US20160015824A1 - Lipid-Coated Albumin Nanoparticle Compositions and Methods of Making and Method of Using the Same - Google Patents
Lipid-Coated Albumin Nanoparticle Compositions and Methods of Making and Method of Using the Same Download PDFInfo
- Publication number
- US20160015824A1 US20160015824A1 US14/403,315 US201314403315A US2016015824A1 US 20160015824 A1 US20160015824 A1 US 20160015824A1 US 201314403315 A US201314403315 A US 201314403315A US 2016015824 A1 US2016015824 A1 US 2016015824A1
- Authority
- US
- United States
- Prior art keywords
- lipid nanoparticle
- lipid
- hsa
- nanoparticle
- agents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 84
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 38
- 102000009027 Albumins Human genes 0.000 title claims description 18
- 108010088751 Albumins Proteins 0.000 title claims description 18
- 150000002632 lipids Chemical class 0.000 claims abstract description 124
- 229920002873 Polyethylenimine Polymers 0.000 claims description 49
- 102000008100 Human Serum Albumin Human genes 0.000 claims description 42
- 108091006905 Human Serum Albumin Proteins 0.000 claims description 42
- 210000004027 cell Anatomy 0.000 claims description 38
- 229920000642 polymer Polymers 0.000 claims description 37
- 102000039446 nucleic acids Human genes 0.000 claims description 36
- 108020004707 nucleic acids Proteins 0.000 claims description 36
- 150000007523 nucleic acids Chemical class 0.000 claims description 35
- -1 cationic lipid Chemical class 0.000 claims description 32
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 claims description 30
- 239000003814 drug Substances 0.000 claims description 22
- 239000008194 pharmaceutical composition Substances 0.000 claims description 22
- 108091034117 Oligonucleotide Proteins 0.000 claims description 19
- 238000012384 transportation and delivery Methods 0.000 claims description 17
- KWVJHCQQUFDPLU-YEUCEMRASA-N 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KWVJHCQQUFDPLU-YEUCEMRASA-N 0.000 claims description 16
- 238000012230 antisense oligonucleotides Methods 0.000 claims description 15
- 108020004459 Small interfering RNA Proteins 0.000 claims description 14
- AOBORMOPSGHCAX-UHFFFAOYSA-N Tocophersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-UHFFFAOYSA-N 0.000 claims description 14
- 230000001225 therapeutic effect Effects 0.000 claims description 14
- 239000003446 ligand Substances 0.000 claims description 13
- 210000002966 serum Anatomy 0.000 claims description 13
- 239000000074 antisense oligonucleotide Substances 0.000 claims description 12
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 12
- 108091070501 miRNA Proteins 0.000 claims description 12
- 229920001223 polyethylene glycol Polymers 0.000 claims description 12
- 239000002202 Polyethylene glycol Substances 0.000 claims description 11
- 229940124597 therapeutic agent Drugs 0.000 claims description 11
- 230000007935 neutral effect Effects 0.000 claims description 10
- 239000003431 cross linking reagent Substances 0.000 claims description 9
- 238000011026 diafiltration Methods 0.000 claims description 9
- 238000012986 modification Methods 0.000 claims description 9
- 230000004048 modification Effects 0.000 claims description 9
- 108091027967 Small hairpin RNA Proteins 0.000 claims description 8
- 238000000502 dialysis Methods 0.000 claims description 7
- 239000002679 microRNA Substances 0.000 claims description 7
- 108020004414 DNA Proteins 0.000 claims description 6
- 235000012000 cholesterol Nutrition 0.000 claims description 6
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 claims description 6
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 claims description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 5
- 238000005538 encapsulation Methods 0.000 claims description 5
- 229940014144 folate Drugs 0.000 claims description 5
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 claims description 5
- 235000019152 folic acid Nutrition 0.000 claims description 5
- 239000011724 folic acid Substances 0.000 claims description 5
- 229920002521 macromolecule Polymers 0.000 claims description 5
- 108020000948 Antisense Oligonucleotides Proteins 0.000 claims description 4
- 102000007330 LDL Lipoproteins Human genes 0.000 claims description 4
- 108010007622 LDL Lipoproteins Proteins 0.000 claims description 4
- 102000004338 Transferrin Human genes 0.000 claims description 4
- 108090000901 Transferrin Proteins 0.000 claims description 4
- 239000001961 anticonvulsive agent Substances 0.000 claims description 4
- 239000002246 antineoplastic agent Substances 0.000 claims description 4
- 229940113116 polyethylene glycol 1000 Drugs 0.000 claims description 4
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 claims description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 claims description 4
- 239000012581 transferrin Substances 0.000 claims description 4
- 102000018386 EGF Family of Proteins Human genes 0.000 claims description 3
- 108010066486 EGF Family of Proteins Proteins 0.000 claims description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 3
- 230000000844 anti-bacterial effect Effects 0.000 claims description 3
- 239000005556 hormone Substances 0.000 claims description 3
- 229940088597 hormone Drugs 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 3
- 239000013612 plasmid Substances 0.000 claims description 3
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 claims description 3
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 3
- 229940068968 polysorbate 80 Drugs 0.000 claims description 3
- 229920000053 polysorbate 80 Polymers 0.000 claims description 3
- 229940063673 spermidine Drugs 0.000 claims description 3
- 229940063675 spermine Drugs 0.000 claims description 3
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical group [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims description 3
- 239000011782 vitamin Substances 0.000 claims description 3
- 229940088594 vitamin Drugs 0.000 claims description 3
- 235000013343 vitamin Nutrition 0.000 claims description 3
- 229930003231 vitamin Natural products 0.000 claims description 3
- 229940127291 Calcium channel antagonist Drugs 0.000 claims description 2
- 102000019034 Chemokines Human genes 0.000 claims description 2
- 108010012236 Chemokines Proteins 0.000 claims description 2
- 102000004127 Cytokines Human genes 0.000 claims description 2
- 108090000695 Cytokines Proteins 0.000 claims description 2
- 229940123907 Disease modifying antirheumatic drug Drugs 0.000 claims description 2
- 229940123247 Neurotransmitter antagonist Drugs 0.000 claims description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 2
- 108010039918 Polylysine Proteins 0.000 claims description 2
- 239000005700 Putrescine Substances 0.000 claims description 2
- 230000003266 anti-allergic effect Effects 0.000 claims description 2
- 230000000567 anti-anemic effect Effects 0.000 claims description 2
- 230000001773 anti-convulsant effect Effects 0.000 claims description 2
- 230000001430 anti-depressive effect Effects 0.000 claims description 2
- 230000003556 anti-epileptic effect Effects 0.000 claims description 2
- 230000000843 anti-fungal effect Effects 0.000 claims description 2
- 230000003356 anti-rheumatic effect Effects 0.000 claims description 2
- 230000000840 anti-viral effect Effects 0.000 claims description 2
- 239000000043 antiallergic agent Substances 0.000 claims description 2
- 229940124344 antianaemic agent Drugs 0.000 claims description 2
- 229940125681 anticonvulsant agent Drugs 0.000 claims description 2
- 239000000935 antidepressant agent Substances 0.000 claims description 2
- 229940005513 antidepressants Drugs 0.000 claims description 2
- 229940125708 antidiabetic agent Drugs 0.000 claims description 2
- 239000003472 antidiabetic agent Substances 0.000 claims description 2
- 229960003965 antiepileptics Drugs 0.000 claims description 2
- 239000000030 antiglaucoma agent Substances 0.000 claims description 2
- 239000002220 antihypertensive agent Substances 0.000 claims description 2
- 229940030600 antihypertensive agent Drugs 0.000 claims description 2
- 229960005475 antiinfective agent Drugs 0.000 claims description 2
- 239000004599 antimicrobial Substances 0.000 claims description 2
- 229940034982 antineoplastic agent Drugs 0.000 claims description 2
- 239000003096 antiparasitic agent Substances 0.000 claims description 2
- 229940125687 antiparasitic agent Drugs 0.000 claims description 2
- 239000003435 antirheumatic agent Substances 0.000 claims description 2
- 239000002876 beta blocker Substances 0.000 claims description 2
- 239000003246 corticosteroid Substances 0.000 claims description 2
- 229960001334 corticosteroids Drugs 0.000 claims description 2
- 229940127089 cytotoxic agent Drugs 0.000 claims description 2
- 239000003667 hormone antagonist Substances 0.000 claims description 2
- 239000012216 imaging agent Substances 0.000 claims description 2
- 230000002519 immonomodulatory effect Effects 0.000 claims description 2
- 239000002955 immunomodulating agent Substances 0.000 claims description 2
- 229940121354 immunomodulator Drugs 0.000 claims description 2
- 239000003112 inhibitor Substances 0.000 claims description 2
- 239000003589 local anesthetic agent Substances 0.000 claims description 2
- 229960005015 local anesthetics Drugs 0.000 claims description 2
- 239000008176 lyophilized powder Substances 0.000 claims description 2
- 239000004081 narcotic agent Substances 0.000 claims description 2
- 229920000724 poly(L-arginine) polymer Polymers 0.000 claims description 2
- 229920000083 poly(allylamine) Polymers 0.000 claims description 2
- 229920000768 polyamine Polymers 0.000 claims description 2
- 108010011110 polyarginine Proteins 0.000 claims description 2
- 229920000656 polylysine Polymers 0.000 claims description 2
- 229940125723 sedative agent Drugs 0.000 claims description 2
- 239000000932 sedative agent Substances 0.000 claims description 2
- 239000008174 sterile solution Substances 0.000 claims description 2
- 239000000829 suppository Substances 0.000 claims description 2
- 239000003053 toxin Substances 0.000 claims description 2
- 231100000765 toxin Toxicity 0.000 claims description 2
- 108700012359 toxins Proteins 0.000 claims description 2
- 230000033115 angiogenesis Effects 0.000 claims 1
- 238000007069 methylation reaction Methods 0.000 claims 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims 1
- 125000001424 substituent group Chemical group 0.000 claims 1
- 238000006467 substitution reaction Methods 0.000 claims 1
- 238000009472 formulation Methods 0.000 abstract description 41
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 45
- 239000000047 product Substances 0.000 description 26
- 230000037396 body weight Effects 0.000 description 22
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 22
- 238000001890 transfection Methods 0.000 description 22
- 101500027983 Rattus norvegicus Octadecaneuropeptide Proteins 0.000 description 19
- 230000008685 targeting Effects 0.000 description 19
- 239000000243 solution Substances 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 108020004999 messenger RNA Proteins 0.000 description 12
- 125000002091 cationic group Chemical group 0.000 description 11
- 231100000135 cytotoxicity Toxicity 0.000 description 11
- 230000003013 cytotoxicity Effects 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 11
- 239000004055 small Interfering RNA Substances 0.000 description 11
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 125000000129 anionic group Chemical group 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol Substances OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 7
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 7
- 239000000443 aerosol Substances 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 230000003828 downregulation Effects 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 6
- 239000007995 HEPES buffer Substances 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 229920006317 cationic polymer Polymers 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 5
- 239000012980 RPMI-1640 medium Substances 0.000 description 5
- 150000001412 amines Chemical group 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000012377 drug delivery Methods 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000003380 propellant Substances 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 238000003757 reverse transcription PCR Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 4
- 102000007594 Estrogen Receptor alpha Human genes 0.000 description 4
- 108010007005 Estrogen Receptor alpha Proteins 0.000 description 4
- 239000000232 Lipid Bilayer Substances 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 230000021615 conjugation Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 4
- 230000000799 fusogenic effect Effects 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 238000000035 BCA protein assay Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 229920006318 anionic polymer Polymers 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000003833 cell viability Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 3
- 239000012969 di-tertiary-butyl peroxide Substances 0.000 description 3
- 238000002296 dynamic light scattering Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009881 electrostatic interaction Effects 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 229920001477 hydrophilic polymer Polymers 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- ATGUDZODTABURZ-UHFFFAOYSA-N thiolan-2-ylideneazanium;chloride Chemical compound Cl.N=C1CCCS1 ATGUDZODTABURZ-UHFFFAOYSA-N 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 238000000733 zeta-potential measurement Methods 0.000 description 3
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 description 2
- LVNGJLRDBYCPGB-LDLOPFEMSA-N (R)-1,2-distearoylphosphatidylethanolamine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[NH3+])OC(=O)CCCCCCCCCCCCCCCCC LVNGJLRDBYCPGB-LDLOPFEMSA-N 0.000 description 2
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 2
- WTBFLCSPLLEDEM-JIDRGYQWSA-N 1,2-dioleoyl-sn-glycero-3-phospho-L-serine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC WTBFLCSPLLEDEM-JIDRGYQWSA-N 0.000 description 2
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 2
- NHJVRSWLHSJWIN-UHFFFAOYSA-N 2,4,6-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NHJVRSWLHSJWIN-UHFFFAOYSA-N 0.000 description 2
- MWOOKDULMBMMPN-UHFFFAOYSA-N 3-(2-ethyl-1,2-oxazol-2-ium-5-yl)benzenesulfonate Chemical compound O1[N+](CC)=CC=C1C1=CC=CC(S([O-])(=O)=O)=C1 MWOOKDULMBMMPN-UHFFFAOYSA-N 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 108700039887 Essential Genes Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 2
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 2
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 2
- 108091028049 Mir-221 microRNA Proteins 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- HIHOWBSBBDRPDW-PTHRTHQKSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] n-[2-(dimethylamino)ethyl]carbamate Chemical compound C1C=C2C[C@@H](OC(=O)NCCN(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HIHOWBSBBDRPDW-PTHRTHQKSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 229940106189 ceramide Drugs 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000000604 cryogenic transmission electron microscopy Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 150000001982 diacylglycerols Chemical class 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 2
- MHUWZNTUIIFHAS-CLFAGFIQSA-N dioleoyl phosphatidic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC MHUWZNTUIIFHAS-CLFAGFIQSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 230000012202 endocytosis Effects 0.000 description 2
- 210000001163 endosome Anatomy 0.000 description 2
- 210000003989 endothelium vascular Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002433 hydrophilic molecules Chemical class 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 230000034217 membrane fusion Effects 0.000 description 2
- 102000006240 membrane receptors Human genes 0.000 description 2
- 108091061917 miR-221 stem-loop Proteins 0.000 description 2
- 108091063489 miR-221-1 stem-loop Proteins 0.000 description 2
- 108091055391 miR-221-2 stem-loop Proteins 0.000 description 2
- 108091031076 miR-221-3 stem-loop Proteins 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid Chemical compound CCCCCC\C=C/CCCCCCCC(O)=O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 2
- 229920000962 poly(amidoamine) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920002643 polyglutamic acid Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 239000002510 pyrogen Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000004017 serum-free culture medium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- KZJWDPNRJALLNS-VPUBHVLGSA-N (-)-beta-Sitosterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@@H](C(C)C)CC)C)CC4)CC3)CC=2)CC1 KZJWDPNRJALLNS-VPUBHVLGSA-N 0.000 description 1
- CSVWWLUMXNHWSU-UHFFFAOYSA-N (22E)-(24xi)-24-ethyl-5alpha-cholest-22-en-3beta-ol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(CC)C(C)C)C1(C)CC2 CSVWWLUMXNHWSU-UHFFFAOYSA-N 0.000 description 1
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 1
- IZVFFXVYBHFIHY-UHFFFAOYSA-N (3alpha, 5alpha)-Cholest-7-en-3-ol, 9CI Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)CCCC(C)C)CCC33)C)C3=CCC21 IZVFFXVYBHFIHY-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- DSNRWDQKZIEDDB-SQYFZQSCSA-N 1,2-dioleoyl-sn-glycero-3-phospho-(1'-sn-glycerol) Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@@H](O)CO)OC(=O)CCCCCCC\C=C/CCCCCCCC DSNRWDQKZIEDDB-SQYFZQSCSA-N 0.000 description 1
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 1
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 1
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 1
- WALUVDCNGPQPOD-UHFFFAOYSA-M 2,3-di(tetradecoxy)propyl-(2-hydroxyethyl)-dimethylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCOCC(C[N+](C)(C)CCO)OCCCCCCCCCCCCCC WALUVDCNGPQPOD-UHFFFAOYSA-M 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- GVJXGCIPWAVXJP-UHFFFAOYSA-N 2,5-dioxo-1-oxoniopyrrolidine-3-sulfonate Chemical compound ON1C(=O)CC(S(O)(=O)=O)C1=O GVJXGCIPWAVXJP-UHFFFAOYSA-N 0.000 description 1
- TXLHNFOLHRXMAU-UHFFFAOYSA-N 2-(4-benzylphenoxy)-n,n-diethylethanamine;hydron;chloride Chemical compound Cl.C1=CC(OCCN(CC)CC)=CC=C1CC1=CC=CC=C1 TXLHNFOLHRXMAU-UHFFFAOYSA-N 0.000 description 1
- CFWRDBDJAOHXSH-SECBINFHSA-N 2-azaniumylethyl [(2r)-2,3-diacetyloxypropyl] phosphate Chemical compound CC(=O)OC[C@@H](OC(C)=O)COP(O)(=O)OCCN CFWRDBDJAOHXSH-SECBINFHSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- MBZYKEVPFYHDOH-BQNIITSRSA-N 24,25-dihydrolanosterol Chemical compound C([C@@]12C)C[C@H](O)C(C)(C)[C@@H]1CCC1=C2CC[C@]2(C)[C@@H]([C@H](C)CCCC(C)C)CC[C@]21C MBZYKEVPFYHDOH-BQNIITSRSA-N 0.000 description 1
- KLEXDBGYSOIREE-UHFFFAOYSA-N 24xi-n-propylcholesterol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CCC)C(C)C)C1(C)CC2 KLEXDBGYSOIREE-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 1
- IZVFFXVYBHFIHY-SKCNUYALSA-N 5alpha-cholest-7-en-3beta-ol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@H](C)CCCC(C)C)CC[C@H]33)C)C3=CC[C@H]21 IZVFFXVYBHFIHY-SKCNUYALSA-N 0.000 description 1
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- LPZCCMIISIBREI-MTFRKTCUSA-N Citrostadienol Natural products CC=C(CC[C@@H](C)[C@H]1CC[C@H]2C3=CC[C@H]4[C@H](C)[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)C(C)C LPZCCMIISIBREI-MTFRKTCUSA-N 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- XULFJDKZVHTRLG-JDVCJPALSA-N DOSPA trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F.CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)CCNC(=O)C(CCCNCCCN)NCCCN)OCCCCCCCC\C=C/CCCCCCCC XULFJDKZVHTRLG-JDVCJPALSA-N 0.000 description 1
- ARVGMISWLZPBCH-UHFFFAOYSA-N Dehydro-beta-sitosterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)CCC(CC)C(C)C)CCC33)C)C3=CC=C21 ARVGMISWLZPBCH-UHFFFAOYSA-N 0.000 description 1
- FMGSKLZLMKYGDP-UHFFFAOYSA-N Dehydroepiandrosterone Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CC=C21 FMGSKLZLMKYGDP-UHFFFAOYSA-N 0.000 description 1
- BDCFUHIWJODVNG-UHFFFAOYSA-N Desmosterol Natural products C1C=C2CC(O)C=CC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 BDCFUHIWJODVNG-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- GZDFHIJNHHMENY-UHFFFAOYSA-N Dimethyl dicarbonate Chemical compound COC(=O)OC(=O)OC GZDFHIJNHHMENY-UHFFFAOYSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 101001105486 Homo sapiens Proteasome subunit alpha type-7 Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 231100000002 MTT assay Toxicity 0.000 description 1
- 238000000134 MTT assay Methods 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 108700011259 MicroRNAs Proteins 0.000 description 1
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 101710096328 Phospholipase A2 Proteins 0.000 description 1
- 102100026918 Phospholipase A2 Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 102100021201 Proteasome subunit alpha type-7 Human genes 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 101001000212 Rattus norvegicus Decorin Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- DWCSNWXARWMZTG-UHFFFAOYSA-N Trigonegenin A Natural products CC1C(C2(CCC3C4(C)CCC(O)C=C4CCC3C2C2)C)C2OC11CCC(C)CO1 DWCSNWXARWMZTG-UHFFFAOYSA-N 0.000 description 1
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- HZYXFRGVBOPPNZ-UHFFFAOYSA-N UNPD88870 Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)=CCC(CC)C(C)C)C1(C)CC2 HZYXFRGVBOPPNZ-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- UJELMAYUQSGICC-UHFFFAOYSA-N Zymosterol Natural products CC12CCC(O)CC1CCC1=C2CCC2(C)C(C(C)C=CCC(C)C)CCC21 UJELMAYUQSGICC-UHFFFAOYSA-N 0.000 description 1
- CWRILEGKIAOYKP-SSDOTTSWSA-M [(2r)-3-acetyloxy-2-hydroxypropyl] 2-aminoethyl phosphate Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCCN CWRILEGKIAOYKP-SSDOTTSWSA-M 0.000 description 1
- NYDLOCKCVISJKK-WRBBJXAJSA-N [3-(dimethylamino)-2-[(z)-octadec-9-enoyl]oxypropyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CN(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC NYDLOCKCVISJKK-WRBBJXAJSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- MJVXAPPOFPTTCA-UHFFFAOYSA-N beta-Sistosterol Natural products CCC(CCC(C)C1CCC2C3CC=C4C(C)C(O)CCC4(C)C3CCC12C)C(C)C MJVXAPPOFPTTCA-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 229930183167 cerebroside Natural products 0.000 description 1
- 150000001784 cerebrosides Chemical class 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 150000001841 cholesterols Chemical class 0.000 description 1
- WLNARFZDISHUGS-MIXBDBMTSA-N cholesteryl hemisuccinate Chemical compound C1C=C2C[C@@H](OC(=O)CCC(O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 WLNARFZDISHUGS-MIXBDBMTSA-N 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- SECPZKHBENQXJG-UHFFFAOYSA-N cis-palmitoleic acid Natural products CCCCCCC=CCCCCCCCC(O)=O SECPZKHBENQXJG-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000002577 cryoprotective agent Substances 0.000 description 1
- 108010045325 cyclic arginine-glycine-aspartic acid peptide Proteins 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- FMGSKLZLMKYGDP-USOAJAOKSA-N dehydroepiandrosterone Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 FMGSKLZLMKYGDP-USOAJAOKSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- PSLWZOIUBRXAQW-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC PSLWZOIUBRXAQW-UHFFFAOYSA-M 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- BPHQZTVXXXJVHI-UHFFFAOYSA-N dimyristoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCC BPHQZTVXXXJVHI-UHFFFAOYSA-N 0.000 description 1
- WQLVFSAGQJTQCK-VKROHFNGSA-N diosgenin Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)CC[C@H](O)CC4=CC[C@H]3[C@@H]2C1)C)[C@@H]1C)[C@]11CC[C@@H](C)CO1 WQLVFSAGQJTQCK-VKROHFNGSA-N 0.000 description 1
- WQLVFSAGQJTQCK-UHFFFAOYSA-N diosgenin Natural products CC1C(C2(CCC3C4(C)CCC(O)CC4=CCC3C2C2)C)C2OC11CCC(C)CO1 WQLVFSAGQJTQCK-UHFFFAOYSA-N 0.000 description 1
- BIABMEZBCHDPBV-UHFFFAOYSA-N dipalmitoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCCCC BIABMEZBCHDPBV-UHFFFAOYSA-N 0.000 description 1
- FVJZSBGHRPJMMA-UHFFFAOYSA-N distearoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCCCCCC FVJZSBGHRPJMMA-UHFFFAOYSA-N 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 150000002339 glycosphingolipids Chemical class 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N linoleic acid group Chemical group C(CCCCCCC\C=C/C\C=C/CCCCC)(=O)O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 125000005481 linolenic acid group Chemical group 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- MBAXWTVHCRPVFW-UHFFFAOYSA-N methyl 3-[(3-imino-3-methoxypropyl)disulfanyl]propanimidate Chemical compound COC(=N)CCSSCCC(=N)OC MBAXWTVHCRPVFW-UHFFFAOYSA-N 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- GLGLUQVVDHRLQK-WRBBJXAJSA-N n,n-dimethyl-2,3-bis[(z)-octadec-9-enoxy]propan-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/CCCCCCCC GLGLUQVVDHRLQK-WRBBJXAJSA-N 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000014207 opsonization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000010951 particle size reduction Methods 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003019 phosphosphingolipids Chemical class 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229960002847 prasterone Drugs 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 1
- 235000015500 sitosterol Nutrition 0.000 description 1
- 229950005143 sitosterol Drugs 0.000 description 1
- NLQLSVXGSXCXFE-UHFFFAOYSA-N sitosterol Natural products CC=C(/CCC(C)C1CC2C3=CCC4C(C)C(O)CCC4(C)C3CCC2(C)C1)C(C)C NLQLSVXGSXCXFE-UHFFFAOYSA-N 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- QSHQBWBFNCFHLO-MFABWLECSA-M sodium;(2s)-2-azaniumyl-3-[[(2r)-2,3-di(tetradecanoyloxy)propoxy]-oxidophosphoryl]oxypropanoate Chemical compound [Na+].CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OC[C@H]([NH3+])C([O-])=O)OC(=O)CCCCCCCCCCCCC QSHQBWBFNCFHLO-MFABWLECSA-M 0.000 description 1
- RPENMORRBUTCPR-UHFFFAOYSA-M sodium;1-hydroxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].ON1C(=O)CC(S([O-])(=O)=O)C1=O RPENMORRBUTCPR-UHFFFAOYSA-M 0.000 description 1
- QLNOOKSBAYIHQI-SKZICHJRSA-M sodium;2,3-dihydroxypropyl [(2r)-2,3-di(tetradecanoyloxy)propyl] phosphate Chemical compound [Na+].CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCC QLNOOKSBAYIHQI-SKZICHJRSA-M 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 150000003410 sphingosines Chemical class 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- HCXVJBMSMIARIN-PHZDYDNGSA-N stigmasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@@H](CC)C(C)C)[C@@]1(C)CC2 HCXVJBMSMIARIN-PHZDYDNGSA-N 0.000 description 1
- 229940032091 stigmasterol Drugs 0.000 description 1
- 235000016831 stigmasterol Nutrition 0.000 description 1
- BFDNMXAIBMJLBB-UHFFFAOYSA-N stigmasterol Natural products CCC(C=CC(C)C1CCCC2C3CC=C4CC(O)CCC4(C)C3CCC12C)C(C)C BFDNMXAIBMJLBB-UHFFFAOYSA-N 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 1
- MBYLVOKEDDQJDY-UHFFFAOYSA-N tris(2-aminoethyl)amine Chemical compound NCCN(CCN)CCN MBYLVOKEDDQJDY-UHFFFAOYSA-N 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- CGSJXLIKVBJVRY-XTGBIJOFSA-N zymosterol Chemical compound C([C@@]12C)C[C@H](O)C[C@@H]1CCC1=C2CC[C@]2(C)[C@@H]([C@@H](CCC=C(C)C)C)CC[C@H]21 CGSJXLIKVBJVRY-XTGBIJOFSA-N 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
Images
Classifications
-
- A61K47/48284—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/10—Peptides having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/482—Serine endopeptidases (3.4.21)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A61K47/48815—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/543—Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/543—Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
- A61K47/544—Phospholipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/549—Sugars, nucleosides, nucleotides or nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/643—Albumins, e.g. HSA, BSA, ovalbumin or a Keyhole Limpet Hemocyanin [KHL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6905—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
- A61K47/6907—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6905—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
- A61K47/6911—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
- A61K9/1272—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers comprising non-phosphatidyl surfactants as bilayer-forming substances, e.g. cationic lipids or non-phosphatidyl liposomes coated or grafted with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1135—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering nucleic acids [NA]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21064—Peptidase K (3.4.21.64)
Definitions
- LNs lipid nanoparticles
- NAs nucleic acids
- a liposome is a vesicle composed of one or more lipid bilayers, capable of carrying hydrophilic molecules within an aqueous core or hydrophobic molecules within its lipid bilayer(s).
- LNs Lipid nanoparticles
- Drug delivery by LNs via systemic route requires overcoming several physiological barriers.
- the reticuloendothelial system (RES) is responsible for clearance of LNs from the circulation. Once escaping the vasculature and reaching the target cell, LNs are typically taken up by endocytosis and must release the drug into the cytoplasm prior to degradation within acidic endosome conditions.
- NAs nucleic acids
- siRNA siRNA
- other therapeutic oligonucleotides are a major technical challenge that has limited their potential for clinical translation.
- oligonucleotide ON
- LN formulation should be able to (1) protect the drug from enzymatic degradation; (2) traverse the capillary endothelium; (3) specifically reach the target cell type without causing excessive immunoactivation or off-target cytotoxicity; (4) promote endocytosis and endosomal release; and (5) form a stable formulation with high colloidal stability and long shelf-life.
- LNs that encapsulate therapeutic oligonucleotides with high efficiency and fulfill physical and biological criteria for efficacious delivery.
- the LNs comprise hyper-cationized and/or pH-responsive HSA-polymer conjugates.
- the HSA-polymer conjugate comprises HSA-PEI or HSA-PEHA.
- APC hyper-cationized albumin-polymer conjugates
- LNs particles are also described herein as lipid-coated albumin nanoparticles (LCANs)
- lipid nanoparticle comprising at least one lipid and albumin conjugated to a positively charged polymer.
- the LN comprises a hyper-cationized albumin-polycation conjugate (APC).
- the polycation comprises a polyamine selected from the group consisting of spermine, dispermine, trispermine, tetraspermine, oligospermine, thermine, spermidine, dispermidine, trispermidine, oligospermidine, putrescine, polylysine, polyarginine, a polyethylenimine of branched or linear type, and polyallylamine.
- the positively-charged polymer consists essentially of a polyethylenimine.
- the polyethylenimine has a molecular weight not greater than 50 kDa, or from about 200 Da to about 2000 Da.
- the positively-charged polymer comprises pentaethylenehexamine (PEHA) or tetraethylenepentamine (TEPA).
- the LN comprises a polyethylenimine conjugated to human serum albumin.
- the conjugation is via one or more cross linking agents.
- the LN comprises PEHA conjugated to HSA.
- multiple PEHA molecules are linked to each HSA molecule.
- between about two (2) and about twenty (2) PEHA molecules can be linked to each HSA molecule.
- eleven (11) PEHA molecules are linked to each HSA molecule.
- the LN comprises a mixture of two or more low molecular weight polymers.
- the at least one lipid comprises a cationic lipid, a neutral lipid, and a PEGylated lipid, with or without cholesterol.
- At least one lipid comprises 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), L- ⁇ -phosphatidylcholine (SPC), and d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS).
- DOTAP 1,2-dioleoyl-3-trimethylammonium-propane
- SPC L- ⁇ -phosphatidylcholine
- TPGS d-alpha-tocopheryl polyethylene glycol 1000 succinate
- the lipids are in a 25:70:5 molar ratio of DOTAP:SPC:TPGS.
- the LN encapsulates molecules selected from nucleic acids, chemo therapeutic agents, or combinations thereof.
- the encapsulated molecules comprise a nucleic acid selected from plasmid DNAs, antisense oligonucleotides, miRs, anti-miRs, shRNAs, siRNAs, or combinations thereof.
- the encapsulation rate of therapeutic agents or nucleotides is 40% or higher.
- the LN has a diameter under 300 nm, or under 200 nm, or about 98 nm.
- the polymer is bound only to an external surface of the nanoparticle via direct connection or via a crosslinker.
- the LN further comprises a polyethylene glycol-conjugated lipid.
- the polyethylene glycol-conjugated lipid is selected from the group consisting of polysorbate 80, TPGS, and mPEG-DSPE.
- the polyethylene glycol-conjugated lipid is present at a concentration less than about 15.0 molar percent.
- the LN further comprises a ligand capable of binding to a target cell or a target molecule.
- the ligand is an antibody or an antibody fragment.
- the ligand is selected from cRGD, galatose-containing moieties, transferrin, folate, low density lipoprotein, or epidermal growth factors.
- a pharmaceutical composition comprising a lipid nanoparticle having at least one lipid and albumin conjugated to a positively charged polymer, and a pharmaceutically acceptable excipient.
- the pharmaceutical composition is administered perorally, intravenously, intraperitoneally, subcutaneously, or transdermally.
- the pharmaceutical composition is prepared as an orally administered tablet, a sterile solution, a sterile suspension, a lyophilized powder, or a suppository.
- a method of making a lipid-coated albumin nanoparticle involves synthesizing a human serum albumin-pentaethylenehexamine (HSA-PEHA) conjugate; adding at least one lipid to the HSA-PEHA conjugate; adding a nucleic acid to the mixture of lipids and the HSA-PEHA conjugate to obtain an LCAN precursor; and subjecting the LCAN precursor to a dialysis or diafiltration step to make a lipid-coated albumin nanoparticle.
- HSA-PEHA human serum albumin-pentaethylenehexamine
- the at least one lipid comprises DOTAP, SPC, and TPGS at a 25:70:5 ratio.
- the nucleic acid is selected from pDNAs, antisense oligonucleotides, miRs, anti-miRs, shRNAs, siRNAs, or combinations thereof. Further provided herein is the product made from the described method.
- a method of diagnosing or treating a cancer or infectious disease involves administering an effective amount of a pharmaceutical composition comprising at least one lipid, albumin conjugated to a positively-charged polymer, and a pharmaceutically acceptable excipient, to a patient in need thereof.
- a delivery system comprising at least one lipid and a macromolecule conjugated to a polymer, wherein the macromolecule forms an electrostatic complex with a nucleic acid.
- a method of using a lipid nanoparticle involves encapsulating a nucleic acid in a lipid nanoparticle, wherein the lipid nanoparticle comprises albumin conjugated to a polymer, incorporating the lipid nanoparticle into a pharmaceutical composition, and administering the pharmaceutical composition to a patient in need thereof.
- FIG. 1 Gel mobility shift analysis of HSA-PEI(600) (APC)-oligodeoxynucleotide (ODN) complexes at varying ODN-to-HSA-PEI(600) w/w ratios.
- APC HSA-PEI(600)
- ODN oligodeoxynucleotide
- FIG. 2 Zeta potential of LN (LN)-HSA-PEI(600)-LOR-2501 (APC-ODN) complexes.
- FIGS. 3A-B Downregulation of RNR R1 mRNA expression by LOR-2501 in LCANs.
- the LCANs were prepared at varying APC concentrations under different media conditions: FIG. 3A displays serum-free media; FIG. 3B displays media containing 10% FBS.
- RNR R1 mRNA expression relative to actin was determined by RT-PCR where untreated KB cells served as a baseline for mRNA expression.
- FIG. 4 Cell viability study of KB cells treated with LCAN-HSA-PEI(600)-LOR-2501 (APC) complex. Transfection was performed in serum-free media. Cell viabilities are expressed as a percentage relative to the mean viability of the untreated KB cells.
- FIG. 5 Gel mobility shift analysis of HSA-PEHA-LOR-2501 (APC-ODN) complexes at varying ODN-to-APC w/w ratios. LOR-2501 was used as the ODN in this study.
- FIG. 6 Downregulation of RNR R1 mRNA expression by LOR-2501 in LCANs.
- the LCANs were prepared at varying APC concentrations under serum-free conditions.
- RNR R1 mRNA expression relative to actin was determined by RT-PCR where untreated KB cells served as a baseline for mRNA expression.
- FIG. 7 Bcl-2 down regulation in KB cells by lipid-coated albumin nanoparticle (LCAN)-G3139 as compared to LN-G3139.
- LCAN lipid-coated albumin nanoparticle
- FIG. 8 An example scheme for synthesizing an APC.
- FIG. 9 The mechanism of action for hyper-cationized pH-responsive APCs.
- FIG. 10 Upregulation of p27/kip1 mRNA by LCAN loaded with anti-miR-221 in CAL-51 breast cancer cells.
- FIG. 11 Upregulation of estrogen mRNA by LCAN loaded with anti-miR-221 in CAL-51 cells.
- the estrogen receptor is a target of miR-221.
- NA-based therapies are being developed to promote or inhibit gene expression. As mutations in genes and changes in miRNA profile are believed to be the underlying cause of cancer and other diseases, NA-based agents can directly act upon the underlying etiology, maximizing therapeutic potential.
- Non-limiting examples of NA-based therapies include: plasmid DNA (pDNA), small interfering RNA (siRNA), small hairpin RNA (shRNA), microRNA (miR), mimic (mimetic), anti-miR/antagomiR/miR inhibitor, and antisense oligonucleotide (ASO).
- NA-based therapies faced several obstacles in their implementation since transporting NAs to their intracellular target was particularly challenging and since NAs are relatively unstable and subject to degradation by serum and cellular nucleases. Further, the high negative charges of NAs made it impossible for transport across the cell membrane, further limiting utility.
- LNs described herein provide a useful platform for the delivery of both traditional therapeutic compounds and NA-based therapies.
- Drugs formulated using LNs provide desirable pharmacokinetic (PK) properties in vivo, such as increased blood circulation time and increased accumulation at the site of solid tumors due to enhanced permeability and retention (EPR) effect.
- the LNs may be surface-coated with polyethylene glycol to reduce opsonization of LNs by serum proteins and the resulting RES-mediated uptake, and/or coated with cell-specific ligands to provide targeted drug delivery.
- LNs with a highly positive charge tend to interact non-specifically with non-target cells, tissues, and circulating plasma proteins, and may cause cytotoxicity.
- LNs with a highly negative charge cannot effectively incorporate NAs, which are themselves negatively charged, and may trigger rapid RES-mediated clearance, reducing therapeutic efficacy.
- LNs with a neutral to moderate charge are best suited for in vivo drug and gene delivery.
- the LNs described herein comprise hyper-cationized albumin-polymer conjugates (APCs).
- APCs hyper-cationized albumin-polymer conjugates
- the term “hyper-cationized” mean each polycation carries multiple positive charges. In particular embodiments, up to 20 polycations can be linked to each albumin molecule. These factors result in a much higher overall charge content for APCs compared to traditional cationized albumin, which typically comprises an albumin conjugate where carboxyl groups are replaced with single-positive-charge amine functional groups. Because of their high charge density, the APCs are able to very efficiently interact with polyanions such as an oligonucleotide particle, molecule, compound or formulation having multiple cations or positive charges.
- lipid nanoparticle refers to a vesicle formed by one or more lipid components.
- the lipid components described herein may include cationic lipids.
- Cationic lipids are lipids that carry a net positive charge at any physiological pH. In certain embodiments, the positive charge is used for association with negatively charged therapeutics such as ASOs via electrostatic interaction.
- Suitable cationic lipids include, but are not limited to: 3 ⁇ -[N—(N′,N′-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DC-Chol); 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP); 1,2-dioleoyl-3-dimethylammonium-propane (DODAP); dimethyldioctadecylammonium bromide salt (DDAB); 1,2-dilauroyl-sn-glycero-3-ethylphosphocholine chloride (DL-EPC); N-[1-(2,3-dioleyloxy)propyl]-N—N—N-trimethyl ammonium chloride (DOTMA); N-[1-(2,3-dioleyloxy)propyl]-N—N—N-dimethyl ammonium chloride (DODMA); N,N-dioctade
- cationic lipids in available preparations could be used, such as LIPOFECTIN® (from GIBCO/BRL), LIPOFECTAMINE® (from GIBCO/MRL), siPORT NEOFX® (from Applied Biosystems), T RANSFECTAM® (from Promega), and TRANSFECTIN® (from Bio-Rad Laboratories, Inc.).
- LIPOFECTIN® from GIBCO/BRL
- LIPOFECTAMINE® from GIBCO/MRL
- siPORT NEOFX® from Applied Biosystems
- T RANSFECTAM® from Promega
- TRANSFECTIN® from Bio-Rad Laboratories, Inc.
- the cationic lipids may be present at concentrations up to about 80.0 molar percent of total lipids in the formulation, or from about 5.0 to about 50.0 molar percent of the formulation.
- the LN formulations presently disclosed may also include anionic lipids.
- Anionic lipids are lipids that carry a net negative charge at physiological pH. These anionic lipids, when combined with cationic lipids, are useful to reduce the overall surface charge of LNs and introduce pH-dependent disruption of the LN bilayer structure, facilitating nucleotide release by inducing nonlamellar phases at acidic pH or induce fusion with the cellular membrane.
- anionic lipids include, but are not limited to: fatty acids such as oleic, linoleic, and linolenic acids; cholesteryl hemisuccinate; 1,2-di-O-tetradecyl-sn-glycero-3-phospho-(1′-rac-glycerol) (diether PG); 1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt); 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1-hexadecanoyl, 2-(9Z,12Z)-octadecadienoyl-sn-glycero-3-phosphate; 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DOPG); dioleoylphosphatidic acid (DOPG);
- charged LNs are advantageous for transfection, but off-target effects such as cytotoxicity and RES-mediated uptake may occur.
- Hydrophilic molecules such as polyethylene glycol (PEG) may be conjugated to a lipid anchor and included in the LNs described herein to prevent LN aggregation or interaction with membranes.
- Hydrophilic polymers may be covalently bonded to lipid components or conjugated using crosslinking agents to functional groups such as amines.
- Suitable conjugates of hydrophilic polymers include, but are not limited to: polyvinyl alcohol (PVA); polysorbate 80; 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000); D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS); dimyristoylphosphatidylethanolamine-PEG2000 (DMPE-PEG2000); and dipalmitoylphosphatidylethanolamine-PEG2000 (DPPE-PEG2000).
- the hydrophilic polymer may be present at concentrations ranging from about 0 to about 15.0 molar percent of the formulation, or from about 5.0 to about 10.0 molar percent of the formulation.
- the molecular weight of the PEG used is between about 100 and about 10,000 Da, or from about 100 to about 2,000 Da.
- the LNs described herein may further comprise neutral and/or cholesterol lipids as helper lipids. These lipids are useful to stabilize the formulation, reduce elimination in vivo, or increase transfection efficiency.
- the LNs may be formulated in a solution of saccharides such as, but not limited to, glucose, sorbitol, sucrose, maltose, trehalose, lactose, cellubiose, raffinose, maltotriose, dextran, or combinations thereof, to promote lyostability and/or cryostability.
- Neutral lipids have zero net charge at physiological pH.
- One or a combination of several neutral lipids may be included in any LN formulation disclosed herein.
- Suitable neutral lipids include, but are not limited to: phosphatidylcholine (PC, e.g., DSPC, DPPC, DOPC, DMPC, soyPC, eggPC, HSPC), phosphatidylethanolamine (PE, e.g., DOPE, DSPE, DPPE, DSPE, DMPE), ceramide, cerebrosides, sphingomyelin, cephalin, cholesterol, diacylglycerol, glycosylated diacylglycerols, prenols, lysosomal PLA2 substrates, N-acylglycines, and combinations thereof.
- PC phosphatidylcholine
- PE e.g., DOPE, DSPE, DPPE, DSPE, DMPE
- ceramide cerebrosides
- sphingomyelin cephalin
- cholesterol diacylglycerol
- glycosylated diacylglycerols
- lipids include, but are not limited to: phosphatidic acid, (PG, e.g., DSPG, DMPG, DPPG), and lysophosphatidylethanolamine; sterols such as cholesterol, demosterol, sitosterol, zymosterol, diosgenin, lanostenol, stigmasterol, lathosterol, and dehydroepiandrosterone; and sphingolipids such as sphingosines, ceramides, sphingomyelin, gangliosides, glycosphingolipids, phosphosphingolipids, phytoshingosine; and combinations thereof.
- PG phosphatidic acid
- DMPG DMPG
- DPPG DPPG
- sterols such as cholesterol, demosterol, sitosterol, zymosterol, diosgenin, lanostenol, stigmasterol, lathosterol, and dehydroepiandrosterone
- the LN formulations described herein may further comprise fusogenic lipids or fusogenic coatings to promote membrane fusion.
- fusogenic lipids include, but are not limited to, glyceryl mono-oleate, oleic acid, palmitoleic acid, phosphatidic acid, phosphoinositol 4,5-bisphosphate (PIP 2 ), and combinations thereof.
- the LN formulations described here may further comprise cationic polymers or conjugates of cationic polymers.
- Cationic polymers or conjugates thereof may be used alone or in combination with lipid nanocarriers.
- Suitable cationic polymers include, but are not limited to: polyethylenimine (PEI); pentaethylenehexamine (PEHA); spermine; spermidine; poly(L-lysine); poly(amido amine) (PAMAM) dendrimers; polypropyleneiminie dendrimers; poly(2-dimethylamino ethyl)-methacrylate (pDMAEMA); chitosan; tris(2-aminoethyl)amine and its methylated erivatives; and combinations thereof.
- PEI polyethylenimine
- PEHA pentaethylenehexamine
- spermine spermine
- spermidine poly(L-lysine)
- PAMAM poly(amido amine) dend
- the chain length and branching are important considerations for the implementation of polymeric delivery systems.
- High molecular weight polymers such as PEI (MW 25,000) are useful as transfection agents, but suffer from cytotoxicity.
- Low molecular weight PEI (MW 600) does not cause cytotoxicity, but is limited due to its inability to facilitate stable condensation with NAs.
- conjugation of low molecular weight polymers to a larger molecule such as albumin is a thus a useful method of increasing activity of electrostatic complexation with NA condensation while lowing cytotoxicity of LN formulations.
- Anionic polymers may be incorporated into the LN formulations presently disclosed as well.
- Suitable anionic polymers include, but are not limited to: poly(propylacrylic acid) (PPAA); poly(glutamic acid) (PGA); alginates; dextran derivatives; xanthans; derivatized polymers; and combinations thereof.
- the LN formulation includes conjugates of polymers.
- the conjugates may be crosslinked to targeting agents, lipophilic moieties, proteins, or other molecules that increase the overall therapeutic efficacy.
- Suitable crosslinking agents include, but are not limited to: N-succinimidyl 3-[2-pyridyldithio]-propionate (SPDP); dimethyl 3,3′-dithiobispropionimidate (DTBP); dicyclohexylcarbodiimide (DCC); diisopropyl carbodiimide (DIC); 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC); N-hydroxysulfosuccinimide (Sulfo-NHS); N′—N′-carbonyldiimidazole (CDI); N-ethyl-5-phenylisoxazolium-3′sulfonate (Woodward's reagent K); and combinations thereof.
- SPDP
- targeting agents to the LN provides increased efficacy over passive targeting approaches.
- Targeting involves incorporation of specific targeting moieties such as, but not limited to, ligands or antibodies against cell surface receptors, peptides, lipoproteins, glycoproteins, hormones, vitamins, antibodies, antibody fragments, and conjugates or combinations of these moieties.
- the maximization of targeting efficiency includes the surface coating of the LN with the appropriate targeting moiety rather than pre-mixing of the targeting ligand with other components, which results in partial encapsulation of the targeting agent, rendering it inaccessible to the cellular target. This method optimizes interaction with cell surface receptors.
- targeting agents may be either directly incorporated into the LN during synthesis or added in a subsequent step.
- Functional groups on the targeting moiety as well as specifications of the therapeutic application e.g., degradable linkage dictate the appropriate means of incorporation into the LN.
- targeting moieties that do not have lipophilic regions cannot insert into the lipid bilayer of the LN directly and require prior conjugation to a lipid anchor before insertion or must form an electrostatic complex with the LNs.
- a targeting ligand cannot directly connect to a lipophilic anchor.
- a molecular bridge in the form of a crosslinking agent may be utilized to facilitate the interaction.
- it is advantageous to use a crosslinking agent if steric restrictions of the anchored targeting moiety prevent sufficient interaction with the intended physiological target.
- the targeting moiety is only functional under certain orientations (e.g., monoclonal antibody), linking to a lipid anchor via crosslinking agent is beneficial.
- other methods of bioconjugation may be used to link targeting agents to LNs. Reducible or hydrolysable linkages may be applied to prevent accumulation of the formulation in vivo and the related cytotoxicity.
- LN preparation is suitable to synthesize the LNs of the present disclosure. For example, ethanol dilution, freeze-thaw, thin film hydration, sonication, extrusion, high pressure homogenization, detergent dialysis, microfluidization, tangential flow diafiltration, sterile filtration, and/or lyophilization may be utilized. Additionally, several methods may be employed to decrease the size of the LNs. For example, homogenization may be conducted on any devices suitable for lipid homogenization such as an Avestin Emulsiflex C5®. Extrusion may be conducted on a Lipex Biomembrane extruder using a polycarbonate membrane of appropriate pore size (0.05 to 0.2 ⁇ m). Multiple particle size reduction cycles may be conducted to minimize size variation within the sample. The resultant LNs may then be passed through a size exclusion column such as Sepharose CL4B or processed by tangential flow diafiltration to purify the LNs.
- a size exclusion column such as Sepharose
- LNs described herein may further include ethanol in the preparation process.
- ethanol in the preparation process.
- the incorporation of about 30-50% ethanol in LN formulations destabilizes the lipid bilayer and promotes electrostatic interactions among charged moieties such as cationic lipids with anionic ASO and siRNA.
- LNs prepared in high ethanol solution are diluted before administration.
- ethanol may be removed by dialysis or diafiltration, which also removes non-encapsulated NA.
- the LNs be sterilized. This may be achieved by passing of the LNs through a 0.2 or 0.22 ⁇ m sterile filter with or without pre-filtration.
- LNs Physical characterization of the LNs can be carried through many methods. For example, dynamic light scattering (DLS) or atomic force microscopy (AFM) can be used to determine the average diameter and its standard deviation. In certain embodiments, it is especially desirable that the LNs have about a 200 nm diameter, or less. Zeta potential measurement via zeta potentiometer is useful in determining the relative stability of particles. Both dynamic light scattering analysis and zeta potential analysis may be conducted with diluted samples in deionized water or appropriate buffer solution. Cryogenic transmission electron microscopy (Cryo-TEM) and scanning electron microscopy (SEM) may be used to determine the detailed morphology of LNs.
- DLS dynamic light scattering
- AFM atomic force microscopy
- Zeta potential measurement via zeta potentiometer is useful in determining the relative stability of particles. Both dynamic light scattering analysis and zeta potential analysis may be conducted with diluted samples in deionized water or appropriate buffer solution.
- LNs described herein are stable under refrigeration for several months. LNs requiring extended periods of time between synthesis and administration may be lyophilized using standard procedures. A cryoprotectant such as 10% sucrose may be added to the LN suspension prior to freezing to maintain the integrity of the formulation during lyophilization. Freeze drying of LN formulations is recommended for long term stability.
- the LCANs described herein have a diameter of less than 300 nm, and, in particular embodiments, between about 50 and about 200 nm in mean diameter.
- These LNs show enhanced transfection and reduced cytotoxicity, especially under high serum conditions found during systemic administration.
- the LNs are useful in a wide range of current therapeutic agents and systems, have high serum stability, and can be designed for targeted delivery with high transfection efficiency.
- PEI high molecular weight polyethylenimine
- MW ⁇ 600 kDa Low molecular weight PEI
- APCs hyper-cationized albumin-polymer conjugates
- APCs may either be used alone to deliver agents such as pDNA or combined with lipid-based formulations to deliver agents such as ASOs and siRNA.
- Albumin also possesses endosomal lytic activity due to its hydrophobic core, which upon conformational change can be exposed and can induce bilayer disruption or membrane fusion.
- the APC has an ionization profile that is responsive to pH change. The charge density is increased at endosomal pH, which is acidic.
- an APC is combined with a cationic lipid combination to assemble a cationic lipid-APC-NA nanoparticle, sometimes herein called LCAN.
- an APC is combined with an anionic lipid combination to assemble a lipid-APC-NA nanoparticle.
- the LNs comprise hyper-cationized APCs. These LNs have high transfection efficiency without additional cytotoxicity.
- An example scheme for synthesizing an APC is shown in FIG. 8 .
- the mechanism of action for hyper-cationized pH-responsive APCs is shown in FIG. 9 .
- a low molecular weight pH-sensitive polymer (polyethylenimine MW 600, PEI600) is conjugated to human serum albumin (HSA) via cross linking agents, resulting in a hyper-cationized pH-responsive APC.
- HSA-PEI600 conjugates to LNs significantly increases downregulation of RRM1 (aka RNR R1) with ASO LOR-2501 (purchased from Alpha DNA) in the presence of serum without substantial cytotoxicity in KB cells (a subline of HeLa).
- a low molecular weight pentaethylenehexamine is conjugated to HSA via cross linking agents, resulting in a hyper-cationized pH-responsive APC.
- This particular formulation referred to as a lipid-coated albumin nanoparticle (LCAN)
- LCAN lipid-coated albumin nanoparticle
- HSA-PEHA improves the stability and biological activity of the nanoparticles.
- the lipids in this formulation are DOTAP, SPC, and TPGS, at a ratio of 25:70:5 (mol/mol).
- the LNs disclosed herein may be designed to favor characteristics such as increased loading of NAs, increased serum stability, reduced RES-mediated uptake, targeted delivery, or pH sensitive release within the endosome. Because of the varied nature of LN formulations, any one of the several methods provided herein may be used to achieve a particular therapeutic aim. Cationic lipids, anionic lipids, polyalkenes, neutral lipids, fusogenic lipids, cationic polymers, anionic polymers, polymer conjugates, peptides, targeting moieties, and combinations thereof may be utilized to meet specific aims.
- the LNs described herein can be used as platforms for therapeutic delivery of oligonucleotide (ON) therapeutics, such as cDNA, siRNA, shRNA, miRNA, anti-miR, and antisense ODN.
- ON oligonucleotide
- These therapeutics are useful to manage a wide variety of diseases such as various types of cancers, leukemias, viral infections, and other diseases.
- targeting moieties such as cyclic-RGD, folate, transferrin, or antibodies greatly enhance activity by enabling targeted drug delivery.
- a number of tumors overexpress receptors on their cell surface.
- suitable targeting moieties include transferrin (Tf), folate, low density lipoprotein (LDL), and epidermal growth factors.
- LN formulations having particles measuring about 300 nm or less in diameter with a zeta potential of less than 50 mV and an encapsulation efficiency of greater than 20.0% are useful for NA delivery.
- Non-limiting examples of such therapeutic agents include antineoplastic agents, anti-infective agents, local anesthetics, anti-allergics, antianemics, angiogenesis-inhibitors, beta-adrenergic blockers, calcium channel antagonists, anti-hypertensive agents, anti-depressants, anti-convulsants, anti-bacterial, anti-fungal, anti-viral, anti-rheumatics, anthelminithics, antiparasitic agents, corticosteroids, hormones, hormone antagonists, immunomodulators, neurotransmitter antagonists, anti-diabetic agents, anti-epileptics, anti-hemmorhagics, anti-hypertonics, antiglaucoma agents, immunomodulatory cytokines, sedatives, chemokines, vitamins, toxins, narcotics, imaging agents, and combinations thereof.
- NA-based therapeutic agents are highly applicable to the LN formulations of the present disclosure.
- examples of such NA-based therapeutic agents include, but are not limited to: pDNA, siRNA, miRNA, anti-miRNA, ASO, and combinations thereof.
- modifications to the substituent NA base units and/or phosphodiester linker can be made.
- Such modifications include, but are not limited to: backbone modifications (e.g., phosphorothioate linkages); 2′ modifications (e.g., 2′-O-methyl substituted bases); zwitterionic modifications (6′-aminohexy modified ODNs); the addition of a terminal lipophilic moiety (e.g., fatty acids, cholesterol, or cholesterol derivatives); and combinations thereof.
- the modified sequences synergize with the LN formulations disclosed herein. For example, addition of a 3′-cholesterol to an ODN supplies stability to a LN complex by adding lipophilic interaction in a system otherwise primarily held together by electrostatic interaction during synthesis. In addition, this lipophilic attachment promotes cell permeation by localizing the ODN to the outer leaflet of the cell membrane.
- the LNs described herein may be administered by the following methods: peroral, parenteral, intravenous, intramuscular, subcutaneous, intraperitoneal, transdermal, intratumoral, intraarterial, systemic, or convection-enhanced delivery.
- the LNs are delivered intravenously, intramuscularly, subcutaneously, or intratumorally. Subsequent dosing with different or similar LNs may use alternative routes of administration.
- compositions of the present disclosure comprise an effective amount of a LN formulation disclosed herein, and/or additional agents, dissolved or dispersed in a pharmaceutically acceptable carrier.
- pharmaceutically acceptable refers to molecular entities and compositions that produce no adverse, allergic or other untoward reaction when administered to an animal, such as, for example, a human.
- the preparation of a pharmaceutical composition that contains at least one compound or additional active ingredient will be known to those of skill in the art in light of the present disclosure, as exemplified by Remington's Pharmaceutical Sciences, 2003, incorporated herein by reference.
- LN preparations should meet sterility, pyrogenicity, and general safety and purity standards as required by FDA Office of Biological Standards.
- compositions disclosed herein may comprise different types of carriers depending on whether it is to be administered in solid, liquid or aerosol form, and whether it need to be sterile for such routes of administration as injection.
- Compositions disclosed herein can be administered intravenously, intradermally, transdermally, intrathecally, intraarterially, intraperitoneally, intranasally, intravaginally, intrarectally, topically, intramuscularly, subcutaneously, mucosally, in utero, orally, topically, locally, via inhalation (e.g., aerosol inhalation), by injection, by infusion, by continuous infusion, by localized perfusion bathing target cells directly, via a catheter, via a lavage, in cremes, in lipid compositions (e.g., liposomes), or by other method or any combination of the forgoing as would be known to one of ordinary skill in the art (see, for example, Remington's Pharmaceutical Sciences, 2003, incorporated herein by reference).
- the actual dosage amount of a composition disclosed herein administered to an animal or human patient can be determined by physical and physiological factors such as body weight or surface area, severity of condition, the type of disease being treated, previous or concurrent therapeutic interventions, idiopathy of the patient and on the route of administration. Depending upon the dosage and the route of administration, the number of administrations of a preferred dosage and/or an effective amount may vary according to the response of the subject. The practitioner responsible for administration will, in any event, determine the concentration of active ingredient(s) in a composition and appropriate dose(s) for the individual subject.
- compositions may comprise, for example, at least about 0.1% of an active compound.
- the amount of active compound(s) in each therapeutically useful composition may be prepared is such a way that a suitable dosage will be obtained in any given unit dose of the compound.
- Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.
- a dose may also comprise from about 1 microgram/kg/body weight, about 5 microgram/kg/body weight, about 10 microgram/kg/body weight, about 50 microgram/kg/body weight, about 100 microgram/kg/body weight, about 200 microgram/kg/body weight, about 350 microgram/kg/body weight, about 500 microgram/kg/body weight, about 1 milligram/kg/body weight, about 5 milligram/kg/body weight, about 10 milligram/kg/body weight, about 50 milligram/kg/body weight, about 100 milligram/kg/body weight, about 200 milligram/kg/body weight, about 350 milligram/kg/body weight, about 500 milligram/kg/body weight, to about 1000 mg/kg/body weight or more per administration, and any range derivable therein.
- a range of about 5 mg/kg/body weight to about 100 mg/kg/body weight, about 5 microgram/kg/body weight to about 500 milligram/kg/body weight of active pharmaceutical ingredient (API), etc. can be administered, based on the numbers described above.
- a composition herein and/or additional agents is formulated to be administered via an alimentary route.
- Alimentary routes include all possible routes of administration in which the composition is in direct contact with the alimentary tract.
- the pharmaceutical compositions disclosed herein may be administered orally, buccally, rectally, or sublingually. As such, these compositions may be formulated with an inert diluent or with an assimilable edible carrier.
- a composition described herein may be administered via a parenteral route.
- parenteral includes routes that bypass the alimentary tract.
- the pharmaceutical compositions disclosed herein may be administered, for example but not limited to, intravenously, intradermally, intramuscularly, intraarterially, intrathecally, subcutaneous, or intraperitoneally (U.S. Pat. Nos. 6,753,514, 6,613,308, 5,466,468, 5,543,158; 5,641,515; and 5,399,363 are each specifically incorporated herein by reference in their entirety).
- compositions disclosed herein as free bases or pharmacologically acceptable salts may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
- Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions (U.S. Pat. No. 5,466,468, specifically incorporated herein by reference in its entirety).
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (i.e., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils.
- a coating such as lecithin
- surfactants for example
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include agents to achieve isotonicity, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption such as, for example, aluminum monostearate or gelatin.
- aqueous solutions For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose.
- aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous, and intraperitoneal administration.
- sterile aqueous media that can be employed will be known to those of skill in the art in light of the present disclosure.
- one dosage may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, “Remington's Pharmaceutical Sciences” 15th Edition, pages 1035-1038 and 1570-1580).
- Sterile injectable solutions are prepared by incorporating the compositions in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by sterilization.
- dispersions are prepared by incorporating the various sterilized compositions into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- some methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- a powdered composition is combined with a liquid carrier such as, e.g., water or a saline solution, with or without a stabilizing agent.
- compositions may be formulated for administration via various miscellaneous routes, for example, topical (i.e., transdermal) administration, mucosal administration (intranasal, vaginal, etc.) and/or via inhalation.
- topical i.e., transdermal
- mucosal administration intranasal, vaginal, etc.
- inhalation via inhalation.
- the compositions may be delivered by eye drops, intranasal sprays, inhalation, and/or other aerosol delivery vehicles.
- Methods for delivering compositions directly to the lungs via nasal aerosol sprays has been described in U.S. Pat. Nos. 5,756,353 and 5,804,212 (each specifically incorporated herein by reference in their entirety).
- the delivery of drugs using intranasal microparticle resins (Takenaga et al., 1998) and lysophosphatidyl-glycerol compounds (U.S. Pat. No. 5,725,871, specifically incorporated herein by reference in its entirety) are also well-known in the pharmaceutical arts and could be employed to deliver the compositions described herein.
- transmucosal drug delivery in the form of a polytetrafluoroetheylene support matrix is described in U.S. Pat. No. 5,780,045 (specifically incorporated herein by reference in its entirety), and could be employed to deliver the compositions described herein.
- compositions disclosed herein may be delivered via an aerosol.
- aerosol refers to a colloidal system of finely divided solid or liquid particles dispersed in a liquefied or pressurized gas propellant.
- the typical aerosol for inhalation consists of a suspension of active ingredients in liquid propellant or a mixture of liquid propellant and a suitable solvent.
- Suitable propellants include hydrocarbons and hydrocarbon ethers.
- Suitable containers will vary according to the pressure requirements of the propellant.
- Administration of the aerosol will vary according to subject's age, weight and the severity and response of the symptoms.
- HSA (25%) was purchased from Octapharma.
- PEHA was purchased from Sigma-Aldrich.
- a stock solution of PEHA, pH adjusted to 8.0 with M HCl was prepared.
- HSA was combined with 500 ⁇ of PEHA.
- 80 ⁇ of the 1-ethyl-3-[3dimethylaminopropyl]carbodiimide hydrochloride (EDC) (from Fisher Scientific) was added to the solution under stiffing. The reaction proceeded at room temperature for >4 h.
- EDC 1-ethyl-3-[3dimethylaminopropyl]carbodiimide hydrochloride
- the reaction proceeded at room temperature for >4 h.
- the produce HSA-PEHA was purified by gel filtration chromatography on a PD-10 desalting column or by dialysis using a MWCO 10,000 membrane to remove unreacted PEHA and byproducts. Protein concentration of the product was determined by a BCA protein assay.
- the molecular weight of the HSA-PEHA conjugate was determined by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MADLI TOF MS). On average, there were 11 PEHA linked to each HSA based on the result showing m/z of 66405.756.
- the product can be stored at 4° C., frozen, or lyophilized.
- Lipids 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (Avanti Polar Lipids), L- ⁇ -phosphatidylcholine derived from soybean (SPC) (Avanti Polar Lipids), and d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) (Eastman Chemical) were dissolved in ethanol. Lipids were combined at 25:70:5 (mol/mol). Briefly, 3.15, 8.83, and 0.63 ⁇ mol of DOTAP, SPC, and TPGS, respectively, were combined in 4 mL of ethanol.
- the LCAN-G3139 was stable at 4° C., and was frozen or lyophilized for long term storage.
- the particle size of LCAN was determined by NICOMP 370 particle size analyzer.
- the zeta potential was determined on a zetaPALS instrument.
- Drug loading efficiency was determined by Oligreen ssDNA quantitation reagents.
- LCAN particles were found to be ⁇ 200 nm in diameter, had a zeta potential of +20 ⁇ +40 mV and a G3139 encapsulation efficiency of greater than >60%.
- the same process was used to synthesize ligand-conjugated LCANs by incorporating lipid-derivatized ligands into the lipid components during nanoparticle synthesis.
- Possible ligands include transferring, folate, cRGD, or antibodies.
- HSA-PEHA conjugate was synthesized as follows. HSA (25%) was purchased from Octapharma. PEHA was dissolved in water and the pH was adjusted to 8.0 with HCl. A 500-fold excess of PEHA was added to the HSA solution, followed by 80-fold excess of EDC under stiffing. The reaction proceeded at room temperature for 4 hr. The product was purified and concentrated by tangential flow diafiltration on a MicroKros cartridge with MW of 10,000 against water. The product protein concentration was determined by BCA protein assay and the PEHA content in the product was determined by TNBS amine content assay using a PEHA-based standard curve. The PEHA-HSA ratio was calculated based on surplus in amine content relative to unmodified HSA and found to be 10.5:1. SDS-PAGE analysis showed that the conjugate migrated as a single band, indicating lack of intermolecular crosslinking in the HSA-PEHA product.
- G3139 is an 18-mer phosphorothioate ASO against bcl-2.
- G3139 purchased from AlphaDNA was dissolved in mM HEPES, pH 7.4.
- the zeta potential (4) was determined on a ZetaPALS (Brookhaven Instruments Corp., Worcestershire, N.Y.). All measurements were carried out in triplicate. The particle size was 98 ⁇ 40 nm and the zeta potential was +23 mV.
- the product LCAN-G3139 was analyzed for bcl-2 down regulation in KB (human carcinoma) cells. KB cells were plated in 6-well plates at a density of 2 ⁇ 10 4 cells/cm 2 24 h prior to transfection in RPMI 1640 (Life Technologies) medium containing 10% FBS and 1% antibiotics. The medium was removed and replaced with various G3139 ODN formulations in RPMI 1640 culture medium at G3139 concentration of 1 ⁇ M.
- the control LN-G3139 is a LN formulation with the composition of DOTAP/SPC/TPGS at 25:70:5 (m/m) without the addition of HSA-PEHA and otherwise prepared by the same method as LCAN.
- forward primer [SEQ ID NO. 1] CCCTGTGGATGACTGAGTACCTG; reverse primer [SEQ ID NO. 2] CCAGCCTCCGTTATCCTGG; and, probe [SEQ ID NO. 3]) CCGGCACCTGCACACCTGGA.
- Housekeeping gene ABL mRNAs were also amplified concurrently and Bcl-2 mRNA was normalized to ABL mRNA levels.
- LCAN-G3139 was much more effective in Bcl-2 down regulation than LN-G3139, a typical LN formulation of G3139 that does not contain HSA-PEHA. These data showed that LCAN-G3139 is a superior composition to most LNs and can be used to deliver antisense ASOs and other oligonucleotide drugs, such as siRNA, miR mimics, and anti-miR oligos.
- Low molecular weight PEI(600) was used in this example.
- Alternative low molecular weight polymers such as pentaethylenehexamine (PEHA), may also be conjugated using similar techniques.
- PEHA pentaethylenehexamine
- HSA-PEI conjugates were produced.
- HSA-PEI at various w/w ratios (0, 0.5, 1, 3, 6:1, HSA:ODN w/w) were combined with ODN LOR-2501 (0.2 ⁇ M) (purchased from Alpha DNA) to find the optimal retardation ratio using gel mobility shift analysis. Retardation occurred at 3:1 (HSA:ODN w/w) ( FIG. 1 ).
- DDAB, CHOL, and TPGS lipid stocks dissolved in 100% ethanol were combined at a molar ratio of 60:35:5. 100 ⁇ L lipid mixture in ethanol was added to 900 ⁇ L 1 ⁇ PBS buffer as to form empty LNs in 10% ethanol.
- the HSA-PEI/ODN complex was then combined with the empty LNs to form LCANs.
- the formulation was briefly vortexed and allowed to stand for 15 m at room temperature before transfection into KB cells.
- the concentration of ODN used was 0.2 ⁇ M ( FIG. 2 ). All LCANs containing HSA-PEI exhibited a positive charge ranging between 5 and 25 mV. LCANs without HSA-PEI were neutrally charged.
- FIG. 3 displays the downregulation of RNR R1 mRNA expression by LOR-2501 in LCANs.
- KB cells grown in RPMI 1640 medium at 37° C. under 5% CO 2 atmosphere, were plated 24 h prior to transfection at a density of 3.0 ⁇ 10 5 cells per well in a 6-well plate. Cells were grown to approximately 80% confluency and the serum-containing media was removed. Cells were transfected with 1000 ⁇ L transfection media and treated for 4 h. Transfection occurred in the presence of 0% and 10% serum-containing RPMI 1640 media. Experiments were performed with 3 replicates. After treatment was completed, cells were washed with 1 ⁇ PBS and serum-containing RPMI 1640 was restored. At 48 h after treatment was completed, cells were analyzed for RNR R1 expression levels by RT-PCR with actin as a housekeeping gene.
- Results are shown in FIG. 2 .
- the 1:3, ODN:HSA LCAN formulation showed the greatest transfection efficacy.
- the 1:1 ODN:HSA LCAN formulation was the most efficacious.
- Cell viability 48 h after treatment was assessed by MTT assay ( FIG. 4 ).
- a similar experiment involving conjugation of PEHA-to-albumin was completed and showed similar transfection activity ( FIGS. 7 and 8 ).
- LCAN using HSA-PEI based APC were prepared as described above.
- CAL-51 triple negative breast cancer cells were plated 24 h prior to transfection in a 6-well plate at a density of 2 ⁇ 10 4 cells/cm 2 in DMEM/F12 media supplemented with 1% penicillin/streptomycin and 10% FBS.
- LCAN was combined with anti-miR-221 (100 nM) to gauge its ability to upregulate the downstream targets of miR-221, p27/Kip1 and the estrogen receptor alpha (ER ⁇ ).
- RNA from cells was extracted with TRIzol Reagent (Life Technologies) and cDNA was generated by SuperScript® III First-Strand Synthesis System (Life Technologies) per the manufacturer's instructions.
- RT-PCR was then performed using SYBR green (Life Technologies) and primers for p27/kip1 (Alpha DNA) and ER ⁇ :
- ⁇ -actin was used as a control.
- LCAN/anti-miR-221 led to moderate increases in p27/Kip1 expression and slight increases in ER ⁇ expression.
- HSA-PEHA conjugates were synthesized at a relatively large scale.
- the HSA:PEHA:EDC molar ratio used during synthesis was 1:1500:200 (mol/mol).
- 5 g PEHA (MW 232.37, technical grade) was dissolved in 80 mL of ddH 2 O and then adjusted to pH 8.0 using 1 M HCl.
- 1 g (4 mL) of HSA (25%, Octapharma)) and then 562.5 mg of 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC, dissolved in DMSO) were added into the PEHA solution under stirring. The reaction continued for 3 h at room temperature.
- the mixture was then dialyzed using MWCO 10,000 Spectrum membrane against ddH 2 O at 4° C.
- the buffer was replaced every 3-4 h until amines from PEHA became undetectable by the standard ninhydrin or TNBS amine essay in the external buffer at the 3 h time point at the end of the dialysis cycle.
- the dialysis procedure can be replaced by tangential flow diafiltration, e.g., using a Millipore Pellicon cassette system or a Spectropor hollowfiber system. This method can also be used to concentrate the product to a desirable concentration.
- the product can be passed through a 0.22 ⁇ m sterile filter into a sterile container and stored at 4° C. For long-term storage, the product can be stored at ⁇ 20° C.
- the product can also be lyophilized.
- the product protein concentration was determined using BCA protein assay.
- the amine content of the HSA-PEHA conjugate was determined by TNBS assay or MALDI-TOF MS based on change in molecular weight relative to HSA.
- Gel permeation chromatography combined with amine TNBS assay is used to demonstrate the lack of crosslinked HSA and the absence of free PEHA in the product. Due to the modest cost of the reagents used, the yield of the reaction is not critical. The purity of the product is expected to be very high. Exact product specifications can be defined based on PEHA-to-HSA ratio and higher limits of crosslinked HSA and free PEHA in the final product.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Application 61/650,729, filed May 23, 2012, and U.S. Provisional Application 61/784,892, filed Mar. 14, 2013, the disclosures of which are hereby incorporated by reference in their entirety.
- This invention was made with government support under Grant Numbers R01 CA135243, DK088076, and CA152969 awarded by the National Institutes of Health. The government has certain rights in the invention.
- The instant application contains a Sequence Listing which has been submitted via EFS-web and is hereby incorporated by reference in its entirety. The ASCII copy, created on May 22, 2013, is named 604—55043_SEQ_LIST_OSU-2013-246(2).txt, and is 1,476 bytes in size.
- The present disclosure pertains to lipid nanoparticles (LNs) usable for the delivery of therapeutic compositions, including, but not limited to nucleic acids (NAs).
- A liposome is a vesicle composed of one or more lipid bilayers, capable of carrying hydrophilic molecules within an aqueous core or hydrophobic molecules within its lipid bilayer(s). As used herein, “Lipid nanoparticles” (LNs) is a general term to described lipid-based particles in the submicron range. LNs can have structural characteristics of liposomes and/or have alternative non-bilayer types of structures. Drug delivery by LNs via systemic route requires overcoming several physiological barriers. The reticuloendothelial system (RES) is responsible for clearance of LNs from the circulation. Once escaping the vasculature and reaching the target cell, LNs are typically taken up by endocytosis and must release the drug into the cytoplasm prior to degradation within acidic endosome conditions.
- In particular, the delivery of such nucleic acids (NAs), including siRNA and other therapeutic oligonucleotides is a major technical challenge that has limited their potential for clinical translation.
- The development of efficient delivery vehicles is a key to clinical translation of oligonucleotide (ON) therapeutics. It is desired that a LN formulation should be able to (1) protect the drug from enzymatic degradation; (2) traverse the capillary endothelium; (3) specifically reach the target cell type without causing excessive immunoactivation or off-target cytotoxicity; (4) promote endocytosis and endosomal release; and (5) form a stable formulation with high colloidal stability and long shelf-life.
- Provided herein are LNs that encapsulate therapeutic oligonucleotides with high efficiency and fulfill physical and biological criteria for efficacious delivery. In certain embodiments, the LNs comprise hyper-cationized and/or pH-responsive HSA-polymer conjugates. In certain embodiments, the HSA-polymer conjugate comprises HSA-PEI or HSA-PEHA. The incorporation of hyper-cationized albumin-polymer conjugates (APC) increases the transfection efficiency of LN formulations. These LNs particles are also described herein as lipid-coated albumin nanoparticles (LCANs)
- In a first aspect, provided herein is a lipid nanoparticle (LN) comprising at least one lipid and albumin conjugated to a positively charged polymer.
- In certain embodiments, the LN comprises a hyper-cationized albumin-polycation conjugate (APC). In certain embodiments, the polycation comprises a polyamine selected from the group consisting of spermine, dispermine, trispermine, tetraspermine, oligospermine, thermine, spermidine, dispermidine, trispermidine, oligospermidine, putrescine, polylysine, polyarginine, a polyethylenimine of branched or linear type, and polyallylamine.
- In certain embodiments, the positively-charged polymer consists essentially of a polyethylenimine.
- In certain embodiments, the polyethylenimine has a molecular weight not greater than 50 kDa, or from about 200 Da to about 2000 Da. In certain embodiments, the positively-charged polymer comprises pentaethylenehexamine (PEHA) or tetraethylenepentamine (TEPA).
- In certain embodiments, the LN comprises a polyethylenimine conjugated to human serum albumin.
- In certain embodiments, the conjugation is via one or more cross linking agents. In certain embodiments, the LN comprises PEHA conjugated to HSA.
- In certain embodiments, multiple PEHA molecules are linked to each HSA molecule. For example, in certain embodiments, between about two (2) and about twenty (2) PEHA molecules can be linked to each HSA molecule. In certain embodiments, eleven (11) PEHA molecules are linked to each HSA molecule.
- In certain embodiments, the LN comprises a mixture of two or more low molecular weight polymers.
- In certain embodiments, the at least one lipid comprises a cationic lipid, a neutral lipid, and a PEGylated lipid, with or without cholesterol.
- In certain embodiments, at least one lipid comprises 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), L-α-phosphatidylcholine (SPC), and d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). In particular embodiments, the lipids are in a 25:70:5 molar ratio of DOTAP:SPC:TPGS.
- In certain embodiments, the LN encapsulates molecules selected from nucleic acids, chemo therapeutic agents, or combinations thereof. In certain embodiments, the encapsulated molecules comprise a nucleic acid selected from plasmid DNAs, antisense oligonucleotides, miRs, anti-miRs, shRNAs, siRNAs, or combinations thereof. In certain embodiments, the encapsulation rate of therapeutic agents or nucleotides is 40% or higher.
- In certain embodiments, the LN has a diameter under 300 nm, or under 200 nm, or about 98 nm.
- In certain embodiments, the polymer is bound only to an external surface of the nanoparticle via direct connection or via a crosslinker.
- In certain embodiments, the LN further comprises a polyethylene glycol-conjugated lipid. In certain embodiments, the polyethylene glycol-conjugated lipid is selected from the group consisting of
polysorbate 80, TPGS, and mPEG-DSPE. In particular embodiments, the polyethylene glycol-conjugated lipid is present at a concentration less than about 15.0 molar percent. - In certain embodiments, the LN further comprises a ligand capable of binding to a target cell or a target molecule. In certain embodiments, the ligand is an antibody or an antibody fragment. In certain embodiments, the ligand is selected from cRGD, galatose-containing moieties, transferrin, folate, low density lipoprotein, or epidermal growth factors.
- In another broad aspect, provided herein is a pharmaceutical composition comprising a lipid nanoparticle having at least one lipid and albumin conjugated to a positively charged polymer, and a pharmaceutically acceptable excipient.
- In certain embodiments, the pharmaceutical composition is administered perorally, intravenously, intraperitoneally, subcutaneously, or transdermally. In particular embodiments, the pharmaceutical composition is prepared as an orally administered tablet, a sterile solution, a sterile suspension, a lyophilized powder, or a suppository.
- In another broad aspect, provided herein is a method of making a lipid-coated albumin nanoparticle (LCAN). The method involves synthesizing a human serum albumin-pentaethylenehexamine (HSA-PEHA) conjugate; adding at least one lipid to the HSA-PEHA conjugate; adding a nucleic acid to the mixture of lipids and the HSA-PEHA conjugate to obtain an LCAN precursor; and subjecting the LCAN precursor to a dialysis or diafiltration step to make a lipid-coated albumin nanoparticle.
- In certain embodiments, the at least one lipid comprises DOTAP, SPC, and TPGS at a 25:70:5 ratio. In certain embodiments, the nucleic acid is selected from pDNAs, antisense oligonucleotides, miRs, anti-miRs, shRNAs, siRNAs, or combinations thereof. Further provided herein is the product made from the described method.
- In another broad aspect, provided herein is a method of diagnosing or treating a cancer or infectious disease. The method involves administering an effective amount of a pharmaceutical composition comprising at least one lipid, albumin conjugated to a positively-charged polymer, and a pharmaceutically acceptable excipient, to a patient in need thereof.
- In another broad aspect, provided herein is a delivery system comprising at least one lipid and a macromolecule conjugated to a polymer, wherein the macromolecule forms an electrostatic complex with a nucleic acid.
- In another broad aspect, provided herein is a method of using a lipid nanoparticle. The method involves encapsulating a nucleic acid in a lipid nanoparticle, wherein the lipid nanoparticle comprises albumin conjugated to a polymer, incorporating the lipid nanoparticle into a pharmaceutical composition, and administering the pharmaceutical composition to a patient in need thereof.
-
FIG. 1 : Gel mobility shift analysis of HSA-PEI(600) (APC)-oligodeoxynucleotide (ODN) complexes at varying ODN-to-HSA-PEI(600) w/w ratios. LOR-2501, an ASO against ribonuclease reductase R1 (RNR R1) subunit (purchased from Alpha DNA) was used. -
FIG. 2 : Zeta potential of LN (LN)-HSA-PEI(600)-LOR-2501 (APC-ODN) complexes. -
FIGS. 3A-B : Downregulation of RNR R1 mRNA expression by LOR-2501 in LCANs. The LCANs were prepared at varying APC concentrations under different media conditions:FIG. 3A displays serum-free media;FIG. 3B displays media containing 10% FBS. RNR R1 mRNA expression relative to actin was determined by RT-PCR where untreated KB cells served as a baseline for mRNA expression. -
FIG. 4 : Cell viability study of KB cells treated with LCAN-HSA-PEI(600)-LOR-2501 (APC) complex. Transfection was performed in serum-free media. Cell viabilities are expressed as a percentage relative to the mean viability of the untreated KB cells. -
FIG. 5 : Gel mobility shift analysis of HSA-PEHA-LOR-2501 (APC-ODN) complexes at varying ODN-to-APC w/w ratios. LOR-2501 was used as the ODN in this study. -
FIG. 6 : Downregulation of RNR R1 mRNA expression by LOR-2501 in LCANs. The LCANs were prepared at varying APC concentrations under serum-free conditions. RNR R1 mRNA expression relative to actin was determined by RT-PCR where untreated KB cells served as a baseline for mRNA expression. -
FIG. 7 : Bcl-2 down regulation in KB cells by lipid-coated albumin nanoparticle (LCAN)-G3139 as compared to LN-G3139. -
FIG. 8 : An example scheme for synthesizing an APC. -
FIG. 9 : The mechanism of action for hyper-cationized pH-responsive APCs. -
FIG. 10 : Upregulation of p27/kip1 mRNA by LCAN loaded with anti-miR-221 in CAL-51 breast cancer cells. -
FIG. 11 : Upregulation of estrogen mRNA by LCAN loaded with anti-miR-221 in CAL-51 cells. The estrogen receptor is a target of miR-221. - Those of ordinary skill in the art will realize that the following detailed description of the embodiments is illustrative only and not intended to be in any way limiting. Other embodiments will readily suggest themselves to such skilled persons having the benefit of this disclosure. Reference to an “embodiment,” “aspect,” or “example” herein indicate that the embodiments of the invention so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may.
- Not all of the routine features of the implementations or processes described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions will be made in order to achieve the developer's specific goals, such as compliance with application- and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
- General Description
- Nucleic acid (NA)-based therapies are being developed to promote or inhibit gene expression. As mutations in genes and changes in miRNA profile are believed to be the underlying cause of cancer and other diseases, NA-based agents can directly act upon the underlying etiology, maximizing therapeutic potential. Non-limiting examples of NA-based therapies include: plasmid DNA (pDNA), small interfering RNA (siRNA), small hairpin RNA (shRNA), microRNA (miR), mimic (mimetic), anti-miR/antagomiR/miR inhibitor, and antisense oligonucleotide (ASO). Until the development of the nanoparticle compositions described herein, the clinical translation of NA-based therapies faced several obstacles in their implementation since transporting NAs to their intracellular target was particularly challenging and since NAs are relatively unstable and subject to degradation by serum and cellular nucleases. Further, the high negative charges of NAs made it impossible for transport across the cell membrane, further limiting utility.
- The LNs described herein provide a useful platform for the delivery of both traditional therapeutic compounds and NA-based therapies. Drugs formulated using LNs provide desirable pharmacokinetic (PK) properties in vivo, such as increased blood circulation time and increased accumulation at the site of solid tumors due to enhanced permeability and retention (EPR) effect. Moreover, in certain embodiments, the LNs may be surface-coated with polyethylene glycol to reduce opsonization of LNs by serum proteins and the resulting RES-mediated uptake, and/or coated with cell-specific ligands to provide targeted drug delivery.
- It is desired that the zeta potential of LNs not be excessively positive or negative for systemic delivery. LNs with a highly positive charge tend to interact non-specifically with non-target cells, tissues, and circulating plasma proteins, and may cause cytotoxicity. Alternatively, LNs with a highly negative charge cannot effectively incorporate NAs, which are themselves negatively charged, and may trigger rapid RES-mediated clearance, reducing therapeutic efficacy. LNs with a neutral to moderate charge are best suited for in vivo drug and gene delivery.
- In certain embodiments, the LNs described herein comprise hyper-cationized albumin-polymer conjugates (APCs). As used herein, the term “hyper-cationized” mean each polycation carries multiple positive charges. In particular embodiments, up to 20 polycations can be linked to each albumin molecule. These factors result in a much higher overall charge content for APCs compared to traditional cationized albumin, which typically comprises an albumin conjugate where carboxyl groups are replaced with single-positive-charge amine functional groups. Because of their high charge density, the APCs are able to very efficiently interact with polyanions such as an oligonucleotide particle, molecule, compound or formulation having multiple cations or positive charges.
- The term “lipid nanoparticle” (LP) as used herein refers to a vesicle formed by one or more lipid components. The lipid components described herein may include cationic lipids. Cationic lipids are lipids that carry a net positive charge at any physiological pH. In certain embodiments, the positive charge is used for association with negatively charged therapeutics such as ASOs via electrostatic interaction.
- Suitable cationic lipids include, but are not limited to: 3β-[N—(N′,N′-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DC-Chol); 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP); 1,2-dioleoyl-3-dimethylammonium-propane (DODAP); dimethyldioctadecylammonium bromide salt (DDAB); 1,2-dilauroyl-sn-glycero-3-ethylphosphocholine chloride (DL-EPC); N-[1-(2,3-dioleyloxy)propyl]-N—N—N-trimethyl ammonium chloride (DOTMA); N-[1-(2,3-dioleyloxy)propyl]-N—N—N-dimethyl ammonium chloride (DODMA); N,N-dioctadecyl-N,N-dimethylammonium chloride (DODAC); N-(1-(2,3-dioleyloxy)propyl)-N-2-(sperminecarboxamido)ethyl)-N,N-dimethylammonium trifluoracetate (DOSPA); 1,2-dimyristyloxypropyl-3-dimethylhydroxyethyl ammonium bromide (DMRIE); dioctadecylamidoglycylspermine (DOGS); neutral lipids conjugated to cationic modifying groups; and combinations thereof. In addition, a number of cationic lipids in available preparations could be used, such as LIPOFECTIN® (from GIBCO/BRL), LIPOFECTAMINE® (from GIBCO/MRL), siPORT NEOFX® (from Applied Biosystems), T RANSFECTAM® (from Promega), and TRANSFECTIN® (from Bio-Rad Laboratories, Inc.). The skilled practitioner will recognize that many more cationic lipids are suitable for inclusion in the LN formulations. In certain embodiments, the cationic lipids may be present at concentrations up to about 80.0 molar percent of total lipids in the formulation, or from about 5.0 to about 50.0 molar percent of the formulation.
- In certain embodiments, the LN formulations presently disclosed may also include anionic lipids. Anionic lipids are lipids that carry a net negative charge at physiological pH. These anionic lipids, when combined with cationic lipids, are useful to reduce the overall surface charge of LNs and introduce pH-dependent disruption of the LN bilayer structure, facilitating nucleotide release by inducing nonlamellar phases at acidic pH or induce fusion with the cellular membrane.
- Examples of suitable anionic lipids include, but are not limited to: fatty acids such as oleic, linoleic, and linolenic acids; cholesteryl hemisuccinate; 1,2-di-O-tetradecyl-sn-glycero-3-phospho-(1′-rac-glycerol) (diether PG); 1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt); 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (sodium salt); 1-hexadecanoyl, 2-(9Z,12Z)-octadecadienoyl-sn-glycero-3-phosphate; 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DOPG); dioleoylphosphatidic acid (DOPA); and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS); anionic modifying groups conjugated to neutral lipids; and combinations thereof. The anionic lipids of the present disclosure are present at concentrations up to about 60.0 molar percent of the formulation, or from about 5.0 to about 25.0 molar percent of the formulation.
- In certain embodiments, charged LNs are advantageous for transfection, but off-target effects such as cytotoxicity and RES-mediated uptake may occur. Hydrophilic molecules such as polyethylene glycol (PEG) may be conjugated to a lipid anchor and included in the LNs described herein to prevent LN aggregation or interaction with membranes. Hydrophilic polymers may be covalently bonded to lipid components or conjugated using crosslinking agents to functional groups such as amines.
- Suitable conjugates of hydrophilic polymers include, but are not limited to: polyvinyl alcohol (PVA);
polysorbate 80; 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000); D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS); dimyristoylphosphatidylethanolamine-PEG2000 (DMPE-PEG2000); and dipalmitoylphosphatidylethanolamine-PEG2000 (DPPE-PEG2000). In certain embodiments, the hydrophilic polymer may be present at concentrations ranging from about 0 to about 15.0 molar percent of the formulation, or from about 5.0 to about 10.0 molar percent of the formulation. Also, in certain embodiments, the molecular weight of the PEG used is between about 100 and about 10,000 Da, or from about 100 to about 2,000 Da. - The LNs described herein may further comprise neutral and/or cholesterol lipids as helper lipids. These lipids are useful to stabilize the formulation, reduce elimination in vivo, or increase transfection efficiency. The LNs may be formulated in a solution of saccharides such as, but not limited to, glucose, sorbitol, sucrose, maltose, trehalose, lactose, cellubiose, raffinose, maltotriose, dextran, or combinations thereof, to promote lyostability and/or cryostability.
- Neutral lipids have zero net charge at physiological pH. One or a combination of several neutral lipids may be included in any LN formulation disclosed herein.
- Suitable neutral lipids include, but are not limited to: phosphatidylcholine (PC, e.g., DSPC, DPPC, DOPC, DMPC, soyPC, eggPC, HSPC), phosphatidylethanolamine (PE, e.g., DOPE, DSPE, DPPE, DSPE, DMPE), ceramide, cerebrosides, sphingomyelin, cephalin, cholesterol, diacylglycerol, glycosylated diacylglycerols, prenols, lysosomal PLA2 substrates, N-acylglycines, and combinations thereof.
- Other suitable lipids include, but are not limited to: phosphatidic acid, (PG, e.g., DSPG, DMPG, DPPG), and lysophosphatidylethanolamine; sterols such as cholesterol, demosterol, sitosterol, zymosterol, diosgenin, lanostenol, stigmasterol, lathosterol, and dehydroepiandrosterone; and sphingolipids such as sphingosines, ceramides, sphingomyelin, gangliosides, glycosphingolipids, phosphosphingolipids, phytoshingosine; and combinations thereof.
- The LN formulations described herein may further comprise fusogenic lipids or fusogenic coatings to promote membrane fusion. Examples of suitable fusogenic lipids include, but are not limited to, glyceryl mono-oleate, oleic acid, palmitoleic acid, phosphatidic acid, phosphoinositol 4,5-bisphosphate (PIP2), and combinations thereof.
- The LN formulations described here may further comprise cationic polymers or conjugates of cationic polymers. Cationic polymers or conjugates thereof may be used alone or in combination with lipid nanocarriers. Suitable cationic polymers include, but are not limited to: polyethylenimine (PEI); pentaethylenehexamine (PEHA); spermine; spermidine; poly(L-lysine); poly(amido amine) (PAMAM) dendrimers; polypropyleneiminie dendrimers; poly(2-dimethylamino ethyl)-methacrylate (pDMAEMA); chitosan; tris(2-aminoethyl)amine and its methylated erivatives; and combinations thereof. In certain embodiments, the chain length and branching are important considerations for the implementation of polymeric delivery systems. High molecular weight polymers such as PEI (MW 25,000) are useful as transfection agents, but suffer from cytotoxicity. Low molecular weight PEI (MW 600) does not cause cytotoxicity, but is limited due to its inability to facilitate stable condensation with NAs. As described herein the conjugation of low molecular weight polymers to a larger molecule such as albumin is a thus a useful method of increasing activity of electrostatic complexation with NA condensation while lowing cytotoxicity of LN formulations.
- Anionic polymers may be incorporated into the LN formulations presently disclosed as well. Suitable anionic polymers include, but are not limited to: poly(propylacrylic acid) (PPAA); poly(glutamic acid) (PGA); alginates; dextran derivatives; xanthans; derivatized polymers; and combinations thereof.
- In certain embodiments, the LN formulation includes conjugates of polymers. The conjugates may be crosslinked to targeting agents, lipophilic moieties, proteins, or other molecules that increase the overall therapeutic efficacy. Suitable crosslinking agents include, but are not limited to: N-succinimidyl 3-[2-pyridyldithio]-propionate (SPDP);
dimethyl - The addition of targeting agents to the LN provides increased efficacy over passive targeting approaches. Targeting involves incorporation of specific targeting moieties such as, but not limited to, ligands or antibodies against cell surface receptors, peptides, lipoproteins, glycoproteins, hormones, vitamins, antibodies, antibody fragments, and conjugates or combinations of these moieties.
- In certain embodiments, the maximization of targeting efficiency includes the surface coating of the LN with the appropriate targeting moiety rather than pre-mixing of the targeting ligand with other components, which results in partial encapsulation of the targeting agent, rendering it inaccessible to the cellular target. This method optimizes interaction with cell surface receptors.
- It is to be understood that targeting agents may be either directly incorporated into the LN during synthesis or added in a subsequent step. Functional groups on the targeting moiety as well as specifications of the therapeutic application (e.g., degradable linkage) dictate the appropriate means of incorporation into the LN. For example, targeting moieties that do not have lipophilic regions cannot insert into the lipid bilayer of the LN directly and require prior conjugation to a lipid anchor before insertion or must form an electrostatic complex with the LNs.
- Also, under certain circumstances, a targeting ligand cannot directly connect to a lipophilic anchor. In these circumstances, a molecular bridge in the form of a crosslinking agent may be utilized to facilitate the interaction. In certain embodiments, it is advantageous to use a crosslinking agent if steric restrictions of the anchored targeting moiety prevent sufficient interaction with the intended physiological target. Additionally, if the targeting moiety is only functional under certain orientations (e.g., monoclonal antibody), linking to a lipid anchor via crosslinking agent is beneficial. In certain embodiments, other methods of bioconjugation may be used to link targeting agents to LNs. Reducible or hydrolysable linkages may be applied to prevent accumulation of the formulation in vivo and the related cytotoxicity.
- Various methods of LN preparation are suitable to synthesize the LNs of the present disclosure. For example, ethanol dilution, freeze-thaw, thin film hydration, sonication, extrusion, high pressure homogenization, detergent dialysis, microfluidization, tangential flow diafiltration, sterile filtration, and/or lyophilization may be utilized. Additionally, several methods may be employed to decrease the size of the LNs. For example, homogenization may be conducted on any devices suitable for lipid homogenization such as an Avestin Emulsiflex C5®. Extrusion may be conducted on a Lipex Biomembrane extruder using a polycarbonate membrane of appropriate pore size (0.05 to 0.2 μm). Multiple particle size reduction cycles may be conducted to minimize size variation within the sample. The resultant LNs may then be passed through a size exclusion column such as Sepharose CL4B or processed by tangential flow diafiltration to purify the LNs.
- Any embodiment of the LNs described herein may further include ethanol in the preparation process. The incorporation of about 30-50% ethanol in LN formulations destabilizes the lipid bilayer and promotes electrostatic interactions among charged moieties such as cationic lipids with anionic ASO and siRNA. LNs prepared in high ethanol solution are diluted before administration. Alternatively, ethanol may be removed by dialysis or diafiltration, which also removes non-encapsulated NA.
- In certain embodiment, it is desirable that the LNs be sterilized. This may be achieved by passing of the LNs through a 0.2 or 0.22 μm sterile filter with or without pre-filtration.
- Physical characterization of the LNs can be carried through many methods. For example, dynamic light scattering (DLS) or atomic force microscopy (AFM) can be used to determine the average diameter and its standard deviation. In certain embodiments, it is especially desirable that the LNs have about a 200 nm diameter, or less. Zeta potential measurement via zeta potentiometer is useful in determining the relative stability of particles. Both dynamic light scattering analysis and zeta potential analysis may be conducted with diluted samples in deionized water or appropriate buffer solution. Cryogenic transmission electron microscopy (Cryo-TEM) and scanning electron microscopy (SEM) may be used to determine the detailed morphology of LNs.
- The LNs described herein are stable under refrigeration for several months. LNs requiring extended periods of time between synthesis and administration may be lyophilized using standard procedures. A cryoprotectant such as 10% sucrose may be added to the LN suspension prior to freezing to maintain the integrity of the formulation during lyophilization. Freeze drying of LN formulations is recommended for long term stability.
- In certain embodiments, the LCANs described herein have a diameter of less than 300 nm, and, in particular embodiments, between about 50 and about 200 nm in mean diameter. These LNs show enhanced transfection and reduced cytotoxicity, especially under high serum conditions found during systemic administration. The LNs are useful in a wide range of current therapeutic agents and systems, have high serum stability, and can be designed for targeted delivery with high transfection efficiency.
- Albumin-Polymer Conjugates (APCs)
- The utilization of cationic polymers as transfection agents alone and in conjunction with lipids in LNs often benefits transfection efficiency. One polymeric transfection agent is high molecular weight polyethylenimine (PEI), a large polymer with a molecular weight of ˜25 kDa. While PEI25K has been used to deliver pDNA to cells, cytotoxicity has limited its use in vivo. Less toxic, low molecular weight PEI (MW ˜600 kDa) has also been investigated, but this has shown diminished ability to interact with and deliver NAs.
- Provided herein are hyper-cationized albumin-polymer conjugates (APCs), which do not have any of the deficiencies of the aforementioned polymers. APCs may either be used alone to deliver agents such as pDNA or combined with lipid-based formulations to deliver agents such as ASOs and siRNA. Albumin also possesses endosomal lytic activity due to its hydrophobic core, which upon conformational change can be exposed and can induce bilayer disruption or membrane fusion. In some embodiments, such as the HSA-PEI600 conjugate, the APC has an ionization profile that is responsive to pH change. The charge density is increased at endosomal pH, which is acidic.
- In one embodiment, an APC is combined with a cationic lipid combination to assemble a cationic lipid-APC-NA nanoparticle, sometimes herein called LCAN. In another embodiment, an APC is combined with an anionic lipid combination to assemble a lipid-APC-NA nanoparticle. In certain embodiments, the LNs comprise hyper-cationized APCs. These LNs have high transfection efficiency without additional cytotoxicity. An example scheme for synthesizing an APC is shown in
FIG. 8 . The mechanism of action for hyper-cationized pH-responsive APCs is shown inFIG. 9 . - Also provided herein are macromolecules conjugated to polymers, such as positively charged polymers. In one embodiment, a low molecular weight pH-sensitive polymer (polyethylenimine MW 600, PEI600) is conjugated to human serum albumin (HSA) via cross linking agents, resulting in a hyper-cationized pH-responsive APC. The addition of HSA-PEI600 conjugates to LNs significantly increases downregulation of RRM1 (aka RNR R1) with ASO LOR-2501 (purchased from Alpha DNA) in the presence of serum without substantial cytotoxicity in KB cells (a subline of HeLa).
- In another embodiment, a low molecular weight pentaethylenehexamine (PEHA) is conjugated to HSA via cross linking agents, resulting in a hyper-cationized pH-responsive APC. This particular formulation, referred to as a lipid-coated albumin nanoparticle (LCAN), is especially useful for the delivery of oligonucleotides, such as antisense ODNs, pDNAs, siRNAs, shRNAs, miRs, and anti-miRs. Without wishing to be bound by theory, it is believed HSA-PEHA improves the stability and biological activity of the nanoparticles. In certain embodiments, the lipids in this formulation are DOTAP, SPC, and TPGS, at a ratio of 25:70:5 (mol/mol).
- Applications
- Depending on the application, the LNs disclosed herein may be designed to favor characteristics such as increased loading of NAs, increased serum stability, reduced RES-mediated uptake, targeted delivery, or pH sensitive release within the endosome. Because of the varied nature of LN formulations, any one of the several methods provided herein may be used to achieve a particular therapeutic aim. Cationic lipids, anionic lipids, polyalkenes, neutral lipids, fusogenic lipids, cationic polymers, anionic polymers, polymer conjugates, peptides, targeting moieties, and combinations thereof may be utilized to meet specific aims.
- The LNs described herein can be used as platforms for therapeutic delivery of oligonucleotide (ON) therapeutics, such as cDNA, siRNA, shRNA, miRNA, anti-miR, and antisense ODN. These therapeutics are useful to manage a wide variety of diseases such as various types of cancers, leukemias, viral infections, and other diseases. For instance, targeting moieties such as cyclic-RGD, folate, transferrin, or antibodies greatly enhance activity by enabling targeted drug delivery. A number of tumors overexpress receptors on their cell surface. Non-limiting examples of suitable targeting moieties include transferrin (Tf), folate, low density lipoprotein (LDL), and epidermal growth factors. In addition, tumor vascular endothelium markers such as alpha-v-beta-3 integrin and prostate-specific membrane antigen (PSMA) are valuable as targets for LNs. In certain embodiments, LN formulations having particles measuring about 300 nm or less in diameter with a zeta potential of less than 50 mV and an encapsulation efficiency of greater than 20.0% are useful for NA delivery.
- Implementation of embodiments of the LN formulations described herein alone or in combination with one another synergizes with current paradigms of LN design.
- A wide spectrum of therapeutic agents may be used in conjunction with the LNs described herein. Non-limiting examples of such therapeutic agents include antineoplastic agents, anti-infective agents, local anesthetics, anti-allergics, antianemics, angiogenesis-inhibitors, beta-adrenergic blockers, calcium channel antagonists, anti-hypertensive agents, anti-depressants, anti-convulsants, anti-bacterial, anti-fungal, anti-viral, anti-rheumatics, anthelminithics, antiparasitic agents, corticosteroids, hormones, hormone antagonists, immunomodulators, neurotransmitter antagonists, anti-diabetic agents, anti-epileptics, anti-hemmorhagics, anti-hypertonics, antiglaucoma agents, immunomodulatory cytokines, sedatives, chemokines, vitamins, toxins, narcotics, imaging agents, and combinations thereof.
- NA-based therapeutic agents are highly applicable to the LN formulations of the present disclosure. Examples of such NA-based therapeutic agents include, but are not limited to: pDNA, siRNA, miRNA, anti-miRNA, ASO, and combinations thereof. To protect from serum nucleases and to stabilize the therapeutic agent, modifications to the substituent NA base units and/or phosphodiester linker can be made. Such modifications include, but are not limited to: backbone modifications (e.g., phosphorothioate linkages); 2′ modifications (e.g., 2′-O-methyl substituted bases); zwitterionic modifications (6′-aminohexy modified ODNs); the addition of a terminal lipophilic moiety (e.g., fatty acids, cholesterol, or cholesterol derivatives); and combinations thereof. The modified sequences synergize with the LN formulations disclosed herein. For example, addition of a 3′-cholesterol to an ODN supplies stability to a LN complex by adding lipophilic interaction in a system otherwise primarily held together by electrostatic interaction during synthesis. In addition, this lipophilic attachment promotes cell permeation by localizing the ODN to the outer leaflet of the cell membrane.
- Depending on the therapeutic application, the LNs described herein may be administered by the following methods: peroral, parenteral, intravenous, intramuscular, subcutaneous, intraperitoneal, transdermal, intratumoral, intraarterial, systemic, or convection-enhanced delivery. In particular embodiments, the LNs are delivered intravenously, intramuscularly, subcutaneously, or intratumorally. Subsequent dosing with different or similar LNs may use alternative routes of administration.
- Pharmaceutical compositions of the present disclosure comprise an effective amount of a LN formulation disclosed herein, and/or additional agents, dissolved or dispersed in a pharmaceutically acceptable carrier. The phrases “pharmaceutical” or “pharmacologically acceptable” refers to molecular entities and compositions that produce no adverse, allergic or other untoward reaction when administered to an animal, such as, for example, a human. The preparation of a pharmaceutical composition that contains at least one compound or additional active ingredient will be known to those of skill in the art in light of the present disclosure, as exemplified by Remington's Pharmaceutical Sciences, 2003, incorporated herein by reference. Moreover, for animal (and human) administration, it will be understood that LN preparations should meet sterility, pyrogenicity, and general safety and purity standards as required by FDA Office of Biological Standards.
- A composition disclosed herein may comprise different types of carriers depending on whether it is to be administered in solid, liquid or aerosol form, and whether it need to be sterile for such routes of administration as injection. Compositions disclosed herein can be administered intravenously, intradermally, transdermally, intrathecally, intraarterially, intraperitoneally, intranasally, intravaginally, intrarectally, topically, intramuscularly, subcutaneously, mucosally, in utero, orally, topically, locally, via inhalation (e.g., aerosol inhalation), by injection, by infusion, by continuous infusion, by localized perfusion bathing target cells directly, via a catheter, via a lavage, in cremes, in lipid compositions (e.g., liposomes), or by other method or any combination of the forgoing as would be known to one of ordinary skill in the art (see, for example, Remington's Pharmaceutical Sciences, 2003, incorporated herein by reference).
- The actual dosage amount of a composition disclosed herein administered to an animal or human patient can be determined by physical and physiological factors such as body weight or surface area, severity of condition, the type of disease being treated, previous or concurrent therapeutic interventions, idiopathy of the patient and on the route of administration. Depending upon the dosage and the route of administration, the number of administrations of a preferred dosage and/or an effective amount may vary according to the response of the subject. The practitioner responsible for administration will, in any event, determine the concentration of active ingredient(s) in a composition and appropriate dose(s) for the individual subject.
- In certain embodiments, pharmaceutical compositions may comprise, for example, at least about 0.1% of an active compound. Naturally, the amount of active compound(s) in each therapeutically useful composition may be prepared is such a way that a suitable dosage will be obtained in any given unit dose of the compound. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.
- In other non-limiting examples, a dose may also comprise from about 1 microgram/kg/body weight, about 5 microgram/kg/body weight, about 10 microgram/kg/body weight, about 50 microgram/kg/body weight, about 100 microgram/kg/body weight, about 200 microgram/kg/body weight, about 350 microgram/kg/body weight, about 500 microgram/kg/body weight, about 1 milligram/kg/body weight, about 5 milligram/kg/body weight, about 10 milligram/kg/body weight, about 50 milligram/kg/body weight, about 100 milligram/kg/body weight, about 200 milligram/kg/body weight, about 350 milligram/kg/body weight, about 500 milligram/kg/body weight, to about 1000 mg/kg/body weight or more per administration, and any range derivable therein. In non-limiting examples of a derivable range from the numbers listed herein, a range of about 5 mg/kg/body weight to about 100 mg/kg/body weight, about 5 microgram/kg/body weight to about 500 milligram/kg/body weight of active pharmaceutical ingredient (API), etc., can be administered, based on the numbers described above.
- In certain embodiments, a composition herein and/or additional agents is formulated to be administered via an alimentary route. Alimentary routes include all possible routes of administration in which the composition is in direct contact with the alimentary tract. Specifically, the pharmaceutical compositions disclosed herein may be administered orally, buccally, rectally, or sublingually. As such, these compositions may be formulated with an inert diluent or with an assimilable edible carrier.
- In further embodiments, a composition described herein may be administered via a parenteral route. As used herein, the term “parenteral” includes routes that bypass the alimentary tract. Specifically, the pharmaceutical compositions disclosed herein may be administered, for example but not limited to, intravenously, intradermally, intramuscularly, intraarterially, intrathecally, subcutaneous, or intraperitoneally (U.S. Pat. Nos. 6,753,514, 6,613,308, 5,466,468, 5,543,158; 5,641,515; and 5,399,363 are each specifically incorporated herein by reference in their entirety).
- Solutions of the compositions disclosed herein as free bases or pharmacologically acceptable salts may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms. The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions (U.S. Pat. No. 5,466,468, specifically incorporated herein by reference in its entirety). In all cases the form must be sterile and must be fluid to the extent that easy injectability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (i.e., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include agents to achieve isotonicity, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption such as, for example, aluminum monostearate or gelatin.
- For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous, and intraperitoneal administration. In this connection, sterile aqueous media that can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, “Remington's Pharmaceutical Sciences” 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety, and purity standards as required by FDA Office of Biologics standards.
- Sterile injectable solutions are prepared by incorporating the compositions in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by sterilization. Generally, dispersions are prepared by incorporating the various sterilized compositions into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, some methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. A powdered composition is combined with a liquid carrier such as, e.g., water or a saline solution, with or without a stabilizing agent.
- In other embodiments, the compositions may be formulated for administration via various miscellaneous routes, for example, topical (i.e., transdermal) administration, mucosal administration (intranasal, vaginal, etc.) and/or via inhalation.
- In certain embodiments, the compositions may be delivered by eye drops, intranasal sprays, inhalation, and/or other aerosol delivery vehicles. Methods for delivering compositions directly to the lungs via nasal aerosol sprays has been described in U.S. Pat. Nos. 5,756,353 and 5,804,212 (each specifically incorporated herein by reference in their entirety). Likewise, the delivery of drugs using intranasal microparticle resins (Takenaga et al., 1998) and lysophosphatidyl-glycerol compounds (U.S. Pat. No. 5,725,871, specifically incorporated herein by reference in its entirety) are also well-known in the pharmaceutical arts and could be employed to deliver the compositions described herein. Likewise, transmucosal drug delivery in the form of a polytetrafluoroetheylene support matrix is described in U.S. Pat. No. 5,780,045 (specifically incorporated herein by reference in its entirety), and could be employed to deliver the compositions described herein.
- It is further envisioned the compositions disclosed herein may be delivered via an aerosol. The term aerosol refers to a colloidal system of finely divided solid or liquid particles dispersed in a liquefied or pressurized gas propellant. The typical aerosol for inhalation consists of a suspension of active ingredients in liquid propellant or a mixture of liquid propellant and a suitable solvent. Suitable propellants include hydrocarbons and hydrocarbon ethers. Suitable containers will vary according to the pressure requirements of the propellant. Administration of the aerosol will vary according to subject's age, weight and the severity and response of the symptoms.
- Certain embodiments of the present invention are defined in the Examples herein. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.
- HSA (25%) was purchased from Octapharma. PEHA was purchased from Sigma-Aldrich. A stock solution of PEHA, pH adjusted to 8.0 with M HCl was prepared. HSA was combined with 500× of PEHA. Then 80× of the 1-ethyl-3-[3dimethylaminopropyl]carbodiimide hydrochloride (EDC) (from Fisher Scientific) was added to the solution under stiffing. The reaction proceeded at room temperature for >4 h. The produce HSA-PEHA was purified by gel filtration chromatography on a PD-10 desalting column or by dialysis using a MWCO 10,000 membrane to remove unreacted PEHA and byproducts. Protein concentration of the product was determined by a BCA protein assay. The molecular weight of the HSA-PEHA conjugate was determined by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MADLI TOF MS). On average, there were 11 PEHA linked to each HSA based on the result showing m/z of 66405.756. The product can be stored at 4° C., frozen, or lyophilized.
-
Lipids 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (Avanti Polar Lipids), L-α-phosphatidylcholine derived from soybean (SPC) (Avanti Polar Lipids), and d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) (Eastman Chemical) were dissolved in ethanol. Lipids were combined at 25:70:5 (mol/mol). Briefly, 3.15, 8.83, and 0.63 μmol of DOTAP, SPC, and TPGS, respectively, were combined in 4 mL of ethanol. This was then added into 3 mg of HSA-PEHA dissolved in 4 mL of 20 mM HEPES buffer (pH 7.4), followed by 1 mg of an ASO against bcl-2, G3139 (purchased from Alpha DNA) in 2 mL of 20 mM HEPES buffer to form a mixture containing 40% ethanol. This was then dialyzed against HEPES buffer using a MWCO 10K Slide-A-Lyzer cassette to remove ethanol and free G3139. The product, lipid-coated albumin nanoparticle (LCAN)-G3139, was concentrated to 2 mg/mL ODN concentration by diafiltration, 10% sucrose was added into the product, and the product was sterile filtered through a 0.2 μm filter. The LCAN-G3139 was stable at 4° C., and was frozen or lyophilized for long term storage. The particle size of LCAN was determined by NICOMP 370 particle size analyzer. The zeta potential was determined on a zetaPALS instrument. Drug loading efficiency was determined by Oligreen ssDNA quantitation reagents. LCAN particles were found to be <200 nm in diameter, had a zeta potential of +20˜+40 mV and a G3139 encapsulation efficiency of greater than >60%. The same process was used to synthesize ligand-conjugated LCANs by incorporating lipid-derivatized ligands into the lipid components during nanoparticle synthesis. Possible ligands include transferring, folate, cRGD, or antibodies. - HSA-PEHA conjugate was synthesized as follows. HSA (25%) was purchased from Octapharma. PEHA was dissolved in water and the pH was adjusted to 8.0 with HCl. A 500-fold excess of PEHA was added to the HSA solution, followed by 80-fold excess of EDC under stiffing. The reaction proceeded at room temperature for 4 hr. The product was purified and concentrated by tangential flow diafiltration on a MicroKros cartridge with MW of 10,000 against water. The product protein concentration was determined by BCA protein assay and the PEHA content in the product was determined by TNBS amine content assay using a PEHA-based standard curve. The PEHA-HSA ratio was calculated based on surplus in amine content relative to unmodified HSA and found to be 10.5:1. SDS-PAGE analysis showed that the conjugate migrated as a single band, indicating lack of intermolecular crosslinking in the HSA-PEHA product.
- G3139 is an 18-mer phosphorothioate ASO against bcl-2. G3139 purchased from AlphaDNA was dissolved in mM HEPES, pH 7.4. DOTAP/SPC/TPGS at 25:70:5 (m/m) was dissolved in ethanol and added to HSA-PEHA diluted in 20 mM HEPES, followed by the G3139 solution, resulting in a final ethanol concentration of 40% and ODN:HSA-PEHA:Total lipids ratio of 1:3:10 (wt/wt). This resulted in formulation of colloidal complexes, which were precursors to LCAN. This was then diluted 4× by water and subjected to tangential flow diafiltration on a MicroKros cartridge with MWCO of 30,000 against 5 mM HEPES buffer, pH 7.4. Then, sucrose was added to the product (10% final concentration). The LCAN-G3139 was then sterile filtered using a 0.2 μm filter and stored frozen at −20° C. The product was 2 mg/mL in G3139 concentration, determined by OliGreen assay. The percent recovery of G3139 in the product was 67%. The particle size of LCAN was analyzed on a NICOMP Particle Sizer Model 370 (Particle Sizing Systems, Santa Barbara, Calif.). A volume-weighted Gaussian distribution analysis was used to determine the mean particle diameter and size distribution. The zeta potential (4) was determined on a ZetaPALS (Brookhaven Instruments Corp., Worcestershire, N.Y.). All measurements were carried out in triplicate. The particle size was 98±40 nm and the zeta potential was +23 mV.
- The product LCAN-G3139 was analyzed for bcl-2 down regulation in KB (human carcinoma) cells. KB cells were plated in 6-well plates at a density of 2×104 cells/cm2 24 h prior to transfection in RPMI 1640 (Life Technologies) medium containing 10% FBS and 1% antibiotics. The medium was removed and replaced with various G3139 ODN formulations in RPMI 1640 culture medium at G3139 concentration of 1 μM. The control LN-G3139 is a LN formulation with the composition of DOTAP/SPC/TPGS at 25:70:5 (m/m) without the addition of HSA-PEHA and otherwise prepared by the same method as LCAN. After 4 h at 37° C., the transfection medium was removed and cells were washed three times with PBS. Fresh medium was then added to the cells. At 48 h after the transfection, the cells were harvested. Briefly, total RNA was extracted using Trizol reagent (Invitrogen) and cDNA was synthesized by incubating RNA with random hexamer primer (Perkin Elmer, Boston, Mass.), and then with reverse transcriptase (Invitrogen), reaction buffer, dithiothreitol, dNTPs and RNAsin, followed by incubation at 42° C. for 60 minutes and 94° C. for 5 minutes in a thermal cycler (Applied Biosystems, Foster City, Calif.). The resulting cDNA was amplified by real-time PCR (ABI Prism 7700 Sequence Detection System, Applied Biosystems) using bcl-2 primers and probes:
-
forward primer [SEQ ID NO. 1] CCCTGTGGATGACTGAGTACCTG; reverse primer [SEQ ID NO. 2] CCAGCCTCCGTTATCCTGG; and, probe [SEQ ID NO. 3]) CCGGCACCTGCACACCTGGA. - Housekeeping gene ABL mRNAs were also amplified concurrently and Bcl-2 mRNA was normalized to ABL mRNA levels.
- The results are displayed in
FIG. 7 . These results showed that LCAN-G3139 was much more effective in Bcl-2 down regulation than LN-G3139, a typical LN formulation of G3139 that does not contain HSA-PEHA. These data showed that LCAN-G3139 is a superior composition to most LNs and can be used to deliver antisense ASOs and other oligonucleotide drugs, such as siRNA, miR mimics, and anti-miR oligos. - Low molecular weight PEI(600) was used in this example. Alternative low molecular weight polymers, such as pentaethylenehexamine (PEHA), may also be conjugated using similar techniques.
- HSA-PEI conjugates were produced using EDC. 42 mg HSA and 188 mg PEI (MW=600) (molar ratio HSA:PEI 1:500) were combined in HBS to a total volume of 2.0 mL in a small vial, adjusted to pH 8.0. Due to the highly alkaline nature of PEI, a PEI stock solution was titrated to pH 8.0 prior to mixing. EDC was allowed to equilibrate to room temperature before adding 9.60 mg EDC (80 fold molar excess relative to HSA), slowly to a stirring solution of HSA and PEI. The mixture was reacted for 1 h at room temperature with stirring. pH was maintained at ˜9.0 over the course of the reaction. The product was passed through a PD-10 column to remove unreacted reagents. Gel mobility shift analysis was conducted to determine the DNA condensation efficiency of the HSA-PEI conjugate.
- In an alternative conjugate method that introduces a reducible liner, HSA-PEI conjugates were produced using Traut's reagent. 42 mg HSA and 188 mg PEI (MW=600) (molar ratio HSA:PEI 1:500) were combined in HBS to a total volume of 2.0 mL in a small vial, adjusted to pH 8.0. Due to the highly alkaline nature of PEI, a PEI stock solution was titrated to pH 8.0 prior to mixing. 3.5 mg Traut's reagent (40 fold molar excess relative to HSA) was dissolved in 10 μL DMSO and added slowly to a stiffing solution of HSA and PEI. The mixture was reacted for 2 h at room temperature with stiffing. A pH of 8.0 was maintained over the course of the reaction. Disulfide crosslinking resulting in oxidation of sulfhydryls led to the formation of an HSA-PEI conjugate. This product was purified by passing through a PD-10 column to remove unreacted reagents. Gel mobility shift analysis was conducted to determine the DNA condensation efficiency of the conjugate.
- In yet another method of synthesis, HSA-PEI conjugates were produced using SPDP. 42 mg HSA, activated by Traut's reagent, and 188 mg PEI (MW=600) activated by SPDP (molar ratio HSA:PEI 1:500) were combined in HBS to a total volume of 2.0 mL in a small vial, adjusted to pH 8.0. This resulted in the formation of albumin-PEI conjugate via disulfide linkages. Gel mobility shift analysis was conducted to determine the condensation efficiency of the conjugate.
- Albumin-PEI conjugates were produced using DTBP. 42 mg HSA and 188 mg PEI (MW=600) (molar ratio HSA:PEI 1:500) were combined in HBS to a total volume of 2.0 mL in a small vial, adjusted to pH 8.0. Due to the highly alkaline nature of PEI, a PEI stock solution was titrated to pH 8.0 prior to mixing. 3.9 mg DTBP (20 fold molar excess relative to HSA) was dissolved in 10 μL DMSO and added slowly to a stirring solution of HSA and PEI. The mixture was reacted overnight at room temperature with stirring. A pH of 8.0 was maintained over the course of the reaction and the product was passed through a PD-10 column to remove unreacted reagents. Gel mobility shift analysis was conducted to determine the condensation efficiency of the conjugate.
- LNs containing HSA-PEI conjugates were produced. HSA-PEI at various w/w ratios (0, 0.5, 1, 3, 6:1, HSA:ODN w/w) were combined with ODN LOR-2501 (0.2 μM) (purchased from Alpha DNA) to find the optimal retardation ratio using gel mobility shift analysis. Retardation occurred at 3:1 (HSA:ODN w/w) (
FIG. 1 ). DDAB, CHOL, and TPGS lipid stocks dissolved in 100% ethanol were combined at a molar ratio of 60:35:5. 100 μL lipid mixture in ethanol was added to 900μL 1×PBS buffer as to form empty LNs in 10% ethanol. The HSA-PEI/ODN complex was then combined with the empty LNs to form LCANs. The formulation was briefly vortexed and allowed to stand for 15 m at room temperature before transfection into KB cells. Zeta potential analysis was completed on the LCAN containing HSA-PEI and ODN LOR-2501 (purchased from Alpha DNA) at the ratio LN:HSA:ODN=10:1, 2, 3:1. The concentration of ODN used was 0.2 μM (FIG. 2 ). All LCANs containing HSA-PEI exhibited a positive charge ranging between 5 and 25 mV. LCANs without HSA-PEI were neutrally charged.FIG. 3 displays the downregulation of RNR R1 mRNA expression by LOR-2501 in LCANs. - KB cells, grown in RPMI 1640 medium at 37° C. under 5% CO2 atmosphere, were plated 24 h prior to transfection at a density of 3.0×105 cells per well in a 6-well plate. Cells were grown to approximately 80% confluency and the serum-containing media was removed. Cells were transfected with 1000 μL transfection media and treated for 4 h. Transfection occurred in the presence of 0% and 10% serum-containing RPMI 1640 media. Experiments were performed with 3 replicates. After treatment was completed, cells were washed with 1×PBS and serum-containing RPMI 1640 was restored. At 48 h after treatment was completed, cells were analyzed for RNR R1 expression levels by RT-PCR with actin as a housekeeping gene. Results are shown in
FIG. 2 . Under serum-free conditions, the 1:3, ODN:HSA LCAN formulation showed the greatest transfection efficacy. Conversely, in 10% serum, the 1:1 ODN:HSA LCAN formulation was the most efficacious. Cell viability 48 h after treatment was assessed by MTT assay (FIG. 4 ). A similar experiment involving conjugation of PEHA-to-albumin was completed and showed similar transfection activity (FIGS. 7 and 8 ). - LCAN for delivery of anti-miR-221 into CAL-51 breast cancer cells was studied.
- LCAN (using HSA-PEI based APC) were prepared as described above. CAL-51 (triple negative breast cancer) cells were plated 24 h prior to transfection in a 6-well plate at a density of 2×104 cells/cm2 in DMEM/F12 media supplemented with 1% penicillin/streptomycin and 10% FBS. LCAN was combined with anti-miR-221 (100 nM) to gauge its ability to upregulate the downstream targets of miR-221, p27/Kip1 and the estrogen receptor alpha (ERα). CAL-52 cells were transfected in the presence of 20% serum. Treatment was allowed to proceed for 4 h at which time the transfection medium was removed and replaced with fresh media (supplemented with 10% FBS). Cells were allowed to proliferate for an additional 44 h before the start of RT-PCR. RNA from cells was extracted with TRIzol Reagent (Life Technologies) and cDNA was generated by SuperScript® III First-Strand Synthesis System (Life Technologies) per the manufacturer's instructions. RT-PCR was then performed using SYBR green (Life Technologies) and primers for p27/kip1 (Alpha DNA) and ERα:
-
forward: [SEQ ID NO. 4] 5'CGGAGCACGGGGACGGGTATC-3′, reverse: [SEQ ID NO. 5]) 5'-AAGACGAAGGGGAAGACGCACATC-3′. - β-actin was used as a control. As demonstrated in
FIG. 10 andFIG. 11 , LCAN/anti-miR-221 led to moderate increases in p27/Kip1 expression and slight increases in ERα expression. - HSA-PEHA conjugates were synthesized at a relatively large scale. The HSA:PEHA:EDC molar ratio used during synthesis was 1:1500:200 (mol/mol). 5 g PEHA (MW 232.37, technical grade) was dissolved in 80 mL of ddH2O and then adjusted to pH 8.0 using 1 M HCl. 1 g (4 mL) of HSA (25%, Octapharma)) and then 562.5 mg of 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC, dissolved in DMSO) were added into the PEHA solution under stirring. The reaction continued for 3 h at room temperature. The mixture was then dialyzed using MWCO 10,000 Spectrum membrane against ddH2O at 4° C. The buffer was replaced every 3-4 h until amines from PEHA became undetectable by the standard ninhydrin or TNBS amine essay in the external buffer at the 3 h time point at the end of the dialysis cycle. For further scaled-up synthesis, the dialysis procedure can be replaced by tangential flow diafiltration, e.g., using a Millipore Pellicon cassette system or a Spectropor hollowfiber system. This method can also be used to concentrate the product to a desirable concentration. The product can be passed through a 0.22 μm sterile filter into a sterile container and stored at 4° C. For long-term storage, the product can be stored at −20° C. The product can also be lyophilized.
- The product protein concentration was determined using BCA protein assay. The amine content of the HSA-PEHA conjugate was determined by TNBS assay or MALDI-TOF MS based on change in molecular weight relative to HSA. Gel permeation chromatography combined with amine TNBS assay is used to demonstrate the lack of crosslinked HSA and the absence of free PEHA in the product. Due to the modest cost of the reagents used, the yield of the reaction is not critical. The purity of the product is expected to be very high. Exact product specifications can be defined based on PEHA-to-HSA ratio and higher limits of crosslinked HSA and free PEHA in the final product.
- Certain embodiments of the formulations and methods disclosed herein are defined in the above examples. It should be understood that these examples, while indicating particular embodiments of the invention, are given by way of illustration only. From the above discussion and these examples, one skilled in the art can ascertain the essential characteristics of this disclosure, and without departing from the spirit and scope thereof, can make various changes and modifications to adapt the compositions and methods described herein to various usages and conditions. Various changes may be made and equivalents may be substituted for elements thereof without departing from the essential scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the essential scope thereof.
Claims (43)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/403,315 US20160015824A1 (en) | 2012-05-23 | 2013-05-23 | Lipid-Coated Albumin Nanoparticle Compositions and Methods of Making and Method of Using the Same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261650729P | 2012-05-23 | 2012-05-23 | |
US201361784892P | 2013-03-14 | 2013-03-14 | |
PCT/US2013/042461 WO2013177421A2 (en) | 2012-05-23 | 2013-05-23 | Lipid-coated albumin nanoparticle compositions and methods of making and method of using the same |
US14/403,315 US20160015824A1 (en) | 2012-05-23 | 2013-05-23 | Lipid-Coated Albumin Nanoparticle Compositions and Methods of Making and Method of Using the Same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160015824A1 true US20160015824A1 (en) | 2016-01-21 |
Family
ID=48539454
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/403,313 Active US9750819B2 (en) | 2012-05-23 | 2013-05-23 | Lipid nanoparticle compositions and methods of making and methods of using the same |
US14/403,315 Abandoned US20160015824A1 (en) | 2012-05-23 | 2013-05-23 | Lipid-Coated Albumin Nanoparticle Compositions and Methods of Making and Method of Using the Same |
US13/900,969 Active US10307490B2 (en) | 2012-05-23 | 2013-05-23 | Lipid nanoparticle compositions for antisense oligonucleotides delivery |
US15/689,667 Abandoned US20180021447A1 (en) | 2012-05-23 | 2017-08-29 | Lipid Nanoparticle Compositions and Methods of Making and Methods of Using the Same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/403,313 Active US9750819B2 (en) | 2012-05-23 | 2013-05-23 | Lipid nanoparticle compositions and methods of making and methods of using the same |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/900,969 Active US10307490B2 (en) | 2012-05-23 | 2013-05-23 | Lipid nanoparticle compositions for antisense oligonucleotides delivery |
US15/689,667 Abandoned US20180021447A1 (en) | 2012-05-23 | 2017-08-29 | Lipid Nanoparticle Compositions and Methods of Making and Methods of Using the Same |
Country Status (10)
Country | Link |
---|---|
US (4) | US9750819B2 (en) |
EP (3) | EP2852380A4 (en) |
JP (4) | JP2015525209A (en) |
KR (3) | KR20150020180A (en) |
CN (3) | CN104428005B (en) |
AU (4) | AU2013266238B2 (en) |
BR (2) | BR112014027834A2 (en) |
CA (3) | CA2874490C (en) |
MX (3) | MX384803B (en) |
WO (3) | WO2013177415A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10987428B2 (en) * | 2018-06-01 | 2021-04-27 | City Of Hope | Phosphorothioate-conjugated miRNAs and methods of using the same |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG190661A1 (en) | 2008-05-16 | 2013-06-28 | Taiga Biotechnologies Inc | Antibodies and processes for preparing the same |
JP5812861B2 (en) | 2008-08-28 | 2015-11-17 | タイガ バイオテクノロジーズ,インク. | MYC modifier, method of using the MYC modifier, and method of identifying agents that modulate MYC |
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
CN104531812A (en) | 2010-10-01 | 2015-04-22 | 现代治疗公司 | Engineered nucleic acids and methods of use thereof |
US8710200B2 (en) | 2011-03-31 | 2014-04-29 | Moderna Therapeutics, Inc. | Engineered nucleic acids encoding a modified erythropoietin and their expression |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
HUE057725T2 (en) | 2011-10-03 | 2022-06-28 | Modernatx Inc | Modified nucleosides, nucleotides and nucleic acids and their uses |
LT2791160T (en) | 2011-12-16 | 2022-06-10 | Modernatx, Inc. | MODIFIED MRNR COMPOSITIONS |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
AU2013243954A1 (en) | 2012-04-02 | 2014-10-30 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
KR20150020180A (en) * | 2012-05-23 | 2015-02-25 | 더 오하이오 스테이트 유니버시티 | Lipid nanoparticle compositions for antisense oligonucleotides delivery |
JP6285930B2 (en) | 2012-07-20 | 2018-02-28 | タイガ バイオテクノロジーズ,インク. | Rebuilding hematopoietic compartments and promoting self-rebuilding |
PT2922554T (en) | 2012-11-26 | 2022-06-28 | Modernatx Inc | Terminally modified rna |
US10272115B2 (en) | 2013-03-11 | 2019-04-30 | Taiga Biotechnologies, Inc. | Production and use of red blood cells |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
EP2992874B1 (en) | 2013-04-30 | 2018-08-08 | Delta-Fly Pharma, Inc. | Liposome for topical administration and application thereof |
WO2014205000A1 (en) * | 2013-06-17 | 2014-12-24 | University Of North Carolina At Chapel Hill | Polymer coated particles and methods thereof |
EP3024936B1 (en) | 2013-07-25 | 2019-09-04 | Exicure, Inc. | Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use |
EP3052106A4 (en) | 2013-09-30 | 2017-07-19 | ModernaTX, Inc. | Polynucleotides encoding immune modulating polypeptides |
AU2014329452B2 (en) | 2013-10-03 | 2019-06-20 | Moderna Therapeutics, Inc. | Polynucleotides encoding low density lipoprotein receptor |
US10821175B2 (en) | 2014-02-25 | 2020-11-03 | Merck Sharp & Dohme Corp. | Lipid nanoparticle vaccine adjuvants and antigen delivery systems |
WO2015154002A1 (en) * | 2014-04-04 | 2015-10-08 | Ohio State Innovation Foundation | Oligonucleotide lipid nanoparticle compositions, methods of making and methods of using the same |
WO2015175965A1 (en) * | 2014-05-15 | 2015-11-19 | The Research Foundation For Suny | Compositions targeting the interaction domain between p27kip1 and brk and methods of use thereof |
AU2015269412B2 (en) | 2014-06-04 | 2020-03-12 | Exicure Operating Company | Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications |
CN106794256B (en) | 2014-08-19 | 2021-04-30 | 西北大学 | Protein/oligonucleotide core-shell nanoparticle therapeutics |
WO2016068160A1 (en) * | 2014-10-30 | 2016-05-06 | Delta-Fly Pharma株式会社 | New production method of lipoplex for local administration and antitumor drug using lipoplex |
EP3220895B1 (en) | 2014-11-21 | 2022-08-31 | Northwestern University | The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates |
EP3247796A4 (en) | 2015-01-14 | 2018-07-11 | Exicure, Inc. | Nucleic acid nanostructures with core motifs |
US20160287152A1 (en) * | 2015-03-30 | 2016-10-06 | Verily Life Sciences Llc | Functionalized Nanoparticles, Methods and In Vivo Diagnostic System |
EP4353257A3 (en) | 2015-04-13 | 2024-08-07 | CureVac Manufacturing GmbH | Method for producing rna compositions |
KR20190118688A (en) * | 2015-06-05 | 2019-10-18 | 미라젠 세러퓨틱스 인코포레이티드 | miR-155 Inhibitors for Treating Cutaneous T Cell Lymphoma (CTCL) |
SI3350157T1 (en) | 2015-09-17 | 2022-04-29 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
CN105288647B (en) * | 2015-10-10 | 2018-05-25 | 中国药科大学 | The preparation method of functionalization albumin and its nanometer formulation |
AU2016366978B2 (en) * | 2015-12-10 | 2022-07-28 | Modernatx, Inc. | Compositions and methods for delivery of therapeutic agents |
HUE057877T2 (en) | 2015-12-22 | 2022-06-28 | Modernatx Inc | Compounds and preparations for the intracellular delivery of therapeutic agents |
US11364304B2 (en) | 2016-08-25 | 2022-06-21 | Northwestern University | Crosslinked micellar spherical nucleic acids |
CN112587504B (en) * | 2016-10-17 | 2022-10-18 | 南京绿叶制药有限公司 | Lipid nanoparticle of antisense oligonucleotide for inhibiting bcl-2 and preparation method thereof |
US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
CA3045017A1 (en) | 2016-12-02 | 2018-06-07 | Taiga Biotechnologies, Inc. | Nanoparticle formulations |
US20200069594A1 (en) * | 2016-12-09 | 2020-03-05 | Board Of Regents, The University Of Texas System | Hybrid exosomal-polymeric (hexpo) nano-platform for delivery of rnai therapeutics |
US10626165B2 (en) | 2016-12-14 | 2020-04-21 | Janssen Biotech, Inc. | CD8a-binding fibronectin type III domains |
EP3554561B1 (en) | 2016-12-14 | 2023-06-28 | Janssen Biotech, Inc. | Cd137 binding fibronectin type iii domains |
EP3554535A4 (en) | 2016-12-14 | 2020-10-21 | Janssen Biotech, Inc. | Pd-l1 binding fibronectin type iii domains |
US20180179577A1 (en) * | 2016-12-22 | 2018-06-28 | Jiaming HU | Lipid-polymer Hybrid Nanoparticle Biochip and Application Thereof |
EP3558408B1 (en) * | 2016-12-22 | 2024-04-17 | Biotronik AG | Intratumoral drug delivery materials and methods for treating breast cancer |
US20190328903A1 (en) * | 2016-12-30 | 2019-10-31 | Samyang Biopharmaceuticals Corporation | Polymer nanoparticle composition for plasmid dna delivery, and preparation method therefor |
IL298380A (en) | 2017-03-15 | 2023-01-01 | Modernatx Inc | Compounds and preparations for intracellular administration of medical agents |
US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
SI3596042T1 (en) | 2017-03-15 | 2022-04-29 | Modernatx, Inc. | Crystalline forms of amino lipids |
MA48047A (en) | 2017-04-05 | 2020-02-12 | Modernatx Inc | REDUCTION OR ELIMINATION OF IMMUNE RESPONSES TO NON-INTRAVENOUS THERAPEUTIC PROTEINS, FOR EXAMPLE SUBCUTANEOUSLY |
WO2018201090A1 (en) | 2017-04-28 | 2018-11-01 | Exicure, Inc. | Synthesis of spherical nucleic acids using lipophilic moieties |
US11433131B2 (en) | 2017-05-11 | 2022-09-06 | Northwestern University | Adoptive cell therapy using spherical nucleic acids (SNAs) |
CN107184552B (en) * | 2017-06-07 | 2021-03-30 | 东华大学 | A kind of preparation method of galactosylated polyethyleneimine modified drug-loaded alcohol plastid |
EP3638678A1 (en) | 2017-06-14 | 2020-04-22 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
EP3638215A4 (en) | 2017-06-15 | 2021-03-24 | Modernatx, Inc. | Rna formulations |
JP7231147B2 (en) * | 2017-06-29 | 2023-03-01 | 国立大学法人東海国立大学機構 | RNA introduction reagent and its use |
CN118853394A (en) * | 2017-07-18 | 2024-10-29 | 阿维塔斯有限公司 | Efficient cargo delivery across cell membranes using a continuous flow fluidics system |
US10149898B2 (en) | 2017-08-03 | 2018-12-11 | Taiga Biotechnologies, Inc. | Methods and compositions for the treatment of melanoma |
US20190062788A1 (en) * | 2017-08-22 | 2019-02-28 | Rubius Therapeutics, Inc. | Lipid nanoparticle methods and compositions for producing engineered erythroid cells |
MX2020002348A (en) | 2017-08-31 | 2020-10-08 | Modernatx Inc | Methods of making lipid nanoparticles. |
CN107982537A (en) * | 2017-11-17 | 2018-05-04 | 厦门大学 | Curative drug and its application for microRNA-155 |
KR102245539B1 (en) * | 2018-02-12 | 2021-04-29 | 주식회사 지앤피바이오사이언스 | Composition for increasing expression level of growth factor genes containing core-shell structured microparticles as effective component |
US12280114B2 (en) | 2018-03-29 | 2025-04-22 | Institute Of Basic Medical Sciences | Extraction of plant source “medicinal soup” and manual preparation of “herbal medicine” and related products |
EP3784252A4 (en) * | 2018-04-18 | 2022-03-16 | Oisin Biotechnologies, Inc. | Fusogenic lipid nanoparticles and methods for the manufacture and use thereof for the target cell-specific production of a therapeutic protein and for the treatment of a disease, condition, or disorder associated with a target cell |
CN112469281B (en) * | 2018-05-15 | 2023-05-30 | 旗舰创业创新六公司 | Pest control composition and use thereof |
EP3808344A4 (en) * | 2018-06-01 | 2022-03-30 | Sogang University Research Foundation | Nanoparticle composite showing improved endocytosis efficiency through surface modification using lipid and manufacturing method therefor |
CN108743962B (en) * | 2018-06-19 | 2021-07-02 | 东华大学 | A preparation method of a dual drug-loaded targeting nanoplatform based on fluorescent carbon dot-modified dendrimers |
CA3111484A1 (en) | 2018-09-04 | 2020-03-12 | The Board Of Regents Of The University Of Texas System | Compositions and methods for organ specific delivery of nucleic acids |
CN112930198A (en) * | 2018-09-04 | 2021-06-08 | 德克萨斯大学系统董事会 | Compositions and methods for organ-specific delivery of nucleic acids |
EP3853202A1 (en) | 2018-09-19 | 2021-07-28 | ModernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
TW202028222A (en) | 2018-11-14 | 2020-08-01 | 美商Ionis製藥公司 | Modulators of foxp3 expression |
KR20210113260A (en) * | 2019-01-04 | 2021-09-15 | 온코루스, 인크. | Encapsulated RNA polynucleotides and methods of use |
AU2020272664A1 (en) | 2019-04-08 | 2021-11-04 | Taiga Biotechnologies, Inc. | Compositions and methods for the cry opreservation of immune cells |
EP4031524A1 (en) | 2019-09-19 | 2022-07-27 | ModernaTX, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
US11781138B2 (en) | 2019-10-14 | 2023-10-10 | Aro Biotherapeutics Company | FN3 domain-siRNA conjugates and uses thereof |
EP4045061A4 (en) | 2019-10-14 | 2024-04-17 | ARO Biotherapeutics Company | CD71-BINDING FIBRONECTIN TYPE III DOMAINS |
CN110638759A (en) * | 2019-10-29 | 2020-01-03 | 珠海丽凡达生物技术有限公司 | A preparation for in vitro transfection and in vivo delivery of mRNA |
KR102198736B1 (en) * | 2020-01-15 | 2021-01-05 | 이화여자대학교 산학협력단 | Lipid nanoparticles for in vivo drug delivery and uses thereof |
JP2023537609A (en) * | 2020-08-14 | 2023-09-04 | アークトゥラス・セラピューティクス・インコーポレイテッド | Methods for Lyophilizing Lipid Nanoparticles |
EP4304567A1 (en) * | 2021-03-11 | 2024-01-17 | The Trustees of the University of Pennsylvania | Targeted therapeutic lipid nanoparticles and methods of use |
MX2023012128A (en) | 2021-04-14 | 2024-01-11 | Aro Biotherapeutics Company | Cd71 binding fibronectin type iii domains. |
AU2022258584A1 (en) | 2021-04-14 | 2023-10-12 | Aro Biotherapeutics Company | Fn3 domain-sirna conjugates and uses thereof |
US20240417738A1 (en) * | 2021-10-22 | 2024-12-19 | Ohio State Innovation Foundation | Immunotherapies for the treatment of cancer |
US12129223B2 (en) | 2021-12-16 | 2024-10-29 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
CN114306369B (en) * | 2021-12-23 | 2023-12-26 | 北京悦康科创医药科技股份有限公司 | Thio oligonucleotide injection and preparation method thereof |
WO2023192503A1 (en) * | 2022-03-30 | 2023-10-05 | The Johns Hopkins University | Compositions of lipid nanoparticles for plasmid dna delivery to the liver and methods for preparing the same |
AU2023329918A1 (en) * | 2022-08-25 | 2025-04-10 | Ohio State Innovation Foundation | Compositions and methods for the delivery of active agents including nucleic acids |
WO2024050310A1 (en) * | 2022-08-29 | 2024-03-07 | Sorrento Therapeutics, Inc. | Lipid-coated nanoparticles |
WO2024136219A1 (en) * | 2022-12-19 | 2024-06-27 | 주식회사 포스테라헬스사이언스 | Inhalation formulation comprising nanoparticles and preparation method therefor |
WO2024206078A2 (en) * | 2023-03-31 | 2024-10-03 | The Whiteoak Group, Inc. | Liposomal compositions of archexin |
WO2025034965A1 (en) * | 2023-08-09 | 2025-02-13 | Board Of Regents, The University Of Texas System | Targeted therapeutic delivery of lipid nanoparticles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6248720B1 (en) * | 1996-07-03 | 2001-06-19 | Brown University Research Foundation | Method for gene therapy using nucleic acid loaded polymeric microparticles |
US20020022264A1 (en) * | 1995-05-26 | 2002-02-21 | Sullivan Sean M. | Delivery vehicles comprising stable lipid/nucleic acid complexes |
US20090312402A1 (en) * | 2008-05-20 | 2009-12-17 | Contag Christopher H | Encapsulated nanoparticles for drug delivery |
US20130196434A1 (en) * | 2008-07-25 | 2013-08-01 | Alnylam Pharmaceuticals, Inc. | ENHANCEMENT OF siRNA SILENCING ACTIVITY USING UNIVERSAL BASES OR MISMATCHES IN THE SENSE STRAND |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US590877A (en) * | 1897-09-28 | Danger-signal for railway-crossings | ||
US2003203A (en) * | 1933-05-15 | 1935-05-28 | Kim Young Wo | Game |
US5725871A (en) | 1989-08-18 | 1998-03-10 | Danbiosyst Uk Limited | Drug delivery compositions comprising lysophosphoglycerolipid |
US5707644A (en) | 1989-11-04 | 1998-01-13 | Danbiosyst Uk Limited | Small particle compositions for intranasal drug delivery |
US5466468A (en) | 1990-04-03 | 1995-11-14 | Ciba-Geigy Corporation | Parenterally administrable liposome formulation comprising synthetic lipids |
US5399363A (en) | 1991-01-25 | 1995-03-21 | Eastman Kodak Company | Surface modified anticancer nanoparticles |
US5756353A (en) | 1991-12-17 | 1998-05-26 | The Regents Of The University Of California | Expression of cloned genes in the lung by aerosol-and liposome-based delivery |
ATE155681T1 (en) | 1992-05-18 | 1997-08-15 | Minnesota Mining & Mfg | DEVICE FOR TRANSMUCOSAL ACTIVE DELIVERY |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
IE80468B1 (en) | 1995-04-04 | 1998-07-29 | Elan Corp Plc | Controlled release biodegradable nanoparticles containing insulin |
US5908777A (en) * | 1995-06-23 | 1999-06-01 | University Of Pittsburgh | Lipidic vector for nucleic acid delivery |
US6056973A (en) * | 1996-10-11 | 2000-05-02 | Sequus Pharmaceuticals, Inc. | Therapeutic liposome composition and method of preparation |
JP2002508765A (en) * | 1997-06-23 | 2002-03-19 | アルザ コーポレイション | Liposome-encapsulated polynucleotide compositions and methods |
US6395253B2 (en) * | 1998-04-23 | 2002-05-28 | The Regents Of The University Of Michigan | Microspheres containing condensed polyanionic bioactive agents and methods for their production |
DE60027719T2 (en) * | 1999-06-14 | 2007-04-26 | Cancer Research Technology Ltd. | CANCER THERAPY |
WO2001015726A2 (en) * | 1999-08-27 | 2001-03-08 | Inex Pharmaceuticals Corp. | Compositions for stimulating cytokine secretion and inducing an immune response |
US7060291B1 (en) * | 1999-11-24 | 2006-06-13 | Transave, Inc. | Modular targeted liposomal delivery system |
US6821955B2 (en) * | 2000-04-07 | 2004-11-23 | Baylor College Of Medicine | Macroaggregated protein conjugates as oral genetic immunization delivery agents |
US6613308B2 (en) | 2000-09-19 | 2003-09-02 | Advanced Inhalation Research, Inc. | Pulmonary delivery in treating disorders of the central nervous system |
AU2002256398A2 (en) * | 2001-04-30 | 2002-11-11 | Targeted Genetics Corporation | Lipid-comprising drug delivery complexes and methods for their production |
RU2294192C2 (en) * | 2001-05-30 | 2007-02-27 | Дзе Скриппс Рисерч Инститьют | Nucleic acid delivery system |
JP2003088371A (en) * | 2001-09-04 | 2003-03-25 | Mitsubishi Pharma Corp | Gene transfer composition |
KR100484371B1 (en) | 2001-10-25 | 2005-04-20 | 가부시키가이샤 아텍스 | Method of manufacturing the sheet with heating wire |
AU2002340662B2 (en) * | 2001-11-07 | 2008-07-03 | Tekmira Pharmaceuticals Corporation | Mucosal adjuvants comprising an oligonucleotide and a cationic lipid |
US7678386B2 (en) | 2002-07-15 | 2010-03-16 | Board Of Regents The University Of Texas | Liposomes coated with selected antibodies that bind to aminophospholipids |
JP4429906B2 (en) * | 2002-08-16 | 2010-03-10 | レクサーン・コーポレイション | Use of antisense oligonucleotides to suppress Akt-1 expression |
US20040208921A1 (en) * | 2003-01-14 | 2004-10-21 | Ho Rodney J. Y. | Lipid-drug formulations and methods for targeted delivery of lipid-drug complexes to lymphoid tissues |
AU2004207576B8 (en) | 2003-01-28 | 2008-11-20 | Rexahn Pharmaceuticals, Inc. | Antisense oligonucleotides that inhibit expression of HIF-1 |
KR101069521B1 (en) | 2003-01-31 | 2011-09-30 | 렉산 팔마큐티칼스, 인크. | Antisense Oligonucleotides Inhibit HIF-1 Gene Expression |
KR101164256B1 (en) * | 2003-09-15 | 2012-07-10 | 프로티바 바이오쎄라퓨틱스, 인코포레이티드 | Polyethyleneglycol-modified lipid compounds and uses thereof |
KR100638041B1 (en) | 2003-12-24 | 2006-10-23 | 주식회사 삼양사 | Nanoparticle composition for oral administration of water-soluble drug and preparation method thereof |
JP2006111591A (en) * | 2004-10-15 | 2006-04-27 | Anges Mg Inc | Preparation for target-specifically delivering nucleic acid medicine inside cell |
JP2006298780A (en) * | 2005-04-15 | 2006-11-02 | Tohoku Univ | Complex of HGF gene and coarsely aggregated albumin-polyethyleneimine (MAA-PEI) |
US20070087045A1 (en) * | 2005-10-14 | 2007-04-19 | Industrial Technology Research Institute | Lipid carrier and method of preparing the same |
TW200800235A (en) * | 2005-10-18 | 2008-01-01 | Otsuka Pharma Co Ltd | Carrier composition for nucleic acid transport |
EP1948674A4 (en) | 2005-11-02 | 2009-02-04 | Protiva Biotherapeutics Inc | Modified sirna molecules and uses thereof |
US8067380B2 (en) | 2005-12-19 | 2011-11-29 | Industrial Technology Research Institute | Glutathione-based delivery system |
GB2450475A (en) * | 2007-06-12 | 2008-12-31 | Univ Nottingham Trent | Antimicrobial polymer nanocomposite |
US20110177155A1 (en) | 2007-08-21 | 2011-07-21 | Immune Disease Institute, Inc. | Methods of delivery of agents to leukocytes and endothelial cells |
PL208054B1 (en) * | 2007-09-06 | 2011-03-31 | Akademia Medyczna Im Piastow Śląskich We Wrocławiu | Lipides composition for production of lipid carrier for genetic medicines and its application |
JP5336500B2 (en) * | 2007-10-17 | 2013-11-06 | 韓国科学技術院 | Low density lipoprotein-like (LDL-like) cationic nanoparticles for nucleic acid transfer, method for producing the same, and method for transferring nucleic acid using the same |
EP2207903A4 (en) * | 2007-11-09 | 2012-02-15 | Univ Northeastern | SELF-STORING MICRICOUS NANOPARTICLES FOR SYSTEMIC GENERIC INTRODUCTION |
WO2009067243A2 (en) * | 2007-11-20 | 2009-05-28 | Isis Pharmaceuticals Inc. | Modulation of cd40 expression |
WO2009120247A2 (en) * | 2007-12-27 | 2009-10-01 | The Ohio State University Research Foundation | Lipid nanoparticle compositions and methods of making and using the same |
US8445021B2 (en) | 2008-04-04 | 2013-05-21 | The Regents Of The University Of California | Functionalized magnetic nanoparticles and methods of use thereof |
US8222220B2 (en) | 2008-05-13 | 2012-07-17 | George Mason Intellectual Properties, Inc. | Nanogenomics for medicine: siRNA engineering |
CA2724408A1 (en) * | 2008-05-19 | 2009-11-26 | The University Of North Carolina At Chapel Hill | Methods and compositions comprising novel cationic lipids |
WO2010014595A2 (en) | 2008-07-31 | 2010-02-04 | The Ohio State University Research Foundation | Methods and compositions for delivering therapeutic agents in the treatment of b-cell related disorders |
WO2010049562A1 (en) * | 2008-10-28 | 2010-05-06 | Universidade De Santiago De Compostela | Nanoparticulate systems prepared from anionic polymers |
US8722082B2 (en) | 2008-11-10 | 2014-05-13 | Tekmira Pharmaceuticals Corporation | Lipids and compositions for the delivery of therapeutics |
EP2601934A1 (en) | 2009-01-22 | 2013-06-12 | Ludwig-Maximilians-Universität München | Vesicular phospholipid gels comprising proteinaceous substances |
ES2351756B1 (en) * | 2009-07-28 | 2011-10-05 | Universidad Del Pais Vasco | LIPID NANOPARTICLES FOR GENE THERAPY. |
JP5960060B2 (en) * | 2009-11-23 | 2016-08-02 | ジ・オハイオ・ステート・ユニバーシティ | Substances and methods useful for influencing tumor cell growth, migration and invasion |
WO2011120053A1 (en) * | 2010-03-26 | 2011-09-29 | Mersana Therapeutics, Inc. | Modified polymers for delivery of polynucleotides, method of manufacture, and methods of use thereof |
CN103025384B (en) * | 2010-03-26 | 2016-04-20 | 俄亥俄州立大学 | Relate to the materials and methods of miR-155 for the adjustment of mispairing reparation and Genome stability |
EP2561072A4 (en) * | 2010-04-20 | 2016-04-06 | Univ Florida | NANOZYMES, PROCESSES FOR PRODUCING NANOZYMES, AND METHODS OF USING NANOZYMES |
US20130260460A1 (en) * | 2010-04-22 | 2013-10-03 | Isis Pharmaceuticals Inc | Conformationally restricted dinucleotide monomers and oligonucleotides |
US20110319473A1 (en) * | 2010-06-29 | 2011-12-29 | Surmodics, Inc. | Compositions and methods for enhancement of nucleic acid delivery |
US8691750B2 (en) | 2011-05-17 | 2014-04-08 | Axolabs Gmbh | Lipids and compositions for intracellular delivery of biologically active compounds |
CN102552105B (en) * | 2011-10-17 | 2014-04-02 | 复旦大学 | Cascade brain-targeting drug delivery system as well as preparation method and application thereof |
KR20150020180A (en) | 2012-05-23 | 2015-02-25 | 더 오하이오 스테이트 유니버시티 | Lipid nanoparticle compositions for antisense oligonucleotides delivery |
-
2013
- 2013-05-23 KR KR1020147032915A patent/KR20150020180A/en not_active Ceased
- 2013-05-23 US US14/403,313 patent/US9750819B2/en active Active
- 2013-05-23 EP EP13794381.7A patent/EP2852380A4/en not_active Withdrawn
- 2013-05-23 CA CA2874490A patent/CA2874490C/en active Active
- 2013-05-23 JP JP2015514192A patent/JP2015525209A/en active Pending
- 2013-05-23 AU AU2013266238A patent/AU2013266238B2/en active Active
- 2013-05-23 EP EP13794027.6A patent/EP2852381B1/en active Active
- 2013-05-23 BR BR112014027834A patent/BR112014027834A2/en not_active Application Discontinuation
- 2013-05-23 CA CA2874495A patent/CA2874495A1/en not_active Abandoned
- 2013-05-23 WO PCT/US2013/042454 patent/WO2013177415A1/en active Application Filing
- 2013-05-23 BR BR112014029247A patent/BR112014029247A2/en not_active IP Right Cessation
- 2013-05-23 AU AU2013266236A patent/AU2013266236A1/en not_active Abandoned
- 2013-05-23 CN CN201380026005.5A patent/CN104428005B/en active Active
- 2013-05-23 CN CN201380033174.1A patent/CN105163721B/en active Active
- 2013-05-23 MX MX2018000744A patent/MX384803B/en unknown
- 2013-05-23 WO PCT/US2013/042461 patent/WO2013177421A2/en active Application Filing
- 2013-05-23 US US14/403,315 patent/US20160015824A1/en not_active Abandoned
- 2013-05-23 KR KR1020147036014A patent/KR102169891B1/en active Active
- 2013-05-23 CN CN201380033165.2A patent/CN104582691A/en active Pending
- 2013-05-23 EP EP13726404.0A patent/EP2852415A1/en not_active Withdrawn
- 2013-05-23 US US13/900,969 patent/US10307490B2/en active Active
- 2013-05-23 MX MX2014014251A patent/MX353567B/en active IP Right Grant
- 2013-05-23 AU AU2013266232A patent/AU2013266232B2/en not_active Ceased
- 2013-05-23 KR KR1020147036015A patent/KR20150032945A/en not_active Withdrawn
- 2013-05-23 WO PCT/US2013/042458 patent/WO2013177419A2/en active Application Filing
- 2013-05-23 CA CA2871477A patent/CA2871477A1/en not_active Abandoned
- 2013-05-23 MX MX2014014196A patent/MX2014014196A/en unknown
- 2013-05-23 JP JP2015514189A patent/JP6220389B2/en not_active Expired - Fee Related
- 2013-05-23 JP JP2015514193A patent/JP6228191B2/en active Active
-
2017
- 2017-08-29 US US15/689,667 patent/US20180021447A1/en not_active Abandoned
- 2017-09-29 JP JP2017191221A patent/JP2018002727A/en active Pending
- 2017-10-09 AU AU2017245294A patent/AU2017245294B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020022264A1 (en) * | 1995-05-26 | 2002-02-21 | Sullivan Sean M. | Delivery vehicles comprising stable lipid/nucleic acid complexes |
US6248720B1 (en) * | 1996-07-03 | 2001-06-19 | Brown University Research Foundation | Method for gene therapy using nucleic acid loaded polymeric microparticles |
US20090312402A1 (en) * | 2008-05-20 | 2009-12-17 | Contag Christopher H | Encapsulated nanoparticles for drug delivery |
US20130196434A1 (en) * | 2008-07-25 | 2013-08-01 | Alnylam Pharmaceuticals, Inc. | ENHANCEMENT OF siRNA SILENCING ACTIVITY USING UNIVERSAL BASES OR MISMATCHES IN THE SENSE STRAND |
Non-Patent Citations (8)
Title |
---|
Fayazpour et al., Biomacromolecules, 2006, 7: 2856-2862. * |
Fischer et al., Int. J. Pharm., 2001, 225: 97-111. * |
Liu et al., Biomaterials, 2010, 31: 330-338. * |
Takeuchi et al., FEBS Lett., 1996, 397: 207-209. * |
Thöle et al., J. Drug Target., 2002, 10: 337-344. * |
Weecharangsan et al., Anticancer Res., 2010, 30: 1-15. * |
Zhang et al., ACS Nano, 2008, 2: 1696-1702. * |
Zheng et al., Int. J. Pharm., 2010, 390: 1-19. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10987428B2 (en) * | 2018-06-01 | 2021-04-27 | City Of Hope | Phosphorothioate-conjugated miRNAs and methods of using the same |
US20210386860A1 (en) * | 2018-06-01 | 2021-12-16 | City Of Hope | PHOSPHOROTHIOATE-CONJUGATED miRNAs AND METHODS OF USING THE SAME |
US11857633B2 (en) * | 2018-06-01 | 2024-01-02 | City Of Hope | Phosphorothioate-conjugated miRNAs and methods of using the same |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2013266238B2 (en) | Lipid-coated albumin nanoparticle compositions and methods of making and method of using the same | |
US10555910B2 (en) | Oligonucleotide lipid nanoparticle compositions, methods of making and methods of using the same | |
US11464870B2 (en) | Lipid nanoparticles for in-vivo drug delivery, and uses thereof | |
WO2020051243A1 (en) | Lipid nanoparticles and methods of using thereof | |
RU2799045C1 (en) | Lipid nanoparticles for in vivo medicinal products delivery and their use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OHIO STATE INNOVATION FOUNDATION, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, ROBERT J.;REEL/FRAME:034436/0680 Effective date: 20141208 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:OHIO STATE UNIVERSITY;REEL/FRAME:036243/0813 Effective date: 20150630 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:THE OHIO UNIVERSITY;REEL/FRAME:053118/0083 Effective date: 20200703 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:THE OHIO STATE UNIVERSITY;REEL/FRAME:053186/0330 Effective date: 20200713 |