US20150262643A1 - Vertical transistor, memory cell, device, system and method of forming same - Google Patents
Vertical transistor, memory cell, device, system and method of forming same Download PDFInfo
- Publication number
- US20150262643A1 US20150262643A1 US14/725,776 US201514725776A US2015262643A1 US 20150262643 A1 US20150262643 A1 US 20150262643A1 US 201514725776 A US201514725776 A US 201514725776A US 2015262643 A1 US2015262643 A1 US 2015262643A1
- Authority
- US
- United States
- Prior art keywords
- signal
- gate
- source
- access transistor
- applying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000015654 memory Effects 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000004065 semiconductor Substances 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 210000000746 body region Anatomy 0.000 claims abstract description 25
- 239000003990 capacitor Substances 0.000 claims abstract description 22
- 238000003860 storage Methods 0.000 claims abstract description 21
- 238000002955 isolation Methods 0.000 claims description 16
- 230000004913 activation Effects 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 19
- 229910052710 silicon Inorganic materials 0.000 description 17
- 239000010703 silicon Substances 0.000 description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 229910052581 Si3N4 Inorganic materials 0.000 description 10
- 238000005530 etching Methods 0.000 description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 239000004020 conductor Substances 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- 230000009849 deactivation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000003870 refractory metal Substances 0.000 description 4
- 239000007943 implant Substances 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/403—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
- G11C11/404—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/408—Address circuits
- G11C11/4085—Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/025—Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/611—Insulated-gate field-effect transistors [IGFET] having multiple independently-addressable gate electrodes influencing the same channel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
Definitions
- the present disclosure relates generally to semiconductor integrated circuits and, more particularly, to circuits and methods for dual-gated transistors.
- Leakage current is a significant concern and problem in low-voltage and low-power battery-operated CMOS circuits and systems, and particularly in dynamic random access memories (DRAMs).
- DRAMs dynamic random access memories
- FIG. 1 if low voltages are used for low-power operation of electronic circuits or devices, then a problem exists with threshold voltages and standby leakage current. To get significant overdrive and reasonable switching speeds, the threshold voltage magnitudes must be small, even near zero volts. However, when such small threshold voltages are used, the transistor will have a large sub-threshold leakage current.
- CMOS transistors that can have a relatively large variation in threshold voltage, but yet have low sub-threshold leakage currents in a standby state.
- Gate body-connected CMOS transistors in vertical device structures provide a dynamic or changing threshold voltage, i.e., lower threshold voltage when the transistor is on and a higher threshold voltage when the vertical transistor is off.
- CMOS circuits and in particular CMOS circuits in semiconductor memories, are subjected to continuous reduction in dimensions to accommodate increasing transistor densities. It is known that semiconductor memories, comprised of CMOS circuits, are widely used in computer systems for storing data.
- a DRAM memory cell typically includes an access field-effect transistor (FET) and a storage capacitor.
- FET access field-effect transistor
- the access FET allows the transfer of data charges to and from the storage capacitor during reading and writing operations. The data charges on the storage capacitor are periodically refreshed during a refresh operation.
- Memory density is typically limited by a minimum lithographic feature size (F) that is imposed by lithographic processes used during fabrication.
- F lithographic feature size
- DRAMs high-density dynamic random access memories
- F 2 lithographic process size
- DRAMs high-density dynamic random access memories
- Increasing the data storage capacity of semiconductor memories requires a reduction in the size of the access transistor and storage capacitor of each memory cell.
- other factors such as sub-threshold leakage currents, require attention in order to lower the overall power consumed by the integrated circuits.
- the present disclosure in exemplary embodiments, relates to a vertical transistor, memory cell, device, system and method of forming the same.
- a memory cell in one embodiment of the present disclosure, includes a pillar of semiconductor material including a plurality of sides extending from a general plane of the substrate.
- a first source/drain region is formed in the substrate and an access transistor including a body region and a second source/drain region is formed within the pillar.
- a memory device in another embodiment, includes an array of memory cells, with each memory cell including a pillar of semiconductor material.
- the pillar of semiconductor material further includes a plurality of sides that extends from a general plane of the substrate.
- a first source/drain region is formed in the substrate, and an access transistor including a body region and a second source/drain region are formed within the pillar.
- the access transistor includes at least a first gate on a first side of the pillar.
- the memory device further includes a plurality of bit lines implanted into the substrate, with each of the plurality of bit lines being in conductive contact with the first source/drain region of the access transistor of at least a plurality of memory cells in a common column of the array.
- a plurality of word lines is also disposed generally orthogonal to the plurality of bit lines.
- an integrated circuit in a further embodiment of the present disclosure, includes a pillar of semiconductor material integral with and extending generally orthogonal from a general plane of the substrate.
- the integrated circuit further includes an access transistor including a first source/drain region formed in the substrate and a second source/drain region formed on the pillar.
- An interconnection line is formed integral to the first source/drain region in the substrate.
- a vertical memory cell in yet another embodiment of the present disclosure, includes a semiconducting pillar extending outwardly from an integrally connected semiconductor substrate.
- a first source/drain region is formed in the substrate, and a body region and a second source/drain region are formed within the pillar.
- a first gate is coupled to a first side of the pillar for coupling the first and second source/drain regions together when activated.
- the vertical memory cell also includes a storage capacitor formed on an extended end of the semiconducting pillar and electrically coupled to the second source/drain region.
- a semiconductor substrate has fabricated thereon a semiconductor memory.
- the semiconductor memory includes an array of memory cells, with each memory cell including a pillar of semiconductor material including a plurality of sides extending from a general plane of the substrate.
- the semiconductor memory includes a first source/drain region formed in the substrate, and an access transistor including a body region and a second source/drain region are formed within the pillar.
- the access transistor includes at least a first gate on a first side of the pillar.
- a plurality of bit lines is implanted into the substrate, with each of the plurality of bit lines in conductive contact with the first source/drain region of the access transistor of at least a plurality of memory cells in a common column of the array.
- a plurality of word lines is disposed generally orthogonal to the plurality of bit lines and the plurality of word lines is coupled to the first gates of memory cells immediately adjacent to each of the plurality of word lines.
- an electronic system in yet another embodiment, includes an input device, an output device, a memory device, and a processor device coupled to the input, output, and memory devices. At least one of the input, output, memory, and processor devices includes a memory cell, with the memory cell comprising a pillar of semiconductor material including a plurality of sides and extending from a general plane of a substrate. The memory cell further includes a first source/drain region formed in the substrate and an access transistor including a body region and a second source/drain region formed within the pillar.
- a method of forming a memory cell includes forming a pillar of semiconductor material including a plurality of sides and extending from a general plane of a substrate. A first source/drain region is formed in the substrate and an access transistor including a body region and a second source/drain region is formed within the pillar.
- FIG. 1 is a representative graph of sub-threshold leakage current as a function of the gate-to-source voltage of a transistor
- FIG. 2 is a simplified functional diagram of a dual-gated transistor, in accordance with an embodiment of the present disclosure
- FIG. 3 is a representative comparative graph of sub-threshold leakage current as a function of the gate-to-source voltage for a single-gated bulk transistor and a dual-gated transistor, in accordance with an embodiment of the present disclosure
- FIG. 4 is a schematic diagram illustrating a semiconductor memory incorporating a dual-gated transistor, in accordance with an embodiment of the present disclosure
- FIG. 5 is a perspective view of a portion of a memory incorporating dual-gated transistors, in accordance with an embodiment of the present disclosure
- FIG. 6 is a plan view generally illustrating memory cells according to one embodiment of the disclosure as viewed from above the structures formed on the substrate;
- FIG. 7 is a cross-sectional view taken along the section line 7 - 7 of FIGS. 5 and 6 , in accordance with an embodiment of the present disclosure
- FIG. 8 is a cross-sectional view taken along the section line 8 - 8 of FIGS. 5 and 6 , in accordance with an embodiment of the present disclosure
- FIG. 9 is a cross-sectional view taken along the section line 9 - 9 of FIGS. 5 and 6 , in accordance with an embodiment of the present disclosure.
- FIGS. 10A-10M describe generally various processing techniques of one embodiment of a method of fabricating memory cells, in accordance with an embodiment of the present disclosure
- FIG. 11 illustrates a semiconductor wafer including one or more memory cells, in accordance with an embodiment of the present disclosure.
- FIG. 12 is a block diagram of an electronic system including one or more memory cells, in accordance with an embodiment of the present disclosure.
- FIG. 2 illustrates a simplified functional diagram of a dual-gated transistor, in accordance with an embodiment of the present disclosure.
- a dual-gated transistor 10 includes a semiconductor body 12 having a drain 14 and a source 16 on opposing ends of a channel formed therebetween.
- a first gate 18 and a second gate 20 provide activation of the dual-gated transistor 10 .
- the dual-gated transistor 10 turns off, the sub-threshold current is reduced more quickly as the gate voltages are reduced. Such a reduction is due in part to the fully depleted nature of the dual-gated transistor 10 .
- a dual-gated arrangement for a transistor provides improved characteristics over conventional bulk silicon transistors due, in part, to gate electrodes present on both sides of the channel, rather than only on a single side as in a conventional planar bulk silicon transistor.
- a graph 30 illustrates a typical leakage current plot 32 of a conventional planar bulk silicon transistor. It should be noted that a conventional bulk silicon transistor at point 34 , where the gate voltage equals zero, exhibits a significant amount of leakage current in the region below the threshold line 40 .
- a dual-gated transistor 10 exhibits a reduced sub-threshold leakage current illustrated with respect to the dual-gated transistor leakage current plot 36 , which denotes a significant reduction in leakage current at point 38 where the gate voltage equals zero.
- FIG. 4 is a schematic illustrating generally an embodiment of an integrated circuit 100 (also referred to as “circuit 100 ”), such as a semiconductor memory device, incorporating an array of memory cells provided by the disclosure.
- circuit 100 illustrates, by way of example and not limitation, a dynamic random access memory (DRAM), but the disclosure also comprises other integrated circuits including other semiconductor memory devices.
- circuit 100 includes memory cell arrays 110 , such as 110 A and 110 B. Each memory cell array 110 includes M rows and N columns of memory cells 112 .
- each memory cell includes an access transistor 130 or transfer device, such as an n-channel cell access field-effect transistor (FET) or any other transistor or switching device having more than one control terminal input. More particularly, access transistor 130 includes first and second gate terminals for controlling conduction between its first and second source/drain terminals.
- FET n-channel cell access field-effect transistor
- Access transistor 130 is coupled at a second source/drain terminal to a storage node of a storage capacitor 132 .
- the other terminal of storage capacitor 132 is coupled to a reference voltage such as a ground voltage VSS (not shown).
- Each of the M rows includes one of word lines WL 0 , WL 1 . . . WLm ⁇ 1, WLm coupled to the first gate terminals of access transistors 130 or to one of the control terminals of an equivalent switching device.
- Each of the M rows also includes one of word lines R 0 , R 1 , R 2 , . . . , Rm ⁇ 1, Rm coupled to the second gate terminals of access transistors 130 in memory cells 112 .
- word line includes any interconnection line between gate terminals of access transistors 130 or the control terminals of equivalent switching devices.
- Each of the N columns includes one of bit lines BL 0 , BL 1 . . . BLn ⁇ 1, BLn.
- Bit lines BL 0 -BLn function to write data to and read data from memory cells 112 .
- Word lines WL 0 -WLm and—R 0 -Rm function to activate access transistors 130 to access a particular row of memory cells 112 that is to be written or read.
- Addressing circuitry facilitates specific access to individual rows of memory cells.
- address buffer 114 controls column decoders 118 , which also include sense amplifiers and input/output circuitry that is coupled to bit lines BL 0 -BLn.
- Address buffer 114 also controls row decoders 116 and column decoders 118 for selectably accessing memory cells 112 in response to address signals that are provided on address lines 120 during read and write operations.
- the address signals are typically provided by an external controller, such as a microprocessor or other memory controller.
- Each of memory cells 112 has a substantially identical structure and, accordingly, only one memory cell 112 structure is described herein.
- circuit 100 receives an address of a particular memory cell 112 at address buffer 114 .
- Address buffer 114 identifies one of the word lines—WL 0 -WLm and a corresponding one of—R 0 -Rm of the particular memory cell 112 to row decoder 116 .
- Row decoder 116 selectively activates the particular word line WL 0 -WLm and a corresponding one of—R 0 -Rm to activate access transistors 130 of each memory cell 112 that is connected to the selected word line pair—WL 0 -WLm/R 0 -Rm.
- Column decoder 118 selects the one of bit lines BL 0 -BLn of the particularly addressed memory cell 112 .
- data received by input/output circuitry is coupled to the one of bit lines BL 0 -BLn and through the access transistor 130 to charge or discharge the storage capacitor 132 of the selected memory cell 112 to represent binary data.
- data stored in the selected memory cell 112 is coupled to the one of bit lines BL 0 -BLn, amplified, and a corresponding voltage level is provided to the input/output circuits.
- each of the first and second gates of access transistor 130 is capable of controlling the conduction between its first and second source/drain terminals, as described below.
- parallel switching functionality can be effected between the first and second source/drain terminals of access transistor 130 by independently operating the particular ones of word lines WL 0 -WLm and corresponding ones of word lines R 0 -Rm.
- word line WL 0 and word line R 0 both of which are coupled to the same row of memory cells 112
- independently controlled inversion channels can be formed in each corresponding access transistor 130 by respective first and second gates for allowing conduction between the first and second source/drain regions.
- each of the first and second gates of access transistor 130 is capable of controlling the conduction between its first and second source/drain terminals
- the first and second gates of particular access transistors 130 may be synchronously activated, rather than independently operated. For example, by synchronously activating word line WL 0 and word line R 0 , both of which are coupled to the same row of memory cells 112 , synchronous inversion channels can be formed in each corresponding access transistor 130 by respective first and second gates for allowing conduction between the first and second source/drain regions.
- synchronous activation and deactivation of the first and second gates allows better control over the potential distributions in the access transistor 130 when it is in a conductive state. Synchronous activation and deactivation can be used to obtain well-controlled, fully depleted operating characteristics of access transistor 130 .
- different activation voltages may be applied to the first and second gates of the access transistor 130 .
- different voltages can be provided to synchronously activated word lines WL 0 and R 0 , thereby providing different activation voltages to the first and second gates of the access transistor 130 to obtain particular desired operating characteristics.
- different deactivation voltages can be applied to the first and second gates of the access transistor 130 .
- different deactivation voltages can be provided to synchronously deactivated word lines WL 0 and R 0 and corresponding first and second gates of access transistors 130 in order to obtain particular desired operating characteristics.
- FIG. 5 is a perspective view illustrating generally one embodiment of a portion of a memory, in accordance with an embodiment of the present disclosure.
- FIG. 5 illustrates portions of six memory cells 112 a - f , including portions of vertically oriented access transistors 130 therein.
- Conductive segments of bit lines, illustrated herein as buried bit lines 202 represent particular ones of bit lines BL 0 -BLn ( FIG. 4 ).
- access transistors 130 are formed in semiconductor pillars that extend outwardly from an underlying substrate 210 .
- Substrate 210 includes bulk semiconductor starting material.
- access transistors 130 include an n+ silicon layer formed from the bulk silicon substrate 210 to produce first source/drain regions 212 of access transistors 130 and integrally formed n++ conductively doped bit lines 202 defining a particular column of memory cells 112 .
- A—p-silicon layer is formed from the substrate 210 to form the body region 214 of access transistor 130 , in which inversion channels may be capacitively generated at the sidewalls of the semiconductor pillar under the control of the first and second gates.
- a further n+ silicon layer is formed from the substrate 210 to produce second source/drain region 216 of access transistor 130 .
- Storage capacitors 132 are formed on the second source/drain regions 216 .
- access transistors 130 are formed as semiconductor pillars extending outwardly from substrate 210 and including body regions 214 and first and second source/drain regions 212 and 216 .
- bit lines 202 are implanted into the bulk semiconductor substrate 210 .
- Isolation trenches provide isolation between access transistors 130 of adjacent memory cells 112 .
- Columns of memory cells 112 are separated by a trench 220 that is subsequently filled with a suitable insulating material such as silicon dioxide.
- trench 220 provides isolation between memory cells 112 a and 112 d and between memory cells 112 b and 112 e .
- Rows of memory cells 112 are alternatingly separated by trenches 221 and 222 , each of which is separated from substrate 210 by an underlying insulating layer, described below, and separated from the body region 214 of access transistors 130 by a gate oxide, also described below.
- trench 221 provides isolation between memory cells 112 a and 112 b and between memory cells 112 d and 112 e .
- trench 222 provides isolation between memory cells 112 b and 112 c and memory cells 112 e and 112 f .
- Trenches 221 and 222 extend substantially orthogonally to bit lines 202 .
- first and second word lines 206 and 208 are each split into separate conductors.
- First word line 206 is split into independently operable first word lines 206 a and 206 b , each disposed in trench 221 and electrically isolated from each other.
- Second word line 208 is split into independently operable second word lines 208 a and 208 b , each disposed in trench 222 and electrically isolated from each other, such as by SiO 2 .
- gate regions need not be shared between access transistors 130 in adjacent memory cells 112 on opposing sides of trenches 221 and 222 .
- First and second word lines 206 and 208 can be formed of a refractory metal or n+ polysilicon or other suitable conductor, as described below.
- a first word line 206 a extends in trench 221 adjacent to the vertical sidewalls 219 of the semiconductor pillars of in-line memory cells 112 a and 112 d , separated therefrom by gate oxide 218 ( FIG. 6 ).
- First word line 206 b extends in trench 221 adjacent to the vertical sidewalls 219 of the semiconductor pillars of in-line memory cells 112 b and 112 e , separated therefrom by gate oxide 218 ( FIG. 6 ).
- Second word line 208 a extends in trench 222 adjacent to the vertical sidewalls 219 of the semiconductor pillars of in-line memory cells 112 b and 112 e , separated therefrom by gate oxide 218 ( FIG. 6 ).
- Second word line 208 b extends in trench 222 adjacent to the vertical sidewalls 219 of the semiconductor pillars of in-line memory cells 112 c and 112 f.
- Operation of the access transistor 130 of memory cell 112 b includes operation of the first word line 206 b and second word line 208 a , as described above.
- a positive potential is applied to either or both of first word line 206 b and second word line 208 a , as described above, to turn on the access transistor 130 of memory cell 112 b.
- split first word lines 206 a - b and split second word lines 208 a - b avoids the problem of sub-threshold conduction in access transistors 130 in one row while the memory cells 112 in the adjacent row are being addressed.
- Each memory cell 112 is capable of being uniquely addressed by a combination of first word line 206 and second word line 208 voltages. These voltages need not appear on the first word line 206 and second word line 208 of adjacent rows of memory cells 112 .
- FIG. 6 is a plan view generally illustrating memory cells according to one embodiment of the disclosure as viewed from above the structures formed on the substrate, in accordance with an embodiment of the present disclosure. Specifically, FIG. 6 illustrates generally memory cells 112 a - f as viewed from above the structures formed on substrate 210 ( FIG. 5 ). FIG. 6 illustrates subsequently formed insulator, such as isolation material 224 , formed in trenches 220 to provide isolation between memory cells 112 .
- first word line 206 is split into first word line 206 a and first word line 206 b respectively coupled to first gates of access transistors 130 of memory cells 112 a , 112 d and second gates of access transistors 130 of memory cells 112 b , 112 e .
- First word line 206 a is also shared between first gates of other access transistors 130 that are in the same adjacent rows, but coupled to different bit lines 202 .
- First word line 206 a is located in trench 221 that extends between the semiconductor pillars of memory cells 112 a and 112 b .
- First word line 206 a is separated by gate oxide 218 from the vertical sidewalls 219 of the semiconductor pillars on each side of trench 221 .
- a second word line 208 is split into second word line 208 a and second word line 208 b respectively coupled to first gates of access transistors 130 of memory cells 112 b , 112 e and second gates of access transistors 130 of memory cells 112 c , 112 f .
- Second word line 208 a is also shared between first gates of other access transistors 130 that are in the same adjacent rows but coupled to different bit lines 202 .
- Second word line 208 a is located in trench 222 that extends between the semiconductor pillars of memory cells 112 b and 112 c .
- Second word line 208 a is separated by gate oxide 218 from the vertical sidewalls 223 of the semiconductor pillars on each side of trench 222 .
- respective first and second word lines 206 a / 206 b and 208 a / 208 b are shared between adjacent memory cells 112 .
- the row pitch of each cell measured from the centerline of first word line 206 to the centerline of second word line 208 , can be approximately 2 F, where F is a minimum lithographic feature size.
- F corresponds to the length and width presented by the surface of a minimum-sized semiconductor pillar in each memory cell 112 .
- the column pitch of each cell, measured between centerlines of bit lines 202 can be approximately 2 F.
- the surface area of each memory cell 112 can be approximately 4 F 2 .
- FIG. 7 is a cross-sectional view taken along the section line 7 - 7 of FIGS. 5 and 6 , in accordance with an embodiment of the present disclosure.
- respective first and second word lines 206 a , 206 b and 208 a , 208 b are buried below the active semiconductor surface 230 of the semiconductor pillar in the memory cells 112 d , 112 e , 112 f (collectively referred to as 112 ).
- Active semiconductor surface 230 represents an upper semiconductor portion of second source/drain region 216 .
- First and second word lines 206 and 208 are isolated from adjacent semiconductor pillars by gate oxide 218 .
- First and second word lines 206 and 208 respectively, provide integrally formed first and second gate portions that are capacitively coupled to adjacent body regions 214 of access transistors 130 , such as for forming inversion channel regions therein.
- a respective bit line 202 is also formed through an implant process and runs the length of the memory cells 112 for that specific column of memory cells 112 .
- respective first and second word lines 206 and 208 are formed of a refractory metal, such as tungsten or titanium, or can be formed of n+ doped polysilicon.
- a refractory metal such as tungsten or titanium
- other suitable conductors could also be used for first and second words lines 206 and 208 , respectively.
- First and second word lines 206 and 208 are formed as unitary conductors with first word line 206 being formed in first trench 221 and a unitary conductor second word line 208 formed in second trench 222 .
- the unitary conductor first and second word lines 206 and 208 are then split into word lines 206 a / 206 b and 208 a / 208 b.
- Burying first and second word lines 206 a / 206 b and 208 a / 208 b below active semiconductor surface 230 provides additional space on the upper portion of memory cell 112 for formation of storage capacitors 132 ( FIG. 5 ). Increasing the area available for forming storage capacitor 132 increases the possible obtainable capacitance value of storage capacitor 132 .
- storage capacitor 132 is a stacked capacitor that is formed using any of the many capacitor structures and process sequences known in the art. Other techniques could also be used for implementing storage capacitor 132 . Contacts to the first and second word lines 206 and 208 , respectively, can be made outside of the memory cell array 110 .
- FIG. 8 is a cross-sectional view taken along the section line 8 - 8 of FIGS. 5 and 6 , in accordance with an embodiment of the present disclosure.
- the section line 8 - 8 is taken along an offset of a column of memory cells 112 wherein the implanted first source/drain region 212 and the implanted bit line 202 are absent.
- FIG. 9 is a cross-sectional view taken along the section line 9 - 9 of FIGS. 5 and 6 , in accordance with an embodiment of the present disclosure.
- the section line 9 - 9 is taken along a cross section of a row of memory cells 112 to illustrate the implanted first source/drain region 212 and the implantation of the bit lines 202 .
- an implant process is performed into the trench 220 and concurrently creates first source/drain region 212 and bit line 202 .
- bit line 202 and the first source/drain region 212 eliminates the more complex and costly processes associated with epitaxial growth as previously used for the formation of bit lines 202 that were formed entirely under the silicon pillar.
- the bit line 202 is offset from the column of vertical memory cells 112 and the first source/drain region 212 is also offset and formed under a portion of the silicon pillar.
- FIGS. 10A-10M describe generally various processing techniques of one embodiment of a method of fabricating memory cells 112 , such as shown in FIGS. 5-9 , using bulk silicon processing techniques.
- the vertical transistor of memory cell 112 is formed from a silicon pillar that is etched from the substrate 210 .
- the vertical transistor of memory cell 112 includes first and second source/drain regions 212 (not shown in FIG. 10A ), 216 and a body region 214 , all of which are formed from the silicon pillar formed from the substrate 210 .
- a bulk silicon substrate 210 starting material is used.
- a second source/drain region 216 of n+ silicon is formed, such as by ion-implantation into a body region 214 to a thickness that can be approximately between 0.2 and 0.5 ⁇ m.
- the second source/drain region 216 is formed through ion-implantation of a sheet of n+ implant along the surface of the substrate 210 .
- a body region 214 is defined to a thickness that can be about 0.48 ⁇ m and may include a dopant consistent with the bulk silicon substrate 210 .
- an SiO 2 thin pad oxide layer 512 is formed on second source/drain region 216 , such as by chemical vapor deposition (CVD).
- thin pad oxide layer 512 can be approximately 10 nm in thickness.
- a thin silicon nitride (Si 3 N 4 ) layer 514 is formed on thin pad oxide layer 512 , such as by CVD.
- silicon nitride layer 514 can be approximately 100 nm in thickness.
- photoresist is applied and selectively exposed to provide a mask for the directional etching of trenches 220 , such as by reactive ion etching (RIE).
- RIE reactive ion etching
- the directional etching results in a plurality of column bars 516 containing the stack of silicon nitride layer 514 , thin pad oxide layer 512 , second source/drain region 216 , and body region 214 .
- Trenches 220 are etched to a depth that is sufficient to reach a surface 518 of substrate 210 , defining the bottom of the body region 214 .
- Column bars 516 are oriented in the direction of bit lines 202 ( FIG. 5 ). In one embodiment, column bars 516 have a surface line width of approximately one micron or less. The depth and width of each trench 220 can be approximately equal to the line width of column bars 516 .
- Isolation material 224 such as SiO 2
- CMP chemical mechanical polishing/planarization
- FIG. 10E illustrates the view of FIG. 10D after clockwise rotation by ninety degrees.
- a photoresist material is applied and selectively exposed to provide a mask for the directional etching of trenches 221 and 222 , such as by RIE of a plurality of row bars 532 that is disposed orthogonally to bit lines 202 ( FIG. 5 ).
- Forming trenches 221 and 222 includes etching though stacked layers in the portions of column bars 516 ( FIG. 10C ).
- Forming trenches 221 and 222 also includes etching through the isolation material 224 disposed between column bars 516 .
- trenches 221 and 222 are etched through silicon nitride layer 514 , thin pad oxide layer 512 , second source/drain region 216 , and body region 214 . Trenches 221 and 222 are also etched into the isolation material 224 between column bars 516 . In one embodiment, after etching silicon nitride layer 514 of column bars 516 , a nonselective dry etch is used to remove the isolation material 224 between column bars 516 and also the thin pad oxide layer 512 , second source/drain region 216 , body region 214 , and a portion of first source/drain region 212 ( FIG. 10G ) of column bars 516 . The directional etching of trenches 221 and 222 results in the formation of a plurality of row bars 532 that is orthogonal to column bars 516 .
- trenches 221 and 222 are etched through silicon nitride layer 514 , thin pad oxide layer 512 , second source/drain region 216 , and body region 214 . Trenches 221 and 222 are also etched into the isolation material 224 between column bars 516 . In one embodiment, after etching silicon nitride layer 514 of column bars 516 , a nonselective dry etch is used to remove the isolation material 224 between column bars 516 and also the thin pad oxide layer 512 , second source/drain region 216 , body region 214 , and a portion of first source/drain region 212 ( FIG. 10G ) of column bars 516 . The directional etching of trenches 221 and 222 results in the formation of a plurality of row bars 532 that is orthogonal to column bars 516 .
- FIG. 10G illustrates the view of FIG. 10F , which is reversed in rotation back to the orientation of FIG. 10C .
- a masking material 520 is applied and selectively formed to provide a mask on a portion of the top of each access transistor 130 and in a portion of trench 220 .
- An implantation and annealing process 522 forms a buried bit line 202 and the first source/drain region 212 . Because of the trenches 221 and 222 , the bit line 202 will be narrower when adjacent to the first source/drain region 212 of the access transistor 130 and wider in the trench 221 and 222 areas.
- FIG. 10H illustrates the view of FIG. 1 OF after clockwise rotation by ninety degrees.
- the masking material 520 FIG. 10G
- isolation material such as SiO 2 is deposited to fill the trenches 220 ( FIG. 10G ), 221 , and 222 .
- the working surface is then planarized, such as by CMP. Trenches 221 and 222 are reopened through an etching process to remove the isolation material and to provide the trenches for the formation of the word lines.
- a conformal silicon nitride layer 540 is formed, such as by CVD.
- Nitride layer 540 is directionally etched, such as by RIE, to leave resulting portions of nitride layer 540 only on vertical sidewalls 219 of the bars 532 in trenches 221 and 222 .
- the thickness of nitride layer 540 is about 20 nm.
- An oxide layer 542 is formed, such as by thermal growth, at the base portions of trenches 221 and 222 . Oxide layer 542 insulates the underlying bit lines 202 from structures subsequently formed in trenches 221 and 222 and also serves to adjust the height of the vertical transistor gates. After forming oxide layer 542 , remaining portions of nitride layer 540 are removed.
- a gate oxide 218 is formed on the exposed vertical sidewalls 219 portions in trenches 221 and 222 of second source/drain region 216 and body region 214 .
- gate oxide 218 is a high-quality thin oxide layer that is thermally grown on the exposed vertical sidewalls 219 in trenches 221 and 222 .
- a conductive layer 544 is formed over the working surface of the wafer, including filling trenches 221 and 222 in which respective first and second word lines 206 and 208 will be formed.
- layer 544 is formed by CVD of a refractory metal, such as tungsten.
- layer 544 is formed by CVD of n+ polysilicon.
- first and second word lines 206 and 208 are formed in respective trenches 221 and 222 .
- the unitary first and second word lines 206 and 208 are split to form first and second word lines 206 a / 206 b and 208 a / 208 b .
- One method for splitting the unitary word lines may include depositing a refractory metal, n+ polysilicon, or other conductor as a conformal fill that can have a thickness of less than or equal to approximately F/3, where F is the minimum feature size.
- the conformal fill is then directionally etched, thereby leaving resulting split conductor first and second word lines 206 a / 206 b and 208 a / 208 b adjacent to the vertical sidewall 219 , separated therefrom by gate oxide 218 .
- An oxide fill is formed between the respective split first and second word lines 206 a / 206 b and 208 a / 208 b.
- FIG. 10M illustrates one embodiment in which an insulating layer 546 , such as SiO 2 , is formed on the working surface of a wafer, such as by CVD.
- the structure thus formed is then processed to fabricate a storage capacitor 132 ( FIG. 5 ) on the working surface of the wafer, using known techniques, followed by conventional back end of line (BEOL) procedures.
- BEOL back end of line
- the memory cell 112 As shown in FIG. 11 , the memory cell 112 , as described above, is fabricated on a semiconductor wafer 560 . It should be understood that the memory cell 112 may also be fabricated on a wide variety of other semiconductor substrates.
- an electronic system 570 includes an input device 572 , an output device 574 , a processor device 576 , and a memory device 578 that incorporate the memory cell 112 as described with respect to one or more embodiments of the present disclosure. Also, it should be noted that the memory cell 112 may be incorporated into any one of the input, output, and processor devices 572 , 574 , and 576 .
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
Abstract
A memory device, system and fabrication method relating to a vertical memory cell including a semiconducting pillar extending outwardly from an integrally connected semiconductor substrate are disclosed. A first source/drain region is formed in the semiconductor substrate and a body region and a second source/drain region are formed within the semiconductor pillar. A first gate is coupled to a first side of the semiconductor pillar for coupling the first and second source/drain regions together when activated. The vertical memory cell also includes a storage capacitor formed on an extended end of the semiconducting pillar and electrically coupled to the second source/drain region.
Description
- This application is a divisional of U.S. patent application Ser. No. 13/908,473, filed Jun. 3, 2013, pending, which will issue as U.S. Pat. No. 9,048,337 on Jun. 2, 2015, which is a continuation of U.S. patent application Ser. No. 12/724,833, filed Mar. 16, 2010, now U.S. Pat. No. 8,461,002, issued Jun. 11, 2013, which is a divisional of U.S. patent application Ser. No. 11/151,219, filed Jun. 13, 2005, now U.S. Pat. No. 7,679,118, issued Mar. 16, 2010, the entire disclosure of each of which is hereby incorporated herein by this reference.
- 1. Field
- The present disclosure relates generally to semiconductor integrated circuits and, more particularly, to circuits and methods for dual-gated transistors.
- 2. State of the Art
- Leakage current is a significant concern and problem in low-voltage and low-power battery-operated CMOS circuits and systems, and particularly in dynamic random access memories (DRAMs). As shown in
FIG. 1 , if low voltages are used for low-power operation of electronic circuits or devices, then a problem exists with threshold voltages and standby leakage current. To get significant overdrive and reasonable switching speeds, the threshold voltage magnitudes must be small, even near zero volts. However, when such small threshold voltages are used, the transistor will have a large sub-threshold leakage current. Various techniques have been employed to allow low-voltage operation with CMOS transistors that can have a relatively large variation in threshold voltage, but yet have low sub-threshold leakage currents in a standby state. Gate body-connected CMOS transistors in vertical device structures provide a dynamic or changing threshold voltage, i.e., lower threshold voltage when the transistor is on and a higher threshold voltage when the vertical transistor is off. - Transistors in CMOS circuits, and in particular CMOS circuits in semiconductor memories, are subjected to continuous reduction in dimensions to accommodate increasing transistor densities. It is known that semiconductor memories, comprised of CMOS circuits, are widely used in computer systems for storing data. A DRAM memory cell typically includes an access field-effect transistor (FET) and a storage capacitor. The access FET allows the transfer of data charges to and from the storage capacitor during reading and writing operations. The data charges on the storage capacitor are periodically refreshed during a refresh operation.
- Memory density is typically limited by a minimum lithographic feature size (F) that is imposed by lithographic processes used during fabrication. For example, one generation of high-density dynamic random access memories (DRAMs), which are capable of storing 512 Megabits of data, require an area of 4 F2 per bit of data. There is a need in the art to provide even higher density memories in order to further increase data storage capacity and reduce manufacturing costs. Increasing the data storage capacity of semiconductor memories requires a reduction in the size of the access transistor and storage capacitor of each memory cell. However, other factors, such as sub-threshold leakage currents, require attention in order to lower the overall power consumed by the integrated circuits. There is also a need in the broader integrated circuit art for dense structures and fabrication techniques.
- The present disclosure, in exemplary embodiments, relates to a vertical transistor, memory cell, device, system and method of forming the same. In one embodiment of the present disclosure, a memory cell is provided. The memory cell includes a pillar of semiconductor material including a plurality of sides extending from a general plane of the substrate. A first source/drain region is formed in the substrate and an access transistor including a body region and a second source/drain region is formed within the pillar.
- In another embodiment of the present disclosure, a memory device is provided that includes an array of memory cells, with each memory cell including a pillar of semiconductor material. The pillar of semiconductor material further includes a plurality of sides that extends from a general plane of the substrate. A first source/drain region is formed in the substrate, and an access transistor including a body region and a second source/drain region are formed within the pillar. The access transistor includes at least a first gate on a first side of the pillar. The memory device further includes a plurality of bit lines implanted into the substrate, with each of the plurality of bit lines being in conductive contact with the first source/drain region of the access transistor of at least a plurality of memory cells in a common column of the array. A plurality of word lines is also disposed generally orthogonal to the plurality of bit lines.
- In a further embodiment of the present disclosure, an integrated circuit is provided. The integrated circuit includes a pillar of semiconductor material integral with and extending generally orthogonal from a general plane of the substrate. The integrated circuit further includes an access transistor including a first source/drain region formed in the substrate and a second source/drain region formed on the pillar. An interconnection line is formed integral to the first source/drain region in the substrate.
- In yet another embodiment of the present disclosure, a vertical memory cell is provided. The vertical memory cell includes a semiconducting pillar extending outwardly from an integrally connected semiconductor substrate. A first source/drain region is formed in the substrate, and a body region and a second source/drain region are formed within the pillar. A first gate is coupled to a first side of the pillar for coupling the first and second source/drain regions together when activated. The vertical memory cell also includes a storage capacitor formed on an extended end of the semiconducting pillar and electrically coupled to the second source/drain region.
- In yet a further embodiment of the present disclosure, a semiconductor substrate is provided. The semiconductor substrate has fabricated thereon a semiconductor memory. The semiconductor memory includes an array of memory cells, with each memory cell including a pillar of semiconductor material including a plurality of sides extending from a general plane of the substrate. The semiconductor memory includes a first source/drain region formed in the substrate, and an access transistor including a body region and a second source/drain region are formed within the pillar. The access transistor includes at least a first gate on a first side of the pillar. A plurality of bit lines is implanted into the substrate, with each of the plurality of bit lines in conductive contact with the first source/drain region of the access transistor of at least a plurality of memory cells in a common column of the array. A plurality of word lines is disposed generally orthogonal to the plurality of bit lines and the plurality of word lines is coupled to the first gates of memory cells immediately adjacent to each of the plurality of word lines.
- In yet another embodiment of the present disclosure, an electronic system is provided and includes an input device, an output device, a memory device, and a processor device coupled to the input, output, and memory devices. At least one of the input, output, memory, and processor devices includes a memory cell, with the memory cell comprising a pillar of semiconductor material including a plurality of sides and extending from a general plane of a substrate. The memory cell further includes a first source/drain region formed in the substrate and an access transistor including a body region and a second source/drain region formed within the pillar.
- In a yet further embodiment of the present disclosure, a method of forming a memory cell is provided. The method includes forming a pillar of semiconductor material including a plurality of sides and extending from a general plane of a substrate. A first source/drain region is formed in the substrate and an access transistor including a body region and a second source/drain region is formed within the pillar.
- In the drawings, which illustrate what is currently considered to be the best mode for carrying out the disclosure:
-
FIG. 1 is a representative graph of sub-threshold leakage current as a function of the gate-to-source voltage of a transistor; -
FIG. 2 is a simplified functional diagram of a dual-gated transistor, in accordance with an embodiment of the present disclosure; -
FIG. 3 is a representative comparative graph of sub-threshold leakage current as a function of the gate-to-source voltage for a single-gated bulk transistor and a dual-gated transistor, in accordance with an embodiment of the present disclosure; -
FIG. 4 is a schematic diagram illustrating a semiconductor memory incorporating a dual-gated transistor, in accordance with an embodiment of the present disclosure; -
FIG. 5 is a perspective view of a portion of a memory incorporating dual-gated transistors, in accordance with an embodiment of the present disclosure; -
FIG. 6 is a plan view generally illustrating memory cells according to one embodiment of the disclosure as viewed from above the structures formed on the substrate; -
FIG. 7 is a cross-sectional view taken along the section line 7-7 ofFIGS. 5 and 6 , in accordance with an embodiment of the present disclosure; -
FIG. 8 is a cross-sectional view taken along the section line 8-8 ofFIGS. 5 and 6 , in accordance with an embodiment of the present disclosure; -
FIG. 9 is a cross-sectional view taken along the section line 9-9 ofFIGS. 5 and 6 , in accordance with an embodiment of the present disclosure; -
FIGS. 10A-10M describe generally various processing techniques of one embodiment of a method of fabricating memory cells, in accordance with an embodiment of the present disclosure; -
FIG. 11 illustrates a semiconductor wafer including one or more memory cells, in accordance with an embodiment of the present disclosure; and -
FIG. 12 is a block diagram of an electronic system including one or more memory cells, in accordance with an embodiment of the present disclosure. - In the following detailed description of the disclosure, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the disclosure may be practiced. The embodiments are intended to describe aspects of the disclosure in sufficient detail to enable those skilled in the art to practice the disclosure. Other embodiments may be utilized and changes may be made without departing from the scope of the present disclosure. In the following description, the terms “wafer” and “substrate” are interchangeably used to refer generally to any structure on which integrated circuits are formed, and also to such structures during various stages of integrated circuit fabrication. Both terms include doped and undoped semiconductors, epitaxial layers of a semiconductor on a supporting semiconductor or insulating material, combinations of such layers, as well as other such structures that are known in the art. The following detailed description is not to be taken in a limiting sense, and the scope of the present disclosure is defined only by the appended claims.
-
FIG. 2 illustrates a simplified functional diagram of a dual-gated transistor, in accordance with an embodiment of the present disclosure. A dual-gatedtransistor 10 includes asemiconductor body 12 having adrain 14 and asource 16 on opposing ends of a channel formed therebetween. Afirst gate 18 and asecond gate 20 provide activation of the dual-gatedtransistor 10. When the dual-gatedtransistor 10 turns off, the sub-threshold current is reduced more quickly as the gate voltages are reduced. Such a reduction is due in part to the fully depleted nature of the dual-gatedtransistor 10. A dual-gated arrangement for a transistor provides improved characteristics over conventional bulk silicon transistors due, in part, to gate electrodes present on both sides of the channel, rather than only on a single side as in a conventional planar bulk silicon transistor. - When a
first gate 18 and asecond gate 20 are present, theelectric field 22 generated by thedrain 14 is better screened from thesource 16 at the end of the channel. Such a screening results in an improved sub-threshold leakage current as illustrated with respect to the representative comparative graph of the sub-threshold leakage current illustrated inFIG. 3 . InFIG. 3 , agraph 30 illustrates a typical leakagecurrent plot 32 of a conventional planar bulk silicon transistor. It should be noted that a conventional bulk silicon transistor atpoint 34, where the gate voltage equals zero, exhibits a significant amount of leakage current in the region below thethreshold line 40. In contrast, a dual-gatedtransistor 10 exhibits a reduced sub-threshold leakage current illustrated with respect to the dual-gated transistor leakagecurrent plot 36, which denotes a significant reduction in leakage current atpoint 38 where the gate voltage equals zero. -
FIG. 4 is a schematic illustrating generally an embodiment of an integrated circuit 100 (also referred to as “circuit 100”), such as a semiconductor memory device, incorporating an array of memory cells provided by the disclosure. InFIG. 4 ,circuit 100 illustrates, by way of example and not limitation, a dynamic random access memory (DRAM), but the disclosure also comprises other integrated circuits including other semiconductor memory devices. In this exemplary embodiment,circuit 100 includes memory cell arrays 110, such as 110A and 110B. Each memory cell array 110 includes M rows and N columns ofmemory cells 112. - In the exemplary embodiment of
FIG. 4 , each memory cell includes anaccess transistor 130 or transfer device, such as an n-channel cell access field-effect transistor (FET) or any other transistor or switching device having more than one control terminal input. More particularly,access transistor 130 includes first and second gate terminals for controlling conduction between its first and second source/drain terminals. -
Access transistor 130 is coupled at a second source/drain terminal to a storage node of astorage capacitor 132. The other terminal ofstorage capacitor 132 is coupled to a reference voltage such as a ground voltage VSS (not shown). Each of the M rows includes one of word lines WL0, WL1 . . . WLm−1, WLm coupled to the first gate terminals ofaccess transistors 130 or to one of the control terminals of an equivalent switching device. Each of the M rows also includes one of word lines R0, R1, R2, . . . , Rm−1, Rm coupled to the second gate terminals ofaccess transistors 130 inmemory cells 112. Thus, the term “word line” includes any interconnection line between gate terminals ofaccess transistors 130 or the control terminals of equivalent switching devices. Each of the N columns includes one of bit lines BL0, BL1 . . . BLn−1, BLn. - Bit lines BL0-BLn function to write data to and read data from
memory cells 112. Word lines WL0-WLm and—R0-Rm function to activateaccess transistors 130 to access a particular row ofmemory cells 112 that is to be written or read. Addressing circuitry facilitates specific access to individual rows of memory cells. For example,address buffer 114controls column decoders 118, which also include sense amplifiers and input/output circuitry that is coupled to bit lines BL0-BLn.Address buffer 114 also controlsrow decoders 116 andcolumn decoders 118 for selectably accessingmemory cells 112 in response to address signals that are provided onaddress lines 120 during read and write operations. The address signals are typically provided by an external controller, such as a microprocessor or other memory controller. Each ofmemory cells 112 has a substantially identical structure and, accordingly, only onememory cell 112 structure is described herein. - In one exemplary mode of operation,
circuit 100 receives an address of aparticular memory cell 112 ataddress buffer 114.Address buffer 114 identifies one of the word lines—WL0-WLm and a corresponding one of—R0-Rm of theparticular memory cell 112 to rowdecoder 116.Row decoder 116 selectively activates the particular word line WL0-WLm and a corresponding one of—R0-Rm to activateaccess transistors 130 of eachmemory cell 112 that is connected to the selected word line pair—WL0-WLm/R0-Rm.Column decoder 118 selects the one of bit lines BL0-BLn of the particularly addressedmemory cell 112. For a write operation, data received by input/output circuitry is coupled to the one of bit lines BL0-BLn and through theaccess transistor 130 to charge or discharge thestorage capacitor 132 of the selectedmemory cell 112 to represent binary data. For a read operation, data stored in the selectedmemory cell 112, as represented by the charge on itsstorage capacitor 132, is coupled to the one of bit lines BL0-BLn, amplified, and a corresponding voltage level is provided to the input/output circuits. - According to one aspect of the disclosure, each of the first and second gates of
access transistor 130 is capable of controlling the conduction between its first and second source/drain terminals, as described below. In this embodiment, parallel switching functionality can be effected between the first and second source/drain terminals ofaccess transistor 130 by independently operating the particular ones of word lines WL0-WLm and corresponding ones of word lines R0-Rm. For example, by independently activating word line WL0 and word line R0, both of which are coupled to the same row ofmemory cells 112, independently controlled inversion channels can be formed in eachcorresponding access transistor 130 by respective first and second gates for allowing conduction between the first and second source/drain regions. - According to another aspect of the disclosure, while each of the first and second gates of
access transistor 130 is capable of controlling the conduction between its first and second source/drain terminals, the first and second gates ofparticular access transistors 130 may be synchronously activated, rather than independently operated. For example, by synchronously activating word line WL0 and word line R0, both of which are coupled to the same row ofmemory cells 112, synchronous inversion channels can be formed in eachcorresponding access transistor 130 by respective first and second gates for allowing conduction between the first and second source/drain regions. - In the present embodiment, synchronous activation and deactivation of the first and second gates allows better control over the potential distributions in the
access transistor 130 when it is in a conductive state. Synchronous activation and deactivation can be used to obtain well-controlled, fully depleted operating characteristics ofaccess transistor 130. - In a further embodiment in which the first and second gates are synchronously activated, different activation voltages may be applied to the first and second gates of the
access transistor 130. For example, different voltages can be provided to synchronously activated word lines WL0 and R0, thereby providing different activation voltages to the first and second gates of theaccess transistor 130 to obtain particular desired operating characteristics. Similarly, different deactivation voltages can be applied to the first and second gates of theaccess transistor 130. For example, different deactivation voltages can be provided to synchronously deactivated word lines WL0 and R0 and corresponding first and second gates ofaccess transistors 130 in order to obtain particular desired operating characteristics. -
FIG. 5 is a perspective view illustrating generally one embodiment of a portion of a memory, in accordance with an embodiment of the present disclosure.FIG. 5 illustrates portions of sixmemory cells 112 a-f, including portions of vertically orientedaccess transistors 130 therein. Conductive segments of bit lines, illustrated herein as buriedbit lines 202, represent particular ones of bit lines BL0-BLn (FIG. 4 ). - In
FIG. 5 , vertically orientedaccess transistors 130 are formed in semiconductor pillars that extend outwardly from anunderlying substrate 210.Substrate 210 includes bulk semiconductor starting material. In one example embodiment, using bulk silicon processing techniques,access transistors 130 include an n+ silicon layer formed from thebulk silicon substrate 210 to produce first source/drain regions 212 ofaccess transistors 130 and integrally formed n++ conductively dopedbit lines 202 defining a particular column ofmemory cells 112. A—p-silicon layer is formed from thesubstrate 210 to form thebody region 214 ofaccess transistor 130, in which inversion channels may be capacitively generated at the sidewalls of the semiconductor pillar under the control of the first and second gates. A further n+ silicon layer is formed from thesubstrate 210 to produce second source/drain region 216 ofaccess transistor 130.Storage capacitors 132 are formed on the second source/drain regions 216. - Thus, as seen from
FIG. 5 ,access transistors 130 are formed as semiconductor pillars extending outwardly fromsubstrate 210 and includingbody regions 214 and first and second source/drain regions bit lines 202 are implanted into thebulk semiconductor substrate 210. - Isolation trenches provide isolation between
access transistors 130 ofadjacent memory cells 112. Columns ofmemory cells 112 are separated by atrench 220 that is subsequently filled with a suitable insulating material such as silicon dioxide. For example,trench 220 provides isolation betweenmemory cells memory cells memory cells 112 are alternatingly separated bytrenches substrate 210 by an underlying insulating layer, described below, and separated from thebody region 214 ofaccess transistors 130 by a gate oxide, also described below. For example,trench 221 provides isolation betweenmemory cells memory cells trench 222 provides isolation betweenmemory cells memory cells Trenches lines 202. - In the present embodiment, first and second word lines 206 and 208, respectively, are each split into separate conductors.
First word line 206 is split into independently operablefirst word lines trench 221 and electrically isolated from each other.Second word line 208 is split into independently operable second word lines 208 a and 208 b, each disposed intrench 222 and electrically isolated from each other, such as by SiO2. Thus, gate regions need not be shared betweenaccess transistors 130 inadjacent memory cells 112 on opposing sides oftrenches - In
FIG. 5 , afirst word line 206 a extends intrench 221 adjacent to thevertical sidewalls 219 of the semiconductor pillars of in-line memory cells FIG. 6 ).First word line 206 b extends intrench 221 adjacent to thevertical sidewalls 219 of the semiconductor pillars of in-line memory cells FIG. 6 ).Second word line 208 a extends intrench 222 adjacent to thevertical sidewalls 219 of the semiconductor pillars of in-line memory cells FIG. 6 ).Second word line 208 b extends intrench 222 adjacent to thevertical sidewalls 219 of the semiconductor pillars of in-line memory cells - Operation of the
access transistor 130 ofmemory cell 112 b, for example, includes operation of thefirst word line 206 b andsecond word line 208 a, as described above. A positive potential is applied to either or both offirst word line 206 b andsecond word line 208 a, as described above, to turn on theaccess transistor 130 ofmemory cell 112 b. - The use of split
first word lines 206 a-b and splitsecond word lines 208 a-b avoids the problem of sub-threshold conduction inaccess transistors 130 in one row while thememory cells 112 in the adjacent row are being addressed. Eachmemory cell 112 is capable of being uniquely addressed by a combination offirst word line 206 andsecond word line 208 voltages. These voltages need not appear on thefirst word line 206 andsecond word line 208 of adjacent rows ofmemory cells 112. -
FIG. 6 is a plan view generally illustrating memory cells according to one embodiment of the disclosure as viewed from above the structures formed on the substrate, in accordance with an embodiment of the present disclosure. Specifically,FIG. 6 illustrates generallymemory cells 112 a-f as viewed from above the structures formed on substrate 210 (FIG. 5 ).FIG. 6 illustrates subsequently formed insulator, such asisolation material 224, formed intrenches 220 to provide isolation betweenmemory cells 112. In this embodiment,first word line 206 is split intofirst word line 206 a andfirst word line 206 b respectively coupled to first gates ofaccess transistors 130 ofmemory cells access transistors 130 ofmemory cells First word line 206 a is also shared between first gates ofother access transistors 130 that are in the same adjacent rows, but coupled to different bit lines 202.First word line 206 a is located intrench 221 that extends between the semiconductor pillars ofmemory cells First word line 206 a is separated bygate oxide 218 from thevertical sidewalls 219 of the semiconductor pillars on each side oftrench 221. - A
second word line 208 is split intosecond word line 208 a andsecond word line 208 b respectively coupled to first gates ofaccess transistors 130 ofmemory cells access transistors 130 ofmemory cells Second word line 208 a is also shared between first gates ofother access transistors 130 that are in the same adjacent rows but coupled to different bit lines 202.Second word line 208 a is located intrench 222 that extends between the semiconductor pillars ofmemory cells Second word line 208 a is separated bygate oxide 218 from thevertical sidewalls 223 of the semiconductor pillars on each side oftrench 222. - As illustrated in the plan view of
FIG. 6 , respective first and second word lines 206 a/206 b and 208 a/208 b are shared betweenadjacent memory cells 112. As a result, only one-half the surface line width of each is allocated to each memory cell. The row pitch of each cell, measured from the centerline offirst word line 206 to the centerline ofsecond word line 208, can be approximately 2 F, where F is a minimum lithographic feature size. F corresponds to the length and width presented by the surface of a minimum-sized semiconductor pillar in eachmemory cell 112. The column pitch of each cell, measured between centerlines ofbit lines 202, can be approximately 2 F. Thus, the surface area of eachmemory cell 112 can be approximately 4 F2. -
FIG. 7 is a cross-sectional view taken along the section line 7-7 ofFIGS. 5 and 6 , in accordance with an embodiment of the present disclosure. InFIG. 7 , respective first and second word lines 206 a, 206 b and 208 a, 208 b (collectively referred to as 206 and 208, respectively) are buried below theactive semiconductor surface 230 of the semiconductor pillar in thememory cells Active semiconductor surface 230 represents an upper semiconductor portion of second source/drain region 216. First and second word lines 206 and 208, respectively, are isolated from adjacent semiconductor pillars bygate oxide 218. First and second word lines 206 and 208, respectively, provide integrally formed first and second gate portions that are capacitively coupled toadjacent body regions 214 ofaccess transistors 130, such as for forming inversion channel regions therein. Arespective bit line 202 is also formed through an implant process and runs the length of thememory cells 112 for that specific column ofmemory cells 112. - In one embodiment, respective first and second word lines 206 and 208 are formed of a refractory metal, such as tungsten or titanium, or can be formed of n+ doped polysilicon. Similarly, other suitable conductors could also be used for first and
second words lines first word line 206 being formed infirst trench 221 and a unitary conductorsecond word line 208 formed insecond trench 222. The unitary conductor first and second word lines 206 and 208, respectively, are then split intoword lines 206 a/206 b and 208 a/208 b. - Burying first and second word lines 206 a/206 b and 208 a/208 b below
active semiconductor surface 230 provides additional space on the upper portion ofmemory cell 112 for formation of storage capacitors 132 (FIG. 5 ). Increasing the area available for formingstorage capacitor 132 increases the possible obtainable capacitance value ofstorage capacitor 132. In one embodiment,storage capacitor 132 is a stacked capacitor that is formed using any of the many capacitor structures and process sequences known in the art. Other techniques could also be used for implementingstorage capacitor 132. Contacts to the first and second word lines 206 and 208, respectively, can be made outside of the memory cell array 110. -
FIG. 8 is a cross-sectional view taken along the section line 8-8 ofFIGS. 5 and 6 , in accordance with an embodiment of the present disclosure. InFIG. 8 , the section line 8-8 is taken along an offset of a column ofmemory cells 112 wherein the implanted first source/drain region 212 and the implantedbit line 202 are absent. -
FIG. 9 is a cross-sectional view taken along the section line 9-9 ofFIGS. 5 and 6 , in accordance with an embodiment of the present disclosure. InFIG. 9 , the section line 9-9 is taken along a cross section of a row ofmemory cells 112 to illustrate the implanted first source/drain region 212 and the implantation of the bit lines 202. In the present embodiment, an implant process is performed into thetrench 220 and concurrently creates first source/drain region 212 andbit line 202. It should be noted that such an implantation process for forming thebit line 202 and the first source/drain region 212 eliminates the more complex and costly processes associated with epitaxial growth as previously used for the formation ofbit lines 202 that were formed entirely under the silicon pillar. In the present embodiment, thebit line 202 is offset from the column ofvertical memory cells 112 and the first source/drain region 212 is also offset and formed under a portion of the silicon pillar. -
FIGS. 10A-10M describe generally various processing techniques of one embodiment of a method of fabricatingmemory cells 112, such as shown inFIGS. 5-9 , using bulk silicon processing techniques. In the present embodiment, the vertical transistor ofmemory cell 112 is formed from a silicon pillar that is etched from thesubstrate 210. As identified above, the vertical transistor ofmemory cell 112 includes first and second source/drain regions 212 (not shown inFIG. 10A ), 216 and abody region 214, all of which are formed from the silicon pillar formed from thesubstrate 210. Abulk silicon substrate 210 starting material is used. A second source/drain region 216 of n+ silicon is formed, such as by ion-implantation into abody region 214 to a thickness that can be approximately between 0.2 and 0.5 μm. The second source/drain region 216 is formed through ion-implantation of a sheet of n+ implant along the surface of thesubstrate 210. Abody region 214 is defined to a thickness that can be about 0.48 μm and may include a dopant consistent with thebulk silicon substrate 210. - In
FIG. 10B , an SiO2 thinpad oxide layer 512 is formed on second source/drain region 216, such as by chemical vapor deposition (CVD). In one embodiment, thinpad oxide layer 512 can be approximately 10 nm in thickness. A thin silicon nitride (Si3N4)layer 514 is formed on thinpad oxide layer 512, such as by CVD. In one embodiment,silicon nitride layer 514 can be approximately 100 nm in thickness. - In
FIG. 10C , photoresist is applied and selectively exposed to provide a mask for the directional etching oftrenches 220, such as by reactive ion etching (RIE). The directional etching results in a plurality of column bars 516 containing the stack ofsilicon nitride layer 514, thinpad oxide layer 512, second source/drain region 216, andbody region 214.Trenches 220 are etched to a depth that is sufficient to reach asurface 518 ofsubstrate 210, defining the bottom of thebody region 214. Column bars 516 are oriented in the direction of bit lines 202 (FIG. 5 ). In one embodiment, column bars 516 have a surface line width of approximately one micron or less. The depth and width of eachtrench 220 can be approximately equal to the line width of column bars 516. - In
FIG. 10D , the photoresist is removed.Isolation material 224, such as SiO2, is deposited to fill thetrenches 220. The working surface is then planarized, such as by chemical mechanical polishing/planarization (CMP). -
FIG. 10E illustrates the view ofFIG. 10D after clockwise rotation by ninety degrees. InFIG. 10E , a photoresist material is applied and selectively exposed to provide a mask for the directional etching oftrenches FIG. 5 ). Formingtrenches FIG. 10C ). Formingtrenches isolation material 224 disposed between column bars 516. - More particularly,
trenches silicon nitride layer 514, thinpad oxide layer 512, second source/drain region 216, andbody region 214.Trenches isolation material 224 between column bars 516. In one embodiment, after etchingsilicon nitride layer 514 of column bars 516, a nonselective dry etch is used to remove theisolation material 224 between column bars 516 and also the thinpad oxide layer 512, second source/drain region 216,body region 214, and a portion of first source/drain region 212 (FIG. 10G ) of column bars 516. The directional etching oftrenches - More particularly,
trenches silicon nitride layer 514, thinpad oxide layer 512, second source/drain region 216, andbody region 214.Trenches isolation material 224 between column bars 516. In one embodiment, after etchingsilicon nitride layer 514 of column bars 516, a nonselective dry etch is used to remove theisolation material 224 between column bars 516 and also the thinpad oxide layer 512, second source/drain region 216,body region 214, and a portion of first source/drain region 212 (FIG. 10G ) of column bars 516. The directional etching oftrenches -
FIG. 10G illustrates the view ofFIG. 10F , which is reversed in rotation back to the orientation ofFIG. 10C . InFIG. 10G , a maskingmaterial 520 is applied and selectively formed to provide a mask on a portion of the top of eachaccess transistor 130 and in a portion oftrench 220. An implantation andannealing process 522 forms a buriedbit line 202 and the first source/drain region 212. Because of thetrenches bit line 202 will be narrower when adjacent to the first source/drain region 212 of theaccess transistor 130 and wider in thetrench -
FIG. 10H illustrates the view ofFIG. 1 OF after clockwise rotation by ninety degrees. InFIG. 10H , the masking material 520 (FIG. 10G ) is removed and isolation material such as SiO2 is deposited to fill the trenches 220 (FIG. 10G ), 221, and 222. The working surface is then planarized, such as by CMP.Trenches - In
FIG. 10H , a conformalsilicon nitride layer 540 is formed, such as by CVD.Nitride layer 540 is directionally etched, such as by RIE, to leave resulting portions ofnitride layer 540 only onvertical sidewalls 219 of thebars 532 intrenches nitride layer 540 is about 20 nm. Anoxide layer 542 is formed, such as by thermal growth, at the base portions oftrenches Oxide layer 542 insulates theunderlying bit lines 202 from structures subsequently formed intrenches oxide layer 542, remaining portions ofnitride layer 540 are removed. - In
FIG. 10I , agate oxide 218 is formed on the exposedvertical sidewalls 219 portions intrenches drain region 216 andbody region 214. In one embodiment,gate oxide 218 is a high-quality thin oxide layer that is thermally grown on the exposedvertical sidewalls 219 intrenches - In
FIG. 10J , aconductive layer 544 is formed over the working surface of the wafer, including fillingtrenches layer 544 is formed by CVD of a refractory metal, such as tungsten. In another embodiment,layer 544 is formed by CVD of n+ polysilicon. - In
FIG. 10K , CMP or other suitable planarization process is used to remove portions oflayer 544 above the interface between thinpad oxide layer 512 and second source/drain region 216. Thinpad oxide layer 512 andsilicon nitride layer 514 are also removed during this planarization step. As a result of the planarization step, first and second word lines 206 and 208 are formed inrespective trenches - In
FIG. 10L , the unitary first and second word lines 206 and 208, respectively, are split to form first and second word lines 206 a/206 b and 208 a/208 b. One method for splitting the unitary word lines may include depositing a refractory metal, n+ polysilicon, or other conductor as a conformal fill that can have a thickness of less than or equal to approximately F/3, where F is the minimum feature size. The conformal fill is then directionally etched, thereby leaving resulting split conductor first and second word lines 206 a/206 b and 208 a/208 b adjacent to thevertical sidewall 219, separated therefrom bygate oxide 218. An oxide fill is formed between the respective split first and second word lines 206 a/206 b and 208 a/208 b. -
FIG. 10M illustrates one embodiment in which an insulatinglayer 546, such as SiO2, is formed on the working surface of a wafer, such as by CVD. The structure thus formed is then processed to fabricate a storage capacitor 132 (FIG. 5 ) on the working surface of the wafer, using known techniques, followed by conventional back end of line (BEOL) procedures. - As shown in
FIG. 11 , thememory cell 112, as described above, is fabricated on asemiconductor wafer 560. It should be understood that thememory cell 112 may also be fabricated on a wide variety of other semiconductor substrates. - As shown in
FIG. 12 , anelectronic system 570 includes aninput device 572, anoutput device 574, aprocessor device 576, and amemory device 578 that incorporate thememory cell 112 as described with respect to one or more embodiments of the present disclosure. Also, it should be noted that thememory cell 112 may be incorporated into any one of the input, output, andprocessor devices - Although the present disclosure has been described with reference to particular embodiments, the invention is not limited to these described embodiments. Rather, the invention is limited only by the appended claims, which include within their scope all equivalent devices or methods that operate according to the principles of the disclosure as described.
Claims (20)
1. A method of using a semiconductor device, the method comprising:
controlling conductive characteristics of an access transistor with a first signal applied to a first gate of the access transistor disposed on a first side of a pillar configured as a vertical transistor with a first source/drain region coupled to a bit line in a substrate, a body region over the first source/drain region, and a second source/drain region above the body region; and
modifying the conductive characteristics of the access transistor with a second signal applied to a second gate of the access transistor disposed on a second side of the pillar.
2. The method of claim 1 , wherein the first signal and the second signal are asynchronously asserted.
3. The method of claim 1 , wherein the first signal and the second signal are asynchronously negated.
4. The method of claim 1 , wherein the first signal and the second signal are synchronously applied.
5. The method of claim 4 , wherein the first signal and the second signal are applied with different activation voltages.
6. The method of claim 1 , wherein the first signal and the second signal are applied with different activation voltages.
7. The method of claim 1 , wherein the first signal and the second signal are applied with different activation voltages.
8. A method of using a semiconductor device, the method comprising:
applying a first signal to a first gate of a vertically oriented access transistor formed in a semiconductor pillar that extends outwardly from an underlying substrate; and
applying a second signal to a second gate of the vertically oriented transistor, the semiconductor pillar including a first source/drain region separated from a second source/drain region by a body region, and the first gate and the second gate being located on opposing sides of the semiconductor pillar.
9. The method of claim 8 , wherein applying the first signal to a first gate includes applying a positive potential to the first gate.
10. The method of claim 9 , wherein applying the second signal to a first gate includes applying a positive potential to the second gate.
11. The method of claim 10 , wherein applying the positive potential to the first gate and the positive potential to the second gate both occur at the same time.
12. The method of claim 8 , wherein applying a first signal to a first gate of a vertically oriented access transistor includes applying the first signal to a word line coupled to the first gate of the vertically oriented access transistor.
13. The method of claim 12 , wherein the wordline includes a pair of independently operable wordlines that independently apply the first signal to the first gate of the vertically oriented access transistor and another gate of a neighboring vertically oriented access transistor separated by an isolation trench.
14. A method of using a semiconductor device, the method comprising:
applying a first signal to at least one independently operable word line of a first word line pair disposed in a trench between a first row of vertically oriented access transistors and a second row of vertically oriented access transistors; and
applying a second signal to at least one independently operable word line of a second word line pair disposed in another trench between the first row of vertically oriented access transistors and a third row of vertically oriented access transistors, wherein each vertically oriented access transistor includes a first source/drain region and a second source/drain region separated by a body region in a semiconductor pillar extending outwardly from an underlying substrate.
15. The method of claim 14 , wherein applying the first signal to at least one independently operable word line of the first word line pair and applying the second signal to the at least one operably wordline of the second word line pair occur at a same time for a common vertically oriented access transistor.
16. The method of claim 14 , further comprising storing a charge in at least one storage capacitor disposed on the second source/drain region of its respective vertical oriented access transistor.
17. The method of claim 14 , further comprising addressing at least one memory cell in an array of memory cells with a combination of applying the first signal to the independently operably wordline of the first word line pair that is coupled to a first gate of a first vertically oriented access transistor, and applying the second signal to the independently operably wordline of the second word line pair that is coupled to a second gate of the first vertically oriented access transistor.
18. The method of 17, further comprising reading data from at least one storage capacitor disposed on the second source/drain region of its respective vertical oriented access transistor of the at least one memory cell.
19. The method of 17, further comprising writing data to at least one storage capacitor disposed on the second source/drain region of its respective vertical oriented access transistor of the at least one memory cell.
20. The method of claim 17 , applying a third signal to at least one bit line formed under at least a portion of a column of vertically oriented access transistors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/725,776 US20150262643A1 (en) | 2005-06-13 | 2015-05-29 | Vertical transistor, memory cell, device, system and method of forming same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/151,219 US7679118B2 (en) | 2005-06-13 | 2005-06-13 | Vertical transistor, memory cell, device, system and method of forming same |
US12/724,833 US8461002B2 (en) | 2005-06-13 | 2010-03-16 | Vertical transistor, memory cell, device, system and method of forming same |
US13/908,473 US9048337B2 (en) | 2005-06-13 | 2013-06-03 | Vertical transistor, memory cell, device, system and method of forming same |
US14/725,776 US20150262643A1 (en) | 2005-06-13 | 2015-05-29 | Vertical transistor, memory cell, device, system and method of forming same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/908,473 Division US9048337B2 (en) | 2005-06-13 | 2013-06-03 | Vertical transistor, memory cell, device, system and method of forming same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150262643A1 true US20150262643A1 (en) | 2015-09-17 |
Family
ID=37523377
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/151,219 Active 2026-04-18 US7679118B2 (en) | 2005-06-13 | 2005-06-13 | Vertical transistor, memory cell, device, system and method of forming same |
US12/724,833 Active 2025-09-22 US8461002B2 (en) | 2005-06-13 | 2010-03-16 | Vertical transistor, memory cell, device, system and method of forming same |
US13/908,473 Active US9048337B2 (en) | 2005-06-13 | 2013-06-03 | Vertical transistor, memory cell, device, system and method of forming same |
US14/725,776 Abandoned US20150262643A1 (en) | 2005-06-13 | 2015-05-29 | Vertical transistor, memory cell, device, system and method of forming same |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/151,219 Active 2026-04-18 US7679118B2 (en) | 2005-06-13 | 2005-06-13 | Vertical transistor, memory cell, device, system and method of forming same |
US12/724,833 Active 2025-09-22 US8461002B2 (en) | 2005-06-13 | 2010-03-16 | Vertical transistor, memory cell, device, system and method of forming same |
US13/908,473 Active US9048337B2 (en) | 2005-06-13 | 2013-06-03 | Vertical transistor, memory cell, device, system and method of forming same |
Country Status (1)
Country | Link |
---|---|
US (4) | US7679118B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI742657B (en) * | 2017-06-29 | 2021-10-11 | 美商美光科技公司 | Memory arrays comprising vertically-alternating tiers of insulative material and memory cells |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7679118B2 (en) * | 2005-06-13 | 2010-03-16 | Micron Technology, Inc. | Vertical transistor, memory cell, device, system and method of forming same |
US8354311B2 (en) | 2006-04-04 | 2013-01-15 | Micron Technology, Inc. | Method for forming nanofin transistors |
US7425491B2 (en) | 2006-04-04 | 2008-09-16 | Micron Technology, Inc. | Nanowire transistor with surrounding gate |
US8734583B2 (en) * | 2006-04-04 | 2014-05-27 | Micron Technology, Inc. | Grown nanofin transistors |
US7491995B2 (en) * | 2006-04-04 | 2009-02-17 | Micron Technology, Inc. | DRAM with nanofin transistors |
US8537610B2 (en) * | 2009-07-10 | 2013-09-17 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device |
TWI415247B (en) * | 2010-12-15 | 2013-11-11 | Powerchip Technology Corp | Dynamic random access memory cell and array having vertical channel transistor |
TWI499006B (en) * | 2011-10-07 | 2015-09-01 | Etron Technology Inc | Dynamic memory structure |
US9773888B2 (en) | 2014-02-26 | 2017-09-26 | Micron Technology, Inc. | Vertical access devices, semiconductor device structures, and related methods |
US10446606B2 (en) | 2017-07-19 | 2019-10-15 | International Business Machines Corporation | Back-side memory element with local memory select transistor |
US10615225B2 (en) * | 2018-08-22 | 2020-04-07 | International Business Machines Corporation | Multilayer back end of line (BEOL)-stackable cross-point memory array with complementary pass transistor selectors |
CN112997317A (en) | 2018-10-09 | 2021-06-18 | 美光科技公司 | Devices including vertical transistors and related methods |
US11139396B2 (en) | 2018-10-09 | 2021-10-05 | Micron Technology, Inc. | Devices including vertical transistors, and related methods |
US20230240066A1 (en) * | 2022-01-26 | 2023-07-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Vertical dram structure and method of formation |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0333426B1 (en) * | 1988-03-15 | 1996-07-10 | Kabushiki Kaisha Toshiba | Dynamic RAM |
JP3403231B2 (en) * | 1993-05-12 | 2003-05-06 | 三菱電機株式会社 | Semiconductor device and manufacturing method thereof |
JP3745392B2 (en) * | 1994-05-26 | 2006-02-15 | 株式会社ルネサステクノロジ | Semiconductor device |
JP2692639B2 (en) * | 1995-03-10 | 1997-12-17 | 日本電気株式会社 | Manufacturing method of nonvolatile semiconductor memory device |
US5693552A (en) * | 1996-04-29 | 1997-12-02 | United Microelectronics Corporation | Method for fabricating read-only memory device with a three-dimensional memory cell structure |
US20070004134A1 (en) * | 1996-05-29 | 2007-01-04 | Vora Madhukar B | Vertically integrated flash EPROM for greater density and lower cost |
US5990509A (en) * | 1997-01-22 | 1999-11-23 | International Business Machines Corporation | 2F-square memory cell for gigabit memory applications |
US6150687A (en) * | 1997-07-08 | 2000-11-21 | Micron Technology, Inc. | Memory cell having a vertical transistor with buried source/drain and dual gates |
US6072209A (en) * | 1997-07-08 | 2000-06-06 | Micro Technology, Inc. | Four F2 folded bit line DRAM cell structure having buried bit and word lines |
US6097065A (en) * | 1998-03-30 | 2000-08-01 | Micron Technology, Inc. | Circuits and methods for dual-gated transistors |
US6134175A (en) * | 1998-08-04 | 2000-10-17 | Micron Technology, Inc. | Memory address decode array with vertical transistors |
US6320222B1 (en) * | 1998-09-01 | 2001-11-20 | Micron Technology, Inc. | Structure and method for reducing threshold voltage variations due to dopant fluctuations |
US6104068A (en) * | 1998-09-01 | 2000-08-15 | Micron Technology, Inc. | Structure and method for improved signal processing |
US6355520B1 (en) * | 1999-08-16 | 2002-03-12 | Infineon Technologies Ag | Method for fabricating 4F2 memory cells with improved gate conductor structure |
KR100652370B1 (en) * | 2000-06-15 | 2006-11-30 | 삼성전자주식회사 | Semiconductor memory device removing floating body effect and method of fabricating the same |
US7221017B2 (en) * | 2002-07-08 | 2007-05-22 | Micron Technology, Inc. | Memory utilizing oxide-conductor nanolaminates |
US6794699B2 (en) * | 2002-08-29 | 2004-09-21 | Micron Technology Inc | Annular gate and technique for fabricating an annular gate |
US7205598B2 (en) * | 2002-08-29 | 2007-04-17 | Micron Technology, Inc. | Random access memory device utilizing a vertically oriented select transistor |
US7303833B2 (en) * | 2004-12-17 | 2007-12-04 | Corning Incorporated | Electrolyte sheet with a corrugation pattern |
US7326611B2 (en) * | 2005-02-03 | 2008-02-05 | Micron Technology, Inc. | DRAM arrays, vertical transistor structures and methods of forming transistor structures and DRAM arrays |
US7371627B1 (en) * | 2005-05-13 | 2008-05-13 | Micron Technology, Inc. | Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines |
US7679118B2 (en) | 2005-06-13 | 2010-03-16 | Micron Technology, Inc. | Vertical transistor, memory cell, device, system and method of forming same |
-
2005
- 2005-06-13 US US11/151,219 patent/US7679118B2/en active Active
-
2010
- 2010-03-16 US US12/724,833 patent/US8461002B2/en active Active
-
2013
- 2013-06-03 US US13/908,473 patent/US9048337B2/en active Active
-
2015
- 2015-05-29 US US14/725,776 patent/US20150262643A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI742657B (en) * | 2017-06-29 | 2021-10-11 | 美商美光科技公司 | Memory arrays comprising vertically-alternating tiers of insulative material and memory cells |
TWI774549B (en) * | 2017-06-29 | 2022-08-11 | 美商美光科技公司 | Memory arrays comprising vertically-alternating tiers of insulative material and memory cells |
US12004354B2 (en) | 2017-06-29 | 2024-06-04 | Micron Technology, Inc. | Memory arrays comprising vertically-alternating tiers of insulative material and memory cells and methods of forming a memory array comprising memory cells individually comprising a transistor and a capacitor |
Also Published As
Publication number | Publication date |
---|---|
US20060278910A1 (en) | 2006-12-14 |
US20100173460A1 (en) | 2010-07-08 |
US20130258756A1 (en) | 2013-10-03 |
US7679118B2 (en) | 2010-03-16 |
US9048337B2 (en) | 2015-06-02 |
US8461002B2 (en) | 2013-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9048337B2 (en) | Vertical transistor, memory cell, device, system and method of forming same | |
US7489002B2 (en) | Memory having a vertical transistor | |
US7015525B2 (en) | Folded bit line DRAM with vertical ultra thin body transistors | |
US6504201B1 (en) | Memory cell having a vertical transistor with buried source/drain and dual gates | |
US5909618A (en) | Method of making memory cell with vertical transistor and buried word and body lines | |
US6881627B2 (en) | Flash memory with ultra thin vertical body transistors | |
US6803278B2 (en) | Method of forming memory cells in an array | |
US7601595B2 (en) | Surround gate access transistors with grown ultra-thin bodies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |