US20150275418A1 - Cool-feeling fiber fabric and method for producing same - Google Patents
Cool-feeling fiber fabric and method for producing same Download PDFInfo
- Publication number
- US20150275418A1 US20150275418A1 US14/438,502 US201214438502A US2015275418A1 US 20150275418 A1 US20150275418 A1 US 20150275418A1 US 201214438502 A US201214438502 A US 201214438502A US 2015275418 A1 US2015275418 A1 US 2015275418A1
- Authority
- US
- United States
- Prior art keywords
- fiber fabric
- cool
- titanium oxide
- feeling
- electromagnetic waves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 148
- 239000000835 fiber Substances 0.000 title claims abstract description 137
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 38
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000010419 fine particle Substances 0.000 claims abstract description 31
- 239000011882 ultra-fine particle Substances 0.000 claims abstract description 30
- 239000002245 particle Substances 0.000 claims abstract description 27
- 239000011230 binding agent Substances 0.000 claims abstract description 24
- 239000011347 resin Substances 0.000 claims abstract description 20
- 229920005989 resin Polymers 0.000 claims abstract description 20
- 239000003795 chemical substances by application Substances 0.000 claims description 30
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 21
- 229910021536 Zeolite Inorganic materials 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 20
- 239000010457 zeolite Substances 0.000 claims description 20
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 19
- 229910052709 silver Inorganic materials 0.000 claims description 19
- 239000004332 silver Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000000975 dye Substances 0.000 description 18
- 238000007747 plating Methods 0.000 description 16
- 229920000297 Rayon Polymers 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- 239000002964 rayon Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 229920000728 polyester Polymers 0.000 description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 230000000844 anti-bacterial effect Effects 0.000 description 10
- 239000000986 disperse dye Substances 0.000 description 10
- 239000000985 reactive dye Substances 0.000 description 10
- -1 wool Polymers 0.000 description 10
- 238000004043 dyeing Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000001877 deodorizing effect Effects 0.000 description 7
- 229920000742 Cotton Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000003385 bacteriostatic effect Effects 0.000 description 5
- 238000004332 deodorization Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000009931 harmful effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241001237037 Dianthus gallicus Species 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 2
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010016334 Feeling hot Diseases 0.000 description 1
- 229920001407 Modal (textile) Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000007603 infrared drying Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/32—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
- D06M11/36—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
- D06M11/46—Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/77—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M23/00—Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
- D06M23/08—Processes in which the treating agent is applied in powder or granular form
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/32—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
- D06M11/36—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
- D06M11/44—Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/263—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/25—Resistance to light or sun, i.e. protection of the textile itself as well as UV shielding materials or treatment compositions therefor; Anti-yellowing treatments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/259—Coating or impregnation provides protection from radiation [e.g., U.V., visible light, I.R., micscheme-change-itemave, high energy particle, etc.] or heat retention thru radiation absorption
- Y10T442/2598—Radiation reflective
Definitions
- the present invention relates to a cool-feeling fiber fabric that achieves effective diffuse reflection of ultraviolet and infrared rays of sunlight to inhibit entry of heat from the outside, and a method for producing the same.
- Patent Document 1 Japanese Patent Laid-open Publication No. 2000-80319
- Patent Document 2 WO 2009/118419
- a fiber material to be used and a dye for dyeing the fiber material need to be selected in accordance with the fiber composition.
- highly complex and burdensome steps are required, such as two bath dyeing or three bath dyeing.
- variation of quality may occur depending on the concentration of a dye used.
- a lightly-colored or white fiber fabric i.e. a fiber fabric with little amount of a dye required is obviously poorer in the heat shielding effect, although cloth which is dyed in a high concentration, i.e. a so-called deeply-colored fiber fabric may be higher in the effect.
- An object of the present invention is to provide a cool-feeling fiber fabric that gives excellent refreshing feeling by suppressing absorption of ultraviolet and infrared rays of sunlight while attaining efficient diffuse reflection in all color tone (white-light color-medium color-deep color) and chroma (red-blue-yellow-green), the fiber fabric being applicable to a number of materials such as cotton, polyester, wool, nylon and rayon.
- Another object of the present invention is to provide a cool-feeling fiber fabric having antibacterial and deodorizing performance, and a method for producing the fiber fabric.
- the present invention provides a cool-feeling fiber fabric having ultrafine particles to reflect electromagnetic waves in an ultraviolet wavelength region, fine particles to reflect electromagnetic waves in an infrared region, and a binder resin, wherein the ultrafine particles and the fine particles are firmly adhered to the fiber fabric with the binder resin.
- the ultrafine particles to reflect electromagnetic waves in an ultraviolet wavelength region have a particle diameter of 150 to 200 nm
- the fine particles to reflect electromagnetic waves in an infrared region have a particle diameter of 1 to 5 ⁇ m.
- the ultrafine particles and the fine particles are preferably titanium oxide.
- a mixture of the ultrafine particles of titanium oxide and the fine particles of titanium oxide is adhered to the fiber fabric in a ratio of 5 to 10% owf based on the weight of the fiber fabric; silver zeolite is adhered to the fiber fabric in a ratio of 0.03 to 1% owf based on the weight of the fiber fabric; and the binder resin is adhered to the fiber fabric in a ratio of 3 to 5% owf based on the weight of the fiber fabric.
- a cool-feeling fiber fabric having not only refreshing feeling but also antibacterial and deodorizing performance.
- the present invention also provides a method for producing a cool-feeling fiber fabric, the method including the steps of preparing a finishing agent treatment liquid containing a mixture of ultrafine particles of titanium oxide to reflect electromagnetic waves in an ultraviolet wavelength region and fine particles of titanium oxide to reflect electromagnetic waves in an infrared region, silver zeolite, and a binder resin; immersing a fiber fabric in the prepared finishing agent treatment liquid; thermally drying the fiber fabric;
- the mixture of the ultrafine particles to reflect electromagnetic waves of sunlight in an ultraviolet region, which are harmful to the human skin or the like, and the fine particles to reflect electromagnetic waves in an infrared wavelength region, which is called heat ray area, is firmly adhered to the fiber fabric with the binder resin.
- the invention attains efficient diffuse reflection of ultraviolet rays and infrared rays to block the rays, so that the temperature rise can be suppressed.
- the invention uses ultrafine particles having a particle diameter of 150 to 200 nm and fine particles having a particle diameter of 1 to 5 ⁇ m, so that the electromagnetic waves in the ultraviolet region and the electromagnetic waves in the infrared region can be reflected most effectively.
- the resulting cool-feeling fiber fabric has highly excellent shielding property and therefore can be used for various articles of clothing.
- the ultrafine particles and the fine particles are titanium oxide, sufficient sunlight shielding can be achieved.
- the amounts of the components, i.e. the titanium oxide mixture, the silver zeolite, and the acrylic resin binder, each adhered to the fiber fabric are 5 to 10% owf, 0.03 to 1% owf, and 3 to 5% owf, respectively, and the amounts are critically specified.
- the components are interrelated one another to reflect ultraviolet and infrared rays, while exerting deodorizing and antibacterial effects over a long period of time, and additionally the infrared reflection and radiation effects allow for reflection of human body-derived far infrared heat in winter, which is effective at increasing the temperature inside clothes.
- the method for producing a cool-feeling fiber fabric of the present invention includes the steps of preparing a finishing agent treatment liquid containing a mixture of ultrafine particles of titanium oxide to reflect electromagnetic waves in an ultraviolet wavelength region and fine particles of titanium oxide to reflect electromagnetic waves in an infrared region, silver zeolite, and a binder resin; immersing a fiber fabric in the prepared finishing agent treatment liquid; thermally drying the fiber fabric; and subjecting the fiber fabric to a heat treatment to allow the titanium oxide mixture and the silver zeolite to be firmly adhered to the fiber fabric.
- the fine particles with a particle diameter of 1 to 5 ⁇ m and the ultrafine particles with a particle diameter of 150 to 200 nm can be evenly and uniformly adhered to the fiber fabric, and by thermal drying, the ultrafine particles and the fine particles are more firmly adhered to each other, so that a cool-feeling fiber fabric which is improved in durability of the shielding effect can be easily obtained.
- FIG. 1 is a view showing electromagnetic wave analysis of sunlight.
- FIG. 2 is a simplified lateral view of an apparatus for measurement of infrared heat shielding effectiveness.
- FIG. 3 is a simplified front view showing another example of an apparatus for measurement of infrared heat shielding effectiveness.
- the sunlight energy is composed of about 50% infrared rays, 47% visible light rays, and finally 3% ultraviolet rays. It is said that the electromagnetic waves in the infrared wavelength region are particularly related to heat, while the electromagnetic waves in the visible light or ultraviolet wavelength regions are not involved in heat.
- the cool-feeling fiber fabric according to the embodiment suppresses absorption of the radiant rays (infrared rays) of sunlight while attaining efficient reflection of such rays.
- the electromagnetic waves of sunlight are classified into radiant rays, X rays, ultraviolet rays, visible light rays, infrared rays, microwaves, and radio waves, etc.
- the electromagnetic waves in the ultraviolet region which are harmful to the human skin etc.
- the electromagnetic waves in the infrared wavelength region which is called heat ray area
- the cool-feeling fiber fabric uses titanium oxide in the form of mixture of ultrafine particles and fine particles, and thus allows for efficient diffuse reflection of ultraviolet rays and infrared rays.
- the inventors Based on an inference from the relation between particle diameter and optical property, the inventors have found that the infrared shielding effect and the ultraviolet shielding effect are obtained by the application of MIE scattering theory such that particles having a diameter which is about half of a wavelength of light (electromagnetic waves) can most efficiently cause diffuse reflection of electromagnetic waves having such a wavelength.
- the particles for shielding against ultraviolet rays be ultrafine particles of titanium oxide with a particle diameter of 150 to 200 nm, and the particles for shielding against infrared rays be fine particles of titanium oxide with a particle diameter of 1 to 5 ⁇ m.
- the particle diameter is 150 nm or smaller, such particles have considerably decreased dispersibility in a liquid due to increased cohesive force, and are deteriorated in ability to reflect light of the electromagnetic wave group in the ultraviolet wavelength region, thus being unsuitable.
- the particle diameter is larger than 200 nm, the electromagnetic waves reflected by such particles are those with wavelengths of the visible light region, so that the light reflectivity of the particles is reduced. Accordingly, the suitable particle diameter is 150 to 200 nm as mentioned above.
- the particle diameter of the titanium oxide is larger than 5 ⁇ m, the resulting finished fiber fabric has a coarse texture and rough feeling, which is undesirable. Additionally, from the viewpoint of the resistance to laundry, excessively large particle size causes the titanium oxide to be detached from the fiber fabric due to external pressure or other physical actions, resulting in loss of effectiveness. Therefore, the particle diameters of the titanium oxide are suitably in the range of 150 to 200 nm and the range of 1 to 5 ⁇ m as mentioned above.
- titanium oxide examples include those of three types with different crystal structures, that is, rutile type (tetragonal high-temperature type), anatase type (tetragonal low-temperature type), and brookite type (orthorhombic type).
- rutile type tetragonal high-temperature type
- anatase type tetragonal low-temperature type
- brookite type orthorhombic type
- the titanium oxide of rutile type is used because it is most stable from the physical and chemical viewpoints.
- the ratio between the ultrafine particles and the fine particles in the mixture is suitably in the range of 30:70 to 35:65. When the ratio is outside this range, it is unsuitable because the ultraviolet and infrared shielding factors are decreased.
- the amount of the titanium oxide adhered to the fiber fabric is suitably 5 to 10% owf.
- the present invention targets the group of the electromagnetic waves with wavelengths of 290 to 320 nm, called ultraviolet B, and those with wavelengths of 320 to 380 nm, called ultraviolet A.
- ultraviolet B the group of the electromagnetic waves with wavelengths of 290 to 320 nm
- ultraviolet A the group of the electromagnetic waves with wavelengths of 320 to 380 nm
- infrared rays it is said that there is a deep relation between the near infrared rays with wavelengths of 780 to 1100 nm and organisms.
- the electromagnetic wave group in a wavelength region of 4 to 14 ⁇ m, which is said to be a wavelength region for organic growing, and the electromagnetic wave group having heat energy in total are diffusely reflected.
- fiber fabric used in the present invention it is possible to use natural fibers such as cotton, hemp, silk, and wool; regenerated fibers such as rayon, cupra, and polynosic fibers; semi-synthetic fibers such as acetate, triacetate, and promix fibers; and synthetic fibers such as nylon, polyester, acryl, polyurethane, polypropylene, and polyvinyl chloride fibers, depending on the type of binder resin used.
- natural fibers such as cotton, hemp, silk, and wool
- regenerated fibers such as rayon, cupra, and polynosic fibers
- semi-synthetic fibers such as acetate, triacetate, and promix fibers
- synthetic fibers such as nylon, polyester, acryl, polyurethane, polypropylene, and polyvinyl chloride fibers, depending on the type of binder resin used.
- the binder resin for use in the cool-feeling fiber fabric according to the embodiment may be any of water-resistant resins. Examples thereof may include acrylic resins, urethane resins, vinylon chloride resins, and vinyl acetate resins. Any of binder resins which provide high film strength and adhesiveness may be used.
- the binder resin is preferably incorporated in an amount of 30 to 50 g/L.
- the amount of the binder adhered to the fiber fabric is suitably 3 to 5% owf.
- the silver zeolite for use in the cool-feeling fiber fabric according to the embodiment is in the form of fine particles in which silver is deposited, through ion exchange, on zeolite which is porous aluminosilicate including an alkali or alkaline earth element.
- the silver zeolite exerts deodorizing effects by attracting odor components into fine pores of zeolite and decomposing the odor components through neutralization in the fine pores by ion exchange.
- the amount of the silver zeolite adhered to the fiber fabric is suitably 0.03 to 1% owf.
- the measurement was carried out by Unitika Garments Technology & Research Laboratories Ltd. as a public inspection organization, using a measurement apparatus UV-3100PC available from Shimadzu Corporation, and Integrating Sphere Attachment ISR-3100 for measuring the amount of light, with an integrating sphere having an inner diameter of 60 mm.
- the measurement wavelength range was 780 nm to 10 ⁇ m.
- a standard white board of barium sulfate was used.
- a heat insulation board 1 (styrene foam) with a size of 8 ⁇ 8 ⁇ 0.7 cm was provided with a hole 2 , and a fiber fabric sample 3 was attached on one side of the board, while a black body (black sheet) 4 was attached on the back side thereof with thickness t (0.7 cm).
- An infrared lamp 5 was used to irradiate the front surface side of the fiber fabric sample 3 with light.
- thermograph 6 the surface temperature of the black body 4 on the back side was measured over time with using a thermograph 6 so that the maximum temperature in the temperature difference of the average temperature of the fiber fabric on the front surface side of the hole could be plotted as thermographic measurements.
- the irradiation time of the infrared lamp 5 was 8 minutes in Example 1, and 5 minutes in Examples 2 to 4.
- the distance between the infrared lamp 5 and the fiber fabric sample 3 was about 50 cm, and the infrared lamp used was Infrared drying light bulb (IR100V250WRHE) produced from Toshiba Lighting & Technology Corporation, with a voltage of 90 V applied.
- Infrared drying light bulb IR100V250WRHE
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 7 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 3.5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 89.4 L of water.
- the prepared liquid is fed into a finishing bath.
- a plating jersey stitch fiber fabric made of 55% polyester and 45% rayon is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes.
- the resultant is further subjected to a heat treatment at 140° C.
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 10 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 84.9 L of water.
- the prepared liquid is fed into a finishing bath.
- a plating jersey stitch fiber fabric made of 55% polyester and 45% rayon is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes.
- the resultant is further subjected to a heat treatment at 140° C.
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 7 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 3.5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 89.4 L of water.
- the prepared liquid is fed into a finishing bath.
- Each of white, gray and navy-blue hard twist rib stitch fiber fabrics made of 44% cotton, 39% rayon and 17% polyester is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes.
- the resultant is further subjected to a heat treatment at 140° C. for 2 minutes, so that the finishing agent components are firmly adhered to the fiber fabric.
- a cool-feeling fiber fabric was obtained.
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 7 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 3.5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 89.4 L of water.
- the prepared liquid is fed into a finishing bath.
- a beige drop-needle stitch fiber fabric made of 55% polyester and 45% rayon is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes.
- the resultant is further subjected to a heat treatment at 140° C. for 2 minutes, so that the finishing agent components are firmly adhered to the fiber fabric.
- a cool-feeling fiber fabric was obtained.
- a heat-shielding special dye-based disperse dye and a reactive dye were used to dye a plating jersey stitch fiber fabric made of 55% polyester and 45% rayon, so that the fiber fabric was dyed with black in the same color tone as that in Example 1, while a regular disperse dye and a regular reactive dye, each of common type, were used for dyeing of the fiber fabric to obtain a black fiber fabric in the same tone as above.
- a heat-shielding special dye-based disperse dye and a reactive dye were used to dye a rib stitch fiber fabric made of 55% polyester and 45% rayon, so that the fiber fabric was dyed with black in the same color tone as that in Example 1, while a regular disperse dye and a regular reactive dye, each of common type, were used for dyeing of the fiber fabric to obtain a black fiber fabric in the same tone as above.
- a heat-shielding special dye-based disperse dye and a reactive dye were used to dye a drop-needle stitch fiber fabric made of 55% polyester and 45% rayon, so that the fiber fabric was dyed with black in the same color tone as that in Example 1, while a regular disperse dye and a regular reactive dye, each of common type, were used for dyeing of the fiber fabric to obtain a black fiber fabric in the same tone as above.
- a heat-shielding special dye-based disperse dye and a reactive dye were used to dye a plating jersey stitch fiber fabric made of 55% polyester and 45% rayon, so that the fiber fabric was dyed with pink in the same color tone as that in Example 2, while a regular disperse dye and a regular reactive dye, each of common type, were used for dyeing of the fiber fabric to obtain a pink fiber fabric in the same tone as above.
- a heat-shielding special dye-based disperse dye and a reactive dye were used to dye hard twist rib stitch fiber fabrics made of 44% cotton, 39% rayon and 17% polyester, so that the fiber fabrics were dyed with gray and pink, respectively, in the same color tone as those in Example 3, while a regular disperse dye and a regular reactive dye, each of common type, were used for dyeing of the fiber fabrics to obtain gray and pink fiber fabrics in the same tone as above.
- Example 1 Plating jersey White 49.5° C. 51.3° C. 1.8° C. ⁇ stitch Black 45.0° C. 47.6° C. 2.6° C. ⁇ Rib stitch White 44.2° C. 45.8° C. 1.6° C. ⁇
- Example 2 Plating jersey Pink 35.8° C. 38.5° C. 2.7° C. ⁇ stitch Black 36.0° C. 38.5° C. 2.5° C. ⁇ Rib stitch White 37.1° C. 39.0° C. 1.9° C. ⁇
- Example 3 Hard twist rib White 34.0° C. 35.4° C. 1.4° C. ⁇ stitch Gray 37.7° C. 38.9° C. 1.2° C.
- the evaluation criteria are as follows:
- ultraviolet shielding effectiveness was measured in Examples 5 and 6.
- the measurement was carried out in the same manner as the infrared measurement described above, except that an ultraviolet lamp was used as a light source, and the measurement wavelength range was changed to a range of 280 nm to 380 nm. The results are shown in Table 2.
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 7 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 3.5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 89.4 L of water.
- the prepared liquid is fed into a finishing bath.
- a white hard twist rib stitch fiber fabric made of 44% cotton, 39% rayon and 17% polyester is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes.
- the resultant is further subjected to a heat treatment at 140° C. for 2 minutes, so that the finishing agent components are firmly adhered to the fiber fabric.
- a cool-feeling fiber fabric was obtained.
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 7 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 3.5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 89.4 L of water.
- the prepared liquid is fed into a finishing bath.
- a white plating jersey stitch fiber fabric made of 55% polyester and 45% rayon is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes.
- the resultant is further subjected to a heat treatment at 140° C. for 2 minutes, so that the finishing agent components are firmly adhered to the fiber fabric.
- a cool-feeling fiber fabric was obtained.
- the evaluation criteria are as follows:
- a fabric having a shielding factor of 90% or more is ranked in the group of excellent shielding factor (rank A). It is observed that the fabric originally having an excellent shielding factor is even further improved in the shielding factor. In view of this, if the present invention is applied to a fabric having a shielding factor of 80 to 90% which is in the group of good shielding factor (rank B) or a fabric having a shielding factor of 50 to 80% which is in a general level (rank C), the shielding factor-improving effect may be further enhanced.
- FIG. 3 shows an apparatus for measuring fiber fabric temperatures by irradiating an underwear fiber fabric with infrared rays allowed to pass through it.
- three heat insulation boards 11 , 11 and 11 are disposed at a prescribed interval, and horizontally-elongated heat insulation boards 12 , 12 and 12 are provided on the upper end of the boards 11 .
- a temperature sensor 14 is placed at a space 13 which is surrounded by the heat insulation boards 11 and 12 .
- a finished fabric 15 and an unfinished fabric 16 are placed, which fabrics are covered with a commercially available broadcloth shirt 17 , and subjected to infrared-ray irradiation for 20 minutes with an infrared lamp 18 located above the shirt, so that the temperatures of the fiber fabrics through which infrared rays have passed are measured by the temperature sensors 14 positioned about 5-mm directly below the finished fiber fabric 15 or the unfinished fiber fabric 16 .
- This aims at measuring the difference in temperature in a condition close to a state where the fiber fabric is used as underwear.
- Table 3 shows the results of the test. In the test, the outside air temperature (room temperature) is 27.4° C.
- Table 4 shows the results of evaluations of antibacterial activity and deodorizing performance in Examples 1 to 6.
- the antibacterial test was carried out by Daiwa Chemical Industries Co., Ltd., and the deodorization test was carried out by Boken Quality Evaluation Institute.
- the antibacterial evaluation was performed according to Testing for antibacterial activity, Bacterial culture absorption method (based on JIS L 1902). In this table, the criteria are as follows:
- the bacteriostatic activity value can be calculated by the following formula:
- Mb is the average of common logarithm of viable cell count obtained after incubation for 18 hours on the unfinished fabric
- Ma is the average of common logarithm of viable cell count obtained immediately after inoculation of testing bacteria on the unfinished fabric
- Mc is the average of common logarithm of viable cell count obtained after incubation for 18 hours on the antibacterial finished fabric.
- Mo is the average of common logarithm of viable cell count obtained immediately after inoculation of testing bacteria on the antibacterial finished fabric.
- the deodorizing efficacy evaluation was performed according to a deodorizing performance test, JAFET standard detergent method, by instrumental analysis and assessment.
- the criteria are as follows:
- the deodorization rate (decrease rate) can be calculated by the following formulae.
- Ammonia/Acetic acid Decrease rate (%) ⁇ ( A ⁇ B )/ A ⁇ 100
- Isovaleric acid Decrease rate (%) ⁇ ( C ⁇ D )/ C ⁇ 100
- the cool-feeling fiber fabric according to the present invention is advantageously applicable not only to clothing such as shirts, blouses and dresses, but also to apparel accessories such as hats, gloves and stockings, interior goods such as curtains, lace and blinds, and industrial materials such as sailcloth, cheesecloth and industrial sheets.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
The present invention provides a cool-feeling fiber fabric having ultrafine particles of titanium oxide with a particle diameter of 150 to 200 nm to reflect electromagnetic waves in an ultraviolet wavelength region, fine particles of titanium oxide with a particle diameter of 1 to 5 μm to reflect electromagnetic waves in an infrared region, and a binder resin, wherein the ultrafine particles and the fine particles are firmly adhered to the fiber fabric with the binder resin.
Description
- The present invention relates to a cool-feeling fiber fabric that achieves effective diffuse reflection of ultraviolet and infrared rays of sunlight to inhibit entry of heat from the outside, and a method for producing the same.
- In recent years, there have been increased natural disasters caused by abnormal climate associated with the rise in atmospheric temperature or seawater temperature due to global warming impact, which leads to growing concerns about environmental destruction and harmful effects on the ecosystem. Especially, since the nuclear power plant accident due to the earthquake and tsunami causes shutdown of a plurality of nuclear power plants to incur power shortages, so that the energy problems have developed into a major social issue. Due to such electrical affairs, power-saving measures have been considered to be a top priority. For such measures, some campaigns have been advanced, such as encouragement of shortening of air-conditioner running time or wearing lighter clothes during working hours to reduce use of air conditioners in summer (so-called “Cool Biz”), and promotion of reducing use of air conditioners at homes for controlling temperatures by clothes to be worn (so-called “Home Eco”).
- Conventionally, it is known that in the housing-related fields, cooling effects are provided by shielding against heat energy from sunlight with use of heat-shielding roofs, heat-shielding walls, heat-shielding sheets, heat-shielding curtains or the like. On the other hand, in the field of clothing, there are proposed various methods of producing a fiber fabric with refreshing feeling. For example, there are known a method in which a fiber with high water absorptivity such as rayon or cotton is employed on the skin side of clothing to let the sweat from human body out of the clothing; and a method in which a fiber with high heat conductivity is employed on the skin side, or a resin containing a substance with high heat conductivity is printed on the back surface of a fiber fabric, so that the body heat is removed and released out of the body. However, feeling hot in summer is mainly attributed to the rise in temperature caused by absorption of sunlight by clothes or human bodies. Therefore the methods as described above cannot achieve good refreshing feeling.
- As another method for providing a heat shielding effect on clothing, there has been proposed a method in which a dye for dyeing clothing fibers itself is provided with a heat shielding effect to improve a heat shielding property of the clothing made of a material colored with the dye (see, for example, Patent Documents 1 and 2).
- Patent Document 1: Japanese Patent Laid-open Publication No. 2000-80319
- Patent Document 2: WO 2009/118419
- However, in the case where the dye itself is provided with a heat shielding effect, a fiber material to be used and a dye for dyeing the fiber material need to be selected in accordance with the fiber composition. Especially, there is a problem that, when a wide variety of materials are used, highly complex and burdensome steps are required, such as two bath dyeing or three bath dyeing. Further, variation of quality may occur depending on the concentration of a dye used. It is problematic that a lightly-colored or white fiber fabric, i.e. a fiber fabric with little amount of a dye required is obviously poorer in the heat shielding effect, although cloth which is dyed in a high concentration, i.e. a so-called deeply-colored fiber fabric may be higher in the effect.
- For the present invention, research and development has been made in the aim of solving the problems as described above. An object of the present invention is to provide a cool-feeling fiber fabric that gives excellent refreshing feeling by suppressing absorption of ultraviolet and infrared rays of sunlight while attaining efficient diffuse reflection in all color tone (white-light color-medium color-deep color) and chroma (red-blue-yellow-green), the fiber fabric being applicable to a number of materials such as cotton, polyester, wool, nylon and rayon. Another object of the present invention is to provide a cool-feeling fiber fabric having antibacterial and deodorizing performance, and a method for producing the fiber fabric.
- In the aim of solving the problems and achieving the above objects, the present invention provides a cool-feeling fiber fabric having ultrafine particles to reflect electromagnetic waves in an ultraviolet wavelength region, fine particles to reflect electromagnetic waves in an infrared region, and a binder resin, wherein the ultrafine particles and the fine particles are firmly adhered to the fiber fabric with the binder resin. Preferably, the ultrafine particles to reflect electromagnetic waves in an ultraviolet wavelength region have a particle diameter of 150 to 200 nm, and the fine particles to reflect electromagnetic waves in an infrared region have a particle diameter of 1 to 5 μm.
- The ultrafine particles and the fine particles are preferably titanium oxide.
- According to the above, there is achieved a cool-feeling fiber fabric that gives excellent refreshing feeling by suppressing absorption of ultraviolet and infrared rays of sunlight with efficient diffuse reflection of the rays.
- In addition, preferably a mixture of the ultrafine particles of titanium oxide and the fine particles of titanium oxide is adhered to the fiber fabric in a ratio of 5 to 10% owf based on the weight of the fiber fabric; silver zeolite is adhered to the fiber fabric in a ratio of 0.03 to 1% owf based on the weight of the fiber fabric; and the binder resin is adhered to the fiber fabric in a ratio of 3 to 5% owf based on the weight of the fiber fabric.
- According to the above, there is provided a cool-feeling fiber fabric having not only refreshing feeling but also antibacterial and deodorizing performance.
- Further, the present invention also provides a method for producing a cool-feeling fiber fabric, the method including the steps of preparing a finishing agent treatment liquid containing a mixture of ultrafine particles of titanium oxide to reflect electromagnetic waves in an ultraviolet wavelength region and fine particles of titanium oxide to reflect electromagnetic waves in an infrared region, silver zeolite, and a binder resin; immersing a fiber fabric in the prepared finishing agent treatment liquid; thermally drying the fiber fabric;
- and subjecting the fiber fabric to a heat treatment to allow the titanium oxide mixture and the silver zeolite to be firmly adhered to the fiber fabric.
- In the present invention, the mixture of the ultrafine particles to reflect electromagnetic waves of sunlight in an ultraviolet region, which are harmful to the human skin or the like, and the fine particles to reflect electromagnetic waves in an infrared wavelength region, which is called heat ray area, is firmly adhered to the fiber fabric with the binder resin. Thus, the invention attains efficient diffuse reflection of ultraviolet rays and infrared rays to block the rays, so that the temperature rise can be suppressed.
- The invention uses ultrafine particles having a particle diameter of 150 to 200 nm and fine particles having a particle diameter of 1 to 5 μm, so that the electromagnetic waves in the ultraviolet region and the electromagnetic waves in the infrared region can be reflected most effectively. Thus, the resulting cool-feeling fiber fabric has highly excellent shielding property and therefore can be used for various articles of clothing. Additionally, since the ultrafine particles and the fine particles are titanium oxide, sufficient sunlight shielding can be achieved. In the invention, the amounts of the components, i.e. the titanium oxide mixture, the silver zeolite, and the acrylic resin binder, each adhered to the fiber fabric, are 5 to 10% owf, 0.03 to 1% owf, and 3 to 5% owf, respectively, and the amounts are critically specified. Accordingly, the components are interrelated one another to reflect ultraviolet and infrared rays, while exerting deodorizing and antibacterial effects over a long period of time, and additionally the infrared reflection and radiation effects allow for reflection of human body-derived far infrared heat in winter, which is effective at increasing the temperature inside clothes.
- The method for producing a cool-feeling fiber fabric of the present invention includes the steps of preparing a finishing agent treatment liquid containing a mixture of ultrafine particles of titanium oxide to reflect electromagnetic waves in an ultraviolet wavelength region and fine particles of titanium oxide to reflect electromagnetic waves in an infrared region, silver zeolite, and a binder resin; immersing a fiber fabric in the prepared finishing agent treatment liquid; thermally drying the fiber fabric; and subjecting the fiber fabric to a heat treatment to allow the titanium oxide mixture and the silver zeolite to be firmly adhered to the fiber fabric. Thus, by immersing the fiber fabric in the finishing treatment liquid containing the ultrafine particles and the fine particles, the fine particles with a particle diameter of 1 to 5 μm and the ultrafine particles with a particle diameter of 150 to 200 nm can be evenly and uniformly adhered to the fiber fabric, and by thermal drying, the ultrafine particles and the fine particles are more firmly adhered to each other, so that a cool-feeling fiber fabric which is improved in durability of the shielding effect can be easily obtained.
-
FIG. 1 is a view showing electromagnetic wave analysis of sunlight. -
FIG. 2 is a simplified lateral view of an apparatus for measurement of infrared heat shielding effectiveness. -
FIG. 3 is a simplified front view showing another example of an apparatus for measurement of infrared heat shielding effectiveness. - The following will describe embodiments of the cool-feeling fiber fabric according to the present invention and the production method therefor.
- The sunlight energy is composed of about 50% infrared rays, 47% visible light rays, and finally 3% ultraviolet rays. It is said that the electromagnetic waves in the infrared wavelength region are particularly related to heat, while the electromagnetic waves in the visible light or ultraviolet wavelength regions are not involved in heat. The cool-feeling fiber fabric according to the embodiment suppresses absorption of the radiant rays (infrared rays) of sunlight while attaining efficient reflection of such rays.
- Based on analysis of wavelength regions, the electromagnetic waves of sunlight are classified into radiant rays, X rays, ultraviolet rays, visible light rays, infrared rays, microwaves, and radio waves, etc. For the electromagnetic waves in the ultraviolet region, which are harmful to the human skin etc., and the electromagnetic waves in the infrared wavelength region, which is called heat ray area, the cool-feeling fiber fabric uses titanium oxide in the form of mixture of ultrafine particles and fine particles, and thus allows for efficient diffuse reflection of ultraviolet rays and infrared rays.
- Based on an inference from the relation between particle diameter and optical property, the inventors have found that the infrared shielding effect and the ultraviolet shielding effect are obtained by the application of MIE scattering theory such that particles having a diameter which is about half of a wavelength of light (electromagnetic waves) can most efficiently cause diffuse reflection of electromagnetic waves having such a wavelength.
- Particles having an extremely small size as compared to the wavelength of the target electromagnetic wave group cause scattering of the Rayleigh scattering region and thus will be very poor in light scattering effect, while particles having an extremely large size cause scattering of the geometric region and thus will also be very poor in the scattering effect. Accordingly, it is desirable that the particles for shielding against ultraviolet rays be ultrafine particles of titanium oxide with a particle diameter of 150 to 200 nm, and the particles for shielding against infrared rays be fine particles of titanium oxide with a particle diameter of 1 to 5 μm. When the particle diameter is 150 nm or smaller, such particles have considerably decreased dispersibility in a liquid due to increased cohesive force, and are deteriorated in ability to reflect light of the electromagnetic wave group in the ultraviolet wavelength region, thus being unsuitable. When the particle diameter is larger than 200 nm, the electromagnetic waves reflected by such particles are those with wavelengths of the visible light region, so that the light reflectivity of the particles is reduced. Accordingly, the suitable particle diameter is 150 to 200 nm as mentioned above.
- When the particle diameter of the titanium oxide is larger than 5 μm, the resulting finished fiber fabric has a coarse texture and rough feeling, which is undesirable. Additionally, from the viewpoint of the resistance to laundry, excessively large particle size causes the titanium oxide to be detached from the fiber fabric due to external pressure or other physical actions, resulting in loss of effectiveness. Therefore, the particle diameters of the titanium oxide are suitably in the range of 150 to 200 nm and the range of 1 to 5 μm as mentioned above.
- Examples of the titanium oxide include those of three types with different crystal structures, that is, rutile type (tetragonal high-temperature type), anatase type (tetragonal low-temperature type), and brookite type (orthorhombic type). Optimally, the titanium oxide of rutile type is used because it is most stable from the physical and chemical viewpoints. The ratio between the ultrafine particles and the fine particles in the mixture is suitably in the range of 30:70 to 35:65. When the ratio is outside this range, it is unsuitable because the ultraviolet and infrared shielding factors are decreased.
- The amount of the titanium oxide adhered to the fiber fabric is suitably 5 to 10% owf.
- Among ultraviolet rays, those called ultraviolet C with wavelengths of 200 to 290 nm rarely reach the earth surface because they are blocked or absorbed by the ozone layer in the upper atmosphere of the earth. Thus, the present invention targets the group of the electromagnetic waves with wavelengths of 290 to 320 nm, called ultraviolet B, and those with wavelengths of 320 to 380 nm, called ultraviolet A. With regard to infrared rays, it is said that there is a deep relation between the near infrared rays with wavelengths of 780 to 1100 nm and organisms. The electromagnetic wave group in a wavelength region of 4 to 14 μm, which is said to be a wavelength region for organic growing, and the electromagnetic wave group having heat energy in total are diffusely reflected.
- For the fiber fabric used in the present invention, it is possible to use natural fibers such as cotton, hemp, silk, and wool; regenerated fibers such as rayon, cupra, and polynosic fibers; semi-synthetic fibers such as acetate, triacetate, and promix fibers; and synthetic fibers such as nylon, polyester, acryl, polyurethane, polypropylene, and polyvinyl chloride fibers, depending on the type of binder resin used.
- The binder resin for use in the cool-feeling fiber fabric according to the embodiment may be any of water-resistant resins. Examples thereof may include acrylic resins, urethane resins, vinylon chloride resins, and vinyl acetate resins. Any of binder resins which provide high film strength and adhesiveness may be used. The binder resin is preferably incorporated in an amount of 30 to 50 g/L. The amount of the binder adhered to the fiber fabric is suitably 3 to 5% owf.
- The silver zeolite for use in the cool-feeling fiber fabric according to the embodiment is in the form of fine particles in which silver is deposited, through ion exchange, on zeolite which is porous aluminosilicate including an alkali or alkaline earth element. The silver zeolite exerts deodorizing effects by attracting odor components into fine pores of zeolite and decomposing the odor components through neutralization in the fine pores by ion exchange. The amount of the silver zeolite adhered to the fiber fabric is suitably 0.03 to 1% owf.
- Hereinafter, the present invention will be described in more detail by way of examples. Measurement of infrared shielding of the fiber fabrics in Examples 1 to 4 and Comparative Examples 1 to 5 was performed in the following manner.
- The measurement was carried out by Unitika Garments Technology & Research Laboratories Ltd. as a public inspection organization, using a measurement apparatus UV-3100PC available from Shimadzu Corporation, and Integrating Sphere Attachment ISR-3100 for measuring the amount of light, with an integrating sphere having an inner diameter of 60 mm. The measurement wavelength range was 780 nm to 10 μm. A standard white board of barium sulfate was used.
- In the measurement apparatus, as shown in
FIG. 2 , a heat insulation board 1 (styrene foam) with a size of 8×8×0.7 cm was provided with ahole 2, and afiber fabric sample 3 was attached on one side of the board, while a black body (black sheet) 4 was attached on the back side thereof with thickness t (0.7 cm). Aninfrared lamp 5 was used to irradiate the front surface side of thefiber fabric sample 3 with light. - In this case, the surface temperature of the
black body 4 on the back side was measured over time with using athermograph 6 so that the maximum temperature in the temperature difference of the average temperature of the fiber fabric on the front surface side of the hole could be plotted as thermographic measurements. The irradiation time of theinfrared lamp 5 was 8 minutes in Example 1, and 5 minutes in Examples 2 to 4. - In the measurement apparatus, the distance between the
infrared lamp 5 and thefiber fabric sample 3 was about 50 cm, and the infrared lamp used was Infrared drying light bulb (IR100V250WRHE) produced from Toshiba Lighting & Technology Corporation, with a voltage of 90 V applied. - One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 7 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 3.5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 89.4 L of water. The prepared liquid is fed into a finishing bath. A plating jersey stitch fiber fabric made of 55% polyester and 45% rayon is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes. The resultant is further subjected to a heat treatment at 140° C. for 2 minutes, so that the finishing agent components are firmly adhered to the fiber fabric. Thus, a cool-feeling fiber fabric was obtained. White and black plating jersey stitch fiber fabrics, and a white rib stitch fiber fabric of the same composition were subjected to the finishing.
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 10 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 84.9 L of water. The prepared liquid is fed into a finishing bath. A plating jersey stitch fiber fabric made of 55% polyester and 45% rayon is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes. The resultant is further subjected to a heat treatment at 140° C. for 2 minutes, so that the finishing agent components are firmly adhered to the fiber fabric. Thus, a cool-feeling fiber fabric was obtained. Pink and black plating jersey stitch fiber fabrics, and a white rib stitch fiber fabric of the same composition were subjected to the finishing.
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 7 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 3.5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 89.4 L of water. The prepared liquid is fed into a finishing bath. Each of white, gray and navy-blue hard twist rib stitch fiber fabrics made of 44% cotton, 39% rayon and 17% polyester is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes. The resultant is further subjected to a heat treatment at 140° C. for 2 minutes, so that the finishing agent components are firmly adhered to the fiber fabric. Thus, a cool-feeling fiber fabric was obtained.
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 7 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 3.5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 89.4 L of water. The prepared liquid is fed into a finishing bath. A beige drop-needle stitch fiber fabric made of 55% polyester and 45% rayon is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes. The resultant is further subjected to a heat treatment at 140° C. for 2 minutes, so that the finishing agent components are firmly adhered to the fiber fabric. Thus, a cool-feeling fiber fabric was obtained.
- A heat-shielding special dye-based disperse dye and a reactive dye were used to dye a plating jersey stitch fiber fabric made of 55% polyester and 45% rayon, so that the fiber fabric was dyed with black in the same color tone as that in Example 1, while a regular disperse dye and a regular reactive dye, each of common type, were used for dyeing of the fiber fabric to obtain a black fiber fabric in the same tone as above.
- A heat-shielding special dye-based disperse dye and a reactive dye were used to dye a rib stitch fiber fabric made of 55% polyester and 45% rayon, so that the fiber fabric was dyed with black in the same color tone as that in Example 1, while a regular disperse dye and a regular reactive dye, each of common type, were used for dyeing of the fiber fabric to obtain a black fiber fabric in the same tone as above.
- A heat-shielding special dye-based disperse dye and a reactive dye were used to dye a drop-needle stitch fiber fabric made of 55% polyester and 45% rayon, so that the fiber fabric was dyed with black in the same color tone as that in Example 1, while a regular disperse dye and a regular reactive dye, each of common type, were used for dyeing of the fiber fabric to obtain a black fiber fabric in the same tone as above.
- A heat-shielding special dye-based disperse dye and a reactive dye were used to dye a plating jersey stitch fiber fabric made of 55% polyester and 45% rayon, so that the fiber fabric was dyed with pink in the same color tone as that in Example 2, while a regular disperse dye and a regular reactive dye, each of common type, were used for dyeing of the fiber fabric to obtain a pink fiber fabric in the same tone as above.
- A heat-shielding special dye-based disperse dye and a reactive dye were used to dye hard twist rib stitch fiber fabrics made of 44% cotton, 39% rayon and 17% polyester, so that the fiber fabrics were dyed with gray and pink, respectively, in the same color tone as those in Example 3, while a regular disperse dye and a regular reactive dye, each of common type, were used for dyeing of the fiber fabrics to obtain gray and pink fiber fabrics in the same tone as above.
- For each of the fiber fabrics of Examples 1 to 4 and Comparative Examples 1 to 5 obtained in the above manner, infrared ray irradiation was performed to measure their shielding performance. The results are shown in Table 1.
-
TABLE 1 Finished Unfinished Evalu- fabric fabric Δt ation Example 1 Plating jersey White 49.5° C. 51.3° C. 1.8° C. ◯ stitch Black 45.0° C. 47.6° C. 2.6° C. ⊙ Rib stitch White 44.2° C. 45.8° C. 1.6° C. ◯ Example 2 Plating jersey Pink 35.8° C. 38.5° C. 2.7° C. ⊙ stitch Black 36.0° C. 38.5° C. 2.5° C. ⊙ Rib stitch White 37.1° C. 39.0° C. 1.9° C. ◯ Example 3 Hard twist rib White 34.0° C. 35.4° C. 1.4° C. ◯ stitch Gray 37.7° C. 38.9° C. 1.2° C. ◯ Navy-blue 36.9° C. 37.4° C. 0.5° C. Δ Example 4 Drop-needle Beige 43.1° C. 43.6° C. 0.5° C. Δ stitch Heat- shielding Regular dye dye Comparative Example 1 Plating jersey Black 37.3° C. 39.2° C. 1.9° C. ◯ stitch Comparative Example 2 Rib stitch Black 38.8° C. 39.9° C. 1.1° C. ◯ Comparative Example 3 Drop-needle Black 40.4° C. 40.6° C. 0.2° C. X stitch Comparative Example 4 Plating jersey Pink 39.6° C. 39.8° C. 0.2° C. X stitch Comparative Example 5 Hard twist rib Gray 42.6° C. 42.7° C. 0.1° C. X stitch Pink 40.9° C. 40.9° C. ±0° C. X - The evaluation criteria are as follows:
- {circle around (•)}: Difference in temperature between finished and unfinished (blank) fabrics is 2° C. or higher;
- ◯: Difference in temperature therebetween is 1° C. or higher but less than 2° C.;
- Δ: Difference in temperature therebetween is 0.5° C. or higher but less than 1° C.; and
- x: Difference in temperature therebetween is less than 0.5° C.
- Next, ultraviolet shielding effectiveness was measured in Examples 5 and 6. The measurement was carried out in the same manner as the infrared measurement described above, except that an ultraviolet lamp was used as a light source, and the measurement wavelength range was changed to a range of 280 nm to 380 nm. The results are shown in Table 2.
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 7 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 3.5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 89.4 L of water. The prepared liquid is fed into a finishing bath. A white hard twist rib stitch fiber fabric made of 44% cotton, 39% rayon and 17% polyester is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes. The resultant is further subjected to a heat treatment at 140° C. for 2 minutes, so that the finishing agent components are firmly adhered to the fiber fabric. Thus, a cool-feeling fiber fabric was obtained.
- One hundred litters (L) of a total finishing agent treatment liquid is prepared which is composed of: 7 L of a finishing agent solution containing 25 to 30% titanium oxide in which the ratio of ultrafine particles to fine particles is 30:70 to 35:65, 0.3% methanol and 0.3% zinc oxide; 3.5 L of an acrylate compound binder solution; 0.1 L of silver zeolite; and 89.4 L of water. The prepared liquid is fed into a finishing bath. A white plating jersey stitch fiber fabric made of 55% polyester and 45% rayon is immersed in the finishing bath to carry out padding process, thereby allowing the finishing agent to be adhered to the fiber fabric, followed by drying at 105° C. for 2 minutes. The resultant is further subjected to a heat treatment at 140° C. for 2 minutes, so that the finishing agent components are firmly adhered to the fiber fabric. Thus, a cool-feeling fiber fabric was obtained.
-
TABLE 2 Finished Unfinished Evalu- fabric fabric ation Rib stitch White Ultraviolet 94.7% 90.0% ⊙ shielding factor Plating White Ultraviolet 91.4% 90.6% ◯ jersey shielding factor stitch - The evaluation criteria are as follows:
- {circle around (•)}: Rate of improvement in the shielding factor is 5% or more;
- ◯: Rate of improvement in the shielding factor is 0.5% or more but less than 5%; and
- Δ: Rate of improvement in the shielding factor is less than 0.5%.
- A fabric having a shielding factor of 90% or more is ranked in the group of excellent shielding factor (rank A). It is observed that the fabric originally having an excellent shielding factor is even further improved in the shielding factor. In view of this, if the present invention is applied to a fabric having a shielding factor of 80 to 90% which is in the group of good shielding factor (rank B) or a fabric having a shielding factor of 50 to 80% which is in a general level (rank C), the shielding factor-improving effect may be further enhanced.
-
FIG. 3 shows an apparatus for measuring fiber fabric temperatures by irradiating an underwear fiber fabric with infrared rays allowed to pass through it. As shown inFIG. 3 , threeheat insulation boards heat insulation boards boards 11. Atemperature sensor 14 is placed at aspace 13 which is surrounded by theheat insulation boards heat insulation boards finished fabric 15 and anunfinished fabric 16 are placed, which fabrics are covered with a commerciallyavailable broadcloth shirt 17, and subjected to infrared-ray irradiation for 20 minutes with aninfrared lamp 18 located above the shirt, so that the temperatures of the fiber fabrics through which infrared rays have passed are measured by thetemperature sensors 14 positioned about 5-mm directly below thefinished fiber fabric 15 or theunfinished fiber fabric 16. This aims at measuring the difference in temperature in a condition close to a state where the fiber fabric is used as underwear. Table 3 shows the results of the test. In the test, the outside air temperature (room temperature) is 27.4° C. -
TABLE 3 Finished Unfinished fabric fabric Difference Δt Plating jersey Black 39.5° C. 43.8° C. Δt 4.3° C. stitch Plating jersey White 35.4° C. 38.2° C. Δt 2.8° C. stitch - As is clear from Table 3 above, in the simulation of use of the fiber fabric as underwear in a condition of extended irradiation time, it was confirmed that the difference of the temperatures between the finished and unfinished black plating jersey stitch fabrics was Δt 4.3° C., and the difference between the finished and unfinished white plating jersey stitch fabrics was Δt 2.8° C.
- Table 4 shows the results of evaluations of antibacterial activity and deodorizing performance in Examples 1 to 6.
-
TABLE 4 Antibacterial activity Ammonia Acetic acid Isovaleric acid Example 1 ⊙ ◯ ◯ ⊙ Example 2 ⊙ ⊙ ◯ ⊙ Example 3 ◯ ◯ Δ ◯ Example 4 ◯ Δ Δ ◯ Example 5 ◯ ◯ ◯ ◯ Example 6 ◯ ◯ ◯ ◯ - As to public inspection organizations, the antibacterial test was carried out by Daiwa Chemical Industries Co., Ltd., and the deodorization test was carried out by Boken Quality Evaluation Institute.
- The antibacterial evaluation was performed according to Testing for antibacterial activity, Bacterial culture absorption method (based on JIS L 1902). In this table, the criteria are as follows:
- {circle around (•)}: Bacteriostatic activity value is 4 or more;
- ◯: Bacteriostatic activity value is 2.2 or more, which is acceptable; and
- x: Bacteriostatic activity value is 2.2 or less, which is rejectable.
- The bacteriostatic activity value can be calculated by the following formula:
- Bacteriostatic activity value=(Mb−Ma)−(Mc−Mo)≧2.2
- wherein
- Mb is the average of common logarithm of viable cell count obtained after incubation for 18 hours on the unfinished fabric;
- Ma is the average of common logarithm of viable cell count obtained immediately after inoculation of testing bacteria on the unfinished fabric;
- Mc is the average of common logarithm of viable cell count obtained after incubation for 18 hours on the antibacterial finished fabric; and
- Mo is the average of common logarithm of viable cell count obtained immediately after inoculation of testing bacteria on the antibacterial finished fabric.
- The deodorizing efficacy evaluation was performed according to a deodorizing performance test, JAFET standard detergent method, by instrumental analysis and assessment. In the table, the criteria are as follows:
- {circle around (•)}: Decrease rate is 90% or more;
- ◯: Deodorization rate is 80 to 90%;
- Δ: Deodorization rate is 70 to 80%, which is acceptable; and
- x: Deodorization rate is 70% or less, which is rejectable.
- The deodorization rate (decrease rate) can be calculated by the following formulae.
-
Ammonia/Acetic acid Decrease rate (%)={(A−B)/A}×100 -
- A is a measurement value of a blank test; and
- B is a measurement value of a sample;
-
Isovaleric acid Decrease rate (%)={(C−D)/C}×100 -
- C is a peak area of a blank test; and
- D is a peak area of a sample.
- The present invention is herein described as above based on embodiments, but is not limited to the above-mentioned examples. It should be understood that various design modifications of the invention are possible as long as the object of the invention can be achieved within the scope of the spirit of the invention.
- The cool-feeling fiber fabric according to the present invention is advantageously applicable not only to clothing such as shirts, blouses and dresses, but also to apparel accessories such as hats, gloves and stockings, interior goods such as curtains, lace and blinds, and industrial materials such as sailcloth, cheesecloth and industrial sheets.
Claims (5)
1. A cool-feeling fiber fabric comprising:
ultrafine particles to reflect electromagnetic waves in an ultraviolet wavelength region,
fine particles to reflect electromagnetic waves in an infrared region, and a binder resin,
wherein the ultrafine particles and the fine particles are firmly adhered to the fiber fabric with the binder resin.
2. The cool-feeling fiber fabric according to claim 1 , wherein
the ultrafine particles to reflect electromagnetic waves in an ultraviolet wavelength region have a particle diameter of 150 to 200 nm, and
the fine particles to reflect electromagnetic waves in an infrared region have a particle diameter of 1 to 5 μm.
3. The cool-feeling fiber fabric according to claim 1 , wherein
the ultrafine particles and the fine particles are titanium oxide.
4. The cool-feeling fiber fabric according to claim 1 , wherein
a mixture of the ultrafine particles of titanium oxide and the fine particles of titanium oxide is adhered to the fiber fabric in a ratio of 5 to 10% owf based on the weight of the fiber fabric;
silver zeolite is adhered to the fiber fabric in a ratio of 0.03 to 1% owf based on the weight of the fiber fabric; and
the binder resin is adhered to the fiber fabric in a ratio of 3 to 5% owf based on the weight of the fiber fabric.
5. A method for producing a cool-feeling fiber fabric, the method comprising the steps of:
preparing a finishing agent treatment liquid containing a mixture of ultrafine particles of titanium oxide to reflect electromagnetic waves in an ultraviolet wavelength region and fine particles of titanium oxide to reflect electromagnetic waves in an infrared region, silver zeolite, and a binder resin;
immersing a fiber fabric in the prepared finishing agent treatment liquid;
thermally drying the fiber fabric; and
subjecting the fiber fabric to a heat treatment to allow the titanium oxide mixture and the silver zeolite to be firmly adhered to the fiber fabric.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/725,944 US11098441B2 (en) | 2012-10-26 | 2017-10-05 | Cool-feeling fiber fabric and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/006879 WO2014064739A1 (en) | 2012-10-26 | 2012-10-26 | Cool-feeling fabric and method for producing same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/006879 A-371-Of-International WO2014064739A1 (en) | 2012-10-26 | 2012-10-26 | Cool-feeling fabric and method for producing same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/725,944 Division US11098441B2 (en) | 2012-10-26 | 2017-10-05 | Cool-feeling fiber fabric and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150275418A1 true US20150275418A1 (en) | 2015-10-01 |
Family
ID=49954885
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/438,502 Abandoned US20150275418A1 (en) | 2012-10-26 | 2012-10-26 | Cool-feeling fiber fabric and method for producing same |
US15/725,944 Active 2033-01-02 US11098441B2 (en) | 2012-10-26 | 2017-10-05 | Cool-feeling fiber fabric and method for producing same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/725,944 Active 2033-01-02 US11098441B2 (en) | 2012-10-26 | 2017-10-05 | Cool-feeling fiber fabric and method for producing same |
Country Status (4)
Country | Link |
---|---|
US (2) | US20150275418A1 (en) |
JP (1) | JP5369251B1 (en) |
CN (1) | CN104755669A (en) |
WO (1) | WO2014064739A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017143222A1 (en) | 2016-02-17 | 2017-08-24 | The Board Of Trustees Of The Leland Stanford Junior University | Infrared-transparent porous polymer textile for human body cooling and heating |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2018205389B2 (en) * | 2017-01-09 | 2021-03-18 | Columbia Sportswear North America, Inc. | Multispectral cooling fabric |
KR101955125B1 (en) * | 2017-12-26 | 2019-03-06 | 이흥재 | Manufacturing methods for refrigerant fabric inclunding titanium dioxide and refrigerant fabric manufactured by this same |
CN110983766A (en) * | 2019-11-18 | 2020-04-10 | 江苏金太阳纺织科技股份有限公司 | Cool feeling finishing agent and preparation method and application method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040106341A1 (en) * | 2002-11-29 | 2004-06-03 | Vogt Kirkland W. | Fabrics having a topically applied silver-based finish exhibiting a reduced propensity for discoloration |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04289268A (en) * | 1991-03-13 | 1992-10-14 | Kanebo Ltd | Fabric processed to prevent ultraviolettransmission and its production |
JP3220374B2 (en) * | 1995-12-20 | 2001-10-22 | 倉敷紡績株式会社 | Cool fiber |
DE10105143A1 (en) * | 2001-02-06 | 2002-08-08 | Basf Ag | Process for UV protective equipment of textile material |
JP4227837B2 (en) * | 2003-05-21 | 2009-02-18 | グンゼ株式会社 | Cool feeling imparting fiber, method for producing cool feeling imparting fiber, and cool feeling imparting fiber product |
US20050037057A1 (en) * | 2003-08-14 | 2005-02-17 | Schuette Robert L. | Silver-containing antimicrobial fabric |
CN1570263A (en) * | 2004-04-28 | 2005-01-26 | 蔡宗魁 | A kind of manufacture method of the cloth with antibacterial, fragrance and cool feeling |
JP2006348414A (en) * | 2005-06-15 | 2006-12-28 | Toray Ind Inc | Heat ray reflective fabric and method for producing the same |
JP2008081876A (en) * | 2006-09-27 | 2008-04-10 | Ohara Palladium Kagaku Kk | Fiber processing agent and fiber product using the same |
JP5062615B2 (en) * | 2007-02-14 | 2012-10-31 | 平岡織染株式会社 | Natural fiber-like mesh sheet with excellent heat insulation |
CN101435158B (en) * | 2008-12-29 | 2010-12-08 | 郑州优波科新材料有限公司 | Heat insulating coating for textile |
JP5890101B2 (en) * | 2011-03-04 | 2016-03-22 | 帝人フロンティア株式会社 | Fiber products |
-
2012
- 2012-10-26 JP JP2013505662A patent/JP5369251B1/en active Active
- 2012-10-26 WO PCT/JP2012/006879 patent/WO2014064739A1/en active Application Filing
- 2012-10-26 CN CN201280076630.6A patent/CN104755669A/en active Pending
- 2012-10-26 US US14/438,502 patent/US20150275418A1/en not_active Abandoned
-
2017
- 2017-10-05 US US15/725,944 patent/US11098441B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040106341A1 (en) * | 2002-11-29 | 2004-06-03 | Vogt Kirkland W. | Fabrics having a topically applied silver-based finish exhibiting a reduced propensity for discoloration |
Non-Patent Citations (2)
Title |
---|
Machine Translation of JP 2006-348414, dated 17 July 2017 * |
Machine Translation of JP H04-289268, dated 17 July 2017 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017143222A1 (en) | 2016-02-17 | 2017-08-24 | The Board Of Trustees Of The Leland Stanford Junior University | Infrared-transparent porous polymer textile for human body cooling and heating |
CN108778012A (en) * | 2016-02-17 | 2018-11-09 | 里兰斯坦福初级大学理事会 | Porous polymer textile fabric for the infrared transparent that human body cools and heats |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014064739A1 (en) | 2016-09-05 |
JP5369251B1 (en) | 2013-12-18 |
US11098441B2 (en) | 2021-08-24 |
US20180030647A1 (en) | 2018-02-01 |
CN104755669A (en) | 2015-07-01 |
WO2014064739A1 (en) | 2014-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11098441B2 (en) | Cool-feeling fiber fabric and method for producing same | |
CN105624890A (en) | Far infrared heating surface fabric and processing method thereof | |
ES2394934T3 (en) | Textile materials of cellulose fibers containing nanolignins, method of application of nanolignins on textile materials and use of nanolignins in the production of textile materials | |
KR101332240B1 (en) | Manufacturing methods of refrigerant fabric | |
CN105696181A (en) | Functional coffee carbon fabric and production process thereof | |
TWI400376B (en) | Sun light can cloth | |
Abdelghaffar et al. | Surface coatings of polyester fabrics using titanium dioxide and zinc oxide for multifunctional medical applications | |
JP2015101815A (en) | Functional fiber, and heat retaining woven fabric to be constituted of the fiber | |
Shao et al. | Nano TiO2/amino-benzotriazole functionalization of cotton knitted fabrics for ultraviolet protection and antibacteria by pad-dry method | |
KR20110088281A (en) | Moisture Control Yarn and Fabric | |
KR20190110296A (en) | Whole fabric radiating far-infrared ray and manufacturing process thereof | |
Maamoun et al. | Self-Cleaning Finishing of Polyester Fabrics Using ZnONPs | |
CN204653795U (en) | A kind of health-care underclothes | |
JP2015028223A (en) | Woven knitted fabric having temperature adjustment function and clothing using the same | |
Vellingiri et al. | Functional characteristics of textile fabrics by plasma-nano treatment | |
CN114438778A (en) | Antistatic, antibacterial and deodorant fabric and preparation method thereof | |
CN105970603B (en) | A kind of intelligent temperature control textile and preparation method thereof | |
KR101425323B1 (en) | Method for manufacturing textile having antibiotic and deodorant | |
Sorour et al. | Novel multifunctional medical scrubs fabrics from cotton/polyester microfibers using selenium nanoparticles | |
JP6199661B2 (en) | Functional woven and knitted fabric and method for producing the same | |
CN101649523B (en) | Natural ultraviolet-resistance internal decoration textile of automobile | |
JP2015124453A (en) | Spun yarn and heat-retaining cloth including the spun yarn | |
KR100519670B1 (en) | Method for preparing functional ceramic processing fiber | |
CN214266840U (en) | Sun-proof antibacterial fabric | |
CN112323484B (en) | Ultraviolet-resistant modification method for fabric |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AS CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOHARA, SHIGERU;REEL/FRAME:035609/0869 Effective date: 20150422 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |