  • An experimental result in which the post-injection is performed on the exhaust line having the DOC 20, the DPF 210, and the ceria-coated carrier 220 according to another embodiment also shows a pattern which is nearly similar to the above-mentioned experimental result in FIG. 5.
  • In accordance with the exemplary embodiments of the present inventive concept, sulfur oxide and water may be discharged at different points of time by coating a ceria ingredient on a diesel particulate filter (DPF) or on a carrier which is separately installed at a rear end of the DPF such that sulfur oxide is separated at a higher temperature than a temperature section at which the water is discharged.
  • Thus, it may be possible to prevent generation of white smoke by suppressing the sulfur oxide from reacting with the water.
  • While the present disclosure has been described with respect to the specific embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.

Claims (8)

What is claimed is:
1. A white smoke reduction system for a diesel vehicle, which reduces white smoke generated from a diesel vehicle, the system comprising:
a diesel oxidation catalyst (DOC) mounted on an exhaust line connected to an engine to oxidize exhaust gas through a catalyst; and
a filter module connected to a rear end of the DOC to collect particulate matter contained in the exhaust gas, the filter module being coated with a ceria (CeO2) ingredient such that sulfur oxide is separated at a temperature equal to or more than 600° C.
2. The white smoke reduction system of claim 1, wherein:
the filer module is a diesel particulate filter (DPF) connected to the rear end of the DOC; and
the DPF is coated with the ceria ingredient.
3. The white smoke reduction system of claim 1, wherein:
the filer module comprises a DPF connected to the rear end of the DOC and a white smoke reduction catalyst connected to a rear end of the DPF; and
the white smoke reduction catalyst includes a carrier through which the exhaust gas passes, the carrier being coated with the ceria ingredient.
4. The white smoke reduction system of claim 2, wherein a coating amount of the ceria ingredient is 10% or more of an amount of a coating material coated on the DOC.
5. The white smoke reduction system of claim 4, wherein platinum (Pt) is contained in the coating material coated on the DOC.
6. The white smoke reduction system of claim 4, wherein the coating material coated on the DOC comprises alumina (Al2O3) and zeolite, and a coating amount of the ceria ingredient is 50% or more of the amount of the coating material coated on the DOC.
7. The white smoke reduction system of claim 3, wherein a coating amount of the ceria ingredient is 10% or more of an amount of a coating material coated on the DOC.
8. The white smoke reduction system of claim 2, wherein the DPF includes a plurality of porous partition walls and collects the particulate matter passing through the DOC.
US14/687,850 2014-10-16 2015-04-15 White smoke reduction system for diesel vehicle Abandoned US20160108784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0139782 2014-10-16
KR1020140139782A KR101646355B1 (en) 2014-10-16 2014-10-16 System for decreasing white smoke

Publications (1)

Publication Number Publication Date
US20160108784A1 true US20160108784A1 (en) 2016-04-21

Family

ID=55638180

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/687,850 Abandoned US20160108784A1 (en) 2014-10-16 2015-04-15 White smoke reduction system for diesel vehicle

Country Status (3)

Country Link
US (1) US20160108784A1 (en)
KR (1) KR101646355B1 (en)
DE (1) DE102015208383A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101091633B1 (en) * 2009-12-03 2011-12-08 현대자동차주식회사 Denitrification catalyst and exhaust system using the same
US9346018B2 (en) * 2010-11-02 2016-05-24 Haldor Topsoe A/S Method for the preparation of a catalysed particulate filter and catalysed particulate filter
JP5769732B2 (en) * 2010-12-27 2015-08-26 エヌ・イーケムキャット株式会社 Selective reduction catalyst, exhaust gas purification apparatus and exhaust gas purification method using the same
KR20130017392A (en) * 2011-08-10 2013-02-20 현대자동차주식회사 Exhaust gas processing device
KR101371723B1 (en) 2012-04-18 2014-03-07 현대자동차(주) Method and system for reducing white smoke for diesel vehicle

Also Published As

Publication number Publication date
KR101646355B1 (en) 2016-08-08
KR20160045178A (en) 2016-04-27
DE102015208383A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
US9321008B2 (en) Device for discharging exhaust gas from diesel engine, having ammonolysis module
US20100175372A1 (en) Compact diesel engine exhaust treatment system
US11732631B2 (en) Exhaust gas purification system for a gasoline engine
US20100221161A1 (en) Device for the Purification of Diesel Exhaust Gases
KR102088152B1 (en) CATALYST SYSTEM FOR TREATING NOx- AND PARTICLE-CONTAINING DIESEL EXHAUST GAS
CN103437864B (en) Waste gas from compression ignition engine purification method and device
US11614015B2 (en) Exhaust gas purification system for a gasoline engine
CN112867553B (en) Exhaust gas purification system for gasoline engine
US11859526B2 (en) Exhaust gas purification system for a gasoline engine
EP3639922B1 (en) Exhaust gas purification system for a gasoline engine
CN103883380A (en) Method and system for controlling exhaust gas temperature of engine
WO2020079143A1 (en) Exhaust gas purification system for a gasoline engine
WO2020079136A1 (en) Exhaust gas purification system for a gasoline engine
US20140134062A1 (en) Exhaust gas purification system of vehicle
US9631565B2 (en) Control method for improving nitrogen oxide purification performance
US10036293B2 (en) Apparatus for purifying exhaust gas
US20190224649A1 (en) Catalyst for reduction of nitrogen oxides
CN104564270B (en) Method for desulphurizing an exhaust gas aftertreatment system of an internal combustion engine
US20160108784A1 (en) White smoke reduction system for diesel vehicle
KR100957275B1 (en) Multi-stage regeneration method of soot filtration filter constituting after-treatment device of vehicle exhaust system
WO2011055053A1 (en) Device for treating exhaust gases from a vehicle comprising a heat engine
JP2017180272A (en) Exhaust emission control device
WO2009099297A3 (en) Device for reducing smoke in light-oil vehicles for a rapid acceleration response

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHOI, SUNG MU;REEL/FRAME:035431/0096

Effective date: 20140210

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载