US20160030335A1 - Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use - Google Patents
Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use Download PDFInfo
- Publication number
- US20160030335A1 US20160030335A1 US14/679,444 US201514679444A US2016030335A1 US 20160030335 A1 US20160030335 A1 US 20160030335A1 US 201514679444 A US201514679444 A US 201514679444A US 2016030335 A1 US2016030335 A1 US 2016030335A1
- Authority
- US
- United States
- Prior art keywords
- active ingredient
- release
- controlled
- film
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 238000013270 controlled release Methods 0.000 title claims abstract description 67
- 238000004090 dissolution Methods 0.000 title claims abstract description 57
- 239000010409 thin film Substances 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 238000012377 drug delivery Methods 0.000 title abstract description 5
- 239000004480 active ingredient Substances 0.000 claims description 175
- 239000010408 film Substances 0.000 claims description 148
- 239000000203 mixture Substances 0.000 claims description 87
- 239000000843 powder Substances 0.000 claims description 81
- 239000011159 matrix material Substances 0.000 claims description 59
- 239000002245 particle Substances 0.000 claims description 39
- 229920000642 polymer Polymers 0.000 claims description 36
- 238000000576 coating method Methods 0.000 claims description 35
- 239000011248 coating agent Substances 0.000 claims description 34
- 239000003795 chemical substances by application Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 32
- 210000000214 mouth Anatomy 0.000 claims description 29
- -1 carboxymethyl ethyl Chemical group 0.000 claims description 21
- 239000012729 immediate-release (IR) formulation Substances 0.000 claims description 20
- 238000009472 formulation Methods 0.000 claims description 18
- 239000001856 Ethyl cellulose Substances 0.000 claims description 14
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 14
- 229920001249 ethyl cellulose Polymers 0.000 claims description 14
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 12
- 238000005354 coacervation Methods 0.000 claims description 12
- 238000010521 absorption reaction Methods 0.000 claims description 11
- 229920001525 carrageenan Polymers 0.000 claims description 9
- 238000000638 solvent extraction Methods 0.000 claims description 9
- 239000004094 surface-active agent Substances 0.000 claims description 9
- 235000010418 carrageenan Nutrition 0.000 claims description 8
- 239000000679 carrageenan Substances 0.000 claims description 8
- 229940113118 carrageenan Drugs 0.000 claims description 8
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 7
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical group [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 5
- 239000013543 active substance Substances 0.000 claims description 5
- 239000003833 bile salt Substances 0.000 claims description 5
- 230000003111 delayed effect Effects 0.000 claims description 5
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 5
- 238000000935 solvent evaporation Methods 0.000 claims description 5
- 229920003169 water-soluble polymer Polymers 0.000 claims description 5
- 238000005538 encapsulation Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 4
- 239000012943 hotmelt Substances 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000006172 buffering agent Substances 0.000 claims description 3
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 claims description 3
- 238000004132 cross linking Methods 0.000 claims description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 3
- 239000003961 penetration enhancing agent Substances 0.000 claims description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 238000001694 spray drying Methods 0.000 claims description 3
- OHXPGWPVLFPUSM-KLRNGDHRSA-N 3,7,12-trioxo-5beta-cholanic acid Chemical compound C1CC(=O)C[C@H]2CC(=O)[C@H]3[C@@H]4CC[C@H]([C@@H](CCC(O)=O)C)[C@@]4(C)C(=O)C[C@@H]3[C@]21C OHXPGWPVLFPUSM-KLRNGDHRSA-N 0.000 claims description 2
- 229920000623 Cellulose acetate phthalate Polymers 0.000 claims description 2
- 229920002367 Polyisobutene Polymers 0.000 claims description 2
- 229920006217 cellulose acetate butyrate Polymers 0.000 claims description 2
- 229940081734 cellulose acetate phthalate Drugs 0.000 claims description 2
- 229940009979 dehydrocholate Drugs 0.000 claims description 2
- 229960003964 deoxycholic acid Drugs 0.000 claims description 2
- 239000004815 dispersion polymer Substances 0.000 claims description 2
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 claims description 2
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 claims description 2
- DGABKXLVXPYZII-SIBKNCMHSA-M hyodeoxycholate Chemical compound C([C@H]1[C@@H](O)C2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)CC1 DGABKXLVXPYZII-SIBKNCMHSA-M 0.000 claims description 2
- 238000006116 polymerization reaction Methods 0.000 claims description 2
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical group [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 claims description 2
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 claims description 2
- OABYVIYXWMZFFJ-ZUHYDKSRSA-M sodium glycocholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 OABYVIYXWMZFFJ-ZUHYDKSRSA-M 0.000 claims description 2
- 150000008051 alkyl sulfates Chemical class 0.000 claims 2
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 239000003814 drug Substances 0.000 description 54
- 229940079593 drug Drugs 0.000 description 52
- 239000002904 solvent Substances 0.000 description 28
- 239000003094 microcapsule Substances 0.000 description 21
- 239000002609 medium Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 239000002552 dosage form Substances 0.000 description 18
- 239000007788 liquid Substances 0.000 description 18
- 238000000338 in vitro Methods 0.000 description 15
- 238000001727 in vivo Methods 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 229920003086 cellulose ether Polymers 0.000 description 14
- 239000012071 phase Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 239000007921 spray Substances 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 229940126534 drug product Drugs 0.000 description 10
- 239000003623 enhancer Substances 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- 239000000825 pharmaceutical preparation Substances 0.000 description 10
- 238000005070 sampling Methods 0.000 description 10
- 238000011282 treatment Methods 0.000 description 9
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 238000013019 agitation Methods 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 8
- 239000001768 carboxy methyl cellulose Substances 0.000 description 8
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- BNRNXUUZRGQAQC-UHFFFAOYSA-N sildenafil Chemical compound CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 BNRNXUUZRGQAQC-UHFFFAOYSA-N 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- JAUOIFJMECXRGI-UHFFFAOYSA-N Neoclaritin Chemical compound C=1C(Cl)=CC=C2C=1CCC1=CC=CN=C1C2=C1CCNCC1 JAUOIFJMECXRGI-UHFFFAOYSA-N 0.000 description 7
- 229960001271 desloratadine Drugs 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- 238000005191 phase separation Methods 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 108010010803 Gelatin Proteins 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000004067 bulking agent Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 229920000159 gelatin Polymers 0.000 description 6
- 235000019322 gelatine Nutrition 0.000 description 6
- 235000011852 gelatine desserts Nutrition 0.000 description 6
- 210000004877 mucosa Anatomy 0.000 description 6
- 229920000881 Modified starch Polymers 0.000 description 5
- 238000005273 aeration Methods 0.000 description 5
- 235000010443 alginic acid Nutrition 0.000 description 5
- 229920000615 alginic acid Polymers 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000013265 extended release Methods 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 239000004005 microsphere Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000013268 sustained release Methods 0.000 description 5
- 239000012730 sustained-release form Substances 0.000 description 5
- 229960000835 tadalafil Drugs 0.000 description 5
- IEHKWSGCTWLXFU-IIBYNOLFSA-N tadalafil Chemical compound C1=C2OCOC2=CC([C@@H]2C3=C([C]4C=CC=CC4=N3)C[C@H]3N2C(=O)CN(C3=O)C)=C1 IEHKWSGCTWLXFU-IIBYNOLFSA-N 0.000 description 5
- 238000007922 dissolution test Methods 0.000 description 4
- 238000009506 drug dissolution testing Methods 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- 229960003088 loratadine Drugs 0.000 description 4
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 210000002200 mouth mucosa Anatomy 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 229960003310 sildenafil Drugs 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229920001218 Pullulan Polymers 0.000 description 3
- 239000004373 Pullulan Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000004376 Sucralose Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 238000012504 compendial method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 235000013615 non-nutritive sweetener Nutrition 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 235000010987 pectin Nutrition 0.000 description 3
- 229920001277 pectin Polymers 0.000 description 3
- 239000001814 pectin Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000036470 plasma concentration Effects 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 235000019423 pullulan Nutrition 0.000 description 3
- 210000003296 saliva Anatomy 0.000 description 3
- 210000002784 stomach Anatomy 0.000 description 3
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 3
- 235000019408 sucralose Nutrition 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 238000012695 Interfacial polymerization Methods 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000001961 anticonvulsive agent Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000003434 antitussive agent Substances 0.000 description 2
- 229940124584 antitussives Drugs 0.000 description 2
- 239000002249 anxiolytic agent Substances 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 229940093761 bile salts Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000003172 expectorant agent Substances 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000006193 liquid solution Substances 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 235000019426 modified starch Nutrition 0.000 description 2
- 239000002547 new drug Substances 0.000 description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 229940068984 polyvinyl alcohol Drugs 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- MEJYXFHCRXAUIL-UHFFFAOYSA-N 2-[carbamimidoyl(methyl)amino]acetic acid;hydrate Chemical compound O.NC(=N)N(C)CC(O)=O MEJYXFHCRXAUIL-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000040350 B family Human genes 0.000 description 1
- 108091072128 B family Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 101800001982 Cholecystokinin Proteins 0.000 description 1
- 102100025841 Cholecystokinin Human genes 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 241000167880 Hirundinidae Species 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920000148 Polycarbophil calcium Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- HDSBZMRLPLPFLQ-UHFFFAOYSA-N Propylene glycol alginate Chemical compound OC1C(O)C(OC)OC(C(O)=O)C1OC1C(O)C(O)C(C)C(C(=O)OCC(C)O)O1 HDSBZMRLPLPFLQ-UHFFFAOYSA-N 0.000 description 1
- 241000304405 Sedum burrito Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000934878 Sterculia Species 0.000 description 1
- 239000000219 Sympatholytic Substances 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- SECKRCOLJRRGGV-UHFFFAOYSA-N Vardenafil Chemical compound CCCC1=NC(C)=C(C(N=2)=O)N1NC=2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(CC)CC1 SECKRCOLJRRGGV-UHFFFAOYSA-N 0.000 description 1
- 208000012886 Vertigo Diseases 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 230000001195 anabolic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 229940069428 antacid Drugs 0.000 description 1
- 239000003159 antacid agent Substances 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000003288 anthiarrhythmic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000004004 anti-anginal agent Substances 0.000 description 1
- 230000002456 anti-arthritic effect Effects 0.000 description 1
- 230000001088 anti-asthma Effects 0.000 description 1
- 230000002484 anti-cholesterolemic effect Effects 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 230000003178 anti-diabetic effect Effects 0.000 description 1
- 230000001142 anti-diarrhea Effects 0.000 description 1
- 230000003474 anti-emetic effect Effects 0.000 description 1
- 230000003556 anti-epileptic effect Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003561 anti-manic effect Effects 0.000 description 1
- 239000000883 anti-obesity agent Substances 0.000 description 1
- 230000002141 anti-parasite Effects 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 230000000320 anti-stroke effect Effects 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 229940124346 antiarthritic agent Drugs 0.000 description 1
- 239000000924 antiasthmatic agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 229940125683 antiemetic agent Drugs 0.000 description 1
- 229960003965 antiepileptics Drugs 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229940127088 antihypertensive drug Drugs 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 229940111131 antiinflammatory and antirheumatic product propionic acid derivative Drugs 0.000 description 1
- 239000000228 antimanic agent Substances 0.000 description 1
- 239000002579 antinauseant Substances 0.000 description 1
- 229940125687 antiparasitic agent Drugs 0.000 description 1
- 239000003096 antiparasitic agent Substances 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 229940005529 antipsychotics Drugs 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229940125716 antipyretic agent Drugs 0.000 description 1
- 229940124575 antispasmodic agent Drugs 0.000 description 1
- 229940127217 antithrombotic drug Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000002830 appetite depressant Substances 0.000 description 1
- 239000002948 appetite stimulant Substances 0.000 description 1
- 229940029995 appetite stimulants Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229940124630 bronchodilator Drugs 0.000 description 1
- 239000000168 bronchodilator agent Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000496 cardiotonic agent Substances 0.000 description 1
- 230000003177 cardiotonic effect Effects 0.000 description 1
- 239000002327 cardiovascular agent Substances 0.000 description 1
- 229940125692 cardiovascular agent Drugs 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940009025 chenodeoxycholate Drugs 0.000 description 1
- RUDATBOHQWOJDD-BSWAIDMHSA-N chenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-BSWAIDMHSA-N 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 229940107137 cholecystokinin Drugs 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229940124558 contraceptive agent Drugs 0.000 description 1
- 239000003433 contraceptive agent Substances 0.000 description 1
- 239000003218 coronary vasodilator agent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229960004826 creatine monohydrate Drugs 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229940000033 dermatological agent Drugs 0.000 description 1
- 239000003241 dermatological agent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 230000000913 erythropoietic effect Effects 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 229940093470 ethylene Drugs 0.000 description 1
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 1
- 230000003419 expectorant effect Effects 0.000 description 1
- 229940066493 expectorants Drugs 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000002871 fertility agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000009477 fluid bed granulation Methods 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229940125695 gastrointestinal agent Drugs 0.000 description 1
- 239000004083 gastrointestinal agent Substances 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 150000004676 glycans Polymers 0.000 description 1
- 239000003630 growth substance Substances 0.000 description 1
- 239000000938 histamine H1 antagonist Substances 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000001341 hydroxy propyl starch Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 235000013828 hydroxypropyl starch Nutrition 0.000 description 1
- 239000000864 hyperglycemic agent Substances 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 229940126904 hypoglycaemic agent Drugs 0.000 description 1
- 208000021822 hypotensive Diseases 0.000 description 1
- 230000001077 hypotensive effect Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000622 irritating effect Effects 0.000 description 1
- 239000000905 isomalt Substances 0.000 description 1
- 235000010439 isomalt Nutrition 0.000 description 1
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 239000000231 karaya gum Substances 0.000 description 1
- 229940039371 karaya gum Drugs 0.000 description 1
- 239000008141 laxative Substances 0.000 description 1
- 229940125722 laxative agent Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- RDOIQAHITMMDAJ-UHFFFAOYSA-N loperamide Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 RDOIQAHITMMDAJ-UHFFFAOYSA-N 0.000 description 1
- 229960001571 loperamide Drugs 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940102838 methylmethacrylate Drugs 0.000 description 1
- 235000020786 mineral supplement Nutrition 0.000 description 1
- 229940029985 mineral supplement Drugs 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000510 mucolytic effect Effects 0.000 description 1
- 229940066491 mucolytics Drugs 0.000 description 1
- 230000004677 mucosal permeability Effects 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 239000004081 narcotic agent Substances 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 239000000842 neuromuscular blocking agent Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000001331 nose Anatomy 0.000 description 1
- 235000020939 nutritional additive Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 239000013588 oral product Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000000810 peripheral vasodilating agent Substances 0.000 description 1
- 229960002116 peripheral vasodilator Drugs 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229950005134 polycarbophil Drugs 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000010409 propane-1,2-diol alginate Nutrition 0.000 description 1
- 239000000770 propane-1,2-diol alginate Substances 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 229940001470 psychoactive drug Drugs 0.000 description 1
- 239000004089 psychotropic agent Substances 0.000 description 1
- 230000000506 psychotropic effect Effects 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002461 renin inhibitor Substances 0.000 description 1
- 229940086526 renin-inhibitors Drugs 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003169 respiratory stimulant agent Substances 0.000 description 1
- 229940066293 respiratory stimulants Drugs 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- DEIYFTQMQPDXOT-UHFFFAOYSA-N sildenafil citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 DEIYFTQMQPDXOT-UHFFFAOYSA-N 0.000 description 1
- 229960002639 sildenafil citrate Drugs 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- VMSNAUAEKXEYGP-YEUHZSMFSA-M sodium glycodeoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 VMSNAUAEKXEYGP-YEUHZSMFSA-M 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- AECTYFQKWPXOSR-DGMAEHPPSA-M sodium;(4r)-4-[(3r,5r,8r,9s,10s,13r,14s,17r)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentanoate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)CC1 AECTYFQKWPXOSR-DGMAEHPPSA-M 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000000948 sympatholitic effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000001962 taste-modifying agent Substances 0.000 description 1
- BHTRKEVKTKCXOH-BJLOMENOSA-N taurochenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)CC1 BHTRKEVKTKCXOH-BJLOMENOSA-N 0.000 description 1
- AWDRATDZQPNJFN-VAYUFCLWSA-N taurodeoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@@H](O)C1 AWDRATDZQPNJFN-VAYUFCLWSA-N 0.000 description 1
- IMCGHZIGRANKHV-AJNGGQMLSA-N tert-butyl (3s,5s)-2-oxo-5-[(2s,4s)-5-oxo-4-propan-2-yloxolan-2-yl]-3-propan-2-ylpyrrolidine-1-carboxylate Chemical compound O1C(=O)[C@H](C(C)C)C[C@H]1[C@H]1N(C(=O)OC(C)(C)C)C(=O)[C@H](C(C)C)C1 IMCGHZIGRANKHV-AJNGGQMLSA-N 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940043672 thyroid preparations Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000013446 two one sided t-test Methods 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 229940014499 ursodeoxycholate Drugs 0.000 description 1
- RUDATBOHQWOJDD-UZVSRGJWSA-N ursodeoxycholic acid Chemical compound C([C@H]1C[C@@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-UZVSRGJWSA-N 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 231100000889 vertigo Toxicity 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 235000019195 vitamin supplement Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000003357 wound healing promoting agent Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0056—Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/451—Non condensed piperidines, e.g. piperocaine having a carbocyclic group directly attached to the heterocyclic ring, e.g. glutethimide, meperidine, loperamide, phencyclidine, piminodine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/4545—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4985—Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/53—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
- A61K47/38—Cellulose; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7007—Drug-containing films, membranes or sheets
Definitions
- This invention relates to delivery of drugs, nutrients and other compounds to a biological organism.
- Thin film dosage formats including bi-layer film dosage formats, containing controlled-release formulations are disclosed.
- Thin film dosage formats are known in the art.
- One of the often cited advantages of thin film dosage formats is the rapid dissolution of the thin film. This rapid dissolution provides for the immediate availability of an active ingredient in the thin film. Although this rapid availability characteristic of thin films can be very useful, it also entails certain disadvantages.
- the absorption of an active ingredient after oral administration depends on several variables, including the release of the active ingredient from the dosage format, the dissolution or solubilization of the active ingredient under physiological conditions, and the permeability of the active ingredient across the oral mucosa and gastrointestinal tract.
- NDAs New drug applications submitted in the United States to the Food and Drug Administration (FDA) contain bioavailability data and in vitro dissolution data, that, together with chemistry, manufacturing, and controls data, characterize the quality and performance of the drug product. This information for approved drugs can be found in FDA's Approved Drug Products with Therapeutic Equivalence Evaluations (Orange Book). Once the specifications are established in an NDA, the dissolution specifications for batch-to-batch quality assurance are generally also published in the United States Pharmacopeia (USP) as compendial standards, which generally become the official specifications for all subsequent products with the same active ingredients.
- USP United States Pharmacopeia
- a composition for the oral administration of an active ingredient includes a film layer and an applied coating.
- the film layer is made from a composition having an effective dissolution rate in the oral cavity.
- the applied coating includes a powder matrix having one or more active ingredients.
- a composition for the oral administration of an active ingredient includes a film layer and an applied coating.
- the film layer is made from a composition having an effective dissolution rate in the oral cavity.
- the applied coating includes one or more controlled-release active ingredients.
- an edible film for delivering a controlled-release active ingredient formulation via the oral cavity includes an edible film having one or more controlled-release active ingredients.
- a method of administering an active ingredient to an individual includes the steps of (a) providing an edible film in accordance with the present invention (b) applying the edible film to a mucous membrane of the individual.
- a method of making a composition for the oral administration of an active ingredient includes (a) forming an edible film; (b) applying a coating to said edible film; wherein the coating includes a powder matrix having one or more active ingredients.
- a method of making a composition for the oral administration of a controlled-release active ingredient includes (a) forming an edible film; (b) applying a coating to said edible film; wherein the coating includes a controlled-release active ingredient.
- a method of making a composition for the oral administration of a controlled-release active ingredient includes forming an edible film wherein the edible film includes a controlled-release active ingredient.
- the film dosage formats of the present invention provide an inexpensive, convenient and immediate method for delivery of a medicament without the undesirable aspects associated with certain oral or nasal delivery methods, while providing versatility, safety and patient comfort.
- the present invention relates to delivery of drugs, nutrients and other compounds to a biological organism.
- Thin film dosage formats including bi-layer film dosage formats, containing controlled-release formulations are disclosed.
- Thin film compositions containing controlled-release or micro-encapsulated drugs, nutrients and other compounds in accordance with the present invention find use, inter alia, in meeting regulatory dissolution, bioavailability and bioequivalency requirements or for a time-release delivery effect of an active ingredient to an organism.
- the invention further provides methods for processing microencapsulated active ingredients into a bi-layer thin film.
- the invention further pertains to edible films for controlled-release delivery of medicaments for treatment or prevention of disease or symptom associated with a disease or disorder.
- a drug delivery system includes an edible film.
- an edible film in accordance with the present invention includes a controlled-release active ingredient.
- the edible film dissolves in the oral cavity of a user thereby delivering an appropriate dosage of the controlled-release active ingredient to the user.
- a controlled-release thin film dosage format includes a controlled-release active ingredient on a carrier, wherein the carrier is an edible “thin film” or “strip.”
- a controlled-release thin film dosage format includes a controlled-release active ingredient within a carrier, wherein the carrier is an edible “thin film” or “strip.”
- any effective edible “thin film” or “strip” may be used in accordance with the present invention.
- the edible films of the present invention may be manufactured in any effective manner.
- an edible film according to the present invention comprises a bi-layer film which generally includes a first layer that is generally water soluble and that generally serves as a substrate layer and a second layer that is generally in the form of a powder, powder matrix, dry coat, or the like.
- the dry coat layer may generally be applied after partial curing of the substrate layer, affixing itself to this substrate layer. See, e.g., United States Patent Application 20040191302. While in accordance with this embodiment of the invention one or more active ingredients may be contained in either layer, preferably the dry coat layer will contain one or more active ingredients. Said dry coat layer and similar layers are especially effective with low dose active ingredients that require a very low moisture environment to remain stable.
- the dry coat layer may include any effective ingredients.
- the dry coal layer includes substrates, and the like.
- the dry coat layer includes partitioning agents, and the like.
- a film in accordance with the present invention is generally of a size adapted such that the film is fast dissolving.
- the weight per strip may vary depending on the application. Generally, the strip may have any effective weight. For human consumption, for example, certain effective weights of the strip include from about 10 to about 400 mg, about 20 to about 200 mg, about 30 to about 100 mg and about 50 mg.
- any effective dosing may be provided per strip.
- the maximum dosing per strip will generally vary depending on the choice of active ingredient and the weight of the strip.
- the active ingredient may generally be present in a range from about 0.01 to about 50 mg, about 0.1 to about 25 mg, about 1 to about 20 mg and about 12.5 mg.
- Active ingredients can be delivered in any effective state, including in a solid format, liquid format, or other format, including, for example, gels and pastes. Depending on dose levels, the active ingredients generally can be oil or water soluble. Generally, active ingredients that are stable in aqueous systems are preferred. Active ingredients that are not stable in an aqueous system, however, though not preferred, may still be used. Preferably, the dosage per serving is 1-2 strips but may vary depending on the size of the individual strip and other factors known to one skilled in the art.
- the strips When intended for human consumption, the strips generally are 13/16 inch by 11 ⁇ 4 inch rectangles, and the thickness of the first layer is generally in a range between about 0.040 to 1.1 micrometers.
- the thickness of the second dry coat layer is generally in the range of about 0.007 to 0.02 micrometers.
- the thickness of the particularly layers may be more or less than the values recited herein depending on factors known to one skilled in the art such as load and processing challenges.
- the production of a film according to the present invention can also include an aeration step.
- This step includes aerating the mass prior to application onto a substrate. Aeration is most preferably achieved through mechanical agitation, mechanical reaction, or carbon dioxide aeration.
- the aeration step produces a film having greater thickness and lower density than without aeration.
- a further embodiment of the present invention includes an improved film and method for making the same.
- the film can be used on living cells. Formation of the medicant-containing layer in the film does not require a solvent and minimizes the likelihood of damage from heat and shear. The rate of dissolution or delivery of the medicant by the film can be readily adjusted.
- the medicant-containing layer while minimizing the likelihood of heat induced medicant damage, permits heat to be utilized to form a coating on the edible film. Hydrophilic components can be readily incorporated in larger concentrations during production of the medicant-containing layer.
- the present invention includes an improved composition for delivering a medicant in the oral cavity.
- the composition includes an applied coating and a film layer.
- An edible film in accordance with the present invention may be made from any effective polymer, softener, filler, matrix, or other composition.
- the film has an acceptable dissolution rate in the oral cavity for a particular thickness of film. For example, if the film has a thickness of 50 microns, it may be desirable for the film to dissolve in the oral cavity within about fifteen seconds. Or it may be desirable for the film to dissolve more slowly.
- the film can be made with pullulan, modified starch, pectin, carageenan, a maltrodextrin, or alginate.
- the film layer can be produced using a highly water-soluble polymer comprising a natural or synthetic water-soluble polymer.
- the polymer preferably has good film moldability, produces a soft flexible film, and is safe for human consumption.
- One such polymer can be a water-soluble cellulose derivative like hydroxypropyl cellulose (HPC), methyl cellulose, hydroxypropyl alkylcellulose, carboxymethyl cellulose or the salt of carboxymethyl cellulose.
- the polymer can comprise an acrylic acid copolymer or its sodium, potassium or ammonium salt.
- the acrylic acid copolymer or its salt can be combined with methacrylic acid, styrene or vinyl type of ether as a comonomer, poly vinyl alcohol, poly vinyl pyrrolidone, polyalkylene blycol, hydroxy propyl starch, alginic acid or its salt, poly-saccharide or its derivatives such as trangacanth, bum gelatin, collagen, denatured gelatin, and collagen treated with succinic acid or anhydrous phthalic acid.
- the following can be included in the powder matrix as adhesives: poorly water-soluble cellulose derivatives including ethyl cellulose, cellulose acetate and butyl cellulose; shellac; higher fatty acids including steric acid and palmitic acid.
- the following can also, without limitation, be used to produce the film layer: pullulan, maltodextrin, pectin, alginates, carrageenan, guar gum, other gelatins, etc.
- the thickness of the film layer can vary as desired, but typically is in the range of 0.01 mm to 3.00 mm, preferably 0.03 mm to 1.00 mm.
- the applied coating in accordance with the present invention may be made from any effective composition.
- the applied coating is a powder matrix including one or more medicants or active ingredients.
- the medicant or active ingredient is provided in a controlled-release format.
- the medicant or active ingredient can be contained in a powder carrier, or can itself be a powder.
- the powder matrix is normally applied to the film layer to form a coating after the film layer has been manufactured.
- an active ingredient as a powder matrix ordinarily does not require the use of a solvent and the powder matrix may include, in addition to the medicant or active ingredient, a variety of different auxiliary compositions.
- the powder matrix can be admixed in a fluidized bed, minimizing the generation of shear and heat.
- dry air or another gas is dispersed upwardly through a plurality of openings to suspend and intermix particulate. Any desired means can be used to admix powders.
- Another advantage of mixing or suspending powder in a fluidized bed is that the dry air suspending the powder particles tends to prevent agglomeration of the particles.
- the admixed powder matrix can also be stored (i.e., suspended) in the fluidized bed, prior to the application of the admixed powder matrix to the film layer.
- the powder matrix can be applied in any desired manner, including sifting, screening, atomization, static, mechanical agitation, etc.
- the powder matrix can be atomized through a Nordson or similar static spray gun using compressed air.
- One such gun creates a fine mist spray of powder particles.
- the gun statically electrically charges the powder particles so they adhere to a surface of the film layer that is receiving the powder particles.
- Another process for applying the powder particles is to admix the particles with a liquid carrier to form a particle-liquid solution.
- the particle-liquid solution is sprayed on the film layer.
- the liquid carrier evaporates, leaving the powder particles on the film.
- the liquid carrier preferably does not cause the powder particles to dissolve in the liquid carrier.
- auxiliary composition that can be included in the powder matrix with the medicant is a composition that dissolves slowly over a selected period of time.
- Such an auxiliary dissolution control composition can be utilized to slow the release of medicant in the oral cavity.
- auxiliary composition are, without limitation, gel forming compositions like carrageenan, gelatin, alginates, pullulan, PVP, and other hydrophilic materials; cyclodextrin; and, inert materials like calcium and fibers.
- the fibers can comprise carboxymethylcellulose.
- auxiliary composition the can be included in the powder matrix with the medicant is an absorption composition that absorbs water or saliva.
- an auxiliary absorption composition can be also be used to slow the release of medicant, and/or, to form a gel.
- the gel can, if desired, cause the strip to become chewable, similar to a very soft jelly-bean.
- an auxiliary composition is termed a gel if, when it is placed in the oral cavity or in contact with another source of bodily liquid, (1) the auxiliary composition absorbs at least four times it weight of water or of saliva or other aqueous solution in a selected period of time, or (2) the auxiliary composition swells to at least three times its thickness in a selected period of time.
- the selected period of time can vary but preferably is from five seconds to fifteen minutes, most preferably five seconds to five minutes.
- gel auxiliary compositions include, without limitation, carboxymethylcellulose, pectin, modified starches, gelatin, and carrageenan. These compositions can be used alone or in combination.
- One advantage of a gel is that it tends to slow the dissolution of the medicant in the oral cavity and to maintain the medicant in the oral cavity for a longer period of time.
- a further auxiliary composition that can be included in the powder matrix is a composition that, when placed in the oral cavity in contact with the mucosa therein, adheres to the mucosa.
- concentration of such auxiliary adhesion compositions in the powder matrix can be adjusted to vary the length of time that the film adheres to the mucosa or to vary the adhesive forces generated between the film and mucosa.
- the auxiliary adhesion compositions adhere to the oral mucosa or to mucosa or tissue in other parts of the body, including the mouth, nose, eyes, vagina, and rectum.
- auxiliary adhesion compositions include carboxymethycellulose, polyvinyl alcohol, polyvinyl pyrrolidone (povidone), sodiumalginate, methyl cellulose, hydroxyl propyl cellulose, hydroxypropylmethyl cellulose, polyethylene glycols, carbopol, polycarbophil, carboxyvinyl copolymers, propylene glycol alginate, alginic acid, methyl methacrylate copolymers, tragacanth gum, guar gum, karaya gum, ethylene vinyl cetate, dimenthylpolysiloxanes, polyoxyalkylene block copolymers, and hydroxyethylmethacrylate copolymers. All examples of composition provided herein are given without limiting the use or inclusion of other comparable or functionally equivalent compositions even though such comparable or functionally equivalent compositions are not listed.
- Still another auxiliary composition that can be included in the powder matrix is a flow composition that, when subjected to a curing process, flows to form a smoother or shinier coating on the exterior of the film layer.
- One preferred curing process is heating the film layer with powder coating to a selected temperature above 76 degrees F. to cause the auxiliary flow composition to soften and flow.
- auxiliary composition are lipids (including various animal and vegetable fats) waxes, particularly low melting point waxes, and polyols, particularly low melting point polyols that can be admixed in powder form or than can included be in powder particles containing a medicant or other compositions.
- the medicant itself may also have the property of flowing at an elevated temperature in excess of 76 degrees F. to form a smoother or shinier coating.
- auxiliary compositions that can be included in the powder matrix include, without limitation, bulking agents, fillers, pigments (coloring), flavorings, scents, and sweeteners.
- Combinations of auxiliary compositions can be included in the powder matrix to achieve a desired function. For example, if it is desired to slow the dissolution of a medicant in the oral cavity, less soluble fillers and fibers can be included in the powder matrix along with a high concentration of polymers that have a very high degree of ability to adhere to the oral mucosa lining the mouth.
- the dry powder matrix will normally contain a minor amount of retained or bound water or other liquid, typically less than about ten percent by weight.
- the level of moisture in the powder matrix normally should not cause the powder particles to stick or adhere to one another during intermixing of powders to form the powder matrix and during application of the powder matrix to the film layer.
- Bulking agents that can be included in the powder matrix include, by way of example and not limitation, avicel, sugar alchohols including manitol and sorbitol and xylitol and isomalt, lactic sugar, sorbitol dextrin, starch, anhydrous calcium phosphate, calcium carbonate, magnesium trisilicate, silica, and amylase.
- the size of particulate in the powder matrix can vary as desired, but is preferably in the range of 10 mesh to 400 mesh or finer, preferably 40 mesh to 300 mesh.
- the powder matrix can be applied to one or both sides of the film layer.
- the film layer includes upper outer surface on the top of the film layer and includes a lower outer surface on the bottom of the film.
- the upper outer surface is generally parallel to the lower outer surface.
- the top of the film is generally parallel to the bottom of the film.
- the thickness of the powder matrix layer can vary as desired, but is preferably in the range of 0.001 mm to 3.00 mm, preferably 0.01 mm to 1.00 mm.
- an additional layer or layers can be applied over the powder matrix layer to seal the powder matrix layer, slow the dissolution of the medicant from the powder matrix layer, or obtain other desirable results.
- a film layer can comprise a laminate of two or more layers.
- Methods for producing the film layer and incorporating plasticizers, bulking agents, taste modifying agents, pigments, etc. in the film layer are well known in the art and not described in detail herein. Since the medicant may be applied to the film layer in a dry powder form, the likelihood of adverse interactions between the medicant and compositions comprising the film layer is lessened.
- the term edible as used herein is used interchangeably with the term orally consumable, and generally means that the article may be placed in the mouth, oral cavity, on the tongue, or the like, without significant detrimental effect to the recipient.
- compositions and films of the present invention may contain at least one flavoring and/or odorant composition that renders the composition or film more palatable. Any effective flavor or odor may be used.
- the flavoring or odor agent or agents may be present in any effective amount, including, for example, in an amount ranging from about 0.5 to 40 wt. %, 1 to 30 wt. %, 5 to 15 wt. %, 0.5 to 15 wt. %.
- the flavorings may be natural or artificial, or combinations thereof. See, e.g., U.S. Pat. No. 5,458,890, which is incorporated herein by reference.
- a flavoring or odor agent or agents is present in the film layer.
- a flavoring or odor agent or agents is present in the powder matrix layer.
- a flavoring or odor agent or agents is present in the film layer and the powder matrix layer.
- the edible film of the present invention includes an agent for adjusting pH conditions to either maximize or minimize the percentage of un-ionized active ingredient available in the oral cavity, such as to modulate the rate of mucosal absorption of active ingredient.
- Buffering agents are particularly important for those active ingredient that partially ionize within the pH range of the mouth, such as weak acid and weak base drugs. Generally, buffering agents are more important when hydrophilic active ingredient are used because those drugs usually have lower mucosal permeability and dissolve more readily in saliva within the mouth.
- the film layer includes one or more buffer forming agents, pH control agents, or both.
- the powder matrix layer includes one or more buffer forming agents, pH control agents, or both.
- both layers include one or more buffer forming agents, pH control agents, or both.
- the edible film of the present invention includes one or more permeation enhancers to modulate the rate of mucosal absorption of active ingredient.
- the film layer includes one or more permeation enhancers.
- the powder layer includes one or more permeation enhancers.
- both layers include one or more permeation enhancers.
- the permeability of both lipophilic and nonlipophilic drugs may be improved by using suitable permeation enhancers.
- any effective permeation enhancers may be used in accordance with the present invention.
- An effective permeation enhancer will depend on several variables, including the active ingredient and the effect desired.
- Generally used permeation enhancers include bile salts such as sodium cholate, sodium glycocholate, sodium glycodeoxycholate, taurodeoxycholate, sodium deoxycholate, sodium lithocholate chenocholate, chenodeoxycholate, ursocholate, ursodeoxy-cholate, hyodeoxycholate, dehydrocholate, glycochenocholate, taurochenocholate, and taurochenodeoxycholate.
- permeation enhancers such as sodium dodecyl sulfate (“SDS”), dimethyl sulfoxide (“DMSO”), sodium lauryl sulfate, salts and other derivatives of saturated and unsaturated fatty acids, surfactants, bile salt analogs, derivatives of bile salts, or such synthetic permeation enhancers as described in U.S. Pat. No. 4,746,508, which is hereby incorporated by reference as if fully set forth herein, may also be used.
- SDS sodium dodecyl sulfate
- DMSO dimethyl sulfoxide
- sodium lauryl sulfate sodium lauryl sulfate
- salts and other derivatives of saturated and unsaturated fatty acids such as sodium dodecyl sulfate (“SDS”), dimethyl sulfoxide (“DMSO”), sodium lauryl sulfate, salts and other derivatives of saturated and unsaturated fatty acids, surfactants,
- compositions and films of the present invention may contain at least one ingredient or agent that is pharmaceutically active. Any effective pharmaceutically active ingredient or agent may be used in accordance with the present invention.
- the pharmaceutically active ingredient or agent may be present in any effective amount, including, for example, in an amount ranging from about 0.5 to 40 wt. %, 1 to 30 wt. %, 5 to 15 wt. %, 0.5 to 15 wt. %.
- a film layer in accordance with the present invention includes one or more active ingredients.
- a powder matrix layer in accordance with the present invention includes one or more active ingredients.
- a film layer in accordance with the present invention and a powder matrix layer in accordance with the present invention include one or more active ingredients.
- an active ingredient may be formulated in a controlled-release format.
- the active ingredient may be formulated in a controlled-release format in any effective manner.
- controlled-release of an active ingredient is obtained by microencapsulation, or the like.
- a controlled release dosage form in accordance with the present invention is a dosage form wherein the active ingredient release characteristics of the dosage form provide for a time course and/or location that are chosen to accomplish therapeutic or convenience objectives not offered by conventional dosage forms such as a solution or an immediate release dosage form.
- Controlled-release dosage forms include, for example fast-, medium-, slow, delayed-, and extended-release.
- one or more active ingredients in accordance with the present invention are provided in a delayed release form.
- delayed release forms provide for the release of one or more active ingredients at a time other than immediately following oral administration.
- one or more active ingredients in accordance with the present invention are provided in a delayed release form including an enteric coating.
- enteric coated forms provide for the release of one or more active ingredients after the dosage form has passed through the stomach.
- one or more active ingredients in accordance with the present invention are provided in a fast release form.
- a fast release form provides for the release of one or more active ingredients after the active has been swallowed but before it has passed through the stomach.
- one or more active ingredients in accordance with the present invention are provided in an extended release form.
- extended release forms make the active ingredient available over an extended period after ingestion (for example, between about 2 and about 48 hours, between about 4 and about 24 hours, between about 10 and about 16 hours), by, for example, affecting the dissolution, absorption, or the like, of one or more active ingredients. This generally allows a reduction in dosing frequency compared to a drug presented as a conventional dosage form (e.g., as a solution or an immediate release dosage form).
- one or more active ingredients in accordance with the present invention are provided in an immediate release form.
- immediate release forms make the active ingredient available after dissolution of the film dosage format without delaying or prolonging the dissolution or absorption of the active ingredient.
- an edible film in accordance with the present invention includes an effective mixture of the different controlled-release and/or immediate release (e.g., non-encapsulated) forms such as to obtain a desired dissolution, bioavailability and/or bioequivalence profile for one or more active ingredients.
- the film layer includes one or more controlled-release active ingredients.
- the powder matrix layer includes one or more controlled-release active ingredients.
- both layers include one or more controlled-release active ingredients.
- a controlled-release thin film dosage format includes a film of the present invention having an active ingredient formulation comprising a multiplicity (typically at least 10) of individual coated (e.g., “microencapsulated”) units such that the individual units will be made available from the formulation upon disintegration of the formulation in the mouth of animals, including humans, who have an edible film of the present invention placed in their oral cavity.
- the film layer includes a multiplicity of individual coated units.
- the powder matrix layer includes a multiplicity of individual coated units.
- both layers include a multiplicity of individual coated units.
- the present invention provides an edible film which disintegrates in the mouth to make available a multiplicity of individual controlled-release units contained in the edible film.
- the active ingredient is made available in the gastrointestinal tract as the individual swallows the controlled-release units.
- the active ingredient is made available in the oral cavity for absorbtion via the oral mucosa as the active ingredient is released from the controlled-release units while they are still in the mouth.
- combinations of controlled-release units are included in the edible film.
- combinations of controlled-release units and immediate-release active ingredient are included in the edible film.
- a controlled-release active ingredient may be provided in an effective particle size.
- An effective particle size will generally depend on the active ingredient and the desired properties of the controlled-release formulation.
- the active ingredient is provided in a particle size greater than about 100 microns.
- the active ingredient is provided in a particle size smaller than about 100 microns.
- the active ingredient is provided in a particle size smaller than about 50 microns.
- the active ingredient is provided in a particle size smaller than about 25 microns.
- the active ingredient is provided in a particle size smaller than about 15 microns.
- the particle size of the microcapsules will be in the range of a few microns up to about a thousand microns or more, with particle sizes in the approximately 30 .mu.m to 800 .mu.m preferred, and particle sizes in the range of approximately 40 .mu.m to 250 .mu.m particularly preferred.
- Controlled release of active ingredients can be of particular importance in connection with the coating of substances which exert a local irritating effect on the mucosa of the gastrointestinal tract such as potassium chloride, non-steroidal antiinflammatory drugs, e.g. acetylsalicylic acid, propionic acid derivatives such as ibuprofene, lithium salts, and ferrous salts, because a prolonged period of release from multiple-units minimizes the risk of local high concentration of the active substance due to the distribution of the units and thus generally provides for lower concentrations in a particular location.
- controlled release of active ingredients decreases the incidence of systemic side effects.
- controlled release of active ingredients increases the plasma half-life of the active ingredient.
- the microencapsulation of active ingredients in accordance with the present invention provides other advantages, including decreasing the rate of degradation of active ingredients by moisture and oxidation, evaporation and sublimation.
- the active ingredient is protected from reacting with other ingredients, and the unpleasant taste of some active ingredients may be effectively masked.
- the rate at which an active ingredient will be released from a microcapsule may be modified, and will depend, inter alia, on the relative amount of capsular material to amount of active ingredient encapsulated, the chemistry of the active ingredient being encapsulated, the environment into which the microcapsule is being placed, temperature of the environment and the nature or chemical composition of the capsular material.
- the rate of release of active ingredient will also be determined by the relative ratios of active ingredient to capsular material, the type of capsular material, the porosity of the capsular material, the biodegradability of the capsular material, and other factors.
- controlled-release microcapsules may be prepared from ethylcellulose, poly-(D,L)-lactide and other polymers. See, e.g., Kawashima, Y., Lin, S. Y., Kasai, A. et al. Drug Dev. Ind. Pharm. USA 10, 467-479 (1984), Benita, S., Benoit, J. P., Inclus, F. and Thies, C. J. Pharm. Sci. 73, 1721-1724 (1984), Bechtel, W. Radiology 161, 601-604 (1986), Tice et al., EPO 0302582, Feb. 8, 1989, all of which are hereby incorporated by reference as if fully set forth herein.
- the active ingredient is microencapsulated with ethylcellulose.
- ethylcellulose Processes for the preparation of microcapsules ensuring the controlled-release of various classes of drugs by using ethylcellulose are described, e.g., in the U.S. Pat. Nos. 3,155,590, 3,341,416, 3,488,418, 3,531,418, 3,524,910, 3,703,576, 3,891,570, 3,909,444, 3,951,851, 4,107,072, 4,389,331, 4,411,933 as well as in the published British patent application No. 2,002,318, published European patent applications Nos. 38,973 and 99,109, Wright, K.
- microcapsules may be prepared by simple or complex coacervation, interfacial cross-linking and interfacial polymerization, mechanical methods, polymer dispersion, matrix encapsulation, solvent evaporation, solvent extraction, spray drying, hot melt microencapsulation (congealing), supercritical fluid and the like.
- microencapsulate drugs producing sustained-release There are many different ways to microencapsulate drugs producing sustained-release. Many of these methods can be found in “Microcapsules and Microencapsulation Techniques”, 1976, M. H. Goucho, and Microcapsules and other Capsules, 1979, also by M. H. Goucho, “Aqueous Polymeric Coatings For Pharmaceutical Dosage Forms”, 1989, Marcel Dekker, Inc., all of which are incorporated herein by reference. Most of the methods of producing sustained-release microparticles can be classified into either physical or chemical systems. Physical methods include such techniques as pan coating, gravity-flow, centrifuge, and the Wurster Process.
- the Wurster Process employs a high velocity air stream that is directed through a cylindrical fluid bed in which the particles are suspended in the air. A coating is sprayed onto the suspended particles, and the particles flow out the top of the cylinder and descend back to the layer of fluid. The flow of air-dries the coating, so that successive layers can be applied repeatedly by further spraying.
- Variables that control the process include the number of cycles, temperature, pressure, and humidity, and can be used to provide the desired coating composition and thickness.
- Fluid bed granulation or coating is one of the most common techniques used at the present time for small particle sustained-release. Fluidized bed equipment is available as “top spray”, “bottom spray” and “tangential-spray”.
- the core active ingredient is first preheated in the vessel to about 30° C. with hot air, placing the particles in suspension. The floating particles are then sprayed with an aqueous suspension to provide a coating, while drying at the same time. Inlet temperature, spray rate, and air throughput must be adjusted to provide optimum end product.
- Chemical methods of microencapsulation include, for example, coacervation or phase separation. These techniques involves dissolving the membrane forming polymer in a suitable solvent or vehicle and the drug to be dissolved is suspended in this solution and kept under agitation The coating precipitates onto a droplet of the drug, similar to crystallization.
- the coacervation method is based on salting out or phase separation from a homogeneous polymer solution of hydrophilic polymers into small droplets of a polymer-rich, second liquid phase, rather than into solid aggregates.
- an aqueous polymer solution e.g., gelatin or carboxymethylcellulose
- a strongly hydrophilic substance e.g., sodium sulfate
- a water-miscible, non-solvent e.g., ethanol, acetone, dioxane, isopropanol, or propanol
- the polymer-rich phase is formed on the active ingredient particle surface to form a capsule under suitable conditions.
- the polymer-rich complex (coacervate) phase is induced by interaction between two dispersed hydrophilic polymers (colloids) of opposite electric charges, with the pH of the medium being used to control the charges of the polymers.
- the first polymeric material in the coacervation process is generally one that (1) is effective to microencapsulate the active ingredient upon completion of the process, (2) is substantially water-insoluble, and has appreciable solubility in the selected nonpolar organic solvent, i.e., the solubility in the selected nonpolar organic solvent is such that the phase separation-coacervation process can be carried out in that solvent, (3) provides for effective taste masking of the drug, if that is the goal desired; and (4) prevents immediate release of the microencapsulated drug in the mouth.
- Ethyl cellulose is generally preferred as the first polymeric material, although other polymers can be used as well, including, for example, cellulose acetate phthalate, cellulose acetate butyrate, polymethacrylates, hydroxypropyl methyl cellulose phthalate; carboxymethyl ethylcellulose; and polylactic acid and the like.
- the second polymeric material in the coacervation process is generally one that is effective in assisting phase separation of the first polymeric material in the aforementioned process.
- polyethylene may be used.
- other polymers may be used as well, including, for example, polyisobutylene, ethylenevinyl acetate, and the like.
- Still other polymers which may serve to promote phase separation may also be used, and such polymers will be known to or may be readily deduced by those skilled in the art.
- the amount of second polymeric material should be selected so as to be at least minimally sufficient to promote phase separation.
- deagglomeration agents e.g., agents effective to reduce microcapsule aggregation (e.g., colloidal silica), colorants (e.g., titanium dioxide, dyes suitable for food such as those known as F.D. & C. dyes, etc.), flavoring and/or sweetening agents, and the like.
- an active ingredient in soluble or dispersed form is added to the polymer solution, and the mixture is emulsified in an aqueous phase containing a surface-active agent, such as poly(vinyl alcohol).
- Volatile organic solvents may be utilized for dissolving water-insoluble polymers, such as PLGA.
- Commonly used organic solvents are methylene chloride, ethyl acetate, and methyl ethyl ketone.
- a double emulsion process is commonly used for producing microspheres containing water-soluble active ingredients, including protein active ingredients.
- Both solid/oil/water (s/o/w) and water/oil/water (w/o/w) systems may be used depending on the type of active ingredient.
- the organic solvent is evaporated by raising the temperature and/or by applying vacuum. See, for example, U.S. Pat. No. 3,523,906.
- the organic solvent diffuses into the water phase to make emulsion droplets into solid polymer microspheres. See, for example, U.S. Pat. No. 4,389,330.
- the continuous phase can be non-miscible oils.
- the organic solvent conventionally employed in this method is a chlorinated hydrocarbon, such as methylene chloride, of which a residual amount is strictly controlled under 600 ppm to avoid known toxicities.
- Hot melt microencapsulation or congealing involves mixing a solid active ingredient or liquid active ingredient with a polymer melted at high temperatures.
- the active ingredient has to be stable at the polymer melting temperature.
- the mixture is suspended in a non-miscible solvent with continuous stirring at a temperature several degrees above the melting point of the polymer. After the emulsion is stabilized, the system is cooled until the polymer particles solidify.
- Interfacial polymerization involves the polymerization of monomers at the interface of two immiscible substances to form a membrane. Accordingly, for interfacial cross-linking, the polymer generally possesses functional groups that can be cross-linked by ions or multi-functional molecules.
- Spray drying may generally be accomplished by dissolving or suspending an active ingredient in a suitable (either aqueous or non-aqueous) solvent that contains dissolved polymer materials.
- the active ingredient can be dissolved or suspended in the solvent.
- the active ingredient solution can be emulsified in the polymer solution.
- the solution is atomized and microspheres are dried by a heated carrier gas. The microsphere size is controlled by the rate of spraying, the feed rate of the drug-polymer solution, the nozzle size, and temperature in the drying and cooling chambers.
- an active ingredient is encapsulated for slow-release according to the process disclosed in U.S. Pat. No. 4,572,833, which is hereby incorporated by reference as if fully set forth herein.
- an active ingredient is encapsulated for slow-release according to the process disclosed in U.S. Pat. No. 4,316,884, which is hereby incorporated by reference as if fully set forth herein.
- microparticles are microencapsulated by warming and then cooling the particles while the particles are dispersed in specific immiscible liquids, one of which is a solvent for cellulose ether when warm but not when cool. This process is generally performed using three immiscible phases:
- a cellulose ether which will form a solid protective coating is incompatible with the polymer of (1) but is soluble in the low-viscosity liquid solvent (1) at warm temperature, and which with the solvent forms a separate phase (the cellulose ether being used in an amount such that the warm solution has a viscosity of from about 4,000 to about 10,000 centipoises and may by agitation be dispersed as minute liquid entities ready to coat the active ingredient particles); and
- micro-particles of the active ingredient in an effective size, which are immiscible with (1) or (2) but are wettable by the warm solution of cellulose ether in the low-viscosity solvent.
- the process may generally require that cellulose ethers which conform to certain specific criteria be used to prepare microencapsulated active ingredients as described.
- the cellulose ether generally must be capable, when in warm solution, of wetting the active ingredient particles so as to form a complete liquid shield around the particles which when cooled solidify without retention of the solvent.
- the cellulose ether generally must be soluble when warmed in the low-viscosity liquid solvent, capable of forming a separate phase in the warm solvent in the presence of the polymer and insoluble in the cool solvent in the presence of the polymer.
- Typical of the cellulose ethers which fit the above criteria are ethyl cellulose and ethyl hydroxyethyl cellulose.
- the liquid mixture used to prepare the microencapsulated active ingredient will contain two essential ingredients: (1) a major part of a low-viscosity liquid, which will act as a solvent for the cellulose ether at warm temperatures and form a separate phase containing the cellulose ether and (2) a minor part of a polymeric ingredient with which the cellulose ether is immiscible and which forces the cellulose ether out of solution at cool temperatures.
- Typical of the low-viscosity liquids which can be used are cyclohexane and toluene.
- Typical of the polymeric ingredients are polybutadiene and butyl rubber.
- an active ingredient may be encapsulated according to the process disclosed in U.S. Pat. No. 5,238,714, which is hereby incorporated by reference as if fully set forth herein.
- non-aggregated microcapsules having different mean diameters including, for example, 1.mu.m and 100 .mu.m, can be prepared by combining a polymer in a solvent with a solution of a nontoxic emulsifier and the active ingredient. The final size of the microcapsules will generally be larger the slower the stirring.
- microcapsules of about 1.mu.m may be obtained.
- microcapsules of about 100.mu.m may be obtained.
- the solution is monitored for microcapsule formation, at which point the solvent is the evaporated and the microcapsules collected after complete evaporation of the organic solvent, preferably by filtration.
- an active ingredient according to the present invention may be microencapsulated for fast-release in any effective manner.
- ethylcellulose-coated fast-release microcapsules may be prepared by mixing ethylcellulose, an anionic surface-active agent and the active ingredient to be microencapsulated together in cyclohexane at room temperature, heating the system to about 80° C. and stirring for 30 to 120 minutes in order to dissolve the ethylcellulose, cooling the system down to room temperature (20° to 30° C.) under constant stirring thereby forming a microcapsule suspension, removing the microcapsules formed by filtration and drying them.
- the anionic surface-active agent can be added after the microencapsulation, or part of the anionic surface-active agent can be added before and the other part of it is added after microencapsulation. See, e.g., U.S. Pat. No. 5,192,552, which is incorporated herein by reference in its entirety as if fully set forth herein.
- the microcapsules may be prepared by first admixing the selected active ingredient, a first polymeric material to serve as the coating, and a second polymeric material to promote phase separation, in a nonpolar organic solvent. Mixing is preferably conducted along with stirring or agitation using any number of conventional means.
- the solvent should be one in which the polymeric materials are soluble at higher temperatures, i.e., temperatures generally on the order of 70° C.
- the active ingredient should be substantially insoluble in the solvent at all temperatures used in the manufacturing process.
- the suspension so formed is heated for a time period and to a temperature sufficient to dissolve the first and second polymeric materials in the solvent.
- stirring is preferably continued at a predetermined stirring rate; a suitable stirring rate may be readily determined by one skilled in the art.
- the temperature is at or below the boiling point of the solvent; generally the components will be heated to a temperature of 70° or higher, and preferably to a temperature of at least about 75° C. However, care must be taken not to heat to a temperature which could degrade the drug.
- Cooling is then effected at a rate and to a temperature sufficient to effect phase separation of the first polymeric material and microencapsulation of the drug therein, forming a dispersion of microencapsulated drug.
- the cooling rate can be varied to optimize properties of the microcapsules, e.g., with respect to aggregation, flowability and release profile.
- the solvent and second polymeric material are then removed by decanting, filtering or the like, followed by washing with solvent to remove any traces of the second polymeric material, and then drying, again at a temperature not so high that the drug or coating material could be adversely affected. Drying is usually although not necessarily conducted for at least about 6 hours, and longer for large-scale batches, at a temperature generally in the range of approximately ambient temperature to 60° C. Drying may or may not be conducted under reduced pressure.
- a variation on the aforementioned procedure provides an alternative method which may be used for heat-sensitive active ingredients.
- This alternative procedure involves dissolving the first and second polymeric materials in the selected nonpolar organic solvent, without addition of active ingredient, followed by heating to a temperature effective to dissolve the polymers. The active ingredient is then added, the mixture is then allowed to cool, and the remainder of the procedure described above is carried out.
- an active ingredient is present in a hydrogel microsphere as described in U.S. Pat. No. 5,731,005, which is hereby incorporated by reference as if fully set forth herein.
- an active ingredient may be microencapsulated by solvent exchange. Any effective method may be used to microencapsulate an active ingredient pursuant to the present invention by solvent exchange.
- an active ingredient particularly a polypeptide or protein active ingredient, may be microencapsulated as described in U.S. Patent No. 6,599,627, which is hereby incorporated by reference as if fully set forth herein.
- an active ingredient may be microencapsulated with an exterior coating including a nonlamellar material such as a nonlamellar crystalline material, a nonlamellar amorphous material, or a nonlamellar semi-crystalline material.
- a nonlamellar material such as a nonlamellar crystalline material, a nonlamellar amorphous material, or a nonlamellar semi-crystalline material.
- an active ingredient may be microencapsulated in this manner as described in U.S. Pat. Nos. 6,638,621 and 6,989,195 which are hereby incorporated by reference as if fully set forth herein.
- the effect of the active ingredient can be optimized through the use of the present invention.
- the active ingredient may be delivered in smaller doses over a period of time rather than all at once, and the administration rate can thus be better adjusted.
- the present invention provides methods and compositions for the transmucosal administration of a drug to a patient in order to rapidly induce a desired systemic effect.
- micro-encapsulation of drugs and delivery of such drugs via a thin film allow for the fast dissolution while offering a convenient, compact size and discrete administration of a drug that is normally only available in a pill or capsule dosage formats.
- An effective active ingredient or medicant may be used in accordance with the present invention.
- An effective active ingredient or medicant in accordance with the present invention is any composition that when administered to a subject, achieves a desired physical, physiological, metabolic, pharmocologic, psychiatric, psychological, diagnostic, or the like, result. Desired results may include, for example, without limitation: diagnosing, preventing, ameliorating and/or treating a condition; maintaining or improving the well being of the subject; maintaining or improving the performance of the subject; and any other results that may be obtained by the administration of a composition to a subject.
- the terms active ingredient and medicant are used interchangeably and refer to the active ingredient or medicant in any form, including in a controlled release or immediate release form.
- Nonlimiting examples of pharmaceutical active ingredients suitable for use herein include ace-inhibitors; acne drugs; alkaloids; amino acids; anabolic drugs; analgesics; anesthetics; angiogenesis inhibitors; antacids; antiallergenics; anti-anginaldrugs; antiarrhythmics; antiarthritics; anti-asthmatics; antibiotics; anti-cholesterolemics; anticoagulants; anti-convulsants; anti-depressants; antidiabetics; anti-diarrhea preparations; antiemetics; antiepileptics; antihistamines; anti-hypertensive drugs; anti-infectives; anti-inflammatory agents; anti-lipid agents; anti-manics; anti-nauseants, anti-stroke agents; antiobesity drugs; antiparasitics; antipsychotics; antipyretics; antispasmodic agents; antithrombotic drugs; antitumor agents; anti-tussives; anti-uricernic drugs;
- compositions of said ingredients may be selected by one of ordinary skill in the art depending on the specific application and other factors such as the desired effect, dosage, rate of delivery of the active ingredient, and the like.
- film dosage formats in accordance with the present invention provide a dissolution rate for one or more active ingredients that is comparable to that of a reference listed drug.
- a film in accordance with the present invention is formulated such that one or more active ingredients have an effective dissolution rate when compared to a reference listed drug.
- the dissolution rate of a film dosage format in accordance with the present invention may be obtained in any effective manner.
- dissolution testing may be conducted on 12 individual dosage units for the film dosage format in accordance with the present invention and the reference drug product.
- the potential for pH dependence of drug release from a modified release drug product is well recognized. Accordingly, multipoint dissolution profiles generally are obtained using discriminating agitation speed and medium.
- a surfactant may be used under appropriate circumstances.
- the speed may vary depending on the apparatus used and the test to be performed, but will generally be 50, 100, and 150 rpm (basket) 50, 75 and 100 rpm (paddle). While the dissolution test may be conducted at any effective temperature, generally the test will be conducted at the temperature of the subject for which the active is intended. For example, for humans the temperature will generally be about 37 ⁇ 0.5 C.
- the dissolution test may be conducted in any effective volume, generally the test may be conducted in about 500-1000 mL.
- the dissolution test may be conducted in any effective media, generally the test may be conducted in an aqueous media at various pH.
- the sampling schedule may be effective interval.
- sampling schedule may include, for example at 1, 2, and 4 hours, and every two hours thereafter until either 80% of the active ingredient is released or an asymptote is reached.
- content uniformity testing of the film dosage format lot may be performed as described in USP 23.
- multipoint dissolution profiles may be obtained in three other media, for example, in water, 0.1N HCl, and USP buffer media at pH 4.5, and 6.8 for a film dosage format in accordance with the present invention.
- the results may then be compared to a reference drug product. Sampling may be performed at any effective interval, including, for example, at 1, 2, and 4 hours and every two hours thereafter until either 80% of the drug from the drug product is released or an asymptote is reached.
- a surfactant may be used under appropriate circumstances.
- delayed release dissolution tests may be performed in 0.1 N HCl for 2 hours (acid stage) followed by testing in USP buffer media, in the range of pH 4.5-7.5 (buffer stage) under standard (application/compendial) test conditions and two additional agitation speeds using the application/compendial test apparatus (three additional test conditions).
- the application/compendial test apparatus is the rotating basket method (Apparatus 1), a rotation speed of 50, 100, and 150 rpm may be used, and if the application/compendial test apparatus is the rotating paddle method (Apparatus 2), a rotation speed of 50, 75, and 100 rpm may be used.
- Multipoint dissolution profiles are generally obtained during the buffer stage of testing.
- Adequate sampling may generally be performed, for example, at 15, 30, 45, 60, and 120 minutes (following the time from which the dosage form is placed in the buffer) until either 80% of the drug is released or an asymptote is reached.
- Dissolution profiles may be compared using any effective method.
- LOG logarithm to base 10
- n number of sampling time points
- ⁇ summation over all time points
- R t dissolution at time point t of the reference drug product
- T t dissolution at time point t of the film dosage format of the present invention.
- similarity testing should be performed using pairwise dissolution profiles (e.g., for the film dosage format of the present invention and the reference drug product) obtained in each individual medium. It is recommended that only one point past the plateau of the profiles be used in calculating the f 2 value. A correction for a lag time prior to similarity testing should not be performed unless justified.
- any effective f 2 value may be used to indicate the similarity of the dissolution profile of two dosage formats. Generally an f 2 value between 50 and 100 suggests the two dissolution profiles are similar. However an f 2 value less than 50 does not necessarily indicate lack of similarity if the value may be explained by other factors. Generally, the average difference at any dissolution sampling time point should not be greater than about 15% between the film dosage format of the present invention and the reference drug product dissolution profiles. The reference for this comparison should represent an average dissolution profile derived from an effective number of batches of the products, for example, three or more recent batches of the reference drug product.
- the dissolution data obtained under the application/compendial dissolution testing conditions (media, agitation, etc.), on the film dosage format of the present invention is within the application/compendial specifications.
- Dissolution profiles may also compared using other methods, including, for example, model independent or model dependent methods. See, e.g., FDA, Oral Extended (Controlled) Release Dosage Forms In Vivo Bioequivalence and In Vitro Dissolution Testing, September 1993; FDA, Guidance for Dissolution Testing of Immediate Release Solid Oral Products, 1997; FDA, Guidance for the Development, Evaluation and Application of In Vitro/In Vivo Correlations for Extended Release Solid Oral Dosage Forms, 1997; Moore, J. W. and H. H. Flanner, “Mathematical Comparison of Dissolution Profiles,” Pharmaceutical Technology, 6:64-74, 1996; Skelly, J.
- film dosage formats in accordance with the present invention provide a rate and extent of absorption of one or more active ingredients that is comparable to that of a reference listed drug.
- Bioavailability and bioequivalence in accordance with the present invention may be obtained in ane effective manner. See, e.g., FDA Guidance for Industry Bioavailability and Bioequivalence Studies for Orally Administered Drug Products—General Considerations, which is hereby incorporated by reference as if fully set forth herein.
- a film in accordance with the present invention is formulated such that one or more active ingredients have effective bioavailability and/or bioequivalence with a reference listed drug.
- an in vivo bioavailability and/or bioequivalence study may be performed in any effective manner.
- the design of a study may vary depending on the drug and dosage form.
- the study design includes a single dose, two-treatment, two-period crossover with adequate washout period between the two phases of the study, with equal numbers of subjects being randomly assigned to each of the two dosing sequences.
- the number of subjects enrolled in the bioequivalence study should be determined statistically to account for the intrasubject variability and to meet the current bioequivalence interval.
- each subject should receive the following two treatments: Treatment 1: edible film in accordance with the present invention.
- Treatment 2 reference listed drug.
- subjects should receive either Treatments 1 or 2 above with 240 mL water. Food should not be allowed until 4 hours after dosing. Water may be allowed after the first hour. Subjects should be served standardized meals beginning at 4 hours during the study. Generally prior to and during each study phase, water may be allowed ad libitum except for 1 hour before and after drug administration. Generally the subject should be served standardized meals and beverages at specified times. Generally no alcohol or xanthine- or caffeine-containing foods and beverages should be consumed for 48 hours prior to each study period and until after the last blood sample is collected. Blood samples should generally be collected in sufficient volume for analysis of parent drug and active metabolite(s), if any.
- sampling times should be such that it should be able to capture the C max and T max during the absorption period.
- Sampling should be carried out for at least three terminal elimination half-lives for both parent drug and active metabolite(s).
- Whole blood, plasma or serum, whichever is appropriate for the analytes, should be harvested promptly and samples should be frozen at ⁇ 20 C or ⁇ 70 C to maintain sample stability.
- the assay methodology selected should ensure specificity, accuracy, interday and intraday precision, linearity of standard curves, and adequate sensitivity, recovery, and stability of the samples under the storage and handling conditions associated with the analytical method. From the plasma drug concentration-time data, AUC 0-t , AUC 0-inf , C max , T max , K el and t 1/2 should be estimated.
- a film dosage format of the present invention is obtained pursuant to a process including an in vitro/in vivo correlation.
- a process for developing an in vitro/in vivo correlation is to (1) develop film dosage formats with different release rates, such as slow, medium, fast, or a single release rate if dissolution is condition independent; (2) obtain in vitro dissolution profiles and in vivo plasma concentration profiles for these film dosage formats; (3) estimate the in vivo absorption or dissolution time course using an appropriate deconvolution technique for each film dosage formats and subject (e.g., Wagner-Nelson, numerical deconvolution). These three steps establish the in vitro/in vivo correlation model. Alternative approaches to developing in vitro/in vivo correlations are possible.
- a correlation is estimated by a two-stage procedure including deconvolution followed by comparison of the fraction of drug absorbed to the fraction of drug dissolved.
- a correlation of this type is generally linear and represents a point-to-point relationship between in vitro dissolution and the in vivo input rate (e.g., the in vivo dissolution of the drug from the dosage form).
- the in vitro dissolution and in vivo input curves may be directly superimposable or may be made to be superimposable by the use of a scaling factor.
- Nonlinear correlations may also be appropriate.
- a convolution procedure models the relationship between in vitro dissolution and plasma concentration in a single step. Plasma concentrations predicted from the model and those observed are compared directly. For these methods, a reference treatment is desirable, but the lack of one does not preclude the ability to develop an in vitro/in vivo correlation.
- the models should predict the entire in vivo time course from the in vitro data.
- the model refers to the relationship between in vitro dissolution of a controlled release film dosage form of the present invention and an in vivo response such as plasma drug concentration or amount of drug absorbed.
- a film dosage form of the present invention is formulated by comparing the model to that of a reference drug.
- any desired prior art process and/or materials can be utilized to produce a film layer.
- the film layer may be formed, for example as follows. 3.4 g of hydropropyl cellulose and 0.4 ml of macrogol-400 (polyethylene glycol) are dissolved in 60 g of ethyl alcohol to produce a cellulose-alcohol solution. Nine milliliters of distilled water containing 90 mg of dissolved predonisolone is added to the cellulose-alcohol solution to produce a film forming composition. The film forming composition is poured into a film molding frame placed on a teflon plate. The area of teflon plate circumscribed by the frame is 9.5 square centimeters.
- the film forming composition is dried to form a film layer.
- the film layer includes an upper outer surface on top of the film layer and includes a lower outer surface on the bottom of the film layer.
- the lower outer surface is generally parallel to the upper outer surface.
- the film layer has a thickness of 40 microns.
- Sildenafil citrate, tadalafil, verdanafil, desloratadine, loratadine, loperamide active ingredients are microencapsulated such as to exhibit different release rates, such as slow, medium and fast, and also provided as a powder for immediate release.
- the gun creates a fine mist spray of powder particles.
- the gun statically electrically charges the powder particles so they adhere to the upper surface of the film layer.
- the powder matrix can also be applied to the lower or bottom surface of the film layer.
- the powder matrix layer is applied such that each film dosage format will have about 25 mg sildenafil.
- the four batches of sildenafil film dosage format are then individually tested for dissolution, bioavailability and bioequivalence and the results are compared to the reference compound. If necessary the process is repeated with different controlled release formulations to achieve a desired result.
- Six batches of powder matrix are prepared by combining the slow, medium, fast, and immediate release tadalafil in different ratios, including batch 1:100% immediate release; batch 2:50% immediate release 50% fast release; batch 3:50% fast release 50% medium release; batch 4:50% medium release 50% slow release; batch 5:25% immediate release 25% fast release 25% medium release 25% slow release; batch 6:33% fast release 33% medium release 34% slow release.
- Each of the six batches is then individually mixed with carboxymethylcellulose powder (as an adhesive), modified food starch (as a bulking agent), carrageenan (as adhesive), sucralose (intense sweetener) and talc (as flow/partitioning agent) in a fluidized bed container to form a powder matrix.
- Each of the six batches of powder matrix is atomized through a Nordson or similar static spray gun using compressed air onto the film layer of example I, to produce six different batches of tadalafil film dosage formats.
- the powder matrix layer is applied such that each film dosage format will have about 20 mg tadalafil.
- the six batches of tadalafil film dosage format are then individually tested for dissolution, bioavailability and bioequivalence and the results are compared to the reference compound. If necessary the process is repeated with different controlled release formulations or different ratios to achieve a desired result.
- Example I Four batches of film are formed as in Example I except that each batch further includes one of the slow, medium, fast or immediate release loratadine of example II, such that the final concentration of loratadine is 10 mg per film dosage unit.
- the four batches of loratadine film dosage format are then individually tested for dissolution, bioavailability and bioequivalence and the results are compared to the reference compound. If necessary the process is repeated with different controlled release formulations or different ratios to achieve a desired result.
- a batch of film is formed as in Example I except that it contains medium release desloratadine of example II such that the final concentration of desloratadine is 2.5 mg per film dosage unit.
- Four batches of powder matrix are prepared by individually combining the slow, medium, fast, and immediate release desloratadine with carboxymethylcellulose powder (as an adhesive), modified food starch (as a bulking agent), carrageenan (as adhesive), sucralose (intense sweetener) and talc (as flow/partitioning agent) in a fluidized bed container to form a powder matrix.
- carboxymethylcellulose powder as an adhesive
- modified food starch as a bulking agent
- carrageenan as adhesive
- sucralose intense sweetener
- talc as flow/partitioning agent
- Each of the four batches of powder matrix is atomized through a Nordson or similar static spray gun using compressed air onto the film layer, to produce four different batches of desloratadine film dosage formats (medium/slow, medium/medium, medium/fast, and medium/immediate release (film layer/powder matrix layer)).
- each film dosage format will have about 5 mg desloratadine.
- the four batches of desloratadine film dosage format are then individually tested for dissolution, bioavailability and bioequivalence and the results are compared to the reference compound. If necessary the process is repeated with different controlled release formulations to achieve a desired result.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Preparation (AREA)
Abstract
Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use are disclosed.
Description
- This application is a continuation of U.S. patent application Ser. No. 11/371,167, filed May 7, 2006, which application is a continuation-in-part of U.S. patent application Ser. Nos. 10/921,770, filed on Aug. 18, 2004, and 10/713,544 filed on Nov. 13, 2003 and 10/402,273, filed on Mar. 28, 2003, and further claims priority to U.S. Provisional Application Ser. Nos. 60/426,598, filed Nov. 14, 2002 and 60/497,186, filed Aug. 22, 2003, all of which are incorporated herein by reference as if fully set forth herein in their entirety, including all drawings, figures and examples.
- This invention relates to delivery of drugs, nutrients and other compounds to a biological organism. Thin film dosage formats, including bi-layer film dosage formats, containing controlled-release formulations are disclosed.
- Thin film dosage formats are known in the art. One of the often cited advantages of thin film dosage formats is the rapid dissolution of the thin film. This rapid dissolution provides for the immediate availability of an active ingredient in the thin film. Although this rapid availability characteristic of thin films can be very useful, it also entails certain disadvantages.
- The absorption of an active ingredient after oral administration depends on several variables, including the release of the active ingredient from the dosage format, the dissolution or solubilization of the active ingredient under physiological conditions, and the permeability of the active ingredient across the oral mucosa and gastrointestinal tract.
- New drug applications (NDAs) submitted in the United States to the Food and Drug Administration (FDA) contain bioavailability data and in vitro dissolution data, that, together with chemistry, manufacturing, and controls data, characterize the quality and performance of the drug product. This information for approved drugs can be found in FDA's Approved Drug Products with Therapeutic Equivalence Evaluations (Orange Book). Once the specifications are established in an NDA, the dissolution specifications for batch-to-batch quality assurance are generally also published in the United States Pharmacopeia (USP) as compendial standards, which generally become the official specifications for all subsequent products with the same active ingredients.
- Acceptable bioequivalence data and comparable in vitro dissolution and chemistry, manufacturing, and controls data are required for approval of abbreviated new drug applications (ANDAs) (21 CFR 314.94) in the United States. Regulations at 21 CFR part 320 address the requirements for bioavailability and bioequivalence data for approval of drug applications and supplemental applications.
- Accordingly, it would be highly desirable to provide an improved edible film, and processes for making the same, that permitted modulating the dissolution, plasma peak height, bioavailability and/or bioequivalence of an active ingredient delivered in an oral thin film format such as to facilitate meeting compendial values for reference products in the United States, and their equivalent in other countries. It would also be desirable to provide time release dosage formats and methods that reduce the necessity of administering therapeutic compounds, drugs and other agents invasively (e.g., such as by injection) and that permit the delivery of medicants at a specific rate over time by oral administration. These and other advantages of the present invention are disclosed herein.
- In a first, separate aspect of the present invention, a composition for the oral administration of an active ingredient includes a film layer and an applied coating. The film layer is made from a composition having an effective dissolution rate in the oral cavity. The applied coating includes a powder matrix having one or more active ingredients.
- In a second, separate aspect of the present invention, a composition for the oral administration of an active ingredient includes a film layer and an applied coating. The film layer is made from a composition having an effective dissolution rate in the oral cavity. The applied coating includes one or more controlled-release active ingredients.
- In a third, separate aspect of the present invention, an edible film for delivering a controlled-release active ingredient formulation via the oral cavity includes an edible film having one or more controlled-release active ingredients.
- In a fourth, separate aspect of the present invention, a method of administering an active ingredient to an individual includes the steps of (a) providing an edible film in accordance with the present invention (b) applying the edible film to a mucous membrane of the individual.
- In a fifth, separate aspect of the present invention, a method of making a composition for the oral administration of an active ingredient includes (a) forming an edible film; (b) applying a coating to said edible film; wherein the coating includes a powder matrix having one or more active ingredients.
- In a sixth, separate aspect of the present invention, a method of making a composition for the oral administration of a controlled-release active ingredient includes (a) forming an edible film; (b) applying a coating to said edible film; wherein the coating includes a controlled-release active ingredient.
- In a seventh, separate aspect of the present invention, a method of making a composition for the oral administration of a controlled-release active ingredient includes forming an edible film wherein the edible film includes a controlled-release active ingredient.
- Other aspects of the invention are described and will become apparent from the following detailed description of the preferred embodiments.
- In order to fully understand the manner in which the above-recited details and other advantages and objects according to the invention are obtained, a more detailed description of the invention will be rendered by reference to specific embodiments thereof.
- The film dosage formats of the present invention provide an inexpensive, convenient and immediate method for delivery of a medicament without the undesirable aspects associated with certain oral or nasal delivery methods, while providing versatility, safety and patient comfort.
- In one embodiment, the present invention relates to delivery of drugs, nutrients and other compounds to a biological organism. Thin film dosage formats, including bi-layer film dosage formats, containing controlled-release formulations are disclosed. Thin film compositions containing controlled-release or micro-encapsulated drugs, nutrients and other compounds in accordance with the present invention find use, inter alia, in meeting regulatory dissolution, bioavailability and bioequivalency requirements or for a time-release delivery effect of an active ingredient to an organism. The invention further provides methods for processing microencapsulated active ingredients into a bi-layer thin film. The invention further pertains to edible films for controlled-release delivery of medicaments for treatment or prevention of disease or symptom associated with a disease or disorder.
- A drug delivery system according to the present invention includes an edible film. In one embodiment, an edible film in accordance with the present invention includes a controlled-release active ingredient. The edible film dissolves in the oral cavity of a user thereby delivering an appropriate dosage of the controlled-release active ingredient to the user.
- In accordance with an embodiment of the present invention a controlled-release thin film dosage format includes a controlled-release active ingredient on a carrier, wherein the carrier is an edible “thin film” or “strip.”
- In accordance with another embodiment of the present invention a controlled-release thin film dosage format includes a controlled-release active ingredient within a carrier, wherein the carrier is an edible “thin film” or “strip.”
- Any effective edible “thin film” or “strip” may be used in accordance with the present invention. Unless otherwise specified or required by the context, the edible films of the present invention may be manufactured in any effective manner. U.S. Patent Application Nos. 20010022964, 20020131990, 20020019447, 20040096569, 20040191302 and U.S. Pat. Nos. 6,419,903, 3,931,146, 5,411,945, 6,010,716, 5,629,003, 5,948,430, 6,177,096, 6,284,264, 5,700,478, 6,449,925, 4,072,551, 4,083,741, all of which are incorporated herein by reference as if fully set forth herein, describe methods for making edible films. These, and other methods known in the art, or described herein, may be used in accordance with the present invention.
- In one embodiment, an edible film according to the present invention comprises a bi-layer film which generally includes a first layer that is generally water soluble and that generally serves as a substrate layer and a second layer that is generally in the form of a powder, powder matrix, dry coat, or the like. The dry coat layer may generally be applied after partial curing of the substrate layer, affixing itself to this substrate layer. See, e.g., United States Patent Application 20040191302. While in accordance with this embodiment of the invention one or more active ingredients may be contained in either layer, preferably the dry coat layer will contain one or more active ingredients. Said dry coat layer and similar layers are especially effective with low dose active ingredients that require a very low moisture environment to remain stable.
- The dry coat layer may include any effective ingredients. In one embodiment, the dry coal layer includes substrates, and the like. In another embodiment, the dry coat layer includes partitioning agents, and the like.
- A film in accordance with the present invention is generally of a size adapted such that the film is fast dissolving. The weight per strip may vary depending on the application. Generally, the strip may have any effective weight. For human consumption, for example, certain effective weights of the strip include from about 10 to about 400 mg, about 20 to about 200 mg, about 30 to about 100 mg and about 50 mg.
- Any effective dosing may be provided per strip. The maximum dosing per strip will generally vary depending on the choice of active ingredient and the weight of the strip. In a 100 mg strip for human consumption, the active ingredient may generally be present in a range from about 0.01 to about 50 mg, about 0.1 to about 25 mg, about 1 to about 20 mg and about 12.5 mg.
- Active ingredients can be delivered in any effective state, including in a solid format, liquid format, or other format, including, for example, gels and pastes. Depending on dose levels, the active ingredients generally can be oil or water soluble. Generally, active ingredients that are stable in aqueous systems are preferred. Active ingredients that are not stable in an aqueous system, however, though not preferred, may still be used. Preferably, the dosage per serving is 1-2 strips but may vary depending on the size of the individual strip and other factors known to one skilled in the art.
- Individual strips can be made in virtually any size. When intended for human consumption, the strips generally are 13/16 inch by 1¼ inch rectangles, and the thickness of the first layer is generally in a range between about 0.040 to 1.1 micrometers. The thickness of the second dry coat layer is generally in the range of about 0.007 to 0.02 micrometers. The thickness of the particularly layers may be more or less than the values recited herein depending on factors known to one skilled in the art such as load and processing challenges.
- Any standard manufacturing procedure known in the art may be used to manufacture a film in accordance with the present invention. An example of such a process can be found in U.S. Pat. No. 5,948,430 to ZERBE et al.
- Further to the production method described in U.S. Pat. No. 5,948,430 to ZERBE et al., the production of a film according to the present invention can also include an aeration step. This step includes aerating the mass prior to application onto a substrate. Aeration is most preferably achieved through mechanical agitation, mechanical reaction, or carbon dioxide aeration. The aeration step produces a film having greater thickness and lower density than without aeration.
- A further embodiment of the present invention includes an improved film and method for making the same. The film can be used on living cells. Formation of the medicant-containing layer in the film does not require a solvent and minimizes the likelihood of damage from heat and shear. The rate of dissolution or delivery of the medicant by the film can be readily adjusted. The medicant-containing layer, while minimizing the likelihood of heat induced medicant damage, permits heat to be utilized to form a coating on the edible film. Hydrophilic components can be readily incorporated in larger concentrations during production of the medicant-containing layer.
- Further, the present invention includes an improved composition for delivering a medicant in the oral cavity. The composition includes an applied coating and a film layer.
- An edible film in accordance with the present invention may be made from any effective polymer, softener, filler, matrix, or other composition. The film has an acceptable dissolution rate in the oral cavity for a particular thickness of film. For example, if the film has a thickness of 50 microns, it may be desirable for the film to dissolve in the oral cavity within about fifteen seconds. Or it may be desirable for the film to dissolve more slowly. By way of example, and not limitation, the film can be made with pullulan, modified starch, pectin, carageenan, a maltrodextrin, or alginate.
- By way of example, and not limitation, the film layer can be produced using a highly water-soluble polymer comprising a natural or synthetic water-soluble polymer. The polymer preferably has good film moldability, produces a soft flexible film, and is safe for human consumption. One such polymer can be a water-soluble cellulose derivative like hydroxypropyl cellulose (HPC), methyl cellulose, hydroxypropyl alkylcellulose, carboxymethyl cellulose or the salt of carboxymethyl cellulose. Or, the polymer can comprise an acrylic acid copolymer or its sodium, potassium or ammonium salt. The acrylic acid copolymer or its salt can be combined with methacrylic acid, styrene or vinyl type of ether as a comonomer, poly vinyl alcohol, poly vinyl pyrrolidone, polyalkylene blycol, hydroxy propyl starch, alginic acid or its salt, poly-saccharide or its derivatives such as trangacanth, bum gelatin, collagen, denatured gelatin, and collagen treated with succinic acid or anhydrous phthalic acid. By way of example, the following can be included in the powder matrix as adhesives: poorly water-soluble cellulose derivatives including ethyl cellulose, cellulose acetate and butyl cellulose; shellac; higher fatty acids including steric acid and palmitic acid. The following can also, without limitation, be used to produce the film layer: pullulan, maltodextrin, pectin, alginates, carrageenan, guar gum, other gelatins, etc.
- The thickness of the film layer can vary as desired, but typically is in the range of 0.01 mm to 3.00 mm, preferably 0.03 mm to 1.00 mm.
- The applied coating in accordance with the present invention may be made from any effective composition. In one embodiment the applied coating is a powder matrix including one or more medicants or active ingredients. In one embodiment of the present invention the medicant or active ingredient is provided in a controlled-release format. The medicant or active ingredient can be contained in a powder carrier, or can itself be a powder. The powder matrix is normally applied to the film layer to form a coating after the film layer has been manufactured.
- Applying an active ingredient as a powder matrix ordinarily does not require the use of a solvent and the powder matrix may include, in addition to the medicant or active ingredient, a variety of different auxiliary compositions.
- The powder matrix can be admixed in a fluidized bed, minimizing the generation of shear and heat. In a fluidized bed dry air or another gas is dispersed upwardly through a plurality of openings to suspend and intermix particulate. Any desired means can be used to admix powders. Another advantage of mixing or suspending powder in a fluidized bed is that the dry air suspending the powder particles tends to prevent agglomeration of the particles. The admixed powder matrix can also be stored (i.e., suspended) in the fluidized bed, prior to the application of the admixed powder matrix to the film layer. The powder matrix can be applied in any desired manner, including sifting, screening, atomization, static, mechanical agitation, etc. For example, the powder matrix can be atomized through a Nordson or similar static spray gun using compressed air. One such gun creates a fine mist spray of powder particles. The gun statically electrically charges the powder particles so they adhere to a surface of the film layer that is receiving the powder particles. Another process for applying the powder particles is to admix the particles with a liquid carrier to form a particle-liquid solution. The particle-liquid solution is sprayed on the film layer. The liquid carrier evaporates, leaving the powder particles on the film. The liquid carrier preferably does not cause the powder particles to dissolve in the liquid carrier.
- One auxiliary composition that can be included in the powder matrix with the medicant is a composition that dissolves slowly over a selected period of time. Such an auxiliary dissolution control composition can be utilized to slow the release of medicant in the oral cavity. Examples of this kind of auxiliary composition are, without limitation, gel forming compositions like carrageenan, gelatin, alginates, pullulan, PVP, and other hydrophilic materials; cyclodextrin; and, inert materials like calcium and fibers. For example, the fibers can comprise carboxymethylcellulose.
- Another auxiliary composition the can be included in the powder matrix with the medicant is an absorption composition that absorbs water or saliva. Such an auxiliary absorption composition can be also be used to slow the release of medicant, and/or, to form a gel. The gel can, if desired, cause the strip to become chewable, similar to a very soft jelly-bean. As used herein, an auxiliary composition is termed a gel if, when it is placed in the oral cavity or in contact with another source of bodily liquid, (1) the auxiliary composition absorbs at least four times it weight of water or of saliva or other aqueous solution in a selected period of time, or (2) the auxiliary composition swells to at least three times its thickness in a selected period of time. The selected period of time can vary but preferably is from five seconds to fifteen minutes, most preferably five seconds to five minutes. Examples of gel auxiliary compositions include, without limitation, carboxymethylcellulose, pectin, modified starches, gelatin, and carrageenan. These compositions can be used alone or in combination. One advantage of a gel is that it tends to slow the dissolution of the medicant in the oral cavity and to maintain the medicant in the oral cavity for a longer period of time.
- A further auxiliary composition that can be included in the powder matrix is a composition that, when placed in the oral cavity in contact with the mucosa therein, adheres to the mucosa. The concentration of such auxiliary adhesion compositions in the powder matrix can be adjusted to vary the length of time that the film adheres to the mucosa or to vary the adhesive forces generated between the film and mucosa. The auxiliary adhesion compositions adhere to the oral mucosa or to mucosa or tissue in other parts of the body, including the mouth, nose, eyes, vagina, and rectum. Examples of auxiliary adhesion compositions include carboxymethycellulose, polyvinyl alcohol, polyvinyl pyrrolidone (povidone), sodiumalginate, methyl cellulose, hydroxyl propyl cellulose, hydroxypropylmethyl cellulose, polyethylene glycols, carbopol, polycarbophil, carboxyvinyl copolymers, propylene glycol alginate, alginic acid, methyl methacrylate copolymers, tragacanth gum, guar gum, karaya gum, ethylene vinyl cetate, dimenthylpolysiloxanes, polyoxyalkylene block copolymers, and hydroxyethylmethacrylate copolymers. All examples of composition provided herein are given without limiting the use or inclusion of other comparable or functionally equivalent compositions even though such comparable or functionally equivalent compositions are not listed.
- Still another auxiliary composition that can be included in the powder matrix is a flow composition that, when subjected to a curing process, flows to form a smoother or shinier coating on the exterior of the film layer. One preferred curing process is heating the film layer with powder coating to a selected temperature above 76 degrees F. to cause the auxiliary flow composition to soften and flow. Examples of this kind of auxiliary composition are lipids (including various animal and vegetable fats) waxes, particularly low melting point waxes, and polyols, particularly low melting point polyols that can be admixed in powder form or than can included be in powder particles containing a medicant or other compositions. The medicant itself, may also have the property of flowing at an elevated temperature in excess of 76 degrees F. to form a smoother or shinier coating.
- Other auxiliary compositions that can be included in the powder matrix include, without limitation, bulking agents, fillers, pigments (coloring), flavorings, scents, and sweeteners.
- Combinations of auxiliary compositions can be included in the powder matrix to achieve a desired function. For example, if it is desired to slow the dissolution of a medicant in the oral cavity, less soluble fillers and fibers can be included in the powder matrix along with a high concentration of polymers that have a very high degree of ability to adhere to the oral mucosa lining the mouth.
- The dry powder matrix will normally contain a minor amount of retained or bound water or other liquid, typically less than about ten percent by weight. The level of moisture in the powder matrix normally should not cause the powder particles to stick or adhere to one another during intermixing of powders to form the powder matrix and during application of the powder matrix to the film layer.
- Bulking agents that can be included in the powder matrix include, by way of example and not limitation, avicel, sugar alchohols including manitol and sorbitol and xylitol and isomalt, lactic sugar, sorbitol dextrin, starch, anhydrous calcium phosphate, calcium carbonate, magnesium trisilicate, silica, and amylase.
- The size of particulate in the powder matrix can vary as desired, but is preferably in the range of 10 mesh to 400 mesh or finer, preferably 40 mesh to 300 mesh.
- The powder matrix can be applied to one or both sides of the film layer. The film layer includes upper outer surface on the top of the film layer and includes a lower outer surface on the bottom of the film. The upper outer surface is generally parallel to the lower outer surface. The top of the film is generally parallel to the bottom of the film. The thickness of the powder matrix layer can vary as desired, but is preferably in the range of 0.001 mm to 3.00 mm, preferably 0.01 mm to 1.00 mm.
- If desired, after the powder matrix layer is applied to the film layer, an additional layer or layers can be applied over the powder matrix layer to seal the powder matrix layer, slow the dissolution of the medicant from the powder matrix layer, or obtain other desirable results.
- If desired, multiple powder matrix layers can be applied to a film layer. A film layer can comprise a laminate of two or more layers. Methods for producing the film layer and incorporating plasticizers, bulking agents, taste modifying agents, pigments, etc. in the film layer are well known in the art and not described in detail herein. Since the medicant may be applied to the film layer in a dry powder form, the likelihood of adverse interactions between the medicant and compositions comprising the film layer is lessened.
- Unless otherwise specified or required by the context, the term edible as used herein is used interchangeably with the term orally consumable, and generally means that the article may be placed in the mouth, oral cavity, on the tongue, or the like, without significant detrimental effect to the recipient.
- In certain embodiments the compositions and films of the present invention may contain at least one flavoring and/or odorant composition that renders the composition or film more palatable. Any effective flavor or odor may be used. The flavoring or odor agent or agents may be present in any effective amount, including, for example, in an amount ranging from about 0.5 to 40 wt. %, 1 to 30 wt. %, 5 to 15 wt. %, 0.5 to 15 wt. %. The flavorings may be natural or artificial, or combinations thereof. See, e.g., U.S. Pat. No. 5,458,890, which is incorporated herein by reference. In one embodiment of the present invention a flavoring or odor agent or agents is present in the film layer. In another embodiment of the present invention a flavoring or odor agent or agents is present in the powder matrix layer. In yet another embodiment of the present invention a flavoring or odor agent or agents is present in the film layer and the powder matrix layer.
- Generally, active ingredients in the un-ionized form are more readily transported across the mucosal membrane. Therefore, in accordance with one embodiment, the edible film of the present invention includes an agent for adjusting pH conditions to either maximize or minimize the percentage of un-ionized active ingredient available in the oral cavity, such as to modulate the rate of mucosal absorption of active ingredient. Buffering agents are particularly important for those active ingredient that partially ionize within the pH range of the mouth, such as weak acid and weak base drugs. Generally, buffering agents are more important when hydrophilic active ingredient are used because those drugs usually have lower mucosal permeability and dissolve more readily in saliva within the mouth. In one embodiment, the film layer includes one or more buffer forming agents, pH control agents, or both. In another embodiment, the powder matrix layer includes one or more buffer forming agents, pH control agents, or both. In yet another embodiment, both layers include one or more buffer forming agents, pH control agents, or both.
- Generally, permeation enhancers improve the permeability of active ingredients at the mucosal membrane. Therefore, in accordance with one embodiment, the edible film of the present invention includes one or more permeation enhancers to modulate the rate of mucosal absorption of active ingredient. In one embodiment, the film layer includes one or more permeation enhancers. In another embodiment, the powder layer includes one or more permeation enhancers. In yet another embodiment, both layers include one or more permeation enhancers. In accordance with another embodiment of the present invention, the permeability of both lipophilic and nonlipophilic drugs may be improved by using suitable permeation enhancers.
- Any effective permeation enhancers may be used in accordance with the present invention. An effective permeation enhancer will depend on several variables, including the active ingredient and the effect desired. Generally used permeation enhancers include bile salts such as sodium cholate, sodium glycocholate, sodium glycodeoxycholate, taurodeoxycholate, sodium deoxycholate, sodium lithocholate chenocholate, chenodeoxycholate, ursocholate, ursodeoxy-cholate, hyodeoxycholate, dehydrocholate, glycochenocholate, taurochenocholate, and taurochenodeoxycholate. Other permeation enhancers such as sodium dodecyl sulfate (“SDS”), dimethyl sulfoxide (“DMSO”), sodium lauryl sulfate, salts and other derivatives of saturated and unsaturated fatty acids, surfactants, bile salt analogs, derivatives of bile salts, or such synthetic permeation enhancers as described in U.S. Pat. No. 4,746,508, which is hereby incorporated by reference as if fully set forth herein, may also be used.
- In certain embodiments the compositions and films of the present invention may contain at least one ingredient or agent that is pharmaceutically active. Any effective pharmaceutically active ingredient or agent may be used in accordance with the present invention. The pharmaceutically active ingredient or agent may be present in any effective amount, including, for example, in an amount ranging from about 0.5 to 40 wt. %, 1 to 30 wt. %, 5 to 15 wt. %, 0.5 to 15 wt. %. In one embodiment, a film layer in accordance with the present invention includes one or more active ingredients. In another embodiment, a powder matrix layer in accordance with the present invention includes one or more active ingredients. In yet another embodiment, a film layer in accordance with the present invention and a powder matrix layer in accordance with the present invention include one or more active ingredients.
- In accordance with an embodiment of the present invention an active ingredient may be formulated in a controlled-release format. The active ingredient may be formulated in a controlled-release format in any effective manner. In one embodiment, controlled-release of an active ingredient is obtained by microencapsulation, or the like.
- In accordance with an embodiment of the present invention, one or more active ingredients in accordance with the present invention are provided in a controlled release dosage form. A controlled release dosage form in accordance with the present invention is a dosage form wherein the active ingredient release characteristics of the dosage form provide for a time course and/or location that are chosen to accomplish therapeutic or convenience objectives not offered by conventional dosage forms such as a solution or an immediate release dosage form. Controlled-release dosage forms include, for example fast-, medium-, slow, delayed-, and extended-release.
- In one embodiment, one or more active ingredients in accordance with the present invention are provided in a delayed release form. In accordance with the present invention, delayed release forms provide for the release of one or more active ingredients at a time other than immediately following oral administration.
- In one embodiment, one or more active ingredients in accordance with the present invention are provided in a delayed release form including an enteric coating. In accordance with the present invention, enteric coated forms provide for the release of one or more active ingredients after the dosage form has passed through the stomach.
- In one embodiment, one or more active ingredients in accordance with the present invention are provided in a fast release form. In accordance with the present invention, a fast release form provides for the release of one or more active ingredients after the active has been swallowed but before it has passed through the stomach.
- In one embodiment, one or more active ingredients in accordance with the present invention are provided in an extended release form. In accordance with the present invention, extended release forms make the active ingredient available over an extended period after ingestion (for example, between about 2 and about 48 hours, between about 4 and about 24 hours, between about 10 and about 16 hours), by, for example, affecting the dissolution, absorption, or the like, of one or more active ingredients. This generally allows a reduction in dosing frequency compared to a drug presented as a conventional dosage form (e.g., as a solution or an immediate release dosage form).
- In one embodiment, one or more active ingredients in accordance with the present invention are provided in an immediate release form. In accordance with the present invention, immediate release forms make the active ingredient available after dissolution of the film dosage format without delaying or prolonging the dissolution or absorption of the active ingredient.
- In yet another embodiment, an edible film in accordance with the present invention includes an effective mixture of the different controlled-release and/or immediate release (e.g., non-encapsulated) forms such as to obtain a desired dissolution, bioavailability and/or bioequivalence profile for one or more active ingredients.
- In one embodiment, the film layer includes one or more controlled-release active ingredients. In another embodiment, the powder matrix layer includes one or more controlled-release active ingredients. In yet another embodiment, both layers include one or more controlled-release active ingredients.
- In accordance with an embodiment of the present invention, a controlled-release thin film dosage format includes a film of the present invention having an active ingredient formulation comprising a multiplicity (typically at least 10) of individual coated (e.g., “microencapsulated”) units such that the individual units will be made available from the formulation upon disintegration of the formulation in the mouth of animals, including humans, who have an edible film of the present invention placed in their oral cavity. In one embodiment, the film layer includes a multiplicity of individual coated units. In another embodiment, the powder matrix layer includes a multiplicity of individual coated units. In yet another embodiment, both layers include a multiplicity of individual coated units.
- In one embodiment the present invention provides an edible film which disintegrates in the mouth to make available a multiplicity of individual controlled-release units contained in the edible film. In one embodiment, the active ingredient is made available in the gastrointestinal tract as the individual swallows the controlled-release units. In another embodiment, the active ingredient is made available in the oral cavity for absorbtion via the oral mucosa as the active ingredient is released from the controlled-release units while they are still in the mouth. In other embodiments, combinations of controlled-release units are included in the edible film. In yet other embodiments, combinations of controlled-release units and immediate-release active ingredient are included in the edible film.
- When controlled release in accordance with the present invention is obtained by microencapsulating an active ingredient, the active ingredient may be coated by microencapsulation with any effective nominal coating thickness. An effective nominal coating thickness will depend on the active ingredient, the coating material, the properties desired of the controlled-release formulation, and other such variables. In one embodiment, an effective nominal coating thickness is approximately 50-250 microns.
- In accordance with the present invention a controlled-release active ingredient may be provided in an effective particle size. An effective particle size will generally depend on the active ingredient and the desired properties of the controlled-release formulation. In one embodiment, the active ingredient is provided in a particle size greater than about 100 microns. In one embodiment, the active ingredient is provided in a particle size smaller than about 100 microns. In one embodiment, the active ingredient is provided in a particle size smaller than about 50 microns. In one embodiment, the active ingredient is provided in a particle size smaller than about 25 microns. In one embodiment, the active ingredient is provided in a particle size smaller than about 15 microns.
- Generally, although not necessarily, the particle size of the microcapsules will be in the range of a few microns up to about a thousand microns or more, with particle sizes in the approximately 30 .mu.m to 800 .mu.m preferred, and particle sizes in the range of approximately 40 .mu.m to 250 .mu.m particularly preferred.
- Controlled release of active ingredients can be of particular importance in connection with the coating of substances which exert a local irritating effect on the mucosa of the gastrointestinal tract such as potassium chloride, non-steroidal antiinflammatory drugs, e.g. acetylsalicylic acid, propionic acid derivatives such as ibuprofene, lithium salts, and ferrous salts, because a prolonged period of release from multiple-units minimizes the risk of local high concentration of the active substance due to the distribution of the units and thus generally provides for lower concentrations in a particular location. In one embodiment of the present invention, controlled release of active ingredients decreases the incidence of systemic side effects. In another embodiment of the present invention, controlled release of active ingredients increases the plasma half-life of the active ingredient.
- In accordance with an embodiment of the present invention, controlled release active ingredient particles or droplets are coated with a coating material. Typical coating materials may include fats, waxes, triglycerides, fatty acids, fatty alcohols, ethoxylated fatty acids and alcohols, stearates, sugars, poly(ethylene glycol), certain metals, gums, hydrocolloids, latexes, and various polymer-based formulations such as polyethylene, ethyl cellulose, ethylene-vinyl acetate, ethylene-acrylic acid, polyamides, some enteric polymers, and the like.
- In addition to obtaining controlled release properties, the microencapsulation of active ingredients in accordance with the present invention provides other advantages, including decreasing the rate of degradation of active ingredients by moisture and oxidation, evaporation and sublimation. In addition, the active ingredient is protected from reacting with other ingredients, and the unpleasant taste of some active ingredients may be effectively masked.
- Sustained release formulations provide for prolonged action of an active ingredient in the gastro-intestinal tract by slow release over an extended period of time. Generally, one way of achieving sustained release of a drug is to surround a core containing the active ingredient with a layer of inert material, such as an enteric substance which allows the surrounded core to pass unchanged through the stomach and disintegrate in the intestinal tract.
- Those skilled in the art will appreciate that the rate at which an active ingredient will be released from a microcapsule may be modified, and will depend, inter alia, on the relative amount of capsular material to amount of active ingredient encapsulated, the chemistry of the active ingredient being encapsulated, the environment into which the microcapsule is being placed, temperature of the environment and the nature or chemical composition of the capsular material. The rate of release of active ingredient will also be determined by the relative ratios of active ingredient to capsular material, the type of capsular material, the porosity of the capsular material, the biodegradability of the capsular material, and other factors.
- Generally, when an active ingredient is microencapsulated for controlled-release, it may be microencapsulated in any effective material. For example, controlled-release microcapsules may be prepared from ethylcellulose, poly-(D,L)-lactide and other polymers. See, e.g., Kawashima, Y., Lin, S. Y., Kasai, A. et al. Drug Dev. Ind. Pharm. USA 10, 467-479 (1984), Benita, S., Benoit, J. P., Puisieur, F. and Thies, C. J. Pharm. Sci. 73, 1721-1724 (1984), Bechtel, W. Radiology 161, 601-604 (1986), Tice et al., EPO 0302582, Feb. 8, 1989, all of which are hereby incorporated by reference as if fully set forth herein.
- In one embodiment of the present invention, the active ingredient is microencapsulated with ethylcellulose. Processes for the preparation of microcapsules ensuring the controlled-release of various classes of drugs by using ethylcellulose are described, e.g., in the U.S. Pat. Nos. 3,155,590, 3,341,416, 3,488,418, 3,531,418, 3,524,910, 3,703,576, 3,891,570, 3,909,444, 3,951,851, 4,107,072, 4,389,331, 4,411,933 as well as in the published British patent application No. 2,002,318, published European patent applications Nos. 38,973 and 99,109, Wright, K. C., Wallace, S., Mosier, B., Mosier, D. J. Microencapsulation 5(1), 13-20 (1988), Wright, K. C., Charnsangavej, C., Wallace, S., Chuang, V. P., Savaraj, N. Cardiovasc. Internat. Radiol. 7, 294-298 (1984), all of which are incorporated herein by reference in their entirety as if fully set forth herein.
- An active ingredient according to the present invention may be microencapsulated for controlled-release in any effective manner. For example, microcapsules may be prepared by simple or complex coacervation, interfacial cross-linking and interfacial polymerization, mechanical methods, polymer dispersion, matrix encapsulation, solvent evaporation, solvent extraction, spray drying, hot melt microencapsulation (congealing), supercritical fluid and the like.
- There are many different ways to microencapsulate drugs producing sustained-release. Many of these methods can be found in “Microcapsules and Microencapsulation Techniques”, 1976, M. H. Goucho, and Microcapsules and other Capsules, 1979, also by M. H. Goucho, “Aqueous Polymeric Coatings For Pharmaceutical Dosage Forms”, 1989, Marcel Dekker, Inc., all of which are incorporated herein by reference. Most of the methods of producing sustained-release microparticles can be classified into either physical or chemical systems. Physical methods include such techniques as pan coating, gravity-flow, centrifuge, and the Wurster Process.
- The Wurster Process employs a high velocity air stream that is directed through a cylindrical fluid bed in which the particles are suspended in the air. A coating is sprayed onto the suspended particles, and the particles flow out the top of the cylinder and descend back to the layer of fluid. The flow of air-dries the coating, so that successive layers can be applied repeatedly by further spraying. Variables that control the process include the number of cycles, temperature, pressure, and humidity, and can be used to provide the desired coating composition and thickness.
- Fluid bed granulation or coating is one of the most common techniques used at the present time for small particle sustained-release. Fluidized bed equipment is available as “top spray”, “bottom spray” and “tangential-spray”. The core active ingredient is first preheated in the vessel to about 30° C. with hot air, placing the particles in suspension. The floating particles are then sprayed with an aqueous suspension to provide a coating, while drying at the same time. Inlet temperature, spray rate, and air throughput must be adjusted to provide optimum end product.
- Chemical methods of microencapsulation include, for example, coacervation or phase separation. These techniques involves dissolving the membrane forming polymer in a suitable solvent or vehicle and the drug to be dissolved is suspended in this solution and kept under agitation The coating precipitates onto a droplet of the drug, similar to crystallization.
- The coacervation method is based on salting out or phase separation from a homogeneous polymer solution of hydrophilic polymers into small droplets of a polymer-rich, second liquid phase, rather than into solid aggregates. In what is know as “simple” coacervation, an aqueous polymer solution (e.g., gelatin or carboxymethylcellulose) is partially dehydrated (or desolvated) by adding a strongly hydrophilic substance (e.g., sodium sulfate) or a water-miscible, non-solvent (e.g., ethanol, acetone, dioxane, isopropanol, or propanol), such that the water-soluble polymer is concentrated in water to form the polymer-rich phase. If water-insoluble active ingredient particles are present as a suspension or as an emulsion, the polymer-rich phase is formed on the active ingredient particle surface to form a capsule under suitable conditions. In “complex” coacervation, the polymer-rich complex (coacervate) phase is induced by interaction between two dispersed hydrophilic polymers (colloids) of opposite electric charges, with the pH of the medium being used to control the charges of the polymers.
- The first polymeric material in the coacervation process is generally one that (1) is effective to microencapsulate the active ingredient upon completion of the process, (2) is substantially water-insoluble, and has appreciable solubility in the selected nonpolar organic solvent, i.e., the solubility in the selected nonpolar organic solvent is such that the phase separation-coacervation process can be carried out in that solvent, (3) provides for effective taste masking of the drug, if that is the goal desired; and (4) prevents immediate release of the microencapsulated drug in the mouth. Ethyl cellulose is generally preferred as the first polymeric material, although other polymers can be used as well, including, for example, cellulose acetate phthalate, cellulose acetate butyrate, polymethacrylates, hydroxypropyl methyl cellulose phthalate; carboxymethyl ethylcellulose; and polylactic acid and the like.
- The second polymeric material in the coacervation process is generally one that is effective in assisting phase separation of the first polymeric material in the aforementioned process. Generally polyethylene may be used. However other polymers may be used as well, including, for example, polyisobutylene, ethylenevinyl acetate, and the like. Still other polymers which may serve to promote phase separation may also be used, and such polymers will be known to or may be readily deduced by those skilled in the art. The amount of second polymeric material should be selected so as to be at least minimally sufficient to promote phase separation.
- Other materials may also be included in the coacervation process, including, for example, deagglomeration agents, e.g., agents effective to reduce microcapsule aggregation (e.g., colloidal silica), colorants (e.g., titanium dioxide, dyes suitable for food such as those known as F.D. & C. dyes, etc.), flavoring and/or sweetening agents, and the like.
- When the active ingredient is microencapsulated by solvent evaporation and solvent extraction, an active ingredient in soluble or dispersed form is added to the polymer solution, and the mixture is emulsified in an aqueous phase containing a surface-active agent, such as poly(vinyl alcohol). Volatile organic solvents may be utilized for dissolving water-insoluble polymers, such as PLGA. Commonly used organic solvents are methylene chloride, ethyl acetate, and methyl ethyl ketone. A double emulsion process is commonly used for producing microspheres containing water-soluble active ingredients, including protein active ingredients. Both solid/oil/water (s/o/w) and water/oil/water (w/o/w) systems may be used depending on the type of active ingredient. In the solvent evaporation method, the organic solvent is evaporated by raising the temperature and/or by applying vacuum. See, for example, U.S. Pat. No. 3,523,906. In the solvent extraction method, the organic solvent diffuses into the water phase to make emulsion droplets into solid polymer microspheres. See, for example, U.S. Pat. No. 4,389,330. In both methods, the continuous phase can be non-miscible oils. The organic solvent conventionally employed in this method is a chlorinated hydrocarbon, such as methylene chloride, of which a residual amount is strictly controlled under 600 ppm to avoid known toxicities.
- Hot melt microencapsulation or congealing, involves mixing a solid active ingredient or liquid active ingredient with a polymer melted at high temperatures. The active ingredient has to be stable at the polymer melting temperature. The mixture is suspended in a non-miscible solvent with continuous stirring at a temperature several degrees above the melting point of the polymer. After the emulsion is stabilized, the system is cooled until the polymer particles solidify. Interfacial polymerization involves the polymerization of monomers at the interface of two immiscible substances to form a membrane. Accordingly, for interfacial cross-linking, the polymer generally possesses functional groups that can be cross-linked by ions or multi-functional molecules.
- Spray drying may generally be accomplished by dissolving or suspending an active ingredient in a suitable (either aqueous or non-aqueous) solvent that contains dissolved polymer materials. The active ingredient can be dissolved or suspended in the solvent. Alternatively, the active ingredient solution can be emulsified in the polymer solution. The solution is atomized and microspheres are dried by a heated carrier gas. The microsphere size is controlled by the rate of spraying, the feed rate of the drug-polymer solution, the nozzle size, and temperature in the drying and cooling chambers.
- In another embodiment of the present invention, an active ingredient is encapsulated for slow-release according to the process disclosed in U.S. Pat. No. 4,572,833, which is hereby incorporated by reference as if fully set forth herein.
- In another embodiment of the present invention, an active ingredient is encapsulated for slow-release according to the process disclosed in U.S. Pat. No. 4,316,884, which is hereby incorporated by reference as if fully set forth herein.
- In accordance with another embodiment, microparticles are microencapsulated by warming and then cooling the particles while the particles are dispersed in specific immiscible liquids, one of which is a solvent for cellulose ether when warm but not when cool. This process is generally performed using three immiscible phases:
- (1) a liquid mixture of which a major part by volume is a low-viscosity liquid which acts as a solvent for the cellulose ether at warm temperatures and a minor part by volume of a polymer which acts to force the cellulose ether out of solution at cool temperature;
- (2) A cellulose ether which will form a solid protective coating, is incompatible with the polymer of (1) but is soluble in the low-viscosity liquid solvent (1) at warm temperature, and which with the solvent forms a separate phase (the cellulose ether being used in an amount such that the warm solution has a viscosity of from about 4,000 to about 10,000 centipoises and may by agitation be dispersed as minute liquid entities ready to coat the active ingredient particles); and
- (3) micro-particles of the active ingredient, in an effective size, which are immiscible with (1) or (2) but are wettable by the warm solution of cellulose ether in the low-viscosity solvent.
- The process may generally require that cellulose ethers which conform to certain specific criteria be used to prepare microencapsulated active ingredients as described. First, the cellulose ether generally must be capable, when in warm solution, of wetting the active ingredient particles so as to form a complete liquid shield around the particles which when cooled solidify without retention of the solvent. Second, the cellulose ether generally must be soluble when warmed in the low-viscosity liquid solvent, capable of forming a separate phase in the warm solvent in the presence of the polymer and insoluble in the cool solvent in the presence of the polymer. Typical of the cellulose ethers which fit the above criteria are ethyl cellulose and ethyl hydroxyethyl cellulose.
- The liquid mixture used to prepare the microencapsulated active ingredient will contain two essential ingredients: (1) a major part of a low-viscosity liquid, which will act as a solvent for the cellulose ether at warm temperatures and form a separate phase containing the cellulose ether and (2) a minor part of a polymeric ingredient with which the cellulose ether is immiscible and which forces the cellulose ether out of solution at cool temperatures. Typical of the low-viscosity liquids which can be used are cyclohexane and toluene. Typical of the polymeric ingredients are polybutadiene and butyl rubber.
- In another embodiment of the present invention, an active ingredient may be encapsulated according to the process disclosed in U.S. Pat. No. 5,238,714, which is hereby incorporated by reference as if fully set forth herein. Briefly, non-aggregated microcapsules having different mean diameters, including, for example, 1.mu.m and 100 .mu.m, can be prepared by combining a polymer in a solvent with a solution of a nontoxic emulsifier and the active ingredient. The final size of the microcapsules will generally be larger the slower the stirring. For example, when the mixture is emulsified by stirring at a high speed of approximately 1500 rpms or by sonication at approximately 20 Khz and stirring at 500 rpms, microcapsules of about 1.mu.m may be obtained. Conversely, when the mixture is emulsified by stirring at a slow speed (approximately 350 rpm), microcapsules of about 100.mu.m may be obtained. The solution is monitored for microcapsule formation, at which point the solvent is the evaporated and the microcapsules collected after complete evaporation of the organic solvent, preferably by filtration.
- Generally, an active ingredient according to the present invention may be microencapsulated for fast-release in any effective manner. For example, for active ingredients that do not dissolve in cyclohexane ethylcellulose-coated fast-release microcapsules may be prepared by mixing ethylcellulose, an anionic surface-active agent and the active ingredient to be microencapsulated together in cyclohexane at room temperature, heating the system to about 80° C. and stirring for 30 to 120 minutes in order to dissolve the ethylcellulose, cooling the system down to room temperature (20° to 30° C.) under constant stirring thereby forming a microcapsule suspension, removing the microcapsules formed by filtration and drying them. Alternatively, the anionic surface-active agent can be added after the microencapsulation, or part of the anionic surface-active agent can be added before and the other part of it is added after microencapsulation. See, e.g., U.S. Pat. No. 5,192,552, which is incorporated herein by reference in its entirety as if fully set forth herein.
- In another embodiment, release of an active ingredient from the microcapsule in the mouth is limited, but rather occurs very shortly thereafter, and is virtually complete within a matter of minutes. An encapsulation to achieve this result is disclosed, for example, in U.S. Pat. No. 6,139,865, which is hereby incorporated by reference as if fully set forth herein. More specifically, the microcapsules may be prepared by first admixing the selected active ingredient, a first polymeric material to serve as the coating, and a second polymeric material to promote phase separation, in a nonpolar organic solvent. Mixing is preferably conducted along with stirring or agitation using any number of conventional means. The solvent should be one in which the polymeric materials are soluble at higher temperatures, i.e., temperatures generally on the order of 70° C. or higher, but insoluble at ambient temperature; also, the active ingredient should be substantially insoluble in the solvent at all temperatures used in the manufacturing process. After admixture of these initial components, the suspension so formed is heated for a time period and to a temperature sufficient to dissolve the first and second polymeric materials in the solvent. In addition, stirring is preferably continued at a predetermined stirring rate; a suitable stirring rate may be readily determined by one skilled in the art. The temperature is at or below the boiling point of the solvent; generally the components will be heated to a temperature of 70° or higher, and preferably to a temperature of at least about 75° C. However, care must be taken not to heat to a temperature which could degrade the drug. Cooling is then effected at a rate and to a temperature sufficient to effect phase separation of the first polymeric material and microencapsulation of the drug therein, forming a dispersion of microencapsulated drug. It will be appreciated by those skilled in the art that the cooling rate can be varied to optimize properties of the microcapsules, e.g., with respect to aggregation, flowability and release profile. The solvent and second polymeric material are then removed by decanting, filtering or the like, followed by washing with solvent to remove any traces of the second polymeric material, and then drying, again at a temperature not so high that the drug or coating material could be adversely affected. Drying is usually although not necessarily conducted for at least about 6 hours, and longer for large-scale batches, at a temperature generally in the range of approximately ambient temperature to 60° C. Drying may or may not be conducted under reduced pressure.
- A variation on the aforementioned procedure provides an alternative method which may be used for heat-sensitive active ingredients. This alternative procedure involves dissolving the first and second polymeric materials in the selected nonpolar organic solvent, without addition of active ingredient, followed by heating to a temperature effective to dissolve the polymers. The active ingredient is then added, the mixture is then allowed to cool, and the remainder of the procedure described above is carried out.
- In accordance with another embodiment, an active ingredient is present in a hydrogel microsphere as described in U.S. Pat. No. 5,731,005, which is hereby incorporated by reference as if fully set forth herein.
- In accordance with another embodiment, an active ingredient may be microencapsulated by solvent exchange. Any effective method may be used to microencapsulate an active ingredient pursuant to the present invention by solvent exchange. For example, an active ingredient, particularly a polypeptide or protein active ingredient, may be microencapsulated as described in U.S. Patent No. 6,599,627, which is hereby incorporated by reference as if fully set forth herein.
- In accordance with another embodiment, an active ingredient may be microencapsulated with an exterior coating including a nonlamellar material such as a nonlamellar crystalline material, a nonlamellar amorphous material, or a nonlamellar semi-crystalline material. For example, an active ingredient may be microencapsulated in this manner as described in U.S. Pat. Nos. 6,638,621 and 6,989,195 which are hereby incorporated by reference as if fully set forth herein.
- It will be appreciated that the effect of the active ingredient can be optimized through the use of the present invention. According to the present invention, the active ingredient may be delivered in smaller doses over a period of time rather than all at once, and the administration rate can thus be better adjusted.
- In another embodiment, the present invention provides methods and compositions for the transmucosal administration of a drug to a patient in order to rapidly induce a desired systemic effect.
- The micro-encapsulation of drugs and delivery of such drugs via a thin film allow for the fast dissolution while offering a convenient, compact size and discrete administration of a drug that is normally only available in a pill or capsule dosage formats.
- Any effective active ingredient or medicant may be used in accordance with the present invention. An effective active ingredient or medicant in accordance with the present invention is any composition that when administered to a subject, achieves a desired physical, physiological, metabolic, pharmocologic, psychiatric, psychological, diagnostic, or the like, result. Desired results may include, for example, without limitation: diagnosing, preventing, ameliorating and/or treating a condition; maintaining or improving the well being of the subject; maintaining or improving the performance of the subject; and any other results that may be obtained by the administration of a composition to a subject. Unless otherwise required by the context, the terms active ingredient and medicant are used interchangeably and refer to the active ingredient or medicant in any form, including in a controlled release or immediate release form.
- Nonlimiting examples of pharmaceutical active ingredients suitable for use herein include ace-inhibitors; acne drugs; alkaloids; amino acids; anabolic drugs; analgesics; anesthetics; angiogenesis inhibitors; antacids; antiallergenics; anti-anginaldrugs; antiarrhythmics; antiarthritics; anti-asthmatics; antibiotics; anti-cholesterolemics; anticoagulants; anti-convulsants; anti-depressants; antidiabetics; anti-diarrhea preparations; antiemetics; antiepileptics; antihistamines; anti-hypertensive drugs; anti-infectives; anti-inflammatory agents; anti-lipid agents; anti-manics; anti-nauseants, anti-stroke agents; antiobesity drugs; antiparasitics; antipsychotics; antipyretics; antispasmodic agents; antithrombotic drugs; antitumor agents; anti-tussives; anti-uricernic drugs; anti-viral agents; anxiolytic agents; appetite stimulants; appetite suppressants; awakening agents; beta blocking agents; botanical substances; bronchodilators; cardiotonics; cardiovascular agents; chelating agents; chemotherapeutic agents; cholecystokinin antagonists; cognition activators; contraceptives; coronary dilators; cough suppressants; creatine monohydrate; decongestants; dermatological agents; diabetes agents; dietary supplements; diuretics; emollients; enzymes; erectile dysfunction drugs; erythropoietic drugs; expectorants; fertility agents; fungicides; gastro-intestinal agents; growth regulators; hemostats; hormone replacement agents; hormones; hyperglycemic agents; hypnotics; hypoglycemic agents; hypotensives; immunosuppressants; L-arginine; laxatives; L-camitine; migrain treatments; mineral supplements; mucolytics; muscle relaxants; narcotics; neuroleptics; neuromuscular blocking agents; neuromuscular drugs; non-sedating antihistamines; NSAIDS; nutritional additives; peripheral vaso-dilators; polypeptides; prostaglandins; psychoneurotropic agents; psychotropics; renin inhibitors; respiratory stimulants; salts; sedatives; selective phosphodiesterase enzyme inhibitors; sexual hormones; steroids; stimulants; sympatholytics; thyroid hormones; thyroid preparations; tranquilizers; uterine relaxants; vaso-constrictors; vasodilators; vasopressors; vertigo agents; vitamin supplements; vitamins, including for example, vitamin A, B family, C, D, E, K; wound healing agents; and the like.
- Specific formulations of said ingredients may be selected by one of ordinary skill in the art depending on the specific application and other factors such as the desired effect, dosage, rate of delivery of the active ingredient, and the like.
- According to an embodiment film dosage formats in accordance with the present invention provide a dissolution rate for one or more active ingredients that is comparable to that of a reference listed drug. In one embodiment, a film in accordance with the present invention is formulated such that one or more active ingredients have an effective dissolution rate when compared to a reference listed drug. The dissolution rate of a film dosage format in accordance with the present invention may be obtained in any effective manner. Generally, dissolution testing may be conducted on 12 individual dosage units for the film dosage format in accordance with the present invention and the reference drug product. The potential for pH dependence of drug release from a modified release drug product is well recognized. Accordingly, multipoint dissolution profiles generally are obtained using discriminating agitation speed and medium. A surfactant may be used under appropriate circumstances. Early sampling times of 1, 2, and 4 hours are generally included in the sampling schedule to check for premature release of the drug (dose dumping) from the formulation. See current United States Pharmacopeia (USP) 23 NF 18, sections 711 and 724, for general dissolution requirements. Generally, any effective dissolution apparatus may be used, including, for example: USP 23 Apparatus 1 (rotating basket), USP 23 Apparatus 2 (rotating paddle), USP 23 Apparatus 3 (reciprocating cylinder), USP 23 Apparatus 4 (flow-through cell), USP 23 Apparatus 7 (reciprocating disk). Generally, any effective rotation speed may be used. The speed may vary depending on the apparatus used and the test to be performed, but will generally be 50, 100, and 150 rpm (basket) 50, 75 and 100 rpm (paddle). While the dissolution test may be conducted at any effective temperature, generally the test will be conducted at the temperature of the subject for which the active is intended. For example, for humans the temperature will generally be about 37±0.5 C. The dissolution test may be conducted in any effective volume, generally the test may be conducted in about 500-1000 mL. The dissolution test may be conducted in any effective media, generally the test may be conducted in an aqueous media at various pH. The sampling schedule may be effective interval. Generally the sampling schedule may include, for example at 1, 2, and 4 hours, and every two hours thereafter until either 80% of the active ingredient is released or an asymptote is reached. Generally content uniformity testing of the film dosage format lot may be performed as described in USP 23.
- In addition to application/compendial release requirements, multipoint dissolution profiles may be obtained in three other media, for example, in water, 0.1N HCl, and USP buffer media at pH 4.5, and 6.8 for a film dosage format in accordance with the present invention. The results may then be compared to a reference drug product. Sampling may be performed at any effective interval, including, for example, at 1, 2, and 4 hours and every two hours thereafter until either 80% of the drug from the drug product is released or an asymptote is reached. A surfactant may be used under appropriate circumstances.
- In one embodiment, in addition to application/compendial release requirements, delayed release dissolution tests may be performed in 0.1 N HCl for 2 hours (acid stage) followed by testing in USP buffer media, in the range of pH 4.5-7.5 (buffer stage) under standard (application/compendial) test conditions and two additional agitation speeds using the application/compendial test apparatus (three additional test conditions). If the application/compendial test apparatus is the rotating basket method (Apparatus 1), a rotation speed of 50, 100, and 150 rpm may be used, and if the application/compendial test apparatus is the rotating paddle method (Apparatus 2), a rotation speed of 50, 75, and 100 rpm may be used.
- Multipoint dissolution profiles are generally obtained during the buffer stage of testing. Adequate sampling may generally be performed, for example, at 15, 30, 45, 60, and 120 minutes (following the time from which the dosage form is placed in the buffer) until either 80% of the drug is released or an asymptote is reached.
- Dissolution profiles may be compared using any effective method. In one embodiment, the following equation defines a similarity factor (f2): f2=50 LOG {[1+1/n Σnt=1 (Rt−Tt)2)]0.5×100} where LOG=logarithm to base 10, n=number of sampling time points, Σ=summation over all time points, Rt=dissolution at time point t of the reference drug product, Tt=dissolution at time point t of the film dosage format of the present invention.
- For comparison of multipoint dissolution profiles obtained in multiple media, similarity testing should be performed using pairwise dissolution profiles (e.g., for the film dosage format of the present invention and the reference drug product) obtained in each individual medium. It is recommended that only one point past the plateau of the profiles be used in calculating the f2 value. A correction for a lag time prior to similarity testing should not be performed unless justified.
- Any effective f2 value may be used to indicate the similarity of the dissolution profile of two dosage formats. Generally an f2 value between 50 and 100 suggests the two dissolution profiles are similar. However an f2 value less than 50 does not necessarily indicate lack of similarity if the value may be explained by other factors. Generally, the average difference at any dissolution sampling time point should not be greater than about 15% between the film dosage format of the present invention and the reference drug product dissolution profiles. The reference for this comparison should represent an average dissolution profile derived from an effective number of batches of the products, for example, three or more recent batches of the reference drug product.
- In one embodiment of the present invention, the dissolution data obtained under the application/compendial dissolution testing conditions (media, agitation, etc.), on the film dosage format of the present invention is within the application/compendial specifications.
- Dissolution profiles may also compared using other methods, including, for example, model independent or model dependent methods. See, e.g., FDA, Oral Extended (Controlled) Release Dosage Forms In Vivo Bioequivalence and In Vitro Dissolution Testing, September 1993; FDA, Guidance for Dissolution Testing of Immediate Release Solid Oral Products, 1997; FDA, Guidance for the Development, Evaluation and Application of In Vitro/In Vivo Correlations for Extended Release Solid Oral Dosage Forms, 1997; Moore, J. W. and H. H. Flanner, “Mathematical Comparison of Dissolution Profiles,” Pharmaceutical Technology, 6:64-74, 1996; Skelly, J. P., et al., “Workshop Report: Scaleup of Oral Extended-Release Dosage Forms,” Pharmaceutical Research, 10(12): 1800-1805, 1993, all of which are incorporated herein by reference as if fully set forth herein.
- According to an embodiment film dosage formats in accordance with the present invention provide a rate and extent of absorption of one or more active ingredients that is comparable to that of a reference listed drug. Bioavailability and bioequivalence in accordance with the present invention may be obtained in ane effective manner. See, e.g., FDA Guidance for Industry Bioavailability and Bioequivalence Studies for Orally Administered Drug Products—General Considerations, which is hereby incorporated by reference as if fully set forth herein. In one embodiment, a film in accordance with the present invention is formulated such that one or more active ingredients have effective bioavailability and/or bioequivalence with a reference listed drug. In accordance with the present invention, an in vivo bioavailability and/or bioequivalence study may be performed in any effective manner. The design of a study may vary depending on the drug and dosage form. In one embodiment, the study design includes a single dose, two-treatment, two-period crossover with adequate washout period between the two phases of the study, with equal numbers of subjects being randomly assigned to each of the two dosing sequences. Generally, the number of subjects enrolled in the bioequivalence study should be determined statistically to account for the intrasubject variability and to meet the current bioequivalence interval. Generally each subject should receive the following two treatments: Treatment 1: edible film in accordance with the present invention. Treatment 2: reference listed drug. Following an overnight fast of at least 10 hours, subjects should receive either Treatments 1 or 2 above with 240 mL water. Food should not be allowed until 4 hours after dosing. Water may be allowed after the first hour. Subjects should be served standardized meals beginning at 4 hours during the study. Generally prior to and during each study phase, water may be allowed ad libitum except for 1 hour before and after drug administration. Generally the subject should be served standardized meals and beverages at specified times. Generally no alcohol or xanthine- or caffeine-containing foods and beverages should be consumed for 48 hours prior to each study period and until after the last blood sample is collected. Blood samples should generally be collected in sufficient volume for analysis of parent drug and active metabolite(s), if any. The sampling times should be such that it should be able to capture the Cmax and Tmax during the absorption period. Sampling should be carried out for at least three terminal elimination half-lives for both parent drug and active metabolite(s). Whole blood, plasma or serum, whichever is appropriate for the analytes, should be harvested promptly and samples should be frozen at −20 C or −70 C to maintain sample stability. The assay methodology selected should ensure specificity, accuracy, interday and intraday precision, linearity of standard curves, and adequate sensitivity, recovery, and stability of the samples under the storage and handling conditions associated with the analytical method. From the plasma drug concentration-time data, AUC0-t, AUC0-inf, Cmax, Tmax, Kel and t1/2 should be estimated. Analysis of variance appropriate for a crossover design on the pharmacokinetic parameters using the general linear models procedures of SAS or an equivalent program should be performed, with examination of period, sequence and treatment effects. The 90% confidence intervals for the estimates of the difference between the test and reference least squares means for the pharmacokinetic parameters (AUC0-t, AUC0-inf, Cmax) should be calculated, using the two one-sided t-test procedure.
- In another embodiment, a film dosage format of the present invention is obtained pursuant to a process including an in vitro/in vivo correlation. In one embodiment, a process for developing an in vitro/in vivo correlation is to (1) develop film dosage formats with different release rates, such as slow, medium, fast, or a single release rate if dissolution is condition independent; (2) obtain in vitro dissolution profiles and in vivo plasma concentration profiles for these film dosage formats; (3) estimate the in vivo absorption or dissolution time course using an appropriate deconvolution technique for each film dosage formats and subject (e.g., Wagner-Nelson, numerical deconvolution). These three steps establish the in vitro/in vivo correlation model. Alternative approaches to developing in vitro/in vivo correlations are possible.
- Generally a correlation is estimated by a two-stage procedure including deconvolution followed by comparison of the fraction of drug absorbed to the fraction of drug dissolved. A correlation of this type is generally linear and represents a point-to-point relationship between in vitro dissolution and the in vivo input rate (e.g., the in vivo dissolution of the drug from the dosage form). In a linear correlation, the in vitro dissolution and in vivo input curves may be directly superimposable or may be made to be superimposable by the use of a scaling factor. Nonlinear correlations may also be appropriate.
- In an alternative embodiment, a convolution procedure models the relationship between in vitro dissolution and plasma concentration in a single step. Plasma concentrations predicted from the model and those observed are compared directly. For these methods, a reference treatment is desirable, but the lack of one does not preclude the ability to develop an in vitro/in vivo correlation.
- Generally the models should predict the entire in vivo time course from the in vitro data. In this context, the model refers to the relationship between in vitro dissolution of a controlled release film dosage form of the present invention and an in vivo response such as plasma drug concentration or amount of drug absorbed. In one embodiment, a film dosage form of the present invention is formulated by comparing the model to that of a reference drug.
- The following examples are provided by way of illustration, and not limitation, of the invention.
- As noted, any desired prior art process and/or materials can be utilized to produce a film layer. The film layer may be formed, for example as follows. 3.4 g of hydropropyl cellulose and 0.4 ml of macrogol-400 (polyethylene glycol) are dissolved in 60 g of ethyl alcohol to produce a cellulose-alcohol solution. Nine milliliters of distilled water containing 90 mg of dissolved predonisolone is added to the cellulose-alcohol solution to produce a film forming composition. The film forming composition is poured into a film molding frame placed on a teflon plate. The area of teflon plate circumscribed by the frame is 9.5 square centimeters. The film forming composition is dried to form a film layer. The film layer includes an upper outer surface on top of the film layer and includes a lower outer surface on the bottom of the film layer. The lower outer surface is generally parallel to the upper outer surface. The film layer has a thickness of 40 microns.
- Sildenafil citrate, tadalafil, verdanafil, desloratadine, loratadine, loperamide (active ingredients) are microencapsulated such as to exhibit different release rates, such as slow, medium and fast, and also provided as a powder for immediate release.
- Four batches of powder matrix are prepared by individually combining the slow, medium, fast, and immediate release sildenafil with carboxymethylcellulose powder (as an adhesive), modified food starch (as a bulking agent), carrageenan (as adhesive), sucralose (intense sweetener) and talc (as flow/partitioning agent) in a fluidized bed container to form a powder matrix. Each of the four batches of powder matrix is atomized through a Nordson or similar static spray gun using compressed air onto a film layer, to produce four different batches of sildenafil film dosage formats (slow, medium, fast, and immediate release). See, for example Nordson Corporation's KINETIC™ spray systems (www.nordson.com). The gun creates a fine mist spray of powder particles. The gun statically electrically charges the powder particles so they adhere to the upper surface of the film layer. If desired the powder matrix can also be applied to the lower or bottom surface of the film layer. The powder matrix layer is applied such that each film dosage format will have about 25 mg sildenafil. The four batches of sildenafil film dosage format are then individually tested for dissolution, bioavailability and bioequivalence and the results are compared to the reference compound. If necessary the process is repeated with different controlled release formulations to achieve a desired result.
- Six batches of powder matrix are prepared by combining the slow, medium, fast, and immediate release tadalafil in different ratios, including batch 1:100% immediate release; batch 2:50% immediate release 50% fast release; batch 3:50% fast release 50% medium release; batch 4:50% medium release 50% slow release; batch 5:25% immediate release 25% fast release 25% medium release 25% slow release; batch 6:33% fast release 33% medium release 34% slow release. Each of the six batches is then individually mixed with carboxymethylcellulose powder (as an adhesive), modified food starch (as a bulking agent), carrageenan (as adhesive), sucralose (intense sweetener) and talc (as flow/partitioning agent) in a fluidized bed container to form a powder matrix. Each of the six batches of powder matrix is atomized through a Nordson or similar static spray gun using compressed air onto the film layer of example I, to produce six different batches of tadalafil film dosage formats. The powder matrix layer is applied such that each film dosage format will have about 20 mg tadalafil. The six batches of tadalafil film dosage format are then individually tested for dissolution, bioavailability and bioequivalence and the results are compared to the reference compound. If necessary the process is repeated with different controlled release formulations or different ratios to achieve a desired result.
- Four batches of film are formed as in Example I except that each batch further includes one of the slow, medium, fast or immediate release loratadine of example II, such that the final concentration of loratadine is 10 mg per film dosage unit. The four batches of loratadine film dosage format are then individually tested for dissolution, bioavailability and bioequivalence and the results are compared to the reference compound. If necessary the process is repeated with different controlled release formulations or different ratios to achieve a desired result.
- A batch of film is formed as in Example I except that it contains medium release desloratadine of example II such that the final concentration of desloratadine is 2.5 mg per film dosage unit.
- Four batches of powder matrix are prepared by individually combining the slow, medium, fast, and immediate release desloratadine with carboxymethylcellulose powder (as an adhesive), modified food starch (as a bulking agent), carrageenan (as adhesive), sucralose (intense sweetener) and talc (as flow/partitioning agent) in a fluidized bed container to form a powder matrix. Each of the four batches of powder matrix is atomized through a Nordson or similar static spray gun using compressed air onto the film layer, to produce four different batches of desloratadine film dosage formats (medium/slow, medium/medium, medium/fast, and medium/immediate release (film layer/powder matrix layer)). The powder matrix layer is applied such that each film dosage format will have about 5 mg desloratadine. The four batches of desloratadine film dosage format are then individually tested for dissolution, bioavailability and bioequivalence and the results are compared to the reference compound. If necessary the process is repeated with different controlled release formulations to achieve a desired result.
- While the invention is described in terms of a specific embodiment, other embodiments could readily be adapted by one skilled in the art. Accordingly, the scope of the present invention is limited only by the following claims.
Claims (21)
1. (canceled)
2. A composition for the oral administration of an active ingredient wherein the composition comprises an edible thin film, the film comprising a natural or synthetic water-soluble polymer, the film having a thickness of 0.01 mm to 3.00 mm and exhibiting an effective dissolution rate in the oral cavity and an active ingredient provided in controlled release formulation as a coating on said thin film, wherein the coating comprises a powder matrix comprising the active ingredient in a microencapsulated form, wherein the active ingredient is present in about 0.01 wt. % to about 50 wt. %, based on the weight of the composition.
3. The composition of claim 2 , wherein the active ingredient is provided in a controlled-release formulation selected from the group consisting of slow-, medium-, fast- and delayed release, and a combination thereof.
4. The composition of claim 2 , wherein the active ingredient is microencapsulated by a process selected from the group consisting of simple or complex coacervation, interracial cross-linking, interracial polymerization, polymer dispersion, matrix encapsulation, solvent evaporation, solvent extraction, spray drying, hot melt microencapsulation and supercritical fluid.
5. A dosage format for the oral administration of an active ingredient, the dosage format comprising: a) an edible thin film, the film comprising a natural or synthetic water-soluble polymer; and b) a multiplicity of individual microencapsulated controlled-release units each comprising the active ingredient and contained within the thin film; wherein the thin film is formulated and formed such that the thin film disintegrates in the oral cavity within about 15 seconds and wherein the multiplicity of individual active ingredient controlled-release units contained in the thin film are released upon said oral disintegration of the thin film, so that the active ingredient is released at a time other than immediately following oral administration, and wherein the active ingredient is present in about 0.01 wt. % to about 50 wt. %, based on the weight of the dosage format.
6. The dosage format of claim 5 , wherein the microencapsulated controlled-release units are encapsulated with ethyl cellulose, cellulose acetate phthalate, cellulose acetate butyrate, hydroxypropyl methyl cellulose phthalate, carboxymethyl ethyl cellulose, or carrageenan, or a mixture thereof.
7. The dosage format of claim 6 , wherein the microencapsulated controlled-release units are encapsulated with ethyl cellulose, or carrageenan, or a mixture thereof.
8. The dosage format of claim 6 , wherein the micro-encapsulated controlled-release units are encapsulated by a coacervation process.
9. The dosage format of claim 8 , wherein a second polymeric material is used in the coacervation process, the second polymer comprising polyethylene, polyisobutylene, ethylenevinyl acetate, or a mixture thereof.
10. The dosage format of claim 6 , wherein the micro-encapsulated controlled-release units are encapsulated by a solvent evaporation and solvent extraction process.
11. The dosage format of claim 6 , wherein the micro-encapsulated controlled-release units are encapsulated by a hot melt microencapsulation process.
12. The dosage format of claim 6 , wherein the micro-encapsulated controlled-release units have particle sizes in the range of 40 μm to 250 μm.
13. The dosage format of claim 5 , further comprising a permeation enhancer.
14. The dosage format of claim 13 , wherein the permeation enhancer is a bile salt, an alkylsulfate surfactant, or dimethyl sulfoxide, or any combination thereof.
15. The dosage format of claim 14 , wherein the bile salt is sodium cholate, sodium glycocholate, sodium glyodeoxycholate, tautodeoxycholate, sodium deoxycholate, sodium thocholate chenocholate, hyodeoxycholate, dehydrocholate, glycochenocholate, taurochenocholate, or taurochenodexoxycholate, or any combination thereof.
16. The dosage format of claim 14 , wherein the alkylsulfate surfactant is sodium dodecyl sulfate or sodium lauryl sulfate.
17. The dosage format of claim 5 , further comprising an agent for adjusting pH conditions to modulate the rate of mucosal absorption of active ingredient.
18. The dosage format of claim 17 , wherein the agent for adjusting pH conditions is a buffering agent.
19. The dosage format of claim 17 , wherein the agent for adjusting pH conditions is contained in the film layer, in the controlled release units, or both.
20. The dosage format of claim 5 , further comprising an immediate release form of the active agent, of a second active agent, or both.
21. The dosage format of claim 5 , wherein the active ingredient in the controlled-release units is made available in the gastrointestinal tract.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42659802P | 2002-11-14 | 2002-11-14 | |
US10/402,273 US20040191302A1 (en) | 2003-03-28 | 2003-03-28 | Method and apparatus for minimizing heat, moisture, and shear damage to medicants and other compositions during incorporation of same with edible films |
US49718603P | 2003-08-22 | 2003-08-22 | |
US10/713,544 US20040136923A1 (en) | 2002-11-14 | 2003-11-14 | Edible film for relief of cough or symptoms associated with pharyngitis |
US10/921,770 US9561182B2 (en) | 2003-08-22 | 2004-08-18 | Edible films for administration of medicaments to animals, methods for their manufacture and methods for their use for the treatment of animals |
US11/371,167 US8999372B2 (en) | 2002-11-14 | 2006-03-07 | Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/371,167 Continuation US8999372B2 (en) | 2002-11-14 | 2006-03-07 | Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160030335A1 true US20160030335A1 (en) | 2016-02-04 |
Family
ID=37010626
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/371,167 Active 2027-04-29 US8999372B2 (en) | 2002-11-14 | 2006-03-07 | Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use |
US14/679,444 Abandoned US20160030335A1 (en) | 2002-11-14 | 2015-04-06 | Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/371,167 Active 2027-04-29 US8999372B2 (en) | 2002-11-14 | 2006-03-07 | Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use |
Country Status (1)
Country | Link |
---|---|
US (2) | US8999372B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9561182B2 (en) | 2003-08-22 | 2017-02-07 | Cure Pharmaceutical Corporation | Edible films for administration of medicaments to animals, methods for their manufacture and methods for their use for the treatment of animals |
US10398644B2 (en) | 2002-11-14 | 2019-09-03 | Cure Pharmaceutical Corporation | Method and apparatus for minimizing heat, moisture, and shear damage to medicants and other compositions during incorporation of same with edible films |
Families Citing this family (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10285910B2 (en) | 2001-10-12 | 2019-05-14 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
US7357891B2 (en) | 2001-10-12 | 2008-04-15 | Monosol Rx, Llc | Process for making an ingestible film |
US8663687B2 (en) * | 2001-10-12 | 2014-03-04 | Monosol Rx, Llc | Film compositions for delivery of actives |
US7666337B2 (en) * | 2002-04-11 | 2010-02-23 | Monosol Rx, Llc | Polyethylene oxide-based films and drug delivery systems made therefrom |
US20070281003A1 (en) | 2001-10-12 | 2007-12-06 | Fuisz Richard C | Polymer-Based Films and Drug Delivery Systems Made Therefrom |
US8900497B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for making a film having a substantially uniform distribution of components |
US20110033542A1 (en) | 2009-08-07 | 2011-02-10 | Monosol Rx, Llc | Sublingual and buccal film compositions |
US8765167B2 (en) | 2001-10-12 | 2014-07-01 | Monosol Rx, Llc | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US7425292B2 (en) * | 2001-10-12 | 2008-09-16 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US11207805B2 (en) | 2001-10-12 | 2021-12-28 | Aquestive Therapeutics, Inc. | Process for manufacturing a resulting pharmaceutical film |
US8603514B2 (en) | 2002-04-11 | 2013-12-10 | Monosol Rx, Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
US20190328679A1 (en) | 2001-10-12 | 2019-10-31 | Aquestive Therapeutics, Inc. | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US8900498B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for manufacturing a resulting multi-layer pharmaceutical film |
US20040191302A1 (en) | 2003-03-28 | 2004-09-30 | Davidson Robert S. | Method and apparatus for minimizing heat, moisture, and shear damage to medicants and other compositions during incorporation of same with edible films |
MXPA05005243A (en) * | 2002-11-14 | 2006-03-10 | Innozen Inc | Edible film for relief of cough or symptoms associated with pharyngitis. |
US8999372B2 (en) | 2002-11-14 | 2015-04-07 | Cure Pharmaceutical Corporation | Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use |
EP1802258A4 (en) | 2004-09-13 | 2015-09-23 | Chrono Therapeutics Inc | Biosynchronous transdermal drug delivery |
KR20080007449A (en) * | 2005-05-03 | 2008-01-21 | 이노젠, 인크. | Edible Films for Transmucosal Delivery of Nutritional Supplements |
EP3095447B1 (en) | 2006-02-03 | 2021-11-24 | OPKO Renal, LLC | Treating vitamin d insufficiency and deficiency with 25-hydroxyvitamin d2 and 25-hydroxyvitamin d3 |
US20090130212A1 (en) * | 2006-05-15 | 2009-05-21 | Physical Pharmaceutica, Llc | Composition and improved method for preparation of small particles |
PL2679228T3 (en) | 2006-06-21 | 2018-07-31 | Opko Ireland Global Holdings, Ltd. | Therapy using vitamin D repletion agent and vitamin D hormone replacement agent |
CN101516331A (en) | 2006-09-20 | 2009-08-26 | 莫诺索尔克斯有限公司 | Edible water-soluble film containing a foam reducing flavoring agent |
US8731673B2 (en) | 2007-02-26 | 2014-05-20 | Sapiens Steering Brain Stimulation B.V. | Neural interface system |
SI2148661T1 (en) | 2007-04-25 | 2013-04-30 | Cytochroma Inc. | Oral controlled release compositions comprising vitamin d compound and waxy carrier |
WO2009047644A2 (en) | 2007-04-25 | 2009-04-16 | Cytochroma Inc. | Method of treating vitamin d insufficiency and deficiency |
WO2008134523A1 (en) | 2007-04-25 | 2008-11-06 | Proventiv Therapeutics, Llc | Method of safely and effectively treating and preventing secondary hyperparathyroidism in chronic kidney disease |
US20080292683A1 (en) * | 2007-05-24 | 2008-11-27 | Monosolrx, Llc. | Film shreds and delivery system incorporating same |
US8298583B2 (en) | 2007-10-19 | 2012-10-30 | Monosol Rx, Llc | Film delivery system for tetrahydrolipstatin |
WO2009052421A1 (en) * | 2007-10-19 | 2009-04-23 | Innozen, Inc. | Composition for administering an active ingredient and method for making and using the same |
CN102014882A (en) * | 2008-01-31 | 2011-04-13 | 麦克内尔-Ppc股份有限公司 | Edible film-strips for immediate release of active ingredients |
CA2711974A1 (en) * | 2008-01-31 | 2009-08-13 | Mcneil-Ppc, Inc. | Edible film-strips with modified release active ingredients |
EP3112476B1 (en) | 2008-04-02 | 2023-08-02 | EirGen Pharma Ltd. | Methods, compositions, uses, and kits useful for vitamin d deficiency and related disorders |
ITMI20081450A1 (en) * | 2008-08-04 | 2010-02-05 | Biofarmitalia Spa | SOLID RAPID DISSOLUTION FILM IN LIQUIDS |
US20100040727A1 (en) * | 2008-08-18 | 2010-02-18 | Monosol Rx, Llc | Method for Improving Uniformity of Content in Edible Film Manufacturing |
US9155772B2 (en) | 2008-12-08 | 2015-10-13 | Philip Morris Usa Inc. | Soft, chewable and orally dissolvable and/or disintegrable products |
US8282954B2 (en) * | 2008-12-15 | 2012-10-09 | Monosol Rx, Llc | Method for manufacturing edible film |
US9167835B2 (en) | 2008-12-30 | 2015-10-27 | Philip Morris Usa Inc. | Dissolvable films impregnated with encapsulated tobacco, tea, coffee, botanicals, and flavors for oral products |
US9167847B2 (en) | 2009-03-16 | 2015-10-27 | Philip Morris Usa Inc. | Production of coated tobacco particles suitable for usage in a smokeless tobacoo product |
US20100297232A1 (en) * | 2009-05-19 | 2010-11-25 | Monosol Rx, Llc | Ondansetron film compositions |
DK2952191T3 (en) | 2009-06-12 | 2018-12-10 | Sunovion Pharmaceuticals Inc | Sublingual apomorphine |
US8475832B2 (en) | 2009-08-07 | 2013-07-02 | Rb Pharmaceuticals Limited | Sublingual and buccal film compositions |
BR112012007125B1 (en) * | 2009-09-29 | 2021-02-09 | Stora Enso Oyj | xyloglucan films, their use and production process, and product |
US9549842B2 (en) | 2011-02-04 | 2017-01-24 | Joseph E. Kovarik | Buccal bioadhesive strip and method of treating snoring and sleep apnea |
US8701671B2 (en) | 2011-02-04 | 2014-04-22 | Joseph E. Kovarik | Non-surgical method and system for reducing snoring |
AU2010343147A1 (en) * | 2009-12-28 | 2012-07-19 | Monosol Rx, Llc | Orally administrable film dosage forms containing ondansetron |
US11672809B2 (en) | 2010-03-29 | 2023-06-13 | Eirgen Pharma Ltd. | Methods and compositions for reducing parathyroid levels |
CA2807271C (en) | 2010-06-10 | 2018-07-31 | Midatech Limited | Nanoparticle film delivery systems |
WO2012053006A2 (en) * | 2010-10-18 | 2012-04-26 | Panacea Biotec Ltd | Improved oral fast dissolving films comprising combination of polymers and method of preparation thereof |
US9149959B2 (en) | 2010-10-22 | 2015-10-06 | Monosol Rx, Llc | Manufacturing of small film strips |
HUE049349T2 (en) | 2010-12-16 | 2020-09-28 | Sunovion Pharmaceuticals Inc | Sublingual movies |
US12257272B2 (en) | 2015-12-24 | 2025-03-25 | Seed Health, Inc. | Method and system for reducing the likelihood of developing depression in an individual |
US11357722B2 (en) | 2011-02-04 | 2022-06-14 | Seed Health, Inc. | Method and system for preventing sore throat in humans |
US10512661B2 (en) | 2011-02-04 | 2019-12-24 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing liver cancer in an individual diagnosed with non-alcoholic fatty liver disease |
US10086018B2 (en) | 2011-02-04 | 2018-10-02 | Joseph E. Kovarik | Method and system for reducing the likelihood of colorectal cancer in a human being |
US10842834B2 (en) | 2016-01-06 | 2020-11-24 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing liver cancer in an individual diagnosed with non-alcoholic fatty liver disease |
US9987224B2 (en) | 2011-02-04 | 2018-06-05 | Joseph E. Kovarik | Method and system for preventing migraine headaches, cluster headaches and dizziness |
US11523934B2 (en) | 2011-02-04 | 2022-12-13 | Seed Health, Inc. | Method and system to facilitate the growth of desired bacteria in a human's mouth |
US10548761B2 (en) | 2011-02-04 | 2020-02-04 | Joseph E. Kovarik | Method and system for reducing the likelihood of colorectal cancer in a human being |
US10687975B2 (en) | 2011-02-04 | 2020-06-23 | Joseph E. Kovarik | Method and system to facilitate the growth of desired bacteria in a human's mouth |
US11951139B2 (en) | 2015-11-30 | 2024-04-09 | Seed Health, Inc. | Method and system for reducing the likelihood of osteoporosis |
US11844720B2 (en) | 2011-02-04 | 2023-12-19 | Seed Health, Inc. | Method and system to reduce the likelihood of dental caries and halitosis |
US11998479B2 (en) | 2011-02-04 | 2024-06-04 | Seed Health, Inc. | Method and system for addressing adverse effects on the oral microbiome and restoring gingival health caused by sodium lauryl sulphate exposure |
US11419903B2 (en) | 2015-11-30 | 2022-08-23 | Seed Health, Inc. | Method and system for reducing the likelihood of osteoporosis |
US11273187B2 (en) | 2015-11-30 | 2022-03-15 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing depression in an individual |
US12279989B2 (en) | 2011-02-04 | 2025-04-22 | Seed Health, Inc. | Method and system for increasing beneficial bacteria and decreasing pathogenic bacteria in the oral cavity |
US11951140B2 (en) | 2011-02-04 | 2024-04-09 | Seed Health, Inc. | Modulation of an individual's gut microbiome to address osteoporosis and bone disease |
US10245288B2 (en) | 2011-02-04 | 2019-04-02 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing NASH in an individual diagnosed with non-alcoholic fatty liver disease |
CA2857941C (en) * | 2011-12-16 | 2019-01-15 | Colgate-Palmolive Company | Color changing oral compositions containing film |
PL2866592T3 (en) * | 2012-06-28 | 2017-01-31 | Optimags Dr Zimmermann Gmbh | Method for producing a film formulation for an edible film, and the use thereof |
KR101847947B1 (en) | 2013-03-15 | 2018-05-28 | 옵코 아이피 홀딩스 Ⅱ 인코포레이티드 | Stabilized modified release vitamin d formulation |
US20160263026A1 (en) * | 2013-11-13 | 2016-09-15 | Macular Health, Llc | Oral thin film formulation for reduction of vision loss from macular degeneration |
US11826388B2 (en) | 2013-12-20 | 2023-11-28 | Seed Health, Inc. | Topical application of Lactobacillus crispatus to ameliorate barrier damage and inflammation |
US11833177B2 (en) | 2013-12-20 | 2023-12-05 | Seed Health, Inc. | Probiotic to enhance an individual's skin microbiome |
US11839632B2 (en) | 2013-12-20 | 2023-12-12 | Seed Health, Inc. | Topical application of CRISPR-modified bacteria to treat acne vulgaris |
US12005085B2 (en) | 2013-12-20 | 2024-06-11 | Seed Health, Inc. | Probiotic method and composition for maintaining a healthy vaginal microbiome |
US12246043B2 (en) | 2013-12-20 | 2025-03-11 | Seed Health, Inc. | Topical application to treat acne vulgaris |
US11969445B2 (en) | 2013-12-20 | 2024-04-30 | Seed Health, Inc. | Probiotic composition and method for controlling excess weight, obesity, NAFLD and NASH |
US11998574B2 (en) | 2013-12-20 | 2024-06-04 | Seed Health, Inc. | Method and system for modulating an individual's skin microbiome |
US11980643B2 (en) | 2013-12-20 | 2024-05-14 | Seed Health, Inc. | Method and system to modify an individual's gut-brain axis to provide neurocognitive protection |
US9392814B2 (en) * | 2014-06-06 | 2016-07-19 | Nicholas J. Singer | Delivery system for drinks |
US10220047B2 (en) | 2014-08-07 | 2019-03-05 | Opko Ireland Global Holdings, Ltd. | Adjunctive therapy with 25-hydroxyvitamin D and articles therefor |
JP2018511355A (en) | 2015-01-28 | 2018-04-26 | クロノ セラピューティクス インコーポレイテッドChrono Therapeutics Inc. | Drug delivery method and system |
PT3285771T (en) | 2015-04-21 | 2025-03-31 | Sunovion Pharmaceuticals Inc | Methods of treating parkinson's disease by administration of apomorphine to an oral mucosa |
USD773313S1 (en) | 2015-06-23 | 2016-12-06 | Nicholas J. Singer | Package |
US12239706B2 (en) | 2015-11-30 | 2025-03-04 | Seed Health, Inc. | Method and system for protecting monarch butterflies from pesticides |
JP7032322B2 (en) | 2016-03-28 | 2022-03-08 | オプコ アイルランド グローバル ホールディングス リミテッド | Vitamin D treatment |
CA3022840A1 (en) | 2016-05-05 | 2017-11-09 | Aquestive Therapeutics, Inc. | Enhanced delivery epinephrine compositions |
US11273131B2 (en) | 2016-05-05 | 2022-03-15 | Aquestive Therapeutics, Inc. | Pharmaceutical compositions with enhanced permeation |
WO2018129304A1 (en) | 2017-01-06 | 2018-07-12 | Chrono Therapeutics Inc. | Transdermal drug delivery devices and methods |
WO2019090125A2 (en) * | 2017-11-02 | 2019-05-09 | Chrono Therapeutics Inc. | Smart abuse-deterrent transdermal drug delivery system |
EP3801732A4 (en) | 2018-05-29 | 2022-04-27 | Morningside Venture Investments Limited | METHODS AND SYSTEMS FOR DRUG DELIVERY |
US12150967B2 (en) | 2018-08-18 | 2024-11-26 | Seed Health, Inc. | Methods and compositions for honey bee health |
FR3087125B1 (en) * | 2018-10-11 | 2021-07-02 | Ferring Bv | METHOD OF MANUFACTURING A SOLID FORMULATION FOR ORAL ADMINISTRATION, ASSOCIATED INSTALLATION AND SOLID FORMULATION |
CN114306285B (en) * | 2020-09-30 | 2024-05-14 | 常州方圆制药有限公司 | Desloratadine oral instant membrane and preparation method thereof |
CN114088901B (en) * | 2021-11-19 | 2023-12-22 | 江苏科技大学 | General degradable drug-carrying film in-vitro release data optimization analysis method |
Family Cites Families (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL280825A (en) | 1962-07-11 | |||
US3155590A (en) | 1962-08-02 | 1964-11-03 | Ncr Co | Encapsulation process and its product |
US3341416A (en) | 1963-12-11 | 1967-09-12 | Ncr Co | Encapsulation of aspirin in ethylcellulose and its product |
US3531418A (en) | 1965-08-18 | 1970-09-29 | Ncr Co | En masse encapsulation process |
US3488418A (en) | 1965-11-18 | 1970-01-06 | Sterling Drug Inc | Sustained relief analgesic composition |
FR5788M (en) | 1965-11-18 | 1968-03-18 | ||
US3703576A (en) | 1969-08-08 | 1972-11-21 | Fuji Photo Film Co Ltd | Method of producing micro-capsules enclosing acetylsalicylic acid therein |
FR2071223A5 (en) | 1969-12-28 | 1971-09-17 | Rosen Hyman | Contact lens - for medicament application |
US3909444A (en) | 1971-08-05 | 1975-09-30 | Ncr Co | Microcapsule |
JPS523342B2 (en) | 1972-01-26 | 1977-01-27 | ||
JPS5438164B2 (en) | 1972-05-29 | 1979-11-19 | ||
US4107072A (en) | 1973-05-25 | 1978-08-15 | Merck & Co., Inc. | Process of isolating cyclohexane-free ethylcellulose microcapsules |
JPS5012246A (en) | 1973-06-01 | 1975-02-07 | ||
ZA767136B (en) | 1975-12-15 | 1977-10-26 | Hoffmann La Roche | Novel dosage form |
US4197289A (en) * | 1975-12-15 | 1980-04-08 | Hoffmann-La Roche Inc. | Novel dosage forms |
US4083741A (en) | 1975-12-15 | 1978-04-11 | Hoffmann-La Roche, Inc. | Novel dosage form |
US4316884A (en) | 1979-01-25 | 1982-02-23 | Adria Laboratories, Inc. | Sustained release pharmaceutical formulation |
JPS6045845B2 (en) | 1979-10-31 | 1985-10-12 | 田辺製薬株式会社 | Method for producing microcapsules containing pharmaceutical substances |
JPS56152739A (en) | 1980-04-25 | 1981-11-26 | Tanabe Seiyaku Co Ltd | Production of microcapsule |
JPS5758615A (en) | 1980-09-26 | 1982-04-08 | Nippon Soda Co Ltd | Film agnent and its preparation |
US4389330A (en) | 1980-10-06 | 1983-06-21 | Stolle Research And Development Corporation | Microencapsulation process |
DK151608C (en) | 1982-08-13 | 1988-06-20 | Benzon As Alfred | PROCEDURE FOR PREPARING A PHARMACEUTICAL PERORAL POLYDEPOT PREPARATION WITH CONTROLLED RELEASE |
US4746508A (en) | 1983-06-06 | 1988-05-24 | Beth Israel Hospital Assn. | Drug administration |
US5288498A (en) | 1985-05-01 | 1994-02-22 | University Of Utah Research Foundation | Compositions of oral nondissolvable matrixes for transmucosal administration of medicaments |
DE3416209A1 (en) | 1984-05-02 | 1985-11-21 | Mohamed Roshdy Dr Ismail | EYE TREATMENT PREPARATIONS |
JPH0729915B2 (en) | 1986-02-01 | 1995-04-05 | 帝國製薬株式会社 | Sheet-shaped oral patch |
US5196202A (en) | 1986-09-01 | 1993-03-23 | Teikoku Seiyaku Kabushiki Kaisha | Sustained release dosage form |
JPH0794384B2 (en) | 1986-09-01 | 1995-10-11 | 帝国製薬株式会社 | Sustained-release oral formulation |
US5047244A (en) | 1988-06-03 | 1991-09-10 | Watson Laboratories, Inc. | Mucoadhesive carrier for delivery of therapeutical agent |
HU201869B (en) | 1988-12-30 | 1991-01-28 | Egyt Gyogyszervegyeszeti Gyar | Process for producing microcapsules of quick dissolving active component |
JPH0645536B2 (en) | 1989-01-31 | 1994-06-15 | 日東電工株式会社 | Oral mucosa patch and oral mucosa patch preparation |
US5055461A (en) | 1989-02-15 | 1991-10-08 | Richardson-Vicks Inc. | Anesthetic oral compositions and methods of use |
CA2073191A1 (en) | 1989-11-09 | 1991-05-10 | John H. Williford | Methods and compositions for flavoring orally-delivered products |
DE4018247A1 (en) | 1990-06-07 | 1991-12-12 | Lohmann Therapie Syst Lts | MANUFACTURING METHOD FOR QUICK-DISINFITTING FILM-SHAPED PHARMACEUTICAL FORMS |
US5238714A (en) | 1990-10-02 | 1993-08-24 | Board Of Regents, The University Of Texas System | Efficient microcapsule preparation and method of use |
US5411945A (en) | 1992-08-29 | 1995-05-02 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Pullulan binder and its uses |
WO1994016575A1 (en) | 1992-12-23 | 1994-08-04 | Yatka Robert J | Chewing gum containing guar gum hydrolyzate |
WO1995005161A1 (en) | 1993-08-13 | 1995-02-23 | Vitaphore Corporation | Hydrogel-based microsphere drug delivery systems |
JPH09504810A (en) | 1993-08-19 | 1997-05-13 | シグナス,インコーポレイテッド | Water-soluble pressure sensitive mucoadhesive |
US6066337A (en) | 1994-01-27 | 2000-05-23 | The Board Of Regents Of The University Of Oklahoma And Janssen Pharmaceutica, Inc. | Method for producing a rapidly dissolving dosage form |
US5639469A (en) | 1994-06-15 | 1997-06-17 | Minnesota Mining And Manufacturing Company | Transmucosal delivery system |
RU2065302C1 (en) | 1994-09-30 | 1996-08-20 | Минаев Б.Д. | Analgesic agent "ferrocaine" |
US5688520A (en) | 1995-03-29 | 1997-11-18 | Minnesota Mining And Manufacturing Company | Transmucosal delivery of melatonin for prevention of migraine |
FR2732223B1 (en) | 1995-03-30 | 1997-06-13 | Sanofi Sa | PHARMACEUTICAL COMPOSITION FOR TRANSDERMAL ADMINISTRATION |
US5714007A (en) * | 1995-06-06 | 1998-02-03 | David Sarnoff Research Center, Inc. | Apparatus for electrostatically depositing a medicament powder upon predefined regions of a substrate |
US6063412A (en) | 1995-08-07 | 2000-05-16 | Hoy; Stephen B. | Edible animal greeting cards |
NZ334914A (en) | 1996-10-01 | 2000-09-29 | Stanford Res Inst Int | Taste-masked microcapsule compositions and methods of manufacture using a phase seperation-coacervation technique |
US20010006677A1 (en) | 1996-10-29 | 2001-07-05 | Mcginity James W. | Effervescence polymeric film drug delivery system |
DE19646392A1 (en) | 1996-11-11 | 1998-05-14 | Lohmann Therapie Syst Lts | Preparation for use in the oral cavity with a layer containing pressure-sensitive adhesive, pharmaceuticals or cosmetics for dosed delivery |
GB9623634D0 (en) * | 1996-11-13 | 1997-01-08 | Bpsi Holdings Inc | Method and apparatus for the coating of substrates for pharmaceutical use |
EP0845411B1 (en) | 1996-11-29 | 2002-02-13 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Package for an inclusion product and process for making same |
US6010718A (en) | 1997-04-11 | 2000-01-04 | Abbott Laboratories | Extended release formulations of erythromycin derivatives |
US6551616B1 (en) | 1997-04-11 | 2003-04-22 | Abbott Laboratories | Extended release formulations of erythromycin derivatives |
GB2328443B (en) | 1997-08-21 | 2001-09-05 | Reckitt & Colmann Prod Ltd | In situ formation of pharmaceutically acceptable polymeric material |
US6638621B2 (en) | 2000-08-16 | 2003-10-28 | Lyotropic Therapeutics, Inc. | Coated particles, methods of making and using |
JP3460538B2 (en) | 1997-10-08 | 2003-10-27 | 救急薬品工業株式会社 | Fast dissolving film preparation |
US20030211136A1 (en) | 1998-09-25 | 2003-11-13 | Neema Kulkarni | Fast dissolving orally consumable films containing a sweetener |
US6596298B2 (en) | 1998-09-25 | 2003-07-22 | Warner-Lambert Company | Fast dissolving orally comsumable films |
CA2520986C (en) | 1998-09-25 | 2007-11-13 | Warner-Lambert Company | Physiological compatible film |
US20030206942A1 (en) | 1998-09-25 | 2003-11-06 | Neema Kulkarni | Fast dissolving orally consumable films containing an antitussive and a mucosa coating agent |
US6322819B1 (en) | 1998-10-21 | 2001-11-27 | Shire Laboratories, Inc. | Oral pulsed dose drug delivery system |
US6248363B1 (en) | 1999-11-23 | 2001-06-19 | Lipocine, Inc. | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
US6210699B1 (en) * | 1999-04-01 | 2001-04-03 | Watson Pharmaceuticals, Inc. | Oral transmucosal delivery of drugs or any other ingredients via the inner buccal cavity |
DE19954421A1 (en) | 1999-11-12 | 2001-05-31 | Lohmann Therapie Syst Lts | Film-like preparation for the biphase release of pharmacologically active or other substances |
US6953593B2 (en) | 2000-02-01 | 2005-10-11 | Lipoprotein Technologies, Inc. | Sustained-release microencapsulated delivery system |
US7067116B1 (en) | 2000-03-23 | 2006-06-27 | Warner-Lambert Company Llc | Fast dissolving orally consumable solid film containing a taste masking agent and pharmaceutically active agent at weight ratio of 1:3 to 3:1 |
WO2002002126A1 (en) | 2000-07-01 | 2002-01-10 | Ml Laboratories Plc | Medicaments containing dextrin for treating respiratory disorders such as cystic fibrosis |
US20020019447A1 (en) | 2000-07-03 | 2002-02-14 | Renn Donald Walter | Physical forms of clarified hydrocolloids of undiminished properties and method of producing same |
DE10032456A1 (en) | 2000-07-04 | 2002-01-31 | Lohmann Therapie Syst Lts | Rapidly disintegrating dosage form for the release of active substances in the mouth or in the body cavities |
US20020131990A1 (en) | 2000-11-30 | 2002-09-19 | Barkalow David G. | Pullulan free edible film compositions and methods of making the same |
AU2001298061A1 (en) | 2000-12-13 | 2003-07-09 | Purdue Research Foundation | Microencapsulation of drugs by solvent exchange |
GB0110846D0 (en) | 2001-05-02 | 2001-06-27 | Phoqus Ltd | Tablets with coloured patterns |
US6660292B2 (en) | 2001-06-19 | 2003-12-09 | Hf Flavoring Technology Llp | Rapidly disintegrating flavored film for precooked foods |
US6585997B2 (en) | 2001-08-16 | 2003-07-01 | Access Pharmaceuticals, Inc. | Mucoadhesive erodible drug delivery device for controlled administration of pharmaceuticals and other active compounds |
US6419903B1 (en) | 2001-08-20 | 2002-07-16 | Colgate Palmolive Company | Breath freshening film |
US7323192B2 (en) | 2001-09-28 | 2008-01-29 | Mcneil-Ppc, Inc. | Immediate release tablet |
US8765167B2 (en) | 2001-10-12 | 2014-07-01 | Monosol Rx, Llc | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
WO2003043659A1 (en) | 2001-11-16 | 2003-05-30 | Givaudan Sa | Edible film |
US20040247649A1 (en) | 2002-02-11 | 2004-12-09 | Edizone, Lc | Medicine-containing orally soluble films |
US20050003048A1 (en) | 2002-02-11 | 2005-01-06 | Edizone, Lc | Electrolyte-containing orally soluble films |
WO2004009445A2 (en) | 2002-07-22 | 2004-01-29 | Kosmos Pharma | Packaging and dispensing of rapid dissolve dosage form |
US20040043134A1 (en) | 2002-08-27 | 2004-03-04 | Corriveau Christine Leclair | Rolled edible thin film products and methods of making same |
US20060205629A1 (en) | 2002-10-30 | 2006-09-14 | Reg Macquarrie | Edible dissolving gelatin strips |
US8999372B2 (en) | 2002-11-14 | 2015-04-07 | Cure Pharmaceutical Corporation | Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use |
US20040191302A1 (en) | 2003-03-28 | 2004-09-30 | Davidson Robert S. | Method and apparatus for minimizing heat, moisture, and shear damage to medicants and other compositions during incorporation of same with edible films |
US9561182B2 (en) | 2003-08-22 | 2017-02-07 | Cure Pharmaceutical Corporation | Edible films for administration of medicaments to animals, methods for their manufacture and methods for their use for the treatment of animals |
MXPA05005243A (en) | 2002-11-14 | 2006-03-10 | Innozen Inc | Edible film for relief of cough or symptoms associated with pharyngitis. |
US20040131662A1 (en) | 2003-11-12 | 2004-07-08 | Davidson Robert S. | Method and apparatus for minimizing heat, moisture, and shear damage to medicants and other compositions during incorporation of same with edible films |
US20040096569A1 (en) | 2002-11-15 | 2004-05-20 | Barkalow David G. | Edible film products and methods of making same |
EP1605905A1 (en) | 2003-03-26 | 2005-12-21 | The Procter & Gamble Company | Rapidly dissolving edible film compositions with cellulose film forming polymers |
WO2004087089A2 (en) | 2003-03-26 | 2004-10-14 | The Procter & Gamble Company | Rapidly dissolving edible film compositions with improved film strength and stability |
US20040202698A1 (en) | 2003-04-02 | 2004-10-14 | The Procter & Gamble Company | Drug delivery systems comprising an encapsulated active ingredient |
EP1622595A1 (en) | 2003-05-02 | 2006-02-08 | Warner-Lambert Company LLC | Fast dissolving orally consumable films containing a modified starch for improved heat and moisture resistance |
KR20080007449A (en) | 2005-05-03 | 2008-01-21 | 이노젠, 인크. | Edible Films for Transmucosal Delivery of Nutritional Supplements |
KR101151398B1 (en) * | 2007-07-20 | 2012-06-08 | 삼성전자주식회사 | Hybrid toner and process for preparing the same |
KR101223644B1 (en) * | 2007-12-14 | 2013-01-17 | 삼성전자주식회사 | Toner and process for preparing the same |
-
2006
- 2006-03-07 US US11/371,167 patent/US8999372B2/en active Active
-
2015
- 2015-04-06 US US14/679,444 patent/US20160030335A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10398644B2 (en) | 2002-11-14 | 2019-09-03 | Cure Pharmaceutical Corporation | Method and apparatus for minimizing heat, moisture, and shear damage to medicants and other compositions during incorporation of same with edible films |
US9561182B2 (en) | 2003-08-22 | 2017-02-07 | Cure Pharmaceutical Corporation | Edible films for administration of medicaments to animals, methods for their manufacture and methods for their use for the treatment of animals |
Also Published As
Publication number | Publication date |
---|---|
US8999372B2 (en) | 2015-04-07 |
US20060210610A1 (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8999372B2 (en) | Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use | |
JP2601660B2 (en) | Sustained-release compressed tablets | |
Bussemer et al. | Pulsatile drug-delivery systems | |
Verma et al. | Drug delivery technologies and future directions | |
JP5538905B2 (en) | Polymer-based film and drug release system produced therefrom | |
AU639334B2 (en) | Taste masking and sustained release coatings for pharmaceuticals | |
EP0523847B1 (en) | Taste mask coating for preparation of chewable pharmaceutical tablets | |
CN103347503B (en) | Effervescent gamma-hydroxybutyric acid granules | |
US6656492B2 (en) | Quick disintegrating tablet in buccal cavity and manufacturing method thereof | |
CA2299511C (en) | A pharmaceutical composition having two coating layers | |
JP4825385B2 (en) | Thin film formulation for two-phase release of pharmacologically active substances or other substances | |
FR2725623A1 (en) | MEDICINAL AND / OR NUTRITION MICROCAPSULES FOR PER OS ADMINISTRATION | |
JP2003520223A (en) | Multi-spike release formulation for drug delivery | |
JP2006515598A (en) | Edible film to reduce cough or pharyngitis related symptoms | |
JP2005522991A (en) | Edible film | |
CN101987081A (en) | Controlled release preparation | |
JPWO2005102291A1 (en) | Seamless capsules containing water-soluble active ingredients | |
IL104093A (en) | Prolamine coatings for taste-masking orally administrable medicaments | |
US20210228492A1 (en) | Multiparticulate including pharmaceutical or probiotic active ingredients for delivery via a shelf stable liquid dosage form | |
US20130216594A1 (en) | Preparation of orodispersible films | |
WO2007102817A1 (en) | Methods for modulating dissolution, bioavailability, bioequivalence and drug delivery profile of thin film drug delivery systems, controlled-release thin film dosage formats, and methods for their manufacture and use | |
EP1830814B1 (en) | Taste masking system for non-plasticizing drugs | |
US12208160B2 (en) | Pharmaceutical compositions comprising coated API | |
Fulzele et al. | Drug Delivery: Fast Dissolve Systems | |
Targhi | Preparation and evaluation of sustained release trinitroglycerin microcapsules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CURE PHARMACEUTICAL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INNOZEN, INC.;REEL/FRAME:037002/0466 Effective date: 20140424 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |