US20160010661A1 - Dual venturi device - Google Patents
Dual venturi device Download PDFInfo
- Publication number
- US20160010661A1 US20160010661A1 US14/796,447 US201514796447A US2016010661A1 US 20160010661 A1 US20160010661 A1 US 20160010661A1 US 201514796447 A US201514796447 A US 201514796447A US 2016010661 A1 US2016010661 A1 US 2016010661A1
- Authority
- US
- United States
- Prior art keywords
- venturi
- venturi gap
- gap
- check valve
- valve chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/14—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
- F04F5/16—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
- F04F5/20—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/14—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
- F04F5/46—Arrangements of nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/44—Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
- F04F5/46—Arrangements of nozzles
- F04F5/467—Arrangements of nozzles with a plurality of nozzles arranged in series
Definitions
- This application relates to vacuum creation by a Venturi device and, more particularly, to a Venturi device having two Venturi gaps.
- the Venturi device is connected to a high pressure source (a pressure higher than atmospheric pressure) as its motive source and is referred to as an ejector.
- vacuum is used to operate or assist in the operation of various devices.
- vacuum may be used to assist a driver applying vehicle brakes, turbocharger operation, fuel vapor purging, heating and ventilation system actuation, and driveline component actuation. If the vehicle does not produce vacuum naturally, such as from the intake manifold, then a separate vacuum source is required to operate such devices. While an aspirator or an ejector can produce vacuum when supplied with either boost or manifold vacuum, the depth of vacuum produced will be a function of the difference in pressure between the pressure applied to the motive port and the pressure applied to the discharge port.
- intake manifold vacuum may be replaced or augmented with vacuum from an ejector.
- An ejector as used herein, is a converging, diverging nozzle assembly connected to a pressure source above atmospheric pressure. By passing pressurized air through the ejector, a low pressure region may be created within the ejector so that air can be drawn from a vacuum reservoir or may directly act on a device requiring vacuum, thereby reducing pressure within the vacuum reservoir or device requiring vacuum.
- Typical ejectors cannot produce a suction pressure below atmospheric pressure when the motive pressure exceeds 192 kPa absolute, and the maximum vacuum is produced with a motive pressure of less than 135 kPa absolute.
- boosted engines routinely operate at above 135 kPa absolutes, so there is a need to improve the performance of an ejector on such a vehicle.
- These conventional ejectors are limited in the vacuum they can produce, in part because the different boost pressures cause the location of minimum pressure to move to different locations inside the ejector. Specifically, as the motive pressure increases beyond a certain value relative to the discharge pressure, the point of minimum vacuum creation moves progressively down the discharge passage.
- Venturi devices that produce vacuum over a range of motive pressures by drawing suction at multiple locations along the discharge section.
- the Venturi devices include a lower body defining a passageway that has a motive section and a discharge section spaced a distance apart from one another to define a first Venturi gap and that converge toward the first Venturi gap, and that has a second Venturi gap downstream of the first Venturi gap at a position that divides the discharge section into a first portion between the first and second Venturi gaps and a second portion leading away from the second Venturi gap.
- the Venturi devices also include an upper body defining a suction passageway in fluid communication with both the first and second Venturi gaps.
- the first Venturi gap and the second Venturi gap have a center to center distance of about 12 mm to about 50 mm.
- the first Venturi gap is generally wider at a top point, when viewed in a longitudinal cross-section, than at a generally central point. In another embodiment, the first Venturi gap is generally wider at a top point and a bottom point, when viewed in a longitudinal cross-section, than at a generally central point between the top point and the bottom point.
- the lower body defines a first connector surrounding the bottom point of the Venturi gap and has a first cap sealingly connected to the first connector.
- the lower body and upper body together, define a first check valve chamber in fluid communication with the first Venturi gap, the first check valve chamber comprising a plurality of fingers extending upward away from the first Venturi gap in a spaced-apart annular arrangement, thereby defining a seat for a sealing member.
- the upper body defines one or more openings into the first check valve chamber and the first Venturi gap is offset, downstream from the one or more openings.
- the plurality of fingers decrease in height the more proximate its position is to the first Venturi gap.
- the lower body and upper body together, define a second check valve chamber in fluid communication with the second Venturi gap, the second check valve chamber comprising a plurality of fingers extending upward away from the second Venturi gap in a spaced-apart annular arrangement, thereby defining a seat for a sealing member.
- the upper body defines one or more openings into the second check valve chamber and the second Venturi gap is offset, upstream from the one or more openings.
- the plurality of fingers decrease in height the more proximate its position is to the second Venturi gap.
- systems that include any one of the Venturi devices disclosed herein.
- the Venturi device is disposed in the system with a source of motive fluid connected to the motive section thereof, and a first device requiring vacuum connected to the suction port thereof.
- FIG. 1 is a side plan view of an embodiment of a multi-Venturi device.
- FIG. 2 is a longitudinal cross-sectional plan view of the multi-Venturi device of FIG. 1 .
- FIG. 3 is an exploded, side plan view of a second embodiment of a multi-Venturi device.
- FIG. 4 is an assembled, longitudinal cross-sectional plan view of the multi-Venturi device of FIG. 3 .
- FIG. 5 is an enlarged view of the first Venturi gap of FIG. 4 .
- FIG. 6 is a perspective, top view into the lower body of the multi-Venturi device of FIG. 3 .
- fluid means any liquid, suspension, colloid, gas, plasma, or combinations thereof.
- a multi-Venturi ejector 100 is depicted that includes a lower body 106 and an upper body portion 108 that when assembled together define a first check valve 114 aligned with a first Venturi gap 112 in the lower body 106 and a second check valve 118 aligned with a second Venturi gap 116 in the lower body 106 .
- the first and second check valves 114 , 118 may be constructed or have similar features to those described in co-assigned, co-pending patent application Ser. No. 14/600,598, filed Jan. 20, 2015 and Ser. No. 14/509,612, filed Oct. 8, 2014, which are each incorporated herein by reference in their entirety.
- the lower body 106 defines a conduit 122 that includes a first Venturi gap 112 separating the conduit 122 into a converging section 124 and a diverging section 126 that both define continuously, gradually tapering inner passageways that narrow as they approach the first Venturi gap 112 and create a Venturi effect on the high pressure fluid as it passes from the converging section 124 into the diverging section 126 .
- the lower body 106 also includes a second Venturi gap 116 , which is downstream of the first Venturi gap 112 at a position that separates the diverging section 126 into a first portion 130 that is between the first and second Venturi gaps 112 , 116 and includes the discharge inlet 134 ( FIG.
- the converging section 124 includes a motive port 140 that defines a motive inlet 127 , which may be connected to a source of pressure that is greater than atmospheric pressure, and includes a motive outlet 128 at the first Venturi gap 112 .
- the discharge port 142 is connectable to a source of lower pressure 103 relative to the source connected to the motive port 140 .
- the upper body 108 defines a suction port 144 having a suction passageway 146 and defining one or more first openings 148 therein in fluid communication with the first check valve 114 and the first Venturi gap 112 and one or more second openings 149 therein in fluid communication with the second check valve 118 and the second Venturi gap 116 .
- suction port 144 may be connected to a device requiring vacuum 102 to operate the device or may be connected to a vacuum reservoir, which is considered herein to be a device requiring vacuum.
- the first and second check valves 114 , 118 are constructed to prevent fluid from flowing from the lower body 106 of the multi-Venturi ejector 100 through the suction port 144 to the device requiring vacuum or the vacuum reservoir.
- the check valves 114 , 118 are preferably formed by the mating of the lower body 106 with the upper body 108 .
- the lower body includes valve seats 162 a, 162 b that are respectively defined by a continuous outer wall 164 a, 164 b.
- a bore 168 a, 168 b is defined in each valve seat 162 a, 162 b to allow for air flow communication with respective Venturi gaps 112 , 116 .
- Each valve seat 162 a, 162 b may include a plurality of radially spaced-apart fingers 170 extending upward from a surface thereof (away from the Venturi gap) to support a seal member 172 .
- the upper body 108 includes valve seats 174 a, 174 b defined by continuous outer walls in a manner similar to that described above with respect to valve seats 162 a, 162 b.
- Valve seats 174 a, 174 b may each include a pin 176 a, 176 b extending downward toward the associated Venturi gap 112 , 116 .
- the pins 176 a, 176 b function as a guide for translation of the sealing members 172 within the check valves 114 , 118 .
- each sealing member 172 includes a bore therethrough sized and positioned for receipt of the pin 176 a, 176 b within its respective check valve 114 , 118 .
- the second Venturi gap 116 may be shaped and sized the same as the first Venturi gap 112 or may be substantially the same.
- the first Venturi gap 112 and the second Venturi gap 116 have a center to center distance in the range of about 12 mm to about 50 mm, more preferably in the range of about 15 mm to about 30 mm.
- the Venturi device of FIGS. 1 and 2 has a first Venturi gap 112 and a second Venturi gap 116 that are both generally wider at a top point, when viewed in the longitudinal cross-section of FIG. 2 , than at a generally central point.
- the second Venturi gap 116 may be offset upstream O u from a generally central point of the one or more second openings 149 in the upper body 108 or from a plane coincident with a transverse axis B through generally the center of the second check valve 118 .
- a multi-Venturi device 200 that includes a lower body 206 and an upper body 208 that, when assembled together, define a first check valve 214 aligned with a first Venturi gap 212 in the lower body 206 and a second check valve 218 aligned with a second Venturi gap 216 in the lower body 206 .
- the lower body 206 defines a conduit 222 that includes a first Venturi gap 212 separating the conduit 222 into a converging section 224 and a diverging section 226 that both define continuously, gradually tapering inner passageways that narrow as they approach the first Venturi gap 212 and create a Venturi effect on fluid as it passes from the converging section 224 into the diverging section 226 .
- the lower body 206 also includes a second Venturi gap 216 , which is downstream of the first Venturi gap 212 at a position that separates the diverging section 226 into a first portion 230 that is between the first and second Venturi gaps 212 , 216 and includes the discharge inlet 234 ( FIG.
- the converging section 224 includes a motive port 240 that defines a motive inlet 227 , which is connectable to a source of pressure, and includes a motive outlet 228 at the first Venturi gap 212 .
- the discharge port 242 is connectable to a source of lower pressure relative to the source connected to the motive port 240 .
- the upper body 208 defines a suction port 244 having a suction passageway 246 and defining one or more first openings 248 therein in fluid communication with the first check valve 214 and the first Venturi gap 212 and one or more second openings 249 therein in fluid communication with the second check valve 218 and the second Venturi gap 216 .
- suction is created to draw a flow of fluid from the suction port 244 into the first Venturi gap 212
- additional suction is created to draw a flow of fluid from the suction port 244 through the second Venturi gap 216 .
- the suction port 244 may be connected to a device requiring vacuum to operate the device or may be connected to a vacuum reservoir.
- the first Venturi gap 212 may be offset O 1 from a generally central point of the one or more first openings 148 in the downstream direction toward the second Venturi gap 216
- the second Venturi gap 216 may be offset upstream O 2 from a generally central point of the one or more second openings 249 in the upper body 208 or from a plane coincident with a transverse axis through generally, for both Venturi gaps, the center of the respective check valve.
- the second Venturi gap 216 may be shaped and sized the same as the first Venturi gap 212 or may be substantially the same.
- the first Venturi gap 212 and the second Venturi gap 216 have a center to center distance D c-e , in the range of about 12 mm to about 50 mm, more preferably in the range of about 15 mm to about 30 mm.
- the first and second check valves 214 , 218 are constructed to prevent fluid from flowing from the lower body 206 of the multi-Venturi ejector 200 through the suction port 244 to the device requiring vacuum or the vacuum reservoir.
- the check valves 214 , 218 are preferably formed by the mating of the lower body 206 with the upper body 208 .
- the lower body includes valve seats 262 a, 262 b that are respectively defined by a continuous outer wall 264 a, 264 b.
- a bore 268 a, 268 b is defined in each valve seat 262 a, 262 b to allow for air flow communication with respective Venturi gaps 212 , 216 .
- the upper body 208 includes valve seats 274 a, 274 b defined by continuous outer walls in a manner similar to that described above with respect to valve seats 262 a, 262 b.
- Valve seats 274 a, 274 b may each include a pin 276 a, 276 b extending downward toward the associated Venturi gap 212 , 216 .
- the pins 276 a, 276 b function as a guide for translation of the sealing members 172 within the check valves 214 , 218 .
- each sealing member 172 includes a bore therethrough sized and positioned for receipt of the pin 276 a, 276 b within its respective check valve 214 , 218 .
- any of the Venturi gaps disclosed herein, with particular reference to the first Venturi gap 212 in FIG. 4 are generally wider at a top point 233 and at a bottom point 235 , when viewed in a longitudinal cross-section, than at a generally central point 237 aligned with the central longitudinal axis C between the top point 233 and the bottom point 235 .
- the width of the Venturi gap 212 tapers symmetrically from a maximum width W 1 at the upper and lower ends, respectively, of the gap to a minimum width W 2 at the center point 237 .
- the void defined by the Venturi gap 212 is symmetrical about a plane bisecting the conduit 222 into upper and lower halves 257 , 259 (in the illustrated embodiment, above and below axis C), thereby improving flow conditions and decreasing turbulence and resultant noise as fluid flows through the Venturi gap 212 as compared to aspirator systems incorporating Venturi gaps with asymmetrical (e.g., conical or tapered) configurations.
- the lower body 206 defines a first chamber 280 that surrounds the motive outlet end 229 of the converging (motive) section 224 , surrounds the discharge inlet end 231 of the diverging (discharge) section 226 , and includes or begins with the bore 268 a. With the motive outlet end 229 and the discharge inlet end 231 extending into the first chamber 280 , fluid flow is provided around the entire outer surface of both thereof.
- the lower body 206 further defines a first connector 286 ( FIG. 3 ) surrounding the bottom point 235 ( FIG. 5 ) of the first Venturi gap 212 and further comprises a first cap 292 sealingly connected to the first connector 286 , thereby helping to define the first chamber 280 .
- the first connector 286 may be an annular flange protruding outward from the lower body 206 , but is not limited thereto.
- the lower body 206 also defines a second chamber 281 for the second Venturi gap 218 .
- the second chamber 281 surrounds the two opposing ends 290 of the discharge section formed by the formation of the second Venturi gap 216 .
- the two opposing ends 290 extend into the second chamber 281 such that fluid flow is provided around the entire outer surface of both thereof.
- the lower body 206 further defines a second connector 288 , which may be an annular flange protruding outward from the lower body 206 , surrounding a bottom point of the second Venturi gap 216 .
- a second cap 294 is sealingly connected to the second connector 288 , thereby helping to define the second chamber 281 .
- the disclosed structure incorporating fluid flow into both of the first Venturi gap 212 and the second Venturi gap 216 from above and below the Venturi gaps, as well as all sides thereof, provides improved suction flow rate for a given motive flow and discharge pressure as compared to a system incorporating less directions of flow into the Venturi gap because the disclosed system provides greater capacity to utilize the Venturi effect created by the motive flow through the conduit 222 .
- arrows 253 and 255 indicate the fluid flow path through the upper and lower points 233 , 235 of the Venturi gap 212 . Venturi forces generated by the motive flow through the upper half 257 of the conduit 222 across the Venturi gap 212 yield suction primarily along flow path 253 through the bore 268 a. Venturi forces generated by the motive flow through the lower half 259 of the conduit 222 across the Venturi gap 212 yield suction primarily along flow path 255 .
- the lower body 206 further defines a first plurality of fingers 302 extending upward away from the first Venturi gap 212 toward the upper body 208 for inclusion inside the first check valve 214 and a second plurality of fingers 304 extending upward away from the second Venturi gap 216 toward the upper body 208 for inclusion inside the second check valve 218 .
- the first plurality of fingers 302 and the second plurality of fingers 304 both define, separately, a seat for a sealing member 172 .
- Both of the first and second plurality of fingers 302 , 304 may be arranged in an annular configuration with the fingers circumferentially spaced apart from one another.
- the plurality of fingers may be equidistant apart from one another, except for the pair of third fingers 314 , which may be farther apart from one another because of their proximity to one of the bores 268 a, 268 b.
- the bores 268 a, 268 b may be irregularly shaped, may be generally circular in cross-section, or may include a portion that is generally circular in cross-section. As illustrated in FIG. 6 , each of the bores 268 a, 268 b include a trough portion 322 and a portion that is generally circular in cross-section 324 . As shown in the exemplary embodiment, each of the first and second plurality of fingers 302 , 304 may include discrete fingers that decrease in height the more proximate the particular discrete finger is to its respective Venturi gap 212 , 216 .
- first finger 310 has the greatest height H 1 , measured from a plane coincident with an interior bottom surface 306 of the respective check valve unit 214 , 218 , and is circumferentially the farthest from the Venturi gap.
- the second fingers 312 are shorter than the first finger 310 and have a height H 2 .
- the third fingers 314 are shorter than the second fingers 312 and have a height H 3 .
- the height H 2 of the second fingers 312 may be about 70% to about 90% of the total height of the first finger 310
- the third fingers may be about 70% to about 90% of the height of the second fingers 312 .
- the seal member 172 deflects sufficiently to permit high bypass flow of fluid from the device requiring vacuum 102 when the pressure in the device requiring vacuum 102 is greater than a pressure of fluid coupled to the discharge port 224 and also provides for quick, more uniform closure of each of the check valves. While three discrete heights of fingers are illustrated, more fingers could be used to define the seat for the seal member 172 and, as such, appropriate heights thereof may be introduced to have the overall height decrease as the fingers are positioned more proximate the Venturi gap. In the embodiment of FIGS.
- the first finger 310 is the tallest
- the second fingers 312 are about 1 mm shorter than the first finger
- the third fingers are about 2 mm shorter than the first finger (about 1 mm shorter than the second fingers).
- the sealing members 172 may be reinforced for improved performance.
- the sealing member 172 includes a reinforcing member 173 as shown in FIG. 4 .
- the sealing members 172 have a generally central bore receiving pin 176 a, 176 b or 276 a, 276 b, respectively, but is not limited thereto.
- one or more guides may be positioned about the periphery of the sealing member and the sealing member may or may not include fluting that receives the guides.
- the reinforcing member 173 may be over-molded at least partially by a sealing material, or encased within a sealing material.
- the reinforcing member 173 enables the sealing members 172 to withstand extruding between the plurality of spaced-apart fingers 170 ( FIGS. 2) and 302 , 304 ( FIG. 3-4 ) when a high change in pressure is experienced.
- the reinforcing member 173 is or includes metal having a rigidity enabling the sealing member 172 to withstand extruding between the fingers as just explained.
- metal is used generically to represent all materials that may be pure metal, metal alloys, metal composites, and combination thereof having a suitable rigidity.
- the reinforcing member 173 may be carbon fiber or plastics such as nylon or acetyl with or without fill (typically 30% by volume) such as glass, mineral, and the like. Additional details of exemplary embodiments of reinforced sealing members are found in co-assigned, U.S. application Ser. No. 14/600,598, filed Jan. 20, 2015.
- One advantage of the multi-Venturi ejector is that the ejector can produce a useable vacuum over a wider range of fluid flow pressures (for example, boost pressures) compared to ejectors having only a single Venturi gap.
- the multi-Venturi ejector may include a noise attenuating unit (not shown) that is the same or similar to the unit described in co-pending patent application No. 61/913,756, filed Dec. 9, 2013, incorporated herein in its entirety.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Jet Pumps And Other Pumps (AREA)
- Valves And Accessory Devices For Braking Systems (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 62/022,839, filed Jul. 10, 2014, the entirety of which is incorporated herein by reference.
- This application relates to vacuum creation by a Venturi device and, more particularly, to a Venturi device having two Venturi gaps. In the exemplary embodiments herein, the Venturi device is connected to a high pressure source (a pressure higher than atmospheric pressure) as its motive source and is referred to as an ejector.
- In some vehicles, vacuum is used to operate or assist in the operation of various devices. For example, vacuum may be used to assist a driver applying vehicle brakes, turbocharger operation, fuel vapor purging, heating and ventilation system actuation, and driveline component actuation. If the vehicle does not produce vacuum naturally, such as from the intake manifold, then a separate vacuum source is required to operate such devices. While an aspirator or an ejector can produce vacuum when supplied with either boost or manifold vacuum, the depth of vacuum produced will be a function of the difference in pressure between the pressure applied to the motive port and the pressure applied to the discharge port. However, in boosted engines where intake manifold pressures are often at pressures greater than atmospheric pressure, intake manifold vacuum may be replaced or augmented with vacuum from an ejector. An ejector, as used herein, is a converging, diverging nozzle assembly connected to a pressure source above atmospheric pressure. By passing pressurized air through the ejector, a low pressure region may be created within the ejector so that air can be drawn from a vacuum reservoir or may directly act on a device requiring vacuum, thereby reducing pressure within the vacuum reservoir or device requiring vacuum.
- Typical ejectors cannot produce a suction pressure below atmospheric pressure when the motive pressure exceeds 192 kPa absolute, and the maximum vacuum is produced with a motive pressure of less than 135 kPa absolute. However, boosted engines routinely operate at above 135 kPa absolutes, so there is a need to improve the performance of an ejector on such a vehicle. These conventional ejectors are limited in the vacuum they can produce, in part because the different boost pressures cause the location of minimum pressure to move to different locations inside the ejector. Specifically, as the motive pressure increases beyond a certain value relative to the discharge pressure, the point of minimum vacuum creation moves progressively down the discharge passage.
- What is needed is an ejector that can produce vacuum over a range of motive pressures.
- In one aspect, Venturi devices are disclosed that produce vacuum over a range of motive pressures by drawing suction at multiple locations along the discharge section. The Venturi devices include a lower body defining a passageway that has a motive section and a discharge section spaced a distance apart from one another to define a first Venturi gap and that converge toward the first Venturi gap, and that has a second Venturi gap downstream of the first Venturi gap at a position that divides the discharge section into a first portion between the first and second Venturi gaps and a second portion leading away from the second Venturi gap. The Venturi devices also include an upper body defining a suction passageway in fluid communication with both the first and second Venturi gaps. In one embodiment, the first Venturi gap and the second Venturi gap have a center to center distance of about 12 mm to about 50 mm.
- In one embodiment, the first Venturi gap is generally wider at a top point, when viewed in a longitudinal cross-section, than at a generally central point. In another embodiment, the first Venturi gap is generally wider at a top point and a bottom point, when viewed in a longitudinal cross-section, than at a generally central point between the top point and the bottom point. In this embodiment, the lower body defines a first connector surrounding the bottom point of the Venturi gap and has a first cap sealingly connected to the first connector.
- In one embodiment, the lower body and upper body, together, define a first check valve chamber in fluid communication with the first Venturi gap, the first check valve chamber comprising a plurality of fingers extending upward away from the first Venturi gap in a spaced-apart annular arrangement, thereby defining a seat for a sealing member. The upper body defines one or more openings into the first check valve chamber and the first Venturi gap is offset, downstream from the one or more openings. In this embodiment, the plurality of fingers decrease in height the more proximate its position is to the first Venturi gap.
- In another embodiment, the lower body and upper body, together, define a second check valve chamber in fluid communication with the second Venturi gap, the second check valve chamber comprising a plurality of fingers extending upward away from the second Venturi gap in a spaced-apart annular arrangement, thereby defining a seat for a sealing member. The upper body defines one or more openings into the second check valve chamber and the second Venturi gap is offset, upstream from the one or more openings. In this embodiment, the plurality of fingers decrease in height the more proximate its position is to the second Venturi gap.
- In another aspect, systems are disclosed that include any one of the Venturi devices disclosed herein. The Venturi device is disposed in the system with a source of motive fluid connected to the motive section thereof, and a first device requiring vacuum connected to the suction port thereof.
-
FIG. 1 is a side plan view of an embodiment of a multi-Venturi device. -
FIG. 2 is a longitudinal cross-sectional plan view of the multi-Venturi device ofFIG. 1 . -
FIG. 3 is an exploded, side plan view of a second embodiment of a multi-Venturi device. -
FIG. 4 is an assembled, longitudinal cross-sectional plan view of the multi-Venturi device ofFIG. 3 . -
FIG. 5 is an enlarged view of the first Venturi gap ofFIG. 4 . -
FIG. 6 is a perspective, top view into the lower body of the multi-Venturi device ofFIG. 3 . - The following detailed description will illustrate the general principles of the invention, examples of which are additionally illustrated in the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements.
- As used herein, “fluid” means any liquid, suspension, colloid, gas, plasma, or combinations thereof.
- In
FIG. 1 , amulti-Venturi ejector 100 is depicted that includes alower body 106 and anupper body portion 108 that when assembled together define afirst check valve 114 aligned with a first Venturigap 112 in thelower body 106 and asecond check valve 118 aligned with a second Venturigap 116 in thelower body 106. The first andsecond check valves - Now referring to
FIGS. 1 and 2 , thelower body 106 defines aconduit 122 that includes a first Venturigap 112 separating theconduit 122 into aconverging section 124 and a divergingsection 126 that both define continuously, gradually tapering inner passageways that narrow as they approach the first Venturigap 112 and create a Venturi effect on the high pressure fluid as it passes from theconverging section 124 into the divergingsection 126. Thelower body 106 also includes a second Venturigap 116, which is downstream of the first Venturigap 112 at a position that separates the divergingsection 126 into afirst portion 130 that is between the first and second Venturigaps FIG. 2 ) and into asecond portion 132 that leads away from the second Venturigap 116 to the discharge outlet 136 (FIG. 2 ) defined by thedischarge port 142. Theconverging section 124 includes amotive port 140 that defines amotive inlet 127, which may be connected to a source of pressure that is greater than atmospheric pressure, and includes amotive outlet 128 at the first Venturigap 112. Thedischarge port 142 is connectable to a source oflower pressure 103 relative to the source connected to themotive port 140. - As depicted in
FIG. 2 , theupper body 108 defines asuction port 144 having a suction passageway 146 and defining one or morefirst openings 148 therein in fluid communication with thefirst check valve 114 and the first Venturigap 112 and one or moresecond openings 149 therein in fluid communication with thesecond check valve 118 and the second Venturigap 116. Accordingly, as high pressure fluid flows from a source ofhigher pressure 101 through the first Venturigap 112, suction is created to draw a flow of fluid from thesuction port 144 into the first Venturigap 112 and as the high pressure fluid and the suction flow both pass through the second Venturigap 116, additional suction is created to draw a flow of fluid from thesuction port 144 through the second Venturigap 116. Thesuction port 144 may be connected to adevice requiring vacuum 102 to operate the device or may be connected to a vacuum reservoir, which is considered herein to be a device requiring vacuum. - The first and
second check valves lower body 106 of themulti-Venturi ejector 100 through thesuction port 144 to the device requiring vacuum or the vacuum reservoir. Thecheck valves lower body 106 with theupper body 108. To accomplish this, the lower body includesvalve seats outer wall bore valve seat gaps valve seat apart fingers 170 extending upward from a surface thereof (away from the Venturi gap) to support aseal member 172. - The
upper body 108 includesvalve seats valve seats Valve seats pin gap pins members 172 within thecheck valves member 172 includes a bore therethrough sized and positioned for receipt of thepin respective check valve - The
second Venturi gap 116 may be shaped and sized the same as thefirst Venturi gap 112 or may be substantially the same. Thefirst Venturi gap 112 and thesecond Venturi gap 116 have a center to center distance in the range of about 12 mm to about 50 mm, more preferably in the range of about 15 mm to about 30 mm. - The Venturi device of
FIGS. 1 and 2 has afirst Venturi gap 112 and asecond Venturi gap 116 that are both generally wider at a top point, when viewed in the longitudinal cross-section ofFIG. 2 , than at a generally central point. - As shown in
FIG. 2 , thesecond Venturi gap 116 may be offset upstream Ou from a generally central point of the one or moresecond openings 149 in theupper body 108 or from a plane coincident with a transverse axis B through generally the center of thesecond check valve 118. - Referring now to the embodiment in
FIGS. 3-6 , amulti-Venturi device 200 is depicted that includes alower body 206 and anupper body 208 that, when assembled together, define afirst check valve 214 aligned with afirst Venturi gap 212 in thelower body 206 and asecond check valve 218 aligned with asecond Venturi gap 216 in thelower body 206. Thelower body 206 defines aconduit 222 that includes afirst Venturi gap 212 separating theconduit 222 into a convergingsection 224 and a divergingsection 226 that both define continuously, gradually tapering inner passageways that narrow as they approach thefirst Venturi gap 212 and create a Venturi effect on fluid as it passes from the convergingsection 224 into the divergingsection 226. Thelower body 206 also includes asecond Venturi gap 216, which is downstream of thefirst Venturi gap 212 at a position that separates the divergingsection 226 into afirst portion 230 that is between the first andsecond Venturi gaps FIG. 4 ) and into asecond portion 232 that leads away from thesecond Venturi gap 216 to the discharge outlet 236 (FIG. 4 ) defined by thedischarge port 242. The convergingsection 224 includes amotive port 240 that defines amotive inlet 227, which is connectable to a source of pressure, and includes amotive outlet 228 at thefirst Venturi gap 212. Thedischarge port 242 is connectable to a source of lower pressure relative to the source connected to themotive port 240. - As depicted in
FIG. 4 , theupper body 208 defines asuction port 244 having asuction passageway 246 and defining one or morefirst openings 248 therein in fluid communication with thefirst check valve 214 and thefirst Venturi gap 212 and one or moresecond openings 249 therein in fluid communication with thesecond check valve 218 and thesecond Venturi gap 216. Accordingly, as fluid flows through thefirst Venturi gap 212, suction is created to draw a flow of fluid from thesuction port 244 into thefirst Venturi gap 212, and as the fluid and the suction flow both pass through thesecond Venturi gap 216, additional suction is created to draw a flow of fluid from thesuction port 244 through thesecond Venturi gap 216. Thesuction port 244 may be connected to a device requiring vacuum to operate the device or may be connected to a vacuum reservoir. As illustrated, thefirst Venturi gap 212 may be offset O1 from a generally central point of the one or morefirst openings 148 in the downstream direction toward thesecond Venturi gap 216, and thesecond Venturi gap 216 may be offset upstream O2 from a generally central point of the one or moresecond openings 249 in theupper body 208 or from a plane coincident with a transverse axis through generally, for both Venturi gaps, the center of the respective check valve. - The
second Venturi gap 216 may be shaped and sized the same as thefirst Venturi gap 212 or may be substantially the same. Thefirst Venturi gap 212 and thesecond Venturi gap 216 have a center to center distance Dc-e, in the range of about 12 mm to about 50 mm, more preferably in the range of about 15 mm to about 30 mm. - The first and
second check valves lower body 206 of themulti-Venturi ejector 200 through thesuction port 244 to the device requiring vacuum or the vacuum reservoir. Thecheck valves lower body 206 with theupper body 208. To accomplish this, the lower body includesvalve seats 262 a, 262 b that are respectively defined by a continuousouter wall bore valve seat 262 a, 262 b to allow for air flow communication withrespective Venturi gaps - The
upper body 208 includesvalve seats valve seats 262 a, 262 b. Valve seats 274 a, 274 b may each include apin Venturi gap pins members 172 within thecheck valves member 172 includes a bore therethrough sized and positioned for receipt of thepin respective check valve - As shown in the enlarged view in
FIG. 5 , any of the Venturi gaps disclosed herein, with particular reference to thefirst Venturi gap 212 inFIG. 4 , are generally wider at atop point 233 and at abottom point 235, when viewed in a longitudinal cross-section, than at a generallycentral point 237 aligned with the central longitudinal axis C between thetop point 233 and thebottom point 235. The width of theVenturi gap 212 tapers symmetrically from a maximum width W1 at the upper and lower ends, respectively, of the gap to a minimum width W2 at thecenter point 237. As a result, the void defined by theVenturi gap 212 is symmetrical about a plane bisecting theconduit 222 into upper andlower halves 257, 259 (in the illustrated embodiment, above and below axis C), thereby improving flow conditions and decreasing turbulence and resultant noise as fluid flows through theVenturi gap 212 as compared to aspirator systems incorporating Venturi gaps with asymmetrical (e.g., conical or tapered) configurations. - With reference to
FIGS. 4 and 5 , thelower body 206 defines afirst chamber 280 that surrounds the motive outlet end 229 of the converging (motive)section 224, surrounds thedischarge inlet end 231 of the diverging (discharge)section 226, and includes or begins with thebore 268 a. With themotive outlet end 229 and thedischarge inlet end 231 extending into thefirst chamber 280, fluid flow is provided around the entire outer surface of both thereof. Thelower body 206 further defines a first connector 286 (FIG. 3 ) surrounding the bottom point 235 (FIG. 5 ) of thefirst Venturi gap 212 and further comprises afirst cap 292 sealingly connected to thefirst connector 286, thereby helping to define thefirst chamber 280. Thefirst connector 286 may be an annular flange protruding outward from thelower body 206, but is not limited thereto. Thelower body 206 also defines asecond chamber 281 for thesecond Venturi gap 218. Thesecond chamber 281 surrounds the two opposingends 290 of the discharge section formed by the formation of thesecond Venturi gap 216. The two opposingends 290 extend into thesecond chamber 281 such that fluid flow is provided around the entire outer surface of both thereof. Here, too, thelower body 206 further defines asecond connector 288, which may be an annular flange protruding outward from thelower body 206, surrounding a bottom point of thesecond Venturi gap 216. Asecond cap 294 is sealingly connected to thesecond connector 288, thereby helping to define thesecond chamber 281. - The disclosed structure, incorporating fluid flow into both of the
first Venturi gap 212 and thesecond Venturi gap 216 from above and below the Venturi gaps, as well as all sides thereof, provides improved suction flow rate for a given motive flow and discharge pressure as compared to a system incorporating less directions of flow into the Venturi gap because the disclosed system provides greater capacity to utilize the Venturi effect created by the motive flow through theconduit 222. With reference toFIG. 5 ,arrows lower points Venturi gap 212. Venturi forces generated by the motive flow through theupper half 257 of theconduit 222 across theVenturi gap 212 yield suction primarily alongflow path 253 through thebore 268 a. Venturi forces generated by the motive flow through thelower half 259 of theconduit 222 across theVenturi gap 212 yield suction primarily alongflow path 255. - Referring to
FIGS. 3-4 and 6, thelower body 206 further defines a first plurality offingers 302 extending upward away from thefirst Venturi gap 212 toward theupper body 208 for inclusion inside thefirst check valve 214 and a second plurality offingers 304 extending upward away from thesecond Venturi gap 216 toward theupper body 208 for inclusion inside thesecond check valve 218. The first plurality offingers 302 and the second plurality offingers 304 both define, separately, a seat for a sealingmember 172. Both of the first and second plurality offingers third fingers 314, which may be farther apart from one another because of their proximity to one of thebores - The
bores FIG. 6 , each of thebores trough portion 322 and a portion that is generally circular incross-section 324. As shown in the exemplary embodiment, each of the first and second plurality offingers respective Venturi gap first finger 310 has the greatest height H1, measured from a plane coincident with aninterior bottom surface 306 of the respectivecheck valve unit second fingers 312 are shorter than thefirst finger 310 and have a height H2. Thethird fingers 314 are shorter than thesecond fingers 312 and have a height H3. The height H2 of thesecond fingers 312 may be about 70% to about 90% of the total height of thefirst finger 310, and the third fingers may be about 70% to about 90% of the height of thesecond fingers 312. With this type of support structure defining a seat for theseal member 172, theseal member 172 deflects sufficiently to permit high bypass flow of fluid from thedevice requiring vacuum 102 when the pressure in thedevice requiring vacuum 102 is greater than a pressure of fluid coupled to thedischarge port 224 and also provides for quick, more uniform closure of each of the check valves. While three discrete heights of fingers are illustrated, more fingers could be used to define the seat for theseal member 172 and, as such, appropriate heights thereof may be introduced to have the overall height decrease as the fingers are positioned more proximate the Venturi gap. In the embodiment ofFIGS. 3-6 , referring to one of the sets of plurality of fingers as an example, thefirst finger 310 is the tallest, thesecond fingers 312 are about 1 mm shorter than the first finger, and the third fingers are about 2 mm shorter than the first finger (about 1 mm shorter than the second fingers). - In both embodiments disclosed in the figures, the sealing
members 172 may be reinforced for improved performance. The sealingmember 172 includes a reinforcingmember 173 as shown inFIG. 4 . The sealingmembers 172 have a generally centralbore receiving pin member 173 may be over-molded at least partially by a sealing material, or encased within a sealing material. The reinforcingmember 173 enables the sealingmembers 172 to withstand extruding between the plurality of spaced-apart fingers 170 (FIGS. 2) and 302 , 304 (FIG. 3-4 ) when a high change in pressure is experienced. In one embodiment, the reinforcingmember 173 is or includes metal having a rigidity enabling the sealingmember 172 to withstand extruding between the fingers as just explained. As used herein, “metal” is used generically to represent all materials that may be pure metal, metal alloys, metal composites, and combination thereof having a suitable rigidity. In another embodiment, the reinforcingmember 173 may be carbon fiber or plastics such as nylon or acetyl with or without fill (typically 30% by volume) such as glass, mineral, and the like. Additional details of exemplary embodiments of reinforced sealing members are found in co-assigned, U.S. application Ser. No. 14/600,598, filed Jan. 20, 2015. - One advantage of the multi-Venturi ejector is that the ejector can produce a useable vacuum over a wider range of fluid flow pressures (for example, boost pressures) compared to ejectors having only a single Venturi gap.
- In one embodiment, the multi-Venturi ejector may include a noise attenuating unit (not shown) that is the same or similar to the unit described in co-pending patent application No. 61/913,756, filed Dec. 9, 2013, incorporated herein in its entirety.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/796,447 US10626888B2 (en) | 2014-07-10 | 2015-07-10 | Dual Venturi device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462022839P | 2014-07-10 | 2014-07-10 | |
US14/796,447 US10626888B2 (en) | 2014-07-10 | 2015-07-10 | Dual Venturi device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160010661A1 true US20160010661A1 (en) | 2016-01-14 |
US10626888B2 US10626888B2 (en) | 2020-04-21 |
Family
ID=55064962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/796,447 Active 2036-09-05 US10626888B2 (en) | 2014-07-10 | 2015-07-10 | Dual Venturi device |
Country Status (6)
Country | Link |
---|---|
US (1) | US10626888B2 (en) |
EP (1) | EP3166826A4 (en) |
JP (1) | JP6756699B2 (en) |
KR (1) | KR102240986B1 (en) |
CN (1) | CN105408177B (en) |
WO (1) | WO2016007861A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016112063A1 (en) * | 2015-01-09 | 2016-07-14 | Dayco Ip Holdings, Llc | Crankcase ventilating evacuator |
USD764630S1 (en) * | 2015-08-12 | 2016-08-23 | James T. Sutton | Venturi meter |
US10190455B2 (en) | 2015-10-28 | 2019-01-29 | Dayco Ip Holdings, Llc | Venturi devices resistant to ice formation for producing vacuum from crankcase gases |
US10316864B2 (en) | 2015-04-13 | 2019-06-11 | Dayco Ip Holdings, Llc | Devices for producing vacuum using the venturi effect |
US10422351B2 (en) | 2015-07-17 | 2019-09-24 | Dayco Ip Holdings, Llc | Devices for producing vacuum using the venturi effect having a plurality of subpassageways and motive exits in the motive section |
US20190323618A1 (en) * | 2018-04-23 | 2019-10-24 | Dayco Ip Holdings, Llc | Check valve insert defining an open position and check valves having same |
US20230374956A1 (en) * | 2020-09-30 | 2023-11-23 | Norma Germany Gmbh | Vehicle drive comprising vacuum system and ejector |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3822136B1 (en) * | 2016-06-14 | 2024-01-10 | Dayco IP Holdings, LLC | Check valves and venturi devices having the same |
US9885323B1 (en) * | 2016-08-02 | 2018-02-06 | Ford Global Technologies, Llc | Compact ejector system for a boosted internal combustion engine |
US11408380B2 (en) * | 2020-12-24 | 2022-08-09 | Dayco Ip Holdings, Llc | Devices for producing vacuum using the Venturi effect having a hollow fletch |
KR102588202B1 (en) * | 2021-12-21 | 2023-10-13 | 린나이코리아 주식회사 | Venturi equipment with cam damper |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2396290A (en) * | 1945-03-01 | 1946-03-12 | Schwarz Sigmund | Sludge pump |
US2399249A (en) * | 1944-10-24 | 1946-04-30 | Gen Tank Service Inc | Apparatus for the movement of viscous materials |
US6619322B1 (en) * | 2000-07-27 | 2003-09-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Fast-acting valve |
US20040169599A1 (en) * | 1999-12-23 | 2004-09-02 | Urban Mathiasson | Device for reducing the signature of hot exhausting gases |
US20060016477A1 (en) * | 2004-07-23 | 2006-01-26 | Algis Zaparackas | Vacuum enhancing check valve |
JP2007327453A (en) * | 2006-06-09 | 2007-12-20 | Advics:Kk | Ejector for negative pressure type booster |
US20080121480A1 (en) * | 2006-11-23 | 2008-05-29 | Aisan Kogyo Kabushiki Kaisha | Ejector and negative pressure supply apparatus for brake booster using the ejector |
US20110123359A1 (en) * | 2009-11-24 | 2011-05-26 | J. Schmalz Gmbh | Pneumatic vacuum generator |
US20130213510A1 (en) * | 2012-02-20 | 2013-08-22 | Nyloncraft Incorporated | High mass flow check valve aspirator |
Family Cites Families (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1845969A (en) | 1928-04-02 | 1932-02-16 | Trico Products Corp | Suction augmenting device |
US2183561A (en) | 1938-03-17 | 1939-12-19 | Clyde M Hamblin | Mechanical foam generator |
US2449683A (en) | 1943-04-16 | 1948-09-21 | John D Akerman | Differential pressure valve |
US2512479A (en) | 1949-02-17 | 1950-06-20 | Callejo Modesto | Backflow preventer |
US3234932A (en) | 1960-09-19 | 1966-02-15 | Forrest M Bird | Respirator |
US3145724A (en) | 1960-11-14 | 1964-08-25 | Harry Karp | Vacuum breaking device |
US3430437A (en) | 1966-10-05 | 1969-03-04 | Holley Carburetor Co | Automotive exhaust emission system |
DE1750021A1 (en) | 1968-03-21 | 1971-01-07 | Fichtel & Sachs Ag | Valve device for hydraulic, pneumatic or hydropneumatic devices |
US3826281A (en) | 1969-10-29 | 1974-07-30 | Us Navy | Throttling ball valve |
US3754841A (en) | 1971-05-14 | 1973-08-28 | Bendix Corp | Vacuum intensified brake booster system |
DE2717685C3 (en) | 1977-04-21 | 1981-04-02 | Audi Nsu Auto Union Ag, 7107 Neckarsulm | Internal combustion engine for motor vehicles |
US4308138A (en) | 1978-07-10 | 1981-12-29 | Woltman Robert B | Treating means for bodies of water |
US4354492A (en) | 1979-04-16 | 1982-10-19 | American Hospital Supply Corporation | Medical administration set with backflow check valve |
DE3147708A1 (en) | 1981-11-27 | 1983-06-16 | Mecano-Bundy Gmbh, 6900 Heidelberg | CHECK VALVE OF A VEHICLE BRAKE POWER AMPLIFIER |
US4499034A (en) | 1982-09-02 | 1985-02-12 | The United States Of America As Represented By The United States Department Of Energy | Vortex-augmented cooling tower-windmill combination |
AU545569B2 (en) | 1982-09-16 | 1985-07-18 | Honda Giken Kogyo Kabushiki Kaisha | Vacuum source device |
US4554786A (en) | 1982-09-16 | 1985-11-26 | Nissin Kogyo Kabushiki Kaisha | Vacuum source device for vacuum booster for vehicles |
US4519423A (en) | 1983-07-08 | 1985-05-28 | University Of Southern California | Mixing apparatus using a noncircular jet of small aspect ratio |
US4634559A (en) | 1984-02-29 | 1987-01-06 | Aluminum Company Of America | Fluid flow control process |
JPS6155399A (en) * | 1984-08-27 | 1986-03-19 | Shoketsu Kinzoku Kogyo Co Ltd | Vacuum generator |
US4556086A (en) | 1984-09-26 | 1985-12-03 | Burron Medical Inc. | Dual disc low pressure back-check valve |
IL74282A0 (en) | 1985-02-08 | 1985-05-31 | Dan Greenberg | Multishaft jet suction device |
US4683916A (en) | 1986-09-25 | 1987-08-04 | Burron Medical Inc. | Normally closed automatic reflux valve |
US4759691A (en) | 1987-03-19 | 1988-07-26 | Kroupa Larry G | Compressed air driven vacuum pump assembly |
DE3809837A1 (en) | 1987-03-27 | 1988-10-20 | Enfo Grundlagen Forschungs Ag | Valve plate, especially a closure or damper plate |
JPH01111878U (en) | 1988-01-22 | 1989-07-27 | ||
US4880358A (en) | 1988-06-20 | 1989-11-14 | Air-Vac Engineering Company, Inc. | Ultra-high vacuum force, low air consumption pumps |
US4893654A (en) | 1988-07-08 | 1990-01-16 | Feuz John G | Double check valve backflow preventer assembly |
US4951708A (en) | 1988-11-30 | 1990-08-28 | General Motors Corporation | Vacuum check valve |
NL9000339A (en) | 1990-02-13 | 1991-09-02 | System Engineering & Component | PRESSURE DROP REDUCTION DEVICE, AND VALVE FITTED WITH A PRESSURE DROP REDUCTION DEVICE. |
US5005550A (en) | 1989-12-19 | 1991-04-09 | Chrysler Corporation | Canister purge for turbo engine |
US5108266A (en) | 1991-05-29 | 1992-04-28 | Allied-Signal Inc. | Check valve with aspirating function |
US5188141A (en) | 1991-12-03 | 1993-02-23 | Siemens Automotive Limited | Vacuum boost valve |
DE9210496U1 (en) | 1992-08-06 | 1993-12-02 | Volkmann, Thilo, 59514 Welver | Multi-stage ejector |
US5291916A (en) | 1992-12-28 | 1994-03-08 | Excel Industries, Inc. | Check valve |
DE4310761C2 (en) | 1993-04-01 | 1995-10-12 | Kayser A Gmbh & Co Kg | Jet pump |
JPH08174860A (en) | 1994-10-26 | 1996-07-09 | Seiko Epson Corp | Ink cartridge for inkjet printer |
AU693263B2 (en) | 1995-02-23 | 1998-06-25 | Ecolab Inc. | Apparatus and method for dispensing a viscous use solution |
US6035881A (en) | 1997-05-15 | 2000-03-14 | Walter Alfmeier Ag Prazisions-Baugruppenelemente | Checkvalve unit |
SE511716E5 (en) | 1998-03-20 | 2009-01-28 | Piab Ab | ejector |
US6308731B1 (en) | 1999-06-25 | 2001-10-30 | Itz Corporation | Vent valve |
CN2400655Y (en) | 1999-11-23 | 2000-10-11 | 屠申富 | Pressure-limiting check valve for vehicles |
JP2001295800A (en) | 1999-12-08 | 2001-10-26 | Myotoku Ltd | Ejector vacuum generator |
US6623154B1 (en) | 2000-04-12 | 2003-09-23 | Premier Wastewater International, Inc. | Differential injector |
AT412303B (en) | 2000-04-18 | 2004-12-27 | Hoerbiger Ventilwerke Gmbh | VALVE |
CN100348865C (en) | 2001-09-06 | 2007-11-14 | 爱发科股份有限公司 | Vacuum exhaust appts. and drive method of vacuum appts. |
CA2364735C (en) | 2001-12-11 | 2009-11-03 | Jan A. Korzeniowski | Air aspirator-mixer |
US20050061378A1 (en) * | 2003-08-01 | 2005-03-24 | Foret Todd L. | Multi-stage eductor apparatus |
US20050121084A1 (en) | 2003-12-04 | 2005-06-09 | Danfoss Flomatic Corporation | Ball check valve |
SE528482C2 (en) | 2005-05-25 | 2006-11-28 | Gm Global Tech Operations Inc | Brake booster system for vehicle, has valve arrangement, interposed in by-pass of flow line between intake manifold and brake booster, which moves to closing position at speed allowing pressure balance between manifold and booster |
CA2517785C (en) | 2005-09-01 | 2009-06-02 | Masco Canada Limited | Check valve |
SE0502371L (en) | 2005-10-27 | 2006-09-19 | Xerex Ab | Ejector with mounting sleeve, as well as mounting procedure |
KR100629994B1 (en) | 2005-12-30 | 2006-10-02 | 한국뉴매틱(주) | Vacuum ejector pump |
US20070152355A1 (en) | 2005-12-30 | 2007-07-05 | Hartley John D | Cylindrical insert fluid injector / vacuum pump |
WO2007140519A1 (en) | 2006-06-05 | 2007-12-13 | Cullin Innovation Pty Ltd | Fluid regulator |
JP4238882B2 (en) | 2006-06-09 | 2009-03-18 | トヨタ自動車株式会社 | Ejector system for vehicles |
KR100767486B1 (en) | 2006-06-26 | 2007-10-17 | 현대자동차주식회사 | Automotive brake negative pressure amplifier |
WO2008014306A2 (en) | 2006-07-25 | 2008-01-31 | Waters Investments Limited | Compliant-seal check valve |
US7353812B1 (en) | 2007-03-14 | 2008-04-08 | Ford Global Technologies, Llc | Vehicle engine with integral vacuum generator |
US7628170B2 (en) | 2007-09-05 | 2009-12-08 | Emerson Electric Co. | Flow control valve |
CN201109426Y (en) * | 2007-12-04 | 2008-09-03 | 上海汽车制动系统有限公司 | Vacuum enhancement one-way valve |
JP5085348B2 (en) | 2008-01-16 | 2012-11-28 | 株式会社パイオラックス | Valve device |
DE102008057393A1 (en) | 2008-11-14 | 2010-05-20 | Schaeffler Kg | Check valve in cartridge design |
CN201377408Y (en) | 2009-03-31 | 2010-01-06 | 台州职业技术学院 | Combined mufflers for dry vacuum pumps |
US20110186151A1 (en) | 2010-02-04 | 2011-08-04 | Bernard Joseph Sparazynski | Check valve |
US8925520B2 (en) | 2010-03-10 | 2015-01-06 | Ford Global Technologies, Llc | Intake system including vacuum aspirator |
DE102010033091A1 (en) | 2010-08-02 | 2012-02-02 | Schaeffler Technologies Gmbh & Co. Kg | Hydraulic tension compensation element |
CN201907500U (en) | 2010-12-22 | 2011-07-27 | 安徽江淮汽车股份有限公司 | Non-return valve for vehicle |
WO2013025991A2 (en) | 2011-08-17 | 2013-02-21 | Hendrickson Usa, L.L.C. | Vehicle axle vent system |
US9022007B2 (en) | 2012-03-09 | 2015-05-05 | Ford Global Technologies, Llc | Throttle valve system for an engine |
US8783231B2 (en) | 2012-03-12 | 2014-07-22 | Ford Global Technologies, Llc | Venturi for vapor purge |
US9027536B2 (en) | 2012-06-26 | 2015-05-12 | Ford Global Technologies, Llc | Crankcase ventilation and vacuum generation |
US9097149B2 (en) | 2012-07-13 | 2015-08-04 | Ford Global Technologies, Llc | Aspirator for crankcase ventilation and vacuum generation |
US9239034B2 (en) | 2012-09-12 | 2016-01-19 | Ford Global Technologies, Llc | Ejector system for a vehicle |
US9441557B2 (en) | 2012-12-13 | 2016-09-13 | Ford Global Technologies, Llc | Method and system for vacuum generation |
CA2888540A1 (en) | 2013-01-14 | 2014-08-14 | Dayco Ip Holdings, Llc | Piston actuator controlling a valve and method for operating the same |
US9827963B2 (en) * | 2013-06-11 | 2017-11-28 | Dayco Ip Holdings, Llc | Aspirators for producing vacuum using the Venturi effect |
CN203394893U (en) | 2013-07-17 | 2014-01-15 | 温州金业气动科技有限公司 | Vacuum generator |
CN103407441A (en) * | 2013-08-16 | 2013-11-27 | 河北亚大汽车塑料制品有限公司 | Venturi valve and vacuum power assisting device |
US9382882B2 (en) | 2013-10-29 | 2016-07-05 | Ford Global Technologies, Llc | Aspirator motive flow control for vacuum generation and compressor bypass |
-
2015
- 2015-07-10 US US14/796,447 patent/US10626888B2/en active Active
- 2015-07-10 KR KR1020167036352A patent/KR102240986B1/en active Active
- 2015-07-10 WO PCT/US2015/039950 patent/WO2016007861A1/en active Application Filing
- 2015-07-10 EP EP15818552.0A patent/EP3166826A4/en active Pending
- 2015-07-10 CN CN201580000300.2A patent/CN105408177B/en active Active
- 2015-07-10 JP JP2017500969A patent/JP6756699B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2399249A (en) * | 1944-10-24 | 1946-04-30 | Gen Tank Service Inc | Apparatus for the movement of viscous materials |
US2396290A (en) * | 1945-03-01 | 1946-03-12 | Schwarz Sigmund | Sludge pump |
US20040169599A1 (en) * | 1999-12-23 | 2004-09-02 | Urban Mathiasson | Device for reducing the signature of hot exhausting gases |
US6619322B1 (en) * | 2000-07-27 | 2003-09-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Fast-acting valve |
US20060016477A1 (en) * | 2004-07-23 | 2006-01-26 | Algis Zaparackas | Vacuum enhancing check valve |
JP2007327453A (en) * | 2006-06-09 | 2007-12-20 | Advics:Kk | Ejector for negative pressure type booster |
US20080121480A1 (en) * | 2006-11-23 | 2008-05-29 | Aisan Kogyo Kabushiki Kaisha | Ejector and negative pressure supply apparatus for brake booster using the ejector |
US20110123359A1 (en) * | 2009-11-24 | 2011-05-26 | J. Schmalz Gmbh | Pneumatic vacuum generator |
US20130213510A1 (en) * | 2012-02-20 | 2013-08-22 | Nyloncraft Incorporated | High mass flow check valve aspirator |
Non-Patent Citations (1)
Title |
---|
English Translation of JP 2007-327453 obtained 11/29/2017 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016112063A1 (en) * | 2015-01-09 | 2016-07-14 | Dayco Ip Holdings, Llc | Crankcase ventilating evacuator |
US10100720B2 (en) | 2015-01-09 | 2018-10-16 | Dayco Ip Holdings, Llc | Crankcase ventilating evacuator |
US10316864B2 (en) | 2015-04-13 | 2019-06-11 | Dayco Ip Holdings, Llc | Devices for producing vacuum using the venturi effect |
US10422351B2 (en) | 2015-07-17 | 2019-09-24 | Dayco Ip Holdings, Llc | Devices for producing vacuum using the venturi effect having a plurality of subpassageways and motive exits in the motive section |
USD764630S1 (en) * | 2015-08-12 | 2016-08-23 | James T. Sutton | Venturi meter |
US10190455B2 (en) | 2015-10-28 | 2019-01-29 | Dayco Ip Holdings, Llc | Venturi devices resistant to ice formation for producing vacuum from crankcase gases |
US20190323618A1 (en) * | 2018-04-23 | 2019-10-24 | Dayco Ip Holdings, Llc | Check valve insert defining an open position and check valves having same |
CN112020623A (en) * | 2018-04-23 | 2020-12-01 | 戴科知识产权控股有限责任公司 | Check valve insert defining an open position and check valve having a check valve insert |
US11486504B2 (en) * | 2018-04-23 | 2022-11-01 | Dayco Ip Holdings, Llc | Check valve insert defining an open position and check valves having same |
US20230374956A1 (en) * | 2020-09-30 | 2023-11-23 | Norma Germany Gmbh | Vehicle drive comprising vacuum system and ejector |
US12168965B2 (en) * | 2020-09-30 | 2024-12-17 | Norma Germany Gmbh | Vehicle drive comprising vacuum system and ejector |
Also Published As
Publication number | Publication date |
---|---|
JP6756699B2 (en) | 2020-09-16 |
WO2016007861A1 (en) | 2016-01-14 |
BR112017000494A2 (en) | 2018-01-23 |
EP3166826A1 (en) | 2017-05-17 |
JP2017527729A (en) | 2017-09-21 |
EP3166826A4 (en) | 2018-03-28 |
KR102240986B1 (en) | 2021-04-15 |
CN105408177A (en) | 2016-03-16 |
CN105408177B (en) | 2018-02-13 |
US10626888B2 (en) | 2020-04-21 |
KR20170032236A (en) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10626888B2 (en) | Dual Venturi device | |
US10724550B2 (en) | Venturi devices with dual Venturi flow paths | |
US9581258B2 (en) | Check valve with improved sealing member | |
EP3784939B1 (en) | A check valve insert defining an open position and check valves having same | |
US10473235B2 (en) | Bypass check valve and Venturi having same | |
US10190549B2 (en) | Check valves and venturi devices having the same | |
CN109715998B (en) | Venturi device for generating vacuum and system thereof | |
US20160298656A1 (en) | Devices for producing vacuum using the venturi effect | |
CN109311466B (en) | Bypass valve in device for generating vacuum | |
US11614098B2 (en) | Devices for producing vacuum using the Venturi effect having a solid fletch | |
US11408380B2 (en) | Devices for producing vacuum using the Venturi effect having a hollow fletch | |
BR112017000494B1 (en) | VENTURI DEVICE AND SYSTEM COMPRISING A VENTURI DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAYCO IP HOLDINGS, LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FLETCHER, DAVID E.;GRAICHEN, BRIAN M.;HAMPTON, KEITH;SIGNING DATES FROM 20150722 TO 20150727;REEL/FRAME:036546/0276 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ABL AGENT, CONNECTICUT Free format text: SECURITY AGREEMENT;ASSIGNOR:DAYCO IP HOLDINGS, LLC;REEL/FRAME:042523/0397 Effective date: 20170519 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, CONNEC Free format text: SECURITY AGREEMENT;ASSIGNOR:DAYCO IP HOLDINGS, LLC;REEL/FRAME:042554/0222 Effective date: 20170519 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, CONNECTICUT Free format text: SECURITY AGREEMENT;ASSIGNOR:DAYCO IP HOLDINGS, LLC;REEL/FRAME:042554/0222 Effective date: 20170519 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, MASSACHUSETTS Free format text: SECURITY AGREEMENT;ASSIGNORS:DAYCO IP HOLDINGS, LLC;DAYCO, LLC;REEL/FRAME:061575/0692 Effective date: 20220929 |
|
AS | Assignment |
Owner name: DAYCO CANADA CORP, MICHIGAN Free format text: RELEASE (REEL 042523 / FRAME 0397);ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:061603/0972 Effective date: 20221003 Owner name: DAYCO IP HOLDINGS, LLC, MICHIGAN Free format text: RELEASE (REEL 042523 / FRAME 0397);ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:061603/0972 Effective date: 20221003 |
|
AS | Assignment |
Owner name: BLUE TORCH FINANCE LLC, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:DAYCO PRODUCTS, LLC;DAYCO, LLC;DAYCO IP HOLDINGS, LLC;REEL/FRAME:061620/0098 Effective date: 20220929 |
|
AS | Assignment |
Owner name: DAYCO IP HOLDINGS, LLC, MICHIGAN Free format text: RELEASE (REEL 042554 / FRAME 0222);ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:061623/0587 Effective date: 20220929 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: DAYCO, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS AGENT;REEL/FRAME:069066/0236 Effective date: 20240501 Owner name: DAYCO IP HOLDINGS, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS AGENT;REEL/FRAME:069066/0236 Effective date: 20240501 Owner name: DAYCO IP HOLDINGS, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BLUE TORCH FINANCE LLC, AS COLLATERAL AGENT;REEL/FRAME:069066/0171 Effective date: 20240501 Owner name: DAYCO PRODUCTS, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BLUE TORCH FINANCE LLC, AS COLLATERAL AGENT;REEL/FRAME:069066/0171 Effective date: 20240501 |
|
CC | Certificate of correction |