US20160099034A1 - I/o pin capacitance reduction using tsvs - Google Patents
I/o pin capacitance reduction using tsvs Download PDFInfo
- Publication number
- US20160099034A1 US20160099034A1 US14/969,381 US201514969381A US2016099034A1 US 20160099034 A1 US20160099034 A1 US 20160099034A1 US 201514969381 A US201514969381 A US 201514969381A US 2016099034 A1 US2016099034 A1 US 2016099034A1
- Authority
- US
- United States
- Prior art keywords
- die
- driver
- memory
- chip
- chip driver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000009467 reduction Effects 0.000 title abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 18
- 241000724291 Tobacco streak virus Species 0.000 claims abstract 8
- 239000004065 semiconductor Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 238000003860 storage Methods 0.000 claims description 10
- 238000004513 sizing Methods 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 9
- 238000013507 mapping Methods 0.000 description 7
- 230000001934 delay Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000013403 standard screening design Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/12—Group selection circuits, e.g. for memory block selection, chip selection, array selection
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/02—Detection or location of defective auxiliary circuits, e.g. defective refresh counters
- G11C29/023—Detection or location of defective auxiliary circuits, e.g. defective refresh counters in clock generator or timing circuitry
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/02—Detection or location of defective auxiliary circuits, e.g. defective refresh counters
- G11C29/025—Detection or location of defective auxiliary circuits, e.g. defective refresh counters in signal lines
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/02—Detection or location of defective auxiliary circuits, e.g. defective refresh counters
- G11C29/028—Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04042—Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
- H01L2224/05554—Shape in top view being square
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/0557—Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16135—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/16145—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32135—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/32145—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45147—Copper (Cu) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48145—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48145—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
- H01L2224/48147—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked with an intermediate bond, e.g. continuous wire daisy chain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06506—Wire or wire-like electrical connections between devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/0651—Wire or wire-like electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06517—Bump or bump-like direct electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06541—Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06555—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
- H01L2225/06562—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/143—Digital devices
- H01L2924/1434—Memory
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/143—Digital devices
- H01L2924/1434—Memory
- H01L2924/1435—Random access memory [RAM]
- H01L2924/1436—Dynamic random-access memory [DRAM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/143—Digital devices
- H01L2924/1434—Memory
- H01L2924/1435—Random access memory [RAM]
- H01L2924/1438—Flash memory
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/143—Digital devices
- H01L2924/1434—Memory
- H01L2924/1435—Random access memory [RAM]
- H01L2924/1443—Non-volatile random-access memory [NVRAM]
Definitions
- memory core control circuits 104 may generate the appropriate bias voltages for word lines and bit lines within memory core 103 , as well as generate the appropriate memory block, row, and column addresses.
- the memory controller 105 may manage the translation (or mapping) of logical addresses received from the host 106 into physical addresses associated with the memory chip 102 .
- the mapping tables for mapping the logical addresses corresponding with logical groups of data to physical address corresponding with memory locations within memory chip 102 may be stored within memory controller 105 or within memory chip 102 .
- memory controller 105 may control one or more memory chips within a memory system. Each of the one or more memory chips may be organized into a plurality of memory blocks. In some cases, each of the one or more memory chips may be organized into a plurality of metablocks. A metablock may comprise a plurality of memory blocks. A memory block may comprise a group of memory cells that are erased concurrently (i.e., a unit of erase). In some cases, the group of memory cells may comprise a binary cache or a group of multi-level cells for storing user data. Each of the plurality of memory blocks may include a plurality of pages. A page may comprise a group of memory cells that may be accessed, programmed, and/or read concurrently. The group of memory cells within a page may share a common word line. In some cases, a memory block may comprise 32, 64, or 128 pages and each page may comprise 2 KB or 4 KB of data.
- memory block 146 from memory plane 142 may be linked together to form a metablock or a portion of a metablock.
- each of the memory blocks may include a plurality of pages
- a metapage extending across each of the memory planes 142 - 144 may be created by linking pages from each of the memory blocks within a metablock together.
- a subset of the memory blocks within a memory plane may correspond with one or more spare blocks.
- FIG. 6A depicts one embodiment of a portion of a system, such as memory system 101 in FIG. 4A , encased within a package 670 .
- the portion of the system comprises die 601 - 603 that are vertically stacked within the package 670 .
- the package 670 may comprise a BGA package or TSOP package.
- the package 670 may also comprise a stacked multi-chip package, a system-in-package (SiP), or a chip stack multichip module (MCM).
- die 601 includes a pre-driver 611 that drives a delay line 631 that drives an off-chip driver 621 that drives a shared output node.
- the pre-driver 611 may directly drive the off-chip driver 621 (i.e., the delay line 631 may be bypassed).
- Die 602 includes a pre-driver 612 that drives a delay line 632 that drives an off-chip driver 622 that drives the shared output node. In some cases, the pre-driver 612 may directly drive the off-chip driver 622 (i.e., the delay line 632 may be bypassed).
- Die 603 includes a pre-driver 613 that drives a delay line 633 that drives an off-chip driver 623 that drives the shared output node. In some cases, the pre-driver 613 may directly drive the off-chip driver 623 (i.e., the delay line 633 may be bypassed).
- the shared output node may comprise the output nodes from the three off-chip drivers 621 - 623 shorted together using a TSV, such as TSV 652 .
- the shared output node may connect to other circuitry located within the package 670 .
- a TSV 651 vertically connects the output nodes from the three pre-drivers 611 - 613 .
- an off-chip driver corresponding with a selected die in a die stack may be placed in parallel with one or more off-chip drivers corresponding with unselected die of the die stack.
- the off-chip driver for the selected die and other off-chip drivers from unselected die may be used to drive an output node, the sizing of the off-chip drivers may be reduced leading to a reduction in the diffusion capacitance loading the output node.
- a first delay line associated with a selected die may be set such that the delay from a pre-driver within the selected die to the input of an off-chip driver on the selected die comprises the worst-case signal delay from the pre-driver within the selected die to the input of the off-chip with the latest arriving input signal; thus, delay lines may be used to synchronize the input signal timings for the off-chip drivers located on the selected die and the unselected die.
- the delay lines used for adjusting the timing of signals arriving at the off-chip drivers may be individually set such that the input arrival times of signals to the off-chip drivers are synchronized to the worst-case delay from the selected pre-driver to the farthest off-chip driver.
- the tweaking of the delay lines can be part of an initial calibration sequence issued by the controller after power ON.
- FIG. 6B depicts one embodiment including signal paths 625 - 629 through the portion of the system depicted in FIG. 6A .
- die 601 is selected and the pre-driver 611 sends an electrical signal to delay lines 631 - 633 via TSV 651 corresponding with signal path 625 .
- the delay lines 631 - 633 in turn drive off-chip drivers 621 - 623 corresponding with signal paths 626 - 628 .
- the off-chip drivers 621 - 623 drive the TSV 652 corresponding with signal path 629 .
- a CMOS push-pull inverter driver may be used as an output driver.
- an output driver may comprise a voltage-mode driver or a current-mode driver.
- a voltage-mode driver may comprise a low-impedance driver with two or more transistors which connect to supplies that set the output signal swing. The transistors may be sized such that they operate in the linear region of their IV curves.
- a first memory die is provided.
- the first memory die may include a first off-chip driver that drives a first output node.
- the first output node may correspond with a data node for communicating data read from the first memory die.
- a second memory die is placed above the first memory die and/or vertically stacked above and attached to the first memory die.
- the first memory die may share a vertical electrical connection with an input path of a second off-chip driver located on the second memory die.
- the vertical electrical connection may comprise one or more TSVs.
- the second off-chip driver may also drive the first output node. In some cases, the output of the second off-chip driver may be connected to the output of the first off-chip driver using a TSV.
- One embodiment of the disclosed technology includes identifying a selected die of a plurality of stacked die.
- the plurality of stacked die includes the selected die and one or more unselected die.
- Each of the one or more unselected die shares a vertical electrical connection with an input path of a first off-chip driver located on the selected die.
- the method further comprises acquiring the data from the selected die.
- One embodiment of the disclosed technology includes providing a first memory die.
- the first memory die includes a first off-chip driver connected to a first output node.
- the method further comprises placing a second memory die above the first memory die.
- the first memory die shares a vertical electrical connection with an input path of a second off-chip driver located on the second memory die.
- the second off-chip driver drives the first output node.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
- This application is a divisional application of U.S. patent application Ser. No. 14/161,691, entitled “I/O Pin Capacitance Reduction Using TSVs,” filed on Jan. 23, 2014, which is herein incorporated by reference in its entirety.
- Semiconductor memory is widely used in various electronic devices such as mobile phones, digital cameras, personal digital assistants, SSDs, medical electronics, mobile computing devices, and non-mobile computing devices. Semiconductor memory may comprise non-volatile memory or volatile memory. A non-volatile memory allows information to be stored and retained even when the non-volatile memory is not connected to a source of power (e.g., a battery). Examples of non-volatile memory include flash memory (e.g., NAND-type and NOR-type flash memory) and Electrically Erasable Programmable Read-Only Memory (EEPROM).
- It is common for semiconductor memory die to be placed into a package to allow for easier handling and assembly, and to protect the die from damage. Although a plural form of “die” is “dice,” it is common industry practice to use “die” as a plural form as well as the singular form. In one example, semiconductor memory die and/or other integrated circuits, such as processors, may be encased within a package wherein the die may be stacked on top of one another within the package. The package may comprise a surface-mount package (e.g., a BGA package or TSOP package). One benefit of vertically stacking die within a package (e.g., stacking 16 die within a single package) is that form factor and/or package size may be reduced. In some cases, the package may comprise a stacked multi-chip package, a system-in-package (SiP), or a chip stack multichip module (MCM). Vertical connections between the stacked die including direct vertical connections through a die's substrate (e.g., through a silicon substrate) may be formed within each die before or after die-to-die bonding. In some cases, the vertical connections may comprise through-silicon vias (TSVs).
-
FIGS. 1-3 depict various embodiments of asemiconductor package 20 including a plurality of stacked die. As depicted, a plurality of semiconductor die, such as die 22, 24, and 34 may be mounted to asubstrate 26 and encased within thesemiconductor package 20. In one example, each of die 22, 24, and 34 may comprise a semiconductor memory die. In another example, die 22 may comprise a flash memory die and die 24 may comprise a memory controller. In some embodiments, the number of vertically stacked die within a package may comprise more than two die (e.g., 16, 32, or 64 die within the package). Each of the semiconductor die may include bond pads on an upper surface of the die for allowing electrical access to integrated circuitry within the die. Each bond pad may correspond with an input pin, an output pin, or an input/output (I/O) pin that connects to the integrated circuitry. Wire bonding connections, such asbond wires 30, may be used to electrically connect a die with other die within the package or tosubstrate 26. Thebond wires 30 may comprise a metal such as copper, aluminum, or gold. - As depicted in
FIG. 1 , two or more semiconductor die may be stacked directly on top of each other, thereby taking up a small footprint on thesubstrate 26. However, in a vertically stacked configuration without TSVs, space must be provided between adjacent semiconductor die for the bond wire connections. Adielectric spacer layer 33 may be used to provide space for thebond wires 30 to be bonded to bond pads on thelower die 24. As depicted inFIGS. 2-3 , instead of stacking die directly above each other, each of the stacked semiconductor die may be offset such that the bond pads on one side of each die are exposed. -
FIGS. 1-3 depict various embodiments of a semiconductor package including a plurality of stacked die. -
FIG. 4A depicts one embodiment of a memory system and a host. -
FIG. 4B depicts one embodiment of a mapping between logical groups and physical groups as performed by a memory system. -
FIG. 4C depicts one embodiment of memory core control circuits. -
FIG. 4D depicts one embodiment of a memory core. -
FIG. 4E depicts one embodiment of a memory core organization including a plurality of memory planes. -
FIG. 5 depicts one embodiment of a portion of a system encased within a package. -
FIG. 6A depicts one embodiment of a portion of a system using TSVs. -
FIG. 6B depicts one embodiment including signal paths through the portion of the system depicted inFIG. 6A . -
FIG. 6C depicts one embodiment of a tri-state output driver. -
FIG. 6D depicts one embodiment of an adjustable delay line. -
FIG. 6E depicts one embodiment of a timing diagram showing the benefits of calibrating delay lines. -
FIG. 7 depicts one embodiment of a portion of a system encased within a package. -
FIG. 8A is a flowchart describing one embodiment of a process for acquiring data from a memory system. -
FIG. 8B is a flowchart describing one embodiment of a process for manufacturing a memory system. - Technology is described for reducing pin capacitance and improving off-chip driver performance by using through-silicon vias (TSVs) to enable usage of off-chip drivers located within selected and unselected die of a plurality of stacked die. A reduction in pin capacitance allows for faster switching times and/or lower power operation. Currently in a multi die stack only the pre driver and off chip driver of the selected die is enabled. Off chip drivers on unselected die are not used and causes large pin cap. In some embodiments, a TSV may connect an internal node (e.g., the output of a pre-driver) within a selected die of a plurality of stacked die with the input of an off-chip driver within an unselected die of the plurality of stacked die. In some cases, only a single die within a die stack may be selected (or enabled) at a given time. Using a TSV to connect internal nodes associated with off-chip drivers located within both selected and unselected die of the die stack allows for reduced off-chip driver sizing and thus reduced pin capacitance. The reduction in pin capacitance may allow for an increase in the number of die within a die stack (i.e., more die may be vertically stacked)
- In some embodiments, to minimize crowbar current or shoot-through current caused by timing discrepancies between the off-chip drivers associated with the selected and unselected die in a die stack, adjustable delay lines may be added to the input paths of the off-chip drivers. In one embodiment, the input signal timing to each off-chip driver may be adjusted based on the location of the selected die within a stacked die configuration. For example, the adjustable timing delays for each of the delay lines when the selected die is the bottom die in the stacked die configuration may be different from the adjustable timing delays for each of the delay lines when the selected die is the top die or a middle die in the stacked die configuration. In another embodiment, the input signal timing for a particular off-chip driver may be adjusted based on the location of the selected die within a die stack and process variation data associated with the die associated with the particular off-chip driver. The process variation data may identify whether a die was part of a fast lot or a slow lot. In some cases, the adjustable delay lines in both selected and unselected die may be adjusted such that the off-chip drivers receive input signals at substantially the same time. In one example, a first delay line associated with a selected die may be set such that the delay from a pre-driver within the selected die to the input of an off-chip driver on the selected die comprises the worst-case signal delay from the pre-driver within the selected die to the input of the farthest off-chip driver located on an unselected die (i.e., the off-chip driver with the latest arriving input signal); thus, the first delay line may be used to synchronize the input signal timings for the off-chip driver located on the selected die and the farthest off-chip driver located on an unselected die (i.e., the off-chip driver that has the latest arriving input signal). The electrical connection from the pre-driver within the selected die to each of the corresponding off-chip drivers located on the unselected die may be formed using one or more TSVs.
- One issue involving the stacking of die within a die stack is that the pin capacitance for a commonly connected pin among each die in the die stack increases with the number of die within the die stack. For example, in a die stack comprising 16 die, an off-chip driver of the one selected die out of the 16 total die may have to drive pin capacitance associated with each of the off-chip drivers from each of the 16 total die. As pin capacitance may be dominated by the size of the off-chip drivers and a limiting factor to the maximum number of stacked die within a package, there is a need to minimize the pin capacitance associated with off-chip drivers within selected and unselected die within a stacked die configuration.
- The increase in pin capacitance for a commonly connected pin among each die in a die stack (or among a subset of die in the die stack) impacts both input pins and output pins. For input pins, on-die termination (ODT) may be used. ODT refers to the placement of one or more termination resistors (e.g., for impedance matching purposes) within a die. In cases where ODT structures are included within two or more die in a die stack, the ODT structures may be shared across both the selected and unselected die within the die stack. A metal-layer masking change (e.g., via a top metal layer change) may be used to enable or set a particular number of resistors (or a particular resistance value) within each die of the die stack. For example, in the case of a two-die stack, both die may use a first metal layer mask to provide a combined 100 ohm termination by setting the ODT structures in each die to provide a 200 ohm termination. In the case of a four-die stack, the first metal layer mask may be updated to provide a combined 100 ohm termination by setting the ODT structures in each die to provide a 400 ohm termination.
-
FIG. 4A depicts one embodiment of amemory system 101 and ahost 106. Thehost 106 may comprise a computing device (e.g., a personal computer, audio player, digital camera, or mobile computing device) or a storage device (e.g., an enterprise storage device). Thememory system 101 may comprise a memory card, a flash drive, a system on a chip (SOC), or an embedded memory system. In one embodiment, thememory system 101 may be embedded within a multi-chip package. As depicted, thememory system 101 includes amemory controller 105 and amemory chip 102. In some cases, a memory system, such asmemory system 101, may include more than one memory chip. In one example, thememory system 101 may include 16 NAND die stacked within a multi-chip package. Thememory controller 105 may include one or more state machines, control logic, page registers, non-volatile memory, SRAM, or other circuitry for controlling the operation ofmemory chip 102. The one or more state machines, control logic, page registers, non-volatile memory, SRAM, and/or other circuitry for controlling the operation of thememory chip 102 may be referred to as managing or control circuits. The managing or control circuits may be used to facilitate one or more memory array operations associated with thememory chip 102 including erasing, programming, and reading operations. Thememory controller 105 may receive data and commands fromhost 106 and provide memory chip data to host 106. In some embodiments, thememory controller 105 andmemory chip 102 may be arranged on a single integrated circuit. In other embodiments,memory controller 105 andmemory chip 102 may be arranged on different integrated circuits. - In one embodiment, the
memory system 101 may include a plurality of memory die vertically stacked within a multi-chip package. Each of the memory die may include one or more TSVs to enable usage of off-chip drivers located within selected and unselected die of the vertically stacked die. In another embodiment, a multi-die stack may comprise a plurality of NAND die and a DRAM (or other integrated circuit different from a NAND die). In this case, the one or more TSVs may enable usage of off-chip drivers located within the plurality of NAND die but not extend through to the DRAM. Thus, the TSVs may allow vertical connections to extend through to only a subset of the die within the multi-die stack. - As depicted, the
memory chip 102 includes memorycore control circuits 104 andmemory core 103. Memorycore control circuits 104 may include logic for controlling the selection of memory blocks (or arrays) withinmemory core 103, controlling the generation of voltage references for biasing a particular memory array into a read or write state, and generating row and column addresses. Thememory core 103 may include one or more two-dimensional arrays of memory cells or one or more three-dimensional arrays of memory cells. The memory cells may comprise floating-gate transistors or non-volatile memory technologies that employ charge trapping, phase-change (e.g., chalcogenide materials), or state-change materials. In one embodiment, the memorycore control circuits 104 andmemory core 103 are arranged on a single integrated circuit. In other embodiments, the memorycore control circuits 104 andmemory core 103 may be arranged on different integrated circuits. - Referring to
FIG. 4A , a memory system operation may be initiated whenhost 106 sends instructions tomemory controller 105 indicating that it would like to read data frommemory system 101 or write data tomemory system 101. In the event of a write (or programming) operation, host 106 may send tomemory controller 105 both a write command and the data to be written. The data to be written may be buffered bymemory controller 105 and error correcting code (ECC) data may be generated corresponding with the data to be written. The ECC data, which allows data errors that occur during transmission or storage to be detected and/or corrected, may be written tomemory core 103 or stored in non-volatile memory withinmemory controller 105. In one embodiment, the ECC data is generated and data errors are corrected by circuitry withinmemory controller 105. - In some cases, the operation of
memory chip 102 may be controlled bymemory controller 105. In one example, before issuing a write operation tomemory chip 102,memory controller 105 may check a status register to make sure thatmemory chip 102 is able to accept the data to be written. In another example, before issuing a read operation tomemory chip 102,memory controller 105 may pre-read overhead information associated with the data to be read. The overhead information may include ECC data associated with the data to be read or a redirection pointer to a new memory location withinmemory chip 102 in which to read the data requested. Once a read or write operation is initiated bymemory controller 105, memorycore control circuits 104 may generate the appropriate bias voltages for word lines and bit lines withinmemory core 103, as well as generate the appropriate memory block, row, and column addresses. Thememory controller 105 may manage the translation (or mapping) of logical addresses received from thehost 106 into physical addresses associated with thememory chip 102. The mapping tables for mapping the logical addresses corresponding with logical groups of data to physical address corresponding with memory locations withinmemory chip 102 may be stored withinmemory controller 105 or withinmemory chip 102. - In some embodiments,
memory controller 105 may control one or more memory chips within a memory system. Each of the one or more memory chips may be organized into a plurality of memory blocks. In some cases, each of the one or more memory chips may be organized into a plurality of metablocks. A metablock may comprise a plurality of memory blocks. A memory block may comprise a group of memory cells that are erased concurrently (i.e., a unit of erase). In some cases, the group of memory cells may comprise a binary cache or a group of multi-level cells for storing user data. Each of the plurality of memory blocks may include a plurality of pages. A page may comprise a group of memory cells that may be accessed, programmed, and/or read concurrently. The group of memory cells within a page may share a common word line. In some cases, a memory block may comprise 32, 64, or 128 pages and each page may comprise 2 KB or 4 KB of data. -
FIG. 4B depicts one embodiment of a mapping between logical groups and physical groups as performed by a memory system, such asmemory system 101 inFIG. 4A . As depicted, each logical group of logical groups 122 (e.g., represented as a logical block address) is mapped to a unique physical group of physical groups 124 (e.g., represented as a memory block or page address). A logical group may be associated with a metablock, a page, or a portion of a page. In some cases, a logical group may comprise a grouping of one or more logical sectors which are mapped to a metablock. The logical to physical mapping between the logical groups and the physical groups may be stored in a table or list within a non-volatile memory, such asmemory core 103 inFIG. 4A . In some cases, each logical group may be mapped to a metablock address. In one embodiment, a Group Address Table (GAT) may be used to store a mapping of metablock addresses for each logical group within a memory system. -
FIG. 4C depicts one embodiment of memorycore control circuits 104 inFIG. 4A . As depicted, the memorycore control circuits 104 includeaddress decoders 170, voltage generators for selectedcontrol lines 172, and voltage generators for unselected control lines 174. Control lines may include word lines, bit lines, or a combination of word lines and bit lines. Selected control lines may include selected word lines or selected bit lines that are used to place memory cells into a selected state. Unselected control lines may include unselected word lines or unselected bit lines that are used to place memory cells into an unselected state. The voltage generators (or voltage regulators) for selectedcontrol lines 172 may comprise one or more voltage generators for generating selected control line voltages. The voltage generators forunselected control lines 174 may comprise one or more voltage generators for generating unselected control line voltages.Address decoders 170 may generate memory block addresses, as well as row addresses and column addresses for a particular memory block. -
FIG. 4D depicts one embodiment ofmemory core 103 inFIG. 4A . As depicted,memory core 103 includes memory planes 132-134. In some embodiments, the number of memory planes (or bays) per memory core can be different for different implementations. For example, a memory core may include only a single memory plane or a plurality of memory plane (e.g., 16 memory bays). Each memory plane may comprise one or more memory blocks. Each memory block may comprise one or more memory cells. In some cases, multiple memory planes may be operated in parallel to increase read and/or write bandwidth. Although a memory core organization is depicted where memory planes comprise memory blocks, and memory blocks comprise a group of memory cells, other organizations or groupings can also be used with the technology described herein. -
FIG. 4E depicts one embodiment of a memory core organization including a plurality of memory planes. The memory planes 142-144 each comprise a plurality of physical groups. Each physical group may comprise a memory block (e.g., memory block MB00). In some cases, memory blocks across the plurality of physical groups may be linked together to form a metablock. For example, memory blocks 146-148 may be linked together to form a metablock. As depicted, the memory blocks used to form a metablock may be from various locations within their respective memory planes. For example,memory block 146 frommemory plane 142,memory block 147 frommemory plane 143, and memory block 148 frommemory plane 144 may be linked together to form a metablock or a portion of a metablock. As each of the memory blocks may include a plurality of pages, a metapage extending across each of the memory planes 142-144 may be created by linking pages from each of the memory blocks within a metablock together. In some embodiments, a subset of the memory blocks within a memory plane may correspond with one or more spare blocks. -
FIG. 5 depicts one embodiment of a portion of a system, such asmemory system 101 inFIG. 4A , encased within apackage 570. The portion of the system comprises die 501-503 that are vertically stacked within thepackage 570. In some cases, thepackage 570 may comprise a BGA package or TSOP package.Die 501 includes a pre-driver 511 that drives an off-chip driver 521 that drives anoutput pad 531.Die 502 includes a pre-driver 512 that drives an off-chip driver 522 that drives anoutput pad 532.Die 503 includes a pre-driver 513 that drives an off-chip driver 523 that drives anoutput pad 533. Abond wire 550 may be used to connect the output pads 531-533 to each other and to other circuitry located within thepackage 570. One issue with the stacked die configuration depicted inFIG. 5 is that each off-chip driver located on a die must drive a capacitive load that is a function of the number of stacked die that share a common output node. For example, off-chip driver 521 drives an output load that includes capacitive contributions from the diffusion capacitances associated with off-chip drivers 522-523. In one example, each of the output drivers may contribute 3-4 pF to the total output capacitance. -
FIG. 6A depicts one embodiment of a portion of a system, such asmemory system 101 inFIG. 4A , encased within apackage 670. The portion of the system comprises die 601-603 that are vertically stacked within thepackage 670. In some cases, thepackage 670 may comprise a BGA package or TSOP package. Thepackage 670 may also comprise a stacked multi-chip package, a system-in-package (SiP), or a chip stack multichip module (MCM). As depicted, die 601 includes a pre-driver 611 that drives adelay line 631 that drives an off-chip driver 621 that drives a shared output node. In some cases, the pre-driver 611 may directly drive the off-chip driver 621 (i.e., thedelay line 631 may be bypassed).Die 602 includes a pre-driver 612 that drives adelay line 632 that drives an off-chip driver 622 that drives the shared output node. In some cases, the pre-driver 612 may directly drive the off-chip driver 622 (i.e., thedelay line 632 may be bypassed).Die 603 includes a pre-driver 613 that drives adelay line 633 that drives an off-chip driver 623 that drives the shared output node. In some cases, the pre-driver 613 may directly drive the off-chip driver 623 (i.e., thedelay line 633 may be bypassed). The shared output node may comprise the output nodes from the three off-chip drivers 621-623 shorted together using a TSV, such asTSV 652. In some cases, the shared output node may connect to other circuitry located within thepackage 670. - As depicted, a
TSV 651 vertically connects the output nodes from the three pre-drivers 611-613. By connecting internal nodes that are within an input path to the off-chip drivers, an off-chip driver corresponding with a selected die in a die stack may be placed in parallel with one or more off-chip drivers corresponding with unselected die of the die stack. As the off-chip driver for the selected die and other off-chip drivers from unselected die may be used to drive an output node, the sizing of the off-chip drivers may be reduced leading to a reduction in the diffusion capacitance loading the output node. For example, ifdie 601 is selected out of a die stack comprising die 601-603, then theactive pre-driver 611 may provide signals to all three off-chip drivers 621-623. In order to prevent signal conflicts, the pre-drivers within the unselected die may be tri-stated (i.e., placed into a non-driving state). In some cases, a pre-driver may comprise one or more tri-state inverters or a tri-state buffer. In one embodiment, one or more of the off-chip drivers from the unselected die may be enabled for driving the output node (i.e., only a subset of the off-chip drivers located on the unselected die may be enabled). - In one embodiment, one or more TSVs may extend vertically from the top of a die to the bottom of the die. In another embodiment, one or more TSVs may extend from a lower metal layer (e.g., the metal layer closest to the substrate or the first routing layer) through the substrate to the bottom of the die. The connection to the portions of a lower metal layer in contact with a TSV may be made using upper metal layers and landing pads on the top most metal layer or bump pads on the top of the die. The landing pads or bump pads on the top of the die allow TSVs from a second die positioned above the die to make contact with the appropriate nodes of the die.
- In some embodiments, to minimize crowbar current caused by timing discrepancies between the off-chip drivers associated with the selected and unselected die, adjustable delay lines may be added to the input paths of the off-chip drivers. In one embodiment, the input signal timing to each off-chip driver may be adjusted based on the location of the selected die within a die stack. For example, the adjustable timing delays for each of the delay lines when the selected die is the bottom die in the die stack may be different from the adjustable timing delays for each of the delay lines when the selected die is the top die in the die stack.
- In some embodiments, the input signal timing for a particular off-chip driver may be adjusted based on the location of the selected die within a die stack and process variation data associated with the die (e.g., the process variation data corresponds with a process corner that has fast NMOS and slow PMOS) in which the particular off-chip driver is located. In some cases, the adjustable delay lines in both selected and unselected die may be adjusted such that the off-chip drivers receive input signals at substantially the same time. In one example, a first delay line associated with a selected die may be set such that the delay from a pre-driver within the selected die to the input of an off-chip driver on the selected die comprises the worst-case signal delay from the pre-driver within the selected die to the input of the off-chip with the latest arriving input signal; thus, delay lines may be used to synchronize the input signal timings for the off-chip drivers located on the selected die and the unselected die. In some cases, the delay lines used for adjusting the timing of signals arriving at the off-chip drivers may be individually set such that the input arrival times of signals to the off-chip drivers are synchronized to the worst-case delay from the selected pre-driver to the farthest off-chip driver. The tweaking of the delay lines can be part of an initial calibration sequence issued by the controller after power ON.
-
FIG. 6B depicts one embodiment including signal paths 625-629 through the portion of the system depicted inFIG. 6A . As depicted, die 601 is selected and the pre-driver 611 sends an electrical signal to delay lines 631-633 viaTSV 651 corresponding withsignal path 625. The delay lines 631-633 in turn drive off-chip drivers 621-623 corresponding with signal paths 626-628. The off-chip drivers 621-623 drive theTSV 652 corresponding withsignal path 629. -
FIG. 6C depicts one embodiment of a tri-stateable output driver. The depicted output driver may be used as the last stage of a pre-driver, such aspre-driver 611 inFIG. 6A , or as an off-chip driver, such as off-chip driver 621 inFIG. 6A . As depicted, when enable is low (and disable is high), then the output will be floating since bothPMOS 691 andNMOS 692 are placed into a non-conducting state. When enable is high (and disable is low), then the input data value will determine whether the output node is pulled high viaPMOS 691 or pulled low viaNMOS 692. - In one embodiment, a CMOS push-pull inverter driver may be used as an output driver. In another embodiment, an output driver may comprise a voltage-mode driver or a current-mode driver. A voltage-mode driver may comprise a low-impedance driver with two or more transistors which connect to supplies that set the output signal swing. The transistors may be sized such that they operate in the linear region of their IV curves.
-
FIG. 6D depicts one embodiment of an adjustable delay line, such asdelay line 631 inFIG. 6A . As depicted, a delay setting may be used to select one of four different delaysettings using multiplexor 693. The varying signal delays may be created using active elements and/or passive elements (e.g., an RC network). -
FIG. 6E depicts one embodiment of a timing diagram showing the benefits of calibrating delay lines, such as delay lines 631-633 for the portion of the system depicted inFIG. 6A . Due to delay variations caused by RC delay variation alongTSV 651 and die-to-die variations associated with die 601-603, the output of the off-chip drivers 621-623 may not be synchronized causing a deterioration of the output signal associated withTSV 652 and a closure of the valid data window. As depicted, thevalid data window 684 has been reduced relative to thevalid data window 685. In one example, due to the signal skew among the outputs of the off-chip drivers 621-623, the shape of the output waveform ofTSV 652 before calibration may not correspond with the shape of the input waveform associated with the output ofpre-driver 611, thereby causing a reduction in the valid data window. However, the delay lines 631-633 may be calibrated by delaying the output of off-chip driver 621 bydelay 681 usingdelay line 631 ofFIG. 6A and delaying the output of off-chip driver 622 bydelay 682 usingdelay line 632 ofFIG. 6A . After delay calibration, the output waveform ofTSV 652 after calibration may correspond with a delayed version of the input waveform associated with the output ofpre-driver 611, thereby maintaining the size of the valid data window. In some cases, the output waveform ofTSV 652 after calibration may substantially align with the output of the off-chip driver with the latest arriving output signal (e.g., the output of off-chip driver 623 inFIG. 6E ). -
FIG. 7 depicts one embodiment of a portion of a system, such asmemory system 101 inFIG. 4A , encased within apackage 710. The portion of the system comprises die 701-703. The die 701-703 may be vertically stacked within thepackage 710 or arranged in a horizontal manner within thepackage 710. In some cases, thepackage 710 may comprise a BGA package or TSOP package. As depicted, acontroller 780, such asmemory controller 105 inFIG. 4A , may provide an input signal to die 701-703. To improve impedance matching, on-die termination (ODT) resistors may be connected to each input pin or I/O pin receiving the input signal. In cases where ODT structures are included within two or more die in a die stack, the ODT structures may be shared across both the selected and unselected die. Metal options via a metal-layer masking change (e.g., changes to the top metal layer) may be used to enable or set a particular number of resistors (or a particular resistance value) within each die of the die stack. For example, in the case of a two-die stack, both die may use a first metal layer mask to provide a combined 100 ohm termination by setting the ODT structures in each die to provide a 200 ohm termination. In the case of a four-die stack, the first metal layer mask may be updated to provide a combined 100 ohm termination by setting the ODT structures in each die to provide a 400 ohm termination. - In one embodiment, each of the die in a die stack may include ODT resistors that are configurable via a metal mask change. In other embodiments, each of the die in a die stack may include ODT resistors that are configurable via the enabling or disabling of transistor switches on each die. In some cases, ODT resistors of one or more of the die within the die stack may be enabled at a given time. For example, only odd numbered die within the die stack may have their ODT resistors enabled.
-
FIG. 8A is a flowchart describing one embodiment of a process for acquiring data from a memory system. In one embodiment, the process ofFIG. 8A may be performed by a non-volatile storage system, such asmemory system 101 inFIG. 4A . - In
step 802, a command from a host is acquired. In some cases, the command may comprise a read command or a write command. The command may be decoded by a memory controller, such asmemory controller 105 inFIG. 4A . Instep 804, a selected die of a plurality of stacked die is identified based on the command. In one example, the selected die may be identified based on a read address associated with the command. The plurality of stacked die may include a selected die and one or more unselected die. In one embodiment, only a single die of the plurality of stacked die may be selected at any given time (e.g., data may be read from only a single die of the plurality of stacked die at a given time). The selection of die within a die stack may be mutually exclusive. Each of the one or more unselected die may share a vertical electrical connection with an input path of a first off-chip driver located on the selected die. The vertical electrical connection may comprise one or more TSVs. - In
step 806, a location of the selected die within the plurality of stacked die is determined. In one example, the selected die may comprise a die that is located third from the bottom of a die stack comprising 16 total die. Instep 808, a first adjustable delay for a first delay line that drives the first off-chip driver is set based on the location of the selected die within the plurality of stacked die. Instep 810, a second adjustable delay for a second delay line that drives a second off-chip driver located on a second die of the one or more unselected die is set based on the location of the selected die within the plurality of stacked die. In one embodiment, the first adjustable delay may be different from the second adjustable delay. For example, the second adjustable delay may be set to a delay setting that provides a longer delay than the first adjustable delay. - In
step 812, data from the selected die is acquired subsequent to setting the first adjustable delay for the first delay line and subsequent to setting the second adjustable delay for the second delay line. In one embodiment, the data from the selected die may be acquired via a read operation performed by the selected die. Instep 814, the data is output to the host. In one example, the data may be transmitted to the host. - In some embodiments, given a particular selected die within a plurality of stacked die, a first adjustable delay associated with a first delay line of a first die of the plurality of stacked die and a second adjustable delay associated a second delay line of a second die of the plurality of stacked die may be determined using a calibration sequence that reduces data skew and synchronizes the arrival times of output signals from off-chip drivers associated with each of the plurality of stacked die. The calibration sequence may identify the worst-case die with the worst-case signal delay among each die in the plurality of stacked die and then set the first adjustable delay such that the arrival time of the output signals from the off-chip drivers of the first die matches the worst-case signal delay (i.e., synchronizes the arrival time of the output signals from the off-chip drivers of the first die with the arrival time of the output signals from the off-chip drivers of the worst-case die). Similarly, the second adjustable delay may be set such that the arrival time of the output signals from the off-chip drivers of the second die matches the arrival time of the output signals from the off-chip drivers of the worst-case die.
- In some embodiments, a delay line calibration sequence may include sweeping a range of delay line settings for delay lines associated with each die within a plurality of stacked die and then selecting the delay line settings that best synchronize the output signals from the off-chip drivers for each of the die and/or maximizes the size of the valid data window. In some cases, in order to determine the best delay line settings for the plurality of stacked die, numerous iterations associated with varying delay line settings may be performed and a valid data window may be determined for each iteration. The best delay line settings may correspond with the iteration with the widest valid data window.
-
FIG. 8B is a flowchart describing one embodiment of a process for manufacturing a memory system. In one embodiment, the process ofFIG. 8B may be performed to manufacture a memory system, such asmemory system 101 inFIG. 4A . - In
step 842, a first memory die is provided. The first memory die may include a first off-chip driver that drives a first output node. The first output node may correspond with a data node for communicating data read from the first memory die. Instep 844, a second memory die is placed above the first memory die and/or vertically stacked above and attached to the first memory die. The first memory die may share a vertical electrical connection with an input path of a second off-chip driver located on the second memory die. The vertical electrical connection may comprise one or more TSVs. The second off-chip driver may also drive the first output node. In some cases, the output of the second off-chip driver may be connected to the output of the first off-chip driver using a TSV. Instep 846, the first memory die and the second memory die may be encased within a package. In one embodiment, the first memory die and the second memory die may both comprise flash memory die. In another embodiment, the first memory die and the second memory die may both comprise DRAM die. - In one embodiment, one or more TSVs may extend vertically from the top of the first memory die to the bottom of the first memory die. In another embodiment, one or more TSVs may extend from an internal metal layer (e.g., an internal routing layer) of the second memory die through the substrate to the bottom of the second memory die. Landing pads or bump pads may be provided on the top of the first memory die to allow one or more TSVs from the second memory die positioned above the first memory die to make contact with the appropriate internal nodes of the first memory die.
- One embodiment of the disclosed technology includes identifying a selected die of a plurality of stacked die. The plurality of stacked die includes the selected die and one or more unselected die. Each of the one or more unselected die shares a vertical electrical connection with an input path of a first off-chip driver located on the selected die. The method further comprises acquiring the data from the selected die.
- One embodiment of the disclosed technology includes a first memory die and a second memory die located above the first memory die. The first memory die includes a first off-chip driver and the second memory die includes a second off-chip driver. The first memory die includes a first pre-driver that is in a first input path of the first off-chip driver. The first pre-driver connects to a second input path of the second off-chip driver via a vertical electrical connection between the first memory die and the second memory die.
- In some cases, the method may further comprise determining a location of the selected die within the plurality of stacked die and setting a first adjustable delay for a first delay line that drives the first off-chip driver based on the location of the selected die within the plurality of stacked die. The acquiring the data from the selected die is performed subsequent to the setting the first adjustable delay.
- One embodiment of the disclosed technology includes providing a first memory die. The first memory die includes a first off-chip driver connected to a first output node. The method further comprises placing a second memory die above the first memory die. The first memory die shares a vertical electrical connection with an input path of a second off-chip driver located on the second memory die. The second off-chip driver drives the first output node.
- One embodiment of the disclosed technology includes identifying a selected die of a plurality of stacked die. The plurality of stacked die includes the selected die and one or more unselected die. Each of the one or more unselected die shares a vertical electrical connection with an input path of a first off-chip driver located on the selected die. The method further includes determining a location of the selected die within the plurality of stacked die, setting a first adjustable delay for a first delay line that drives the first off-chip driver based on the location of the selected die within the plurality of stacked die, and acquiring the data from the selected die subsequent to the setting the first adjustable delay.
- One embodiment of the disclosed technology includes a first memory die and a second memory die located above the first memory die. The first memory die includes a first off-chip driver and the second memory die includes a second off-chip driver. The first memory die includes a first pre-driver that is in a first input signal path of the first off-chip driver. The first pre-driver connects to a second input signal path of the second off-chip driver via a vertical electrical connection between the first memory die and the second memory die. The vertical electrical connection includes a TSV that extends vertically through a substrate of the second memory die.
- One embodiment of the disclosed technology includes providing a first memory die. The first memory die includes a first off-chip driver connected to a first output node. The method further comprises placing a second memory die above the first memory die. The first memory die shares a vertical electrical connection with an input signal path of a second off-chip driver located on the second memory die. The second off-chip driver drives the first output node. The vertical electrical connection includes a TSV that extends vertically through a substrate of the second memory die.
- For purposes of this document, it should be noted that the dimensions of the various features depicted in the figures may not necessarily be drawn to scale.
- For purposes of this document, reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” or “another embodiment” may be used to describe different embodiments and do not necessarily refer to the same embodiment.
- For purposes of this document, a connection can be a direct connection or an indirect connection (e.g., via another part). The use of the terms coupled and connected may refer to a direct connection or an indirect connection.
- For purposes of this document, the term “set” of objects, refers to a “set” of one or more of the objects.
- Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/969,381 US9311979B1 (en) | 2014-01-23 | 2015-12-15 | I/O pin capacitance reduction using TSVs |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/161,691 US9245825B2 (en) | 2014-01-23 | 2014-01-23 | I/O pin capacitance reduction using TSVS |
US14/969,381 US9311979B1 (en) | 2014-01-23 | 2015-12-15 | I/O pin capacitance reduction using TSVs |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/161,691 Division US9245825B2 (en) | 2014-01-23 | 2014-01-23 | I/O pin capacitance reduction using TSVS |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160099034A1 true US20160099034A1 (en) | 2016-04-07 |
US9311979B1 US9311979B1 (en) | 2016-04-12 |
Family
ID=53545465
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/161,691 Active 2034-06-02 US9245825B2 (en) | 2014-01-23 | 2014-01-23 | I/O pin capacitance reduction using TSVS |
US14/969,381 Active US9311979B1 (en) | 2014-01-23 | 2015-12-15 | I/O pin capacitance reduction using TSVs |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/161,691 Active 2034-06-02 US9245825B2 (en) | 2014-01-23 | 2014-01-23 | I/O pin capacitance reduction using TSVS |
Country Status (1)
Country | Link |
---|---|
US (2) | US9245825B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11948651B2 (en) * | 2019-07-22 | 2024-04-02 | Micron Technology, Inc. | Wordline capacitance balancing |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8599595B1 (en) | 2011-12-13 | 2013-12-03 | Michael C. Stephens, Jr. | Memory devices with serially connected signals for stacked arrangements |
KR102112024B1 (en) | 2014-04-14 | 2020-05-19 | 삼성전자주식회사 | Method for forming strobe signal in data storage system and therefore device |
FR3030156B1 (en) * | 2014-12-11 | 2016-12-30 | E2V Semiconductors | METHOD FOR SYNCHRONOUS DISTRIBUTION OF A DIGITAL SIGNAL ON N ADJACENT IDENTICAL BLOCKS OF AN INTEGRATED CIRCUIT |
KR20170112289A (en) | 2016-03-31 | 2017-10-12 | 삼성전자주식회사 | Nonvolatile memory device, memory system including the same and method of operating nonvolatile memory device |
US10381327B2 (en) | 2016-10-06 | 2019-08-13 | Sandisk Technologies Llc | Non-volatile memory system with wide I/O memory die |
US10468073B2 (en) | 2017-12-29 | 2019-11-05 | Sandisk Technologies Llc | Transmission line optimization for multi-die systems |
KR102467357B1 (en) * | 2018-01-31 | 2022-11-14 | 삼성전자주식회사 | Memory system and method of determining error of the same |
US10804255B1 (en) * | 2019-05-10 | 2020-10-13 | Xilinx, Inc. | Circuit for and method of transmitting a signal in an integrated circuit device |
US11081191B2 (en) | 2019-06-18 | 2021-08-03 | Western Digital Technologies, Inc. | Dynamic switching for improved power utilization |
WO2021133741A1 (en) | 2019-12-23 | 2021-07-01 | Invensas Bonding Technologies, Inc. | Electrical redundancy for bonded structures |
US11721653B2 (en) * | 2019-12-23 | 2023-08-08 | Adeia Semiconductor Bonding Technologies Inc. | Circuitry for electrical redundancy in bonded structures |
US11302645B2 (en) | 2020-06-30 | 2022-04-12 | Western Digital Technologies, Inc. | Printed circuit board compensation structure for high bandwidth and high die-count memory stacks |
US11456022B2 (en) | 2020-06-30 | 2022-09-27 | Western Digital Technologies, Inc. | Distributed grouped terminations for multiple memory integrated circuit systems |
US20230306180A1 (en) * | 2022-03-25 | 2023-09-28 | Synopsys, Inc. | Static timing analysis of multi-die three-dimensional integrated circuits |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7867819B2 (en) | 2007-12-27 | 2011-01-11 | Sandisk Corporation | Semiconductor package including flip chip controller at bottom of die stack |
JP5714564B2 (en) * | 2009-03-30 | 2015-05-07 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Integrated circuit chip using top post-passivation technology and bottom structure technology |
US8400781B2 (en) | 2009-09-02 | 2013-03-19 | Mosaid Technologies Incorporated | Using interrupted through-silicon-vias in integrated circuits adapted for stacking |
US8604593B2 (en) | 2009-10-19 | 2013-12-10 | Mosaid Technologies Incorporated | Reconfiguring through silicon vias in stacked multi-die packages |
US8158457B2 (en) | 2010-02-08 | 2012-04-17 | Sandisk Technologies Inc. | Rule-based semiconductor die stacking and bonding within a multi-die package |
US8415808B2 (en) | 2010-07-28 | 2013-04-09 | Sandisk Technologies Inc. | Semiconductor device with die stack arrangement including staggered die and efficient wire bonding |
US8445918B2 (en) * | 2010-08-13 | 2013-05-21 | International Business Machines Corporation | Thermal enhancement for multi-layer semiconductor stacks |
US8525343B2 (en) | 2010-09-28 | 2013-09-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Device with through-silicon via (TSV) and method of forming the same |
US8293578B2 (en) * | 2010-10-26 | 2012-10-23 | International Business Machines Corporation | Hybrid bonding techniques for multi-layer semiconductor stacks |
TWI441305B (en) * | 2010-12-21 | 2014-06-11 | Ind Tech Res Inst | Semiconductor device |
KR101900423B1 (en) * | 2011-09-19 | 2018-09-21 | 삼성전자주식회사 | Semiconductor memory device |
US9053066B2 (en) | 2012-03-30 | 2015-06-09 | Sandisk Technologies Inc. | NAND flash memory interface |
US8368422B1 (en) * | 2012-05-04 | 2013-02-05 | Nanya Technology Corp. | System and method for testing off-chip driver impedance |
-
2014
- 2014-01-23 US US14/161,691 patent/US9245825B2/en active Active
-
2015
- 2015-12-15 US US14/969,381 patent/US9311979B1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11948651B2 (en) * | 2019-07-22 | 2024-04-02 | Micron Technology, Inc. | Wordline capacitance balancing |
Also Published As
Publication number | Publication date |
---|---|
US20150206824A1 (en) | 2015-07-23 |
US9245825B2 (en) | 2016-01-26 |
US9311979B1 (en) | 2016-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9311979B1 (en) | I/O pin capacitance reduction using TSVs | |
US10381327B2 (en) | Non-volatile memory system with wide I/O memory die | |
US10553266B2 (en) | Semiconductor device chip selection | |
US10276218B2 (en) | Semiconductor memory device | |
KR20190142715A (en) | Three-dimensional (3d) memory with shared control circuitry using wafer-to-wafer bonding | |
US11217283B2 (en) | Multi-chip package with reduced calibration time and ZQ calibration method thereof | |
US9959078B2 (en) | Multi-die rolling status mode for non-volatile storage | |
US10114690B2 (en) | Multi-die status mode for non-volatile storage | |
US11475955B2 (en) | Multi-chip package with reduced calibration time and ZQ calibration method thereof | |
KR20200036700A (en) | Series resistance in transmission lines for die-to-die communication | |
US20220102224A1 (en) | Test method of storage device implemented in multi-chip package (mcp) and method of manufacturing an mcp including the test method | |
US11941249B2 (en) | Memory device, host device and memory system comprising the memory device and host device | |
US11657860B2 (en) | Memory package and storage device including the same | |
CN112400163A (en) | Memory system and control method | |
CN113012742A (en) | Semiconductor device with a plurality of semiconductor chips | |
CN115248789A (en) | Bandwidth allocation for storage system commands in a peer-to-peer environment | |
US11954340B2 (en) | Nonvolatile memory device, nonvolatile memory, and operation method of memory controller | |
CN112581990A (en) | Apparatus, system, and method for storing pre-read data associated with a Modify-write operation | |
US12191854B2 (en) | PPA improvement for voltage mode driver and on-die termination (ODT) | |
US20230189519A1 (en) | Storage device, storage system, and operation method of storage device | |
US11556424B2 (en) | Non-volatile storage device having fast boot code transfer with low speed fallback | |
US11599284B2 (en) | Storage controller, storage system and operating methods thereof | |
US20220113895A1 (en) | Memory system, electronic device including the same, and memory controller | |
US20170076756A1 (en) | Storage device, memory device and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAMACHANDRA, VENKATESH;MOOGAT, FAROOKH;REEL/FRAME:037295/0773 Effective date: 20140117 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES LLC, TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:SANDISK TECHNOLOGIES INC;REEL/FRAME:038807/0948 Effective date: 20160516 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SANDISK TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SANDISK TECHNOLOGIES LLC;REEL/FRAME:069796/0423 Effective date: 20241227 |