US20160046785A1 - Metallic Soap Compositions for Various Applications - Google Patents
Metallic Soap Compositions for Various Applications Download PDFInfo
- Publication number
- US20160046785A1 US20160046785A1 US14/829,471 US201514829471A US2016046785A1 US 20160046785 A1 US20160046785 A1 US 20160046785A1 US 201514829471 A US201514829471 A US 201514829471A US 2016046785 A1 US2016046785 A1 US 2016046785A1
- Authority
- US
- United States
- Prior art keywords
- oil
- reactor
- metallic soap
- metathesized
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 197
- 239000000344 soap Substances 0.000 title claims abstract description 119
- 238000007127 saponification reaction Methods 0.000 claims abstract description 58
- 150000001875 compounds Chemical class 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 abstract description 62
- 239000002184 metal Substances 0.000 abstract description 62
- 238000006243 chemical reaction Methods 0.000 abstract description 49
- 238000000034 method Methods 0.000 abstract description 36
- 239000000463 material Substances 0.000 abstract description 34
- 230000008569 process Effects 0.000 abstract description 28
- 230000001070 adhesive effect Effects 0.000 abstract description 25
- 239000000853 adhesive Substances 0.000 abstract description 23
- 239000010426 asphalt Substances 0.000 abstract description 23
- 235000014113 dietary fatty acids Nutrition 0.000 abstract description 22
- 239000000194 fatty acid Substances 0.000 abstract description 22
- 229930195729 fatty acid Natural products 0.000 abstract description 22
- 150000004665 fatty acids Chemical class 0.000 abstract description 21
- 150000002736 metal compounds Chemical class 0.000 abstract description 17
- 238000005260 corrosion Methods 0.000 abstract description 16
- 150000003839 salts Chemical class 0.000 abstract description 15
- 238000007499 fusion processing Methods 0.000 abstract description 11
- 238000005342 ion exchange Methods 0.000 abstract description 10
- 239000003607 modifier Substances 0.000 abstract description 7
- 239000003921 oil Substances 0.000 description 115
- 235000019198 oils Nutrition 0.000 description 115
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 84
- 229910052782 aluminium Inorganic materials 0.000 description 43
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 43
- 229910052757 nitrogen Inorganic materials 0.000 description 42
- 235000012424 soybean oil Nutrition 0.000 description 42
- 239000003549 soybean oil Substances 0.000 description 42
- 238000012360 testing method Methods 0.000 description 33
- 238000004458 analytical method Methods 0.000 description 31
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 26
- 239000000920 calcium hydroxide Substances 0.000 description 26
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 26
- 238000010926 purge Methods 0.000 description 26
- 229910000831 Steel Inorganic materials 0.000 description 23
- 239000010959 steel Substances 0.000 description 23
- 238000003756 stirring Methods 0.000 description 22
- 239000008173 hydrogenated soybean oil Substances 0.000 description 21
- 239000011575 calcium Substances 0.000 description 20
- 238000000576 coating method Methods 0.000 description 19
- 229910000000 metal hydroxide Inorganic materials 0.000 description 19
- 150000004692 metal hydroxides Chemical class 0.000 description 19
- -1 lanthanoid metals Chemical class 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000003054 catalyst Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 230000007797 corrosion Effects 0.000 description 11
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 101001130128 Arabidopsis thaliana Leucoanthocyanidin dioxygenase Proteins 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 238000005649 metathesis reaction Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 150000004703 alkoxides Chemical class 0.000 description 8
- 239000003925 fat Substances 0.000 description 8
- 235000019197 fats Nutrition 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 101100064317 Arabidopsis thaliana DTX41 gene Proteins 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 239000003292 glue Substances 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 5
- 150000004965 peroxy acids Chemical class 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 101100398584 Arabidopsis thaliana TT10 gene Proteins 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229920001651 Cyanoacrylate Polymers 0.000 description 4
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910001510 metal chloride Inorganic materials 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 description 4
- 239000008158 vegetable oil Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- 101100505882 Arabidopsis thaliana GSTF12 gene Proteins 0.000 description 3
- 101100047785 Arabidopsis thaliana TT16 gene Proteins 0.000 description 3
- 101100048042 Arabidopsis thaliana UGT80B1 gene Proteins 0.000 description 3
- 239000004342 Benzoyl peroxide Substances 0.000 description 3
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 241000282575 Gorilla Species 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 235000019400 benzoyl peroxide Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000011133 lead Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000003408 phase transfer catalysis Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 3
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000003784 tall oil Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 239000011592 zinc chloride Substances 0.000 description 3
- 235000019737 Animal fat Nutrition 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 241000221089 Jatropha Species 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 235000019482 Palm oil Nutrition 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 235000019486 Sunflower oil Nutrition 0.000 description 2
- 240000008488 Thlaspi arvense Species 0.000 description 2
- 235000008214 Thlaspi arvense Nutrition 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- ZOJBYZNEUISWFT-UHFFFAOYSA-N allyl isothiocyanate Chemical compound C=CCN=C=S ZOJBYZNEUISWFT-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000000828 canola oil Substances 0.000 description 2
- 235000019519 canola oil Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 235000021323 fish oil Nutrition 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 235000021388 linseed oil Nutrition 0.000 description 2
- 239000000944 linseed oil Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000008164 mustard oil Substances 0.000 description 2
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000003346 palm kernel oil Substances 0.000 description 2
- 235000019865 palm kernel oil Nutrition 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920001289 polyvinyl ether Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 244000144977 poultry Species 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 239000003813 safflower oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229940095696 soap product Drugs 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 239000002600 sunflower oil Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 239000002383 tung oil Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- MMEDJBFVJUFIDD-UHFFFAOYSA-N 2-[2-(carboxymethyl)phenyl]acetic acid Chemical compound OC(=O)CC1=CC=CC=C1CC(O)=O MMEDJBFVJUFIDD-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 206010059837 Adhesion Diseases 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- BJRMDQLATQGMCQ-UHFFFAOYSA-N C=C.C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 Chemical class C=C.C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 BJRMDQLATQGMCQ-UHFFFAOYSA-N 0.000 description 1
- 235000016401 Camelina Nutrition 0.000 description 1
- 244000197813 Camelina sativa Species 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229920013640 amorphous poly alpha olefin Polymers 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 239000011127 biaxially oriented polypropylene Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- QAEKNCDIHIGLFI-UHFFFAOYSA-L cobalt(2+);2-ethylhexanoate Chemical compound [Co+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O QAEKNCDIHIGLFI-UHFFFAOYSA-L 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- YQHLDYVWEZKEOX-UHFFFAOYSA-N cumene hydroperoxide Chemical compound OOC(C)(C)C1=CC=CC=C1 YQHLDYVWEZKEOX-UHFFFAOYSA-N 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 150000005690 diesters Chemical group 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- FGBJXOREULPLGL-UHFFFAOYSA-N ethyl cyanoacrylate Chemical compound CCOC(=O)C(=C)C#N FGBJXOREULPLGL-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009459 flexible packaging Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000010460 hemp oil Substances 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- QZNWSLRAFJEJGK-UHFFFAOYSA-N hydroperoxy(triphenyl)silane Chemical compound C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(OO)C1=CC=CC=C1 QZNWSLRAFJEJGK-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000012939 laminating adhesive Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000006077 pvc stabilizer Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/11—Esters; Ether-esters of acyclic polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D13/00—Making of soap or soap solutions in general; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D13/00—Making of soap or soap solutions in general; Apparatus therefor
- C11D13/02—Boiling soap; Refining
- C11D13/04—Continuous methods therefor
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D9/00—Compositions of detergents based essentially on soap
- C11D9/02—Compositions of detergents based essentially on soap on alkali or ammonium soaps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/30—Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways
Definitions
- Metallic salts of higher molecular weight fatty acids are commercially known as metallic soaps.
- Metallic soaps are well known and have been widely used in the industries of resins, paints, papers, fibers, greases, etc. as stabilizers, lubricants, water-repellents, thickeners, coating agents, for example.
- metallic soaps are used as catalysts in chemical reactions, and also as additives for rubber to improve adhesive properties or bonding of the rubber with steel cords.
- the methods known in the art for industrial production of metallic soap include various methods.
- One of them is the double decomposition (aqueous) method wherein a water-soluble metal salt and a metal salt of a fatty acid are reacted in an aqueous solution state to produce water-insoluble metallic soap.
- Another method of producing metallic soap is the fusion process, in which a form of a metal is employed, including metal alkoxides, metal oxides, metal hydroxides or metal carbonates and the like, and a fatty acid are reacted by fusing these at a temperature above the melting point of the metallic soap to be formed, and by-produced water and/or carbon dioxide gas is expelled out of the reaction system, whereby the metallic soap is taken out in a molten state.
- phase transfer catalysis is a synthesis method which allows the use of relatively simple two-phase reaction systems in the place of solvent systems which may be toxic and/or expensive.
- phase transfer catalysis employs a phase transfer catalyst which facilitates the transfer of a reactive species from the first phase, normally aqueous, into the second phase, normally organic, where the desired reaction can take place.
- Various processes for making metallic soaps have been described in the art, including U.S. Pat. No. 4,397,760, U.S. Pat. No. 4,927,548, U.S. Pat. No. 4,235,794, U.S. Pat. No. 4,307,027, U.S. Pat. No. 5,274,144, and U.S. Pat. No. 2,650,932, the disclosures of which are herein incorporated by reference in their entireties.
- the fatty acids referenced above can be obtained by any suitable source of natural fats, including natural oils.
- the metals referenced above may include non-limiting examples such as beryllium, magnesium, manganese, calcium, lithium, sodium, strontium and barium; transition metals such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, palladium, silver, cadmium, tungsten and mercury; and other metals such as aluminum, gallium, tin, iron, lead, and lanthanoid metals.
- Metallic soaps have been synthesized from natural oils by saponifying the oils with varying quantities of a metal compound such as metal oxides, metal carbonates, metal hydroxides, or metal alkoxides.
- saponification means either the neutralization of fatty acids to produce soap or the saponification of fats and/or oils to produce soap.
- Saponification involves hydrolysis of esters under basic conditions to form an alcohol and the salt of a carboxylic acid (carboxylates). More specifically, the use of fatty acids and the addition of specific types and amounts of natural oils, then altering them through adding a metal base saponifies the fatty acids into soaps.
- One aspect is directed to a metallic soap composition produced by a process which comprises at least a partial saponification of a mixture of an oil and a metal compound.
- the oil can be a metathesized natural oil, hydrogenated metathesized natural oil, hydrogenated natural oil, or a natural oil, or mixtures thereof
- the metal compound can be a metal oxide, metal hydroxide, or metal carbonate, or mixtures thereof.
- the process comprises the steps of first heating and purging the oil in a reactor at a temperature between about 70° C. to about 140° C. in a nitrogenous atmosphere, and then heating and purging the mixture of the oil and metal compound in the reactor at a temperature between about 200° C. to about 400° C. in the nitrogenous atmosphere.
- the reaction mixture is removed from the reactor, and cooled to obtain the metallic soap composition.
- Another aspect is a metallic soap composition produced by a process which comprises at least a partial saponification of a mixture of an oil comprising up to about 100% by weight of a metathesized natural oil, and a metal hydroxide.
- the process comprises the steps of first heating and purging the oil in a reactor at a temperature between about 95° C. to about 105° C. in a nitrogenous atmosphere, and then heating and purging the mixture of the oil and the metal hydroxide in the reactor at a temperature between about 290° C. to about 310° C. in the nitrogenous atmosphere.
- the reaction mixture is removed from the reactor, and cooled to obtain said metallic soap composition.
- Another aspect is a metallic soap composition produced by a process which comprises at least a partial saponification of a mixture of an oil and at least one metal compound, or optionally neutralization of a fatty acid derived from an oil and at least one metal compound. Thereafter, the subsequent addition of an inorganic metal salt for at least one ion exchange reaction is added to this mixture.
- the oil can be a metathesized natural oil, hydrogenated metathesized natural oil, hydrogenated natural oil, or a natural oil, or mixtures thereof
- the metal compound can be a metal alkoxide, metal oxide, metal hydroxide, or metal carbonate, or mixtures thereof
- the inorganic metal salt can be metal hydroxides or metal chlorides.
- the process comprises the steps of (a) heating said mixture in a reactor at a temperature between about 75° C. to about 150° C. in an aqueous environment; (b) removing the reaction mixture from the reactor and cooling the mixture to obtain a first metallic soap composition. Thereafter, the inorganic metal salt is added to this mixture of step (b) prior to cooling, wherein the ion exchange reaction occurs at a temperature between about 50° C. to 150° C., and then recovering and thereafter cooling said mixture of step (c) to obtain a second metallic soap composition.
- Another aspect is a metallic soap composition produced by a process which comprises at least a partial saponification of a mixture of a metathesized natural oil and a metal hydroxide, and the subsequent addition of a metal chloride for at least one ion exchange reaction.
- the process comprises the steps of (a) heating the mixture in a reactor at a temperature between about 90° C. to about 100° C. in an aqueous environment; (b) removing the reaction mixture from the reactor; (c) adding to the mixture of step (b), the metal chloride for the ion exchange reaction, which occurs at a temperature between about 70° C. to about 100° C.; and (d) recovering and cooling the mixture from step (c) to obtain the metallic soap composition.
- Another aspect is a metallic soap composition produced by a process which comprises at least a partial saponification of an oil and a metal compound, or optionally neutralization of a fatty acid derived from an oil and at least one metal compound.
- the oil can be a metathesized natural oil, hydrogenated metathesized natural oil, hydrogenated natural oil, or a natural oil, or mixtures thereof
- the metal compound can be a metal alkoxide, metal oxide, metal hydroxide, or metal carbonate, or mixtures thereof.
- the process comprises the steps of (a) heating said mixture in a reactor at a temperature between about 75° C. to about 150° C. in an aqueous environment, and (b) removing said reaction mixture from said reactor and cooling said mixture to obtain the metallic soap composition.
- the present application relates to metallic soap compositions exhibiting use in various applications, including but not limited to, as adhesives, as having anti-corrosion properties on certain surfaces or materials, and as asphalt modifiers to reduce viscosity in asphalt mixtures, and processes of making such compositions.
- the metallic soap compositions shall be understood to include at least one metallic soap composition, or stated alternatively, one or more metallic soap compositions.
- a substituent encompasses a single substituent as well as two or more substituents, and the like.
- a “metallic soap composition” shall encompass a single metallic soap composition, at least one metallic soap composition, or one or more metallic soap compositions.
- natural oil may refer to oils and/or fats derived from plants or animal sources.
- natural oil includes natural oil derivatives, unless otherwise indicated (which may include fatty acids derived from a metathesized natural oil).
- natural oils include, but are not limited to, vegetable oils, algae oils, animal fats, tall oils, derivatives of these oils, combinations of any of these oils, and the like.
- vegetable oils include canola oil, rapeseed oil, coconut oil, corn oil, cottonseed oil, linseed oil, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, palm kernel oil, tung oil, jatropha oil, mustard oil, camelina oil, pennycress oil, hemp oil, algal oil, and castor oil.
- animal fats include lard, tallow, poultry fat, yellow grease, and fish oil.
- Tall oils are by-products of wood pulp manufacture.
- the natural oil may be refined, bleached, and/or deodorized (stripped).
- the natural oil has been metathesized in the presence of a metathesis catalyst to form a metathesized natural oil.
- Metathesis is a catalytic reaction that involves the interchange of alkylidene units among compounds containing one or more double bonds (i.e., olefinic compounds) via the formation and cleavage of the carbon-carbon double bonds.
- the metathesis catalyst in this reaction may include any catalyst or catalyst system that catalyzes a metathesis reaction. Any known metathesis catalyst may be used, alone or in combination with one or more additional catalysts.
- Non-limiting exemplary metathesis catalysts and process conditions are described in PCT/US2008/009635, pp. 18-47, incorporated by reference herein. A number of the metathesis catalysts as shown are manufactured by Materia, Inc. (Pasadena, Calif.).
- the metathesized natural oil is a metathesized vegetable oil, metathesized algae oil, metathesized animal fat, metathesized tall oil, metathesized derivatives of these oils, and mixtures thereof.
- the metathesized vegetable oil is metathesized canola oil, metathesized rapeseed oil, metathesized coconut oil, metathesized pennycress oil, metathesized algal oil, metathesized camellina oil, metathesized corn oil, metathesized cottonseed oil, metathesized olive oil, metathesized palm oil, metathesized peanut oil, metathesized safflower oil, metathesized sesame oil, metathesized soybean oil, metathesized sunflower oil, metathesized linseed oil, metathesized palm kernel oil, metathesized tung oil, metathesized jatropha oil, metathesized mustard oil, metathesized castor oil, metathesized derivatives of these oils, and mixtures thereof.
- the metathesized natural oil is a metathesized animal fat, for example, metathethesized
- the metathesized natural oil has been “hydrogenated” (i.e., full or partial hydrogenation of the unsaturated carbon-carbon bonds in the metathesized natural oil) in the presence of a hydrogenation catalyst to form a hydrogenated metathesized natural oil.
- the natural oil is partially hydrogenated before it is subjected to the metathesis reaction.
- the natural oil is metathesized prior to being subjected to partial or full hydrogenation.
- the natural oil is partially hydrogenated, metathesized, then either partially hydrogenated or hydrogenated to completion.
- the hydrogenation step (either partial or full) of the metathesized natural oil may also occur after it is subjected to the metathesis reaction.
- Any known or future-developed hydrogenation catalysts may be used, alone or in combination with one or more additional catalysts.
- Non-limiting exemplary hydrogenation catalysts and process conditions are described in PCT/US2007/000610 and PCT/US2008/009635, pp. 47-51, incorporated by reference herein.
- the metathesized natural oil may be epoxidized.
- the metathesized natural oil may be epoxidized via any suitable peroxyacid.
- Peroxyacids are acyl hydroperoxides and are most commonly produced by the acid-catalyzed esterification of hydrogen peroxide. Any peroxyacid may be used in the epoxidation reaction.
- hydroperoxides include, but are not limited to, hydrogen peroxide, tert-butylhydroperoxide, triphenylsilylhydroperoxide, cumylhydroperoxide, and preferably, hydrogen peroxide.
- natural oil may also include metathesized natural oils, fully and/or partially hydrogenated metathesized natural oils, and fully and/or partially hydrogenated natural oils, and epoxidized metathesized natural oils.
- MSBO may refer to metathesized soybean oil
- HMSBO hydrogenated metathesized soybean oil
- SBO may refer to soybean oil
- HSBO hydrogenated soybean oil.
- Suitable fatty acids of natural oils or hydrogenated and/or metathesized natural oils include, but are not limited to, aliphatic, aromatic, saturated, unsaturated, straight chain or branched, substituted or unsubstituted, fatty acids, and mono-, di-, tri-, and/or poly-acid variants thereof having carbon chain lengths of 6 to 36 carbon atoms, non-limiting examples of which include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, arachic acid, erucic acid and behenic acid.
- the fatty acids used may be in the form of powders, beads, flakes or flocculated, as well as, extruded or granulated by other means as, for instance, obtained by cooling of an aqueous fatty acid emulsion below the melting point of that acid.
- dropping point As used herein, the term “dropping point,” “drop point,” or “melting point” are terms that may refer to the temperature at which the wax sample begins to melt. The drop point may be measured using ASTM-D127-08 or the Mettler Drop Point FP80 system, incorporated by reference herein.
- needle penetration may refer to the relative hardness of the metallic soap composition.
- the needle penetration may be measured using ASTM-D1321-02a, incorporated by reference herein.
- softening point may refer to the point at which the metallic soap composition gradually and imperceptibly changes from solids to soft, viscous liquids.
- the softening point may be measured by ASTM D3104-99.
- metallic soaps or “metallic soap” or “metallic soap compositions” or “metallic soap composition” means at least one metallic soap composition which may be the salts of various metals, non-limiting examples of which include alkaline earth and alkali metals such as, without limitation, beryllium, magnesium, calcium, lithium, sodium, potassium, strontium and barium; transition metals, without limitation, such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, palladium, silver, cadmium, tungsten and mercury; and other metals such as aluminum, gallium, tin, iron, lead, and lanthanoid metals, all individually or in combinations thereof.
- alkaline earth and alkali metals such as, without limitation, beryllium, magnesium, calcium, lithium, sodium, potassium, strontium and barium
- transition metals without limitation, such as titanium, vanadium, chromium, manganese, iron, cobal
- the alkoxides, oxides, hydroxides, carbonates, chlorides, and mixtures thereof of any of the aforementioned metals are found to be especially useful.
- hydroxides of these aforementioned metals are preferred, and calcium hydroxide, strontium hydroxide, magnesium hydroxide, sodium hydroxide, and lithium hydroxide are more preferred.
- the metallic soap compositions may be produced via a fusion process (samples TT1 through TT10 and TT14 through TT24 referenced below).
- a fusion process an oil comprising one or more fatty acids or derivatives therefrom is added to a reactor and purged in a nitrogenous atmosphere at an elevated temperature of between about 70° C. to about 140° C., preferably about 90° C. to about 120° C. and most preferably about 95° C. to about 105° C., for between about 30-90 minutes, and preferably about 60 minutes.
- This oil is selected from the group consisting of: a metathesized natural oil, a hydrogenated metathesized natural oil, a hydrogenated natural oil, or a natural oil, or mixtures thereof.
- the natural oil is soybean oil
- the metathesized natural oil is metathesized soybean oil
- the hydrogenated natural oil is hydrogenated soybean oil
- the hydrogenated metathesized natural oil is hydrogenated metathesized soybean oil.
- the oil comprises up to 100 weight percent MSBO, and in some embodiments, the oil comprises up to 100 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up at about 50 weight percent MSBO and up to about 50 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up to about 12.5 weight percent SBO, up to about 12.5 weight percent HSBO, up to about 37.5 weight percent MSBO, and up to about 37.5 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up to about 25 weight percent MSBO and up to about 75 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up to about 12.5 weight percent SBO, up to about 37.5 weight percent HSBO, up to about 12.5 weight percent MSBO, and up to
- At least one metal compound such as a metal oxide, metal hydroxide, metal carbonate or metal alkoxide, preferably a metal hydroxide, is introduced, and the oil and the metal compound are reacted by fusing them at a temperature above the melting point of the metallic soap composition to be formed, with this temperature typically between about 200° C. to about 400° C., more preferably about 275° C. to about 350° C., and most preferably about 290° C. to about 310° C., for a period of about 3 and 6 hours, and preferably about 4 hours, with stirring.
- a metal oxide, metal hydroxide, metal carbonate or metal alkoxide preferably a metal hydroxide
- the degree of saponification for this fusion process is at least a partial saponification, wherein the degree of saponification is about 10% to about 100%, preferably about 25% to about 90%, more preferably about 30% to about 65%, and most preferably about 35% to about 45%, as measured by FTIR.
- FTIR FTIR
- the peaks of interest when analyzing these materials are the stretching peak attributed to carbonyl of the metallic soap composition ( ⁇ 1530-1550 cm-1), and the stretching peak attributed to the ester carbonyl ( ⁇ 1745 cm-1) in the unsaponified oil.
- a calibration curve can be made by creating known ratio mixtures of metallic soap and ester and plotting their known ratios versus the relative signal intensity of the two stretching peaks.
- Any volatile or light compounds from the natural oil are distilled off and collected, and any carbon dioxide gas or water by-products, along with any free glycerol component that is also produced as a byproduct, and are expelled out of the reaction system, where the molten metallic soap composition is removed from the system.
- This molten metallic soap composition is then poured from the reactor into metal pans and allowed to cool to room temperature, and if needed, recovery steps such as filtration, decanting, and centrifugation, and the like, and any washing and/or drying steps may be applied.
- Metallic soap compositions produced by the fusion process herein comprise a hardness, as measured by needle penetration, between about 5 dmm to about 250 dmm, and preferably between about 15 dmm to about 75 dmm, and most preferably between about 45 dmm to about 55 dmm.
- the metallic soap compositions produced by the fusion process herein comprise a drop point of between about 50° C. and about 170° C., more preferably between about 70° C. and about 140° C., and most preferably between about 75° C. and about 105° C.
- the metallic soap compositions may be produced via an aqueous process (samples TT11 through TT13 and samples TT25 through TT28 referenced below).
- an oil comprising one or more fatty acids is dissolved in water and then neutralized with at least one metal compound such as a metal alkoxide, metal oxide, metal hydroxide, or metal carbonate, preferably a metal hydroxide, and most preferably sodium hydroxide, potassium hydroxide or calcium hydroxide, individually or in combinations thereof.
- This oil is selected from the group consisting of: a metathesized natural oil, a hydrogenated metathesized natural oil, a hydrogenated natural oil, or a natural oil, or mixtures thereof.
- the oil comprises up to 100 weight percent MSBO.
- This mixture is heated in a reactor at a temperature between about 70° C. to about 150° C., preferably about 75° C. to about 125° C., and most preferably about 95° C., and this mixture is stirred and/or agitated for some period of time, up to about 5 hours, and preferably about 1 to 3 hours.
- the metallic soap composition precipitates from the solution and is recovered from the reactor via any suitable means known in the art, such as filtering, decanting, centrifuging, and the like, along with washing, drying, and thereafter cooling, as needed.
- an inorganic metal salt may be added to the preceding metallic soap composition for at least one ion exchange reaction, prior to the aforementioned cooling, wherein such inorganic metal salt is a metal hydroxide such as magnesium hydroxide, strontium hydroxide, and calcium hydroxide, and most preferably calcium hydroxide, or a metal chloride, preferably zinc chloride or calcium chloride.
- This ion exchange reaction occurs at a temperature between about 50° C. to about 150° C., preferably about 65° C.
- the resulting metallic soap composition is recovered via any suitable means known in the art, such as filtering, decanting, centrifuging, and the like, with washing, drying, and thereafter cooling as needed, to produce another metallic soap composition, which may be a second metallic soap composition for this aqueous process in some embodiments.
- another metallic soap composition which may be a second metallic soap composition for this aqueous process in some embodiments.
- a free glycerol component and saltwater is also produced as a byproduct. Reaction times are up to about 5 hours, and preferably about 1 to 3 hours for the saponification and up to about 3 hours, and preferably about 1 hour for the at least one ion exchange reaction.
- the degree of saponification for these aqueous processes is at least a partial saponification, wherein the degree of saponification is about 10% to about 100%, more preferably about 70% to about 100%, and most preferably about 95% to about 100%.
- a fatty acid derived from a metathesized natural oil can be neutralized with a metal oxide, metal alkoxide, metal hydroxide or metal carbonate, preferably a metal hydroxide, and most preferably either sodium hydroxide or potassium hydroxide.
- the resulting metallic soap composition is then reacted with a stoichiometric equivalent (compared to the metal hydroxide amount) of phosphoric acid.
- the fatty acid is then mixed with water with a stoichiometric equivalent (based off the initial equivalents of ester in the oil) of metal hydroxide to produce a metallic soap composition.
- the above-described processes may be carried out in batches, continuously or semi-continuously.
- the batch process begins with the reagents and ends when metallic soap compositions are produced, beginning again by adding new reagents (natural oils together with metal hydroxides and water).
- the continuous process is not interrupted, except for periodic maintenance and cleaning of the facilities.
- the natural fats and/or natural oils are continually added, together with metal compound and the water sequentially, and the metallic soap composition rich in fatty acids is obtained without stopping.
- the semi-continuous process is a mixture of the above. It is a continuous process, but only lasts for a certain number of pre-programmed cycles.
- the melting point of the metallic soap compositions depends on the extent of saponification of the resulting metallic soap product. As the extent of saponification increases, the melting point of the metallic soap composition also increases. The melting point of the metallic soap compositions also depends on the degree of unsaturation in the aliphatic hydrocarbon anions of the fatty acid employed. The higher the saturation of the aliphatic hydrocarbon anions, then the higher the melting point of the metallic soap composition. For a given chain length or number of carbon atoms in a fatty acid aliphatic hydrocarbon anion, the greater the number of carbon-carbon double bonds in the chain, the lower will be the melting point.
- the metallic soap compositions may also be crosslinked via an initiator composition that is capable of initiating cure at a temperature preferably at about 130° C. or less.
- the initiator composition includes both an initiator compound and an activator or promoter. The initiator and the activator or promoter work in tandem to start initiation at a desired processing temperature.
- General examples of initiators include various organic or peroxides and peracids. Non-limiting examples of initiators include, without limitation, benzoyl peroxide, methyl ethyl ketone hydroperoxide, and cumene hydroperoxide, and preferably benzoyl peroxide.
- activators such as cobalt octoate, dimethyl aniline, cobalt naphthenate, and cobalt 2-ethylhexanoate, and preferably cobalt naphthenate, may be added, resulting in initiator compositions capable of curing the metallic soap composition at a temperature from about room temperature up to about 130° C.
- the metallic soap compositions may be converted into flakes, noodles, blocks, bars, powder, pellets, extrusions, granulates, or any other suitable form or shape by methods known in the art. Further the metallic soaps have use in various applications, including as adhesives, and coatings having corrosion resistance when applied to certain surfaces or materials, as described below. It is also contemplated that the metallic soap compositions can have uses as asphalt modifiers.
- the metallic soap compositions may be used in various additional non-limiting applications such as stabilizers, lubricants, greases, water-repellents, thickeners for oils or other organic media, coating agents, as catalysts in chemical reactions, as additives for rubber to improve adhesiveness or bonding of rubber with various substrates, as gelling agents, cosmetic formulations, flattening agents, mold/mildew prevention agents, PVC stabilizers, nucleating agents, and as driers for painting/varnish/lacquer/ink applications.
- stabilizers lubricants, greases, water-repellents, thickeners for oils or other organic media
- coating agents as catalysts in chemical reactions
- additives for rubber to improve adhesiveness or bonding of rubber with various substrates as gelling agents, cosmetic formulations, flattening agents, mold/mildew prevention agents, PVC stabilizers, nucleating agents, and as driers for painting/varnish/lacquer/ink applications.
- MSBO metathesized soybean oil
- Ca(OH) 2 [1.08 mol] was then added and the reactor was sealed with a positive purge of nitrogen.
- the mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected.
- the reaction proceeded for 4 hours with stirring at ambient. Reaction ratios were calculated for a ⁇ 40% degree of saponification. Degree of saponification, as determined by IR analysis, was 42%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature. Other properties determined are listed in Table 1.
- MSBO 1500.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 40.0 g Ca(OH) 2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 21%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- MSBO 1500.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 120.0 g Ca(OH) 2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 63%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- MSBO 1500.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 160.0 g Ca(OH) 2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 84%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- HMSBO 1500.0 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 200.04 g Ca(OH) 2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the HMSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 100%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature
- Varying feedstock was examined by adding 187.5 g of soybean oil (SBO), 187.5 g hydrogenated soybean oil (HSBO), 562.5 g MSBO, 562.5 g HMSBO to the reactor and purging with dry nitrogen at 100° C. for one hour. 120.0 g Ca(OH) 2 was added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the reaction mixture were distilled off and collected. Degree of saponification, as determined by IR analysis, was 63%. The reaction proceeded for 4 hours with stirring at ambient pressure.
- MSBO 1500.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 66.02 g Mg(OH) 2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 44%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- MSBO 1500.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 300.83 g Sr(OH) 2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 20%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- MSBO 111.1 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 5.93 g Ca(OH) 2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- MSBO 1000.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 80.02 g Ca(OH) 2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 60%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- MSBO 1283.7 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 71.8 g Ca(OH) 2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- Example ID TT13 The synthesis of zinc soap (Sample ID TT13) entailed adding a stoichiometric equivalent of ZnCl 2 [0.875 mol] to a dilute solution of the sodium soap, as prepared for Sample TT12. This ion exchange reaction occurs in an aqueous environment at 75° C. for 1 hour. The resulting solid was rinsed, filtered, dried, and cooled, yielding a saltwater and glycerol solution and the final zinc soap product. The resulting product was a fine powder, as shown in Table 2 below.
- the metallic soap compositions may possess properties equal to or improved over commercial metallic soaps for various adhesive applications, as described in the application testing below. These adhesive applications may be suitable as a standalone hot melt adhesive composition. In some embodiments, the metallic soap compositions can behave as an adhesive without the addition of secondary tackifying agents.
- the metallic soap composition is a single component material that adheres to multiple surfaces and/or substrates, (including, but not limited to, polymer films such as polyethylene terephthalate (PET) and biaxially oriented polypropylene (BOPP); woven and non-woven fabrics; metals such as aluminum, copper, lead, gold and the like; paper, glass, ceramics, stone, wood and composite materials comprising one or more of these materials), is generally highly hydrophobic, generally insoluble in many organic solvents, and may be applied to the aforesaid surfaces and/or substrates by any method known in the art, including, but not limited to knife coating, roll coating, gravure coating, and curtain coating.
- PET polyethylene terephthalate
- BOPP biaxially oriented polypropylene
- the metallic soap compositions may be formulated by blending with various additives, non-limiting examples of which include plasticizers, surfactants, fillers, antioxidants, pigments, and preservatives.
- the metallic soap compositions may optionally be blended with adhesive components known in the art, which may include, but are not limited to, polyurethanes; poly ether amides block copolymers; polyethylene copolymers, including, but not limited to, polyethylene-vinyl acetate, polyethylene-butyl acrylate, polyethylene-2-ethyl hexyl acrylate, polyethylene-methyl acrylate, polyethylene-acrylic acid, polyethylene oxide and its copolymers; amorphous poly-alpha olefins and the functionalized copolymers thereof; polylactide and copolymers; polyamides; polyesters and co-polyesters; polyester block copolymers; functionalized polyesters and co-polyesters including, but not limited to, sulfonated polyesters; polyacrylic compositions; polyvinyl ethers; poly caprolactones and copolymers; epoxides and copolymers thereof including, but not limited to, urethanes and poly
- the metallic soap compositions may have adhesive applications that may include, but are not limited to, skin-contact medical applications, surgical tapes, bandages, wound care, operation tapes and drapes, hygiene applications including feminine care products, box sealing tapes, masking applications, low fogging, automotive interior applications including foam gaskets, instrument displays, sound deadening, trim bonding, sealants, chalks, general pressure sensitive adhesives, semi-pressure sensitive adhesives, building & hydroxyl ion adhesives, assembly adhesives, adhesive films and membranes, bottle labeling, water soluble adhesives, laminating adhesives, adhesives for flexible packaging, concrete curing compounds, mounting tapes, double sided tapes, electrical tapes, permanent and removable labels, filmic labels, pressure sensitive adhesives for the graphic industry, labels for laser printers, insulation tapes, primer compounds, tie layers, road marking adhesives, inks, mounting tapes, labels for chemicals, (including for sea water resistance), and labeling for pharmaceuticals and cosmetics, etc.
- adhesive applications may include, but are not limited to, skin-contact medical applications,
- the metallic soap compositions may possess properties equal to or improved over commercial metallic soaps for various coatings applications, as described in the application testing below.
- a coating on at least one solid surface(s) or material(s) non-limiting examples of which include various kinds of surfaces such as glass, metal surfaces such as aluminum, and alloy surfaces such as steel, 416 stainless, and brass
- the metallic soap compositions may be applied as a single anti-corrosion layer or may be combined with a top layer paint or coating or may be part of a formulated coating such as a latex or oil-based paint.
- the metallic soap compositions may be applied by any conventional high temperature and/or high velocity sprays, including, but not limited to, high velocity high temperature spray, thermal spray, plasma spray, fluidized bed, hot melt or electrostatic spray, electrostatic powder coating method, spray liquid coating, or any coating method that is commonly used for conventional metallic soaps.
- the SBO sample (TT24) utilized in this testing was not at the same level of conversion/saponification as the sample of MSBO.
- the MSBO sample used (sample TT1 in Table 1) was a 40% saponified material while the SBO sample used was a 65% saponified material.
- initial calculations were used (based off mass rather than molar equivalents) the samples were set up on an equal basis; however, after further analysis, utilizing moles COOR, far different numbers for degree of saponification were yielded. As such the saponification of SBO was carried out at 40% yielding a product that was roughly the consistency of standard petrolatum. Such a material was obviously unsuitable as a standalone adhesive.
- MSBO based metallic soap compositions were due primarily to the presence of a metathesized backbone as opposed to the stearic/oleic backbone found in SBO. Also, the materials based off of SBO tend to fracture through the material to be adhered rather than fracturing at the adhesive interface.
- the metallic soap compositions performed comparably to Gorilla Glue® and much better than Krazy Glue® in metal-to-metal (aluminum to aluminum) adhesion.
- aqueous process metallic soap compositions described below were also suitable coating and adhesive materials.
- the reactions for producing these samples were carried out using the same reaction conditions as for examples TT12 and TT13, with varying amounts and types of natural oils, metal compounds, and inorganic metal salts, as set forth in Table 6 below.
- the aqueous process samples (Samples TT25-TT28) were applied to metal panels, consisting of Type R steel panels and Type A aluminum panels, available from Q-Panel, Cleveland, Ohio, and were coated using an Eastwood Hot Coat system and the metallic soap coating was annealed at 200° C. for 20 min.
- the coatings were continuous with occasional pock marks and were measured to be 50-60 ⁇ m. Adhesion tests were performed on each panel in accordance with ASTM D4541. All of the test panels had good or excellent adhesion strength (rating 3B, 4B, or 5B). The results for these adhesion tests are shown below in Table 6.
- metallic soap compositions made with MSBO and/or a combination of MSBO, HMSBO, HSBO, and SBO in formulations similar to those listed in Table 1.
- the metal panels consisting of Type R steel panels and Type A aluminum panels, available from Q-Panel, Cleveland, Ohio, were coated using an Eastwood Hot Coat system and the metallic soap coating was annealed at 200° C. for 20 min. The coatings were continuous with occasional pock marks and were measured to be 50-60 ⁇ m.
- the resulting coated panels were conditioned in an environmental chamber by Cincinnati Sub-zero Testing Services, Cincinnati, Ohio, for 7 days in a neutral salt fog at 35° C. per method ASTM B-117-03. After environmental conditioning, the panel coatings were evaluated for corrosion resistance in accordance with ASTM D1654 and adhesion tests were performed on each panel in accordance with ASTM D4541 and D3359. Six of the twelve formulations tested received top tier ratings (rating 9 or 10) for lack of corrosion on both steel and aluminum. Twenty of the 24 test panels had good or excellent adhesion strength (rating 3B, 4B or 5B). Nineteen of the 24 test panels had good or excellent adhesion ratings. The test panel ratings and strength values are listed in Table 7 below.
- metallic soap compositions were coated with four examples of metallic soap compositions made with MSBO and/or a combination of MSBO, HMSBO, HSBO, and SBO in formulations similar as detailed in Table 1.
- the metal panels consisting of Type A aluminum panels, available from Q-Panel, Cleveland, Ohio, were coated using an Eastwood Hot Coat system and the divalent metallic coating was annealed at 200° C. for 20 min. The coatings were continuous, contained 1% leveling agent, and were measured to be 20-30 ⁇ m.
- Leveling agents that may be used include, but are not limited, to siloxanes, acrylates, polyvinylether, amides, polyamides, and amide waxes made from natural oils, wherein such amide waxes are described in commonly assigned, pending provisional U.S. patent application, Ser. No. 61/363,016, which is incorporated by reference in its entirety.
- the resulting coated panels were conditioned in an environmental chamber by Cincinnati Sub-zero Testing Services, Sterling Heights Mich., for 7 days in accordance with industry standard test method MIL-STD-810G exposing the sample panels to seven 24-hour cycles of the following: (1) 50° C. and 100% relative humidity (RH) for 6 hours, (2) 5% salt spray at ambient conditions for 15 minutes, and (3) Drying off at 60° C. and 50% RH for 17 hours and 45 minutes.
- RH relative humidity
- test panel coatings were evaluated for corrosion resistance in accordance with ASTM D1654 and adhesion tests were performed on each panel in accordance with ASTM D4541 and D3359. All of the test panel samples were rated as excellent (corrosion rating 10). Eleven of the sixteen test panels were rated very good or excellent in adhesion rating (rating 4B or 5B). The test panel ratings and strength values are listed in Table 8.
- Example TT29-TT31 aqueous process
- standard asphalt mix grade PG 64-22
- Brookfield Dynamic Viscometer produced favorable viscosity decreases of 10-20% as an asphalt modifier when compared to asphalt samples without metallic soap additives.
- the use of the aforementioned samples was intended for “warm mix” asphalt applications, where asphalt may be produced at temperatures of up to about 100° F. below conventional “hot mix” asphalt applications. Such lowered temperatures in warm mix applications provide for a lower cost, lower energy usage, safer handling, and lower environmental impact alternative to hot mix applications. Due to the reduced temperatures, the asphalt binder tends to be more viscous, which can make it more difficult to mix, spread, and compact.
- the viscosity of an asphalt binder is used to determine the flow characteristics of the binder to provide some assurance that it can be pumped and handled at an asphalt facility, and also to determine the mixing and compacting temperatures of asphalt mixtures.
- additives are often added to the asphalt mixture or to the asphalt binder before creating the asphalt mixture.
- the metallic soap compositions function as asphalt modifiers for viscosity reduction, and the details of the viscosity reduction are shown in Table 9 below.
- Sample TT29 had the same compositional profile as Sample TT27 described earlier.
- Sample TT30 was a mixture of 500.0 grams of stripped MSBO, 26.4 grams of Ca(OH) 2 diluted to 373.6 grams with water were added to the reactor. The mixture was heated to 95° C. and stirred for 2 hours. Reaction ratios were calculated for 100% saponification. The degree of saponification, as determined by IR analysis, was 40% after two hours of reaction. This sample was allowed to cool and then removed from the reactor as a highly basic white slurry.
- Sample TT31 was a mixture of 500.0 grams of stripped MSBO, 39.6 grams of Ca(OH) 2 diluted to 360.4 grams with water were added to the reactor. The mixture was heated to 95° C. and stirred for 2 hours. Reaction ratios were calculated for 100% saponification. The degree of saponification, as determined by IR analysis, was 60%, after two hours of reaction. This sample was allowed to cool and then removed from the reactor as a highly basic white slurry.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Detergent Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Lubricants (AREA)
Abstract
Metallic soap compositions for use in various applications, including as adhesives, as having anti-corrosion properties on certain surfaces or materials, and as asphalt modifiers to reduce viscosity in an asphalt mixture, and process for making the same, are disclosed. The processes comprise at least a partial saponification of a mixture of an oil, often a natural oil which may be hydrogenated and/or metathesized, and a metal compound via a fusion process, or may comprise at least a partial saponification of a mixture of a similar oil and a metal compound, or optionally a fatty acid derived from a similar oil, via an aqueous process, with an optional addition of an inorganic metal salt via at least one ion exchange reaction.
Description
- This application claims the benefit of U.S. Provisional Patent Application No. 61/506,144, filed Jul. 10, 2011, which is incorporated herein by reference.
- Metallic salts of higher molecular weight fatty acids are commercially known as metallic soaps. Metallic soaps are well known and have been widely used in the industries of resins, paints, papers, fibers, greases, etc. as stabilizers, lubricants, water-repellents, thickeners, coating agents, for example. In addition to such uses, metallic soaps are used as catalysts in chemical reactions, and also as additives for rubber to improve adhesive properties or bonding of the rubber with steel cords.
- The methods known in the art for industrial production of metallic soap include various methods. One of them is the double decomposition (aqueous) method wherein a water-soluble metal salt and a metal salt of a fatty acid are reacted in an aqueous solution state to produce water-insoluble metallic soap. Another method of producing metallic soap is the fusion process, in which a form of a metal is employed, including metal alkoxides, metal oxides, metal hydroxides or metal carbonates and the like, and a fatty acid are reacted by fusing these at a temperature above the melting point of the metallic soap to be formed, and by-produced water and/or carbon dioxide gas is expelled out of the reaction system, whereby the metallic soap is taken out in a molten state. Another method for the production of soaps is through phase transfer catalysis. Phase transfer catalysis is a synthesis method which allows the use of relatively simple two-phase reaction systems in the place of solvent systems which may be toxic and/or expensive. In fundamental terms, phase transfer catalysis employs a phase transfer catalyst which facilitates the transfer of a reactive species from the first phase, normally aqueous, into the second phase, normally organic, where the desired reaction can take place. Various processes for making metallic soaps have been described in the art, including U.S. Pat. No. 4,397,760, U.S. Pat. No. 4,927,548, U.S. Pat. No. 4,235,794, U.S. Pat. No. 4,307,027, U.S. Pat. No. 5,274,144, and U.S. Pat. No. 2,650,932, the disclosures of which are herein incorporated by reference in their entireties.
- In particular, the fatty acids referenced above can be obtained by any suitable source of natural fats, including natural oils. Further, the metals referenced above may include non-limiting examples such as beryllium, magnesium, manganese, calcium, lithium, sodium, strontium and barium; transition metals such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, palladium, silver, cadmium, tungsten and mercury; and other metals such as aluminum, gallium, tin, iron, lead, and lanthanoid metals. Metallic soaps have been synthesized from natural oils by saponifying the oils with varying quantities of a metal compound such as metal oxides, metal carbonates, metal hydroxides, or metal alkoxides. Generally, saponification means either the neutralization of fatty acids to produce soap or the saponification of fats and/or oils to produce soap. Saponification involves hydrolysis of esters under basic conditions to form an alcohol and the salt of a carboxylic acid (carboxylates). More specifically, the use of fatty acids and the addition of specific types and amounts of natural oils, then altering them through adding a metal base saponifies the fatty acids into soaps.
- Typically, the range of properties produced by saponification of a natural oil is rather limited. Thus, there is a need to create metallic soap compositions having a diverse range of properties and applications, and in particular, adhesive properties and anti-corrosion properties on certain surfaces or materials, and as asphalt modifiers to reduce viscosity in an asphalt mixture.
- One aspect is directed to a metallic soap composition produced by a process which comprises at least a partial saponification of a mixture of an oil and a metal compound. The oil can be a metathesized natural oil, hydrogenated metathesized natural oil, hydrogenated natural oil, or a natural oil, or mixtures thereof, and the metal compound can be a metal oxide, metal hydroxide, or metal carbonate, or mixtures thereof. The process comprises the steps of first heating and purging the oil in a reactor at a temperature between about 70° C. to about 140° C. in a nitrogenous atmosphere, and then heating and purging the mixture of the oil and metal compound in the reactor at a temperature between about 200° C. to about 400° C. in the nitrogenous atmosphere. The reaction mixture is removed from the reactor, and cooled to obtain the metallic soap composition.
- Another aspect is a metallic soap composition produced by a process which comprises at least a partial saponification of a mixture of an oil comprising up to about 100% by weight of a metathesized natural oil, and a metal hydroxide. The process comprises the steps of first heating and purging the oil in a reactor at a temperature between about 95° C. to about 105° C. in a nitrogenous atmosphere, and then heating and purging the mixture of the oil and the metal hydroxide in the reactor at a temperature between about 290° C. to about 310° C. in the nitrogenous atmosphere. The reaction mixture is removed from the reactor, and cooled to obtain said metallic soap composition.
- Another aspect is a metallic soap composition produced by a process which comprises at least a partial saponification of a mixture of an oil and at least one metal compound, or optionally neutralization of a fatty acid derived from an oil and at least one metal compound. Thereafter, the subsequent addition of an inorganic metal salt for at least one ion exchange reaction is added to this mixture. The oil can be a metathesized natural oil, hydrogenated metathesized natural oil, hydrogenated natural oil, or a natural oil, or mixtures thereof, and the metal compound can be a metal alkoxide, metal oxide, metal hydroxide, or metal carbonate, or mixtures thereof, and the inorganic metal salt can be metal hydroxides or metal chlorides. The process comprises the steps of (a) heating said mixture in a reactor at a temperature between about 75° C. to about 150° C. in an aqueous environment; (b) removing the reaction mixture from the reactor and cooling the mixture to obtain a first metallic soap composition. Thereafter, the inorganic metal salt is added to this mixture of step (b) prior to cooling, wherein the ion exchange reaction occurs at a temperature between about 50° C. to 150° C., and then recovering and thereafter cooling said mixture of step (c) to obtain a second metallic soap composition.
- Another aspect is a metallic soap composition produced by a process which comprises at least a partial saponification of a mixture of a metathesized natural oil and a metal hydroxide, and the subsequent addition of a metal chloride for at least one ion exchange reaction. The process comprises the steps of (a) heating the mixture in a reactor at a temperature between about 90° C. to about 100° C. in an aqueous environment; (b) removing the reaction mixture from the reactor; (c) adding to the mixture of step (b), the metal chloride for the ion exchange reaction, which occurs at a temperature between about 70° C. to about 100° C.; and (d) recovering and cooling the mixture from step (c) to obtain the metallic soap composition.
- Another aspect is a metallic soap composition produced by a process which comprises at least a partial saponification of an oil and a metal compound, or optionally neutralization of a fatty acid derived from an oil and at least one metal compound. The oil can be a metathesized natural oil, hydrogenated metathesized natural oil, hydrogenated natural oil, or a natural oil, or mixtures thereof, and the metal compound can be a metal alkoxide, metal oxide, metal hydroxide, or metal carbonate, or mixtures thereof. The process comprises the steps of (a) heating said mixture in a reactor at a temperature between about 75° C. to about 150° C. in an aqueous environment, and (b) removing said reaction mixture from said reactor and cooling said mixture to obtain the metallic soap composition.
- The present application relates to metallic soap compositions exhibiting use in various applications, including but not limited to, as adhesives, as having anti-corrosion properties on certain surfaces or materials, and as asphalt modifiers to reduce viscosity in asphalt mixtures, and processes of making such compositions. As used herein, the metallic soap compositions shall be understood to include at least one metallic soap composition, or stated alternatively, one or more metallic soap compositions.
- As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a substituent” encompasses a single substituent as well as two or more substituents, and the like. Also, for example, a “metallic soap composition” shall encompass a single metallic soap composition, at least one metallic soap composition, or one or more metallic soap compositions.
- As used herein, the terms “for example,” “for instance,” “such as,” or “including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise specified, these examples are provided only as an aid for understanding the applications illustrated in the present disclosure, and are not meant to be limiting in any fashion.
- As used herein, the following terms have the following meanings unless expressly stated to the contrary. It is understood that any term in the singular may include its plural counterpart and vice versa.
- As used herein, the term “natural oil” may refer to oils and/or fats derived from plants or animal sources. The term “natural oil” includes natural oil derivatives, unless otherwise indicated (which may include fatty acids derived from a metathesized natural oil). Examples of natural oils include, but are not limited to, vegetable oils, algae oils, animal fats, tall oils, derivatives of these oils, combinations of any of these oils, and the like. Representative non-limiting examples of vegetable oils include canola oil, rapeseed oil, coconut oil, corn oil, cottonseed oil, linseed oil, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, palm kernel oil, tung oil, jatropha oil, mustard oil, camelina oil, pennycress oil, hemp oil, algal oil, and castor oil. Representative non-limiting examples of animal fats include lard, tallow, poultry fat, yellow grease, and fish oil. Tall oils are by-products of wood pulp manufacture. In certain embodiments, the natural oil may be refined, bleached, and/or deodorized (stripped).
- In certain embodiments, the natural oil has been metathesized in the presence of a metathesis catalyst to form a metathesized natural oil. Metathesis is a catalytic reaction that involves the interchange of alkylidene units among compounds containing one or more double bonds (i.e., olefinic compounds) via the formation and cleavage of the carbon-carbon double bonds. The metathesis catalyst in this reaction may include any catalyst or catalyst system that catalyzes a metathesis reaction. Any known metathesis catalyst may be used, alone or in combination with one or more additional catalysts. Non-limiting exemplary metathesis catalysts and process conditions are described in PCT/US2008/009635, pp. 18-47, incorporated by reference herein. A number of the metathesis catalysts as shown are manufactured by Materia, Inc. (Pasadena, Calif.).
- In some embodiments, the metathesized natural oil is a metathesized vegetable oil, metathesized algae oil, metathesized animal fat, metathesized tall oil, metathesized derivatives of these oils, and mixtures thereof. In one embodiment, the metathesized vegetable oil is metathesized canola oil, metathesized rapeseed oil, metathesized coconut oil, metathesized pennycress oil, metathesized algal oil, metathesized camellina oil, metathesized corn oil, metathesized cottonseed oil, metathesized olive oil, metathesized palm oil, metathesized peanut oil, metathesized safflower oil, metathesized sesame oil, metathesized soybean oil, metathesized sunflower oil, metathesized linseed oil, metathesized palm kernel oil, metathesized tung oil, metathesized jatropha oil, metathesized mustard oil, metathesized castor oil, metathesized derivatives of these oils, and mixtures thereof. In another embodiment, the metathesized natural oil is a metathesized animal fat, for example, metathesized lard, metathesized tallow, metathesized poultry fat, metathesized fish oil, metathesized derivatives of these oils, and mixtures thereof.
- In certain embodiments, the metathesized natural oil has been “hydrogenated” (i.e., full or partial hydrogenation of the unsaturated carbon-carbon bonds in the metathesized natural oil) in the presence of a hydrogenation catalyst to form a hydrogenated metathesized natural oil. In one embodiment, the natural oil is partially hydrogenated before it is subjected to the metathesis reaction. In another embodiment, the natural oil is metathesized prior to being subjected to partial or full hydrogenation. In another embodiment, the natural oil is partially hydrogenated, metathesized, then either partially hydrogenated or hydrogenated to completion. In some embodiments, the hydrogenation step (either partial or full) of the metathesized natural oil may also occur after it is subjected to the metathesis reaction. Any known or future-developed hydrogenation catalysts may be used, alone or in combination with one or more additional catalysts. Non-limiting exemplary hydrogenation catalysts and process conditions are described in PCT/US2007/000610 and PCT/US2008/009635, pp. 47-51, incorporated by reference herein.
- In some embodiments, the metathesized natural oil may be epoxidized. The metathesized natural oil may be epoxidized via any suitable peroxyacid. Peroxyacids (peracids) are acyl hydroperoxides and are most commonly produced by the acid-catalyzed esterification of hydrogen peroxide. Any peroxyacid may be used in the epoxidation reaction. Examples of hydroperoxides that may be used include, but are not limited to, hydrogen peroxide, tert-butylhydroperoxide, triphenylsilylhydroperoxide, cumylhydroperoxide, and preferably, hydrogen peroxide.
- As used herein, the term “natural oil” may also include metathesized natural oils, fully and/or partially hydrogenated metathesized natural oils, and fully and/or partially hydrogenated natural oils, and epoxidized metathesized natural oils. Also as used herein, “MSBO” may refer to metathesized soybean oil, the term “HMSBO” may refer to hydrogenated metathesized soybean oil, the term “SBO” may refer to soybean oil, and the term “HSBO” may refer to hydrogenated soybean oil.
- Suitable fatty acids of natural oils or hydrogenated and/or metathesized natural oils include, but are not limited to, aliphatic, aromatic, saturated, unsaturated, straight chain or branched, substituted or unsubstituted, fatty acids, and mono-, di-, tri-, and/or poly-acid variants thereof having carbon chain lengths of 6 to 36 carbon atoms, non-limiting examples of which include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, arachic acid, erucic acid and behenic acid. The fatty acids used may be in the form of powders, beads, flakes or flocculated, as well as, extruded or granulated by other means as, for instance, obtained by cooling of an aqueous fatty acid emulsion below the melting point of that acid.
- As used herein, the term “dropping point,” “drop point,” or “melting point” are terms that may refer to the temperature at which the wax sample begins to melt. The drop point may be measured using ASTM-D127-08 or the Mettler Drop Point FP80 system, incorporated by reference herein.
- As used herein, the term “needle penetration” may refer to the relative hardness of the metallic soap composition. The needle penetration may be measured using ASTM-D1321-02a, incorporated by reference herein.
- As used herein, the term “softening point” may refer to the point at which the metallic soap composition gradually and imperceptibly changes from solids to soft, viscous liquids. The softening point may be measured by ASTM D3104-99.
- As used herein, the term “metallic soaps” or “metallic soap” or “metallic soap compositions” or “metallic soap composition” means at least one metallic soap composition which may be the salts of various metals, non-limiting examples of which include alkaline earth and alkali metals such as, without limitation, beryllium, magnesium, calcium, lithium, sodium, potassium, strontium and barium; transition metals, without limitation, such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, palladium, silver, cadmium, tungsten and mercury; and other metals such as aluminum, gallium, tin, iron, lead, and lanthanoid metals, all individually or in combinations thereof. For their manufacture, the alkoxides, oxides, hydroxides, carbonates, chlorides, and mixtures thereof of any of the aforementioned metals are found to be especially useful. In some embodiments, hydroxides of these aforementioned metals are preferred, and calcium hydroxide, strontium hydroxide, magnesium hydroxide, sodium hydroxide, and lithium hydroxide are more preferred.
- The metallic soap compositions may be produced via a fusion process (samples TT1 through TT10 and TT14 through TT24 referenced below). In the fusion process, an oil comprising one or more fatty acids or derivatives therefrom is added to a reactor and purged in a nitrogenous atmosphere at an elevated temperature of between about 70° C. to about 140° C., preferably about 90° C. to about 120° C. and most preferably about 95° C. to about 105° C., for between about 30-90 minutes, and preferably about 60 minutes. This oil is selected from the group consisting of: a metathesized natural oil, a hydrogenated metathesized natural oil, a hydrogenated natural oil, or a natural oil, or mixtures thereof. In some embodiments, the natural oil is soybean oil, the metathesized natural oil is metathesized soybean oil, the hydrogenated natural oil is hydrogenated soybean oil, and the hydrogenated metathesized natural oil is hydrogenated metathesized soybean oil. In some embodiments, the oil comprises up to 100 weight percent MSBO, and in some embodiments, the oil comprises up to 100 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up at about 50 weight percent MSBO and up to about 50 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up to about 12.5 weight percent SBO, up to about 12.5 weight percent HSBO, up to about 37.5 weight percent MSBO, and up to about 37.5 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up to about 25 weight percent MSBO and up to about 75 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up to about 12.5 weight percent SBO, up to about 37.5 weight percent HSBO, up to about 12.5 weight percent MSBO, and up to about 12.5 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up to about 6.25 weight percent SBO, up to about 18.75 weight percent HSBO, up to about 18.75 weight percent MSBO, and up to about 56.25 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up to about 56.25 weight percent SBO, up to about 18.75 weight percent HSBO, up to about 18.75 weight percent MSBO, and up to about 6.25 weight percent HMSBO, and in some embodiments, the oil comprises a mixture of up to about 18.75 weight percent SBO, up to about 56.25 weight percent HSBO, up to about 6.25 weight percent MSBO, and up to about 18.75 weight percent HMSBO, and in some embodiments, the oil comprises up to about 100 weight percent SBO. To this oil, at least one metal compound, such as a metal oxide, metal hydroxide, metal carbonate or metal alkoxide, preferably a metal hydroxide, is introduced, and the oil and the metal compound are reacted by fusing them at a temperature above the melting point of the metallic soap composition to be formed, with this temperature typically between about 200° C. to about 400° C., more preferably about 275° C. to about 350° C., and most preferably about 290° C. to about 310° C., for a period of about 3 and 6 hours, and preferably about 4 hours, with stirring. The degree of saponification for this fusion process is at least a partial saponification, wherein the degree of saponification is about 10% to about 100%, preferably about 25% to about 90%, more preferably about 30% to about 65%, and most preferably about 35% to about 45%, as measured by FTIR. For the purposes of analyzing the degree of saponification of a given material, it is possible to utilize FTIR for such analysis, as described at various points herein. The peaks of interest when analyzing these materials are the stretching peak attributed to carbonyl of the metallic soap composition (˜1530-1550 cm-1), and the stretching peak attributed to the ester carbonyl (˜1745 cm-1) in the unsaponified oil. A calibration curve can be made by creating known ratio mixtures of metallic soap and ester and plotting their known ratios versus the relative signal intensity of the two stretching peaks.
- Any volatile or light compounds from the natural oil are distilled off and collected, and any carbon dioxide gas or water by-products, along with any free glycerol component that is also produced as a byproduct, and are expelled out of the reaction system, where the molten metallic soap composition is removed from the system. This molten metallic soap composition is then poured from the reactor into metal pans and allowed to cool to room temperature, and if needed, recovery steps such as filtration, decanting, and centrifugation, and the like, and any washing and/or drying steps may be applied.
- Metallic soap compositions produced by the fusion process herein comprise a hardness, as measured by needle penetration, between about 5 dmm to about 250 dmm, and preferably between about 15 dmm to about 75 dmm, and most preferably between about 45 dmm to about 55 dmm. The metallic soap compositions produced by the fusion process herein comprise a drop point of between about 50° C. and about 170° C., more preferably between about 70° C. and about 140° C., and most preferably between about 75° C. and about 105° C.
- The metallic soap compositions may be produced via an aqueous process (samples TT11 through TT13 and samples TT25 through TT28 referenced below). In the aqueous process, an oil comprising one or more fatty acids is dissolved in water and then neutralized with at least one metal compound such as a metal alkoxide, metal oxide, metal hydroxide, or metal carbonate, preferably a metal hydroxide, and most preferably sodium hydroxide, potassium hydroxide or calcium hydroxide, individually or in combinations thereof. This oil is selected from the group consisting of: a metathesized natural oil, a hydrogenated metathesized natural oil, a hydrogenated natural oil, or a natural oil, or mixtures thereof. In some embodiments, the oil comprises up to 100 weight percent MSBO. This mixture is heated in a reactor at a temperature between about 70° C. to about 150° C., preferably about 75° C. to about 125° C., and most preferably about 95° C., and this mixture is stirred and/or agitated for some period of time, up to about 5 hours, and preferably about 1 to 3 hours. In some embodiments, the metallic soap composition precipitates from the solution and is recovered from the reactor via any suitable means known in the art, such as filtering, decanting, centrifuging, and the like, along with washing, drying, and thereafter cooling, as needed. Along with the metallic soap composition that is produced, which may be a first metallic soap composition for this aqueous process in some embodiments, a free glycerol component is also produced as a byproduct. In some embodiments, an inorganic metal salt may be added to the preceding metallic soap composition for at least one ion exchange reaction, prior to the aforementioned cooling, wherein such inorganic metal salt is a metal hydroxide such as magnesium hydroxide, strontium hydroxide, and calcium hydroxide, and most preferably calcium hydroxide, or a metal chloride, preferably zinc chloride or calcium chloride. This ion exchange reaction occurs at a temperature between about 50° C. to about 150° C., preferably about 65° C. to about 125° C., and most preferably about 70° C. to about 100° C. The resulting metallic soap composition is recovered via any suitable means known in the art, such as filtering, decanting, centrifuging, and the like, with washing, drying, and thereafter cooling as needed, to produce another metallic soap composition, which may be a second metallic soap composition for this aqueous process in some embodiments. Along with the metallic soap composition that is produced, a free glycerol component and saltwater is also produced as a byproduct. Reaction times are up to about 5 hours, and preferably about 1 to 3 hours for the saponification and up to about 3 hours, and preferably about 1 hour for the at least one ion exchange reaction. The degree of saponification for these aqueous processes is at least a partial saponification, wherein the degree of saponification is about 10% to about 100%, more preferably about 70% to about 100%, and most preferably about 95% to about 100%.
- In some embodiments, a fatty acid derived from a metathesized natural oil can be neutralized with a metal oxide, metal alkoxide, metal hydroxide or metal carbonate, preferably a metal hydroxide, and most preferably either sodium hydroxide or potassium hydroxide. The resulting metallic soap composition is then reacted with a stoichiometric equivalent (compared to the metal hydroxide amount) of phosphoric acid. The fatty acid is then mixed with water with a stoichiometric equivalent (based off the initial equivalents of ester in the oil) of metal hydroxide to produce a metallic soap composition.
- The above-described processes may be carried out in batches, continuously or semi-continuously. The batch process begins with the reagents and ends when metallic soap compositions are produced, beginning again by adding new reagents (natural oils together with metal hydroxides and water). The continuous process, however, is not interrupted, except for periodic maintenance and cleaning of the facilities. The natural fats and/or natural oils are continually added, together with metal compound and the water sequentially, and the metallic soap composition rich in fatty acids is obtained without stopping. The semi-continuous process is a mixture of the above. It is a continuous process, but only lasts for a certain number of pre-programmed cycles.
- The melting point of the metallic soap compositions depends on the extent of saponification of the resulting metallic soap product. As the extent of saponification increases, the melting point of the metallic soap composition also increases. The melting point of the metallic soap compositions also depends on the degree of unsaturation in the aliphatic hydrocarbon anions of the fatty acid employed. The higher the saturation of the aliphatic hydrocarbon anions, then the higher the melting point of the metallic soap composition. For a given chain length or number of carbon atoms in a fatty acid aliphatic hydrocarbon anion, the greater the number of carbon-carbon double bonds in the chain, the lower will be the melting point.
- In some embodiments, the metallic soap compositions may also be crosslinked via an initiator composition that is capable of initiating cure at a temperature preferably at about 130° C. or less. Generally, the initiator composition includes both an initiator compound and an activator or promoter. The initiator and the activator or promoter work in tandem to start initiation at a desired processing temperature. General examples of initiators include various organic or peroxides and peracids. Non-limiting examples of initiators include, without limitation, benzoyl peroxide, methyl ethyl ketone hydroperoxide, and cumene hydroperoxide, and preferably benzoyl peroxide. For the preferred benzoyl peroxide, non-limiting examples of activators such as cobalt octoate, dimethyl aniline, cobalt naphthenate, and cobalt 2-ethylhexanoate, and preferably cobalt naphthenate, may be added, resulting in initiator compositions capable of curing the metallic soap composition at a temperature from about room temperature up to about 130° C.
- The metallic soap compositions may be converted into flakes, noodles, blocks, bars, powder, pellets, extrusions, granulates, or any other suitable form or shape by methods known in the art. Further the metallic soaps have use in various applications, including as adhesives, and coatings having corrosion resistance when applied to certain surfaces or materials, as described below. It is also contemplated that the metallic soap compositions can have uses as asphalt modifiers.
- The metallic soap compositions may be used in various additional non-limiting applications such as stabilizers, lubricants, greases, water-repellents, thickeners for oils or other organic media, coating agents, as catalysts in chemical reactions, as additives for rubber to improve adhesiveness or bonding of rubber with various substrates, as gelling agents, cosmetic formulations, flattening agents, mold/mildew prevention agents, PVC stabilizers, nucleating agents, and as driers for painting/varnish/lacquer/ink applications.
- (Sample ID TT1)
- 1500.0 g of metathesized soybean oil (MSBO) [3.42 mmol/g COOR] was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 80.0 g Ca(OH)2 [1.08 mol] was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Reaction ratios were calculated for a ˜40% degree of saponification. Degree of saponification, as determined by IR analysis, was 42%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature. Other properties determined are listed in Table 1.
- (Sample ID TT2)
- 1500.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 40.0 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 21%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT3)
- 1500.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 120.0 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 63%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT4)
- 1500.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 160.0 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 84%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT5)
- 1500.0 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 200.04 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the HMSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 100%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature
- (Sample ID TT6)
- Varying feedstock was examined by adding 187.5 g of soybean oil (SBO), 187.5 g hydrogenated soybean oil (HSBO), 562.5 g MSBO, 562.5 g HMSBO to the reactor and purging with dry nitrogen at 100° C. for one hour. 120.0 g Ca(OH)2 was added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the reaction mixture were distilled off and collected. Degree of saponification, as determined by IR analysis, was 63%. The reaction proceeded for 4 hours with stirring at ambient pressure.
- (Sample ID TT7)
- 1500.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 66.02 g Mg(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 44%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT8)
- 1500.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 300.83 g Sr(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 20%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT9)
- 750.0 g MSBO and 750.0 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 83.9 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO and HMSBO mix were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature
- (Sample ID TT10)
- 375.0 g MSBO and 1125.0 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 83.9 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO and HMSBO mix were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT14)
- 187.5 g SBO, 562.5 g HSBO, 187.5 g MSBO, and 562.5 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 83.9 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the SBO, HSBO, MSBO, and HMSBO mix were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT15)
- 93.75 g SBO, 281.25 g HSBO, 281.25 g MSBO, and 843.75 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 83.9 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the SBO, HSBO, MSBO, and HMSBO mix were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT16)
- 750.0 g MSBO, and 750.0 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 83.9 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO and HMSBO mix were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT17)
- 375.0 g MSBO, and 1125.0 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 83.9 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO and HMSBO mix were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT18)
- 375.0 g MSBO, and 1125.0 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 120.0 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO and HMSBO mix were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 60%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT19)
- 843.75 g SBO, 281.25 g HSBO, 281.25 g MSBO, and 93.75 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 160.0 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the SBO, HSBO, MSBO, and HMSBO mix were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 80%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT20)
- 281.25 g SBO, 843.75 g HSBO, 93.75 g MSBO, and 281.25 g HMSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 80.0 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the SBO, HSBO, MSBO and HMSBO mix were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT21)
- 111.1 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 5.93 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT22)
- 1000.0 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 80.02 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 60%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT23)
- 1283.7 g MSBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 71.8 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the MSBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 40%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
- (Sample ID TT24)
- 1472.4 g SBO was added to the reactor and sparged at 100° C. for one hour with dry nitrogen. 124.0 g Ca(OH)2 was then added and the reactor was sealed with a positive purge of nitrogen. The mixture was heated to 300° C. and the volatile and light compounds in the SBO were distilled off and collected. The reaction proceeded for 4 hours with stirring at ambient. Degree of saponification, as determined by IR analysis, was 65%. Finished samples were poured from the reactor into metal pans and allowed to cool to room temperature.
-
TABLE 1 Metallic soap compositions made by fusion process Amount Degree of Needle SBO HSBO MSBO HMSBO Cation Base Saponification Penetration Drop Point Sample (g) (g) (g) (g) Used (g) (%) (dmm) ° C. TT1 1500 Ca 80 42 50 81.06 TT2 1500 Ca 40 21 245 78.39 TT3 1500 Ca 120 63 16 133.61 TT4 1500 Ca 160 84 6 NA TT5 1500 Ca 200.04 100 NA NA TT6 187.5 187.5 562.5 562.5 Ca 120 63 19.3 101.94 TT7 1500 Mg 66.02 44 56 77.33 TT8 1500 Sr 300.83 20 72 79.94 TT9 750 750 Ca 83.9 40 24 93.16 TT10 375 1125 Ca 83.9 40 13 140.05 TT14 187.5 562.5 187.5 562.5 Ca 83.9 40 15 117.8 TT15 93.75 281.25 281.25 843.75 Ca 83.9 40 17 135.3 TT16 750 750 Ca 83.9 40 24 93.2 TT17 375 1125 Ca 83.9 40 13 140.1 TT18 375 1125 Ca 120 60 10.1 109 TT19 843.75 281.25 281.25 93.75 Ca 160 80 20.8 98.7 TT20 281.25 843.75 93.75 281.25 Ca 80 40 22.8 102.3 TT21 111.1 Ca 5.93 40 NA NA TT22 1000 Ca 80.02 60 NA NA TT23 1283.7 Ca 71.8 40 52 NA TT24 1472.4 Ca 124.0 65 72 NA NA = not available - (Sample ID TT11)
- 250.0 g of stripped MSBO [3.42 mmol/g COOR] and 56.1 g KOH [1 mol] diluted to 400.0 g with water were added to the reactor. The mixture was heated to 95° C. and stirred for 2 hours. Following formation of the potassium soap 37.1 g Ca(OH)2 [0.5 mol] was added to the reactor, to carry out an ion exchange, and the mixture was stirred at 95° C. and for 1 hour. Reaction ratios were calculated for 100% saponification. The degree of saponification, as determined by IR analysis, was 99% after two hours of reaction. Sample ID TT11 was allowed to cool and then removed from the reactor as a highly basic white slurry.
- (Sample ID TT12)
- 500.0 g of stripped MSBO [3.42 mmol/g COOR] and 70.0 g NaOH [1.75 mol] diluted to 400.0 g with water were added to the reactor. The mixture was heated to 95° C. and stirred for 2 hours. Reaction ratios were calculated for 100% saponification. The degree of saponification, as determined by IR analysis, was 99% after two hours of reaction. Sample ID TT12 was allowed to cool and then removed from the reactor as a pliable solid. The water level of product was 21%.
- The synthesis of zinc soap (Sample ID TT13) entailed adding a stoichiometric equivalent of ZnCl2 [0.875 mol] to a dilute solution of the sodium soap, as prepared for Sample TT12. This ion exchange reaction occurs in an aqueous environment at 75° C. for 1 hour. The resulting solid was rinsed, filtered, dried, and cooled, yielding a saltwater and glycerol solution and the final zinc soap product. The resulting product was a fine powder, as shown in Table 2 below. Differential Scanning calorimetry (DSC) analysis indicated two transitions, at 95° C. and at 125° C. As commonly understood, DSC essentially records and charts the melting points or melting range of the various components of a composition. The height of individual peaks are generally in proportion to the approximate ratios of the amount of components present.
-
TABLE 2 DSC Melt Point (° C.) Wt. % H2O Product Description TT12 NA* 21 Pliable white solid (*not dried) TT13 92.5 (125) 5 Fine white powder - In certain embodiments, the metallic soap compositions may possess properties equal to or improved over commercial metallic soaps for various adhesive applications, as described in the application testing below. These adhesive applications may be suitable as a standalone hot melt adhesive composition. In some embodiments, the metallic soap compositions can behave as an adhesive without the addition of secondary tackifying agents. In some embodiments, the metallic soap composition is a single component material that adheres to multiple surfaces and/or substrates, (including, but not limited to, polymer films such as polyethylene terephthalate (PET) and biaxially oriented polypropylene (BOPP); woven and non-woven fabrics; metals such as aluminum, copper, lead, gold and the like; paper, glass, ceramics, stone, wood and composite materials comprising one or more of these materials), is generally highly hydrophobic, generally insoluble in many organic solvents, and may be applied to the aforesaid surfaces and/or substrates by any method known in the art, including, but not limited to knife coating, roll coating, gravure coating, and curtain coating.
- In certain embodiments, the metallic soap compositions may be formulated by blending with various additives, non-limiting examples of which include plasticizers, surfactants, fillers, antioxidants, pigments, and preservatives.
- In certain embodiments, the metallic soap compositions may optionally be blended with adhesive components known in the art, which may include, but are not limited to, polyurethanes; poly ether amides block copolymers; polyethylene copolymers, including, but not limited to, polyethylene-vinyl acetate, polyethylene-butyl acrylate, polyethylene-2-ethyl hexyl acrylate, polyethylene-methyl acrylate, polyethylene-acrylic acid, polyethylene oxide and its copolymers; amorphous poly-alpha olefins and the functionalized copolymers thereof; polylactide and copolymers; polyamides; polyesters and co-polyesters; polyester block copolymers; functionalized polyesters and co-polyesters including, but not limited to, sulfonated polyesters; polyacrylic compositions; polyvinyl ethers; poly caprolactones and copolymers; epoxides and copolymers thereof including, but not limited to, urethane-epoxides; isoprene compositions; poly-isobutylene and functionalized types; poly-butadiene and functionalized types; poly-butyl, polybutene and functionalized types; styrene block copolymers including, but not limited to, functionalized types such as maleic modified styrene ethylene butadiene styrene (m-SEBS), and mixtures thereof.
- In certain embodiments, the metallic soap compositions may have adhesive applications that may include, but are not limited to, skin-contact medical applications, surgical tapes, bandages, wound care, operation tapes and drapes, hygiene applications including feminine care products, box sealing tapes, masking applications, low fogging, automotive interior applications including foam gaskets, instrument displays, sound deadening, trim bonding, sealants, chalks, general pressure sensitive adhesives, semi-pressure sensitive adhesives, building & hydroxyl ion adhesives, assembly adhesives, adhesive films and membranes, bottle labeling, water soluble adhesives, laminating adhesives, adhesives for flexible packaging, concrete curing compounds, mounting tapes, double sided tapes, electrical tapes, permanent and removable labels, filmic labels, pressure sensitive adhesives for the graphic industry, labels for laser printers, insulation tapes, primer compounds, tie layers, road marking adhesives, inks, mounting tapes, labels for chemicals, (including for sea water resistance), and labeling for pharmaceuticals and cosmetics, etc.
- In certain embodiments, the metallic soap compositions may possess properties equal to or improved over commercial metallic soaps for various coatings applications, as described in the application testing below. As a coating on at least one solid surface(s) or material(s), non-limiting examples of which include various kinds of surfaces such as glass, metal surfaces such as aluminum, and alloy surfaces such as steel, 416 stainless, and brass, the metallic soap compositions may be applied as a single anti-corrosion layer or may be combined with a top layer paint or coating or may be part of a formulated coating such as a latex or oil-based paint. The metallic soap compositions may be applied by any conventional high temperature and/or high velocity sprays, including, but not limited to, high velocity high temperature spray, thermal spray, plasma spray, fluidized bed, hot melt or electrostatic spray, electrostatic powder coating method, spray liquid coating, or any coating method that is commonly used for conventional metallic soaps.
- The purpose of comparing metallic soaps made from different starting materials was to gain insight into the benefits provided by utilizing metathesized natural oil as opposed to the neat (not metathesized) natural oil itself. Testing involved in this analysis consisted of adhesion tests (ASTM and Instron) and DSC/DMA analysis of melt/glass transition temperatures. Basic physical properties (Drop Point, Needle Penetration, Softening Point) of each material were fairly similar.
- The results of this testing, in Table 3 below, showed that MSBO based materials had improved material properties than those based off of SBO, making them more suitable as adhesive materials and coatings.
-
TABLE 3 Needle Softening Starting Drop Point Penetration Viscosity Point Material (° C.) (dmm) (cP) (° C.) TT23 100.11 52 77.5k 81.27 TT24 87.33 72 8.5k 48.27 Drop Point, Needle Penetration, Viscosity (100° C., cP = centipoise), Softening Point - The SBO sample (TT24) utilized in this testing was not at the same level of conversion/saponification as the sample of MSBO. The MSBO sample used (sample TT1 in Table 1) was a 40% saponified material while the SBO sample used was a 65% saponified material. When initial calculations were used (based off mass rather than molar equivalents) the samples were set up on an equal basis; however, after further analysis, utilizing moles COOR, far different numbers for degree of saponification were yielded. As such the saponification of SBO was carried out at 40% yielding a product that was roughly the consistency of standard petrolatum. Such a material was obviously unsuitable as a standalone adhesive.
- Based on observation, the benefits of a material based off of MSBO were due to the presence of oligomerized diester/diacid groups within the mixture. The presence of these compounds should allow for low-level oligomerization of the sample mixture as opposed to the terminal chains that would exist in a material synthesized from SBO (36 carbon maximum chain length). Building off of this observation, one can also expect that materials made from SBO, while sticky and/or tacky, will not likely have the structural strength that an oligomerized material will have. The results of the adhesion tests can be seen in the following Tables 4 and 5 below. All materials were made via the fusion process described above.
-
TABLE 4 Starting Film Thickness Max Pressure1 Material Metal (mil) (psi) TT23 (MSBO) 6061 Al 4 68 TT23 (MSBO) CR Steel 4 121 TT24 (SBO) 6061 Al 4 41 TT24 (SBO) CR Steel 4 77 1ASTM D 4541: Pull-off adhesion test -
TABLE 5 Avg. Max Load STD Max Adhesive Starting (kilogram Load Strength Mode of Material force “kgf”) (kgf) (psi) Failure TT23 (MSBO) 21.817 2.927 177 Adhesive TT24 (SBO) 10.635 1.404 86 Cohesive Gorilla Glue2 21.593 4.146 175 Adhesive Krazy Glue3 5.474 2.806 44 Adhesive Instron test conducted by pulling apart 15 mm aluminum scanning electron microscopy (SEM) stages 2Gorilla Glue ®, a polyurethane adhesive manufactured by Gorilla Glue Company of Cincinnati, Ohio 3Krazy Glue ® (All Purpose Instant Krazy Glue), a cyanoacrylate adhesive manufactured by Krazy Glue of Columbus, Ohio - The results of the assorted adhesion tests follow along with the expectation previously stated that the oligomeric materials should be stronger than a material with up to 36 carbon chains as its longest constituents. While the metallic soap of sample TT24 was strong in tension, it appeared to be quite weak under shear. This was not entirely unexpected from a flexible rubber-like material. Surprisingly, the metallic soap compositions (starting material MSBO) performed much better on the tape test on steel than it did on aluminum. This was likely due to the inherent surface roughness (visible) of the cold rolled steel as opposed to the smooth surface of the aluminum. Overall, the metallic soap composition samples made from MSBO as starting material were far superior to metallic soap made from SBO under loads as an adhesive material. The increased strength of MSBO based metallic soap compositions was due primarily to the presence of a metathesized backbone as opposed to the stearic/oleic backbone found in SBO. Also, the materials based off of SBO tend to fracture through the material to be adhered rather than fracturing at the adhesive interface.
- Also as shown in Table 5, the metallic soap compositions performed comparably to Gorilla Glue® and much better than Krazy Glue® in metal-to-metal (aluminum to aluminum) adhesion.
- In addition to the fusion process metallic soap compositions described above, the aqueous process metallic soap compositions described below (Samples TT25-TT28) were also suitable coating and adhesive materials. The reactions for producing these samples were carried out using the same reaction conditions as for examples TT12 and TT13, with varying amounts and types of natural oils, metal compounds, and inorganic metal salts, as set forth in Table 6 below. The aqueous process samples (Samples TT25-TT28) were applied to metal panels, consisting of Type R steel panels and Type A aluminum panels, available from Q-Panel, Cleveland, Ohio, and were coated using an Eastwood Hot Coat system and the metallic soap coating was annealed at 200° C. for 20 min. The coatings were continuous with occasional pock marks and were measured to be 50-60 μm. Adhesion tests were performed on each panel in accordance with ASTM D4541. All of the test panels had good or excellent adhesion strength (rating 3B, 4B, or 5B). The results for these adhesion tests are shown below in Table 6.
-
TABLE 6 Adhe- Adhe- sion sion Rating MSBO HMSBO NaOH ZnCl2 CaCl2 Ma- Strength (5B- (g) (g) (g) (g) (g) terial (psi) 0B) TT25 500 78 266 Al 62 4B Steel 76 5B TT26 500 78 216 Al 45 3B Steel 61 3B TT27 500 72 243 Al 50 5B Steel 48 4B TT28 500 72 198 Al 47 5B Steel 47 5B - To demonstrate the advantages of a variety of formulations of the metallic soap compositions, steel and aluminum panels were coated with various examples of metallic soap compositions made with MSBO and/or a combination of MSBO, HMSBO, HSBO, and SBO in formulations similar to those listed in Table 1. The metal panels, consisting of Type R steel panels and Type A aluminum panels, available from Q-Panel, Cleveland, Ohio, were coated using an Eastwood Hot Coat system and the metallic soap coating was annealed at 200° C. for 20 min. The coatings were continuous with occasional pock marks and were measured to be 50-60 μm.
- The resulting coated panels were conditioned in an environmental chamber by Cincinnati Sub-zero Testing Services, Cincinnati, Ohio, for 7 days in a neutral salt fog at 35° C. per method ASTM B-117-03. After environmental conditioning, the panel coatings were evaluated for corrosion resistance in accordance with ASTM D1654 and adhesion tests were performed on each panel in accordance with ASTM D4541 and D3359. Six of the twelve formulations tested received top tier ratings (rating 9 or 10) for lack of corrosion on both steel and aluminum. Twenty of the 24 test panels had good or excellent adhesion strength (rating 3B, 4B or 5B). Nineteen of the 24 test panels had good or excellent adhesion ratings. The test panel ratings and strength values are listed in Table 7 below.
-
TABLE 7 Corrosion Test Panel Results Neutral Salt Fog, 35° C., 7 days Corrosion Adhesion Adhesion Rating Strength Rating Material (10-1) (psi) (5B-0B) TT2 Aluminum 9 77 2B Steel 9 134 4B TT3 Aluminum 9 47 3B Steel 8 82 3B TT6 Aluminum 7 56 3B Steel 9 68 4B TT14 Aluminum 7 56 1B Steel 8 55 3B TT15 Aluminum 9 57 1B Steel 9 66 3B TT16 Aluminum 9 56 5B Steel 9 78 4B TT17 Aluminum 9 53 4B Steel 9 70 3B TT18 Aluminum 10 56 0B Steel 9 67 3B TT19 Aluminum 4 54 3B Steel 8 67 3B TT20 Aluminum 8 53 4B Steel 9 61 4B TT21 Aluminum 9 80 0B Steel 4 168 4B TT22 Aluminum 10 61 4B Steel 10 108 4B - To further demonstrate the advantages of a variety of formulations of the metallic soap compositions, aluminum panels were coated with four examples of metallic soap compositions made with MSBO and/or a combination of MSBO, HMSBO, HSBO, and SBO in formulations similar as detailed in Table 1. The metal panels, consisting of Type A aluminum panels, available from Q-Panel, Cleveland, Ohio, were coated using an Eastwood Hot Coat system and the divalent metallic coating was annealed at 200° C. for 20 min. The coatings were continuous, contained 1% leveling agent, and were measured to be 20-30 μm. Leveling agents that may be used include, but are not limited, to siloxanes, acrylates, polyvinylether, amides, polyamides, and amide waxes made from natural oils, wherein such amide waxes are described in commonly assigned, pending provisional U.S. patent application, Ser. No. 61/363,016, which is incorporated by reference in its entirety.
- The resulting coated panels were conditioned in an environmental chamber by Cincinnati Sub-zero Testing Services, Sterling Heights Mich., for 7 days in accordance with industry standard test method MIL-STD-810G exposing the sample panels to seven 24-hour cycles of the following: (1) 50° C. and 100% relative humidity (RH) for 6 hours, (2) 5% salt spray at ambient conditions for 15 minutes, and (3) Drying off at 60° C. and 50% RH for 17 hours and 45 minutes.
- After environmental conditioning, the panel coatings were evaluated for corrosion resistance in accordance with ASTM D1654 and adhesion tests were performed on each panel in accordance with ASTM D4541 and D3359. All of the test panel samples were rated as excellent (corrosion rating 10). Eleven of the sixteen test panels were rated very good or excellent in adhesion rating (rating 4B or 5B). The test panel ratings and strength values are listed in Table 8.
-
TABLE 8 Corrosion Test Panel Results Cyclic Corrosion Test, MIL-STD-810G CYCLIC Corrosion Adhesion Adhesion CORROSION Rating Strength Rating TEST Material (10-1) (psi) (5B-0B) TT6 Aluminum 10 46 4B Aluminum 10 68 3B Aluminum 10 57 4B Aluminum 10 44 3B TT9 Aluminum 10 55 4B Aluminum 10 64 4B Aluminum 10 50 4B Aluminum 10 57 4B TT10 Aluminum 10 60 3B Aluminum 10 43 3B Aluminum 10 40 4B Aluminum 10 36 3B TT11 Aluminum 10 57 5B Aluminum 10 50 5B Aluminum 10 43 5B Aluminum 10 61 5B - Testing of metallic soap compositions (samples TT29-TT31, aqueous process) at 0.5-1.0% loading level in standard asphalt mix (grade PG 64-22) using Brookfield Dynamic Viscometer produced favorable viscosity decreases of 10-20% as an asphalt modifier when compared to asphalt samples without metallic soap additives. The use of the aforementioned samples was intended for “warm mix” asphalt applications, where asphalt may be produced at temperatures of up to about 100° F. below conventional “hot mix” asphalt applications. Such lowered temperatures in warm mix applications provide for a lower cost, lower energy usage, safer handling, and lower environmental impact alternative to hot mix applications. Due to the reduced temperatures, the asphalt binder tends to be more viscous, which can make it more difficult to mix, spread, and compact. The viscosity of an asphalt binder is used to determine the flow characteristics of the binder to provide some assurance that it can be pumped and handled at an asphalt facility, and also to determine the mixing and compacting temperatures of asphalt mixtures. To offset the increased viscosity typically associated with warm mix asphalt, additives are often added to the asphalt mixture or to the asphalt binder before creating the asphalt mixture. The metallic soap compositions function as asphalt modifiers for viscosity reduction, and the details of the viscosity reduction are shown in Table 9 below.
- Sample TT29 had the same compositional profile as Sample TT27 described earlier. The degree of saponification, as determined by IR analysis, was 100% after two hours. This sample was allowed to cool and then removed from the reactor as a powder.
- Sample TT30 was a mixture of 500.0 grams of stripped MSBO, 26.4 grams of Ca(OH)2 diluted to 373.6 grams with water were added to the reactor. The mixture was heated to 95° C. and stirred for 2 hours. Reaction ratios were calculated for 100% saponification. The degree of saponification, as determined by IR analysis, was 40% after two hours of reaction. This sample was allowed to cool and then removed from the reactor as a highly basic white slurry.
- Sample TT31 was a mixture of 500.0 grams of stripped MSBO, 39.6 grams of Ca(OH)2 diluted to 360.4 grams with water were added to the reactor. The mixture was heated to 95° C. and stirred for 2 hours. Reaction ratios were calculated for 100% saponification. The degree of saponification, as determined by IR analysis, was 60%, after two hours of reaction. This sample was allowed to cool and then removed from the reactor as a highly basic white slurry.
-
TABLE 9 Viscosity (cP) Loading Level Run Run Run Percent (wt %) 1 2 3 Average Change PG 64-22 NA 685.0 685.0 687.5 685.8 NA TT29 1 612.5 615.0 615.0 614.2 10.4 TT30 0.5 540.0 542.5 542.5 541.7 21.0 TT31 0.5 550.0 552.5 552.5 551.7 19.6 - While the invention as described may have modifications and alternative forms, various embodiments thereof have been described in detail. It should be understood, however, that the description herein of these various embodiments is not intended to limit the invention, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims and their equivalents. Further, while the invention has also been described with reference to the preceding non-limiting examples, it will be understood, of course, that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings.
Claims (10)
1-36. (canceled)
37. A soap composition, comprising:
saponified natural oil compounds;
wherein the saponified natural oil compounds comprise saponified self-metathesized natural oil compounds.
38. The soap composition of claim 37 , wherein the saponified self-metathesized natural oil compounds comprise saponified hydrogenated self-metathesized natural oil compounds.
39. The soap composition of claim 37 , further comprising saponified non-metathesized natural oil compounds.
40. The soap composition of claim 38 , further comprising saponified non-metathesized natural oil compounds.
41. The soap composition of claim 37 , further comprising saponified hydrogenated non-metathesized natural oil compounds.
42. The soap composition of claim 38 , further comprising saponified hydrogenated non-metathesized natural oil compounds.
43. The soap composition of claim 39 , further comprising saponified hydrogenated non-metathesized natural oil compounds.
44. The soap composition of claim 40 , further comprising saponified hydrogenated non-metathesized natural oil compounds.
45. The soap composition of claim 37 , wherein the degree of saponification of the soap composition ranges from 10% to 100%, based on the total weight of natural oil compounds in the composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/829,471 US20160046785A1 (en) | 2011-07-10 | 2015-08-18 | Metallic Soap Compositions for Various Applications |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161506144P | 2011-07-10 | 2011-07-10 | |
US13/543,102 US9139801B2 (en) | 2011-07-10 | 2012-07-06 | Metallic soap compositions for various applications |
US14/829,471 US20160046785A1 (en) | 2011-07-10 | 2015-08-18 | Metallic Soap Compositions for Various Applications |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/543,102 Continuation US9139801B2 (en) | 2011-07-10 | 2012-07-06 | Metallic soap compositions for various applications |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160046785A1 true US20160046785A1 (en) | 2016-02-18 |
Family
ID=46545511
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/543,102 Active 2034-01-08 US9139801B2 (en) | 2011-07-10 | 2012-07-06 | Metallic soap compositions for various applications |
US14/829,471 Abandoned US20160046785A1 (en) | 2011-07-10 | 2015-08-18 | Metallic Soap Compositions for Various Applications |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/543,102 Active 2034-01-08 US9139801B2 (en) | 2011-07-10 | 2012-07-06 | Metallic soap compositions for various applications |
Country Status (5)
Country | Link |
---|---|
US (2) | US9139801B2 (en) |
EP (1) | EP2729556A1 (en) |
CN (1) | CN103649293A (en) |
CA (1) | CA2841137A1 (en) |
WO (1) | WO2013009605A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014138613A1 (en) * | 2013-03-08 | 2014-09-12 | Elevance Renewable Sciences, Inc. | Natural oil based grease compositions and processes for making such compositions |
CN107207777B (en) * | 2014-11-27 | 2019-03-08 | 佐治亚-太平洋化工品有限公司 | Emulsifier particle and its preparation and application |
CN105087169A (en) * | 2015-07-31 | 2015-11-25 | 玉林师范学院 | Zinc soap synthesis method |
WO2017027431A1 (en) * | 2015-08-09 | 2017-02-16 | Homs, Llc | Herbicidal compositions |
CN106434071A (en) * | 2016-09-19 | 2017-02-22 | 江苏田亮日用品有限公司 | Laundry detergent capable of effectively removing dirts and preparing method thereof |
IT201700040115A1 (en) * | 2017-04-11 | 2018-10-11 | Idee Vulcaniche S R L | PREPARE FOR USE IN INDUSTRIAL APPLICATIONS AND THEIR PRODUCTION PROCEDURES |
CN107879675B (en) * | 2017-11-22 | 2020-10-09 | 赵远梅 | Antifreezing asphalt concrete composition and preparation method thereof |
CN111254024B (en) * | 2020-01-08 | 2021-06-18 | 四川大学 | A kind of compound liquid soap with strong sterilization and preparation method thereof |
CN111849590B (en) * | 2020-06-19 | 2022-07-19 | 中国石油化工股份有限公司 | Low-noise mixed soap-based lubricating grease composition and preparation method thereof |
WO2022031530A1 (en) * | 2020-08-04 | 2022-02-10 | Cargill, Incorporated | Spectroscopic evaluation of tallow |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2650932A (en) * | 1950-04-13 | 1953-09-01 | Nat Lead Co | Method of preparing metallic soaps of fatty acids |
US3389955A (en) * | 1965-05-12 | 1968-06-25 | Dainihon Bungu | Push-out type mechanical pencil |
US3663583A (en) * | 1970-03-30 | 1972-05-16 | Whitestone Chemical Corp | Partially saponified ethoxylated triglycerides of ricinoleic acid |
US4545941A (en) * | 1983-06-20 | 1985-10-08 | A. E. Staley Manufacturing Company | Co-metathesis of triglycerides and ethylene |
WO2008140468A2 (en) * | 2006-10-13 | 2008-11-20 | Elevance Renewable Sciences, Inc. | METHODS OF MAKING α, ω -DICARBOXYLIC ACID ALKENE DERIVATIVES BY METATHESIS |
WO2008151064A1 (en) * | 2007-05-30 | 2008-12-11 | Elevance Renewable Sciences, Inc. | Prilled waxes comprising small particles and smooth-sided compression candles made therefrom |
WO2008157436A1 (en) * | 2007-06-15 | 2008-12-24 | Elevance Renewable Sciences, Inc. | Hybrid wax compositions for use in compression molded wax articles such as candles |
US20090048459A1 (en) * | 2006-01-10 | 2009-02-19 | Michael John Tupy | Method of making hydrogenated metathesis products |
US20090220443A1 (en) * | 2006-03-07 | 2009-09-03 | Elevance Renewable Sciences, Inc. | Compositions comprising metathesized unsaturated polyol esters |
US20110160472A1 (en) * | 2007-08-09 | 2011-06-30 | Elevance Renewable Sciences, Inc. | Chemical methods for treating a metathesis feedstock |
US20120255222A1 (en) * | 2011-04-07 | 2012-10-11 | Dibiase Stephen A | Cold flow additives |
US8957268B2 (en) * | 2009-10-12 | 2015-02-17 | Elevance Renewable Sciences, Inc. | Methods of refining natural oil feedstocks |
US9708251B2 (en) * | 2012-04-24 | 2017-07-18 | Stepan Company | Unsaturated fatty alcohol alkoxylates from natural oil metathesis |
Family Cites Families (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1954659A (en) | 1931-08-06 | 1934-04-10 | Will & Baumer Candle Co Inc | Candle and method of making same |
US1935946A (en) | 1932-04-20 | 1933-11-21 | Procter & Gamble | Candle manufacture |
US2294229A (en) | 1939-12-12 | 1942-08-25 | George W Fiero | Cosmetic preparations |
US2389955A (en) * | 1941-01-04 | 1945-11-27 | Nat Oil Prod Co | Process of producing fat-soluble vitamin concentrates |
US2468799A (en) | 1943-10-20 | 1949-05-03 | Lever Brothers Ltd | Hydrogenating fat |
US2784891A (en) | 1956-03-19 | 1957-03-12 | Harvey T Thielke | Coating composition |
US3251869A (en) * | 1962-12-31 | 1966-05-17 | Hercules Powder Co Ltd | Polymeric fatty acid composition and method of making same |
US3448178A (en) | 1967-09-22 | 1969-06-03 | Nat Starch Chem Corp | Hot melt adhesives comprising ethylene/vinyl acetate copolymers and alpha-pinene/phenol condensation products |
US3630697A (en) | 1969-07-09 | 1971-12-28 | Sun Oil Co | Wickless candles |
US3645705A (en) | 1970-03-03 | 1972-02-29 | Kolar Lab Inc | Transparent combustible material suitable for candle bodies |
DE2054206C3 (en) | 1970-11-04 | 1975-07-24 | Vollmar Ohg Creationen In Wachs, 5308 Rheinbach | Method of making candles |
US3844706A (en) | 1973-10-30 | 1974-10-29 | E Tsaras | Candles and manufacture thereof |
US4134718A (en) | 1976-12-10 | 1979-01-16 | Cma, Inc. | Oil-burning illuminating device |
US4118203A (en) | 1977-05-18 | 1978-10-03 | Shell Oil Company | Wax composition |
DE2823002B2 (en) | 1978-05-26 | 1981-06-04 | Chemische Werke München Otto Bärlocher GmbH, 8000 München | Process for the production of metal soap granules |
EP0010809B1 (en) | 1978-10-26 | 1982-12-29 | Akzo N.V. | A wax composition for entirely or partly replacing carnauba wax or montan wax |
DE2856277A1 (en) | 1978-12-27 | 1980-07-17 | Henkel Kgaa | BEE WAX REPLACEMENT |
US4307027A (en) | 1979-04-09 | 1981-12-22 | Dart Industries Inc. | Continuous process for preparing dry metallic salts of higher fatty acids |
US4314915A (en) | 1979-08-03 | 1982-02-09 | International Flavors & Fragrances Inc. | Uses in perfumery of ether derivatives of indanes |
JPS5632550A (en) | 1979-08-27 | 1981-04-02 | Nisshin Oil Mills Ltd:The | Coating agent composition for fruit bag |
JPS57102813A (en) | 1980-12-17 | 1982-06-26 | Takasago Corp | Perfume composition |
DE3173535D1 (en) | 1981-01-13 | 1986-02-27 | Firmenich & Cie | Use of 2,6,6-trimethyl-cyclohex-2-ene-1-yl-carboxylic-acid methyl ester as a perfuming agent |
US4397760A (en) | 1981-08-10 | 1983-08-09 | Armour-Dial, Inc. | Rapid saponification process |
US4390590A (en) | 1981-10-19 | 1983-06-28 | Essex Group, Inc. | Power insertable polyamide-imide coated magnet wire |
US4507077A (en) | 1982-01-25 | 1985-03-26 | Sapper John M | Dripless candle |
US4614625A (en) | 1983-02-28 | 1986-09-30 | Lumi-Lite Candle Company, Inc. | Method of imparting color and/or fragrance to candle wax and candle formed therefrom |
JPS6023493A (en) | 1983-07-18 | 1985-02-06 | 高尾 正保 | Purified fish oil and manufacture |
DE3343595A1 (en) | 1983-12-02 | 1985-06-13 | Peter 7800 Freiburg Schneeberger | CANDLE LIGHTS FOR POSITIONING IN CHURCHES, CHAPELS OR OTHER CULTURAL SITES |
US4608011A (en) | 1984-04-27 | 1986-08-26 | Comstock Todd M | Candle apparatus |
US4759709A (en) | 1986-02-18 | 1988-07-26 | National Distillers And Chemical Corporation | Wax compositions |
US4714496A (en) | 1986-02-18 | 1987-12-22 | National Distillers And Chemical Corporation | Wax compositions |
ES2014464B3 (en) | 1986-09-25 | 1990-07-16 | Unilever Nv | SUITABLE ACID COMPOSITION TO MOLD PRESSURE CANDLES. |
US4842648A (en) | 1987-10-22 | 1989-06-27 | Tajchai Phadoemchit | Paraffin wax replacer |
US4855098A (en) | 1987-12-16 | 1989-08-08 | Ted Taylor | Method of forming candles and candle composition therefor |
DE3806192A1 (en) * | 1988-02-26 | 1989-09-07 | Neynaber Chemie Gmbh | METHOD FOR PRODUCING POWDERED BASIC METAL SOAPS |
US4923708A (en) | 1988-12-30 | 1990-05-08 | Nabisco Brands, Inc. | Method and composition for inhibiting fat bloom in fat based compositions and hard butter |
US5258197A (en) | 1989-09-20 | 1993-11-02 | Nabisco, Inc. | Reduced calorie triglyceride mixtures |
US5380544A (en) | 1989-09-20 | 1995-01-10 | Nabisco, Inc. | Production of fat mixtures enriched with triglycerides bearing short, medium and long residues |
US6273993B1 (en) | 1992-07-01 | 2001-08-14 | Michelman, Inc. | Method of dispersing wax from a hot melt wax-coated paper |
DE4019167A1 (en) * | 1990-06-15 | 1991-12-19 | Henkel Kgaa | METHOD FOR PRODUCING METAL SOAPS |
DE4020483A1 (en) | 1990-06-27 | 1992-01-02 | Hoechst Ag | MIXERS AND ITS USE AS LUBRICANTS IN PLASTIC FORMATS |
JPH0459897A (en) | 1990-06-29 | 1992-02-26 | Tonen Corp | Wax composition for candles |
US5171329A (en) | 1991-10-09 | 1992-12-15 | Kuo-Lung Lin | Method for manufacturing a candle |
DE4133716C1 (en) | 1991-10-11 | 1992-12-03 | Papier-Mettler Inh. Hans-Georg Mettler, 5552 Morbach, De | |
US5176902A (en) | 1991-12-05 | 1993-01-05 | Elizabeth Arden Company, Division Of Conopco, Inc. | Colored cosmetic sticks of improved hardness |
US6099877A (en) | 1992-04-10 | 2000-08-08 | Schuppan; Robert L. | Food product that maintains a flame |
JP2505128B2 (en) | 1992-06-25 | 1996-06-05 | 日本精蝋株式会社 | Candle composition |
DK119092D0 (en) | 1992-09-25 | 1992-09-25 | Aarhus Oliefabrik As | SURFACE TREATMENT AGENT |
IL104344A (en) | 1992-10-08 | 2000-07-16 | Elharar Shimon | Candle |
EP0746423A4 (en) | 1993-07-22 | 1998-03-18 | Johnson & Son Inc S C | Repulpable hot melt polymer/wax compositions for fibrous products |
DE4337030A1 (en) | 1993-10-29 | 1995-05-04 | Henkel Kgaa | Process for the preparation of wax dispersions |
FR2715306B1 (en) | 1994-01-25 | 1996-03-15 | Oreal | Cosmetic or dermopharmaceutical composition in the form of a flexible paste and process for the preparation of said composition. |
EP0685554A1 (en) | 1994-05-29 | 1995-12-06 | CLILCO COSMETICS & PHARMACEUTICALS LTD. | Solid oil-based candles |
AUPM652494A0 (en) | 1994-06-28 | 1994-07-21 | Visy Board Properties Pty. Ltd. | Coating for paperboard |
DE4439509A1 (en) | 1994-11-08 | 1996-05-09 | Beringer Schott Lamai | Mixture for burning |
DE19511572C2 (en) | 1995-03-29 | 1998-02-26 | Henkel Kgaa | Low-viscosity opacifier concentrates |
US5578089A (en) | 1995-04-27 | 1996-11-26 | Lancaster Colony Corporation | Clear candle |
JPH0914574A (en) | 1995-06-30 | 1997-01-17 | Furukawa Electric Co Ltd:The | Anticorrosion protecting method for propeller pipe |
FR2749589B1 (en) | 1996-06-07 | 1998-07-31 | Oleagineux Ind | COATING COMPOSITION AND USES IN THE FOOD AND PHARMACEUTICAL INDUSTRY |
DE29724736U1 (en) | 1996-06-19 | 2003-09-11 | Sasol Wax GmbH, 20457 Hamburg | Paraffin-based item and fragrance concentrate |
US5783657A (en) | 1996-10-18 | 1998-07-21 | Union Camp Corporation | Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids |
US5753015A (en) | 1996-11-15 | 1998-05-19 | Dixon Ticonderoga Company | Soybean oil marking compositions and methods of making the same |
US5885600A (en) | 1997-04-01 | 1999-03-23 | Burlington Bio-Medical & Scientific Corp. | Natural insect repellent formula and method of making same |
US20040076732A1 (en) | 1997-04-07 | 2004-04-22 | James Cook University | Food grade wax and process for preparing same |
AUPO605097A0 (en) | 1997-04-07 | 1997-05-01 | James Cook University Of North Queensland | Food grade wax and process for preparing same |
US5843194A (en) | 1997-07-28 | 1998-12-01 | The Noville Corporation | Clear gel formulation for use in transparent candles |
US6001286A (en) | 1997-08-28 | 1999-12-14 | Archer Daniels Midland Company | Material for enhancing water tolerance of composite boards |
US6238926B1 (en) | 1997-09-17 | 2001-05-29 | Cargilll, Incorporated | Partial interesterification of triacylglycerols |
CA2249508A1 (en) | 1997-10-24 | 1999-04-24 | Unilever Plc | Wax ester compositions |
US6019804A (en) | 1997-11-25 | 2000-02-01 | S. C. Johnson & Son, Inc. | Compression-molded candle product |
US6103308A (en) | 1998-04-23 | 2000-08-15 | Gencorp Inc. | Paper coating lubricant |
US6127326A (en) | 1998-07-31 | 2000-10-03 | American Ingredients Company | Partially saponified triglycerides, their methods of manufacture and use as polymer additives |
US6258965B1 (en) | 1998-08-03 | 2001-07-10 | Fan Tech Ltd. | Reconstituted meadowfoam oil |
US6284007B1 (en) | 1998-08-12 | 2001-09-04 | Indiana Soybean Board, Inc. | Vegetable lipid-based composition and candle |
US20030061760A1 (en) | 2001-03-08 | 2003-04-03 | Bernard Tao | Vegetable lipid-based composition and candle |
US6262153B1 (en) | 1998-10-12 | 2001-07-17 | Clariant Finance (Bvi) Limited | Colored wax articles |
US6022402A (en) | 1998-12-18 | 2000-02-08 | Stephenson; Eugene Kyle | Wax compositions comprising alkenyl succinic anhydride-capped poly (oxyalkylenated) colorants |
US6106597A (en) | 1998-12-18 | 2000-08-22 | Milliken & Company | Wax compositions comprising fatty ester poly(oxyalkylenated) colorants |
US6503077B2 (en) | 1999-01-04 | 2003-01-07 | Arizona Chemical Company | Gelled articles containing tertiary amide-terminated polyamide |
US6117476A (en) | 1999-01-04 | 2000-09-12 | Shaul Eger | Healthy food spreads |
US6278006B1 (en) | 1999-01-19 | 2001-08-21 | Cargill, Incorporated | Transesterified oils |
US6063144A (en) | 1999-02-23 | 2000-05-16 | Calzada; Jose Francisco | Non-paraffin candle composition |
EP1178731A4 (en) | 1999-05-18 | 2002-09-11 | Cargill Inc | Fat compositions |
US6544302B2 (en) | 1999-06-01 | 2003-04-08 | Bush Boake Allen | Composite candle compositions |
US6673763B1 (en) | 1999-09-24 | 2004-01-06 | Novozymes A/S | Particles for liquid compositions |
US6852140B1 (en) | 1999-09-24 | 2005-02-08 | Cleanwax, Llc | Low-soot, low-smoke renewable resource candle |
DE19956226A1 (en) | 1999-11-23 | 2001-05-31 | Haarmann & Reimer Gmbh | High perfume-content wax composition for extruding or pressing to give candles is obtained by shock cooling of an emulsified wax/perfume melt |
US6758869B2 (en) | 2000-02-02 | 2004-07-06 | Cleanwax, Llp | Non sooting paraffin containing candle |
US6645261B2 (en) | 2000-03-06 | 2003-11-11 | Cargill, Inc. | Triacylglycerol-based alternative to paraffin wax |
US6214918B1 (en) | 2000-04-10 | 2001-04-10 | Eldon C. Johnson | Candle and the method of making the same |
US6599334B1 (en) | 2000-04-25 | 2003-07-29 | Jill M. Anderson | Soybean wax candles |
DE10034619A1 (en) | 2000-07-17 | 2002-01-31 | Cognis Deutschland Gmbh | Wax-based opacifier formulations, used in detergents, pharmaceutical formulations and especially cosmetics, contain emulsifier mixture of alk(en)yl-oligoglycoside and fatty acid partial glyceride |
US6276925B1 (en) | 2000-08-11 | 2001-08-21 | Charles L. Varga | Candle and method of making the same |
FR2815254B1 (en) | 2000-10-13 | 2003-02-07 | Sophim | FORMULATION CONTAINING A NON-FAT EMOLLIENT BASED ON WAX-ESTERS |
US20030022121A1 (en) | 2000-11-02 | 2003-01-30 | Charles Biggs | Vegetable-based compositions and articles, and methods of making same |
US20020144455A1 (en) | 2001-01-06 | 2002-10-10 | Bertrand Jerome C. | Non sooting candle composition |
DE10104004A1 (en) | 2001-01-31 | 2002-08-08 | Walcher Ulrich | Environmentally friendly composition for the production of film products, as use in the fields of packaging, agricultural films and disposable packaging |
US20020108297A1 (en) | 2001-02-09 | 2002-08-15 | Rasmussen Johna L. | Shimmering candle cream |
US20040250464A1 (en) | 2001-02-09 | 2004-12-16 | Rasmussen Johna L. | Candle composition and candle kit containing the composition |
US6824572B2 (en) | 2001-03-06 | 2004-11-30 | Cargill, Incorporated | Vegetable oil based wax compositions |
US6503285B1 (en) | 2001-05-11 | 2003-01-07 | Cargill, Inc. | Triacylglycerol based candle wax |
US20030046860A1 (en) | 2001-08-02 | 2003-03-13 | Archer Daniels Midland Co. | Vegetable fat-based candles |
US7128766B2 (en) | 2001-09-25 | 2006-10-31 | Cargill, Incorporated | Triacylglycerol based wax compositions |
US6730137B2 (en) | 2001-11-14 | 2004-05-04 | Bath & Body Works, Inc. | Vegetable oil candle |
US7037439B2 (en) | 2001-11-27 | 2006-05-02 | React-Nti, Llc | Emollient carrier gel |
US20030207971A1 (en) | 2001-11-27 | 2003-11-06 | React Of Delafield Llc | Emollient gel |
BR0214628A (en) | 2001-12-19 | 2004-11-23 | Unilever Nv | Fat, triglyceride fat manufacturing process, food product and emulsion |
US6769905B2 (en) | 2002-01-04 | 2004-08-03 | S.C. Johnson & Son, Inc. | Multilayered compressed candle and method for manufacture |
US6811824B2 (en) | 2002-01-04 | 2004-11-02 | Marcus Oil And Chemical Corp. | Repulpable wax |
DE10207258B4 (en) | 2002-02-21 | 2005-12-22 | Tischendorf, Dieter, Dr. | Process for producing candles consisting of vegetable or animal oils or fats |
US6846573B2 (en) | 2002-04-19 | 2005-01-25 | Evco Research Llc | Moisture resistant, repulpable paper products and method of making same |
US7842746B2 (en) | 2002-05-02 | 2010-11-30 | Archer-Daniels-Midland Company | Hydrogenated and partially hydrogenated heat-bodied oils and uses thereof |
US6890982B2 (en) | 2002-06-11 | 2005-05-10 | Marcus Oil And Chemical-Corp. | Wax for hot melt adhesive applications |
US20040000088A1 (en) | 2002-07-01 | 2004-01-01 | Wesley John N. | Cleaner-burning liquid candle fuel and candle made therefrom |
CA2501509C (en) | 2002-10-10 | 2013-01-08 | Hrd Corp | An additive to render gypsum board moisture resistant |
US7795336B2 (en) | 2002-10-18 | 2010-09-14 | Henkel Ag & Co. Kgaa | Low application temperature hot melt adhesive |
US6773469B2 (en) | 2002-11-12 | 2004-08-10 | Cargill, Incorporated | Triacylglycerol based wax for use in candles |
US6797020B2 (en) | 2002-11-12 | 2004-09-28 | Cargill, Incorporated | Triacylglycerol based wax for use in container candles |
CA2512815A1 (en) | 2003-01-13 | 2004-07-29 | Cargill, Incorporated | Method for making industrial chemicals |
US7267743B2 (en) | 2003-03-17 | 2007-09-11 | Marcus Oil And Chemical | Wax emulsion coating applications |
US7192457B2 (en) | 2003-05-08 | 2007-03-20 | Cargill, Incorporated | Wax and wax-based products |
US7314904B2 (en) | 2003-06-18 | 2008-01-01 | Baker Hughes Incorporated | Functionalized polyalphaolefins |
EP1687382B1 (en) | 2003-10-27 | 2007-04-04 | HRD Corp | Novel wax for reducing mar and abrasion in inks and coatings |
US20050158679A1 (en) | 2004-01-17 | 2005-07-21 | Qin Chen | Compression-molded vegetable wax-based candle |
US20050269728A1 (en) | 2004-05-24 | 2005-12-08 | Archer-Daniels-Midland Company | Triglyceride/wax replacement for conventional slack and emulsified waxes used in forest products based composites |
WO2006041011A1 (en) | 2004-10-12 | 2006-04-20 | Taiyo Kagaku Co., Ltd. | Polyglycerol fatty acid ester and composition containing same |
US7510584B2 (en) | 2004-10-13 | 2009-03-31 | Daniel S. Cap | Acetylated wax compositions and articles containing them |
WO2006076364A2 (en) | 2005-01-10 | 2006-07-20 | Cargill, Incorporated | Candle and candle wax containing metathesis and metathesis-like products |
EP1693436A1 (en) | 2005-02-21 | 2006-08-23 | Cargill Inc. | Hardened vegetable oils and derivatives thereof |
US7588607B1 (en) | 2005-03-16 | 2009-09-15 | Daniel S. Cap | Candlewax compositions with improved scent-throw |
US20060236593A1 (en) | 2005-04-21 | 2006-10-26 | Cap Daniel S | Candle refill kit and method of use |
US20100044924A1 (en) | 2005-04-21 | 2010-02-25 | Cap Daniel S | Candle refill kit and method of use |
US20060272199A1 (en) | 2005-06-02 | 2006-12-07 | Bmc Manufacturing, Llc | Aqueous gel candle for use with a warming device |
AU2006265769B2 (en) | 2005-07-01 | 2011-08-18 | Duluxgroup (Australia) Pty Ltd | Crosslinking method |
AU2006268004B2 (en) | 2005-07-11 | 2011-08-11 | Dupont Nutrition Biosciences Aps | Foodstuff |
US20070006521A1 (en) | 2005-07-11 | 2007-01-11 | Bmc Manufacturing,Llc | Multi-phase candle |
CN100393860C (en) | 2005-08-08 | 2008-06-11 | 建德市嘉轩工艺品有限公司 | Candle body material composition for color flame candle and application thereof |
WO2007143454A2 (en) * | 2006-05-31 | 2007-12-13 | Shell Oil Company | Process and apparatus for preparing a soap concentrate, a lubricating composition, and combinations thereof |
CN101563315B (en) | 2006-07-12 | 2013-08-14 | 埃莱文斯可更新科学公司 | Ring opening cross-metathesis reaction of cyclic olefins with seed oils and the like |
EP2046908B1 (en) | 2006-07-12 | 2017-01-11 | Elevance Renewable Sciences, Inc. | Hot melt adhesive compositions comprising metathesized unsaturated polyol ester wax |
WO2008010961A2 (en) | 2006-07-13 | 2008-01-24 | Elevance Renewable Sciences, Inc. | Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis |
US8501973B2 (en) | 2006-10-13 | 2013-08-06 | Elevance Renewable Sciences, Inc. | Synthesis of terminal alkenes from internal alkenes via olefin metathesis |
CN101627001A (en) | 2006-10-13 | 2010-01-13 | 埃莱文斯可更新科学公司 | Methods of making organic compounds by metathesis and hydrocyanation |
US20080145808A1 (en) | 2006-12-18 | 2008-06-19 | Chant Oil Co., Ltd. | Partial acyl glyceride based biowaxes, biocandles prepared therefrom and their preparation |
ATE530604T1 (en) | 2007-02-16 | 2011-11-15 | Elevance Renewable Sciences | WAX COMPOSITIONS AND METHOD FOR PRODUCING WAX COMPOSITIONS |
CA2593912A1 (en) | 2007-06-18 | 2008-12-18 | Premier Candle Corp. | Candle composition |
-
2012
- 2012-07-06 EP EP12737437.9A patent/EP2729556A1/en not_active Withdrawn
- 2012-07-06 WO PCT/US2012/045719 patent/WO2013009605A1/en active Application Filing
- 2012-07-06 US US13/543,102 patent/US9139801B2/en active Active
- 2012-07-06 CN CN201280034465.8A patent/CN103649293A/en active Pending
- 2012-07-06 CA CA2841137A patent/CA2841137A1/en not_active Abandoned
-
2015
- 2015-08-18 US US14/829,471 patent/US20160046785A1/en not_active Abandoned
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2650932A (en) * | 1950-04-13 | 1953-09-01 | Nat Lead Co | Method of preparing metallic soaps of fatty acids |
US3389955A (en) * | 1965-05-12 | 1968-06-25 | Dainihon Bungu | Push-out type mechanical pencil |
US3663583A (en) * | 1970-03-30 | 1972-05-16 | Whitestone Chemical Corp | Partially saponified ethoxylated triglycerides of ricinoleic acid |
US4545941A (en) * | 1983-06-20 | 1985-10-08 | A. E. Staley Manufacturing Company | Co-metathesis of triglycerides and ethylene |
US8115021B2 (en) * | 2006-01-10 | 2012-02-14 | Elevance Renewable Sciences, Inc. | Method of making hydrogenated metathesis products |
US20090048459A1 (en) * | 2006-01-10 | 2009-02-19 | Michael John Tupy | Method of making hydrogenated metathesis products |
US20090220443A1 (en) * | 2006-03-07 | 2009-09-03 | Elevance Renewable Sciences, Inc. | Compositions comprising metathesized unsaturated polyol esters |
WO2008140468A2 (en) * | 2006-10-13 | 2008-11-20 | Elevance Renewable Sciences, Inc. | METHODS OF MAKING α, ω -DICARBOXYLIC ACID ALKENE DERIVATIVES BY METATHESIS |
WO2008151064A1 (en) * | 2007-05-30 | 2008-12-11 | Elevance Renewable Sciences, Inc. | Prilled waxes comprising small particles and smooth-sided compression candles made therefrom |
WO2008157436A1 (en) * | 2007-06-15 | 2008-12-24 | Elevance Renewable Sciences, Inc. | Hybrid wax compositions for use in compression molded wax articles such as candles |
US20110160472A1 (en) * | 2007-08-09 | 2011-06-30 | Elevance Renewable Sciences, Inc. | Chemical methods for treating a metathesis feedstock |
US8957268B2 (en) * | 2009-10-12 | 2015-02-17 | Elevance Renewable Sciences, Inc. | Methods of refining natural oil feedstocks |
US20120255222A1 (en) * | 2011-04-07 | 2012-10-11 | Dibiase Stephen A | Cold flow additives |
US9315748B2 (en) * | 2011-04-07 | 2016-04-19 | Elevance Renewable Sciences, Inc. | Cold flow additives |
US9708251B2 (en) * | 2012-04-24 | 2017-07-18 | Stepan Company | Unsaturated fatty alcohol alkoxylates from natural oil metathesis |
Also Published As
Publication number | Publication date |
---|---|
CN103649293A (en) | 2014-03-19 |
EP2729556A1 (en) | 2014-05-14 |
US20130008341A1 (en) | 2013-01-10 |
US9139801B2 (en) | 2015-09-22 |
WO2013009605A1 (en) | 2013-01-17 |
CA2841137A1 (en) | 2013-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9139801B2 (en) | Metallic soap compositions for various applications | |
JP5882204B2 (en) | Ketal compounds and their use | |
US5616679A (en) | Polyalkylene glycol | |
US8217193B2 (en) | Modified fatty acid esters and method of preparation thereof | |
CN1962601B (en) | Preparing method for polyhydroxy compound | |
EP1038910B1 (en) | Solutions of colophony resins | |
CA2599593A1 (en) | Novel triglycerides and method of preparation thereof | |
DE19531849A1 (en) | Polystyrene binders, used in adhesives, coatings and sealants, | |
EP0833864B1 (en) | Gluing, sealing and coating compound | |
TWI794838B (en) | Rheology additives based on diamide, on functionalized polymer and on wax | |
ZA200505566B (en) | Aqueous dispersion of alkyde resin which is treated with an oxidizing agent and which has improved drying properties | |
EP0724613A1 (en) | Binders based on fat chemical reaction products | |
DE2104575A1 (en) | Unsaturated polyester masses | |
JP4105232B2 (en) | Ester mixture and method of using the same | |
JP4707553B2 (en) | Surface treated calcium carbonate filler for plastisol, its production method and plastisol comprising the filler | |
RU2260020C1 (en) | Method for preparing metal-containing lubricant for preparing materials made of chlorine-containing polymers | |
EP3708622A1 (en) | Modified fatty acid for alkyd resins | |
JP3601824B2 (en) | Ionic polymer | |
CA2709869A1 (en) | A method of making triglyceride macromonomers | |
CA3180597A1 (en) | Wax-like formulations of natural-origin materials and its method of preparation | |
EP2072612B1 (en) | A method of making trigyceride macromonomers | |
JPH11269246A (en) | Composition for polyurethane | |
Bentley | Surface coatings and inks | |
JPS63260845A (en) | Mold-releasing waterproofing agent composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |