US20150016206A1 - Apparatus and method to measure energy capacity of a backup power supply without compromising power delivery - Google Patents
Apparatus and method to measure energy capacity of a backup power supply without compromising power delivery Download PDFInfo
- Publication number
- US20150016206A1 US20150016206A1 US14/299,267 US201414299267A US2015016206A1 US 20150016206 A1 US20150016206 A1 US 20150016206A1 US 201414299267 A US201414299267 A US 201414299267A US 2015016206 A1 US2015016206 A1 US 2015016206A1
- Authority
- US
- United States
- Prior art keywords
- capacitor
- potential
- logic
- predetermined operating
- measurements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 22
- 239000003990 capacitor Substances 0.000 claims abstract description 179
- 238000005259 measurement Methods 0.000 claims abstract description 56
- 230000001052 transient effect Effects 0.000 claims abstract description 24
- 230000015654 memory Effects 0.000 claims description 81
- 230000003247 decreasing effect Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 description 13
- 238000004590 computer program Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002355 dual-layer Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
- G11C5/141—Battery and back-up supplies
-
- G01R31/028—
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/64—Testing of capacitors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/061—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
Definitions
- a power source may be constructed using capacitors, such as Electrochemical Dual-Layer Capacitors, often named “Ultracapacitors” or “Supercapacitors”. These capacitors employ electrostatic charge separation instead of the chemical reaction which is the basis for battery operation. This gives Ultracapacitors very high (500,000+) charge cycles, quick charge times, and the ability to deliver substantial power in a small volume.
- FIG. 1 illustrates an embodiment of a system using capacitors to supply backup power.
- FIGS. 2A and 2B illustrate an embodiment of a capacitance measurement during the rising phase of a capacitor potential that is transiently elevated over a upper predetermined operating potential for the capacitor.
- FIGS. 3A and 3B illustrate an embodiment of a capacitance measurement during the decreasing phase of a capacitor potential that is transiently elevated over a upper predetermined operating potential for the capacitor.
- FIG. 4 illustrates an embodiment of a backup power source including logic to drain charge from individual capacitors.
- FIGS. 5-7 are flowcharts that illustrate an embodiment of a capacitance measurement during operation of a backup power supply.
- FIG. 8 illustrates an embodiment of a memory system employing a capacitor-based backup power source.
- Logic refers to machine memory circuits, tangible machine readable media, and/or circuitry which by way of its material and/or material-energy configuration comprises control and/or procedural signals, and/or settings and values, that may be applied to influence the operation of a device.
- Magnetic tangible media, electronic circuits, electrical and optical memory (both volatile and nonvolatile), and firmware are examples of logic.
- logic may be distributed throughout one or more devices, and/or may be comprised of combinations memory, media, processing circuits and controllers, other circuits, and so on. Therefore, in the interest of clarity and correctness logic may not always be distinctly illustrated in drawings of devices and systems, although it is inherently present therein.
- the techniques and procedures described herein may be implemented via logic distributed in one or more devices.
- the particular distribution and choice of logic is a design decision that will vary according to implementation.
- a capacitance measurement is performed by obtaining measurements of a capacitor's output potential during a transient elevation of the capacitor's stored potential above a upper predetermined operating potential of the capacitor.
- the transient elevated potential is induced during availability of the capacitor as a secondary power source for an electrically powered device.
- an accelerated discharge meaning the capacitor is discharged faster than it would normally discharge due to inherent leakage
- An accelerated discharge may be effected by applying a resistive load across terminals of the capacitor.
- two or more measurements of the capacitor's stored potential may be taken during an increasing phase of the capacitor's stored potential.
- the increasing phase begins at the capacitor's upper predetermined operating potential and continues until the capacitor's stored potential reaches a peak value (which may be less than the capacitor's maximum rated potential).
- two or more measurements of the capacitor's stored potential may be taken during a decreasing phase of the capacitor's stored potential.
- the decreasing phase begins at the capacitor's peak stored potential and continues until the capacitor's stored potential reaches a value at or below its upper predetermined operating potential.
- Multiple capacitors may be arranged in a series configuration.
- Logic may be provided to discharge each capacitor in the series configuration separately from other capacitors in the series configuration.
- the discharge logic may be operated for capacitive measurements as well as to balance the stored potential on each of the capacitors.
- An ultracapacitor may be selected with a capacitance that accounts for a decrease that will occur over time, as a result of an expected range of operating temperatures and/or a predetermined maximum operating voltage for the ultracapacitor.
- an ultracapacitor-based backup power supply is designed to supply 100 Joules (100 Watt-seconds) to power a device memory transfer apparatus, and the power supply is expected to operate at around 55° C. for around seven years
- the ultracapacitors may be chosen to supply a higher energy, for example 150 Joules, to account for an expected drop in capacitance at the rated temperature over the rated service lifetime.
- a system may be designed to track the capacitance of an ultracapacitor (or any capacitor) and to generate an alert when the capacitance decays to the point that the capacitor can no longer supply an adequate amount of backup power for the system.
- an ultracapacitor backup power source is measured to have a power capacity of 110 Joules, the system may trigger a service alarm to replace the capacitor. This warning allows an orderly replacement procedure without jeopardizing the reliability of the system.
- the energy stored by a capacitor may be determined by measuring its capacitance and the voltage across the capacitor terminals (the output potential, which is typically the same as the stored potential). The stored energy may then be calculated as:
- FIG. 1 illustrates an embodiment of a system using capacitors to supply backup power.
- System 10 comprises controller 1 , charger 3 , and a capacitor configuration 12 .
- the capacitor configuration 12 comprises multiple capacitors 6 - 7 (e.g., multiple ultracapacitors coupled in series) to increase the operating voltage beyond that available from an individual capacitor (e.g., 2.5-2.7 volts for an ultracapacitor).
- a typical backup power supply for a digital memory device may employ 2-6 ultracapacitors in series. Each series ultracapacitor may comprise a single ultracapacitor, or multiple ultracapacitors in parallel.
- a series configuration of four capacitors each rated at a maximum operating potential of 2.7V would have a combined maximum potential rating of 10.8V (4*2.7V), but the upper predetermined operation potential of the combination will be lower, e.g. 8.0V.
- the controller 1 directs the charger 3 to charge the capacitors 12 .
- the controller 1 may activate and deactivate the charger 3 via switch 4 and I/O interface 15 .
- the controller 1 may also direct the charger 1 via an I/O interface 9 to provide a particular charge voltage and/or charge current.
- the system 10 receives primary power at V IN , which may for example be 12V in digital memory systems.
- V IN may for example be 12V in digital memory systems.
- the controller 1 maintains Switch 5 in the “A” position while V IN is available, providing the output voltage V SYSTEM directly from V IN .
- the capacitors are charged and available as a backup supply should V IN fail.
- the charger 3 is operated via switch 4 to charge the capacitors 12 .
- Switch 4 like other switch elements, is illustrated as a discrete component but may be incorporated into the charger 3 or controller 1 .
- the controller 1 disconnects the charger 3 by opening the switch 4 .
- the controller 1 may measure the capacitor stored potential V CAP in cooperation with logic in the charger 3 , and/or by receiving V CAP at a controller analog-to-digital (ADC) input 16 . Whenever V CAP diminishes by a preset amount below the upper predetermined operating potential of the capacitors 12 , for example by 2%, the controller 1 may re-connect the charger 3 to “top off” the capacitors 12 to their upper predetermined operating potential.
- ADC controller analog-to-digital
- switch 5 When power V IN fails (e.g., becomes irregular, and/or falls below a lower acceptable limit), switch 5 is set to the “B” position. This powers the output voltage V SYSTEM from the capacitors 12 . Capacitance is measured with switch 5 in the “A” position, which allows the capacitance measurement to be done without interrupting system power V SYSTEM . The capacitors remain available as a backup power source during the capacitive measurement, should V IN fail.
- the controller 1 may configure the charger 3 to output a particular charge voltage and/or charge current.
- the charger 3 may act as a “constant current source” that provides a constant amount of current even as the impedance of the capacitor changes as the stored potential rises.
- the controller 1 might set the charger voltage at 11V and the charge current at 200 milliamps. The controller 1 may then activate the charger 3 and measure at least two points P 1 and P 2 on an increasing phase of the capacitors' 12 stored potential (e.g., see FIG. 2A and FIG. 2B ). After the measurements, the controller 1 may deactivate the charger 3 and close switch 13 to discharge the capacitors 12 through load 14 to their upper predetermined operating potential, for example 10V. Once the capacitors 12 are restored to their upper predetermined operating potential, controller 1 may “top off” the capacitors as stored potential leaks away, as described previously.
- the controller 1 may increase the stored potential V CAP to a peak value, set switch 13 to discharge the capacitors 12 back to V CAP through load 14 , and measure at least two points P 1 ′ and P 2 ′ on a decreasing potential phase for the capacitors 12 .
- Measuring capacitance on the decreasing potential phase requires a constant current load to produce a linear discharge ramp (a resistor provides an exponential discharge).
- the load 14 may be a simple resistor (in which case the discharge curve is nonlinear), or it may be a constant-current load, or a load which is not purely resistive in nature.
- a constant-current load causes a linear decrease in stored potential over time.
- Timer logic (e.g., of the controller 1 ) may determine a time difference ⁇ T between P 1 and P 2 .
- the controller 1 may digitize V CAP at P 1 and P 2 and subtract the digital values to determine ⁇ V.
- the capacitance may be determined (e.g., by controller 1 ) using the relationship:
- FIGS. 2A and 2B illustrate an embodiment of a capacitance measurement during the rising phase of a capacitor potential that is transiently elevated over a maximum operating voltage for the capacitor.
- the controller closes switch 4 , connecting the charger 3 and causing a sudden potential rise 22 due to the capacitor ESR (Effective Series Resistance).
- the capacitor(s) charge at a linear rate and the controller may measure the two (or more) data points P 1 and P 2 to determine capacitance.
- the controller disconnects (or turns off) the charger 3 , causing a sudden potential drop 23 at which point the capacitor stored potential stabilizes (except for small leakage currents which may be neglected for purposes of these discussions).
- FIGS. 3A and 3B illustrate an embodiment of a capacitance measurement during the decreasing phase of a capacitor potential that is transiently elevated over a maximum operating voltage for the capacitor.
- the controller closes switch 13 , connecting the capacitor to a load (e.g., a constant current load 14 ) and causing a voltage drop 24 due to the capacitor ESR.
- the capacitor(s) discharge at a linear rate from a peak potential V p .
- Two (or more) data points P 1 ′ and P 2 ′ are measured to determine capacitance.
- the controller opens switch 13 , causing a voltage jump 25 .
- the capacitors' stored potential stabilizes at their upper predetermined operating potential.
- the transient potential elevation above the upper predetermined operating potential may be set to fall below a maximum operating potential of the capacitors. This may be achieved by setting the upper predetermined operating potential of the capacitors below a maximum operating potential for the capacitors. A peak potential reached during the transient elevation in potential may reach the maximum operating potential or may not reach this maximum level.
- the transient voltage elevation and accompanying measurements may be applied for a time period that is very small in proportion to the overall operating time of the capacitors. For example, capacitance measurements may be made once per week. If a capacitance measurement requires transiently elevating the capacitor potential by 100 millivolts for 1 minute, the percentage of time spent above the upper predetermined operating potential is only about 0.01% (1 minute/10,080 minutes per week).
- the capacitor stored potential may be elevated above its upper predetermined operating potential less than 0.1% of its operating lifetime. In some designs, the capacitor stored potential may be elevated above its upper predetermined operating potential less than 0.05% of its operating lifetime.
- the controller 1 monitors V IN . If V IN fails during a capacitance measurement, the controller 1 discontinues the capacitance measurement and moves switch 5 to the “B” position.
- the capacitors 6 - 7 then supply system power at an output potential V SYSTEM that temporarily exceeds their upper predetermined operating potential. After Vin fails, the capacitors 6 - 7 continue to provide current even as their potential drops.
- One or more voltage regulators may accept the decreasing capacitor output potential and in response provide discrete potential levels to the system. For example as the capacitors' output potential continuously decreases from 10V to 4V, one or more regulators may provide 3.3V, 2.5V, 1.8V and 1.5V.
- FIG. 4 illustrates an embodiment of a backup power source including logic to individually discharge capacitors in a series arrangement.
- Discharge logic ( 41 - 42 and 43 - 44 ) is coupled to each capacitor 6 - 7 in a series arrangement.
- the controller 1 measures the stored potential of each capacitor 6 - 7 via interfaces 48 and 46 . Not illustrated are scaling resistors that may reduce stored capacitor potentials to a range compatible with the controller ADC input 16 , for example 3.3V maximum.
- each capacitor 6 - 7 allows each capacitor 6 - 7 to be set to an individual operating potential even if the capacitance values of the capacitors in the series arrangement are mismatched (not the same).
- the ability to selectively discharge individual capacitors in a series may be also invoked during charging operations to maintain the capacitor stored potentials in balance (i.e., keep them substantially equal within tolerances of the implementation).
- a mismatched series of capacitors (e.g., a series coupled string of capacitors) is vulnerable to “over-voltage” (a stored potential in excess of the capacitor's design limits) during charging with large currents, because lower value capacitors charge faster than higher value ones. All capacitors in a series configuration receive the same charge current (parallel capacitors split the provided charge current). Lower-capacitance capacitors reach a target stored potential (e.g., their upper predetermined operating potential) before higher-capacitance capacitors reach the same target potential. Charging higher-capacitance capacitors in a series configuration to a combined upper predetermined operating potential for the combination, may result in the lower-capacitance capacitors being individually over-charged (charged above their individual upper predetermined operating potential). To mitigate this effect, the individual capacitor discharge logic ( 41 - 42 and 43 - 44 ) may be employed to “balance” the capacitors' stored potential as they are charged.
- the controller 1 may monitor each individual capacitor output potential during charging of the series configuration of capacitors 6 - 7 .
- the controller 1 may determine which (if any) capacitors are approaching an unsafe (over-voltage) condition, and transiently switch on the discharge logic for at-risk capacitors to drain charge away from (and thus lower the stored potential of) these capacitor(s).
- the discharge logic may comprise a MOSFET transistor in series with a resistor, or it may be only a MOSFET that is duty-cycle modulated by the controller 1 to time-average the discharge current.
- the discharge logic may therefore function to (1) discharge the capacitors 6 - 7 after the capacitor stored potential is transiently elevated for a capacitance measurements, (2) balance the capacitors' stored charge during high-current charging to prevent an over-voltage condition, and (3) balance the capacitors' stored charge when differences in leakage currents result in mismatched stored potential for different capacitors.
- FIGS. 5-7 are flowcharts that illustrate an embodiment of a capacitance measurement during operation of a backup power supply.
- a capacitance measurement is initiated ( 50 ), either by the host system, or from a scheduled timer, for example once per week and during availability of the capacitors to provide backup power to the system in the event of primary power failure.
- the charger is set to a voltage and current level (V MEAS and I MEAS , measurement charge voltage and measurement charge current) compatible with the capacitance measurement requirements ( 51 ).
- V MEAS and I MEAS measurement charge voltage and measurement charge current
- the charger Prior to ( 50 ), the charger may be set to different voltage and current values for the purpose of maintaining the capacitors at their upper predetermined operating potential.
- the values of the charger voltage and current for maintaining the capacitors at their upper predetermined operating potential are herein referred to as V OPER (voltage) and I OPER (current).
- the controller activates the charger ( 52 ) to cause the capacitor stored potential to increase upward beyond the capacitor's upper predetermined operating potential.
- the controller monitors for a transition from the sudden potential jump (e.g., jump 22 in FIG. 2B ) to the linear ramping stored potential.
- the controller measures the slope of the capacitor potential increase by taking two (or more) voltage measurements over a reference time increment T INC (for example once every 10 milliseconds). The controller determines the difference in voltages over the reference time ( 56 ) and compares with the stored difference from a previous measurement. If the time interval between samples is constant, the voltage difference is a direct indication of the slope of the charge curve. The measurement loop continues until the present slope value is substantially changed from the previous one, indicating the onset of the linear charge phase.
- the controller may proceed ( 68 ) to the capacitance measurement ([A], FIG. 6 ).
- the dotted path in FIG. 5 indicates that the controller may receive an interrupt signal indicating that primary power for the system is lost. This interrupt signal may assert at any time, and it overrides the capacitance measurement process to cause an alternate action as described in FIG. 7 .
- the exemplary process described in FIG. 5 may be readily adapted to detect the linear discharge phase depicted in FIG. 3B .
- the controller may measure the two data points P 1 and P 2 as shown in FIG. 2A .
- the controller measures V CAP and assigns it to variable V 1 .
- the controller starts a timer to measure the time interval between measuring P 1 and P 2 .
- the controller detects a preset potential rise V TH ( 62 )
- it proceeds ( 63 ) to measure the second data point P 2 .
- the controller may alternately set a reference time and take the measurement P 2 after this time elapses.
- the controller stops its timer, turns off the charger, and measures a second V CAP , assigning it to variable V 2 .
- the controller subtracts V 1 from V 2 to arrive at ⁇ V.
- the controller calculates the capacitance as
- the controller returns the charger settings to values for ‘topping off’ the capacitor during system operation.
- the controller discharges the capacitors to their upper predetermined operating potential and the measurement is complete. Any measurement may be interrupted by loss of primary system power, leading to the Interrupt Service Routine ( 59 ).
- the exemplary process described in FIG. 6 may be readily adapted to take measurement points P 1 ′ and P 2 ′ as depicted in FIG. 3B .
- FIG. 7 illustrates an interrupt service routine, entered upon a loss of primary system power, i.e. V IN drops below an acceptable value or otherwise becomes unreliable/unstable.
- the interrupt service routine causes the controller to turn off the charger and connect the backup capacitor power source to V SYSTEM .
- the controller sets the charger to charge the capacitor to its upper predetermined operating potential, and the measurement process is complete.
- FIG. 8 illustrates a memory system utilizing a capacitor-based backup power supply.
- the system provides a low-cost, high density, non-volatile memory by using a low-cost volatile memory 82 in conjunction with a low-cost non-volatile memory 84 .
- the memory subsystem includes, but may not be limited to, SDRAM 82 (volatile memory), NAND FLASH 84 (nonvolatile memory), backup power control circuitry 86 , power capacitor(s) 88 , and a system controller 85 . Other elements and/or couplings among the elements may be apparent to skilled practitioners in the relevant art(s).
- the volatile memory in this embodiment is an SDRAM 82 (Synchronous Dynamic Random Access Memory). Other types of volatile random access memory may also be used.
- the nonvolatile memory in this embodiment is a NAND FLASH 84 , and again, other types of nonvolatile memory may be used.
- the power control circuitry 86 interfaces the memory subsystem to an external power source, typically the power source of a larger system that incorporates and uses the memory subsystem.
- the external power source may be the power of personal or business computer system that incorporates the memory subsystem.
- the power control circuitry 86 also interfaces the memory subsystem to a backup power source that is local to the memory subsystem.
- the backup power source may be, for example, one or more capacitors 88 .
- capacitor(s) 88 provides power to the memory subsystem for a temporary time when external power fails.
- the capacitor 88 may provide power for long enough to copy data blocks from volatile memory 82 to nonvolatile memory 84 .
- the memory subsystem may operate as an isolated subsystem of the larger, external system.
- the power circuitry 86 may recognize that external system power has failed.
- the system controller 85 may then initiate backup of data currently stored in the volatile memory 82 into the non-volatile memory 84 .
- the term “backup” means that data of the volatile memory 82 is stored into the nonvolatile memory 84 .
- the system controller 85 may initiate restoration of backed-up data from non-volatile memory 84 to volatile memory 82 .
- the term “restore” and “restoration” means that data of the nonvolatile memory 84 is stored into the volatile memory 82 .
- the system controller 85 may thus include logic to backup data from volatile memory 82 to nonvolatile memory 84 when the external power source fails, and to restore data from nonvolatile memory 84 to volatile memory 82 when the external power source becomes available.
- various functional components such as the power controller logic 86 and the system controller logic 85 , and even the volatile memory 82 and nonvolatile memory 84 , may in fact be implemented together as one or more integrated circuit devices, and packaged as one or more discrete physical components.
- Data stored within the memory subsystem persists even when the power of the external system fails.
- the external system may interact with the memory subsystem as though interacting with volatile memory 82 (of the same or another type), even though, transparently, the data is stored internally by the memory subsystem in nonvolatile memory 84 persistently in the absence of external system power.
- the memory system may write data to non-volatile memory 84 only in the event that external system power fails.
- the non-volatile memory 84 undergoes many fewer write cycles than would occur if it were being written every time data were written to the memory subsystem.
- the non-volatile memory 84 is a low-cost, limited duty cycle NAND FLASH, the result in an extension of the useful lifetime of the non-volatile memory 84 .
- the system controller 85 provides a memory interface to the external system.
- the memory interface may comprise a standard data and control interface for some particular kind of volatile memory.
- the system controller may provide an SDRAM data, address, and control interface to the external system.
- the interface provided to the external system may or may not be the interface for the type of volatile memory 82 actually used by the memory subsystem.
- the system controller 85 may additionally provide an interface whereby the external system may send commands to the memory subsystem or obtain status. For example, in some embodiments the external system may command the memory subsystem to initiate a backup of data from volatile memory 82 to non-volatile memory 84 , even though the system power is still available. Additionally or alternatively, the memory subsystem or external system may provide a direct user interface, such as a switch or control on a graphic user interface, whereby a user of the external system may directly initiate a copy of data from volatile 82 to non-volatile memory 84 . Another action which may in some embodiments be initiated either through the system interface of the system controller 85 , or directly by a user, is restoring data from non-volatile memory 84 to volatile memory 82 . In some embodiments the external system may use its system interface to the memory controller 85 to initiate a self test of the memory subsystem.
- the implementer may opt for a hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a solely software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware.
- any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary.
- optical aspects of implementations may involve optically-oriented hardware, software, and or firmware.
- a signal bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory.
- circuitry includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), circuitry forming a memory device (e.g., forms of random access memory), and/or circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).
- a computer program e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein
- circuitry forming a memory device e.g.
- any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components.
- any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
A device includes a backup power supply configured to provide power to an external system upon loss of primary system power. The backup power provided by at least one capacitor. While the capacitor is available as a backup power supply to the external system, a transient elevation of the capacitor's stored potential is created above an upper predetermined operating potential of the capacitor. Measurements of a capacitor's output voltage are obtained during the transient elevation of the capacitor's stored potential. A capacitance of the capacitor is determined from the measurements.
Description
- Many electronic systems require protection from unexpected interruption of power. These systems typically employ batteries as a source of backup power, but batteries have certain disadvantages. These disadvantages include long charge time and limited recharge cycles. If the backup power is required for only a short time, a power source may be constructed using capacitors, such as Electrochemical Dual-Layer Capacitors, often named “Ultracapacitors” or “Supercapacitors”. These capacitors employ electrostatic charge separation instead of the chemical reaction which is the basis for battery operation. This gives Ultracapacitors very high (500,000+) charge cycles, quick charge times, and the ability to deliver substantial power in a small volume.
-
FIG. 1 illustrates an embodiment of a system using capacitors to supply backup power. -
FIGS. 2A and 2B illustrate an embodiment of a capacitance measurement during the rising phase of a capacitor potential that is transiently elevated over a upper predetermined operating potential for the capacitor. -
FIGS. 3A and 3B illustrate an embodiment of a capacitance measurement during the decreasing phase of a capacitor potential that is transiently elevated over a upper predetermined operating potential for the capacitor. -
FIG. 4 illustrates an embodiment of a backup power source including logic to drain charge from individual capacitors. -
FIGS. 5-7 are flowcharts that illustrate an embodiment of a capacitance measurement during operation of a backup power supply. -
FIG. 8 illustrates an embodiment of a memory system employing a capacitor-based backup power source. - References to “one embodiment” or “an embodiment” do not necessarily refer to the same embodiment, although they may.
- Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “above,” “below” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application.
- “Logic” refers to machine memory circuits, tangible machine readable media, and/or circuitry which by way of its material and/or material-energy configuration comprises control and/or procedural signals, and/or settings and values, that may be applied to influence the operation of a device. Magnetic tangible media, electronic circuits, electrical and optical memory (both volatile and nonvolatile), and firmware are examples of logic.
- Those skilled in the art will appreciate that logic may be distributed throughout one or more devices, and/or may be comprised of combinations memory, media, processing circuits and controllers, other circuits, and so on. Therefore, in the interest of clarity and correctness logic may not always be distinctly illustrated in drawings of devices and systems, although it is inherently present therein.
- The techniques and procedures described herein may be implemented via logic distributed in one or more devices. The particular distribution and choice of logic is a design decision that will vary according to implementation.
- A capacitance measurement is performed by obtaining measurements of a capacitor's output potential during a transient elevation of the capacitor's stored potential above a upper predetermined operating potential of the capacitor. The transient elevated potential is induced during availability of the capacitor as a secondary power source for an electrically powered device. Once the measurements are taken, an accelerated discharge (meaning the capacitor is discharged faster than it would normally discharge due to inherent leakage) of the capacitor may be effected until the capacitor's stored potential is equal to the upper predetermined operating potential (within tolerances of the design). An accelerated discharge may be effected by applying a resistive load across terminals of the capacitor.
- In one implementation, two or more measurements of the capacitor's stored potential may be taken during an increasing phase of the capacitor's stored potential. The increasing phase begins at the capacitor's upper predetermined operating potential and continues until the capacitor's stored potential reaches a peak value (which may be less than the capacitor's maximum rated potential).
- In another implementation, two or more measurements of the capacitor's stored potential may be taken during a decreasing phase of the capacitor's stored potential. The decreasing phase begins at the capacitor's peak stored potential and continues until the capacitor's stored potential reaches a value at or below its upper predetermined operating potential.
- Multiple capacitors may be arranged in a series configuration. Logic may be provided to discharge each capacitor in the series configuration separately from other capacitors in the series configuration. The discharge logic may be operated for capacitive measurements as well as to balance the stored potential on each of the capacitors.
- An ultracapacitor may be selected with a capacitance that accounts for a decrease that will occur over time, as a result of an expected range of operating temperatures and/or a predetermined maximum operating voltage for the ultracapacitor.
- For example, if an ultracapacitor-based backup power supply is designed to supply 100 Joules (100 Watt-seconds) to power a device memory transfer apparatus, and the power supply is expected to operate at around 55° C. for around seven years, the ultracapacitors may be chosen to supply a higher energy, for example 150 Joules, to account for an expected drop in capacitance at the rated temperature over the rated service lifetime.
- A system may be designed to track the capacitance of an ultracapacitor (or any capacitor) and to generate an alert when the capacitance decays to the point that the capacitor can no longer supply an adequate amount of backup power for the system. Continuing the above example, if in the sixth year of continuous operation, an ultracapacitor backup power source is measured to have a power capacity of 110 Joules, the system may trigger a service alarm to replace the capacitor. This warning allows an orderly replacement procedure without jeopardizing the reliability of the system.
- The energy stored by a capacitor may be determined by measuring its capacitance and the voltage across the capacitor terminals (the output potential, which is typically the same as the stored potential). The stored energy may then be calculated as:
-
J=1/2CV 2 - Where J is the stored energy in Joules,
- C is the Capacitance in Farads,
- V is the capacitor output potential in Volts.
-
FIG. 1 illustrates an embodiment of a system using capacitors to supply backup power. Depending on the implementation, other elements may be present in the system, and would be readily understood to be present by those of skill in the relevant arts, but they are omitted from the drawings for purposes of keeping the description succinct.System 10 comprises controller 1,charger 3, and acapacitor configuration 12. Thecapacitor configuration 12 comprises multiple capacitors 6-7 (e.g., multiple ultracapacitors coupled in series) to increase the operating voltage beyond that available from an individual capacitor (e.g., 2.5-2.7 volts for an ultracapacitor). A typical backup power supply for a digital memory device may employ 2-6 ultracapacitors in series. Each series ultracapacitor may comprise a single ultracapacitor, or multiple ultracapacitors in parallel. - For example, a series configuration of four capacitors each rated at a maximum operating potential of 2.7V would have a combined maximum potential rating of 10.8V (4*2.7V), but the upper predetermined operation potential of the combination will be lower, e.g. 8.0V.
- The controller 1 directs the
charger 3 to charge thecapacitors 12. The controller 1 may activate and deactivate thecharger 3 viaswitch 4 and I/O interface 15. In some implementations, the controller 1 may also direct the charger 1 via an I/O interface 9 to provide a particular charge voltage and/or charge current. - In operation, the
system 10 receives primary power at VIN, which may for example be 12V in digital memory systems. The controller 1 maintains Switch 5 in the “A” position while VIN is available, providing the output voltage VSYSTEM directly from VIN. The capacitors are charged and available as a backup supply should VIN fail. - The
charger 3 is operated viaswitch 4 to charge thecapacitors 12.Switch 4, like other switch elements, is illustrated as a discrete component but may be incorporated into thecharger 3 or controller 1. - After the
capacitors 12 charge to their upper predetermined operating potential, the controller 1 disconnects thecharger 3 by opening theswitch 4. The controller 1 may measure the capacitor stored potential VCAP in cooperation with logic in thecharger 3, and/or by receiving VCAP at a controller analog-to-digital (ADC)input 16. Whenever VCAP diminishes by a preset amount below the upper predetermined operating potential of thecapacitors 12, for example by 2%, the controller 1 may re-connect thecharger 3 to “top off” thecapacitors 12 to their upper predetermined operating potential. - When power VIN fails (e.g., becomes irregular, and/or falls below a lower acceptable limit),
switch 5 is set to the “B” position. This powers the output voltage VSYSTEM from thecapacitors 12. Capacitance is measured withswitch 5 in the “A” position, which allows the capacitance measurement to be done without interrupting system power VSYSTEM. The capacitors remain available as a backup power source during the capacitive measurement, should VIN fail. The controller 1 may configure thecharger 3 to output a particular charge voltage and/or charge current. Thecharger 3 may act as a “constant current source” that provides a constant amount of current even as the impedance of the capacitor changes as the stored potential rises. For example, if VCAP has a upper predetermined operating potential of 10V, the controller 1 might set the charger voltage at 11V and the charge current at 200 milliamps. The controller 1 may then activate thecharger 3 and measure at least two points P1 and P2 on an increasing phase of the capacitors' 12 stored potential (e.g., seeFIG. 2A andFIG. 2B ). After the measurements, the controller 1 may deactivate thecharger 3 andclose switch 13 to discharge thecapacitors 12 throughload 14 to their upper predetermined operating potential, for example 10V. Once thecapacitors 12 are restored to their upper predetermined operating potential, controller 1 may “top off” the capacitors as stored potential leaks away, as described previously. - In some implementations (e.g.
FIGS. 3 a and 3 b), the controller 1 may increase the stored potential VCAP to a peak value, setswitch 13 to discharge thecapacitors 12 back to VCAP throughload 14, and measure at least two points P1′ and P2′ on a decreasing potential phase for thecapacitors 12. Measuring capacitance on the decreasing potential phase requires a constant current load to produce a linear discharge ramp (a resistor provides an exponential discharge). Thus, theload 14 may be a simple resistor (in which case the discharge curve is nonlinear), or it may be a constant-current load, or a load which is not purely resistive in nature. A constant-current load causes a linear decrease in stored potential over time. - Timer logic (e.g., of the controller 1) may determine a time difference ΔT between P1 and P2. The controller 1 may digitize VCAP at P1 and P2 and subtract the digital values to determine ΔV. The capacitance may be determined (e.g., by controller 1) using the relationship:
-
- I is the discharge current in Amperes,
- C is the capacitance in Farads,
- ΔT is the time interval in seconds, and
- ΔV is the potential drop in volts during ΔT.
-
FIGS. 2A and 2B illustrate an embodiment of a capacitance measurement during the rising phase of a capacitor potential that is transiently elevated over a maximum operating voltage for the capacitor. To initiate a measurement the controller closesswitch 4, connecting thecharger 3 and causing a suddenpotential rise 22 due to the capacitor ESR (Effective Series Resistance). The capacitor(s) charge at a linear rate and the controller may measure the two (or more) data points P1 and P2 to determine capacitance. When the measurements are complete the controller disconnects (or turns off) thecharger 3, causing a suddenpotential drop 23 at which point the capacitor stored potential stabilizes (except for small leakage currents which may be neglected for purposes of these discussions). -
FIGS. 3A and 3B illustrate an embodiment of a capacitance measurement during the decreasing phase of a capacitor potential that is transiently elevated over a maximum operating voltage for the capacitor. The controller closesswitch 13, connecting the capacitor to a load (e.g., a constant current load 14) and causing avoltage drop 24 due to the capacitor ESR. The capacitor(s) discharge at a linear rate from a peak potential Vp. Two (or more) data points P1′ and P2′ are measured to determine capacitance. The controller opensswitch 13, causing avoltage jump 25. The capacitors' stored potential stabilizes at their upper predetermined operating potential. - The transient potential elevation above the upper predetermined operating potential may be set to fall below a maximum operating potential of the capacitors. This may be achieved by setting the upper predetermined operating potential of the capacitors below a maximum operating potential for the capacitors. A peak potential reached during the transient elevation in potential may reach the maximum operating potential or may not reach this maximum level. The transient voltage elevation and accompanying measurements may be applied for a time period that is very small in proportion to the overall operating time of the capacitors. For example, capacitance measurements may be made once per week. If a capacitance measurement requires transiently elevating the capacitor potential by 100 millivolts for 1 minute, the percentage of time spent above the upper predetermined operating potential is only about 0.01% (1 minute/10,080 minutes per week). This results in a net operating lifetime loss of 0.005% for the capacitor, an acceptably low amount. In one embodiment, the capacitor stored potential may be elevated above its upper predetermined operating potential less than 0.1% of its operating lifetime. In some designs, the capacitor stored potential may be elevated above its upper predetermined operating potential less than 0.05% of its operating lifetime.
- The controller 1 monitors VIN. If VIN fails during a capacitance measurement, the controller 1 discontinues the capacitance measurement and moves switch 5 to the “B” position. The capacitors 6-7 then supply system power at an output potential VSYSTEM that temporarily exceeds their upper predetermined operating potential. After Vin fails, the capacitors 6-7 continue to provide current even as their potential drops. One or more voltage regulators may accept the decreasing capacitor output potential and in response provide discrete potential levels to the system. For example as the capacitors' output potential continuously decreases from 10V to 4V, one or more regulators may provide 3.3V, 2.5V, 1.8V and 1.5V.
-
FIG. 4 illustrates an embodiment of a backup power source including logic to individually discharge capacitors in a series arrangement. Discharge logic (41-42 and 43-44) is coupled to each capacitor 6-7 in a series arrangement. There may be more than two capacitors in series and each series capacitor may comprise two or more capacitors in parallel, with each parallel set in the series be associated with its own discharge logic. The controller 1 measures the stored potential of each capacitor 6-7 viainterfaces controller ADC input 16, for example 3.3V maximum. - This arrangement or a similar one allows each capacitor 6-7 to be set to an individual operating potential even if the capacitance values of the capacitors in the series arrangement are mismatched (not the same). The ability to selectively discharge individual capacitors in a series may be also invoked during charging operations to maintain the capacitor stored potentials in balance (i.e., keep them substantially equal within tolerances of the implementation).
- A mismatched series of capacitors (e.g., a series coupled string of capacitors) is vulnerable to “over-voltage” (a stored potential in excess of the capacitor's design limits) during charging with large currents, because lower value capacitors charge faster than higher value ones. All capacitors in a series configuration receive the same charge current (parallel capacitors split the provided charge current). Lower-capacitance capacitors reach a target stored potential (e.g., their upper predetermined operating potential) before higher-capacitance capacitors reach the same target potential. Charging higher-capacitance capacitors in a series configuration to a combined upper predetermined operating potential for the combination, may result in the lower-capacitance capacitors being individually over-charged (charged above their individual upper predetermined operating potential). To mitigate this effect, the individual capacitor discharge logic (41-42 and 43-44) may be employed to “balance” the capacitors' stored potential as they are charged.
- The controller 1 may monitor each individual capacitor output potential during charging of the series configuration of capacitors 6-7. The controller 1 may determine which (if any) capacitors are approaching an unsafe (over-voltage) condition, and transiently switch on the discharge logic for at-risk capacitors to drain charge away from (and thus lower the stored potential of) these capacitor(s). By way of example, the discharge logic may comprise a MOSFET transistor in series with a resistor, or it may be only a MOSFET that is duty-cycle modulated by the controller 1 to time-average the discharge current.
- The discharge logic may therefore function to (1) discharge the capacitors 6-7 after the capacitor stored potential is transiently elevated for a capacitance measurements, (2) balance the capacitors' stored charge during high-current charging to prevent an over-voltage condition, and (3) balance the capacitors' stored charge when differences in leakage currents result in mismatched stored potential for different capacitors.
-
FIGS. 5-7 are flowcharts that illustrate an embodiment of a capacitance measurement during operation of a backup power supply. A capacitance measurement is initiated (50), either by the host system, or from a scheduled timer, for example once per week and during availability of the capacitors to provide backup power to the system in the event of primary power failure. The charger is set to a voltage and current level (VMEAS and IMEAS, measurement charge voltage and measurement charge current) compatible with the capacitance measurement requirements (51). Prior to (50), the charger may be set to different voltage and current values for the purpose of maintaining the capacitors at their upper predetermined operating potential. The values of the charger voltage and current for maintaining the capacitors at their upper predetermined operating potential are herein referred to as VOPER (voltage) and IOPER (current). - The controller activates the charger (52) to cause the capacitor stored potential to increase upward beyond the capacitor's upper predetermined operating potential. At (53-57), the controller monitors for a transition from the sudden potential jump (e.g., jump 22 in
FIG. 2B ) to the linear ramping stored potential. At (53-55) the controller measures the slope of the capacitor potential increase by taking two (or more) voltage measurements over a reference time increment TINC (for example once every 10 milliseconds). The controller determines the difference in voltages over the reference time (56) and compares with the stored difference from a previous measurement. If the time interval between samples is constant, the voltage difference is a direct indication of the slope of the charge curve. The measurement loop continues until the present slope value is substantially changed from the previous one, indicating the onset of the linear charge phase. - For example, five consecutive voltage measurements and their computed ΔV values might be taken at 10 millisecond intervals as shown in the table below:
-
Time VCAP ΔV 0 10.00 10 ms 10.10 100 mV 20 ms 10.20 100 mV 30 ms 10.22 20 mV 40 ms 10.24 20 mV - At the 30 millisecond measurement the slope has reduced from 10 millivolts per millisecond to 2 millivolts per millisecond, indicating the onset of the linear charging ramp. At this point the controller may proceed (68) to the capacitance measurement ([A],
FIG. 6 ). - The dotted path in
FIG. 5 indicates that the controller may receive an interrupt signal indicating that primary power for the system is lost. This interrupt signal may assert at any time, and it overrides the capacitance measurement process to cause an alternate action as described inFIG. 7 . - The exemplary process described in
FIG. 5 may be readily adapted to detect the linear discharge phase depicted inFIG. 3B . - In
FIG. 6 the controller may measure the two data points P1 and P2 as shown inFIG. 2A . At (60) the controller measures VCAP and assigns it to variable V1. The controller starts a timer to measure the time interval between measuring P1 and P2. After the controller detects a preset potential rise VTH (62), it proceeds (63) to measure the second data point P2. Instead of setting a reference potential, the controller may alternately set a reference time and take the measurement P2 after this time elapses. - At (62) the controller stops its timer, turns off the charger, and measures a second VCAP, assigning it to variable V2. The controller subtracts V1 from V2 to arrive at ΔV. The controller calculates the capacitance as
-
- At (64) the controller returns the charger settings to values for ‘topping off’ the capacitor during system operation. At (65) the controller discharges the capacitors to their upper predetermined operating potential and the measurement is complete. Any measurement may be interrupted by loss of primary system power, leading to the Interrupt Service Routine (59).
- In an alternative embodiment, the exemplary process described in
FIG. 6 may be readily adapted to take measurement points P1′ and P2′ as depicted inFIG. 3B . -
FIG. 7 illustrates an interrupt service routine, entered upon a loss of primary system power, i.e. VIN drops below an acceptable value or otherwise becomes unreliable/unstable. At (70) the interrupt service routine causes the controller to turn off the charger and connect the backup capacitor power source to VSYSTEM. At (71) the controller sets the charger to charge the capacitor to its upper predetermined operating potential, and the measurement process is complete. -
FIG. 8 illustrates a memory system utilizing a capacitor-based backup power supply. The system provides a low-cost, high density, non-volatile memory by using a low-costvolatile memory 82 in conjunction with a low-costnon-volatile memory 84. The memory subsystem includes, but may not be limited to, SDRAM 82 (volatile memory), NAND FLASH 84 (nonvolatile memory), backuppower control circuitry 86, power capacitor(s) 88, and a system controller 85. Other elements and/or couplings among the elements may be apparent to skilled practitioners in the relevant art(s). - The volatile memory in this embodiment is an SDRAM 82 (Synchronous Dynamic Random Access Memory). Other types of volatile random access memory may also be used. The nonvolatile memory in this embodiment is a
NAND FLASH 84, and again, other types of nonvolatile memory may be used. - The
power control circuitry 86 interfaces the memory subsystem to an external power source, typically the power source of a larger system that incorporates and uses the memory subsystem. For example, the external power source may be the power of personal or business computer system that incorporates the memory subsystem. Thepower control circuitry 86 also interfaces the memory subsystem to a backup power source that is local to the memory subsystem. The backup power source may be, for example, one ormore capacitors 88. In the embodiment ofFIG. 8 , capacitor(s) 88 provides power to the memory subsystem for a temporary time when external power fails. Thecapacitor 88 may provide power for long enough to copy data blocks fromvolatile memory 82 tononvolatile memory 84. - In the event of an external power failure, the memory subsystem may operate as an isolated subsystem of the larger, external system. The
power circuitry 86 may recognize that external system power has failed. The system controller 85 may then initiate backup of data currently stored in thevolatile memory 82 into thenon-volatile memory 84. Herein, the term “backup” means that data of thevolatile memory 82 is stored into thenonvolatile memory 84. Upon restoration of external system power, the system controller 85 may initiate restoration of backed-up data fromnon-volatile memory 84 tovolatile memory 82. Herein, the term “restore” and “restoration” means that data of thenonvolatile memory 84 is stored into thevolatile memory 82. - The system controller 85 may thus include logic to backup data from
volatile memory 82 tononvolatile memory 84 when the external power source fails, and to restore data fromnonvolatile memory 84 tovolatile memory 82 when the external power source becomes available. Those skilled in the art will appreciate that various functional components, such as thepower controller logic 86 and the system controller logic 85, and even thevolatile memory 82 andnonvolatile memory 84, may in fact be implemented together as one or more integrated circuit devices, and packaged as one or more discrete physical components. - Data stored within the memory subsystem persists even when the power of the external system fails. The external system may interact with the memory subsystem as though interacting with volatile memory 82 (of the same or another type), even though, transparently, the data is stored internally by the memory subsystem in
nonvolatile memory 84 persistently in the absence of external system power. - The memory system may write data to
non-volatile memory 84 only in the event that external system power fails. Thus, thenon-volatile memory 84 undergoes many fewer write cycles than would occur if it were being written every time data were written to the memory subsystem. When thenon-volatile memory 84 is a low-cost, limited duty cycle NAND FLASH, the result in an extension of the useful lifetime of thenon-volatile memory 84. - The system controller 85 provides a memory interface to the external system. The memory interface may comprise a standard data and control interface for some particular kind of volatile memory. For example, the system controller may provide an SDRAM data, address, and control interface to the external system. The interface provided to the external system may or may not be the interface for the type of
volatile memory 82 actually used by the memory subsystem. - The system controller 85 may additionally provide an interface whereby the external system may send commands to the memory subsystem or obtain status. For example, in some embodiments the external system may command the memory subsystem to initiate a backup of data from
volatile memory 82 tonon-volatile memory 84, even though the system power is still available. Additionally or alternatively, the memory subsystem or external system may provide a direct user interface, such as a switch or control on a graphic user interface, whereby a user of the external system may directly initiate a copy of data from volatile 82 tonon-volatile memory 84. Another action which may in some embodiments be initiated either through the system interface of the system controller 85, or directly by a user, is restoring data fromnon-volatile memory 84 tovolatile memory 82. In some embodiments the external system may use its system interface to the memory controller 85 to initiate a self test of the memory subsystem. - Other examples and/or embodiments of the various system components may now be apparent to skilled practitioners in the relevant art(s).
- Those having skill in the art will appreciate that there are various logic implementations by which processes and/or systems described herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes are deployed. “Software” refers to logic that may be readily readapted to different purposes (e.g. read/write volatile or nonvolatile memory or media). “Firmware” refers to logic embodied as read-only memories and/or media. Hardware refers to logic embodied as analog and/or digital circuits. If an implementer determines that speed and accuracy are paramount, the implementer may opt for a hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a solely software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware. Hence, there are several possible vehicles by which the processes described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations may involve optically-oriented hardware, software, and or firmware.
- The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. Several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of a signal bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory.
- In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “circuitry.” Consequently, as used herein “circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), circuitry forming a memory device (e.g., forms of random access memory), and/or circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).
- Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use standard engineering practices to integrate such described devices and/or processes into larger systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a network processing system via a reasonable amount of experimentation.
- The foregoing described aspects depict different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality.
Claims (18)
1. A device, comprising:
a backup power supply configured to provide power to a an external system upon loss of primary system power, the backup power provided by at least one capacitor, the backup power supply configured to charge the capacitor to an upper predetermined operating potential sufficient to provide enough energy to complete a memory backup operation upon loss of primary system power;
logic to create generate, while the capacitor is available as a backup power supply to the external system, a transient elevation of the capacitor's stored potential above the upper predetermined operating potential of the capacitor;
logic to coordinate the generation of the transient elevation of the capacitor's stored potential with obtain measurements of the capacitor's output voltage during the transient elevation of the capacitor's stored potential; and
logic to determine a capacitance of the capacitor from the measurements.
2. The device of claim 1 , further comprising:
logic to obtain coordinate the measurements during with an increasing phase of the capacitor's stored potential during the transient elevation.
3. The device of claim 1 , further comprising:
logic to obtain coordinate the measurements during with a decreasing phase of the capacitor's stored potential during the transient elevation.
4. The device of claim 2 , further comprising:
logic to perform, once the measurements are obtained, an accelerated discharge of the capacitor back to the capacitor's upper predetermined operating potential.
5. The device of claim 1 , further comprising:
logic to time repeated transient elevations of the capacitor's stored potential over its upper predetermined operating potential, so that a percent of time during which the capacitor's stored potential is elevated over its upper predetermined operating potential to the time that it is not so elevated is less than 0.1%.
6. (canceled)
7. A memory system, comprising:
a volatile memory;
a nonvolatile memory;
a backup power supply configured to provide power to the volatile and nonvolatile memories memory upon loss of primary system power, the backup power provided by at least one capacitor, the backup power supply configured to charge the capacitor to an upper predetermined operating potential sufficient to provide enough energy to complete a backup of the volatile memory to the nonvolatile memory upon loss of primary system power;
logic to create generate, while the capacitor is available as the backup power supply to the volatile and nonvolatile memories, a transient elevation of the capacitor's stored potential above the upper predetermined operating potential of the capacitor;
logic to coordinate the generation of the transient elevation of the capacitor's stored potential with obtain measurements of the capacitor's output voltage during the transient elevation of the capacitor's stored potential; and
logic to determine a capacitance of the capacitor from the measurements.
8. The memory system of claim 7 , further comprising:
logic to obtain coordinate the measurements during with an increasing phase of the capacitor's stored potential during the transient elevation.
9. The memory system of claim 7 , further comprising:
logic to obtain coordinate the measurements during with a decreasing phase of the capacitor's stored potential during the transient elevation.
10. The memory system of claim 8 , further comprising:
logic to perform, once the measurements are obtained, an accelerated discharge of the capacitor back to the capacitor's upper predetermined operating potential.
11. The memory system of claim 7 , further comprising:
logic to time repeated transient elevations of the capacitor's stored potential over its upper predetermined operating potential, so that a percent of time during which the capacitor's stored potential is elevated over its upper predetermined operating potential to the time that it is not so elevated is less than 0.1%.
12. (canceled)
13. A method, comprising:
while at least one capacitor is available as a backup power supply to an external a system, creating a transient elevation of the capacitor's stored potential above a upper predetermined operating potential of the capacitors, the upper predetermined operating potential sufficient to provide enough energy to complete a memory backup upon loss of primary system power;
obtaining coordinating measurements of the capacitor's output potential during with the transient elevation of the capacitor's stored potential; and
determining a capacitance of the capacitor from the measurements.
14. The method of claim 13 , further comprising:
obtaining coordinating the measurements during with an increasing phase of the capacitor's stored potential during the transient elevation.
15. The method of claim 13 , further comprising:
obtaining coordinating the measurements during with a decreasing phase of the capacitor's stored potential during the transient elevation.
16. The method of claim 14 , further comprising:
performing, once the measurements are obtained, an accelerated discharge of the capacitor back to the capacitor's upper predetermined operating potential.
17. The method of claim 13 , further comprising:
timing repeated transient elevations of the capacitors' stored potential over its upper predetermined operating potential so that a percent of time during which the capacitors' stored potential is elevated over their upper predetermined operating potential to the time that they are not so elevated is less than 0.1%.
18. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/299,267 US20150016206A1 (en) | 2011-03-01 | 2014-06-09 | Apparatus and method to measure energy capacity of a backup power supply without compromising power delivery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/037,621 US8638634B2 (en) | 2011-03-01 | 2011-03-01 | Apparatus and method to measure energy capacity of a backup power supply without compromising power delivery |
US13/445,353 US8755243B2 (en) | 2011-03-01 | 2012-04-12 | Capacitor charge balance system |
US14/299,267 US20150016206A1 (en) | 2011-03-01 | 2014-06-09 | Apparatus and method to measure energy capacity of a backup power supply without compromising power delivery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/445,353 Continuation US8755243B2 (en) | 2011-03-01 | 2012-04-12 | Capacitor charge balance system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150016206A1 true US20150016206A1 (en) | 2015-01-15 |
Family
ID=46753225
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/037,621 Active 2031-08-10 US8638634B2 (en) | 2011-03-01 | 2011-03-01 | Apparatus and method to measure energy capacity of a backup power supply without compromising power delivery |
US13/445,353 Active US8755243B2 (en) | 2011-03-01 | 2012-04-12 | Capacitor charge balance system |
US14/299,267 Abandoned US20150016206A1 (en) | 2011-03-01 | 2014-06-09 | Apparatus and method to measure energy capacity of a backup power supply without compromising power delivery |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/037,621 Active 2031-08-10 US8638634B2 (en) | 2011-03-01 | 2011-03-01 | Apparatus and method to measure energy capacity of a backup power supply without compromising power delivery |
US13/445,353 Active US8755243B2 (en) | 2011-03-01 | 2012-04-12 | Capacitor charge balance system |
Country Status (1)
Country | Link |
---|---|
US (3) | US8638634B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160202749A1 (en) * | 2015-01-13 | 2016-07-14 | Netlist, Inc. | System and method for determining charge of a secondary power supply for a memory system |
US20190278351A1 (en) * | 2018-03-12 | 2019-09-12 | Omron Corporation | Arithmetic unit and control apparatus |
US20220407345A1 (en) * | 2021-06-17 | 2022-12-22 | Samsung Electronics Co., Ltd. | Method of controlling a charging voltage for extending the lifetime of a secondary power source and a storage device performing the same |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012137341A (en) | 2010-12-24 | 2012-07-19 | Toshiba Corp | Electronic apparatus and capacitance detection method for capacitor in electronic apparatus |
US20130191675A1 (en) * | 2012-01-24 | 2013-07-25 | International Business Machines Corporation | Method and system for providing backup power for memory devices |
JP6675874B2 (en) * | 2012-12-24 | 2020-04-08 | マグナ クロージャーズ インコーポレイテッド | Backup energy source and associated control method for automotive systems |
KR101374525B1 (en) * | 2013-08-22 | 2014-03-18 | 주식회사 맥스웨이브 | System for wireless charging control based magnetic resonance type |
KR20150037034A (en) * | 2013-09-30 | 2015-04-08 | 에스케이하이닉스 주식회사 | Semiconductor device |
US9792190B2 (en) * | 2015-06-26 | 2017-10-17 | Intel Corporation | High performance persistent memory |
US20170117730A1 (en) * | 2015-06-26 | 2017-04-27 | The Regents Of The University Of California | Efficient supercapacitor charging technique by a hysteretic charging scheme |
KR102274038B1 (en) | 2015-08-03 | 2021-07-09 | 삼성전자주식회사 | Nonvolatile memory module having back-up function |
KR102401578B1 (en) | 2015-09-03 | 2022-05-24 | 삼성전자주식회사 | Method for inspecting auxiliary power supply and electronic device adopting the same |
JP7242164B2 (en) * | 2017-09-13 | 2023-03-20 | 株式会社バッファロー | Single magnetic recording hard disk drive |
KR20210030079A (en) * | 2019-09-09 | 2021-03-17 | 삼성전자주식회사 | Memory device including path circuit, and memory system thererof |
JP2022049155A (en) * | 2020-09-16 | 2022-03-29 | キオクシア株式会社 | Memory system and capacity value measurement method |
US12230988B2 (en) * | 2021-07-23 | 2025-02-18 | Intel Corporation | Constant current charging capacitor test |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5519663A (en) * | 1994-09-28 | 1996-05-21 | Sci Systems, Inc. | Preservation system for volatile memory with nonvolatile backup memory |
US20090027014A1 (en) * | 2007-07-25 | 2009-01-29 | Simtek | Capacitor save energy verification |
US20100329064A1 (en) * | 2009-06-26 | 2010-12-30 | Dean Clark Wilson | Systems, methods and devices for monitoring capacitive elements in devices storing sensitive data |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4965828A (en) * | 1989-04-05 | 1990-10-23 | Quadri Corporation | Non-volatile semiconductor memory with SCRAM hold cycle prior to SCRAM-to-E2 PROM backup transfer |
US7592775B2 (en) * | 2006-05-31 | 2009-09-22 | Aeroflex Plainview, Inc. | Battery balancing including resonant frequency compensation |
-
2011
- 2011-03-01 US US13/037,621 patent/US8638634B2/en active Active
-
2012
- 2012-04-12 US US13/445,353 patent/US8755243B2/en active Active
-
2014
- 2014-06-09 US US14/299,267 patent/US20150016206A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5519663A (en) * | 1994-09-28 | 1996-05-21 | Sci Systems, Inc. | Preservation system for volatile memory with nonvolatile backup memory |
US20090027014A1 (en) * | 2007-07-25 | 2009-01-29 | Simtek | Capacitor save energy verification |
US20100329064A1 (en) * | 2009-06-26 | 2010-12-30 | Dean Clark Wilson | Systems, methods and devices for monitoring capacitive elements in devices storing sensitive data |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160202749A1 (en) * | 2015-01-13 | 2016-07-14 | Netlist, Inc. | System and method for determining charge of a secondary power supply for a memory system |
US20190278351A1 (en) * | 2018-03-12 | 2019-09-12 | Omron Corporation | Arithmetic unit and control apparatus |
US10877538B2 (en) * | 2018-03-12 | 2020-12-29 | Omron Corporation | Arithmetic unit and control apparatus |
US20220407345A1 (en) * | 2021-06-17 | 2022-12-22 | Samsung Electronics Co., Ltd. | Method of controlling a charging voltage for extending the lifetime of a secondary power source and a storage device performing the same |
Also Published As
Publication number | Publication date |
---|---|
US20120224446A1 (en) | 2012-09-06 |
US20120224445A1 (en) | 2012-09-06 |
US8638634B2 (en) | 2014-01-28 |
US8755243B2 (en) | 2014-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8638634B2 (en) | Apparatus and method to measure energy capacity of a backup power supply without compromising power delivery | |
US9007087B2 (en) | System and method for automated failure detection of hold-up power storage devices | |
US10164457B2 (en) | Charging method and apparatus | |
KR102049148B1 (en) | Battery device and battery protection method | |
US9143005B1 (en) | Backup energy storage module with selectable charge storage elements for providing backup power to a load | |
US8542059B2 (en) | Ultra-low-power power supply system for an IC chip | |
US10211653B2 (en) | Dynamic battery cell impedance monitoring | |
US10027137B2 (en) | Energy storage device | |
US20130038292A1 (en) | Management of battery charging through coulomb counting | |
US10283987B1 (en) | Dynamic adjustment of capacity threshold for a battery unit | |
US10693310B2 (en) | Hiccup charger | |
TW201843476A (en) | Intelligent backup capacitor management | |
US9013946B2 (en) | Apparatus and method to manage energy capacity of a backup power supply | |
EP3428776A1 (en) | Backup power circuit and electrical device | |
US20170310126A1 (en) | Voltage regulation for battery strings | |
US20170322262A1 (en) | System and method for estimating state of health of capacitive device | |
JPWO2014133009A1 (en) | Storage battery, storage battery control method, control device, and control method | |
CN117630708A (en) | Battery hazard detection | |
US20200366117A1 (en) | Control device for lithium ion secondary battery and control method thereof | |
KR20170090471A (en) | Method and device for detecting an overcharging of an accumulator of a battery | |
US20150042348A1 (en) | Capacitor power supply, voltage monitoring device, method of monitoring voltage, and method of manufacturing capacitor power supply | |
US12184113B2 (en) | Charge method for battery, storage medium, and terminal | |
US10491025B1 (en) | Apparatus, systems, and methods for pulse charging rechargeable batteries | |
KR20230139002A (en) | Auxiliary power circuit, electronic devices and methods of operation of auxiliary power circuit | |
US20200382004A1 (en) | Power supply apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AGIGA TECH INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAUCK, LANE T.;REEL/FRAME:033480/0922 Effective date: 20140806 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: CYPRESS SEMICONDUCTOR CORPORATION, CALIFORNIA Free format text: MERGER;ASSIGNOR:AGIGA TECH, INC.;REEL/FRAME:070926/0472 Effective date: 20250228 |