US20160075800A1 - Process for the preparation of monodisperse polymer particles - Google Patents
Process for the preparation of monodisperse polymer particles Download PDFInfo
- Publication number
- US20160075800A1 US20160075800A1 US14/867,394 US201514867394A US2016075800A1 US 20160075800 A1 US20160075800 A1 US 20160075800A1 US 201514867394 A US201514867394 A US 201514867394A US 2016075800 A1 US2016075800 A1 US 2016075800A1
- Authority
- US
- United States
- Prior art keywords
- particles
- aqueous dispersion
- seed particles
- monomer
- monodisperse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002245 particle Substances 0.000 title abstract description 260
- 229920000642 polymer Polymers 0.000 title abstract description 51
- 238000000034 method Methods 0.000 title abstract description 33
- 238000002360 preparation method Methods 0.000 title abstract description 11
- 239000000178 monomer Substances 0.000 abstract description 57
- 239000006185 dispersion Substances 0.000 abstract description 53
- 238000006116 polymerization reaction Methods 0.000 abstract description 41
- 239000003381 stabilizer Substances 0.000 abstract description 26
- 230000000977 initiatory effect Effects 0.000 abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 96
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 72
- 239000000725 suspension Substances 0.000 description 64
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 58
- 239000000839 emulsion Substances 0.000 description 52
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 40
- 206010042674 Swelling Diseases 0.000 description 40
- 230000008961 swelling Effects 0.000 description 40
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 35
- 150000002894 organic compounds Chemical class 0.000 description 33
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 27
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 26
- 239000003361 porogen Substances 0.000 description 24
- 229920003091 Methocel™ Polymers 0.000 description 23
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 238000003756 stirring Methods 0.000 description 19
- 239000004793 Polystyrene Substances 0.000 description 17
- 238000000265 homogenisation Methods 0.000 description 17
- 229920002223 polystyrene Polymers 0.000 description 17
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 16
- SRSFOMHQIATOFV-UHFFFAOYSA-N octanoyl octaneperoxoate Chemical compound CCCCCCCC(=O)OOC(=O)CCCCCCC SRSFOMHQIATOFV-UHFFFAOYSA-N 0.000 description 15
- 239000003505 polymerization initiator Substances 0.000 description 15
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 15
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 15
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 15
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- 239000003999 initiator Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000003960 organic solvent Substances 0.000 description 11
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 10
- 229940043232 butyl acetate Drugs 0.000 description 10
- 229920003086 cellulose ether Polymers 0.000 description 10
- 238000007720 emulsion polymerization reaction Methods 0.000 description 10
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 10
- 239000003945 anionic surfactant Substances 0.000 description 9
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 9
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- -1 C1-4 alkanols) Chemical class 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- AVTLBBWTUPQRAY-UHFFFAOYSA-N 2-(2-cyanobutan-2-yldiazenyl)-2-methylbutanenitrile Chemical compound CCC(C)(C#N)N=NC(C)(CC)C#N AVTLBBWTUPQRAY-UHFFFAOYSA-N 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- 239000008346 aqueous phase Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000006227 byproduct Substances 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 6
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 5
- UWRZIZXBOLBCON-UHFFFAOYSA-N 2-phenylethenamine Chemical compound NC=CC1=CC=CC=C1 UWRZIZXBOLBCON-UHFFFAOYSA-N 0.000 description 5
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- SLBOQBILGNEPEB-UHFFFAOYSA-N 1-chloroprop-2-enylbenzene Chemical compound C=CC(Cl)C1=CC=CC=C1 SLBOQBILGNEPEB-UHFFFAOYSA-N 0.000 description 4
- LBSXSAXOLABXMF-UHFFFAOYSA-N 4-Vinylaniline Chemical compound NC1=CC=C(C=C)C=C1 LBSXSAXOLABXMF-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 229920013820 alkyl cellulose Polymers 0.000 description 4
- SAOKZLXYCUGLFA-UHFFFAOYSA-N bis(2-ethylhexyl) adipate Chemical compound CCCCC(CC)COC(=O)CCCCC(=O)OCC(CC)CCCC SAOKZLXYCUGLFA-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012674 dispersion polymerization Methods 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 239000000693 micelle Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001408 amides Chemical group 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229920003081 Povidone K 30 Polymers 0.000 description 2
- 229920003082 Povidone K 90 Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000012986 chain transfer agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 150000002170 ethers Chemical group 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- FFQQCJGNKKIRMD-UHFFFAOYSA-N methyl n-(3-hydroxyphenyl)carbamate Chemical compound COC(=O)NC1=CC=CC(O)=C1 FFQQCJGNKKIRMD-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- XZTJQQLJJCXOLP-UHFFFAOYSA-M sodium;decyl sulfate Chemical compound [Na+].CCCCCCCCCCOS([O-])(=O)=O XZTJQQLJJCXOLP-UHFFFAOYSA-M 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 1
- OGBWMWKMTUSNKE-UHFFFAOYSA-N 1-(2-methylprop-2-enoyloxy)hexyl 2-methylprop-2-enoate Chemical compound CCCCCC(OC(=O)C(C)=C)OC(=O)C(C)=C OGBWMWKMTUSNKE-UHFFFAOYSA-N 0.000 description 1
- RORJRHWULOKMDG-UHFFFAOYSA-N 1-amino-3-[2-[2-[[amino(phenyl)carbamoyl]amino]propan-2-yldiazenyl]propan-2-yl]-1-phenylurea Chemical compound C=1C=CC=CC=1N(N)C(=O)NC(C)(C)N=NC(C)(C)NC(=O)N(N)C1=CC=CC=C1 RORJRHWULOKMDG-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- OMNYXCUDBQKCMU-UHFFFAOYSA-N 2,4-dichloro-1-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C(Cl)=C1 OMNYXCUDBQKCMU-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- LSTRKXWIZZZYAS-UHFFFAOYSA-N 2-bromoacetyl bromide Chemical compound BrCC(Br)=O LSTRKXWIZZZYAS-UHFFFAOYSA-N 0.000 description 1
- OQYUFQVPURDFKC-UHFFFAOYSA-N 2-methylbut-1-enylbenzene Chemical compound CCC(C)=CC1=CC=CC=C1 OQYUFQVPURDFKC-UHFFFAOYSA-N 0.000 description 1
- BTOVVHWKPVSLBI-UHFFFAOYSA-N 2-methylprop-1-enylbenzene Chemical compound CC(C)=CC1=CC=CC=C1 BTOVVHWKPVSLBI-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- ZYMOKRVQKMAIBA-UHFFFAOYSA-N 3-(3-phenylpenta-1,4-dien-3-yloxy)penta-1,4-dien-3-ylbenzene Chemical compound C=1C=CC=CC=1C(C=C)(C=C)OC(C=C)(C=C)C1=CC=CC=C1 ZYMOKRVQKMAIBA-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 102100040409 Ameloblastin Human genes 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- JFOABDDGMNRDQJ-UHFFFAOYSA-N CC(=CC(=O)O)C.C=C Chemical compound CC(=CC(=O)O)C.C=C JFOABDDGMNRDQJ-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 101000891247 Homo sapiens Ameloblastin Proteins 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- CSMFSDCPJHNZRY-UHFFFAOYSA-N decyl hydrogen sulfate Chemical compound CCCCCCCCCCOS(O)(=O)=O CSMFSDCPJHNZRY-UHFFFAOYSA-N 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- JBSLOWBPDRZSMB-FPLPWBNLSA-N dibutyl (z)-but-2-enedioate Chemical compound CCCCOC(=O)\C=C/C(=O)OCCCC JBSLOWBPDRZSMB-FPLPWBNLSA-N 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- IEPRKVQEAMIZSS-AATRIKPKSA-N diethyl fumarate Chemical compound CCOC(=O)\C=C\C(=O)OCC IEPRKVQEAMIZSS-AATRIKPKSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical compound COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- OAPHLAAOJMTMLY-UHFFFAOYSA-N ethyl 2-methylbut-2-enoate Chemical compound CCOC(=O)C(C)=CC OAPHLAAOJMTMLY-UHFFFAOYSA-N 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010420 shell particle Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 1
- NMOALOSNPWTWRH-UHFFFAOYSA-N tert-butyl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C NMOALOSNPWTWRH-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F257/00—Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
- C08F257/02—Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/10—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of amides or imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F291/00—Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/224—Surface treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
- C08J2325/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2347/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Derivatives of such polymers
Definitions
- This invention relates to improvements in and relating to the preparation of substantially monodisperse polymer particles.
- Monodisperse polymer particles i.e. particles with a coefficient of variation of less than 10%, preferably less than 5% and more preferably less than 3%) have been commercially available for several years and find applications in many technical fields, e.g. in pharmaceuticals, in separation processes, as toners, as filters, as spacers, etc.
- Polymer beads may be produced by diffusing a monomer and a polymerization initiator (or catalyst) into polymer seeds in an aqueous dispersion.
- the seeds swell and following initiation of polymerization, e-g. by heating to activate the initiator, larger polymer particles arc produced.
- the maximum volume increase due to swelling and polymerization is about ⁇ 5 or less.
- the late Professor John Ugelstad found that the capacity of the seeds to swell could be increased to a volume increase of ⁇ 125 or even more if an organic compound with relatively low molecular weight and low water solubility is diffused into the seeds before the bulk of the monomer is used to swell the seeds. The effect is based on entropy and not particularly in the chemical nature of the organic compound.
- the polymerization initiator may be used for this purpose.
- Organic solvents e.g. acetone or a relatively small portion of the monomer, may be used to enhance diffusion of the organic compound into the seeds.
- This “Ugelstad polymerization process” which is described for example in EP-B-3905 (Sintef) and U.S. Pat. No. 4,530,956 (Ugelstad), may be used to produce monodisperse particles, if necessary carrying out several swelling and polymerization stages to reach the desired particle size.
- WO 92/16581 (Cornell Research Foundation) also describes the preparation of monodisperse particles, particularly macroporous polymer beads.
- the process described uses a three phase emulsion containing soluble polymer particles, a monomer phase, and water.
- the three phase emulsion also includes an emulsifier and a suspension stabilizer.
- the polymer particles undergo swelling absorbing the monomer which is then polymerized.
- the soluble polymer seed particles act as both shape/size regulators and as a porogen.
- the initial (i.e. before swelling) particles have a diameter of from about 0.5 to 10 ⁇ m, 2 to 5 ⁇ m being most preferred, and are produced by conventional techniques, such as emulsion or dispersion polymerization.
- the enhanced capacity for swelling may be achieved simply by the use of oligomeric seed particles, e.g. where the oligomer weight average molecular weight corresponds to up to 50 monomer units or up to 5000 Dalton.
- the invention provides a process for the preparation of monodisperse polymer particles which process comprises:
- aqueous dispersion comprising (i) monodisperse swellable seed polymer (or oligomer) particles, (ii) droplets comprising an organic compound (e.g. a polymerization initiator) with a molecular weight below 5000 Dalton and a water solubility at 25° C. of less than 10 ⁇ 2 g/L, (iii) an anionic surfactant, and, optionally, (iv) an organic solvent in which said organic compound is soluble,
- organic compound e.g. a polymerization initiator
- the aqueous phase of said aqueous dispersion of swollen seed particles during polymerization further contains as a steric stabilizer a water soluble cellulose ether
- the aqueous phase of said aqueous dispersion of swollen seed particles during polymerization further contains as a steric stabilizer polyvinylpyrrolidone.
- the process feature 2) above may instead involve contacting the aqueous dispersion of seed particles with a monomer which, where said organic compound is present, is at least ten times more water soluble than said organic compound, and allowing said monomer to diffuse into said seed particles to form an aqueous dispersion of swollen seed particles, and if required adding a water-soluble steric stabilizer, if required adding a porogen, and if required adding a polymerization initiator.
- the mode diameter of said swollen particles is preferably more than 15 ⁇ m where the aqueous phase of said aqueous dispersion of swollen seed particles during polymerization further contains as a steric stabilizer a water soluble cellulose ether.
- the mode diameter of the swollen particles will preferably be less than 200 ⁇ m.
- the PVP preferably has a weight average molecular weight of 10 to 2000 kD, more preferably 25 to 1500 kD, especially 30 to 1000 kD. Where the swollen particles have sizes at the lower end of the 1 to 25 ⁇ m range it is preferred to use lower molecular weight PVP and where the swollen particles have sizes at the upper end of that range it is preferred to use higher molecular weight PVP. Thus for example 20 to 80 kD, e-g. 30 kD PVP is particularly suitable for swollen particle sizes of up to 8 ⁇ m while 900 to 1500 kD PVP is particularly suitable for swollen particle sizes above 8 ⁇ m. Examples of suitable such PVP include PVP K30 and PVP K90 (available for example from International Specialty Products and from Fluka).
- Suitable cellulose ethers include alkyl celluloses, preferably C 1-4 alkyl celluloses; and (hydroxyalkyl)alkylcelluloses, preferably (hydroxy-C 1-4 alkyl)C 1-4 -alkyl celluloses, more preferably (hydroxy-C 1-4 -alkylmethyl celluloses.
- these cellulose ethers have weight average molecular weights in the range 10 to 100 kD, especially 15 to 80 kD.
- Such materials are available commercially in a range of different degrees of substitution and molecular weight, e.g.
- Benecel MP 333C Benecel MP 651C, Culminal MHPC 1500, Culminal MHPC 400, Walocel MK 400 PFV and Methocel K100.
- Cellulose ethers which generate a viscosity when in 2% aqueous solution at 21° C. of 50 to 150 mPa ⁇ s are especially preferred.
- the size increase by volume i.e. the ratio of the volume of the swollen particles to the volume of the seed particles
- the corresponding ratio with regard to the increase in diameter is not less than 3.5.
- process steps recited above may represent the final swelling and polymerization stage or an intermediate swelling and polymerization stage in an Ugelstad polymerization process for preparing monodisperse polymer particles.
- the mixture which comprises the monomer (or mixture of monomers) is preferably in the form of an aqueous dispersion when it is contacted with the polymer particles.
- a polymerization initiator is contacted with the aqueous dispersion of polymer particles this too is preferably in the form of an aqueous emulsion, preferably also containing a polymerizable or non-polymerizable organic solvent, e.g. alcohols (particularly C 1-4 alkanols), ethers (especially cyclic ethers), ketones (e.g. acetone), dialkylsulphoxides, dialkylformamides, monomers, etc. Water miscible solvents, such as acetone, are however preferred.
- the droplet size of both such emulsions is preferably below 5 ⁇ m, e.g. 0.1 to 1 ⁇ m, particularly 0.3 to 0.6 ⁇ m.
- This may be produced using an intensive mixer, e.g. a pressure homogenizer (such as a Gaulin homogenizer) or a rotor stator mixer.
- the steric stabilizer if present, may be added in whole or in part, together with the monomer, to the aqueous dispersion of seed particles; if additional steric stabilizer is required this is preferably added in aqueous solution form.
- the steric stabilizer concentration in the polymerization medium is preferably 1 to 40 g/L, especially 4 to 25 g/L, for polyvinylpyrrolidone and 0.1 to 10 g/L, especially 1 to 5 g/L, for cellulose ethers.
- FIG. 1 shows the degree of swelling (by volume) of dispersed particles produced in Examples 15-17, from water to THF and from water to butyl acetate.
- the initial substantially monodisperse seed polymer particles may conveniently be produced by emulsion polymerization.
- particularly suitable initial seed particles may be produced by effecting that emulsion polymerization under substantially oxygen-free conditions.
- the invention provides a process for the preparation of monodisperse polymer particles which comprises:
- seed particles are non-oligomeric (and optionally where they are oligomeric), (a) contacting said seed particles with an aqueous dispersion comprising an organic compound (e-g. a polymerization initiator) with a molecular weight below 5000 Dalton and a water solubility at 25° C. of less than 10 ⁇ 2 g/L, an anionic surfactant and, optionally an organic solvent in which said organic compound is soluble, and (b) allowing said organic compound to diffuse into said seed particles;
- organic compound e-g. a polymerization initiator
- the resulting particles may be further swollen and polymerized to obtain larger monodisperse polymer or oligomer particles.
- polyvinylpyrrolidone is preferably used as the steric stabilizer and if it produces swollen particles having sizes above 15 ⁇ m
- a cellulose ether is preferably used as the steric stabilizer.
- a cellulose ether may also be used as steric stabilizer where the mode diameter of said swollen particles is from 5 to 15 ⁇ m.
- the surfactant is especially preferably sodium dodecyl sulphate.
- the monomer is an amino-functionalized monomer (or where two or more monomers are used and one comonomer is an amino functionalized monomer)
- the initiator after the seed particles have been swollen and thus to use as the organic compound (i.e. substance I of EP-3-3905) a non-initiator, e.g. a material such as dioctyladipate.
- the initiator is preferably an azo compound, e.g. 2,2′-azobis-(2-methylbutyronitrile) or azo-bis-dimethylvaleronitrile.
- a peroxide initiator e.g. dibenzoyl peroxide, lauroyl peroxide, t-butyl-peroxybenzoate, t-butyl-peroxypivalate and, especially, dioctanoyl peroxide
- a peroxide initiator e.g. dibenzoyl peroxide, lauroyl peroxide, t-butyl-peroxybenzoate, t-butyl-peroxypivalate and, especially, dioctanoyl peroxide
- polymerization initiators that are activated by heat.
- the initiator and monomer may be brought together within the swollen seed particles at a temperature below that of which polymerization occurs and the aqueous dispersion may then be heated to the temperature at which polymerization is to take place, e.g. 50 to 90° C., more generally 60 to 85° C.
- the aqueous dispersion goes through a sticky state and the dispersion should be stirred as gently as possible while still sufficient to maintain a homogeneous dispersion.
- the temperature e.g. to 70 to 95° C.
- the end of the polymerization stage it is preferred to raise the temperature, e.g. to 70 to 95° C., at the end of the polymerization stage so as to reduce the quantity of residual monomer.
- the polymer particles' surfaces may be derivatized as desired, e.g. by reaction with bifunctional reagents (e.g. diamines) which react with functional groups present in monomers used in the final polymerization stage and serve to introduce the desired functional groups, e.g. amine, carboxyl, epoxy, hydroxyl, etc.
- bifunctional reagents e.g. diamines
- Such functional groups may likewise be introduced by the use of a functionalized monomer or comonomer, e.g. glycidyl methacrylate, HEMA, MMA or aminostyrene.
- Such groups are advantageous as the resultant particles are particularly suitable for end uses in applications such as combinatorial chemistry, peptide synthesis, supported catalysts and chromatographic separation.
- the monodisperse polymer particles may be coated (e.g. with metallic coatings); they may have materials, e.g. magnetic crystals, specific binding partners (e.g. antibodies, avidin or streptavidin, etc.), or catalysts bound to their surface or deposited in pores or on the surface; or they may be expanded (e.g. using blowing agents).
- metallic coatings e.g. metallic coatings
- specific binding partners e.g. antibodies, avidin or streptavidin, etc.
- catalysts bound to their surface or deposited in pores or on the surface e.g. using blowing agents.
- the swelling and polymerization stages are performed in aqueous dispersion in the presence of materials, e.g. surfactants, stabilizers, organic solvents, etc., which it is desirable to remove from the particles.
- materials e.g. surfactants, stabilizers, organic solvents, etc.
- the polymerization produces a cross-linked polymer it may be desirable to remove linear polymers or oligomers which formed the seed particles, for example to avoid leakage during use in chromatography.
- a water-miscible organic solvent in which the cross-linked polymer is insoluble, or an aqueous solution of such a solvent may be used for this.
- butyl acetate in this regard in view of its surprising effectiveness in removing undesired residues from the Ugelstad polymerization process.
- the invention provides a method of cleaning monodisperse polymer particles, in particular particles produced by swelling a seed polymer or oligomer particle in aqueous dispersion and polymerizing a monomer within the swollen seed particles, which method comprises contacting said monodisperse polymer particles with butyl acetate, e.g. by washing or rinsing with butyl acetate or a solution thereof.
- the initial polymer seed (i.e. the particles not produced by the Ugelstad swelling and polymerization technique) is preferably prepared by dispersion or emulsion polymerization, in the latter case especially preferably under substantially oxygen-free conditions (e.g. under an inert gas atmosphere, for example a noble gas such as argon, helium, etc.), and with an oxygen content in the aqueous phase of between 0 and 5 ppm, more especially between 0 and 3 ppm, preferably between 0 and 2 ppm, particularly between 0.01 and 2 ppm.
- This can be achieved by boiling the water before use or, more preferably by purging liquid reagents with nitrogen.
- the length of time required depends upon the volume to be purged. For example, when purging a 2 litre vessel, a purging time of between 1 to 50 minutes is preferred, especially preferably purging for at least 10 minutes.
- the aqueous phase in the emulsion polymerization contains an anionic surfactant stabilizer, e.g. an C 8-16 alkyl sulphate such as a decylsulphate, e.g. sodium decylsulphate. This is preferably present at a concentration below its critical micelle concentration.
- an anionic surfactant stabilizer e.g. an C 8-16 alkyl sulphate such as a decylsulphate, e.g. sodium decylsulphate.
- the unswollen initial seed preferably has a mode particle diameter in the range 0.2 to 1 ⁇ m, especially 0.3 to 0.7 ⁇ m, more especially 0.4 to 0.6 ⁇ m. This can be achieved by mixing monomer, water and surfactant, heating (e.g. to 80° C.) and charging with initiator under vigorous stirring.
- the initial seeds produced by emulsion polymerization are preferably styrene polymers. Subsequent seeds may conveniently be polymeric or oligomcric.
- the polymerization initiator is used as the organic compound (i.e. as substance I of the process of EP-B-3905) it is preferably an organic peroxide, e.g. tert-butyl peroxyneodecanoate or more especially dioctanoyl peroxide (DOP) and it is preferably formed into a fine emulsion using water, the anionic surfactant (preferably sodium dodecyl sulphate or a sulfonate) and an organic solvent, e.g., acetone.
- the monomer may be but preferably is not used as a solvent for the peroxide initiator; if it is used as a solvent it is preferred that only a relatively small amount of the monomer be used.
- emulsification is preferably effected using a high pressure mixer (e.g. a pressure homogenizer), or a rotor stator mixer, to give a mode droplet diameter in the range 0.05 to 5 ⁇ m, more preferably 0.05 to 0.5 ⁇ m, especially 0.05 to 0.3 ⁇ m.
- the surfactant is preferably present above its critical micelle concentration, e.g. at a concentration of 3 to 10 g/L, more preferably 4 to 6 g/L (the critical micelle concentration for sodium dodecyl sulphate is about 2.5 g/L).
- the surfactant is preferably present below its critical micelle concentration, e.g.
- the desired concentration may be achieved by dilution, for example with water or a solution of a steric stabilizer after emulsion formation but before polymerization initiation.
- the desired concentration may be realized by adding an appropriately diluted solution of steric stabilizer prior to emulsion formation.
- the temperature of the dispersion is preferably maintained between 20 and 50° C. as precipitation may occur at lower temperatures and new particles may form at higher temperatures. Generally temperatures of 25° C. ⁇ 2° C. are preferred.
- the dispersion is preferably stirred.
- the time required for uptake is dependant on the seed diameter, the quantity and nature of the organic compound, the emulsion droplet size and the quantity and nature of surfactant and organic solvent. Generally a period of 1 to 5 days, more particularly 2 to 3 days, will be sufficient. Where the organic compound is an initiator it is important that uptake be at least substantially complete so as to avoid out-of-size particles.
- the organic solvent concentration in the dispersion during organic compound uptake is conveniently 5 to 15% w/w.
- the monomers and comonomers used in the process of the invention are preferably vinyl monomers (e.g. styrene), acrylic monomers and methacrylate monomers and monomers copolymerizable therewith, e-g. styrene, divinylbenzene (DVB), ethyl vinyl benzene, vinyl pyridine, amino-styrene, methyl-styrene, ethylene dimethacrylate, (EDMA), hydroxyethylmethacrylate (HEMA), methyl methacrylate (MMA), glycidyl methacrylate (GMA), vinyl benzyl chloride (VBC), vinylchloride (VC), dimethyl styrene, ethyl styrene, ethyl-methyl-styrene, p-chlorostyrene, 2,4-dichlorostyrene, acrylic acid, methyl acrylate, ethyl acrylate, buty
- the initial polymer seed e.g. made by emulsion polymerization
- the initial polymer seed is a polymer.
- the initial polymer seed is a styrene homo or copolymer, e.g. a styrene homopolymer or a styrene-divinyl benzene copolymer.
- initial seeds prepared by emulsion polymerization will be homopolymers, especially polystyrene.
- Initial seeds prepared by other techniques, e-g. dispersion polymerization may be homopolymers or copolymers, and may be oligomeric or polymeric.
- Such seeds typically may be 1 to 10 ⁇ m in mode diameter and optionally may contain some cross-linker.
- Initial seeds used in this invention which are produced by emulsion polymerization are typically of less than or equal to about 1 ⁇ m in diameter.
- Intermediate seeds may be either polymer or oligomer seeds.
- oligomer is intended to refer to polymers having low weight average molecular weight (for example up to 5000 Daltons, e.g. 1000 to 4000 D, especially 1500 to 3000 D), corresponding for example up to 50, more particularly 10 to 25 monomer units. Oligomer seeds have the advantage that their swelling capacity is generally much greater than that of the longer chain polymers.
- a chain transfer agent e.g. a halogenated alkane as described by Ugelstad in U.S. Pat. No. 4,186,120.
- This has the advantage of producing a polymer with a bimodal molecular weight distribution in the polymerization stage.
- the lower molecular weight component results in the particles produced in that polymerization stage having a greater swelling capacity for subsequent swelling and polymerization stages.
- a high initiator concentration may be used in oligomer production.
- the techniques of U.S. Pat. No. 4,530,956 Ugelstad, the disclosure of which is incorporated by reference, may be used.
- a water-soluble polymerization inhibitor e.g. potassium iodide
- a water-soluble polymerization inhibitor e.g. potassium iodide
- porogens should be incorporated in the swollen seed particles, preferably in at least the final swelling and polymerization stage.
- porogens can be used organic substances which are not polymerized in the polymerization stage and which can be removed from the particles after polymerization thereby producing porous particles. Porogens can also be used as blowing agents -particles impregnated with such materials, on heating may expand as the porogen vaporizes.
- suitable porogens include organic acids, alcohols, esters, aromatic solvents, optionally substituted aliphatic hydrocarbons having up to 12 carbons, e.g.
- Toluene and n-heptane are preferred, especially in a volume ratio of 1:10 to 10:1, more particularly 1:4 to 4:1.
- the porogen is conveniently introduced in admixture with the monomer.
- porogens at least one of which is a solvent for the polymer produced in the polymerization stage and at least one of which is a not a solvent for that polymer
- vinyl polymers e.g. styrene
- toluene can be used as a solvent porogen and n-heptane as a non-solvent porogen.
- solvent in this specific context is not intended to convey that the swollen particles are capable of dissolving fully in this solvent, or that the swollen particles are incapable of dissolving to any extent whatsoever in the non-solvent porogen.
- the combination of the two types of porogen enables the desired pore size distribution in the resulting porous particles to be achieved.
- This use of a porogen combination forms a further aspect of the invention.
- the invention provides a process for the preparation of porous monodisperse polymer particles which process comprises:
- aqueous dispersion comprising (i) monodisperse swellable seed polymer (or oligomer) particles, (ii) droplets comprising an organic compound (e.g. a polymerization initiator) with a molecular weight below 5000 Dalton and a water solubility at 25° C. of less than 10 ⁇ 2 g/L, (iii) an anionic surfactant, and, optionally, (iv) an organic solvent in which said organic compound is soluble;
- organic compound e.g. a polymerization initiator
- the ratio with regard to increase in diameter is preferably greater than or equal to 4.5.
- a cross-linking monomer such as divinylbenzene
- a cross-linking monomer can be used as 0 to 100% w/w of the monomer diffused into the seeds, for example as at least 30% for the production of porous particles and up to 0.5% for the production of very highly swellable particles.
- a crosslinking agent or alternatively to use as a monomer or comonomer a compound with more than one polymerization site, e.g. a compound with more than one polymerizable carbon-carbon double bond, for example a diene such as divinyl benzene, or compounds such as hexanediol dimethacrylate, trimethylol propane trimethacrylate and divinyl benzyl ether.
- the monodisperse polymer particles produced according to the invention are 30 to 100% divinyl benzene, more especially 60 to 95%, particularly 70 to 90%, more particularly 75 to 82% (where the percentages are by weight of divinylbenzene monomer residue relative to the total monomer residue).
- the Ugelstad processes can be used particularly effectively to produce functionalized or functionalizable monodisperse particles where the monomer dispersed into the seeds in at least one swelling stage, preferably the final stage, comprises at least two acrylic or methacrylic acid or ester monomers, more preferably at least one being glycidyl methacrylate.
- the invention provides a process for the preparation of monodisperse polymer particles which process comprises:
- aqueous dispersion comprising (i) monodisperse swellable seed polymer (or oligomer) particles, (ii) droplets comprising an organic compound (e.g. a polymerization initiator) with a molecular weight below 5000 Dalton and a water solubility at 25° C. of less than 10 ⁇ 2 g/L, (iii)an anionic surfactant, and, optionally, (iv) an organic solvent in which said organic compound is soluble;
- organic compound e.g. a polymerization initiator
- said monomer comprises at least two acrylic or methacrylic acid or ester monomers, more preferably at least one being glycidyl methacrylate.
- the ratio with regard to increase in diameter is preferably greater than or equal to 4.5.
- mean is the mean particle diameter and standard deviation is the standard deviation in particle size.
- CV is preferably calculated on the main mode, i.e. by fitting a monomodal distribution curve to the detected particle size distribution. Thus some particles below or above mode size may be discounted in the calculation which may for example be based on about 90%, more usually about 99% of total particle number (of detectable particles that is). Such a determination of CV is performable on a Coulter Counter Channclizcr 256 particle size analyzer.
- Porous Crosslinked Polystyrene Particles 30 ⁇ m
- the particles were separated from the liquid phase by flotation and the liquid phase was discharged.
- the particles were then cleaned with 2 litres of methanol by stirring for 1 hour followed by sedimentation. After sedimentation the liquid phase was discharged, new methanol (2 litres) was charged and the described procedure was repeated 4 times.
- the particle suspension was then sieved through a 100 ⁇ m sieving cloth. Then the particle suspension was diafiltered with 6 litres of butylacetate followed by 6.7 litres of methanol. Finally the particles were cleaned by sedimentation and discharging of the liquid phase, with 2 litres of methanol minimum 3 times.
- the final product was 30 ⁇ m polymer particles in a clear liquid phase without impurities.
- Porous Acrylic Particles 30 ⁇ m
- 1400 g of water, 84 g of DOP, 140 g of acetone and 7 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm 2 in the first stage and 100 kg/cm 2 in the second stage for 8-9 min.
- Porous Crosslinked Polystyrene Particles 4.5 ⁇ m
- 5126.2 g of the activated seed particles were charged with an emulsion containing 42576 g of water, 26.47 g of SDS, 536.5 g of PVP K-30, 2989.7 g of 62.5% DVB, 1991.7 g of styrene and 4727.0 g of porogen (toluene).
- the emulsion was homogenized at 380 kg/cm 2 in the first stage and 100 kg/cm 2 in the second stage for 30 min.
- 2630 g of water, 214.4 g of DOP, 291.9 g of acetone and 14.73 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm 2 in the first stage and 100 kg/cm 2 in the second stage for 25 min.
- 3032.6 g of the activated seed particle suspension were charged with an emulsion containing 43375.1 g of water, 31.42 g of SDS, 1412.7 g of PVP K-30, 2989.6 g of 62.9% DVB, 1998.2 g of styrene and 4780.7 g of porogen (toluene).
- the emulsion was homogenized at 380 kg/cm 2 in the first stage and 100 kg/cm 2 in the second stage for 60 min.
- 280 g styrene was extracted with 500 ml 10 wt. % sodium hydroxide and then washed with water to pH7 and then flushed with argon for 10 min.
- a 2 L rector 1400 g of water and 0.53 g of borax were heated to 80° C., and 100 g water was evaporated off to remove oxygen.
- 0.56 g sodium decyl sulphate in 50 ml boiled water was charged and stirred for 10 min, then the washed and substantially oxygen free styrene was charged and stirred for 15 min.
- 0.84 g potassium peroxodisulphate was charged in 100 ml boiled water.
- the mixture was kept at 80° C. in an argon atmosphere for 13 hours.
- a monodisperse suspension of polymeric particles was formed having a particle diameter of 0.5 ⁇ m.
- 1200 g of water, 120 g of DOP, 240 g of acetone and 7.2 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm 2 in the first stage and 100 kg/cm 2 in the second stage for 7-8 min.
- the temperature was raised to 65° C. for 1 hr and further to 70° C. for 5 hrs.
- the final mixture was monodisperse and contained particles having a diameter of about 10 ⁇ m.
- 166 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 71 ⁇ m. There were used 79 g of the seed suspension containing 71.2 g of water and 7.8 g of oligomeric particles.
- a monodisperse suspension was formed having a particle diameter of 200 ⁇ m.
- 96.9 g of the seed suspension containing activated seed particles were charged to 1097.7 g of an emulsion containing 798.3 g of water, 1.2 g of Methocel K-100, 0.3 g of sodium dodecyl sulphate 34.74 g of 80% divinylbenzene (DVB) [i.e. 80% by weight DVB, 20% by weight ethyl vinyl benzene and other byproducts in DVB production], 52.8 g of styrene, 4.2 g of 2,2′-azobis(2-rnethylbutyronitrile) and 205.7 g of toluene.
- the emulsion was homogenized at 400 kg/cm 2 in the first stage and 100 kg/cm 2 in the second stage for 8-9 min.
- Porous crosslinked polystyrene particles containing amine functionality 30 ⁇ m
- Example 2 The particles were cleaned as described in Example 1. Diameter was measured on particles dispersed in water, butylacetate and tetrahydrofuran respectively.
- Example 2 The particles were cleaned as described in Example 1. Diameter was measured on particles dispersed in water, butylacetate and tetrahydrofuran respectively.
- Example 2 The particles were cleaned as described in Example 1. Particle diameter was measured on particles dispersed in water, butyl acetate and tetrahydrofuran respectively.
- Elemental analysis showed a content of 3.0 wt. % nitrogen and 0.38 wt. % oxygen.
- Elemental analysis of dried particles showed a content of 2.5 wt. % nitrogen and 9.3 wt. % oxygen. This indicates an amine conversion near 100%.
- Elemental analysis of dried particles showed a content of 13.2 wt % bromine indicating a conversion of 96%.
- Porous Crosslinked Polystyrene Particles 5.0 ⁇ m
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Paper (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
- The present application is a continuation of co-pending U.S. patent application Ser. No. 09/958,431, filed Oct. 9, 2001, which is a national stage filing under 35 U.S.C. 371 of PCT/GB00/01334, filed Apr. 10, 2000, which claims priority to GB9908163.0, filed Apr. 9, 1999 and GB0007008.6, filed Mar. 22, 2000.
- This invention relates to improvements in and relating to the preparation of substantially monodisperse polymer particles.
- Monodisperse polymer particles (i.e. particles with a coefficient of variation of less than 10%, preferably less than 5% and more preferably less than 3%) have been commercially available for several years and find applications in many technical fields, e.g. in pharmaceuticals, in separation processes, as toners, as filters, as spacers, etc.
- Polymer beads may be produced by diffusing a monomer and a polymerization initiator (or catalyst) into polymer seeds in an aqueous dispersion. The seeds swell and following initiation of polymerization, e-g. by heating to activate the initiator, larger polymer particles arc produced. The maximum volume increase due to swelling and polymerization is about ×5 or less. The late Professor John Ugelstad found that the capacity of the seeds to swell could be increased to a volume increase of ×125 or even more if an organic compound with relatively low molecular weight and low water solubility is diffused into the seeds before the bulk of the monomer is used to swell the seeds. The effect is based on entropy and not particularly in the chemical nature of the organic compound. Conveniently the polymerization initiator may be used for this purpose. Organic solvents, e.g. acetone or a relatively small portion of the monomer, may be used to enhance diffusion of the organic compound into the seeds. This “Ugelstad polymerization process”, which is described for example in EP-B-3905 (Sintef) and U.S. Pat. No. 4,530,956 (Ugelstad), may be used to produce monodisperse particles, if necessary carrying out several swelling and polymerization stages to reach the desired particle size.
- WO 92/16581 (Cornell Research Foundation) also describes the preparation of monodisperse particles, particularly macroporous polymer beads. The process described uses a three phase emulsion containing soluble polymer particles, a monomer phase, and water. The three phase emulsion also includes an emulsifier and a suspension stabilizer. The polymer particles undergo swelling absorbing the monomer which is then polymerized. In this process the soluble polymer seed particles act as both shape/size regulators and as a porogen. The initial (i.e. before swelling) particles have a diameter of from about 0.5 to 10 μm, 2 to 5 μm being most preferred, and are produced by conventional techniques, such as emulsion or dispersion polymerization.
- In a simplified version of the Ugelstad process the enhanced capacity for swelling may be achieved simply by the use of oligomeric seed particles, e.g. where the oligomer weight average molecular weight corresponds to up to 50 monomer units or up to 5000 Dalton.
- The processes described in EP-B-3905 and U.S. Pat. No. 4,530,956 (the disclosures of which are hereby incorporated by reference) and the simplified Ugelstad process are relatively complex and inefficient. The processes described in WO 92/16581 do not especially improve upon those disclosed in EP-3-3905 and U.S. Pat. No. 4,530,956. The essence of WO 92/15681 would appear to be the production of macroporous polymer beads of substantially uniform size, the macroporosity being achieved through extraction of the (initially) soluble polymer from the resultant insoluble expanded beads. It is well known in the art that addition of steric stabilizers to dispersion polymerizations of polymer seeds can be useful in controlling size of beads; this feature of WO 92/16581, therefore, appears to represent nothing more than the arbitrary introduction of an obvious and well-known advantageous process feature into the process of the invention.
- There is a need for improvements to all these processes, in particular improvements which make it easier to produce monodisperse polymer particles with different chemical or physical characteristics.
- It is important to use a polymeric steric stabilizer in the aqueous phase in order to avoid agglomeration of desired-sized particles and formation of undersized particles in the polymerization stage. Surprisingly it has been found that where the swelling generates particles below 25 μm in size undersized particle formation is essentially avoided by the use of polyvinylpyrrolidone (PVP) as a steric stabilizer whereas where the swelling generates particles above 5 μm in size cellulose ethers function effectively as steric stabilizers. While PVP can be used to stabilize particles above 16 μm it is especially preferred for use with particles up to 16 μm.
- Thus viewed from one aspect the invention provides a process for the preparation of monodisperse polymer particles which process comprises:
- 1) either
- (a) forming an aqueous dispersion comprising (i) monodisperse swellable seed polymer (or oligomer) particles, (ii) droplets comprising an organic compound (e.g. a polymerization initiator) with a molecular weight below 5000 Dalton and a water solubility at 25° C. of less than 10−2 g/L, (iii) an anionic surfactant, and, optionally, (iv) an organic solvent in which said organic compound is soluble,
- and (b) allowing said organic compound to diffuse into said seed particles
- or (a) forming an aqueous dispersion comprising monodisperse swellable seed oligomer particles and preferably an anionic surfactant;
- 2) contacting the aqueous dispersion of seed particles with a monomer which, where said organic compound is present, is at least ten times more water soluble than said organic compound, and if required a water-soluble steric stabilizer, if required a porogen, and if required a polymerization initiator, and allowing said monomer to diffuse into said seed particles to form an aqueous dispersion of swollen seed particles; and
- 3) initiating polymerization of said monomer in an aqueous dispersion of swollen seed particles, characterized in that
- where the mode diameter of said swollen particles is greater than 5 μm then the aqueous phase of said aqueous dispersion of swollen seed particles during polymerization further contains as a steric stabilizer a water soluble cellulose ether
- or in that where said mode diameter of said swollen particles is in the
range 1 to 25 μm the aqueous phase of said aqueous dispersion of swollen seed particles during polymerization further contains as a steric stabilizer polyvinylpyrrolidone. - Alternatively, the process feature 2) above may instead involve contacting the aqueous dispersion of seed particles with a monomer which, where said organic compound is present, is at least ten times more water soluble than said organic compound, and allowing said monomer to diffuse into said seed particles to form an aqueous dispersion of swollen seed particles, and if required adding a water-soluble steric stabilizer, if required adding a porogen, and if required adding a polymerization initiator.
- In the above process, the mode diameter of said swollen particles is preferably more than 15 μm where the aqueous phase of said aqueous dispersion of swollen seed particles during polymerization further contains as a steric stabilizer a water soluble cellulose ether.
- Where water soluble cellulose ethers are used when forming the swollen particles, the mode diameter of the swollen particles will preferably be less than 200 μm.
- The PVP preferably has a weight average molecular weight of 10 to 2000 kD, more preferably 25 to 1500 kD, especially 30 to 1000 kD. Where the swollen particles have sizes at the lower end of the 1 to 25 μm range it is preferred to use lower molecular weight PVP and where the swollen particles have sizes at the upper end of that range it is preferred to use higher molecular weight PVP. Thus for example 20 to 80 kD, e-g. 30 kD PVP is particularly suitable for swollen particle sizes of up to 8 μm while 900 to 1500 kD PVP is particularly suitable for swollen particle sizes above 8 μm. Examples of suitable such PVP include PVP K30 and PVP K90 (available for example from International Specialty Products and from Fluka).
- Examples of suitable cellulose ethers include alkyl celluloses, preferably C1-4 alkyl celluloses; and (hydroxyalkyl)alkylcelluloses, preferably (hydroxy-C1-4 alkyl)C1-4-alkyl celluloses, more preferably (hydroxy-C1-4-alkylmethyl celluloses. Typically, these cellulose ethers have weight average molecular weights in the range 10 to 100 kD, especially 15 to 80 kD. Such materials are available commercially in a range of different degrees of substitution and molecular weight, e.g. as Benecel MP 333C, Benecel MP 651C, Culminal MHPC 1500, Culminal MHPC 400, Walocel MK 400 PFV and Methocel K100. Cellulose ethers which generate a viscosity when in 2% aqueous solution at 21° C. of 50 to 150 mPa·s are especially preferred.
- In the present invention, the size increase by volume (i.e. the ratio of the volume of the swollen particles to the volume of the seed particles) is between 30 and 1000 times. It is a preferred embodiment—that the corresponding ratio with regard to the increase in diameter is not less than 3.5.
- It should be noted that the process steps recited above may represent the final swelling and polymerization stage or an intermediate swelling and polymerization stage in an Ugelstad polymerization process for preparing monodisperse polymer particles.
- The mixture which comprises the monomer (or mixture of monomers) is preferably in the form of an aqueous dispersion when it is contacted with the polymer particles. Where a polymerization initiator is contacted with the aqueous dispersion of polymer particles this too is preferably in the form of an aqueous emulsion, preferably also containing a polymerizable or non-polymerizable organic solvent, e.g. alcohols (particularly C1-4 alkanols), ethers (especially cyclic ethers), ketones (e.g. acetone), dialkylsulphoxides, dialkylformamides, monomers, etc. Water miscible solvents, such as acetone, are however preferred. The droplet size of both such emulsions is preferably below 5 μm, e.g. 0.1 to 1 μm, particularly 0.3 to 0.6 μm. This may be produced using an intensive mixer, e.g. a pressure homogenizer (such as a Gaulin homogenizer) or a rotor stator mixer. The steric stabilizer, if present, may be added in whole or in part, together with the monomer, to the aqueous dispersion of seed particles; if additional steric stabilizer is required this is preferably added in aqueous solution form. The steric stabilizer concentration in the polymerization medium is preferably 1 to 40 g/L, especially 4 to 25 g/L, for polyvinylpyrrolidone and 0.1 to 10 g/L, especially 1 to 5 g/L, for cellulose ethers.
-
FIG. 1 shows the degree of swelling (by volume) of dispersed particles produced in Examples 15-17, from water to THF and from water to butyl acetate. - In the Ugelstad polymerization process the initial substantially monodisperse seed polymer particles may conveniently be produced by emulsion polymerization. We have found that particularly suitable initial seed particles may be produced by effecting that emulsion polymerization under substantially oxygen-free conditions. Thus viewed from a further aspect the invention provides a process for the preparation of monodisperse polymer particles which comprises:
- 1) preparing monodisperse swellable seed particles by emulsion polymerization under substantially oxygen-free conditions;
- 2) where said seed particles are non-oligomeric (and optionally where they are oligomeric), (a) contacting said seed particles with an aqueous dispersion comprising an organic compound (e-g. a polymerization initiator) with a molecular weight below 5000 Dalton and a water solubility at 25° C. of less than 10−2 g/L, an anionic surfactant and, optionally an organic solvent in which said organic compound is soluble, and (b) allowing said organic compound to diffuse into said seed particles;
- 3) contacting the aqueous dispersion of seed particles with a monomer which, where said organic compound is used, is at least ten times more water soluble than said organic compound and allowing said monomer to diffuse into said seed particles to form an aqueous dispersion of swollen seed particles, and if required adding a water-soluble steric stabilizer, if required adding a porogen, and if required adding a polymerization initiator; and
- 4) initiating polymerization of said monomer in an aqueous dispersion containing a steric stabilizer in the continuous phase.
- If desired the resulting particles may be further swollen and polymerized to obtain larger monodisperse polymer or oligomer particles. Where any of these stages produces swollen particles having sizes from 1 to 25 μm polyvinylpyrrolidone is preferably used as the steric stabilizer and if it produces swollen particles having sizes above 15 μm a cellulose ether is preferably used as the steric stabilizer. A cellulose ether may also be used as steric stabilizer where the mode diameter of said swollen particles is from 5 to 15 μm. Where the swollen particles have particle sizes below 5 μm, and especially below 2 μm, and especially where the organic compound used is a polymerization initiator, it is convenient to use as the surfactant a C8-16 alkyl sulphate or sulphonate, especially a dodecyl sulphate, e-g. sodium dodecyl sulphate, as this serves as both stabilizer and initiator uptake promoter. Where the seed particles have mode particle diameters below 1 μm, the surfactant is especially preferably sodium dodecyl sulphate.
- Where the monomer is an amino-functionalized monomer (or where two or more monomers are used and one comonomer is an amino functionalized monomer), it is preferred to add the initiator after the seed particles have been swollen and thus to use as the organic compound (i.e. substance I of EP-3-3905) a non-initiator, e.g. a material such as dioctyladipate. For such amino monomers, the initiator is preferably an azo compound, e.g. 2,2′-azobis-(2-methylbutyronitrile) or azo-bis-dimethylvaleronitrile. For other monomers, especially vinyl monomers (e.g., styrene) and acrylic monomers, it is preferred to use a peroxide initiator (e.g. dibenzoyl peroxide, lauroyl peroxide, t-butyl-peroxybenzoate, t-butyl-peroxypivalate and, especially, dioctanoyl peroxide) and to use the initiator as the organic compound which promotes swelling of the seed particles.
- Generally, it is preferred to use polymerization initiators that are activated by heat. In this way the initiator and monomer may be brought together within the swollen seed particles at a temperature below that of which polymerization occurs and the aqueous dispersion may then be heated to the temperature at which polymerization is to take place, e.g. 50 to 90° C., more generally 60 to 85° C. During the polymerization, the aqueous dispersion goes through a sticky state and the dispersion should be stirred as gently as possible while still sufficient to maintain a homogeneous dispersion.
- In the final swelling and polymerization stage, it is preferred to raise the temperature, e.g. to 70 to 95° C., at the end of the polymerization stage so as to reduce the quantity of residual monomer.
- Following preparation of the monodisperse polymer particles of the desired size (which may require two or more swelling and polymerization cycles, e.g. up to 10 such cycles), the polymer particles' surfaces may be derivatized as desired, e.g. by reaction with bifunctional reagents (e.g. diamines) which react with functional groups present in monomers used in the final polymerization stage and serve to introduce the desired functional groups, e.g. amine, carboxyl, epoxy, hydroxyl, etc. Such functional groups may likewise be introduced by the use of a functionalized monomer or comonomer, e.g. glycidyl methacrylate, HEMA, MMA or aminostyrene. Such groups are advantageous as the resultant particles are particularly suitable for end uses in applications such as combinatorial chemistry, peptide synthesis, supported catalysts and chromatographic separation.
- Depending on their desired end use, the monodisperse polymer particles may be coated (e.g. with metallic coatings); they may have materials, e.g. magnetic crystals, specific binding partners (e.g. antibodies, avidin or streptavidin, etc.), or catalysts bound to their surface or deposited in pores or on the surface; or they may be expanded (e.g. using blowing agents).
- The swelling and polymerization stages are performed in aqueous dispersion in the presence of materials, e.g. surfactants, stabilizers, organic solvents, etc., which it is desirable to remove from the particles. Likewise, where the polymerization produces a cross-linked polymer it may be desirable to remove linear polymers or oligomers which formed the seed particles, for example to avoid leakage during use in chromatography. Generally a water-miscible organic solvent in which the cross-linked polymer is insoluble, or an aqueous solution of such a solvent, may be used for this. However it is particularly suitable to use butyl acetate in this regard in view of its surprising effectiveness in removing undesired residues from the Ugelstad polymerization process. This use forms a further aspect of the present invention. Viewed from this aspect the invention provides a method of cleaning monodisperse polymer particles, in particular particles produced by swelling a seed polymer or oligomer particle in aqueous dispersion and polymerizing a monomer within the swollen seed particles, which method comprises contacting said monodisperse polymer particles with butyl acetate, e.g. by washing or rinsing with butyl acetate or a solution thereof.
- The initial polymer seed (i.e. the particles not produced by the Ugelstad swelling and polymerization technique) is preferably prepared by dispersion or emulsion polymerization, in the latter case especially preferably under substantially oxygen-free conditions (e.g. under an inert gas atmosphere, for example a noble gas such as argon, helium, etc.), and with an oxygen content in the aqueous phase of between 0 and 5 ppm, more especially between 0 and 3 ppm, preferably between 0 and 2 ppm, particularly between 0.01 and 2 ppm. This can be achieved by boiling the water before use or, more preferably by purging liquid reagents with nitrogen. When purging liquid reagents with nitrogen, the length of time required depends upon the volume to be purged. For example, when purging a 2 litre vessel, a purging time of between 1 to 50 minutes is preferred, especially preferably purging for at least 10 minutes.
- The aqueous phase in the emulsion polymerization contains an anionic surfactant stabilizer, e.g. an C8-16 alkyl sulphate such as a decylsulphate, e.g. sodium decylsulphate. This is preferably present at a concentration below its critical micelle concentration.
- The unswollen initial seed preferably has a mode particle diameter in the range 0.2 to 1 μm, especially 0.3 to 0.7 μm, more especially 0.4 to 0.6 μm. This can be achieved by mixing monomer, water and surfactant, heating (e.g. to 80° C.) and charging with initiator under vigorous stirring. The initial seeds produced by emulsion polymerization are preferably styrene polymers. Subsequent seeds may conveniently be polymeric or oligomcric.
- In the process steps recited above for the processes of the invention, where the polymerization initiator is used as the organic compound (i.e. as substance I of the process of EP-B-3905) it is preferably an organic peroxide, e.g. tert-butyl peroxyneodecanoate or more especially dioctanoyl peroxide (DOP) and it is preferably formed into a fine emulsion using water, the anionic surfactant (preferably sodium dodecyl sulphate or a sulfonate) and an organic solvent, e.g., acetone. The monomer may be but preferably is not used as a solvent for the peroxide initiator; if it is used as a solvent it is preferred that only a relatively small amount of the monomer be used.
- In general, emulsification is preferably effected using a high pressure mixer (e.g. a pressure homogenizer), or a rotor stator mixer, to give a mode droplet diameter in the range 0.05 to 5 μm, more preferably 0.05 to 0.5 μm, especially 0.05 to 0.3 μm. During emulsifications, the surfactant is preferably present above its critical micelle concentration, e.g. at a concentration of 3 to 10 g/L, more preferably 4 to 6 g/L (the critical micelle concentration for sodium dodecyl sulphate is about 2.5 g/L). However during polymerization stages, the surfactant is preferably present below its critical micelle concentration, e.g. at less than 1.5 g/L, conveniently 0.1 to 1.0 g/L. This can be achieved either by dilution, for example, with water after emulsion formation but before polymerization initiation. Alternatively, the desired concentration may be achieved by dilution, for example with water or a solution of a steric stabilizer after emulsion formation but before polymerization initiation. As a further alternative, the desired concentration may be realized by adding an appropriately diluted solution of steric stabilizer prior to emulsion formation.
- During the uptake of the organic compound by the polymer seed particles, the temperature of the dispersion is preferably maintained between 20 and 50° C. as precipitation may occur at lower temperatures and new particles may form at higher temperatures. Generally temperatures of 25° C.±2° C. are preferred.
- During this uptake phase the dispersion is preferably stirred. The time required for uptake is dependant on the seed diameter, the quantity and nature of the organic compound, the emulsion droplet size and the quantity and nature of surfactant and organic solvent. Generally a period of 1 to 5 days, more particularly 2 to 3 days, will be sufficient. Where the organic compound is an initiator it is important that uptake be at least substantially complete so as to avoid out-of-size particles.
- The organic solvent concentration in the dispersion during organic compound uptake is conveniently 5 to 15% w/w.
- The monomers and comonomers used in the process of the invention are preferably vinyl monomers (e.g. styrene), acrylic monomers and methacrylate monomers and monomers copolymerizable therewith, e-g. styrene, divinylbenzene (DVB), ethyl vinyl benzene, vinyl pyridine, amino-styrene, methyl-styrene, ethylene dimethacrylate, (EDMA), hydroxyethylmethacrylate (HEMA), methyl methacrylate (MMA), glycidyl methacrylate (GMA), vinyl benzyl chloride (VBC), vinylchloride (VC), dimethyl styrene, ethyl styrene, ethyl-methyl-styrene, p-chlorostyrene, 2,4-dichlorostyrene, acrylic acid, methyl acrylate, ethyl acrylate, butylacrylate, methacrylic acid, ethyl methylmethacrylate, maleic acid, maleic anhydride, dimethyl maleate, diethyl maleate, dibutyl maleate, fumaric acid, dimethyl fumarate, diethyl fumarate and acrylonitrile.
- In the process of the invention the initial polymer seed, e.g. made by emulsion polymerization, is a polymer. Especially preferably, the initial polymer seed is a styrene homo or copolymer, e.g. a styrene homopolymer or a styrene-divinyl benzene copolymer. Most preferably, initial seeds prepared by emulsion polymerization will be homopolymers, especially polystyrene. Initial seeds prepared by other techniques, e-g. dispersion polymerization may be homopolymers or copolymers, and may be oligomeric or polymeric. Such seeds typically may be 1 to 10 μm in mode diameter and optionally may contain some cross-linker. Initial seeds used in this invention which are produced by emulsion polymerization, on the other hand, are typically of less than or equal to about 1 μm in diameter.
- Intermediate seeds may be either polymer or oligomer seeds. Throughout this application, oligomer is intended to refer to polymers having low weight average molecular weight (for example up to 5000 Daltons, e.g. 1000 to 4000 D, especially 1500 to 3000 D), corresponding for example up to 50, more particularly 10 to 25 monomer units. Oligomer seeds have the advantage that their swelling capacity is generally much greater than that of the longer chain polymers.
- For intermediate or larger sized seeds, e.g. having a mode particle diameter of about 1 μm or above before swelling, it may be desirable to incorporate a chain transfer agent, e.g. a halogenated alkane as described by Ugelstad in U.S. Pat. No. 4,186,120. This has the advantage of producing a polymer with a bimodal molecular weight distribution in the polymerization stage. The lower molecular weight component results in the particles produced in that polymerization stage having a greater swelling capacity for subsequent swelling and polymerization stages.
- As an alternative to the use of a chain transfer agent, a high initiator concentration may be used in oligomer production. In this regard, the techniques of U.S. Pat. No. 4,530,956 (Ugelstad), the disclosure of which is incorporated by reference, may be used.
- It is also preferred to include a water-soluble polymerization inhibitor (e.g. potassium iodide) in the aqueous phase to prevent nucleation of particles.
- Where a porous product is desired, then a porogen should be incorporated in the swollen seed particles, preferably in at least the final swelling and polymerization stage. As porogens can be used organic substances which are not polymerized in the polymerization stage and which can be removed from the particles after polymerization thereby producing porous particles. Porogens can also be used as blowing agents -particles impregnated with such materials, on heating may expand as the porogen vaporizes. Examples of suitable porogens include organic acids, alcohols, esters, aromatic solvents, optionally substituted aliphatic hydrocarbons having up to 12 carbons, e.g. toluene, cyclohexanol, butyl acetate, propane, pentane, cyclopentane, cyclobutane, heptane, methyl chloride, ethyl chloride, dichlorodifluoromethane, etc. Toluene and n-heptane are preferred, especially in a volume ratio of 1:10 to 10:1, more particularly 1:4 to 4:1. The porogen is conveniently introduced in admixture with the monomer.
- By the use of a combination of porogens, at least one of which is a solvent for the polymer produced in the polymerization stage and at least one of which is a not a solvent for that polymer, it is possible to achieve a desired pore size distribution in the resulting porous particles. Thus for example for vinyl polymers (e.g. styrene) toluene can be used as a solvent porogen and n-heptane as a non-solvent porogen. The use of the term “solvent” in this specific context is not intended to convey that the swollen particles are capable of dissolving fully in this solvent, or that the swollen particles are incapable of dissolving to any extent whatsoever in the non-solvent porogen. Thus the combination of the two types of porogen enables the desired pore size distribution in the resulting porous particles to be achieved. This use of a porogen combination forms a further aspect of the invention. Viewed from this aspect the invention provides a process for the preparation of porous monodisperse polymer particles which process comprises:
- 1) either
- (a) forming an aqueous dispersion comprising (i) monodisperse swellable seed polymer (or oligomer) particles, (ii) droplets comprising an organic compound (e.g. a polymerization initiator) with a molecular weight below 5000 Dalton and a water solubility at 25° C. of less than 10−2 g/L, (iii) an anionic surfactant, and, optionally, (iv) an organic solvent in which said organic compound is soluble;
- and (b) allowing said organic compound to diffuse into said seed particles,
- or
- (a) forming an aqueous dispersion comprising monodisperse swellable seed oligomer particles and preferably an anionic surfactant;
- 2) contacting the aqueous dispersion of seed particles with a monomer which, where said organic compound is present, is at least ten times more water soluble than said organic compound, and allowing said monomer to diffuse into said seed particles to form an aqueous dispersion of swollen seed particles and if required adding a water-soluble steric stabilizer, if required adding a porogen, and if required adding a polymerization initiator; and
- 3) initiating polymerization of said monomer in an aqueous dispersion of swollen seed particles, characterized in that said swollen seed particles contain at least two porogens, at least one of which is a solvent for the polymer produced in step (3) and at least one of which is not a solvent for the polymer produced in step (3).
- In this aspect, the ratio with regard to increase in diameter is preferably greater than or equal to 4.5.
- In general, a cross-linking monomer (such as divinylbenzene) can be used as 0 to 100% w/w of the monomer diffused into the seeds, for example as at least 30% for the production of porous particles and up to 0.5% for the production of very highly swellable particles.
- In the preparation of porous particles and many other particles, it is necessary to include a crosslinking agent or alternatively to use as a monomer or comonomer a compound with more than one polymerization site, e.g. a compound with more than one polymerizable carbon-carbon double bond, for example a diene such as divinyl benzene, or compounds such as hexanediol dimethacrylate, trimethylol propane trimethacrylate and divinyl benzyl ether. Particularly desirably the monodisperse polymer particles produced according to the invention are 30 to 100% divinyl benzene, more especially 60 to 95%, particularly 70 to 90%, more particularly 75 to 82% (where the percentages are by weight of divinylbenzene monomer residue relative to the total monomer residue).
- It has been found that the Ugelstad processes can be used particularly effectively to produce functionalized or functionalizable monodisperse particles where the monomer dispersed into the seeds in at least one swelling stage, preferably the final stage, comprises at least two acrylic or methacrylic acid or ester monomers, more preferably at least one being glycidyl methacrylate. Viewed from a further aspect therefore the invention provides a process for the preparation of monodisperse polymer particles which process comprises:
- 1) either
- (a) forming an aqueous dispersion comprising (i) monodisperse swellable seed polymer (or oligomer) particles, (ii) droplets comprising an organic compound (e.g. a polymerization initiator) with a molecular weight below 5000 Dalton and a water solubility at 25° C. of less than 10−2 g/L, (iii)an anionic surfactant, and, optionally, (iv) an organic solvent in which said organic compound is soluble;
- and (b) allowing said organic compound to diffuse into said seed particles;
- or
- (a) forming an aqueous dispersion comprising monodisperse swellable seed oligomer particles and preferably an anionic surfactant;
- 2) contacting the aqueous dispersion of seed particles with a monomer which, where said organic compound is present, is at least ten times more water soluble than said organic compound, and allowing said monomer to diffuse into said seed particles to form an aqueous dispersion of swollen seed particles and if required adding a water-soluble steric stabilizer, if required adding a porogen, and if required adding a polymerization initiator; and
- 3) initiating polymerization of said monomer in an aqueous dispersion of swollen seed particles, characterized in that said monomer comprises at least two acrylic or methacrylic acid or ester monomers, more preferably at least one being glycidyl methacrylate.
- In this aspect, the ratio with regard to increase in diameter is preferably greater than or equal to 4.5.
- Coefficient of variation (CV) is determined in percentage as
-
CV=100×standard deviation/mean - where mean is the mean particle diameter and standard deviation is the standard deviation in particle size. CV is preferably calculated on the main mode, i.e. by fitting a monomodal distribution curve to the detected particle size distribution. Thus some particles below or above mode size may be discounted in the calculation which may for example be based on about 90%, more usually about 99% of total particle number (of detectable particles that is). Such a determination of CV is performable on a Coulter Counter Channclizcr 256 particle size analyzer.
- Embodiments of the invention are illustrated further by the following non-limiting Examples:
- Porous Crosslinked Polystyrene Particles, 30 μm
- 1400 g of water, 84 g of dioctanoyl peroxide (DOP), 140 g of acetone and 7 g of sodium dodecyl sulphate (SDS) were homogenized in a two stage Manton Gaulin homogenizer with 380 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 8-9 min.
- After homogenization 178.1 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 5 μm. There were used 21.9 g of seed suspension containing 19.8 g of water and 2.1 g of oligomeric particles.
- After stirring for 3 days at 25° C., 180.8 g of the activated seed particles were charged with an emulsion containing 1683 g of water, 0.6 g of sodium dodecyl sulfate (SDS), 2.6 g of Methocel K100 (HPMC=Hydroxy Propyl Methyl Cellulose), 117 g of 80% divinylbenzene (DVB) [i.e. 80% by weight DVB, 20% by weight ethyl vinyl benzene and other byproducts of DVB production], 223 g of porogen (to 1 uene:n-heptane in a 1:2 volume ratio). The emulsion was homogenized at 330 kg/cm2 in the first stage and 50 kg/cm2 in the second stage for 6-7 min.
- After swelling for 15 hrs at 25° C., 5.3 g of Methocel K100 dissolved in 788 g of water were charged to the reactor. The dispersion was then polymerized for 10 hrs at 70° C. A monodisperse suspension was formed having a particle diameter of 30 μm.
- The particles were separated from the liquid phase by flotation and the liquid phase was discharged. The particles were then cleaned with 2 litres of methanol by stirring for 1 hour followed by sedimentation. After sedimentation the liquid phase was discharged, new methanol (2 litres) was charged and the described procedure was repeated 4 times. The particle suspension was then sieved through a 100 μm sieving cloth. Then the particle suspension was diafiltered with 6 litres of butylacetate followed by 6.7 litres of methanol. Finally the particles were cleaned by sedimentation and discharging of the liquid phase, with 2 litres of methanol minimum 3 times.
- The final product was 30 μm polymer particles in a clear liquid phase without impurities.
- Porous Acrylic Particles, 30 μm
- 1400 g of water, 84 g of DOP, 140 g of acetone and 7 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 380 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 8-9 min.
- After homogenization, 88.4 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 5 μm. There were used 9.6 g of seed suspension containing 8.75 g of water and 0.85 g of oligomeric particles.
- After stirring for 3 days at 25° C., 89 g of the activated seed particles were charged with an emulsion containing 844 g of water, 1.3 g of Methocel K100, 44.9 g of ethylene dimethylacrylate (EDMA), 11.4 g of hydroxy ethyl methacrylate (HEMA), 113 g of porogen (cyclohexanol:butylacetate in a 1:1 volume ratio). The mixture was emulsified with a Ultra Turrax at maximum speed for 10 min.
- After swelling for 2 hrs at 25° C., 0.4 g of potassium iodide (KI) dissolved in 395 g of water were charged to the reactor and the dispersion was then polymerized for 1 hr at 50° C., 3 hrs at 60° C. and 1 hr at 70° C. A monodisperse suspension was formed having a particle diameter of 30 μm.
- Solid Polystyrene Particles, 20 μm
- 1400 g of water, 84 g of DOP, 140 g of acetone and 7 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 380 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 8-9 min.
- After homogenization 159 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 5 μm. There were used 43.9 g of seed suspension containing 39.7 g of water and 4.2 g of oligomeric particles.
- After stirring for 2 days at 25° C., 184.4 g of the activated seed particles were charged with an emulsion containing 836 g of water, 1.5 g of Methocel K100, 348.8 g styrene. The emulsion was homogenized at 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 4-5 min.
- After swelling for 2 hrs at 25° C., 3 g of Methocel K100 dissolved in 427 g of water were charged to the reactor and then the dispersion was polymerized for 1 hr at 60° C. and 9 hrs at 70° C. A monodisperse suspension was formed having a particle diameter of 20 μm.
- Solid Crosslinked Polystyrene Particles, 54 μm
- 1400 g of water, 42 g of DOP, 222 g of acetone and 7 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 8-9 min.
- After homogenization 159 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 9.5 μm. There were used 17.6 g of the seed suspension containing 16.6 g of water and 1 g of oligomeric particles.
- After stirring for 3 days at 25° C., 146.3 g of the activated seed particles were charged with an emulsion containing 1198 g of water, 2.5 g of Methocel K100, 228 g styrene, 7.3 g 65% DVB. The emulsion was homogenized at 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 5-6 min.
- After swelling for 1 hour at 25° C., 0.5 g of Methocel K100 and 0.5 g KI dissolved in 500 g of water were charged to the reactor and then the dispersion was polymerized for 1 hr at 60° C. and 9 hrs at 70° C. A monodisperse particle suspension was formed having a particle diameter of 54 μm.
- Solid Crosslinked Polystyrene Particles, 15 μm
- 1400 g of water, 84 g of DOP, 140 g of acetone and 7 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 8-9 min.
- After homogenization 75.8 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 3.2 μm. There were used 22 g of the seed suspension containing 20 g of water and 2 g of oligomeric particles.
- After stirring for 1 day at 25° C., 85 g of the activated seed particles were charged with an emulsion containing 784 g of water, 1.25 g of SDS, 204.3 g styrene, 0.37 g of 80% DVB. The emulsion was homogenized at 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 4-5 min.
- After swelling for 5 hrs at 25° C., 15 g of PVP K90 (Poly Vinyl Pyrolidonc) and 0.4 g of potassium iodide dissolved in 702 g of water were charged to the reactor and then the dispersion was polymerized for 1 hr at 60° C. and 9 hrs at 70° C. A monodisperse suspension was formed having a particle diameter of 15 μm.
- Porous Crosslinked Polystyrene Particles, 4.5 μm
- 4970 g of water, 248.5 g of DOP and 24.85 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 25 min.
- After homogenization 3947.6 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 1 μm. There were used 1691.2 g of the seed suspension containing 1555.2 g of water and 136.0 g of oligomeric particles.
- After stirring for 20 hrs at 25° C., 5126.2 g of the activated seed particles were charged with an emulsion containing 42576 g of water, 26.47 g of SDS, 536.5 g of PVP K-30, 2989.7 g of 62.5% DVB, 1991.7 g of styrene and 4727.0 g of porogen (toluene). The emulsion was homogenized at 380 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 30 min.
- After swelling for 20 hrs at 25° C., 42026.4 g of water were charged to the reactor and then the dispersion was polymerized for 1 hr at 60° C., 4 hrs at 70° C. and 2.5 hrs at 80° C. A monodisperse suspension was formed having a particle diameter of 4.5
- Porous Crosslinked Polystyrene Particles, 2.8 μm
- 2630 g of water, 214.4 g of DOP, 291.9 g of acetone and 14.73 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 25 min.
- After homogenization 2994.6 g of the emulsion were charged with a seed suspension of monodisperse polystyrene particles having a particle diameter of 0.5 μm. There were used 341.3 g of seed suspension containing 290.4 g of water and 50.9 g of polymeric particles.
- After stirring for 20 hrs at 25° C., 3032.6 g of the activated seed particle suspension were charged with an emulsion containing 43375.1 g of water, 31.42 g of SDS, 1412.7 g of PVP K-30, 2989.6 g of 62.9% DVB, 1998.2 g of styrene and 4780.7 g of porogen (toluene). The emulsion was homogenized at 380 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 60 min.
- After swelling for 20 hrs at 25° C., 42379.7 g of water were charged to the reactor and then the dispersion was polymerized for 1 hr at 60° C., 4 hrs at 70° C. and 2.5 hrs at 80° C. A monodisperse suspension was formed having a particle diameter of 2.8 μm.
- Porous Crosslinked Polystyrene Particles, 2.6 μm
- 1548 g of water, 16 g of PVP-K30, 2.4 g SDS, 176.6 g of 63% DVB, 44 g of styrene, 204.6 g of porogen (toluene) and 5.6 g of 2,2′-azobis(2-methylbutyronitrile) (AMBN) were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm2 in the first stage and 100 kg/cm2 the second stage for 35 min.
- After homogenization 1013.4 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 0.65 μm. There were used 40.4 g of seed suspension containing 36.8 g of water and 3.58 g of oligomeric particles.
- After swelling for 20 hrs at 25° C., 8 g PVP K-30, and 0.8 g of potassium iodide dissolved in 794 g of water were charged to the reactor and then the dispersion was polymerized for 1 hr at 60° C., 4 hrs at 70° C. and 2.5 hrs at 80° C. A monodisperse suspension was formed having a particle diameter of 2.6 μm.
- Preparation of Initial Seed Particles, 0.5 μm
- 280 g styrene was extracted with 500 ml 10 wt. % sodium hydroxide and then washed with water to pH7 and then flushed with argon for 10 min. In a 2 L rector 1400 g of water and 0.53 g of borax were heated to 80° C., and 100 g water was evaporated off to remove oxygen. Then 0.56 g sodium decyl sulphate in 50 ml boiled water was charged and stirred for 10 min, then the washed and substantially oxygen free styrene was charged and stirred for 15 min. Then 0.84 g potassium peroxodisulphate was charged in 100 ml boiled water. The mixture was kept at 80° C. in an argon atmosphere for 13 hours. A monodisperse suspension of polymeric particles was formed having a particle diameter of 0.5 μm.
- Solid Methacrylic Particles with Amine Groups, 6 μm
- 900 g of water, 90 g of DOP, 90 g of acetone and 5.4 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 380 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 6-7 min.
- After homogenization 77.0 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 1 μm. There were used 14.5 g of seed suspension containing 13.2 g of water and 1.3 g of oligomeric particles.
- After stirring for 1 day at 25° C., 83.3 g of the activated seed particles were charged with 864.6 g of water, 2.0 g of SDS, 158.9 g of methyl methacrylate (MMA), 45.4 g glycidyl methacrylate (GMA) and 22.7 g ethylene glycol-dimethacrylate. (EDMA).
- After swelling for 15 hrs at 2 S° C., 788 g of water were charged to the reactor and then the dispersion was polymerized for 6 hrs at 70° C. Then 38.4 g ethylenediamine were charged to the reactor and then reaction was allowed to proceed for 18 hrs. A monodisperse suspension was formed having a particle diameter of 6
- Core and Shell Particles, 10 μm
- 1200 g of water, 120 g of DOP, 240 g of acetone and 7.2 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 7-8 min.
- After homogenization 83 g of the emulsion were charged with a seed suspension of monodisperse polystyrene particles having a particle diameter of 2 μm. There were used 7.9 g of the seed suspension containing 6.5 g of water and 1.4 g of polymeric particles.
- After stirring for 1 day at 25° C., acetone was removed by evaporation under vacuum and 71 g of the activated seed particles were charged with 907 g of water, 2.1 g of SDS, 138.4 g of methyl styrene, 34.6 g of 55% DVB.
- After swelling for 20 hrs at 25° C., 0.4 g of KI dissolved in 647 g of water were charged to the reactor and then polymerized for 5 hrs at 70° C. (core). Then the batch was cooled down to 25° C.
- Step 2
- 550 g of the suspension of
step 1 was taken and the aqueous was charged with 0.1 g of Methocel J 75MS (Hydroxy Propyl Methyl Cellulose), 0.05 g of KI and 0.1 g of SDS dissolved in 230 g of water. To this batch was added a mixture of 15.6 g MMA, 12.5 g of GMA and 3.1 g of EDMA. - After stirring for 2 hrs at 25° C., the temperature was raised to 65° C. for 1 hr and further to 70° C. for 5 hrs. The final mixture was monodisperse and contained particles having a diameter of about 10 μm.
- Solid Polystyrene Particles with Chlorine Groups, 200 μm
- 1370 g of water, 82 g of DOP, 205 g of acetone and 8.2 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm2 in the first stage and 100 kg/cm2 the second stage for 8-9 min.
- After homogenization, 166 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 71 μm. There were used 79 g of the seed suspension containing 71.2 g of water and 7.8 g of oligomeric particles.
- After stirring for 2 days at 25° C., 222 g of the activated seed particles were charged with an emulsion containing 1583 g of water, 8.5 g of Methocel K100, 124.4 g styrene, 3 g of 62.8% DVB, 58.5 g of Vinyl Benzyl Chloride (VBC). The emulsion was homogenized at 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 5-6 min.
- After swelling for 1 hr at 25° C., the temperature was raised to 60° C. for 1 hr and further to 70° C. for 10 hrs. A monodisperse suspension was formed having a particle diameter of 200 μm.
- Porous Crosslinked Polystyrene Particles Containing Amine Functionality, 30 μm
- 1500 g of water, 119 g of bis(2-ethylhexyl) adipate, 152 g of acetone and 8 g of sodium dodecyl sulphate (SDS)were homogenized in a two stage Manton Gaulin homogenizer at 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 8-9 min.
- After homogenization, 499 g of the emulsion was charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 5 μm. 93 g of a seed suspension containing 8 g of oligomeric particles and 85 g of water was used.
- After stirring at 45° C. for 1 day, 96.9 g of the seed suspension containing activated seed particles were charged to 1097.7 g of an emulsion containing 798.3 g of water, 1.2 g of Methocel K-100, 0.3 g of sodium dodecyl sulphate 34.74 g of 80% divinylbenzene (DVB) [i.e. 80% by weight DVB, 20% by weight ethyl vinyl benzene and other byproducts in DVB production], 52.8 g of styrene, 4.2 g of 2,2′-azobis(2-rnethylbutyronitrile) and 205.7 g of toluene. The emulsion was homogenized at 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 8-9 min.
- After swelling at 25° C. for 0-5 hours, a mixture of 299.8 g of water, 0.5 g of Methocel K-100, 0.1 g of sodium dodecyl sulphate and 5.1 g of 4-amino-styrene was charged and the swelling continued for additional 3 hours. 506.2 g of water and 3.37 g of Methocel K-100 were then charged to the reactor. The dispersion was then polymerized for 1 hour at 60° C. and 17 hours at 70° C., yielding a suspension of particles having a diameter of 30μm.
- The particles were cleaned as described in Example 1.
- Porous crosslinked polystyrene particles containing amine functionality, 30 μm
- 850 g of water, 110.50 g of bis(2-ethylhexyl)adipate, 141.95 g of acetone and 4.25 g of sodium dodecyl sulphate (SDS) were homogenized in a two stage Manton Gaulin homogenizer at 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 8-9 min.
- After homogenization, 102.68 g of the emulsion was charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 5 μm. 27.21 g of seed suspension containing 1.71 g of oligomeric particles and 26.2 g of water was used.
- After stirring at 45° C. for 24 hours, 87.06 g of the seed suspension containing activated seed particles were charged to 1436.08 g of an emulsion containing 1035.84 g of water, 1.58 g of Methocel K-100, 0.5 g of sodium dodecyl sulphate, 53.41 g of 80% divinylbenzene (DVB) [i.e. 80% by weight DVB, 20% by weight ethyl vinyl benzene and other byproducts in DVB production], 56.07 g of styrene, 6.71 g of 2,2′-azobis(2-methylbutyronitrile), 269.41 g of toluene and 12.56 g of 4-amino-styrene. The emulsion was homogenized without addition of 4-amino-styrene at 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 8-9 min before the emulsion was mixed with 4-amino-styrene.
- After swelling at 27° C. for 1 hour, a mixture of 473.69 g of water and 3.16 g of Methocel K-100 was then charged to the reactor. The dispersion was then polymerized for 1 hour at 60° C. and 10 hours at 70° C., yielding a suspension of particles having a diameter of 30 μm.
- The particles were cleaned as described in Example 1.
- Crosslinked Polystyrene Particles Containing Amine Functionality, 32 μm
- 1380 g of water, 179 g of bis(2-ethylhcxylladipate, 230 g of acetone and 7 g of sodium dodecyl sulphate (SDS) were homogenized in a two stage Manton Gaulin homogenizer at 400 kg/cm3 in the first stage and 100 kg/cm3 in the second stage for 10-12 minutes.
- After homogenization 292 g of the emulsion was charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 5 km. 79 g of seed suspension containing 7 g of oligomeric particles and 72 g of water was used.
- After stirring at 45° C. for 1 day, 52.5 g of the seed suspension containing activated seed particles were charged to 850.5 g of an emulsion containing 0.9 g of Methocel K-100, 0.3 g of sodium dodecyl sulphate (SDS), 2.1 g of divinylbenzene (DVB) [i.e. 80% by weight DVB, 20% by weight ethyl vinyl benzene and other byproducts in DVB production], 174.1 g of styrene, 58.7 g of amino styrene, and 12.9 g of 2,2′-azobis(2-methylbutyro-nitrile). The mixture was emulsified for 10 minutes by using an Ultra Turrax mixer.
- After swelling at 27° C. for 1 hour, 281.6 g of water and 1.9 g of Methocel K-100 were charged to the reactor. The dispersion was then polymerized for 1 hour at 60° C. and 10 hours at 70° C., yielding a suspension of particles having diameter of 32 μm.
- The particles were cleaned as described in Example 1. Diameter was measured on particles dispersed in water, butylacetate and tetrahydrofuran respectively.
- Crosslinked Polystyrene Particles Containing Amine Functionality, 35 μm
- 1380 g of water, 179 g of bis(2-ethylhexyl)adipate, 230 g of acetone and 7 g of sodium dodecyl sulphate (SDS)were homogenized in a two stage Manton Gaulin homogenizer at 400 kg/cm3 in the first stage and 100 kg/cm3 in the second stage for 10-12 minutes.
- After homogenization, 292 g of the emulsion was charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 5 μm. 79 g of seed suspension containing 7 g of oligomeric particles and 72 g of water was used.
- After stirring at 45° C. for 1 day, 52.2 g of the seed suspension containing activated seed particles were charged to 850.5 g of an emulsion containing 0.9 g of Methocel K-100, 0.3 g of sodium dodecyl sulphate (SDS), 5.9 g of divinylbenzene (DVB) [i.e. 80% by weight DVB, 20% by weight ethyl vinyl benzene and other byproducts in DVB production], 166.0 g of styrene, 63.0 g of amino styrene and 12.9 g of 2,2′-azobis(2-methylbutyro-nitrile). The mixture was emulsified for 10 minutes by using an Ultra Turrax mixer.
- After swelling at 27° C. for 1 hour, 281.6 g of water and 1.9 g of Methocel K-100 were charged to the reactor. The dispersion was then polymerized for 1 hour at 60° C. and 10 hours at 70° C., yielding a suspension of particles having diameter of 35 μm.
- The particles were cleaned as described in Example 1. Diameter was measured on particles dispersed in water, butylacetate and tetrahydrofuran respectively.
- Crosslinked Polystyrene Particles Containing Amine Functionality, 35 μm
- 1380 g of water, 179 g of bis(2-ethylhexyl)adipate, 230 g of acetone and 7 g of sodium dodecyl sulphate (SDS) were homogenized in a two stage Manton Gaulin homogenizer at 400 kg/cm3 in the first stage and 100 kg/cm3 in the second stage for 10-12 minutes.
- After homogenization, 292 g of the emulsion was charged with a seed suspension of monodisperse oligomeric styrene particles having a particle diameter of 5 μm. 79 g of seed suspension containing 7 g of oligomeric particles and 72 g of water was used.
- After stirring at 45° C. for 1 day, 52.2 g of the seed suspension containing activated seed particles were charged to 850.5 g of an emulsion containing 0.9 g of Methocel K-100, 0.3 g of sodium dodecyl sulphate (SDS), 8.8 g of divinylbenzene (DVB) [i.e. 80% by weight DVB, 20% by weight ethyl vinyl benzene and other byproducts in DVB production], 167.3 g of styrene, 58.75 of amino styrene, and 12.9 g of 2,2′-azobis(2-methylbutyro-nitrile). The mixture was emulsified for 10 minutes by using an Ultra Turrax mixer.
- After swelling at 27° C. for 1 hour, 281.6 g of water and 1.9 g of Methocel K-100 were charged to the reactor. The dispersion was then polymerized for 1 hour at 60° C. and 10 hours at 70° C., yielding a suspension of particles having diameter of 35 μm.
- The particles were cleaned as described in Example 1. Particle diameter was measured on particles dispersed in water, butyl acetate and tetrahydrofuran respectively.
- Elemental analysis showed a content of 3.0 wt. % nitrogen and 0.38 wt. % oxygen.
- Further Functionalization of Amine-Functionalized Particles with Carboxyl and Amide Functionality
- 5 g of the particles produced in Example 17 in methanol were washed with dioxane (3×180 ml). 2.07 g of succinic anhydride was added to the dioxane suspension (96 g). The mixture was heated and mechanically stirred at 40° C. for 3 hours. The particles were washed with dioxanc (2×200 ml), methanol (100 ml) and dioxane (200 ml}. IR spectra showed a broad peak at 1750 to 1650 cm−1 which indicates formation of both amide and carboxylic acid groups.
- Elemental analysis of dried particles showed a content of 2.5 wt. % nitrogen and 9.3 wt. % oxygen. This indicates an amine conversion near 100%.
- Further Functionalization of Amine-Functionalized Particles with Amide Functionality
- 5 g of the particles produced in Example 17 in methanol were washed with dioxane (3×180 ml). 4.23 g of bromoacetic acid bromide and 3.0 g diisopropylethylamine was added to the dioxane suspension (79 g). The mixture was mechanically stirred at 20° C. for 1 hour. The particles were washed with dioxane (2×150 ml), dioxane with 20% water and 1 g diisopropylethylamine (150 ml) and dioxane (2×150 ml).
- IR spectra showed a peak at 1685 cm−1 which indicates formation of amide groups.
- Elemental analysis of dried particles showed a content of 13.2 wt % bromine indicating a conversion of 96%.
- Porous Crosslinked Polystyrene Particles, 5.0 μm
- 2020.0 g of water, 202.0 g of DOP, 202.0 g of acetone and 10.10 g of SDS were homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 10 minutes.
- After homogenization, 1429.3 g of the emulsion were charged with a seed suspension of monodisperse oligomeric styrene particles having particle diameter of 0.9 μm. There were used 372.8 g of seed suspension containing 341.1 g of water and 31.7 g of oligomeric particles.
- After stirring for 23 hours at 25° C., 581.3 g of the activated seed suspension were charged with an emulsion containing 7053.9 g of water, 18.0 g of Methocel K-100, 883.0 g of 80% divinylbenzene (DVB) [i.e. 80% by weight DVB, 20% by weight ethyl vinyl benzene and other byproducts in DVB production], 168.1 g of toluene and 525.6 g of n-heptane. The emulsion was homogenized in a two stage Manton Gaulin homogenizer with 400 kg/cm2 in the first stage and 100 kg/cm2 in the second stage for 30 minutes.
- After swelling for 20 hrs at 25° C., 3234.2 g of water and 35.9 g of Methocel K-100 were charged to the reactor and then the dispersion was polymerized for 1 hour at 60° C. and 10 hours at 70° C. A monodisperse suspension was formed having a particle diameter of 5 μm.
- The particles were cleaned as described in Example 1.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/867,394 US20160075800A1 (en) | 1999-04-09 | 2015-09-28 | Process for the preparation of monodisperse polymer particles |
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9908163.0A GB9908163D0 (en) | 1999-04-09 | 1999-04-09 | Process |
GB9908163.0 | 1999-04-09 | ||
GB0007008.6 | 2000-03-22 | ||
GBGB0007008.6A GB0007008D0 (en) | 1999-04-09 | 2000-03-22 | Process |
PCT/GB2000/001334 WO2000061647A1 (en) | 1999-04-09 | 2000-04-10 | Process for the preparation of monodisperse polymer particles |
US95843101A | 2001-10-09 | 2001-10-09 | |
US11/747,860 US20070265390A1 (en) | 1999-04-09 | 2007-05-11 | Process for the preparation of monodisperse polymer particles |
US12/644,003 US20100099803A1 (en) | 1999-04-09 | 2009-12-21 | Process for the preparation of monodisperse polymer particles |
US13/649,045 US8658733B2 (en) | 1999-04-09 | 2012-10-10 | Process for the preparation of monodisperse polymer particles |
US14/152,793 US9309368B2 (en) | 1999-04-09 | 2014-01-10 | Process for the preparation of monodisperse polymer particles |
US14/867,394 US20160075800A1 (en) | 1999-04-09 | 2015-09-28 | Process for the preparation of monodisperse polymer particles |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/152,793 Continuation US9309368B2 (en) | 1999-04-09 | 2014-01-10 | Process for the preparation of monodisperse polymer particles |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160075800A1 true US20160075800A1 (en) | 2016-03-17 |
Family
ID=26243944
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/958,431 Expired - Lifetime US7217762B1 (en) | 1999-04-09 | 2000-04-10 | Process for the preparation of monodisperse polymer particles |
US11/747,860 Abandoned US20070265390A1 (en) | 1999-04-09 | 2007-05-11 | Process for the preparation of monodisperse polymer particles |
US12/644,003 Abandoned US20100099803A1 (en) | 1999-04-09 | 2009-12-21 | Process for the preparation of monodisperse polymer particles |
US13/649,045 Expired - Fee Related US8658733B2 (en) | 1999-04-09 | 2012-10-10 | Process for the preparation of monodisperse polymer particles |
US14/152,793 Expired - Fee Related US9309368B2 (en) | 1999-04-09 | 2014-01-10 | Process for the preparation of monodisperse polymer particles |
US14/867,394 Abandoned US20160075800A1 (en) | 1999-04-09 | 2015-09-28 | Process for the preparation of monodisperse polymer particles |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/958,431 Expired - Lifetime US7217762B1 (en) | 1999-04-09 | 2000-04-10 | Process for the preparation of monodisperse polymer particles |
US11/747,860 Abandoned US20070265390A1 (en) | 1999-04-09 | 2007-05-11 | Process for the preparation of monodisperse polymer particles |
US12/644,003 Abandoned US20100099803A1 (en) | 1999-04-09 | 2009-12-21 | Process for the preparation of monodisperse polymer particles |
US13/649,045 Expired - Fee Related US8658733B2 (en) | 1999-04-09 | 2012-10-10 | Process for the preparation of monodisperse polymer particles |
US14/152,793 Expired - Fee Related US9309368B2 (en) | 1999-04-09 | 2014-01-10 | Process for the preparation of monodisperse polymer particles |
Country Status (8)
Country | Link |
---|---|
US (6) | US7217762B1 (en) |
EP (2) | EP1985639B1 (en) |
CN (2) | CN1311005C (en) |
AU (2) | AU777829B2 (en) |
CA (1) | CA2369293C (en) |
NO (1) | NO332815B1 (en) |
TW (1) | TW589330B (en) |
WO (1) | WO2000061647A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023088864A1 (en) * | 2021-11-18 | 2023-05-25 | Lanxess Deutschland Gmbh | Method for preparing polymers |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1985639B1 (en) * | 1999-04-09 | 2013-08-14 | Life Technologies AS | Process for the preparation of monodisperse polymer particles |
GB0228914D0 (en) | 2002-12-11 | 2003-01-15 | Dynal Biotech Asa | Particles |
NO20041205L (en) | 2004-03-22 | 2005-09-23 | Polymers Holding As | Storage-stable polymer oligomer particles and their use in seed polymerization |
EP1764374B1 (en) * | 2005-09-16 | 2019-05-01 | Rohm and Haas Company | Method for making swellable particles |
US8444898B2 (en) * | 2006-03-30 | 2013-05-21 | Honeywell International Inc | High molecular weight poly(alpha-olefin) solutions and articles made therefrom |
WO2007127799A2 (en) * | 2006-04-25 | 2007-11-08 | Research Foundation Of The City University Of New York | Polymer submicron particle preparation by surfactant- mediated precipitation |
EP2038320B1 (en) | 2006-06-29 | 2014-03-12 | Life Technologies AS | Particles containing multi- block polymers |
JP5493248B2 (en) * | 2007-04-25 | 2014-05-14 | 日油株式会社 | Method for producing core-shell fine particles and method for producing intermediates thereof |
CN101186661B (en) * | 2007-12-14 | 2012-09-19 | 深圳市纳微科技有限公司 | Method for preparing polymer particle |
CN102099400B (en) * | 2008-05-21 | 2014-06-25 | 东丽株式会社 | Method for producing polymer fine particle |
GB0907372D0 (en) | 2009-04-29 | 2009-06-10 | Invitrogen Dynal As | Particles |
US8790916B2 (en) | 2009-05-14 | 2014-07-29 | Genestream, Inc. | Microfluidic method and system for isolating particles from biological fluid |
JP5474745B2 (en) * | 2009-12-30 | 2014-04-16 | ローム アンド ハース カンパニー | Method for producing uniform oligomer droplets |
JP5483451B2 (en) | 2009-12-30 | 2014-05-07 | ローム アンド ハース カンパニー | Method for producing uniform polymer beads |
WO2011091285A1 (en) | 2010-01-21 | 2011-07-28 | Aquea Scientific Corporation | Ceramic encapsulation by use of one or more silanes to template oil in water emulson |
US8747084B2 (en) | 2010-07-21 | 2014-06-10 | Aperia Technologies, Inc. | Peristaltic pump |
CA2807552A1 (en) | 2010-08-06 | 2012-02-09 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
CN103429606A (en) | 2010-10-01 | 2013-12-04 | 现代治疗公司 | Engineered nucleic acids and methods of use thereof |
GB201018380D0 (en) | 2010-10-29 | 2010-12-15 | Conpart As | Process |
GB201018379D0 (en) | 2010-10-29 | 2010-12-15 | Conpart As | Conductive rf particles |
EP3272885B1 (en) | 2011-01-14 | 2020-04-22 | Life Technologies Corporation | Methods for identification, and quantification of mirnas |
WO2012135805A2 (en) | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
JP2012255135A (en) * | 2011-05-17 | 2012-12-27 | Rohm & Haas Co | Latex particle absorbed thermoplastic polymer |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US20130109596A1 (en) | 2011-09-26 | 2013-05-02 | Life Technologies Corporation | High efficiency, small volume nucleic acid synthesis |
WO2014153188A2 (en) | 2013-03-14 | 2014-09-25 | Life Technologies Corporation | High efficiency, small volume nucleic acid synthesis |
SG10201602654SA (en) | 2011-10-03 | 2016-05-30 | Moderna Therapeutics Inc | Modified nucleosides,nucleotides,and nucleic acids,and uses thereof |
CN104114572A (en) | 2011-12-16 | 2014-10-22 | 现代治疗公司 | Modified nucleoside, nucleotide, and nucleic acid compositions |
WO2013119894A1 (en) | 2012-02-09 | 2013-08-15 | Life Technologies Corporation | Hydrophobic diacrylamide compound |
CN104245745B (en) | 2012-02-09 | 2017-03-29 | 生命技术公司 | hydrophilic polymer particle and preparation method thereof |
EP3228715B1 (en) | 2012-02-09 | 2019-08-14 | Life Technologies Corporation | Conjugated polymeric particle and method of making same |
US9074595B2 (en) | 2012-03-20 | 2015-07-07 | Aperia Technologies, Inc. | Energy extraction system |
DE18203666T1 (en) | 2012-04-02 | 2021-10-07 | Modernatx, Inc. | MODIFIED POLYNUCLEOTIDES FOR THE PRODUCTION OF SECRETED PROTEINS |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
TWI557160B (en) * | 2012-04-19 | 2016-11-11 | 國家中山科學研究院 | Method of fabricating highly cross-linking polymer particles having uniform granular size |
GB201212489D0 (en) | 2012-07-13 | 2012-08-29 | Conpart As | Improvements in conductive adhesives |
DK2922554T3 (en) | 2012-11-26 | 2022-05-23 | Modernatx Inc | Terminalt modificeret rna |
US10245908B2 (en) | 2016-09-06 | 2019-04-02 | Aperia Technologies, Inc. | System for tire inflation |
US9604157B2 (en) | 2013-03-12 | 2017-03-28 | Aperia Technologies, Inc. | Pump with water management |
US11453258B2 (en) | 2013-03-12 | 2022-09-27 | Aperia Technologies, Inc. | System for tire inflation |
US10144254B2 (en) | 2013-03-12 | 2018-12-04 | Aperia Technologies, Inc. | Tire inflation system |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
CN105980401A (en) | 2013-10-03 | 2016-09-28 | 现代治疗公司 | Polynucleotides encoding low density lipoprotein receptor |
CA2926883C (en) * | 2013-12-04 | 2019-04-09 | F. Hoffmann-La Roche Ag | Improved process for producing magnetic monodisperse polymer particles |
ES2465715B1 (en) | 2014-02-14 | 2015-03-18 | Universitat Autónoma De Barcelona | Peptide, magnetic peptide and method to detect celiac disease |
CN104072663B (en) * | 2014-06-27 | 2016-02-24 | 西北工业大学 | A kind of preparation method of surface folding single dispersing fixed enzyme vector |
US10407676B2 (en) | 2014-12-09 | 2019-09-10 | Life Technologies Corporation | High efficiency, small volume nucleic acid synthesis |
CN104788709A (en) * | 2015-04-17 | 2015-07-22 | 张家港市山牧新材料技术开发有限公司 | Preparation method for super-size composite rubber-modified polystyrene resin |
US10144968B2 (en) | 2015-07-02 | 2018-12-04 | Life Technologies Corporation | Conjugation of carboxyl functional hydrophilic beads |
CN108064253B (en) | 2015-07-02 | 2020-09-15 | 生命技术公司 | Polymer matrices formed from carboxy-functional acrylamides |
WO2017007774A1 (en) | 2015-07-06 | 2017-01-12 | Life Technologies Corporation | Substrates and methods useful in sequencing |
GB201512725D0 (en) * | 2015-07-20 | 2015-08-26 | Life Technologies As | Polymeric particles |
CN105131168A (en) * | 2015-10-23 | 2015-12-09 | 蓝星(成都)新材料有限公司 | Macropore hydroxyethyl methylacrylate resin and preparing method thereof |
US11136428B2 (en) * | 2015-12-21 | 2021-10-05 | Dow Global Technologies Llc | Multistage aqueous emulsion polymer and aqueous coating composition formed therefrom |
CN106589222A (en) * | 2016-12-05 | 2017-04-26 | 黄晖 | Monodisperse high-molecular microspheres and preparation method thereof |
GB201700983D0 (en) | 2017-01-20 | 2017-03-08 | Life Tech As | Polymeric particles |
CN110461913A (en) * | 2017-03-27 | 2019-11-15 | 陶氏环球技术有限责任公司 | Preparation of coating formulations using alkali-swellable polymer particles |
US10406869B2 (en) | 2017-11-10 | 2019-09-10 | Aperia Technologies, Inc. | Inflation system |
US11851536B2 (en) * | 2018-10-02 | 2023-12-26 | Xerox Corporation | Precipitation process for preparing polystyrene microparticles |
WO2020112686A1 (en) | 2018-11-27 | 2020-06-04 | Aperia Technologies, Inc. | Hub-integrated inflation system |
CN110950989B (en) | 2019-11-05 | 2023-01-10 | N科研中心私人投资有限公司 | Method for producing monodisperse particles |
CN111635551B (en) * | 2020-06-23 | 2022-04-22 | 哈尔滨工程大学 | Method and product for preparing polyimide open-cell foam by one-step method |
GB2620799A (en) | 2022-07-22 | 2024-01-24 | Life Tech As | Particles |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9309368B2 (en) * | 1999-04-09 | 2016-04-12 | Life Technologies As | Process for the preparation of monodisperse polymer particles |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE478118A (en) * | 1946-12-13 | |||
US4224415A (en) | 1958-07-18 | 1980-09-23 | Rohm And Haas Company | Polymerization processes and products therefrom |
US4382124B1 (en) | 1958-07-18 | 1994-10-04 | Rohm & Haas | Process for preparing macroreticular resins, copolymers and products of said process |
DE1420830A1 (en) * | 1959-07-16 | 1968-10-31 | Wacker Chemie Gmbh | Process for the condensation of organosiloxanes |
DE1917090C3 (en) * | 1968-04-06 | 1980-04-24 | Sekisui Kagaku Kogyo K.K., Osaka (Japan) | Process for making styrene polymer particles having uniform sizes |
DE2338132C3 (en) | 1973-07-27 | 1980-09-25 | Sekisui Kagaku Kogyo K.K., Osaka (Japan) | Process for the production of styrene bead polymer |
NO141367C (en) | 1976-11-22 | 1980-02-27 | Sintef | PROCEDURE FOR THE PREPARATION OF FINALLY SHARED EMULSIONS OF A LITTLE WATER-SOLUBLE MATERIAL |
AU530410B2 (en) | 1978-02-21 | 1983-07-14 | Sintef | Preparing aqueous emulsions |
JPS5829962B2 (en) * | 1979-08-23 | 1983-06-25 | 東レ株式会社 | Method for producing hydrophilic water-insoluble fine particles |
NO149108C (en) | 1981-10-21 | 1984-02-15 | Sintef | PROCEDURE FOR THE PREPARATION OF Aqueous DISPERSIONS OF ORGANIC MATERIAL AND, optionally, further conversion to a polymer dispersion when the organic material is a polymerizable monomer |
US4564644A (en) | 1982-08-02 | 1986-01-14 | The Dow Chemical Company | Ion exchange resins prepared by sequential monomer addition |
JPS6126505A (en) * | 1984-07-17 | 1986-02-05 | Toray Ind Inc | Black particle |
EP0326383B1 (en) * | 1988-01-29 | 1994-06-15 | Mita Industrial Co. Ltd. | Process for preparation of monodisperse polymer particles having increased particle size |
JPH03237105A (en) | 1989-09-19 | 1991-10-23 | Mita Ind Co Ltd | Production of monodisperse polymer particle |
EP0587571B1 (en) | 1991-03-06 | 1998-05-27 | Garvan Institute Of Medical Research | HUMAN GALANIN, cDNA CLONES ENCODING HUMAN GALANIN AND A METHOD OF PRODUCING HUMAN GALANIN |
US5130343A (en) * | 1991-03-13 | 1992-07-14 | Cornell Research Foundation, Inc. | Process for producing uniform macroporous polymer beads |
US5231115A (en) * | 1991-12-19 | 1993-07-27 | The Dow Chemical Company | Seeded porous copolymers and ion-exchange resins prepared therefrom |
US5306561A (en) | 1992-02-20 | 1994-04-26 | Cornell Research Foundation, Inc. | Preparation of surface-functional polymer particles |
JP3166296B2 (en) | 1992-05-20 | 2001-05-14 | 三菱化学株式会社 | Method for removing fine particles adhering to the surface of porous cross-linked copolymer particles |
US5366782A (en) * | 1992-08-25 | 1994-11-22 | The Procter & Gamble Company | Polymeric web having deformed sections which provide a substantially increased elasticity to the web |
CA2097630A1 (en) | 1992-12-29 | 1994-06-30 | Ann Louise Mccormack | Stretch-pillowed, bulked laminate |
JPH06256438A (en) | 1993-03-09 | 1994-09-13 | Japan Synthetic Rubber Co Ltd | Production of polymer particle |
JPH0727754A (en) | 1993-07-09 | 1995-01-31 | Mitsubishi Chem Corp | Filler for cation chromatography and its preparation |
NO308414B1 (en) * | 1996-04-23 | 2000-09-11 | Polymers Holding As | Process for the production of PVC particles, the use of PVC particles, and PVC particles as such |
JPH101561A (en) | 1996-06-17 | 1998-01-06 | Dainippon Ink & Chem Inc | Expandable styrene resin particles |
ES2287956T3 (en) | 1996-07-29 | 2007-12-16 | Nanosphere Inc. | NANOPARTICLES THAT HAVE OLIGONUCLEOTIDES UNITED TO THE SAME AND USES OF THE SAME. |
DE19634393A1 (en) | 1996-08-26 | 1998-03-05 | Bayer Ag | Process for the preparation of crosslinked polymers |
JP3510089B2 (en) | 1997-09-22 | 2004-03-22 | ユニ・チャーム株式会社 | Liquid permeable surface sheet for body fluid absorbing article and method for producing the sheet |
CA2305215C (en) * | 1997-10-10 | 2009-12-15 | Dyno Specialty Polymers As | Method of production of particulate polymers |
-
2000
- 2000-04-10 EP EP08162270.6A patent/EP1985639B1/en not_active Expired - Lifetime
- 2000-04-10 CN CNB2005100038156A patent/CN1311005C/en not_active Expired - Lifetime
- 2000-04-10 US US09/958,431 patent/US7217762B1/en not_active Expired - Lifetime
- 2000-04-10 CA CA2369293A patent/CA2369293C/en not_active Expired - Lifetime
- 2000-04-10 EP EP00919034A patent/EP1177231B1/en not_active Expired - Lifetime
- 2000-04-10 CN CNB008070474A patent/CN1189495C/en not_active Expired - Lifetime
- 2000-04-10 WO PCT/GB2000/001334 patent/WO2000061647A1/en active IP Right Grant
- 2000-04-10 AU AU39791/00A patent/AU777829B2/en not_active Expired
- 2000-04-20 TW TW089107457A patent/TW589330B/en not_active IP Right Cessation
-
2001
- 2001-10-04 NO NO20014835A patent/NO332815B1/en not_active IP Right Cessation
-
2004
- 2004-10-18 AU AU2004222716A patent/AU2004222716B2/en not_active Expired
-
2007
- 2007-05-11 US US11/747,860 patent/US20070265390A1/en not_active Abandoned
-
2009
- 2009-12-21 US US12/644,003 patent/US20100099803A1/en not_active Abandoned
-
2012
- 2012-10-10 US US13/649,045 patent/US8658733B2/en not_active Expired - Fee Related
-
2014
- 2014-01-10 US US14/152,793 patent/US9309368B2/en not_active Expired - Fee Related
-
2015
- 2015-09-28 US US14/867,394 patent/US20160075800A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9309368B2 (en) * | 1999-04-09 | 2016-04-12 | Life Technologies As | Process for the preparation of monodisperse polymer particles |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023088864A1 (en) * | 2021-11-18 | 2023-05-25 | Lanxess Deutschland Gmbh | Method for preparing polymers |
Also Published As
Publication number | Publication date |
---|---|
CN1189495C (en) | 2005-02-16 |
US20140256836A1 (en) | 2014-09-11 |
CN1362973A (en) | 2002-08-07 |
AU2004222716A1 (en) | 2004-11-11 |
EP1985639A3 (en) | 2008-11-12 |
US20130035418A1 (en) | 2013-02-07 |
EP1985639B1 (en) | 2013-08-14 |
EP1177231B1 (en) | 2009-08-19 |
TW589330B (en) | 2004-06-01 |
CN1644606A (en) | 2005-07-27 |
NO332815B1 (en) | 2013-01-21 |
AU2004222716B2 (en) | 2007-07-05 |
CA2369293C (en) | 2010-06-08 |
US8658733B2 (en) | 2014-02-25 |
AU777829B2 (en) | 2004-11-04 |
US7217762B1 (en) | 2007-05-15 |
AU3979100A (en) | 2000-11-14 |
NO20014835L (en) | 2001-12-07 |
EP1177231A1 (en) | 2002-02-06 |
EP1985639A2 (en) | 2008-10-29 |
US20070265390A1 (en) | 2007-11-15 |
CN1311005C (en) | 2007-04-18 |
CA2369293A1 (en) | 2000-10-19 |
WO2000061647A1 (en) | 2000-10-19 |
US9309368B2 (en) | 2016-04-12 |
NO20014835D0 (en) | 2001-10-04 |
US20100099803A1 (en) | 2010-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8658733B2 (en) | Process for the preparation of monodisperse polymer particles | |
JP5566152B2 (en) | Method for producing monodisperse polymer particles | |
US7763689B2 (en) | Process for the preparation of functionalised polymer particles | |
EP0575488B1 (en) | Process for producing uniform macroporous polymer beads | |
EP1171494B1 (en) | Preparation of polymer particles | |
JP4049419B2 (en) | Use of substantially monodisperse polymer particles as polymerized seeds, method for producing polymer particles and substantially monodisperse particulate polymer material | |
AU749916B2 (en) | Method of production of particulate polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DYNAL PARTICLES AS, NORWAY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOERGEDAL, ARNE;AKSNES, ELIN MARIE;FONNUM, GEIR;AND OTHERS;SIGNING DATES FROM 20010928 TO 20011003;REEL/FRAME:036730/0750 |
|
AS | Assignment |
Owner name: LIFE TECHNOLOGIES AS, NORWAY Free format text: CHANGE OF NAME;ASSIGNOR:INVITROGEN DYNAL AS;REEL/FRAME:036736/0606 Effective date: 20120220 Owner name: DYNAL BIOTECH ASA, NORWAY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DYNAL PARTICLES AS;REEL/FRAME:036735/0731 Effective date: 20020515 Owner name: DYNAL BIOTECH AS, NORWAY Free format text: CHANGE OF NAME;ASSIGNOR:DYNAL BIOTECH ASA;REEL/FRAME:036788/0226 Effective date: 20060322 Owner name: INVITROGEN DYNAL AS, NORWAY Free format text: CHANGE OF NAME;ASSIGNOR:DYNAL BIOTECH AS;REEL/FRAME:036788/0365 Effective date: 20061018 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |