US20150136107A1 - Compound bow with rigid deflecting stop - Google Patents
Compound bow with rigid deflecting stop Download PDFInfo
- Publication number
- US20150136107A1 US20150136107A1 US14/589,983 US201514589983A US2015136107A1 US 20150136107 A1 US20150136107 A1 US 20150136107A1 US 201514589983 A US201514589983 A US 201514589983A US 2015136107 A1 US2015136107 A1 US 2015136107A1
- Authority
- US
- United States
- Prior art keywords
- string
- bow
- stop
- deflecting
- limb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title description 5
- 238000000034 method Methods 0.000 abstract description 2
- 238000010276 construction Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41B—WEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
- F41B5/00—Bows; Crossbows
- F41B5/10—Compound bows
- F41B5/105—Cams or pulleys for compound bows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41B—WEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
- F41B5/00—Bows; Crossbows
- F41B5/10—Compound bows
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S124/00—Mechanical guns and projectors
- Y10S124/90—Limb tip rotatable element structure
Definitions
- Embodiments of the present invention relate to a bow, for example a sports or hunting bow or a crossbow.
- the principle common to the aforementioned pieces of sports or hunting equipment is that an archer draws a string by means of one or more elastic elements, so-called limbs, and then lets it go.
- the string here accelerates an arrow in the direction of a target.
- Modern bows or crossbows have little in common with the examples which are known from history.
- the variation in force when the string is drawn has, in the meantime, been adjusted optimally to the envisaged use. Therefore for example the force which has to be applied in order to draw a hunting bow in the first instance increases in relation to the deflection of the string and decreases again as the deflection of the string increases. In other words, in the first instance a comparatively large force is necessary in order to deflect the string even just by small amounts.
- the geometry and method of mounting the string and cable pulleys here determine, in addition to other parameters, essentially the variation in force of the bow.
- the geometry of the string pulleys and of the cable pulleys can result, in particular, in the string no longer being subjected to any restoring force in the case of an excessively large amount of deflection, and therefore the drawn bow remains in its drawn state even in the cases where the archer lets go of the drawn string.
- This effect is also referred to by the term “cocking”. Even just a slight action or movement can result in a sudden release of drawing tension from a bow drawn in such a way.
- a type 1 shoot-through bow if the ends of the compensating cables are fitted on the limbs on one side, i.e. if the first end of a compensating cable runs on a cable pulley and the other end of the compensating cable is fixed on the limb opposite.
- This type of bow is also referred to, inter alia, as a twin-cam bow.
- the compensating cables in contrast, are not fastened on the limb; rather, they run over the cable pulleys on both sides of the bow.
- This is a special embodiment of the twin-cam bow also known as a binary-cam bow.
- German patent DE 10 2008 063 388 discloses the practice, for shoot-through bows, of having a deflecting stop strike against a compensating cable.
- the disadvantage here is that the rotary position of the string pulley at maximum deflection, on account of the compliance of the compensating cable against which the deflecting stop strikes, is given only in the presence of comparatively high tolerance. There is no firmly defined stop, i.e. a precise rotary position of the string pulley in relation to the limb.
- the bow according to the invention has a centrepiece, two flexurally elastic limbs, a string and at least one string pulley, mounted in one end of a limb and intended for accommodating the string.
- the bow also contains at least two cable pulleys, connected to the string pulley and intended for accommodating and guiding compensating cables, wherein in each case at least one cable pulley is arranged on both sides of the string pulley, and wherein the subassembly made up of the string pulley and cable pulleys is mounted in a rotatable manner in each case, and at least one deflecting stop is present for the purpose of limiting the deflection of the string.
- the deflecting stop when the string is deflected, strikes against a limb or against a stop element connected rigidly to the limb.
- the stop element may also be a spacer bolt connected rigidly to a limb.
- the invention can be realized, in principle, using just one of the deflecting stops described.
- the deflecting stop here may be formed in one piece with the subassembly made up of the string pulley and cable pulleys or may be formed in one piece in a string pulley or a cable pulley. In addition, it is also conceivable to realize the deflecting stop as a component in more than one piece.
- the deflecting stop described can advantageously be used in various compound bows or cam systems, for example binary, one and a half, solo-cam or two-cam systems and the different variants thereof.
- At least one compensating cable to run between that side of the deflecting stop on which the latter is connected to the subassembly made up of the string pulley and cable pulleys and that side of the deflecting stop which strikes against the limb or the stop element.
- the deflecting stop may be configured such that it exhibits a recess into which the compensating cable can enter when the bow is drawn.
- the deflecting stop further exhibits an extension which, when the bow is drawn, moves past the compensating cable and strikes, by way of an end side, against a limb or a part connected rigidly to the limb. It is thus possible for the deflecting stop described to be configured, for example, in the form of a large L, wherein it has the short end of the L fastened on the subassembly made up of the string pulley and cable pulleys, and wherein the end of the long side of the L strikes against the limb or the component connected rigidly thereto.
- the deflecting stop For adjustment capability of the deflecting stop, it is possible here to adjust, in particular, the length of the long side of the L. This is possible in a particularly straightforward manner, for example, in that the short side of the L has a threaded bore into which is screwed a screw—possibly secured by lock nuts—as the long side of the L. Straightforward rotation of the screw thus makes it possible to adjust the position of the deflecting stop.
- the fastening position defines the position of the deflecting stop relative to the element on which the deflecting stop is fastened.
- the maximum deflection of the string can be varied not just by the fastening position of the deflecting stop, but also by an alternative adjustment of the deflecting stop. It is thus conceivable, for example, to arrange the deflecting stop as a threaded screw in a corresponding threaded bore in the subassembly made up of the string and cable pulleys, and therefore the length of the deflecting stop can be adjusted by straightforward rotation in the thread.
- the maximum deflection of the string can also be varied by adjustment of the stop element.
- the bow may be a twin-cam bow, i.e. a type 1 bow.
- the bow may also be a binary-cam bow, i.e. a type 2 bow.
- the bow is a shoot-through bow with shoot-through centrepiece.
- a shoot-through centrepiece is a centrepiece in the case of which the arrow, rather than being moved past the centrepiece, can be guided through an opening provided in the centrepiece itself. This gives a greater range of possibilities for configuring the centrepiece.
- the shoot-through centrepiece is formed symmetrically in relation to a plane which is formed by the string when the bow is drawn, it is possible for the bow according to the invention to be further optimized in respect of its behaviour during shooting.
- the improved dynamic behaviour of the bow can be attributed in particular to the fact that the aforementioned symmetrical configuration of the shoot-through centrepiece means that the bow is, in practice, of fully symmetrical construction.
- torques to which the bow could be subjected as a result of forces of inertia in particular from the limbs and the centrepiece are reduced to a considerable extent, and shooting is more stable overall. Lateral deformation of the shoot-through centrepiece under the action of the forces emanating from the drawn limbs can also be effectively reduced in this way.
- the above described shoot-through centrepiece can be used in various compound bows or cam systems, for example binary, one and a half, solo-cam or two-cam systems, and the different variants thereof, with or without the deflecting stop described above.
- additional elements can be used to position the compensating cables such that the arrow can be shot through between the compensating cables without obstruction.
- additional elements can be used to position the compensating cables such that the arrow can be shot through between the compensating cables without obstruction.
- a cable spreader of which the U-shaped construction gives rise to an increased spacing between the compensating cables.
- string stoppers which are in contact with the string in the undrawn state and, when the string is released, can also be used to reduce vibration.
- reverse roller guards or reverse assist roller guards which guide the compensating cables in a fixed position over rollers.
- the string stoppers and the reverse roller guards may also be realized by a composite component, wherein this may be in one or more parts, and/or may also be adjustable.
- FIG. 1 shows a side view of a schematic illustration of a type 1 shoot-through bow in the undrawn state
- FIG. 2 shows a straightforward embodiment of a centrepiece of a shoot-through bow
- FIG. 3 shows a plan view of a centrepiece of a shoot-through bow embodied as a shoot-through centrepiece
- FIG. 4 shows the shoot-through centrepiece from FIG. 3 with four compensating cables and two cable spreaders
- FIG. 5 shows a detail-form view of the left-hand string and cable pulleys of the shoot-through bow from FIG. 1 ,
- FIG. 6 shows a detail-form view of the right-hand string and cable pulleys of the shoot-through bow from FIG. 1 ,
- FIG. 7 shows the shoot-through bow from FIG. 1 , likewise in a side view, in the fully drawn state
- FIG. 8 shows a detail-form view of the left-hand string and cable pulleys of the shoot-through bow from FIG. 7 ,
- FIG. 9 shows a detail-form view of the right-hand string and cable pulleys of the shoot-through bow from FIG. 7 .
- FIG. 10 shows a side view of a type 2 shoot-through bow in the undrawn state
- FIG. 11 shows a detail-form view of the left-hand string and cable pulleys of the shoot-through bow from FIG. 10 .
- FIG. 12 shows a detail-form view of the right-hand string and cable pulleys of the shoot-through bow from FIG. 10 .
- FIG. 13 shows a plan view of the shoot-through bow from FIG. 10 .
- FIG. 14 shows a side view of the shoot-through bow from FIG. 10 in the fully drawn state
- FIG. 15 shows a detail-form view of the left-hand string and cable pulleys of the shoot-through bow from FIG. 14 ,
- FIG. 16 shows a detail-form view of the right-hand string and cable pulleys of the shoot-through bow from FIG. 14 ;
- FIG. 17 shows a side view of a schematic illustration of a bow in accordance with embodiments of the present invention in an undrawn state
- FIG. 18 shows a side view of a schematic illustration of a bow in accordance with embodiments of the present invention in a drawn state
- FIG. 19 shows a detail-form view of exemplary pulleys of the bow shown in FIG. 17 and FIG. 18 in an undrawn state
- FIG. 20 shows a detail-form view of exemplary pulleys of the bow shown in FIG. 17 and FIG. 18 in a drawn state.
- FIG. 1 shows a schematic illustration of an exemplary embodiment of an undrawn type 1 bow according to the invention having the centrepiece 1 followed by the two limbs 2 and 3 .
- the string pulleys 4 and 5 are arranged in a rotatable manner at each of the ends of the limbs 2 and 3 .
- two cable pulleys are connected rigidly to the string pulleys 4 and 5 , wherein the cable pulleys which can be seen in FIG. 1 are designated by 6 and 7 .
- the string 8 here runs in a first groove on the string pulleys 4 and 5
- the compensating cables 9 and 10 run in a second groove and third groove, respectively, on the cable pulleys 6 and 7 .
- one deflecting stop 11 and 12 is mounted on the rigidly interconnected string and cable pulleys 6 and 7 .
- the deflecting stop 11 or 12 here serves to limit the drawing movement of the bow.
- the stop elements 13 and 14 may also be fitted on the limbs (cf. FIG. 7 ).
- FIG. 2 contains a centrepiece 1 of a shoot-through bow embodied with an aperture 101 on one side.
- the arrow is shot, the arrow is moved past the centrepiece 1 in the region of the aperture 101 , and its trajectory is not obstructed here.
- FIG. 3 illustrates a centrepiece 1 of a shoot-through bow in the form of a shoot-through centrepiece.
- the arrow during shooting, is moved through the mirror-symmetrical aperture 102 of the shoot-through centrepiece.
- the symmetrical aperture 102 of the shoot-through centrepiece results in the avoidance of torsion of the bow as it is drawn.
- FIG. 4 shows the centrepiece 1 from FIG. 3 , the four compensating cables 9 a , 9 b and 10 a, 10 b also being depicted.
- FIG. 4 also contains two cable spreaders 103 and 104 , which move the compensating cables 9 a, 9 b and 10 a, 10 b from the spacing d.sub.1 to the spacing d.sub.2 in the region of the symmetrical aperture 102 . This makes it possible for the arrow, during shooting, also to be guided past the compensating cables 9 a, 9 b and 10 a, 10 b.
- FIG. 5 contains the detail A from FIG. 1 , the left-hand string and cable pulleys 4 and 6 of the shoot-through bow being illustrated.
- FIG. 5 also shows, inter alia, the fastening of one end of the compensating cable 10 on the limb 2 .
- the stop elements 13 and 14 can be fitted on the limbs (cf. FIG. 7 ).
- the deflecting stop 11 is positioned in a slot 15 and can be fastened in a position which can be freely selected within the slot 15 . It is thus possible to change the maximum deflection comparatively quickly within a certain framework.
- the string 8 runs part of the way around the string pulley 4 and, as illustrated here, can have its end fastened on a hook 17 , which is integrated in the string pulley 4 .
- the compensating cable 9 can also be guided, for example, through the string pulley 4 , via the bore 19 , and thus fastened.
- FIG. 6 illustrates the detail B from FIG. 1 , the string and cable pulleys 5 and 7 on the right-hand side of the shoot-through bow being shown here.
- the deflecting stop 12 here can be positioned, and fastened, in the slot 16 .
- the end of the compensating cable 9 is fastened on the limb 3 .
- the string 8 encircles part of the string pulley 5 .
- the end of the string 8 is fastened on the hook 18 .
- the limb 3 may also have the stop element 14 .
- the compensating cable 10 is fitted on the protuberance 20 on the string pulley 7 .
- FIG. 7 shows the type 1 shoot-through bow in the fully drawn state.
- the archer draws the string 8 usually with one hand, while he uses the other hand to hold the centrepiece 1 .
- the string pulleys 4 and 5 move together with the cable pulleys 6 and 7 , a desired variation in force and displacement taking place.
- the deflecting stops 11 and 12 are in contact with the stop elements 13 and 14 fitted on the two limbs 2 and 3 , and this therefore prevents the shoot-through bow from being drawn further.
- FIG. 8 contains the detail C from FIG. 7
- FIG. 9 shows the detail D from FIG. 7
- the compensating cables 9 and 10 when the bow is fully drawn, are located approximately one above the other.
- the deflecting stops 11 and 12 butt against the two stop elements 13 and 14 of the limbs 2 and 3 .
- FIG. 10 shows a type 2 shoot-through bow.
- the limbs 2 and 3 , the string pulleys 4 and 5 and the cable pulleys 6 and 7 are arranged in a manner comparable to that for the type 1 shoot-through bow.
- the compensating cables 9 and 10 rather than being connected to the limbs 2 and 3 , run on the grooves of the cable pulleys 6 and 7 .
- the deflecting stops on each side may be formed here by two rollers 21 and 22 , which are mounted, for example in a rotatable manner.
- deflecting stops wherein it is necessary in each case for it to be possible for the deflecting stops to strike against the limbs of the shoot-through bow or against components such as, for example, the stop elements (illustrated here) fitted on the limbs.
- FIG. 11 contains the detail E from FIG. 10 , i.e. the left-hand string and cable pulleys 4 and 6 of the type 2 shoot-through bow, while FIG. 12 shows, as detail F, the right-hand string and cable pulleys 5 and 7 of the shoot-through bow from FIG. 10 .
- FIG. 13 shows a plan view of the shoot-through bow, wherein the string pulleys 4 and 5 , the cable pulleys 6 a, 6 b and 7 a, 7 b and the deflecting stops 21 a, 21 b and 22 a, 22 b are illustrated. It is possible to see here the symmetrical construction of these components in relation to the string of the shoot-through bow, this string not being illustrated here.
- FIG. 14 shows the type 2 shoot-through bow from FIG. 10 in the fully drawn state.
- the rollers 21 and 22 of the deflecting stops are in contact here with the stop elements 13 and 14 of the two limbs 2 and 3 . Should these rollers 21 and 22 be absent, then it is provided, for safety purposes and in order to avoid “cocking”, that, as the bow is drawn, the cable pulleys 6 and 7 push against the compensating cables 9 and 10 , respectively. This means that the shoot-through bow cannot be deflected any further.
- FIG. 15 contains a detail-form view of the left-hand string and cable pulleys of the shoot-through bow from FIG. 14
- FIG. 16 shows a detail-form view of the right-hand string and cable pulleys of the shoot-through bow from FIG. 14 .
- the cable pulleys 6 and 7 in the drawn state of the shoot-through bow, can strike, for safety purposes, against the compensating cables 9 and 10 , should the rollers 21 and 22 of the deflecting stop be absent.
- FIG. 17 shows a side view of a schematic illustration of a bow in accordance with embodiments of the present invention in an undrawn state. Some elements depicted in FIGS. 17-21 are shown more than once in the figures (i.e., the bow may have two sides with equivalent elements) but are only labeled with element numbers once for clarity.
- the bow may comprise a centerpiece 1 , a limb 2 , a string 7 , a string pulley 3 , a cable pulley 4 , a subassembly comprising the string pulley and cable pulley mounted in a rotatable manner to a suitable portion of the bow, and a deflecting stop 6 adapted to limit the deflection of the string 7 , the deflecting stop 6 adapted to strike against a front face of the limb 2 when the string 7 is deflected.
- the deflecting stop 6 is sufficiently rigid to stop further deflection of the string 7 when the deflecting stop 6 strikes against the front face of the limb 2 , whereby the deflecting stop 6 is prevented from hitting a cable 8 , 9 when the bow is drawn.
- the string pulley 3 may be mounted in a suitable location, for example, on an end portion of the limb 2 .
- the string pulley 3 may generally be used for accommodating the string 7 and a cable pulley 4 connected to the string pulley 3 .
- the cable pulley 4 may be adapted to accommodate and/or guide compensating cables 8 , 9 .
- the string pulleys 3 are arranged in a rotatable manner at each of the ends of the limbs 2 .
- a cable pulley 4 may be connected to the string pulleys 3 .
- the string 7 may run in a first groove on the string pulley 3
- the compensating cables 8 and 9 may run in a second groove and third groove, respectively, on the cable pulley 4 .
- a deflecting stop 6 may be mounted on the interconnected string and cable pulleys 3 and 4 .
- the deflecting stop 6 may serve to limit the drawing movement of the bow. Examples of each of these elements depicted in FIGS. 17-20 are also described in FIGS. 1-16 .
- the bow may include a bearing block 5 .
- the bearing block 5 may generally function to raise and/or position a pivot point of the subassembly comprising the string pulley 3 and the cable pulley 4 , or the like, such the deflecting stop 6 may be in position to strike a front face of the limb 2 when the string 7 is deflected, thereby preventing further deflection of the string 7 .
- the bearing block 5 may comprise a substantially rigid element with an opening for receiving the cable, or the like.
- the bearing block 5 may be attached to a suitable portion of the limb 2 , for example, an end portion of the limb 2 .
- the bearing block 5 may comprise a square base with a substantially triangular top portion, or the like.
- the bow may also comprise a second deflecting stop 12 adapted to hit a cable.
- the second deflecting stop 12 may be attached to the cable pulley 4 , the string pulley 3 , the bearing block 5 , and/or the like.
- the second deflecting stop 12 may extend from a portion of the cable pulley 4 .
- the bow may comprise one or both of the deflecting stop 6 and the second deflecting stop 12 .
- the first deflecting stop 6 and the second deflecting stop 12 may strike the limb 2 and a cable, respectively, at substantially the same time or at exactly the same time.
- one of the deflecting stops 6 , 12 may strike before the other and the deflecting stop 6 , 12 that does not strike first may be included as a backup in case the deflecting stop 6 , 12 that strikes first fails.
- the deflecting stops 6 , 12 may be used to stop further deflection of the string 7 when the string 7 is drawn to a certain point.
- the second deflecting stop 12 may stop further deflection of the string 7 when striking a cable 8 , 9 , or the like.
- FIG. 18 shows a side view of a schematic illustration of a bow in accordance with embodiments of the present invention in a drawn state. This figure illustrates how further deflection of the string 7 is stopped when the deflecting stop 6 strikes a front face 11 of the limb 2 , or the like.
- the bow may comprise a centerpiece 1 , a limb 2 , a string pulley 3 , a cable pulley 4 , a bearing block 5 , a deflecting stop 6 , a string 7 , cables 8 , 9 , and/or the like. Examples of each of these elements are described supra.
- the bow may also comprise a slotted hole 10 .
- the slotted hole 10 may generally be adapted to accept a deflecting stop 6 and allow the deflecting stop 6 to be adjusted and move within the slotted hole 10 for adjustment of the amount of deflection of the string 7 before the deflecting stop 6 hits the limb 2 , or the like. A maximum deflection of the string 7 may be adjusted by the position of the deflecting stop 6 within the slotted hole 10 , or the like.
- a slotted hole 10 is depicted in the figures, any suitable means for adjusting the position of the deflecting stop 6 is contemplated by and within embodiments of the present disclosure.
- the slotted hole 10 may allow the deflecting stop 6 to slide in a first direction that would restrict the deflection of the string 7 to a predetermined amount and allow the deflecting stop 6 to slide in a second direction that would increases the amount of deflection of the string 7 before the deflecting stop 6 hits the limb 2 and stops further deflection of the string 7 .
- the deflecting stop 6 may be secured in a position within the slotted hole 10 by use of a tightening mechanism, such as a screw tightening device, a snap, and/or the like.
- the slotted hole 10 may comprise a shape suitable for embodiments of the present disclosure, for example, a curved or crescent shape, or the like.
- the slotted hole may be positioned in a suitable position in the string pulley 3 , or the like.
- the limb 2 may comprise a front face 11 positioned on a distal end of the limb 2 substantially opposite the centerpiece 1 , or the like.
- the front face 11 of the limb 2 may be sufficiently rigid such that when the deflecting stop 6 strikes the front face 11 of the limb, further deflection of the string 7 is prevented.
- the front face 11 of the limb 2 may be shaped to stop the deflecting stop 6 , or the like.
- the front face 11 of the limb 2 may be flat or curved to accept the deflecting stop 6 , or the like.
- FIG. 19 shows a detail-form view of exemplary pulleys of the bow shown in FIG. 17 and FIG. 18 in an undrawn state to better illustrate the functionality described supra.
- the bow may comprise a centerpiece 1 , a limb 2 , a string pulley 3 , a cable pulley 4 , a bearing block 5 , a deflecting stop 6 , a string 7 , cables 8 , 9 , a slotted hole 10 , a front face 11 , a second deflecting stop 12 , and/or the like. Examples of each of these elements are described supra.
- an undrawn state shown in FIG.
- the deflecting stop 6 may be positioned in the slotted hole 10 to allow for a configured amount of deflection of the string 7 .
- the deflecting stop 6 and the second deflecting stop 12 may generally be rotated away from the front face 11 of the limb 2 and the cables 8 , 9 , respectively.
- FIG. 20 shows a detail-form view of exemplary pulleys of the bow shown in FIG. 17 and FIG. 18 in a drawn state to better illustrate the functionality described supra.
- the bow may comprise a centerpiece 1 , a limb 2 , a string pulley 3 , a cable pulley 4 , a bearing block 5 , a deflecting stop 6 , a string 7 , cables 8 , 9 , a front face 11 , a second deflecting stop 12 , and/ or the like. Examples of each of these elements are described supra.
- the deflecting stop 6 may be positioned against the front face 11 of the limb 2 to prevent further deflection of the string 7 .
- the second deflecting stop 12 may be positioned against a cable 8 to prevent further deflection of the string 7 .
- inventive concepts described can also be used analogously for all compound bows in which the compensating cables, as a result of additional guide elements, are deflected asymmetrically, in relation to a plane formed by the string and the centrepiece of the bow, onto one side of the bow, and the arrow can thus be moved past the compensating cables during shooting, and for a crossbow or the like.
- bow used in the present application also to cover the configuration of the apparatus according to the invention as a crossbow or a plaything, or a piece of sports and/or hunting equipment, which accelerates arrows, balls, bolts or the like.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Rehabilitation Tools (AREA)
Abstract
Embodiments of the present disclosure generally relate to a bow and methods thereof. In exemplary embodiments, a bow having a centrepiece may include a limb; a string; a string pulley mounted on an end portion of the limb, the string pulley for accommodating the string; a cable pulley connected to the string pulley, the cable pulley adapted to accommodate compensating cables; a subassembly mounted in a rotatable manner, the subassembly comprising the string pulley and cable pulley; and a deflecting stop adapted to limit the deflection of the string, the deflecting stop adapted to strike against a front face of the limb when the string is deflected, the deflecting stop being sufficiently rigid to stop further deflection of the string when the deflecting stop strikes against the front face of the limb.
Description
- This application is a continuation-in-part of U.S. patent application Ser. No. 13/371,574, filed Feb. 13, 2012, entitled “Compound Bow with Rigid Deflecting Stop,” and claims priority to German patent application serial no. DE102011004036.6, filed Feb. 14, 2011, the disclosures of which are incorporated by reference herein in their entireties as if fully set forth herein.
- 1. Field of the Invention
- Embodiments of the present invention relate to a bow, for example a sports or hunting bow or a crossbow.
- 2. Description of the Related Art
- The principle common to the aforementioned pieces of sports or hunting equipment is that an archer draws a string by means of one or more elastic elements, so-called limbs, and then lets it go. The string here accelerates an arrow in the direction of a target. Modern bows or crossbows have little in common with the examples which are known from history. In particular, the variation in force when the string is drawn has, in the meantime, been adjusted optimally to the envisaged use. Therefore for example the force which has to be applied in order to draw a hunting bow in the first instance increases in relation to the deflection of the string and decreases again as the deflection of the string increases. In other words, in the first instance a comparatively large force is necessary in order to deflect the string even just by small amounts. As deflection increases, the force which acts on the archer's drawing arm decreases, and therefore a comparatively low level of force is required in order to hold the bow in its drawn position. This means that, for example in a hunting situation, the task of the archer aiming with the bow drawn is simplified to a considerable extent. This desired behaviour of the bow is achieved according to the prior art in that the string of the bow is guided on rotatable string pulleys at the ends of the limbs. Connected rigidly to the string pulleys, and thus likewise mounted in a rotatable manner, are the so-called cable pulleys, on which are guided compensating cables which serve for the symmetrical deformation of the limbs and for uniform force distribution. The geometry and method of mounting the string and cable pulleys here determine, in addition to other parameters, essentially the variation in force of the bow. The geometry of the string pulleys and of the cable pulleys can result, in particular, in the string no longer being subjected to any restoring force in the case of an excessively large amount of deflection, and therefore the drawn bow remains in its drawn state even in the cases where the archer lets go of the drawn string. This effect is also referred to by the term “cocking”. Even just a slight action or movement can result in a sudden release of drawing tension from a bow drawn in such a way. Particularly in those cases where there is no arrow placed in position, which could convert the stored energy into kinetic energy, the above described sudden release of drawing tension from the bow may result in parts of the bow, in particular the string, the limbs or even the string or cable pulleys, being destroyed. Fragments flying around here may also be hazardous to, or injure, nearby individuals.
- In the case of bows with compensating cables, it should be ensured that the arrow, during acceleration, does not come into contact with a compensating cable since, otherwise, the arrow could be deflected laterally or the compensating cable could also be damaged. In the case of a so-called shoot-through bow, this problem is solved in that the arrow, during shooting, is guided through between the compensating cables. The compensating cables are arranged symmetrically in relation to the plane of the string pulleys, wherein it is also possible, at the same time, to realize a high level of symmetry for the variation in force. It is thus also possible to prevent torsion of the bow as a whole as it is drawn. This is important because the elastic torsion of the bow could be released as the arrow accelerates and have an adverse effect on the following phase of flight of the arrow.
- The following text will refer to a
type 1 shoot-through bow, if the ends of the compensating cables are fitted on the limbs on one side, i.e. if the first end of a compensating cable runs on a cable pulley and the other end of the compensating cable is fixed on the limb opposite. This type of bow is also referred to, inter alia, as a twin-cam bow. In the case of atype 2 shoot-through bow, the compensating cables, in contrast, are not fastened on the limb; rather, they run over the cable pulleys on both sides of the bow. This is a special embodiment of the twin-cam bow, also known as a binary-cam bow. - For the purpose of avoiding cocking, German patent DE 10 2008 063 388 discloses the practice, for shoot-through bows, of having a deflecting stop strike against a compensating cable. The disadvantage here, however, is that the rotary position of the string pulley at maximum deflection, on account of the compliance of the compensating cable against which the deflecting stop strikes, is given only in the presence of comparatively high tolerance. There is no firmly defined stop, i.e. a precise rotary position of the string pulley in relation to the limb.
- It is an object of the invention to provide a
type - This object is achieved by the bow having the features given in
claim 1. The dependent claims relate to advantageous embodiments and developments of the invention. - The bow according to the invention has a centrepiece, two flexurally elastic limbs, a string and at least one string pulley, mounted in one end of a limb and intended for accommodating the string. The bow also contains at least two cable pulleys, connected to the string pulley and intended for accommodating and guiding compensating cables, wherein in each case at least one cable pulley is arranged on both sides of the string pulley, and wherein the subassembly made up of the string pulley and cable pulleys is mounted in a rotatable manner in each case, and at least one deflecting stop is present for the purpose of limiting the deflection of the string. The deflecting stop, when the string is deflected, strikes against a limb or against a stop element connected rigidly to the limb.
- The advantages of the bow according to the invention are achieved by using rigid components which, in the case of an appropriate geometrical design and of an appropriate combination of components, result in adjustable and firmly defined limitation of the maximum deflection of the string.
- The stop element may also be a spacer bolt connected rigidly to a limb.
- The invention can be realized, in principle, using just one of the deflecting stops described. In addition, it is also conceivable to use a plurality of deflecting stops, in particular in each case one deflecting stop for the two limbs.
- The deflecting stop here may be formed in one piece with the subassembly made up of the string pulley and cable pulleys or may be formed in one piece in a string pulley or a cable pulley. In addition, it is also conceivable to realize the deflecting stop as a component in more than one piece.
- The deflecting stop described can advantageously be used in various compound bows or cam systems, for example binary, one and a half, solo-cam or two-cam systems and the different variants thereof.
- When the string of the bow is drawn, it is possible for at least one compensating cable to run between that side of the deflecting stop on which the latter is connected to the subassembly made up of the string pulley and cable pulleys and that side of the deflecting stop which strikes against the limb or the stop element.
- In other words, the deflecting stop may be configured such that it exhibits a recess into which the compensating cable can enter when the bow is drawn. The deflecting stop further exhibits an extension which, when the bow is drawn, moves past the compensating cable and strikes, by way of an end side, against a limb or a part connected rigidly to the limb. It is thus possible for the deflecting stop described to be configured, for example, in the form of a large L, wherein it has the short end of the L fastened on the subassembly made up of the string pulley and cable pulleys, and wherein the end of the long side of the L strikes against the limb or the component connected rigidly thereto. For adjustment capability of the deflecting stop, it is possible here to adjust, in particular, the length of the long side of the L. This is possible in a particularly straightforward manner, for example, in that the short side of the L has a threaded bore into which is screwed a screw—possibly secured by lock nuts—as the long side of the L. Straightforward rotation of the screw thus makes it possible to adjust the position of the deflecting stop.
- Irrespective of the actual configuration of the deflecting stop, it is possible to vary the maximum deflection of the string by adjustment of the deflecting stop, in particular of the fastening position of the deflecting stop. The fastening position defines the position of the deflecting stop relative to the element on which the deflecting stop is fastened.
- The maximum deflection of the string can be varied not just by the fastening position of the deflecting stop, but also by an alternative adjustment of the deflecting stop. It is thus conceivable, for example, to arrange the deflecting stop as a threaded screw in a corresponding threaded bore in the subassembly made up of the string and cable pulleys, and therefore the length of the deflecting stop can be adjusted by straightforward rotation in the thread.
- As an alternative, or in addition, the maximum deflection of the string can also be varied by adjustment of the stop element.
- The bow may be a twin-cam bow, i.e. a
type 1 bow. - The bow may also be a binary-cam bow, i.e. a
type 2 bow. - In an advantageous embodiment of the invention, the bow is a shoot-through bow with shoot-through centrepiece.
- A shoot-through centrepiece is a centrepiece in the case of which the arrow, rather than being moved past the centrepiece, can be guided through an opening provided in the centrepiece itself. This gives a greater range of possibilities for configuring the centrepiece.
- Since the shoot-through centrepiece is formed symmetrically in relation to a plane which is formed by the string when the bow is drawn, it is possible for the bow according to the invention to be further optimized in respect of its behaviour during shooting. The improved dynamic behaviour of the bow here can be attributed in particular to the fact that the aforementioned symmetrical configuration of the shoot-through centrepiece means that the bow is, in practice, of fully symmetrical construction. As a result, torques to which the bow could be subjected as a result of forces of inertia in particular from the limbs and the centrepiece are reduced to a considerable extent, and shooting is more stable overall. Lateral deformation of the shoot-through centrepiece under the action of the forces emanating from the drawn limbs can also be effectively reduced in this way.
- The above described shoot-through centrepiece can be used in various compound bows or cam systems, for example binary, one and a half, solo-cam or two-cam systems, and the different variants thereof, with or without the deflecting stop described above.
- Furthermore, it is also possible to implement additional components on the shoot-through bow. For example, additional elements can be used to position the compensating cables such that the arrow can be shot through between the compensating cables without obstruction. This is also possible, inter alia, using a cable spreader, of which the U-shaped construction gives rise to an increased spacing between the compensating cables. Furthermore, it is also possible to fit one or more string stoppers, which are in contact with the string in the undrawn state and, when the string is released, can also be used to reduce vibration. It is also possible to implement so-called reverse roller guards or reverse assist roller guards, which guide the compensating cables in a fixed position over rollers. The string stoppers and the reverse roller guards may also be realized by a composite component, wherein this may be in one or more parts, and/or may also be adjustable.
- So the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of embodiments of the present disclosure, briefly summarized above, may be had by reference to embodiments, which are illustrated in the appended drawings. It is to be noted, however, the appended drawings illustrate only typical embodiments of embodiments encompassed within the scope of the present disclosure, and, therefore, are not to be considered limiting, for the present disclosure may admit to other equally effective embodiments, wherein:
-
FIG. 1 shows a side view of a schematic illustration of atype 1 shoot-through bow in the undrawn state, -
FIG. 2 shows a straightforward embodiment of a centrepiece of a shoot-through bow, -
FIG. 3 shows a plan view of a centrepiece of a shoot-through bow embodied as a shoot-through centrepiece, -
FIG. 4 shows the shoot-through centrepiece fromFIG. 3 with four compensating cables and two cable spreaders, -
FIG. 5 shows a detail-form view of the left-hand string and cable pulleys of the shoot-through bow fromFIG. 1 , -
FIG. 6 shows a detail-form view of the right-hand string and cable pulleys of the shoot-through bow fromFIG. 1 , -
FIG. 7 shows the shoot-through bow fromFIG. 1 , likewise in a side view, in the fully drawn state, -
FIG. 8 shows a detail-form view of the left-hand string and cable pulleys of the shoot-through bow fromFIG. 7 , -
FIG. 9 shows a detail-form view of the right-hand string and cable pulleys of the shoot-through bow fromFIG. 7 , -
FIG. 10 shows a side view of atype 2 shoot-through bow in the undrawn state, -
FIG. 11 shows a detail-form view of the left-hand string and cable pulleys of the shoot-through bow fromFIG. 10 , -
FIG. 12 shows a detail-form view of the right-hand string and cable pulleys of the shoot-through bow fromFIG. 10 , -
FIG. 13 shows a plan view of the shoot-through bow fromFIG. 10 , -
FIG. 14 shows a side view of the shoot-through bow fromFIG. 10 in the fully drawn state, -
FIG. 15 shows a detail-form view of the left-hand string and cable pulleys of the shoot-through bow fromFIG. 14 , -
FIG. 16 shows a detail-form view of the right-hand string and cable pulleys of the shoot-through bow fromFIG. 14 ; -
FIG. 17 shows a side view of a schematic illustration of a bow in accordance with embodiments of the present invention in an undrawn state; -
FIG. 18 shows a side view of a schematic illustration of a bow in accordance with embodiments of the present invention in a drawn state; -
FIG. 19 shows a detail-form view of exemplary pulleys of the bow shown inFIG. 17 andFIG. 18 in an undrawn state; and -
FIG. 20 shows a detail-form view of exemplary pulleys of the bow shown inFIG. 17 andFIG. 18 in a drawn state. - The headings used herein are for organizational purposes only and are not meant to be used to limit the scope of the description or the claims. As used throughout this application, the word may is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must). Similarly, the words “include”, “including”, and “includes” mean including but not limited to.
-
FIG. 1 shows a schematic illustration of an exemplary embodiment of anundrawn type 1 bow according to the invention having thecentrepiece 1 followed by the twolimbs limbs FIG. 1 are designated by 6 and 7. Thestring 8 here runs in a first groove on the string pulleys 4 and 5, whereas the compensatingcables stop cable pulleys stop stop elements FIG. 7 ). -
FIG. 2 contains acentrepiece 1 of a shoot-through bow embodied with anaperture 101 on one side. When the arrow is shot, the arrow is moved past thecentrepiece 1 in the region of theaperture 101, and its trajectory is not obstructed here. -
FIG. 3 illustrates acentrepiece 1 of a shoot-through bow in the form of a shoot-through centrepiece. The arrow, during shooting, is moved through the mirror-symmetrical aperture 102 of the shoot-through centrepiece. In particular thesymmetrical aperture 102 of the shoot-through centrepiece results in the avoidance of torsion of the bow as it is drawn. -
FIG. 4 shows thecentrepiece 1 fromFIG. 3 , the four compensatingcables FIG. 4 also contains twocable spreaders cables symmetrical aperture 102. This makes it possible for the arrow, during shooting, also to be guided past the compensatingcables -
FIG. 5 contains the detail A fromFIG. 1 , the left-hand string andcable pulleys FIG. 5 also shows, inter alia, the fastening of one end of the compensatingcable 10 on thelimb 2. It is also possible for thestop elements FIG. 7 ). It can also be seen that the deflectingstop 11 is positioned in aslot 15 and can be fastened in a position which can be freely selected within theslot 15. It is thus possible to change the maximum deflection comparatively quickly within a certain framework. Thestring 8 runs part of the way around thestring pulley 4 and, as illustrated here, can have its end fastened on ahook 17, which is integrated in thestring pulley 4. The compensatingcable 9 can also be guided, for example, through thestring pulley 4, via thebore 19, and thus fastened. -
FIG. 6 illustrates the detail B fromFIG. 1 , the string andcable pulleys FIG. 5 , the deflectingstop 12 here can be positioned, and fastened, in theslot 16. The end of the compensatingcable 9 is fastened on thelimb 3. On this side, too, thestring 8 encircles part of thestring pulley 5. In the exemplary embodiment shown, the end of thestring 8 is fastened on thehook 18. Thelimb 3 may also have thestop element 14. In the exemplary embodiment shown, the compensatingcable 10 is fitted on theprotuberance 20 on thestring pulley 7. -
FIG. 7 shows thetype 1 shoot-through bow in the fully drawn state. For drawing purposes, the archer draws thestring 8 usually with one hand, while he uses the other hand to hold thecentrepiece 1. As the bow is drawn, the string pulleys 4 and 5 move together with the cable pulleys 6 and 7, a desired variation in force and displacement taking place. In the illustration shown, the deflecting stops 11 and 12 are in contact with thestop elements limbs -
FIG. 8 contains the detail C fromFIG. 7 , whileFIG. 9 shows the detail D fromFIG. 7 . It can be seen inFIGS. 8 and 9 that, in this case, the compensatingcables stop elements limbs limbs -
FIG. 10 shows atype 2 shoot-through bow. Thelimbs type 1 shoot-through bow. In this case, however, the compensatingcables limbs rollers -
FIG. 11 contains the detail E fromFIG. 10 , i.e. the left-hand string andcable pulleys type 2 shoot-through bow, whileFIG. 12 shows, as detail F, the right-hand string andcable pulleys FIG. 10 . - The illustration in
FIG. 13 shows a plan view of the shoot-through bow, wherein the string pulleys 4 and 5, the cable pulleys 6 a, 6 b and 7 a, 7 b and the deflecting stops 21 a, 21 b and 22 a, 22 b are illustrated. It is possible to see here the symmetrical construction of these components in relation to the string of the shoot-through bow, this string not being illustrated here. -
FIG. 14 shows thetype 2 shoot-through bow fromFIG. 10 in the fully drawn state. Therollers stop elements limbs rollers cables -
FIG. 15 contains a detail-form view of the left-hand string and cable pulleys of the shoot-through bow fromFIG. 14 , whileFIG. 16 shows a detail-form view of the right-hand string and cable pulleys of the shoot-through bow fromFIG. 14 . It can clearly be seen here that the cable pulleys 6 and 7, in the drawn state of the shoot-through bow, can strike, for safety purposes, against the compensatingcables rollers -
FIG. 17 shows a side view of a schematic illustration of a bow in accordance with embodiments of the present invention in an undrawn state. Some elements depicted inFIGS. 17-21 are shown more than once in the figures (i.e., the bow may have two sides with equivalent elements) but are only labeled with element numbers once for clarity. In some embodiments, the bow may comprise acenterpiece 1, alimb 2, astring 7, astring pulley 3, acable pulley 4, a subassembly comprising the string pulley and cable pulley mounted in a rotatable manner to a suitable portion of the bow, and a deflectingstop 6 adapted to limit the deflection of thestring 7, the deflectingstop 6 adapted to strike against a front face of thelimb 2 when thestring 7 is deflected. In some embodiments, the deflectingstop 6 is sufficiently rigid to stop further deflection of thestring 7 when the deflectingstop 6 strikes against the front face of thelimb 2, whereby the deflectingstop 6 is prevented from hitting acable - The
string pulley 3 may be mounted in a suitable location, for example, on an end portion of thelimb 2. Thestring pulley 3 may generally be used for accommodating thestring 7 and acable pulley 4 connected to thestring pulley 3. Thecable pulley 4 may be adapted to accommodate and/orguide compensating cables limbs 2. Acable pulley 4 may be connected to the string pulleys 3. Thestring 7 may run in a first groove on thestring pulley 3, whereas the compensatingcables cable pulley 4. In addition, a deflectingstop 6 may be mounted on the interconnected string andcable pulleys stop 6 may serve to limit the drawing movement of the bow. Examples of each of these elements depicted inFIGS. 17-20 are also described inFIGS. 1-16 . - In exemplary embodiments, the bow may include a
bearing block 5. Thebearing block 5 may generally function to raise and/or position a pivot point of the subassembly comprising thestring pulley 3 and thecable pulley 4, or the like, such the deflectingstop 6 may be in position to strike a front face of thelimb 2 when thestring 7 is deflected, thereby preventing further deflection of thestring 7. Thebearing block 5 may comprise a substantially rigid element with an opening for receiving the cable, or the like. Thebearing block 5 may be attached to a suitable portion of thelimb 2, for example, an end portion of thelimb 2. In some embodiments, thebearing block 5 may comprise a square base with a substantially triangular top portion, or the like. - In exemplary embodiments, the bow may also comprise a second deflecting
stop 12 adapted to hit a cable. In some embodiments, the second deflectingstop 12 may be attached to thecable pulley 4, thestring pulley 3, thebearing block 5, and/or the like. For example, the second deflectingstop 12 may extend from a portion of thecable pulley 4. In some embodiments, the bow may comprise one or both of the deflectingstop 6 and the second deflectingstop 12. In some embodiments, the first deflectingstop 6 and the second deflectingstop 12 may strike thelimb 2 and a cable, respectively, at substantially the same time or at exactly the same time. In some embodiments one of the deflecting stops 6, 12, may strike before the other and the deflectingstop stop string 7 when thestring 7 is drawn to a certain point. In some embodiments, if a deflectingstop 6 is not present, the second deflectingstop 12 may stop further deflection of thestring 7 when striking acable -
FIG. 18 shows a side view of a schematic illustration of a bow in accordance with embodiments of the present invention in a drawn state. This figure illustrates how further deflection of thestring 7 is stopped when the deflectingstop 6 strikes afront face 11 of thelimb 2, or the like. The bow may comprise acenterpiece 1, alimb 2, astring pulley 3, acable pulley 4, abearing block 5, a deflectingstop 6, astring 7,cables hole 10. The slottedhole 10 may generally be adapted to accept a deflectingstop 6 and allow the deflectingstop 6 to be adjusted and move within the slottedhole 10 for adjustment of the amount of deflection of thestring 7 before the deflectingstop 6 hits thelimb 2, or the like. A maximum deflection of thestring 7 may be adjusted by the position of the deflectingstop 6 within the slottedhole 10, or the like. Although a slottedhole 10 is depicted in the figures, any suitable means for adjusting the position of the deflectingstop 6 is contemplated by and within embodiments of the present disclosure. - In some embodiments, the slotted
hole 10 may allow the deflectingstop 6 to slide in a first direction that would restrict the deflection of thestring 7 to a predetermined amount and allow the deflectingstop 6 to slide in a second direction that would increases the amount of deflection of thestring 7 before the deflectingstop 6 hits thelimb 2 and stops further deflection of thestring 7. In some embodiments, the deflectingstop 6 may be secured in a position within the slottedhole 10 by use of a tightening mechanism, such as a screw tightening device, a snap, and/or the like. In some embodiments, the slottedhole 10 may comprise a shape suitable for embodiments of the present disclosure, for example, a curved or crescent shape, or the like. In some embodiments, the slotted hole may be positioned in a suitable position in thestring pulley 3, or the like. - In some embodiments, the
limb 2 may comprise afront face 11 positioned on a distal end of thelimb 2 substantially opposite thecenterpiece 1, or the like. In some embodiments, thefront face 11 of thelimb 2 may be sufficiently rigid such that when the deflectingstop 6 strikes thefront face 11 of the limb, further deflection of thestring 7 is prevented. In some embodiments, thefront face 11 of thelimb 2 may be shaped to stop the deflectingstop 6, or the like. For example thefront face 11 of thelimb 2 may be flat or curved to accept the deflectingstop 6, or the like. -
FIG. 19 shows a detail-form view of exemplary pulleys of the bow shown inFIG. 17 andFIG. 18 in an undrawn state to better illustrate the functionality described supra. The bow may comprise acenterpiece 1, alimb 2, astring pulley 3, acable pulley 4, abearing block 5, a deflectingstop 6, astring 7,cables hole 10, afront face 11, a second deflectingstop 12, and/or the like. Examples of each of these elements are described supra. In an undrawn state, shown inFIG. 19 , the deflectingstop 6 may be positioned in the slottedhole 10 to allow for a configured amount of deflection of thestring 7. The deflectingstop 6 and the second deflectingstop 12 may generally be rotated away from thefront face 11 of thelimb 2 and thecables -
FIG. 20 shows a detail-form view of exemplary pulleys of the bow shown inFIG. 17 andFIG. 18 in a drawn state to better illustrate the functionality described supra. The bow may comprise acenterpiece 1, alimb 2, astring pulley 3, acable pulley 4, abearing block 5, a deflectingstop 6, astring 7,cables front face 11, a second deflectingstop 12, and/ or the like. Examples of each of these elements are described supra. In a drawn state, shown inFIG. 20 , the deflectingstop 6 may be positioned against thefront face 11 of thelimb 2 to prevent further deflection of thestring 7. Similarly, the second deflectingstop 12 may be positioned against acable 8 to prevent further deflection of thestring 7. - The inventive concepts described can also be used analogously for all compound bows in which the compensating cables, as a result of additional guide elements, are deflected asymmetrically, in relation to a plane formed by the string and the centrepiece of the bow, onto one side of the bow, and the arrow can thus be moved past the compensating cables during shooting, and for a crossbow or the like. It is thus intended for the term “bow” used in the present application also to cover the configuration of the apparatus according to the invention as a crossbow or a plaything, or a piece of sports and/or hunting equipment, which accelerates arrows, balls, bolts or the like.
- It should be emphasized that the above-described embodiments of the present disclosure are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiment(s) of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present disclosure and protected by the following claims.
- While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof. For example, although numerous embodiments having various features have been described herein, combinations of such various features in other combinations not discussed herein are contemplated within the scope of embodiments of the present invention.
Claims (12)
1. A bow having a centrepiece, comprising:
a limb;
a string;
a string pulley mounted on an end portion of the limb, the string pulley for accommodating the string;
a cable pulley connected to the string pulley, the cable pulley adapted to accommodate a cable;
a subassembly mounted in a rotatable manner, the subassembly comprising the string pulley and cable pulley; and
a deflecting stop adapted to limit the deflection of the string, the deflecting stop adapted to strike against a front face of the limb when the string is deflected, the deflecting stop being sufficiently rigid to stop further deflection of the string when the deflecting stop strikes against the front face of the limb.
2. The bow of claim 1 , further comprising a slotted hole adapted to allow adjustment of the deflecting stop.
3. The bow as set forth in claim 2 , wherein a maximum deflection of the string can be varied by adjustment of the deflecting stop within the slotted hole.
4. The bow of claim 2 , wherein the slotted hole is curved.
5. The bow of claim 1 , further comprising a bearing block for setting the pivot point of the subassembly at a position away from the limb.
6. The bow of claim 5 , wherein the bearing block is attached to the limb.
7. The bow of claim 1 , further comprising a second deflecting stop adapted to limit the deflection of the string, the second deflecting stop adapted to strike against a cable when the string is deflected.
8. The bow of claim 7 , wherein the second deflecting stop extends from a portion of the subassembly.
9. The bow of claim 7 , wherein the deflecting stop is adapted to strike the front face of the limb at substantially the same time that the second deflecting stop strikes the cable.
10. The bow as set forth in claim 1 , wherein the bow is a binary-cam bow.
11. The bow as set forth in claim 1 , wherein the bow is a shoot-through bow with shoot-through centrepiece.
12. The bow according to claim 1 , wherein the shoot-through centrepiece is formed symmetrically in relation to a plane which is formed by the string when the bow is drawn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/589,983 US20150136107A1 (en) | 2011-02-14 | 2015-01-05 | Compound bow with rigid deflecting stop |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201110004036 DE102011004036B4 (en) | 2011-02-14 | 2011-02-14 | Compound bow with rigid deflection stop |
DE102011004036.6 | 2011-02-14 | ||
US13/371,574 US8960173B2 (en) | 2011-02-14 | 2012-02-13 | Compound bow with rigid deflecting stop |
US14/589,983 US20150136107A1 (en) | 2011-02-14 | 2015-01-05 | Compound bow with rigid deflecting stop |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/371,574 Continuation-In-Part US8960173B2 (en) | 2011-02-14 | 2012-02-13 | Compound bow with rigid deflecting stop |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150136107A1 true US20150136107A1 (en) | 2015-05-21 |
Family
ID=53172026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/589,983 Abandoned US20150136107A1 (en) | 2011-02-14 | 2015-01-05 | Compound bow with rigid deflecting stop |
Country Status (1)
Country | Link |
---|---|
US (1) | US20150136107A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD823970S1 (en) * | 2016-11-10 | 2018-07-24 | Camx Outdoors Llc | Bowstring engager for crossbow cockers |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2186386A (en) * | 1937-06-10 | 1940-01-09 | John O Lowell | Archery set |
US2909167A (en) * | 1956-10-19 | 1959-10-20 | Bert E Fredrickson | Repeating shot archery bow with double sight |
US3945368A (en) * | 1975-04-28 | 1976-03-23 | Jones George T | Compound bow with rotational indicators for eccentric wheels on bow limbs |
US4060066A (en) * | 1975-12-11 | 1977-11-29 | Kudlacek Donald S | Compound archery bow with eccentric cam elements |
US4438753A (en) * | 1982-09-28 | 1984-03-27 | Kidde Recreation Products, Inc. | Compound bow |
US4759337A (en) * | 1985-06-19 | 1988-07-26 | Suski Michael R | Bow with optimum depth perception and visibility enhancing sight window |
US4838236A (en) * | 1988-07-01 | 1989-06-13 | Kudlacek Donald S | Compound archery bow with adjustable draw length and pull weight |
US5020507A (en) * | 1981-02-23 | 1991-06-04 | Browning Arms Company | Compound archery bow |
US5211155A (en) * | 1992-02-21 | 1993-05-18 | Zamojski Marek R | Eccentric pulley mechanism for compound archery bow |
US5649519A (en) * | 1996-05-29 | 1997-07-22 | Linderman; Herman L. | Apparatus for propelling projectiles |
US5934265A (en) * | 1996-02-20 | 1999-08-10 | Darlington; Rex F. | Single-cam compound archery bow |
US6082346A (en) * | 1998-11-18 | 2000-07-04 | High Country Archery, Inc. | Compound bow cams and modules |
US6250293B1 (en) * | 2000-05-25 | 2001-06-26 | High Country Archery | Adjustable archery bow cam |
US6360735B1 (en) * | 2000-11-01 | 2002-03-26 | Browning | Eccentric for archery bow with let-off adjustment module |
US6516790B1 (en) * | 2000-09-29 | 2003-02-11 | Rex F. Darlington | Single-cam compound archery bow |
US6691692B1 (en) * | 2002-09-03 | 2004-02-17 | Daniel K. Adkins | Adjustable cam for archery bows |
US6871643B2 (en) * | 2002-10-18 | 2005-03-29 | Hoyt Usa, Inc. | Eccentric elements for a compound archery bow |
US6990970B1 (en) * | 2003-08-27 | 2006-01-31 | Darlington Rex F | Compound archery bow |
US6994079B1 (en) * | 2004-10-13 | 2006-02-07 | Darlington Rex F | Compound archery bow |
US7066165B2 (en) * | 2003-08-21 | 2006-06-27 | Perry Kent M | Center-fire bow |
US7082937B1 (en) * | 2004-04-21 | 2006-08-01 | Spencer Land | Archery bow and cam arrangement |
US20060174859A1 (en) * | 2005-01-18 | 2006-08-10 | Andrews Albert A | Inertia tripod synchronization system |
US20100132682A1 (en) * | 2010-01-22 | 2010-06-03 | Darlington Rex F | Compound archery bow |
US20100147276A1 (en) * | 2009-02-28 | 2010-06-17 | Dennis Anthony Wilson | Compound archery bow with replaceable draw length adjustment modules |
US7770568B1 (en) * | 2005-03-18 | 2010-08-10 | Yehle Craig T | Dual-cam archery bow with simultaneous power cable take-up and let-out |
US20110023857A1 (en) * | 2009-07-31 | 2011-02-03 | Grace Engineering Corp. | Cam adjustment module for compound archery bow |
US20110146644A1 (en) * | 2009-12-21 | 2011-06-23 | Nibal Achkar | Archery bow and archery bow cam |
US8006679B2 (en) * | 2008-01-25 | 2011-08-30 | Elite Outdoors Llc | Two-track system for dual cam compound bow |
US20120000451A1 (en) * | 2010-07-01 | 2012-01-05 | Grace Engineering Corp. | Adjustable draw stop for archery bows |
US8220446B2 (en) * | 2008-05-12 | 2012-07-17 | Richard Batdorf | Archery cam product—system that hooks cam-to-cam |
US8276574B1 (en) * | 2007-12-19 | 2012-10-02 | Rex Darlington | Compound archery bow |
US20130068206A1 (en) * | 2011-09-20 | 2013-03-21 | Bear Archery, Inc. | Modular adjustable cam stop arrangement |
US8469013B1 (en) * | 2011-01-06 | 2013-06-25 | Extreme Technologies, Inc. | Cable take-up or let-out mechanism for a compound archery bow |
US20150053191A1 (en) * | 2013-08-23 | 2015-02-26 | Win & Win Co., Ltd. | Compound bow |
-
2015
- 2015-01-05 US US14/589,983 patent/US20150136107A1/en not_active Abandoned
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2186386A (en) * | 1937-06-10 | 1940-01-09 | John O Lowell | Archery set |
US2909167A (en) * | 1956-10-19 | 1959-10-20 | Bert E Fredrickson | Repeating shot archery bow with double sight |
US3945368A (en) * | 1975-04-28 | 1976-03-23 | Jones George T | Compound bow with rotational indicators for eccentric wheels on bow limbs |
US4060066B1 (en) * | 1975-12-11 | 1990-09-25 | S Kudlacek Donald | |
US4060066A (en) * | 1975-12-11 | 1977-11-29 | Kudlacek Donald S | Compound archery bow with eccentric cam elements |
US5020507B1 (en) * | 1981-02-23 | 1995-01-24 | Browning Arms Co | Compound archery bow |
US5020507A (en) * | 1981-02-23 | 1991-06-04 | Browning Arms Company | Compound archery bow |
US4438753A (en) * | 1982-09-28 | 1984-03-27 | Kidde Recreation Products, Inc. | Compound bow |
US4759337A (en) * | 1985-06-19 | 1988-07-26 | Suski Michael R | Bow with optimum depth perception and visibility enhancing sight window |
US4838236A (en) * | 1988-07-01 | 1989-06-13 | Kudlacek Donald S | Compound archery bow with adjustable draw length and pull weight |
US5211155A (en) * | 1992-02-21 | 1993-05-18 | Zamojski Marek R | Eccentric pulley mechanism for compound archery bow |
US5934265A (en) * | 1996-02-20 | 1999-08-10 | Darlington; Rex F. | Single-cam compound archery bow |
US5649519A (en) * | 1996-05-29 | 1997-07-22 | Linderman; Herman L. | Apparatus for propelling projectiles |
US6082346A (en) * | 1998-11-18 | 2000-07-04 | High Country Archery, Inc. | Compound bow cams and modules |
US6250293B1 (en) * | 2000-05-25 | 2001-06-26 | High Country Archery | Adjustable archery bow cam |
US6516790B1 (en) * | 2000-09-29 | 2003-02-11 | Rex F. Darlington | Single-cam compound archery bow |
US6360735B1 (en) * | 2000-11-01 | 2002-03-26 | Browning | Eccentric for archery bow with let-off adjustment module |
US6691692B1 (en) * | 2002-09-03 | 2004-02-17 | Daniel K. Adkins | Adjustable cam for archery bows |
US6871643B2 (en) * | 2002-10-18 | 2005-03-29 | Hoyt Usa, Inc. | Eccentric elements for a compound archery bow |
US7066165B2 (en) * | 2003-08-21 | 2006-06-27 | Perry Kent M | Center-fire bow |
US6990970B1 (en) * | 2003-08-27 | 2006-01-31 | Darlington Rex F | Compound archery bow |
US7082937B1 (en) * | 2004-04-21 | 2006-08-01 | Spencer Land | Archery bow and cam arrangement |
US6994079B1 (en) * | 2004-10-13 | 2006-02-07 | Darlington Rex F | Compound archery bow |
US20060174859A1 (en) * | 2005-01-18 | 2006-08-10 | Andrews Albert A | Inertia tripod synchronization system |
US7770568B1 (en) * | 2005-03-18 | 2010-08-10 | Yehle Craig T | Dual-cam archery bow with simultaneous power cable take-up and let-out |
US8276574B1 (en) * | 2007-12-19 | 2012-10-02 | Rex Darlington | Compound archery bow |
US8006679B2 (en) * | 2008-01-25 | 2011-08-30 | Elite Outdoors Llc | Two-track system for dual cam compound bow |
US8220446B2 (en) * | 2008-05-12 | 2012-07-17 | Richard Batdorf | Archery cam product—system that hooks cam-to-cam |
US20100147276A1 (en) * | 2009-02-28 | 2010-06-17 | Dennis Anthony Wilson | Compound archery bow with replaceable draw length adjustment modules |
US20110023857A1 (en) * | 2009-07-31 | 2011-02-03 | Grace Engineering Corp. | Cam adjustment module for compound archery bow |
US20110146644A1 (en) * | 2009-12-21 | 2011-06-23 | Nibal Achkar | Archery bow and archery bow cam |
US20100132682A1 (en) * | 2010-01-22 | 2010-06-03 | Darlington Rex F | Compound archery bow |
US20120000451A1 (en) * | 2010-07-01 | 2012-01-05 | Grace Engineering Corp. | Adjustable draw stop for archery bows |
US8469013B1 (en) * | 2011-01-06 | 2013-06-25 | Extreme Technologies, Inc. | Cable take-up or let-out mechanism for a compound archery bow |
US20130068206A1 (en) * | 2011-09-20 | 2013-03-21 | Bear Archery, Inc. | Modular adjustable cam stop arrangement |
US20150053191A1 (en) * | 2013-08-23 | 2015-02-26 | Win & Win Co., Ltd. | Compound bow |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD823970S1 (en) * | 2016-11-10 | 2018-07-24 | Camx Outdoors Llc | Bowstring engager for crossbow cockers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10816304B2 (en) | Archery bow riser with stabilizing damper | |
US8950388B2 (en) | Swivel cable guard | |
US7793646B2 (en) | Bowstring suppression device | |
US8544457B1 (en) | Archery rest system | |
US8899218B2 (en) | Shooting bow | |
US8960173B2 (en) | Compound bow with rigid deflecting stop | |
US8387603B2 (en) | Compound archery bow with intermediate cable pulleys | |
US20090194086A1 (en) | Shooting bow | |
US8307816B2 (en) | Compound archery bow with non-linear cable guide | |
US9146070B2 (en) | Modular adjustable cam stop arrangement | |
US20130055997A1 (en) | Archery Bow Cable Guard | |
US5503135A (en) | Archery apparatus for propelling an arrow | |
US11221190B2 (en) | Torque reducing apparatus and method | |
US10267591B2 (en) | Crossbow barrel | |
US20150136107A1 (en) | Compound bow with rigid deflecting stop | |
US20040003806A1 (en) | Compound bow with adjustable let-off | |
US8522765B1 (en) | Bowstring release device | |
US10480893B2 (en) | Crossbow with stock overlap | |
EP1857766B1 (en) | Missile launcher | |
US20150013658A1 (en) | Archery Arm Guard | |
KR20130067367A (en) | Birdgun with elastic cord | |
US20190101354A1 (en) | Apparatus and method for guiding line | |
US20100116260A1 (en) | Titlting limb system for bows and crossbows and equipment formed therewith | |
KR100967515B1 (en) | Compound bow with variable dot sight | |
KR101662122B1 (en) | Compound bow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |