US20150111692A1 - Planetary gear train for use with extended length sun in high torque applications - Google Patents
Planetary gear train for use with extended length sun in high torque applications Download PDFInfo
- Publication number
- US20150111692A1 US20150111692A1 US14/514,448 US201414514448A US2015111692A1 US 20150111692 A1 US20150111692 A1 US 20150111692A1 US 201414514448 A US201414514448 A US 201414514448A US 2015111692 A1 US2015111692 A1 US 2015111692A1
- Authority
- US
- United States
- Prior art keywords
- planet gears
- gear
- planet
- carrier
- teeth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/0078—Reaction arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B21/00—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B21/00—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
- B25B21/004—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose of the ratchet type
- B25B21/005—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose of the ratchet type driven by a radially acting hydraulic or pneumatic piston
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/0007—Connections or joints between tool parts
- B25B23/0035—Connection means between socket or screwdriver bit and tool
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25F—COMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
- B25F5/00—Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
- B25F5/02—Construction of casings, bodies or handles
- B25F5/025—Construction of casings, bodies or handles with torque reaction bars for rotary tools
- B25F5/028—Construction of casings, bodies or handles with torque reaction bars for rotary tools to be supported by a fixed object
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D1/00—Couplings for rigidly connecting two coaxial shafts or other movable machine elements
- F16D1/02—Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/34—Toothed gearings for conveying rotary motion with gears having orbital motion involving gears essentially having intermeshing elements other than involute or cycloidal teeth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P19/00—Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
- B23P19/04—Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
- B23P19/06—Screw or nut setting or loosening machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B13/00—Spanners; Wrenches
- B25B13/46—Spanners; Wrenches of the ratchet type, for providing a free return stroke of the handle
- B25B13/461—Spanners; Wrenches of the ratchet type, for providing a free return stroke of the handle with concentric driving and driven member
- B25B13/466—Spanners; Wrenches of the ratchet type, for providing a free return stroke of the handle with concentric driving and driven member the ratchet parts engaging in an axial direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B15/00—Screwdrivers
- B25B15/02—Screwdrivers operated by rotating the handle
- B25B15/04—Screwdrivers operated by rotating the handle with ratchet action
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B21/00—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
- B25B21/004—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose of the ratchet type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B21/00—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
- B25B21/02—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
- B25B21/023—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket for imparting an axial impact, e.g. for self-tapping screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25H—WORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
- B25H1/00—Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
- B25H1/0021—Stands, supports or guiding devices for positioning portable tools or for securing them to the work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B2200/00—Constructional details of connections not covered for in other groups of this subclass
- F16B2200/10—Details of socket shapes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D1/00—Couplings for rigidly connecting two coaxial shafts or other movable machine elements
- F16D1/10—Quick-acting couplings in which the parts are connected by simply bringing them together axially
- F16D1/101—Quick-acting couplings in which the parts are connected by simply bringing them together axially without axial retaining means rotating with the coupling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D1/00—Couplings for rigidly connecting two coaxial shafts or other movable machine elements
- F16D1/10—Quick-acting couplings in which the parts are connected by simply bringing them together axially
- F16D2001/103—Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H2001/289—Toothed gearings for conveying rotary motion with gears having orbital motion comprising two or more coaxial and identical sets of orbital gears, e.g. for distributing torque between the coaxial sets
Definitions
- Planetary gears also known as sun gears and as epicyclic gears, comprise one or more outer gears, or planet gears, revolving about a central, or sun gear.
- the planet gears are mounted on a movable carrier or cage or arm which itself may rotate relative to the sun gear.
- Planetary gears also include the use of an outer ring gear, which meshes with the planet gears.
- Planet gears are used in different types of torque generating devices, such as wrenches and gearboxes
- torque generating devices such as wrenches and gearboxes
- planetary gears existing in the prior art suffer a major disadvantage, in that torque generated by the torque generating device transfers much stress to the gearing system, causing great wear to the gears.
- U.S. Patent Application Publication 2013/0072344 to Volkov et al discloses an epicycle gear with housing and an externally toothed central shaft, such as a sun gear.
- the planet gears are disposed in rows in corresponding apertures. However, each row of planet gears are not axially offset from each adjacent row of planets.
- U.S. Pat. No. 4,964,844 to Bagnall discloses a gearbox arrangement which uses a planetary gear to drive a multi-bladed rotor. Two different gears are used for each rotor. As such, at times the blades, or planets, will be axially offset from each other. However, these planet gears are not within the same ring gear and are not held in an axially offset position by a housing.
- China Utility Model Publication 202914647 discloses two rows of planets, arranged around two sun gears and two rings as an input, and additional portions of the gear as an output.
- a planetary gear system including a single sun gear including external sun-gear teeth, a plurality of planet gears, each including external planet gear teeth, the plurality of planet gears being arranged in at least two rows of planet gears, a circular housing portion having the plurality of planet gears rotatably attached thereto such that the planet gears extend into a hollow interior of the housing, and a ring gear disposed exterior to the circular housing and including internal gear teeth, the external planet gear teeth of each planet gear simultaneously engaging the external sun gear teeth of the sun gear and the internal teeth of the ring gear.
- Each planet gear simultaneously engages the single sun gear, and further, the ring gear simultaneously engages each planet gear, in embodiments of the disclosed technology y .
- Each planet gear simultaneously engages the single sun gear, and further, the ring gear simultaneously engages each planet gear, in embodiments of the disclosed technology.
- the planet gears in each row generally form a circle of planet gears in the row. In some embodiments, the planet gears form a general circle of planet gears about the sun gear.
- the planet gears in a first row are arranged in a first cross-shape
- the planet gears in a second row are arranged in a second cross-shape, the first cross-shape and the second cross-shape being rotationally offset from one another.
- the planet gears in different rows are not axially aligned with one another in the carrier.
- the gear system further includes a plurality of bores extending through the carrier, each of the plurality of bores extending through a center of a single one of the planet gears.
- the plurality of bores may have screws or receptacles there-for to attached to a torque generating device.
- a planetary gear system including a single sun gear including external sun-gear teeth, a circular carrier portion including a first cross shaped manifold and a second cross shaped manifold, the second cross shaped manifold being rotationally offset from the first cross shaped manifold, a plurality of planet gears, each including external planet gear teeth, some of the plurality of planet gears rotatably attached to the first cross shaped manifold thereby to form a first row of planet gears, and some of the plurality of planet gears rotatably attached to the second cross shaped manifold thereby to form a second row of planet gears, and a ring gear disposed exterior to the circular carrier and including internal gear teeth, the external planet gear teeth of each the planet gear simultaneously engaging the external sun gear teeth of the sun gear and the internal teeth of the ring gear.
- the planet gears in each row are arranged on the cross shaped manifold so as to form a general circle of planet gears in the row.
- the planet gears in the first and second rows form a general circle of planet gears about the sun gear.
- the planet gears in different the rows are not axially aligned with one another.
- the planetary gear system further includes a plurality of bores extending through the carrier, each of the plurality of bores extending through a center of a single one of the planet gears. gcarrier, each of the plurality of bores extending through a center of a single one of the planet gears.
- a planetary gear system including a generally circular ring gear having ring-gear teeth formed on an internal surface thereof; single sun gear including external sun-gear teeth, a circular carrier portion disposed within the ring gear, a plurality of planet gears, each including external planet gear teeth, the plurality of planet gears being rotatably attached to the carrier portion and being arranged in at least two rows of planet gear, and a sun gear removably disposed in a center of the carrier portion and including external sun gear teeth, the external planet gear teeth of each the planet gear simultaneously engaging the external sun gear teeth of the sun gear and the internal ring gear teeth of the ring gear.
- the planet gears in each row generally form a circle of planet gears in the row. In some embodiments, the planet gears form a general circle of planet gears about the sun gear.
- the planet gears in a first row are arranged in a first cross-shape
- the planet gears in a second row are arranged in a second cross-shape, the first cross-shape and the second cross-shape being rotationally offset from one another.
- the planet gears in different the rows are not axially aligned with one another in the carrier.
- the gear system further includes a plurality of bores extending through the carrier, each of the plurality of bores extending through a center of a single one of the planet gears.
- FIG. 1 shows a perspective view of a planetary gearbox according to the prior art, including a carrier with a single row of planets with a sun gear. carrier with a single row of planets with a sun gear.
- FIG. 2 shows a perspective view of a planetary gearbox according to the prior art, including a single row of planets and a ring gear.
- FIG. 3 shows a perspective view of an assembled planetary gearbox according to the prior art, including a row of planets, a ring gear, and a sun gear.
- FIG. 4 shows a cross section of a planetary gearbox including a single row of planets according to the prior art.
- FIG. 5 shows front, side and back views of a planetary gearbox including a single row of planets according to the prior art.
- FIG. 6 shows a perspective view of a planetary gearbox, including multiple rows of planets and a sun gear, in an embodiment of the disclosed technology.
- FIG. 7 shows a perspective view of a planetary gearbox, including multiple rows of planets, a sun gear, and a ring gear, in an embodiment of the disclosed technology.
- FIG. 8 shows a perspective view of an assembled planetary gearbox, including a ring gear, multiple rows of planets, and a sun gear in operational position, in an embodiment of the disclosed technology.
- FIG. 9 shows two cross section views of a planetary gearbox including different rows of planets in an embodiment of the disclosed technology
- FIG. 10 shows front, side, and back views of a planetary gearbox of the disclosed technology.
- the presently disclosed technology is directed towards a planetary gearbox, also known as an epicyclical gearbox
- the gearbox includes multiple rows of planets and a ring gear.
- the sun gear is a single unitary structure which simultaneously engages the multiple rows of planets.
- the system is designed to lower the stress level on torque generating devices incorporating such a gearbox by shortening the length of each planet.
- the planets react against the ring gear and they are engaged with the rotating sun causing the centers of the planets to orbit around the sun; the centers of the planets are connected axially to the bores of the carrier, causing the carrier to rotate.
- each planet must be rigid enough not to deform while under load.
- the present invention accomplishes that by splitting the length of the planets into multiple rows for applications where the planet/sun length is required to be large with comparison to their respective diameters.
- FIG. 1 shows a perspective view of a planetary gearbox 10 according to the prior art, including a carrier with a single row of planets with a sun gear.
- the planetary gearbox 10 comprises a sun gear 12 connected to a shaft 13 , one set of two or more planets 14 , and a carrier 16 , sometimes also called a cage, in which the planets 14 are mounted.
- the external teeth of planets 14 are configured to engage with internal teeth of another gear or carrier portion, for example a ring gear, as shown in FIG. 2 .
- the sun gear 12 is inserted into carrier 16 at a bore 18 located on a first side of carrier 16 , and on a second side thereof the carrier 16 includes a cylindrical arm or shaft 19 .
- At least two circular bores 20 are included in side walls of carrier 16 , typically adjacent to, or overlying, planets 14 .
- the sun gear 12 is shown separate from the carrier 16 . In other embodiments, three, four, five, six, or eight circular bores may be used.
- the planets 14 rotate around the sun gear 12 .
- the sun gear 12 typically provides the input power of the gearbox, which is transformed into output power and is outputted through the shaft 19 .
- FIG. 2 shows a perspective view of a planetary gearbox according to the prior art, such as planetary gearbox 10 of FIG. 1 , including a single row of planets and a ring gear.
- the planetary gearbox of FIG. 1 additionally includes a ring gear 22 disposed around the carrier 16 .
- Ring gear 22 is typically stationary, and includes internal gear teeth 24 which engage the gear teeth of planet gears 14 mounted on carrier 16 , such that the planets 14 revolve around ring gear 22 .
- sun gear 12 is illustrated externally to carrier 16 , it is configured to be placed in bore 18 of the carrier 16 .
- four circular bores 20 are located in a wall of carrier 16 , their locations generally corresponding to locations of planets 14 .
- FIG. 3 shows a perspective view of an assembled planetary gearbox according to the prior art, including a row of planets, a ring gear, and a sun gear, such as assembled gearbox 10 of FIGS. 1 and 2 .
- sun gear 12 is inserted in bore 18 , such that shaft 13 of sun gear 12 is generally aligned with, and is on the opposite side of carrier 16 to shaft 19 .
- FIG. 4 shows a cross section of a planetary gearbox including a single row of planets engaging a ring gear according to the prior art, similar to planetary gearbox 10 of FIGS. 1 to 3 .
- the teeth 24 of ring gear 22 engage the teeth 26 of the planets 14 .
- Teeth 26 of planets 14 further engage teeth 28 of sun gear 12 , disposed in bore 18 in the center of carrier 16 .
- each one of the four circular bores 20 extends through the entire thickness of the wall of carrier 16 and through the center of a single planet 14 .
- FIG. 5 shows front, side and back views of an assembled planetary gearbox including a single row of planets, a sun gear, and a ring gear, according to the prior art, such as planetary gearbox 10 of FIGS. 1 to 4 .
- the side view shows the ring gear 22 holding carrier 16 with planet gears 14 as well as the sun gear, such that shaft 19 extends out of one side of carrier 16 , and sun gear shaft 13 extends out of the other side of carrier 16 .
- the front view shows the teeth 24 of the ring gear 22 , the four circular bores 20 that extend through the walls of the carrier 16 , and the shaft 19 located in the center of carrier 16 .
- the back view shows the ring gear 22 and its teeth 24 , and the four circular bores 20 extending through the walls of carrier 16 .
- the circular center bore 18 located in the center of the carrier 16 and used to accommodate sun gear 12 is shown in the back view, as well as the planet teeth 26 engaging teeth 28 of the sun gear 12 in order to transform the input force coming from the sun gear 12 into rotary motion.
- FIG. 6 shows a perspective view of a planetary gearbox 110 , including multiple rows of planets and a sun gear, in an embodiment of the disclosed technology.
- the planetary gearbox 110 comprises a sun gear 112 connected to a shaft 113 .
- a first set of planets 114 a arranged in a first row, or layer, and a second set of planets 114 b , arranged in a second row, or layer, are disposed within a carrier 116 .
- any suitable number of planets may be used.
- the planets 114 generally form a circle, and planets 114 a are arranged such that they are not aligned with, or concentric to, planets 114 b , though in other embodiments planets on different rows may be aligned with one another.
- External teeth 126 of planets 114 are designed to engage internal teeth of a housing portion or another gear, as described hereinbelow.
- the sun gear 112 is inserted into carrier 116 at a bore 118 located on a first side of carrier 116 , and on a second side thereof the carrier 116 includes a cylindrical arm or shaft 119 .
- a plurality of circular bores 120 are included in side walls of carrier 116 , typically aligned with and overlying planets 114 , such that a single bore 120 corresponds to a single planet 114 .
- the illustrated embodiment shows eight bores, though any other suitable number of bores may be used, provided that the number of bores corresponds to the number of planets.
- the sun gear 112 is shown separate from the carrier 116 .
- the planets 114 rotate around the sun gear 112 .
- the sun gear 112 typically provides the input power of the gearbox 110 , which is transformed into output power and is outputted through the shaft 119 .
- the length of components that may be used in a planetary gearbox is mechanically limited. For higher torque capacities, the length of the components must be increased to provide increased engagement of the gear teeth.
- there is a limit to the ratio of planet diameter to planet length primarily due to the lack of planet support when the planets become too long.
- the torque capacity of planetary gearboxes including a single row, or layer, of planets is limited by the relatively short length of the components.
- embodiments of the disclosed technology allow for greater torque capacity of the planetary gearbox than prior art systems, without increasing the length of the planets.
- FIG. 7 shows a perspective view of a planetary gearbox, similar to planetary gearbox 110 of FIG. 6 , including multiple rows of planets, a sun gear, and a ring gear, in an embodiment of the disclosed technology.
- the planetary gearbox of FIG. 6 additionally includes a ring gear 122 disposed around the carrier 116 .
- Ring gear 122 is typically stationary, and includes internal gear teeth 124 which engage the gear teeth 126 of planet gears 114 a and 114 b mounted in carrier 116 , such that the planets 114 revolve around ring gear 122 .
- ring gear 122 is sufficiently wide to engage both rows of planets 114 a and 114 b , or any number of rows of planets used in a specific embodiment. As such, ring gear 122 is relatively wider than the ring gear used in prior art planetary gears, such as ring gear 22 of FIGS. 2 to 5 described hereinabove.
- planets 114 generally form a circle about sun gear 112 , and planets 114 a are arranged such that they are not aligned with, or parallel to, planets 114 b , though in other embodiments planets on different rows may be aligned with one another.
- sun gear 112 is illustrated externally to carrier 116 , it is configured to be placed in bore 118 of the carrier 116 .
- eight circular bores 120 are located in a wall of carrier 116 , their locations corresponding to locations of planets 114 a and 114 b , such that a single bore 120 corresponds to a single planet 114 .
- FIG. 8 shows a perspective view of an assembled planetary gearbox, such as an assembled gearbox 110 of FIGS. 6 and 7 , including a ring gear, multiple rows of planets, and a sun gear in operational position, in an embodiment of the disclosed technology.
- sun gear 112 is inserted in bore 118 , such that shaft 113 of sun gear 112 is generally aligned with, and is on the opposite side of carrier 116 to shaft 119 .
- gearbox 110 includes a first row of planets 114 a and a second row of planets 114 b , surrounding sun gear 112 .
- the multiple rows of planets 114 allow the gearbox 110 to provide more torque, additional stability, operate in limited spaces, and enable shorter planet lengths with shorter unsupported lengths of planet shafts.
- FIG. 9 shows two cross section views of a planetary gearbox including multiple rows of planets engaging a ring gear in an embodiment of the disclosed technology, similar to planetary gearbox 110 of FIGS. 6 to 8 .
- a first cross section view labeled ‘A’ is taken along a plane of carrier 116 housing planet gears 114 a
- a second cross section view labeled ‘B’ is taken along a plane of carrier 116 housing planet gears 114 b.
- each one of the eight circular bores 120 extends through the entire thickness of the wall of carrier 116 and through the center of a single one of planets 114 . As such, bores 120 may be used to connect the planetary gearbox 110 to another tool unit, thereby reducing stress on gearbox 110 and on the other tool unit.
- the planets 114 a are arranged on a first cross shaped manifold 130 a
- the planets 114 b are arranged on a second cross shaped manifold 130 b
- the second cross shaped manifold 130 b being rotationally offset relative to the first cross shaped manifold 130 a , such that planet gears 114 generally form a circle about sun gear 112 and bore 118 and such that planets 114 a do not lie concentric to planets 114 b.
- FIG. 10 shows front, side, and back views of a planetary gearbox in an embodiment of the disclosed technology, such as planetary gearbox 110 of FIGS. 6 to 9 .
- the side view shows the ring gear 122 holding carrier 116 with planet gears 114 as well as the sun gear such that shaft 119 extends out of one side of carrier 116 , and sun gear shaft 113 extends out of the other side of carrier 116 .
- the front view shows the teeth 124 of the ring gear 122 , the eight circular bores 120 arranged in a circle around carrier 116 and extending through the walls of the carrier 116 , and the shaft 119 located in the center of carrier 116 .
- the back view shows the ring gear 122 and its teeth 124 , and the eight circular bores 120 extending through the walls of carrier 116 .
- the circular center bore 118 located in the center of the carrier 116 and used to accommodate sun gear 112 is shown in the back view, as well as the teeth 126 of the planets 114 engaging teeth 128 of the sun gear 112 in order to transform the input force coming from the sun gear 112 into rotary motion.
- the sun gear can be formed from a unitary structure having a continuous elongated length.
- the planets held in a carrier can each simultaneously engage the sun gear.
- each planet simultaneously engages a ring gear.
- the multiple planets simultaneously engage both a single sun gear and single ring gear, thereby maximizing torque and efficiency. While the technology has been described with input torque applied to the shaft of the sun gear with reference to a stationary ring gear, thereby causing, based on rotation of the shaft, the sun gear and ring gear to rotate, one having ordinary skill in the art should understand that the input torque can be applied to the ring gear or any other gear described herein This, in turn, causes the rest of the engaged gears to turn.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
- Retarders (AREA)
Abstract
A planetary gearbox, also known as an epicyclical gearbox is disclosed herein. The gearbox includes multiple rows of planets and a ring gear. The sun gear is a single unitary structure which simultaneously engages the multiple rows of planets. The system lowers the stress level on torque generating devices incorporating such a gearbox.
Description
- Planetary gears, also known as sun gears and as epicyclic gears, comprise one or more outer gears, or planet gears, revolving about a central, or sun gear. Typically, the planet gears are mounted on a movable carrier or cage or arm which itself may rotate relative to the sun gear. Planetary gears also include the use of an outer ring gear, which meshes with the planet gears.
- Planet gears are used in different types of torque generating devices, such as wrenches and gearboxes However, planetary gears existing in the prior art suffer a major disadvantage, in that torque generated by the torque generating device transfers much stress to the gearing system, causing great wear to the gears.
- There is a long felt need in the art for a gearing system which reduces stress in the torque generating device and on the gear system included therein.
- U.S. Patent Application Publication 2013/0072344 to Volkov et al discloses an epicycle gear with housing and an externally toothed central shaft, such as a sun gear. The planet gears are disposed in rows in corresponding apertures. However, each row of planet gears are not axially offset from each adjacent row of planets.
- U.S. Pat. No. 4,964,844 to Bagnall discloses a gearbox arrangement which uses a planetary gear to drive a multi-bladed rotor. Two different gears are used for each rotor. As such, at times the blades, or planets, will be axially offset from each other. However, these planet gears are not within the same ring gear and are not held in an axially offset position by a housing.
- China Utility Model Publication 202914647 discloses two rows of planets, arranged around two sun gears and two rings as an input, and additional portions of the gear as an output.
- The disclosed technology described herein addresses a need, unfulfilled in the prior art, for providing a planetary gear system, including a single sun gear including external sun-gear teeth, a plurality of planet gears, each including external planet gear teeth, the plurality of planet gears being arranged in at least two rows of planet gears, a circular housing portion having the plurality of planet gears rotatably attached thereto such that the planet gears extend into a hollow interior of the housing, and a ring gear disposed exterior to the circular housing and including internal gear teeth, the external planet gear teeth of each planet gear simultaneously engaging the external sun gear teeth of the sun gear and the internal teeth of the ring gear. Each planet gear simultaneously engages the single sun gear, and further, the ring gear simultaneously engages each planet gear, in embodiments of the disclosed technologyy. a generally circular plane of the housing, and a ring gear disposed exterior to the circular housing and including internal gear teeth, the external planet gear teeth of each planet gear simultaneously engaging the external sun gear teeth of the sun gear and the internal teeth of the ring gear. Each planet gear simultaneously engages the single sun gear, and further, the ring gear simultaneously engages each planet gear, in embodiments of the disclosed technology.
- In some embodiments, the planet gears in each row generally form a circle of planet gears in the row. In some embodiments, the planet gears form a general circle of planet gears about the sun gear.
- In some embodiments, the planet gears in a first row are arranged in a first cross-shape, and the planet gears in a second row are arranged in a second cross-shape, the first cross-shape and the second cross-shape being rotationally offset from one another.
- In some embodiments, the planet gears in different rows are not axially aligned with one another in the carrier.
- In some embodiments, the gear system further includes a plurality of bores extending through the carrier, each of the plurality of bores extending through a center of a single one of the planet gears. In some such embodiments, the plurality of bores may have screws or receptacles there-for to attached to a torque generating device.
- In accordance with another aspect of the disclosed technology, there is also provided a planetary gear system, including a single sun gear including external sun-gear teeth, a circular carrier portion including a first cross shaped manifold and a second cross shaped manifold, the second cross shaped manifold being rotationally offset from the first cross shaped manifold, a plurality of planet gears, each including external planet gear teeth, some of the plurality of planet gears rotatably attached to the first cross shaped manifold thereby to form a first row of planet gears, and some of the plurality of planet gears rotatably attached to the second cross shaped manifold thereby to form a second row of planet gears, and a ring gear disposed exterior to the circular carrier and including internal gear teeth, the external planet gear teeth of each the planet gear simultaneously engaging the external sun gear teeth of the sun gear and the internal teeth of the ring gear.
- In some embodiments, the planet gears in each row are arranged on the cross shaped manifold so as to form a general circle of planet gears in the row.
- In some embodiments, the planet gears in the first and second rows form a general circle of planet gears about the sun gear.
- In some embodiments, the planet gears in different the rows are not axially aligned with one another.
- In some embodiments, the planetary gear system further includes a plurality of bores extending through the carrier, each of the plurality of bores extending through a center of a single one of the planet gears. gcarrier, each of the plurality of bores extending through a center of a single one of the planet gears.
- In accordance with another aspect of the disclosed technology, there is also provided a planetary gear system, including a generally circular ring gear having ring-gear teeth formed on an internal surface thereof; single sun gear including external sun-gear teeth, a circular carrier portion disposed within the ring gear, a plurality of planet gears, each including external planet gear teeth, the plurality of planet gears being rotatably attached to the carrier portion and being arranged in at least two rows of planet gear, and a sun gear removably disposed in a center of the carrier portion and including external sun gear teeth, the external planet gear teeth of each the planet gear simultaneously engaging the external sun gear teeth of the sun gear and the internal ring gear teeth of the ring gear.
- In some embodiments, the planet gears in each row generally form a circle of planet gears in the row. In some embodiments, the planet gears form a general circle of planet gears about the sun gear.
- In some embodiments, the planet gears in a first row are arranged in a first cross-shape, and the planet gears in a second row are arranged in a second cross-shape, the first cross-shape and the second cross-shape being rotationally offset from one another.
- In some embodiments, the planet gears in different the rows are not axially aligned with one another in the carrier.
- In some embodiments, the gear system further includes a plurality of bores extending through the carrier, each of the plurality of bores extending through a center of a single one of the planet gears.
-
FIG. 1 shows a perspective view of a planetary gearbox according to the prior art, including a carrier with a single row of planets with a sun gear. carrier with a single row of planets with a sun gear. -
FIG. 2 shows a perspective view of a planetary gearbox according to the prior art, including a single row of planets and a ring gear. -
FIG. 3 shows a perspective view of an assembled planetary gearbox according to the prior art, including a row of planets, a ring gear, and a sun gear. -
FIG. 4 shows a cross section of a planetary gearbox including a single row of planets according to the prior art. -
FIG. 5 shows front, side and back views of a planetary gearbox including a single row of planets according to the prior art. -
FIG. 6 shows a perspective view of a planetary gearbox, including multiple rows of planets and a sun gear, in an embodiment of the disclosed technology. -
FIG. 7 shows a perspective view of a planetary gearbox, including multiple rows of planets, a sun gear, and a ring gear, in an embodiment of the disclosed technology. -
FIG. 8 shows a perspective view of an assembled planetary gearbox, including a ring gear, multiple rows of planets, and a sun gear in operational position, in an embodiment of the disclosed technology. -
FIG. 9 shows two cross section views of a planetary gearbox including different rows of planets in an embodiment of the disclosed technology -
FIG. 10 shows front, side, and back views of a planetary gearbox of the disclosed technology. - The presently disclosed technology is directed towards a planetary gearbox, also known as an epicyclical gearbox, The gearbox includes multiple rows of planets and a ring gear. The sun gear is a single unitary structure which simultaneously engages the multiple rows of planets. The system is designed to lower the stress level on torque generating devices incorporating such a gearbox by shortening the length of each planet. In an epicyclical gear stage the planets react against the ring gear and they are engaged with the rotating sun causing the centers of the planets to orbit around the sun; the centers of the planets are connected axially to the bores of the carrier, causing the carrier to rotate. For a planetary gear train to be efficient, each planet must be rigid enough not to deform while under load. The present invention accomplishes that by splitting the length of the planets into multiple rows for applications where the planet/sun length is required to be large with comparison to their respective diameters.
-
FIG. 1 shows a perspective view of aplanetary gearbox 10 according to the prior art, including a carrier with a single row of planets with a sun gear. Theplanetary gearbox 10 comprises asun gear 12 connected to ashaft 13, one set of two ormore planets 14, and acarrier 16, sometimes also called a cage, in which theplanets 14 are mounted. The external teeth ofplanets 14 are configured to engage with internal teeth of another gear or carrier portion, for example a ring gear, as shown inFIG. 2 . During construction, thesun gear 12 is inserted intocarrier 16 at abore 18 located on a first side ofcarrier 16, and on a second side thereof thecarrier 16 includes a cylindrical arm orshaft 19. At least twocircular bores 20 are included in side walls ofcarrier 16, typically adjacent to, or overlying,planets 14. Thesun gear 12 is shown separate from thecarrier 16. In other embodiments, three, four, five, six, or eight circular bores may be used. - In use, the
planets 14 rotate around thesun gear 12. Thesun gear 12 typically provides the input power of the gearbox, which is transformed into output power and is outputted through theshaft 19. -
FIG. 2 shows a perspective view of a planetary gearbox according to the prior art, such asplanetary gearbox 10 ofFIG. 1 , including a single row of planets and a ring gear. As seen inFIG. 2 , in some embodiments the planetary gearbox ofFIG. 1 additionally includes aring gear 22 disposed around thecarrier 16.Ring gear 22 is typically stationary, and includesinternal gear teeth 24 which engage the gear teeth of planet gears 14 mounted oncarrier 16, such that theplanets 14 revolve aroundring gear 22. Similarly toFIG. 1 , thoughsun gear 12 is illustrated externally tocarrier 16, it is configured to be placed inbore 18 of thecarrier 16. As inFIG. 1 , fourcircular bores 20 are located in a wall ofcarrier 16, their locations generally corresponding to locations ofplanets 14. -
FIG. 3 shows a perspective view of an assembled planetary gearbox according to the prior art, including a row of planets, a ring gear, and a sun gear, such as assembledgearbox 10 ofFIGS. 1 and 2 . As seen inFIG. 3 , whengearbox 10 is assembled,sun gear 12 is inserted inbore 18, such thatshaft 13 ofsun gear 12 is generally aligned with, and is on the opposite side ofcarrier 16 toshaft 19. -
FIG. 4 shows a cross section of a planetary gearbox including a single row of planets engaging a ring gear according to the prior art, similar toplanetary gearbox 10 ofFIGS. 1 to 3 . As seen inFIG. 4 , theteeth 24 ofring gear 22 engage theteeth 26 of theplanets 14.Teeth 26 ofplanets 14 further engageteeth 28 ofsun gear 12, disposed inbore 18 in the center ofcarrier 16. Further, each one of the fourcircular bores 20 extends through the entire thickness of the wall ofcarrier 16 and through the center of asingle planet 14. -
FIG. 5 shows front, side and back views of an assembled planetary gearbox including a single row of planets, a sun gear, and a ring gear, according to the prior art, such asplanetary gearbox 10 ofFIGS. 1 to 4 . The side view shows thering gear 22 holdingcarrier 16 with planet gears 14 as well as the sun gear, such thatshaft 19 extends out of one side ofcarrier 16, andsun gear shaft 13 extends out of the other side ofcarrier 16. - The front view shows the
teeth 24 of thering gear 22, the fourcircular bores 20 that extend through the walls of thecarrier 16, and theshaft 19 located in the center ofcarrier 16. - The back view shows the
ring gear 22 and itsteeth 24, and the fourcircular bores 20 extending through the walls ofcarrier 16. The circular center bore 18 located in the center of thecarrier 16 and used to accommodatesun gear 12 is shown in the back view, as well as theplanet teeth 26 engagingteeth 28 of thesun gear 12 in order to transform the input force coming from thesun gear 12 into rotary motion. -
FIG. 6 shows a perspective view of aplanetary gearbox 110, including multiple rows of planets and a sun gear, in an embodiment of the disclosed technology. Theplanetary gearbox 110 comprises asun gear 112 connected to ashaft 113. A first set ofplanets 114 a, arranged in a first row, or layer, and a second set ofplanets 114 b, arranged in a second row, or layer, are disposed within acarrier 116. In the illustrated embodiment, there are fourplanets 114 a in the first set, and fourplanets 114 b in the second set, totaling eight planets. However, any suitable number of planets may be used. In the illustrated embodiment, the planets 114 generally form a circle, andplanets 114 a are arranged such that they are not aligned with, or concentric to,planets 114 b, though in other embodiments planets on different rows may be aligned with one another.External teeth 126 of planets 114 are designed to engage internal teeth of a housing portion or another gear, as described hereinbelow. - During construction, the
sun gear 112 is inserted intocarrier 116 at abore 118 located on a first side ofcarrier 116, and on a second side thereof thecarrier 116 includes a cylindrical arm orshaft 119. A plurality ofcircular bores 120 are included in side walls ofcarrier 116, typically aligned with and overlying planets 114, such that asingle bore 120 corresponds to a single planet 114. As such, the illustrated embodiment shows eight bores, though any other suitable number of bores may be used, provided that the number of bores corresponds to the number of planets. In the illustrated embodiment, thesun gear 112 is shown separate from thecarrier 116. - Similarly to the prior art, in use, the planets 114 rotate around the
sun gear 112. Thesun gear 112 typically provides the input power of thegearbox 110, which is transformed into output power and is outputted through theshaft 119. - The length of components that may be used in a planetary gearbox is mechanically limited. For higher torque capacities, the length of the components must be increased to provide increased engagement of the gear teeth. However, there is a limit to the ratio of planet diameter to planet length, primarily due to the lack of planet support when the planets become too long. As a result, the torque capacity of planetary gearboxes including a single row, or layer, of planets, such as
prior art system 10 described inFIGS. 1 to 5 hereinabove, is limited by the relatively short length of the components. By contrast, due to the multiple rows of planets, embodiments of the disclosed technology allow for greater torque capacity of the planetary gearbox than prior art systems, without increasing the length of the planets. -
FIG. 7 shows a perspective view of a planetary gearbox, similar toplanetary gearbox 110 ofFIG. 6 , including multiple rows of planets, a sun gear, and a ring gear, in an embodiment of the disclosed technology. As seen inFIG. 7 , in some embodiments of the disclosed technology, the planetary gearbox ofFIG. 6 additionally includes aring gear 122 disposed around thecarrier 116.Ring gear 122 is typically stationary, and includesinternal gear teeth 124 which engage thegear teeth 126 of planet gears 114 a and 114 b mounted incarrier 116, such that the planets 114 revolve aroundring gear 122. Thus,ring gear 122 is sufficiently wide to engage both rows ofplanets ring gear 122 is relatively wider than the ring gear used in prior art planetary gears, such asring gear 22 ofFIGS. 2 to 5 described hereinabove. As in the description ofFIG. 6 hereinabove, planets 114 generally form a circle aboutsun gear 112, andplanets 114 a are arranged such that they are not aligned with, or parallel to,planets 114 b, though in other embodiments planets on different rows may be aligned with one another. - Similarly to that illustrated in
FIG. 6 , thoughsun gear 112 is illustrated externally tocarrier 116, it is configured to be placed inbore 118 of thecarrier 116. As inFIG. 6 , eightcircular bores 120 are located in a wall ofcarrier 116, their locations corresponding to locations ofplanets single bore 120 corresponds to a single planet 114. -
FIG. 8 shows a perspective view of an assembled planetary gearbox, such as an assembledgearbox 110 ofFIGS. 6 and 7 , including a ring gear, multiple rows of planets, and a sun gear in operational position, in an embodiment of the disclosed technology. As seen inFIG. 8 , whengearbox 110 is assembled,sun gear 112 is inserted inbore 118, such thatshaft 113 ofsun gear 112 is generally aligned with, and is on the opposite side ofcarrier 116 toshaft 119. Similar to the disclosure ofFIGS. 6 and 7 ,gearbox 110 includes a first row ofplanets 114 a and a second row ofplanets 114 b, surroundingsun gear 112. The multiple rows of planets 114 allow thegearbox 110 to provide more torque, additional stability, operate in limited spaces, and enable shorter planet lengths with shorter unsupported lengths of planet shafts. -
FIG. 9 shows two cross section views of a planetary gearbox including multiple rows of planets engaging a ring gear in an embodiment of the disclosed technology, similar toplanetary gearbox 110 ofFIGS. 6 to 8 . As seen, a first cross section view labeled ‘A’, is taken along a plane ofcarrier 116 housing planet gears 114 a, whereas a second cross section view labeled ‘B’ is taken along a plane ofcarrier 116 housing planet gears 114 b. - As seen in
FIG. 9 , theteeth 124 ofring gear 122 engage theteeth 126 of theplanets Teeth 126 of planets 114 further engageteeth 128 ofsun gear 112, disposed inbore 118 in the center ofcarrier 116. Further, each one of the eightcircular bores 120 extends through the entire thickness of the wall ofcarrier 116 and through the center of a single one of planets 114. As such, bores 120 may be used to connect theplanetary gearbox 110 to another tool unit, thereby reducing stress ongearbox 110 and on the other tool unit. - The
planets 114 a are arranged on a first cross shaped manifold 130 a, and theplanets 114 b are arranged on a second cross shapedmanifold 130 b, the second cross shapedmanifold 130 b being rotationally offset relative to the first cross shaped manifold 130 a, such that planet gears 114 generally form a circle aboutsun gear 112 and bore 118 and such thatplanets 114 a do not lie concentric toplanets 114 b. -
FIG. 10 shows front, side, and back views of a planetary gearbox in an embodiment of the disclosed technology, such asplanetary gearbox 110 ofFIGS. 6 to 9 . The side view shows thering gear 122holding carrier 116 with planet gears 114 as well as the sun gear such thatshaft 119 extends out of one side ofcarrier 116, andsun gear shaft 113 extends out of the other side ofcarrier 116. - The front view shows the
teeth 124 of thering gear 122, the eightcircular bores 120 arranged in a circle aroundcarrier 116 and extending through the walls of thecarrier 116, and theshaft 119 located in the center ofcarrier 116. - The back view shows the
ring gear 122 and itsteeth 124, and the eightcircular bores 120 extending through the walls ofcarrier 116. The circular center bore 118 located in the center of thecarrier 116 and used to accommodatesun gear 112 is shown in the back view, as well as theteeth 126 of the planets 114 engagingteeth 128 of thesun gear 112 in order to transform the input force coming from thesun gear 112 into rotary motion. - It should further be understood, that the sun gear can be formed from a unitary structure having a continuous elongated length. The planets held in a carrier can each simultaneously engage the sun gear. In turn, each planet, simultaneously engages a ring gear. As such, the multiple planets simultaneously engage both a single sun gear and single ring gear, thereby maximizing torque and efficiency. While the technology has been described with input torque applied to the shaft of the sun gear with reference to a stationary ring gear, thereby causing, based on rotation of the shaft, the sun gear and ring gear to rotate, one having ordinary skill in the art should understand that the input torque can be applied to the ring gear or any other gear described herein This, in turn, causes the rest of the engaged gears to turn.
- While the disclosed technology has been taught with specific reference to the above embodiments, a person having ordinary skill in the art will recognize that changes can be made in form and detail without departing from the spirit and the scope of the disclosed technology. The described embodiments are to be considered in all respects only as illustrative and not restrictive. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope. Combinations of any of the methods, systems, and devices described herein above are also contemplated and within the scope of the invention.
Claims (19)
1. A planetary gear system, comprising:
a single sun gear including external sun-gear teeth;
a plurality of planet gears, each including external planet gear teeth, said plurality of planet gears being arranged in at least two rows of planet gears, wherein each planet gear simultaneously engages said single sun gear;
a circular carrier portion having said plurality of planet gears rotatably attached thereto such that said planet gears extend into a hollow interior of said carrier as well as outside a generally circular plane of said carrier; and
a ring gear disposed exterior to said circular carrier and including internal gear teeth,
said external planet gear teeth of each said planet gear simultaneously engaging said external sun gear teeth of said sun gear and said internal teeth of said ring gear.
2. The planetary gear system of claim 1 , wherein said planet gears in each said row generally form a circle of planet gears in said row.
3. The planetary gear system of claim 1 , wherein said planet gears form a general circle of planet gears about said sun gear.
4. The planetary gear system of claim 1 , wherein said planet gears in a first said row are arranged in a first cross-shape, and said planet gears in a second said row are arranged in a second cross-shape, said first cross-shape and said second cross-shape being rotationally offset from one another.
5. The planetary gear system of claim 1 , wherein said planet gears in different said rows are not axially aligned with one another in said carrier.
6. The planetary gear system of claim 1 , further comprising a plurality of bores extending through said carrier, each of said plurality of bores extending through a center of a single one of said planet gears.
7. The planetary gear system of claim 6 , wherein said plurality of bores are removably fastened into a torque generating device thereby reducing stress of said torque generating device.
8. A planetary gear system, comprising:
a single sun gear including external sun-gear teeth;
a circular carrier portion comprising a first cross shaped manifold and a second cross shaped manifold, said second cross shaped manifold being rotationally offset from said first cross shaped manifold;
a plurality of planet gears, each including external planet gear teeth, some of said plurality of planet gears rotatably attached to said first cross shaped manifold thereby to form a first row of planet gears, and some of said plurality of planet gears rotatably attached to said second cross shaped manifold thereby to form a second row of planet gears;
a ring gear disposed exterior to said circular carrier and including internal gear teeth,
said external planet gear teeth of each said planet gear simultaneously engaging said external sun gear teeth of said sun gear and said internal teeth of said ring gear.
9. The planetary gear system of claim 8 , wherein said planet gears in each said row are arranged on said cross shaped manifold so as to form a general circle of planet gears in said row.
10. The planetary gear system of claim 8 , wherein said planet gears in said first and second rows form a general circle of planet gears about said sun gear.
11. The planetary gear system of claim 8 , wherein said planet gears in different said rows are not axially aligned with one another.
12. The planetary gear system of claim 8 , further comprising a plurality of bores extending through said carrier, each of said plurality of bores extending through a center of a single one of said planet gears.
13. The planetary gear system of claim 12 , wherein said plurality of bores are adapted to be attached into a torque generating device.
14. A planetary gear system, comprising:
a generally circular ring gear having ring-gear teeth formed on an internal surface thereof; single sun gear including external sun-gear teeth;
a circular carrier portion disposed within said ring gear;
a plurality of planet gears, each including external planet gear teeth, said plurality of planet gears being rotatably attached to said carrier portion and being arranged in at least two rows of planet gears; and
a sun gear removably disposed in a center of said carrier portion and including external sun gear teeth,
said external planet gear teeth of each said planet gear simultaneously engaging said external sun gear teeth of said sun gear and said internal ring gear teeth of said ring gear.
15. The planetary gear system of claim 14 , wherein said planet gears in each said row generally form a circle of planet gears in said row.
16. The planetary gear system of claim 14 , wherein said planet gears form a general circle of planet gears about said sun gear.
17. The planetary gear system of claim 14 , wherein said planet gears in a first said row are arranged in a first cross-shape, and said planet gears in a second said row are arranged in a second cross-shape, said first cross-shape and said second cross-shape being rotationally offset from one another.
18. The planetary gear system of claim 14 , wherein said planet gears in different said rows are not axially aligned with one another in said carrier.
19. The planetary gear system of claim 14 , further comprising a plurality of bores extending through said carrier, each of said plurality of bores extending through a center of a single one of said planet gears.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/514,448 US20150111692A1 (en) | 2013-10-17 | 2014-10-15 | Planetary gear train for use with extended length sun in high torque applications |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361892130P | 2013-10-17 | 2013-10-17 | |
US14/514,448 US20150111692A1 (en) | 2013-10-17 | 2014-10-15 | Planetary gear train for use with extended length sun in high torque applications |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150111692A1 true US20150111692A1 (en) | 2015-04-23 |
Family
ID=52825021
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/514,442 Abandoned US20150107421A1 (en) | 2013-10-17 | 2014-10-15 | Quadrilobe connector for transmitting torque |
US14/514,457 Active US9016173B1 (en) | 2013-10-17 | 2014-10-15 | Reaction device for reducing stress on torque generating tools |
US14/514,448 Abandoned US20150111692A1 (en) | 2013-10-17 | 2014-10-15 | Planetary gear train for use with extended length sun in high torque applications |
US14/695,885 Active 2036-10-19 US10220496B2 (en) | 2013-10-17 | 2015-04-24 | Reaction device for reducing stress on torque generating tools |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/514,442 Abandoned US20150107421A1 (en) | 2013-10-17 | 2014-10-15 | Quadrilobe connector for transmitting torque |
US14/514,457 Active US9016173B1 (en) | 2013-10-17 | 2014-10-15 | Reaction device for reducing stress on torque generating tools |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/695,885 Active 2036-10-19 US10220496B2 (en) | 2013-10-17 | 2015-04-24 | Reaction device for reducing stress on torque generating tools |
Country Status (1)
Country | Link |
---|---|
US (4) | US20150107421A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170197300A1 (en) * | 2016-01-11 | 2017-07-13 | Torque-Tech Precision Co., Ltd. | Hand tool adapter capable of increasing output torque or rotational speed |
WO2017147546A3 (en) * | 2016-02-24 | 2018-05-17 | HYTORC Division Unex Corporation | Apparatus for tightening threaded fasteners |
CN110500386A (en) * | 2019-07-29 | 2019-11-26 | 广东大市智能装备有限公司 | Tooth difference planetary gear speed reducer |
US10744624B2 (en) | 2015-08-26 | 2020-08-18 | Redback Pneumatics Pty Ltd | Rotational driver |
CN114633101A (en) * | 2022-03-17 | 2022-06-17 | 无锡市金华屹圆科技有限公司 | Full-automatic screw machine for mounting anti-leakage water inlet pipe joint |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10569393B2 (en) * | 2017-02-10 | 2020-02-25 | Makita Corporation | Attachment and fastening tool |
GB2563067B (en) * | 2017-06-02 | 2022-08-10 | Enerpac Uk Ltd | Torque wrench and reaction arm assembly with safety tether |
GB2573728B (en) * | 2017-12-21 | 2022-08-10 | Enerpac Uk Ltd | Tool for use in places with restricted access |
IT201900003545A1 (en) * | 2019-03-12 | 2020-09-12 | R C D S R L | PORTABLE HANDLER FOR MECHANICAL EQUIPMENT |
US11229265B2 (en) * | 2019-11-27 | 2022-01-25 | Jon E. Arendsen | Kit assembly for adapting a gemstone between multiple wearable use configurations |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030232692A1 (en) * | 2002-06-18 | 2003-12-18 | Yung-Tung Chen | Transmission and variable speed system |
US20060142114A1 (en) * | 2003-01-27 | 2006-06-29 | Fox Gerald P | Epicyclic gear systems |
US7112157B2 (en) * | 2003-05-27 | 2006-09-26 | A. Friedr. Flender Aktiengesellschaft | Gear unit for the drive of a rotation tube |
US7828687B2 (en) * | 2006-10-25 | 2010-11-09 | Remy Technologies, L.L.C. | Modular planetary gear assembly and drive |
US8118702B2 (en) * | 2003-10-03 | 2012-02-21 | Atlas Copco Tools Ab | Power tool with planet type reduction gearing |
US20130021783A1 (en) * | 2010-09-30 | 2013-01-24 | Black & Decker Inc. | Lighted power tool |
US8734288B2 (en) * | 2011-05-25 | 2014-05-27 | Romax Technology Limited | Planet carrier assembly |
US20140148301A1 (en) * | 2012-11-23 | 2014-05-29 | Maxon Motor Ag | Backlash-free planetary gear unit with planet carriers preloaded relative to each other |
US20140230586A1 (en) * | 2011-09-28 | 2014-08-21 | Brose Fahrzeugteile Gmbh & Co.Kg, Hallstadt | Spindle drive for the motorized adjustment of an adjusting element of a motor vehicle |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1828370A (en) * | 1928-01-19 | 1931-10-20 | Deere & Co | Slip clutch |
US2409545A (en) * | 1944-03-07 | 1946-10-15 | Arthur L Cornwell | Torque wrench |
US2893278A (en) * | 1952-10-20 | 1959-07-07 | Adele M Stevens | Multiple stage, predetermined torque release apparatus for tightening threaded fastening elements |
US3068867A (en) * | 1959-01-02 | 1962-12-18 | Kimberly Clark Co | Cellulosic product |
US3180435A (en) * | 1962-05-25 | 1965-04-27 | Chicago Pneumatic Tool Co | Socket retainer for impact wrench |
US3584667A (en) * | 1966-09-19 | 1971-06-15 | Textron Inc | Coupling arrangement and tools for same |
US3964347A (en) | 1971-06-25 | 1976-06-22 | S.R.M. Hydromekanik Aktiebolag | Torque converter transmission having rotating casing, and releasable pump |
US3830119A (en) * | 1973-08-08 | 1974-08-20 | Sweeney Mfg Co | Shear-off output shaft for torque multiplier |
US3889490A (en) * | 1974-05-16 | 1975-06-17 | Felix J Nadolny | Torque control adaptor for ratchet wrench |
US3942337A (en) * | 1974-09-16 | 1976-03-09 | Industrial Analytics Inc. | Torque limiting device |
US3969961A (en) * | 1974-12-09 | 1976-07-20 | M.A.T. Industries, Inc. | Torque limiting adaptor |
US4155278A (en) * | 1977-09-06 | 1979-05-22 | Cooper Industries, Inc. | Swivel head reaction bar nut runner |
DE3023005C2 (en) * | 1980-06-20 | 1982-12-16 | Maschinenfabrik Wagner GmbH & Co KG, 5203 Much | Nut runner with torque limiting device |
SE427812B (en) * | 1981-11-23 | 1983-05-09 | Atlas Copco Ab | TWO-ENGINE TOOL FOR TIGHTENING SCREW TAPE |
DE3214842A1 (en) * | 1982-04-21 | 1983-10-27 | Wagner, Paul-Heinz, 5203 Much | TURNING TOOL |
US4462282A (en) * | 1982-11-15 | 1984-07-31 | Dresser Industries, Inc. | Power tool with torque reaction bar |
US4794825A (en) * | 1986-11-03 | 1989-01-03 | Atlantic-Caribbean Products, Inc. | Hydraulic power wrench |
US5211080A (en) | 1988-04-29 | 1993-05-18 | Chrysler Corporation | Method of shift control during a coastdown shift for an electronic automatic transmission system |
US5209701A (en) * | 1990-12-07 | 1993-05-11 | Nikon Corporation | Hub unit bearing apparatus with improved pre-loading arrangement |
US5094330A (en) * | 1991-07-19 | 1992-03-10 | Lee Song Ming | Power transmission mechanism with automatic clutch means |
US5199330A (en) * | 1991-10-01 | 1993-04-06 | Easco Hand Tools, Inc. | Reversing ratchet wrench |
US5429017A (en) * | 1991-12-23 | 1995-07-04 | Junkers; John K. | Fluid-operated torque tool |
US5176588A (en) | 1992-04-27 | 1993-01-05 | Sackschewsky William A | Continuously variable drive train |
JP2690853B2 (en) * | 1993-10-22 | 1997-12-17 | 前田金属工業 株式会社 | Screw member tightening machine |
US5910197A (en) * | 1997-07-30 | 1999-06-08 | Hand Tool Design Corporation | Wrench with supplementary driving lugs formed on its square cross-sectioned drive tang and interchangeable sockets therefor |
JP3261398B2 (en) * | 1997-10-29 | 2002-02-25 | 前田金属工業株式会社 | Bolt and nut tightening machine |
US6849023B1 (en) | 1998-10-16 | 2005-02-01 | Ker-Train Holdings Ltd | All gear infinitely variable transmission |
US6458058B1 (en) * | 2001-02-28 | 2002-10-01 | Chun-Fa Fu | Speed reducer in a portable electric tool |
US6464612B2 (en) | 2001-03-23 | 2002-10-15 | New Venture Gear, Inc. | Three-speed transfer case |
US6715381B2 (en) * | 2002-01-22 | 2004-04-06 | John K. Junkers | Adjustable reaction arm for torque power tool, and torque power tool provided therewith |
US7287621B2 (en) | 2002-12-20 | 2007-10-30 | Honda Motor Co., Ltd. | Vehicular power transmission mechanism |
EP1620629B1 (en) | 2003-04-25 | 2009-04-22 | Intersyn Technologies | System and method using a continuously variable transmission to control one or more system components |
US7032476B2 (en) * | 2004-06-14 | 2006-04-25 | Lotuskate Sports Industrial Co., Ltd. | Torque adjustable tool |
JP2006000993A (en) * | 2004-06-21 | 2006-01-05 | Maeda Metal Industries Ltd | Fastening machine with reaction receiver |
JP3975299B2 (en) * | 2004-07-08 | 2007-09-12 | 前田金属工業株式会社 | Tightening torque measuring unit and torque display tightening machine |
US7188554B2 (en) * | 2005-06-09 | 2007-03-13 | Atlas Spine, Inc. | Medical fastener and tool |
US7524261B1 (en) | 2005-06-10 | 2009-04-28 | Merritt Armstrong Osborn | Input shaft-supported gearing |
US7225707B2 (en) * | 2005-09-14 | 2007-06-05 | Brian Knopp | Torque wrench with quick-release gear set |
JP4974643B2 (en) * | 2006-10-30 | 2012-07-11 | 前田金属工業株式会社 | Bolt / nut tightening device |
DE102006059633B4 (en) * | 2006-12-14 | 2016-12-01 | Robert Bosch Gmbh | impact drill |
TW200918249A (en) * | 2007-10-19 | 2009-05-01 | Chia-Chiung Chuang | Mechanism for stabilizing output torque of transmission member |
US7765895B2 (en) * | 2007-10-29 | 2010-08-03 | Junkers John K | Fluid-operated torque wrench for and method of tightening or loosening fasteners |
US7798038B2 (en) * | 2007-10-29 | 2010-09-21 | Junkers John K | Reaction arm for power-driven torque intensifier |
BE1017866A3 (en) | 2007-12-06 | 2009-09-01 | Hansen Transmissions Int | WIND TURBINE DRIVE. |
US8042434B2 (en) * | 2008-01-24 | 2011-10-25 | Junkers John K | Safety torque intensifying tool |
US7832310B2 (en) * | 2008-07-18 | 2010-11-16 | Junkers John K | Torque power tool |
US8752455B1 (en) * | 2009-05-01 | 2014-06-17 | James W. Taylor, Jr. | Socket insert adapter and method of use |
US8104383B2 (en) * | 2009-10-22 | 2012-01-31 | Jin-Tsai Lai | Torque socket assembly |
US20130161041A1 (en) * | 2010-02-09 | 2013-06-27 | Eric P. JUNKERS | Apparatus for tightening threaded fasteners |
GB2494805A (en) * | 2010-07-07 | 2013-03-20 | Actuant Corp | Fastener wrenching apparatus and method |
SE535307C2 (en) * | 2010-07-14 | 2012-06-26 | Atlas Copco Tools Ab | Lock nut for a reaction arm |
US8403788B2 (en) | 2011-02-24 | 2013-03-26 | Ford Global Technologies, Llc | Front support for transmission gear box |
US8646589B2 (en) | 2011-02-24 | 2014-02-11 | Ford Global Technologies, Llc | Mechanism for controlling a transmission component |
US8622869B2 (en) | 2011-12-28 | 2014-01-07 | George Dimitri Mourani | Drive train transmission |
US9149916B2 (en) * | 2013-01-04 | 2015-10-06 | Cody Kiser | Gear head socket tool |
-
2014
- 2014-10-15 US US14/514,442 patent/US20150107421A1/en not_active Abandoned
- 2014-10-15 US US14/514,457 patent/US9016173B1/en active Active
- 2014-10-15 US US14/514,448 patent/US20150111692A1/en not_active Abandoned
-
2015
- 2015-04-24 US US14/695,885 patent/US10220496B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030232692A1 (en) * | 2002-06-18 | 2003-12-18 | Yung-Tung Chen | Transmission and variable speed system |
US20060142114A1 (en) * | 2003-01-27 | 2006-06-29 | Fox Gerald P | Epicyclic gear systems |
US7112157B2 (en) * | 2003-05-27 | 2006-09-26 | A. Friedr. Flender Aktiengesellschaft | Gear unit for the drive of a rotation tube |
US8118702B2 (en) * | 2003-10-03 | 2012-02-21 | Atlas Copco Tools Ab | Power tool with planet type reduction gearing |
US7828687B2 (en) * | 2006-10-25 | 2010-11-09 | Remy Technologies, L.L.C. | Modular planetary gear assembly and drive |
US20130021783A1 (en) * | 2010-09-30 | 2013-01-24 | Black & Decker Inc. | Lighted power tool |
US8734288B2 (en) * | 2011-05-25 | 2014-05-27 | Romax Technology Limited | Planet carrier assembly |
US20140230586A1 (en) * | 2011-09-28 | 2014-08-21 | Brose Fahrzeugteile Gmbh & Co.Kg, Hallstadt | Spindle drive for the motorized adjustment of an adjusting element of a motor vehicle |
US20140148301A1 (en) * | 2012-11-23 | 2014-05-29 | Maxon Motor Ag | Backlash-free planetary gear unit with planet carriers preloaded relative to each other |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10744624B2 (en) | 2015-08-26 | 2020-08-18 | Redback Pneumatics Pty Ltd | Rotational driver |
US20170197300A1 (en) * | 2016-01-11 | 2017-07-13 | Torque-Tech Precision Co., Ltd. | Hand tool adapter capable of increasing output torque or rotational speed |
US10265837B2 (en) * | 2016-01-11 | 2019-04-23 | Torque-Tech Precision Co., Ltd. | Hand tool adapter capable of increasing output torque or rotational speed |
WO2017147546A3 (en) * | 2016-02-24 | 2018-05-17 | HYTORC Division Unex Corporation | Apparatus for tightening threaded fasteners |
CN110500386A (en) * | 2019-07-29 | 2019-11-26 | 广东大市智能装备有限公司 | Tooth difference planetary gear speed reducer |
CN114633101A (en) * | 2022-03-17 | 2022-06-17 | 无锡市金华屹圆科技有限公司 | Full-automatic screw machine for mounting anti-leakage water inlet pipe joint |
Also Published As
Publication number | Publication date |
---|---|
US10220496B2 (en) | 2019-03-05 |
US20150231772A1 (en) | 2015-08-20 |
US9016173B1 (en) | 2015-04-28 |
US20150107419A1 (en) | 2015-04-23 |
US20150107421A1 (en) | 2015-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150111692A1 (en) | Planetary gear train for use with extended length sun in high torque applications | |
US8231503B2 (en) | Torque balancing gearbox | |
US7507180B2 (en) | Epicyclic gear transmission for rotary wing aircraft | |
US8096917B2 (en) | Planetary gearbox having multiple sun pinions | |
CA2884659C (en) | Rotorcraft and planetary gear systems | |
JP2016525193A (en) | Incorporating a gear train in the pinion wall of a turbomachine gearbox | |
JP2015530539A (en) | Gear device with gear carrier | |
CN102003499A (en) | Planetary gear drive mechanism | |
DK2562081T3 (en) | Hub for wind power plants and the device for adjusting the number of elements in relation to each other | |
CN102410154A (en) | Power splitting drive device for wind power device | |
JP2021517222A (en) | Planetary gear transmission mechanism with one-tooth planetary gear with evolut teeth | |
CA2379240A1 (en) | Gearing for power sharing in planetary transmission | |
CA2933999A1 (en) | Planetary gear, wind generator comprising a planetary gear and use of a planetary gear | |
US20150367493A1 (en) | A gearbox for a power tool and a power tool with such a gearbox | |
EP2884101B1 (en) | Planetary gear, wind generator having a planetary gear and use of a planetary gear | |
US6783478B2 (en) | Compound differential planetary gear assembly | |
EP3135904A1 (en) | Windmill driving apparatus, windmill driving system, and reduction gear | |
JP5540442B1 (en) | Speed reducer series and speed reducer | |
TWI428520B (en) | Planetary gearbox | |
JP4588586B2 (en) | Simple planetary gear mechanism planetary gear unit series | |
JP2013002601A (en) | Transmission of epicyclic gear train including speed reduction ratio of worm gear reduction mechanism | |
WO2019090899A1 (en) | Modular precision cycloidal rotary joint speed reducer | |
CN205446569U (en) | Last miniature planet gear who uses of linking machine | |
CN105387147A (en) | Micro planetary reducer used on dial linking machine | |
KR200429620Y1 (en) | Planetary gear reducer with motor and pinion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TORQ FUSION LLC, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAFTOIU, RADU;REEL/FRAME:035249/0285 Effective date: 20150324 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |