US20140297116A1 - Self-driving vehicle with integrated active suspension - Google Patents
Self-driving vehicle with integrated active suspension Download PDFInfo
- Publication number
- US20140297116A1 US20140297116A1 US14/242,691 US201414242691A US2014297116A1 US 20140297116 A1 US20140297116 A1 US 20140297116A1 US 201414242691 A US201414242691 A US 201414242691A US 2014297116 A1 US2014297116 A1 US 2014297116A1
- Authority
- US
- United States
- Prior art keywords
- vehicle
- road
- active suspension
- driving
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G11/00—Resilient suspensions characterised by arrangement, location or kind of springs
- B60G11/26—Resilient suspensions characterised by arrangement, location or kind of springs having fluid springs only, e.g. hydropneumatic springs
- B60G11/265—Resilient suspensions characterised by arrangement, location or kind of springs having fluid springs only, e.g. hydropneumatic springs hydraulic springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G13/00—Resilient suspensions characterised by arrangement, location or type of vibration dampers
- B60G13/14—Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers accumulating utilisable energy, e.g. compressing air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/0152—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/018—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/019—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/0195—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/02—Spring characteristics, e.g. mechanical springs and mechanical adjusting means
- B60G17/04—Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
- B60G17/052—Pneumatic spring characteristics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/06—Characteristics of dampers, e.g. mechanical dampers
- B60G17/08—Characteristics of fluid dampers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/08—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/06—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/50—Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
- F16F9/512—Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/06—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
- H02K29/08—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/12—Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2202/00—Indexing codes relating to the type of spring, damper or actuator
- B60G2202/40—Type of actuator
- B60G2202/41—Fluid actuator
- B60G2202/413—Hydraulic actuator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2300/00—Indexing codes relating to the type of vehicle
- B60G2300/06—Cranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2300/00—Indexing codes relating to the type of vehicle
- B60G2300/60—Vehicles using regenerative power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/90—Other conditions or factors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/18—Automatic control means
- B60G2600/182—Active control means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/01—Attitude or posture control
- B60G2800/012—Rolling condition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/10—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
- F16F9/14—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
- F16F9/16—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
- F16F9/18—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
- F16F9/19—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/215—Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/22—Optical devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/06—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
- H02K29/10—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using light effect devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
Definitions
- Disclosed embodiments are related to active suspension systems for autonomous vehicles.
- Self-driving or autonomous vehicles enable passengers to spend time on tasks outside of driving. Many of these tasks require ride comfort and isolation from the road that is superior to that of conventional automobiles.
- Self-driving vehicles typically have a variety of sensors that assist with navigation, including look-ahead sensors such as vision and range-finding technologies.
- Fully active suspension systems may provide superior ride, handling and comfort. This is accomplished by dynamically creating forces to control wheel motion. These are typically self-contained systems that comprise of sensors and actuators controlled by a central controller.
- Self-driving vehicles have a significant need for improved ride comfort, and have a number of sensors not typically available on conventional vehicles.
- the inventors have appreciated that active suspension technologies may be improved by integrating actuator control with vehicle sensors and networks. Further, self-driving vehicles may be improved by being responsive to road-related comfort characteristics.
- aspects relate broadly to control methodologies of active suspension systems and self-driving vehicles. More specifically, aspects relate to building topographical maps, route planning based on road roughness, regulating energy storage based on planned routes, and mitigating forward and lateral acceleration feel through adaptive pitch and tilt correction.
- an active suspension system comprises a number of active suspension actuators, typically one per wheel for the vehicle.
- Each active suspension actuator may operate in at least three force/velocity operational quadrants such that it may both resist an external motion input and actively push/pull.
- At least one forward-looking sensor is disposed on the vehicle such that it is capable of detecting a road condition the vehicle may encounter in the future.
- the vehicle comprises a location sensor such as a GPS receiver.
- the vehicle may further comprise at least one relative sensor that is capable of detecting relative movement between the vehicle and the ground, or the vehicle and a future road condition.
- Relative sensors may include sensors such as an IMU, accelerometer, speed sensor, etc.
- a sensor fusion system such as a Kalman Filter may combine the location data and relative data to obtain an accurate estimate of absolute position. For example, a sensor fusion system may bias the location sensor over the long term, but bias the relative sensor over the short term. Similarly, the sensor fusion system may eliminate extraneous points (for example, ignore a GPS coordinate reading if it has moved significantly farther than the vehicle could have moved given the current speed sensor reading).
- a memory system may comprise a topographical map. Any suitable memory system will suffice, but in some embodiments it may comprise of a processor-based vehicular electronic control unit (ECU) containing rewriteable memory. The topographical map may comprise three-dimensional terrain information.
- ECU vehicular electronic control unit
- This may be implemented relative to the vehicle such that the map comprises relative X,Y coordinates from the center of the vehicle and a Z terrain/feature height for the road at each point.
- the topographical map indices may change at each iteration of the control loop.
- the system may also be implemented as an absolute map, wherein the X,Y coordinates relate to absolute positions such as GPS coordinates, and similarly the Z value indicates a terrain/feature height.
- An active suspension controller which may be centralized, distributed among several processor or FPGA-based controllers with one at each actuator, co-located with another vehicle ECU, or any other suitable controller topology, may receive information from the sensor fusion system and the memory system containing the topological map.
- the active suspension controller both controls the active suspension actuators in response to the topographical map and updates the topographical map based on a parameter sensed by either the active suspension actuators or the forward-looking sensor.
- Controlling the active suspension actuators may comprise changing a force, position, or other parameter of the actuators in order to mitigate a detected event in the topographical map.
- Updating the topographical map may comprise recording sensed future events from the forward-looking sensor, recording data from wheel impacts of the front or rear active suspension actuator sensors, or any other suitable data source wherein road data may be extracted and related to a position.
- a self-driving or navigation-guided vehicle performs route planning at least partially based on road roughness.
- a controller on the vehicle receives a driving plan that comprises an anticipated route for the vehicle, such as a GPS-guided route laid onto data from a roadway map database.
- road condition data is collected at a variety of points along the route.
- the controller determines a road roughness impact on the vehicle for at least a portion of the gathered points of road condition data. This may be a calculation based on the road condition data, or it may comprise the road condition data itself, depending on what data is stored.
- the self-driving or navigation-guided vehicle then adjusts the driving plan to reduce road roughness impact on the vehicle. For example, it may avoid a road that is particularly rough.
- an intelligent energy storage system regulates state of charge in a predictive fashion.
- a plurality of electrical loads are connected to an electrical bus.
- Such electrical loads may include active suspension actuators, electric propulsion motors, electric power steering, an electric air compressor, electronically actuated stability control, and the like.
- the electrical bus may comprise an energy storage apparatus such as a rechargeable battery bank, super capacitors, and/or other suitable means of storing electrical energy.
- the energy storage apparatus may be characterized by a state of charge, which is a measure of the energy contained in the apparatus.
- the energy storage apparatus may be disposed to provide energy to at least a portion of the connected electrical loads on the bus.
- a power converter may be configured to provide power to the energy storage, thus changing its state of charge.
- the loads may be electronically connected such that they also regulate the state of charge.
- An electronic controller for a self-driving vehicle calculates a driving plan, which is an anticipated route for the vehicle.
- a computer-based model or algorithm may predict or calculate energy usage by at least a portion of the plurality of loads at a variety of points along the route.
- energy usage may be positive or negative (consumption or regeneration).
- the algorithm or model may then dynamically and predictively set a state of charge of the energy storage apparatus as a function of calculated energy usage for points along the route. In one example, if the algorithm calculates that a large amount of energy will be needed ahead, the power converter may put additional energy into the energy storage apparatus in order to accommodate the future consumption load.
- an active suspension system for a self-driving vehicle mitigates fore/aft and lateral acceleration feel through adaptive pitch and tilt corrections.
- the active suspension system comprises a plurality of active suspension actuators, with an actuator disposed at each wheel of the vehicle. Each actuator is capable of creating an active force between the vehicle chassis and the wheel.
- a self-driving controller which may be a single controller or several controllers distributed in the vehicle, commands steering, acceleration, and deceleration of the vehicle during driving.
- An active suspension controller is in communication with the self-driving controller such that the active suspension controller receives feed-forward command and control information. This feed-forward information may include steering, acceleration, and deceleration signals from the self-driving controller.
- this sensor data may be feedback data, such as measured fore/aft and lateral acceleration.
- An algorithm mitigates passenger disturbance caused by such fore/aft and lateral acceleration by creating a compensation attitude, or a pitch/tilt condition of the vehicle.
- the compensation attitude may be set using the active suspension actuators in response to the feed-forward steering, acceleration, and deceleration signals.
- the compensation attitude is set using feedback data such as measured fore/aft and lateral acceleration.
- the algorithm commands a pitch-up attitude during deceleration (such as braking), a pitch-down attitude during acceleration, and a roll-in attitude during steering.
- a pitch-up attitude comprises lifting the front of the vehicle such that its ride height is higher than the rear
- a pitch-down attitude comprises lowering the front of the vehicle such that its ride height is lower than the rear
- a roll-in attitude comprises lowering the side of the vehicle on the inside radius of the turn such that its ride height is lower than the outside radius side of the vehicle.
- ride height command authority may be limited in comparison to large acceleration events causing large roll or pitch moments, and the control system may not fully achieve such compensation attitude behavior.
- FIG. 15-1 is a diagram of a topographical road mapping system.
- FIG. 15-2 is a block diagram of a route planning system that is responsive to road conditions.
- FIG. 15-3 is an autonomous vehicle with a predictive energy storage subsystem and an integrated active suspension.
- FIG. 15-4 is an adaptive pitch/roll system that creates a compensation attitude in response to feed-forward drive commands.
- FIG. 15-5 is a block diagram of a self-driving vehicle with integrated adaptive chassis systems.
- FIG. 15-6 is a drawing of an on-demand energy flow active suspension embodiment.
- FIG. 15-7 is an embodiment using a topographical road mapping system that uses front wheels as a predictive sensor for rear wheels to control an active suspension system.
- topographical maps of the road surface include positional information as well as road surface information such as road height. These maps may be highly granular in detail, showing individual road imperfections, bumps, potholes, and the like. These maps may be generated by a variety of means, including vision camera sensors, LIDAR, radar, and other planar or three-dimensional scanning sensors, and the like. The maps may also be generated by sensor information post-encounter, such as the front suspension actuators determining information about the road as they traverse terrain. These topographical maps may also be communicated from vehicle to vehicle over a network, or may be downloaded from servers in communication with the vehicle such as over a cellular network.
- the topographical maps may be used for a variety of control purposes, such as: adapting driving behavior (changing speed such as slowing down on a rough road; changing vehicle course such as choosing a less bumpy road to reach the destination, etc.); adapting active suspension system behavior (controlling actuator force/position in a predictive manner in response to road perturbations ahead, changing actuator force/position in the rear dampers to anticipate sensed events from the front dampers, etc.). Aspects also relate to plotting a trajectory of the vehicle and its elements (e.g. individual wheels) across the topographical map.
- aspects relate to the use of energy storage onboard a self-driving vehicle, wherein the energy storage is used to power electrical loads such as active suspension actuators, the drive motor of an electric car, EPS, ESP, ABS braking, etc.
- electrical loads such as active suspension actuators, the drive motor of an electric car, EPS, ESP, ABS braking, etc.
- these aspects relate to predictively charging the energy storage based on an estimate of future energy needs of the vehicle.
- this also relates to controlling electrical loads based on an estimate of future energy needs of the vehicle.
- another input to such algorithms is energy availability, which may be a vehicle imposed current limit, or an overall energy storage capacity of an electric vehicle for a given trip.
- Other aspects relate to controlling an active suspension to enhance comfort during acceleration and cornering of a self-driving vehicle.
- the vehicle may lean into a turn or acceleration, and lean back from a deceleration event.
- FIG. 15-1 shows an embodiment of a topographical mapping system for a vehicle.
- a topographical map 15 - 100 comprises high-resolution terrain data for the vehicle.
- high resolution would encompass being able to detect road perturbations large enough to create a human-distinguishable impact on the vehicle if driven over.
- the resolution may be lower.
- the map may be represented as a relative map about the vehicle (for example, XY Cartesian distances from the vehicle or a polar coordinate system), as multiple relative maps about parts of the vehicle (for example, relative maps about each wheel), an absolute map comprising absolute positions (for example, GPS coordinates), or any other means of associated terrain height Z information or similar.
- the topological map may contain a generalized roughness metric or a correction metric for an active suspension. It may also be implemented as a pipelined control system, wherein such information is clocked through a control loop based on position changes of the vehicle. Any suitable means of representing topographical information may be used.
- the topographical map 15 - 100 is indexed by the current position. This map may start as populated, unpopulated, or partially populated. In order to use a high resolution topographical map, the vehicle needs an accurate method of localizing with respect to the map.
- Location sensors 15 - 102 are used to determine a location. Such sensors may include coordinates from a GPS receiver, WiFi access point recognition, honing beacon, DGPS triangulation methods, and/or other suitable sensors.
- the vehicle has at least one relative position sensor 15 - 104 such as an IMU, accelerometers, steering angle, vehicle speed, and/or other suitable sensors onboard.
- a sensor fusion system 15 - 106 processes the absolute position data using the relative position data to determine an accurate estimate of current location.
- One such method of sensor fusion is a Kalman Filter to recursively process the stream of noisy data from the location and relative position sensors to yield an accurate estimate of absolute position.
- a filter may contain data representing a physical model of the vehicle and its movement, and compare a prediction of vehicle location to actual measurement.
- Output from the sensor fusion system is a position metric that serves as either an index to the topographical map 15 - 100 , or serves to transform the topographical map at each time update. For example, if the topographical map is a relative matrix of Z values ahead of the vehicle, the filtered position information may shift the current map XY position.
- the topographical map 15 - 100 may be purely relative to the vehicle, and only relative position sensors 15 - 104 are used in the sensor fusion system.
- the topographical map represents a local measure of terrain about the vehicle, and a method for accurately interpreting and using results from look-ahead sensors 15 - 108 by the active suspension system 15 - 110 .
- an active suspension system 15 - 110 is equipped on the vehicle.
- the fully active suspension is capable of operating in at least three operational quadrants of a force/velocity plot, which means it is capable of both damping movement and actively pushing or pulling the wheel.
- the active suspension system receives data from the topological map and determines an incidence time and correction.
- a path may be calculated that represents a path through a plurality of points in the topographical map 15 - 100 . This path may be a function of current steering angle and speed, or be based on a planned route.
- the planned route may be a combination of GPS/maps route planning and any obstacle avoidance procedures being employed by the self-driving vehicle to plan vehicle travel.
- the path may comprise of a single trajectory in a lower resolution map, of two paths, each representing a path of travel of the left and right sides of the vehicle respectively, or four paths, with each representing a path of travel of a wheel of the vehicle (in the case of a two axle vehicle).
- the active suspension then calculates an incidence time to each point corresponding with each wheel of the vehicle for which an active suspension actuator is disposed.
- the active suspension then calculates a correction, which comprises a force or position setting of the actuator at each wheel so as to mitigate impact of the event on the trajectory.
- the left front wheel might lift twenty-five millimeters just before impact of the event.
- a system model is used to calculate actuator response time so that it can prepare the actuator a suitable period of time prior to the wheel encountering the event.
- the active suspension system may employ several algorithms related to wheel damping, body control during turns, saturation handling, and other metrics that may require the active suspension to deviate from this simplified model, however, in many embodiments that use the topographical map, the terrain data is utilized as an input to the active suspension control system.
- the active suspension system 15 - 110 may also share information with the topographical mapping system.
- data may comprise accelerometer data representing wheel or body movement, actuator position information, or any other metric that represents road input.
- the front actuators of the vehicle encounter a bump, which moves the actuators a certain distance at a given force.
- the system estimates topographical information from this and inserts it into the topographical map so that the rear actuators can use the data to respond to and so that future drive events can benefit from the knowledge.
- the vehicle effectively employs a learning algorithm wherein it learns the road terrain as new roads are traversed, and then the next time it is driven the system can respond more effectively.
- This may be coupled with algorithms that adapt an already populated map as the same terrain is driven over multiple times so that a best estimate map is created.
- This learning function may be particularly important with topographical information because road surface condition changes frequently with wear/tear, road repairs, snow storms, etc.
- the topographical map may also be used to modify route planning 15 - 112 and drive system 15 - 114 commands. For example, if a large obstruction in the road is detected (such as a pothole), the vehicle route planning 15 - 112 may navigate around the obstruction in order to reduce impact to the vehicle. On a road that exhibits a particularly rough road (which can be determined with various means from the topographical map such as looking at the frequency content and amplitude of perturbations), the route planning system may avoid the road and reroute to another suitable road with a smoother topographical footprint. In another example, the drive system 15 - 114 may simply reduce speed over a detected rough road.
- look-ahead sensors 15 - 108 are similarly helpful. These are particularly useful due to their ability to sense road conditions prior to encountering them with the wheels of the vehicle.
- look-ahead systems such as mono or stereo vision camera systems, radar, sonar, LIDAR, and other planar or three dimensional scanning systems.
- multiple look-ahead sensors are used in conjunction through a secondary fusion system in order to obtain a more accurate estimate of road conditions. These sensors may build a topographical map that expands beyond road surface conditions: they may detect curbs, edges of roads, street signs, other vehicles, pedestrians, buildings, etc.
- the system building the topological map may be the same system that is performing real-time autonomous driving and navigation.
- This subsystem may identify obstacles that are mobile objects and would be differentiated from in the topological map.
- the vision sensor may detect a pedestrian in a crosswalk or another vehicle.
- a couple methods include object recognition systems that can detect human faces, outlines of vehicles, and such, or an algorithm that can detect if an object is moving with respect to an absolute coordinate system (i.e. the ground). In this way, non-permanent obstacles can be removed from or not inserted into the topographical map data.
- topographical map information may be shared.
- the vehicle has a cellular connection to the internet and dynamically uploads and downloads topographical map information from one or more servers.
- there is vehicle-to-vehicle communication wherein a vehicle ahead may communicate topographical or road surface information to the vehicle which can seed the topographical map 15 - 100 with a priori estimates.
- This topographical information can be stored with road map databases, and may even be directly coupled with road map systems such that road maps index terrain information. This can be at the overall road granularity level, or may be a matrix of data representing terrain information across the road at a higher resolution.
- the amount of topographical information stored can vary. A topographical map containing an entire route or even an entire region can be stored on the vehicle, or only a small window buffered onto local memory.
- FIG. 15-2 shows an embodiment of a route planning system that is responsive to road conditions. Based on a driver input destination, the vehicle retrieves data from a maps database 15 - 202 and computes a driving plan 15 - 200 .
- the driving plan may comprise of a specific route and may further include target vehicle speeds.
- FIG. 15-2 shows the generalized system which can be used in a priori route planning or in real-time a posteriori driving.
- the a priori driving plan 15 - 200 is calculated based on a route planning algorithm such as an A* algorithm or any other suitable route planning method. This is then compared to road condition data 15 - 204 that has been stored from previous driving data, from other vehicles, or from a database.
- the road condition data is processed or has already been processed and stored to include a road roughness impact 15 - 206 metric.
- this metric may comprise a measure of vertical acceleration on the chassis of the vehicle.
- vertical acceleration on the vehicle chassis or in the passenger compartment may be band-pass filtered to cut out frequencies significantly below body frequency and frequencies significantly above wheel frequency.
- a band-pass filter may have a lower cutoff around 0.5 Hz and an upper cutoff around 20 Hz in order to eliminate extraneous noise that does not impact road roughness impact.
- the driving plan 15 - 200 is altered to either bias against rough roads by employing a weight factor directly in the route-planning algorithm, or by avoiding roads that have a road roughness above a certain threshold. In another embodiment, it may result in setting target speeds for each section of road.
- the road condition data 15 - 204 and road roughness impact calculator 15 - 206 may represent a single unit 15 - 208 that simply represents the road roughness.
- the a priori system determines a driving plan at least partially in response to anticipated road roughness impact to the vehicle over the roads in the route.
- the system operates in real time while executing (i.e. driving) the driving plan 15 - 200 .
- a driving plan 15 - 200 is calculated based on a route planning algorithm and using stored maps 15 - 202 .
- road condition data 15 - 204 is acquired such as vertical accelerometer data, road surface information from a forward-looking vision system, data from a stored topographical map, GPS-indexed data, data from other vehicles, and a measure of at least one state variable from an electronic suspension system (such as accelerometer, velocity, and position data from each actuator or semi-active damper).
- an electronic suspension system such as accelerometer, velocity, and position data from each actuator or semi-active damper.
- This may be a simple root mean squared (RMS) value of acceleration, a comfort heuristic that is a frequency-weighted function of chassis acceleration, or some other means of processing the road condition data to yield a result coupled with road impact to the vehicle and passengers.
- RMS root mean squared
- Road roughness impact data 15 - 206 (either current data of the terrain being traversed, a running average of past data, or future data ahead) is used to correct the driving plan 15 - 200 . Adjusting the driving plan may cause the vehicle to choose an alternative route course in order to avoid the road being traversed. Alternatively, it may cause the driving plan to change the vehicle speed over the rough terrain.
- FIG. 15-3 shows an autonomous vehicle with a predictive energy storage subsystem and an integrated active suspension.
- An electrical bus 15 - 300 delivers power to a plurality of connected electrical loads.
- the electrical loads comprise of four active suspension actuators 15 - 308 connected to the bus 15 - 300 .
- this may comprise of electric power steering systems, electronic stability control actuators, electronic air compressors, ABS braking actuators, rear wheel steering actuators, and other power consumers.
- An energy storage apparatus 15 - 312 such as a battery (lead acid, AGM, lithium-ion, lithium-phosphate, etc.), a bank of capacitors (e.g. super capacitors), a flywheel, or any other suitable energy storage device is attached to the electrical bus 15 - 300 .
- the energy storage device can be characterized by a state of charge. For example in a capacitor, a voltage level would indicate this. For some rechargeable batteries, this could be measured using a coulomb counting battery management system, although with many battery technologies a state of charge can be determined by a voltage reading.
- the energy storage system is disposed to provide energy to at least a portion of the electrical loads on the bus.
- a power converter 15 - 310 in this embodiment a bi-directional DC-DC converter that transfers power between the vehicle's electrical system and the electrical bus 15 - 300 , is configured to provide power to the energy storage apparatus and the connected electrical loads. By controlling the electrical loads and the power converter, a state of charge of the energy storage apparatus can be set.
- the power converter 15 - 310 can set a state of charge of the energy storage apparatus 15 - 312 without knowing the state of charge.
- the power converter can provide more energy than the loads are consuming in order to increase a state of charge, and likewise the power converter can provide less energy than the loads are consuming in order to decrease the state of charge.
- a forward-looking stereo vision camera or LIDAR, radar, side sensor, rear sensor, etc.
- This camera system may connect with the autonomous control system 15 - 302 , which may comprise of one or a plurality of devices such as processor-based controllers.
- the sensor may also connect directly to the suspension controller, although in this embodiment the autonomous controller uses the stereo vision system for vehicle navigation tasks as well.
- the autonomous controller 15 - 302 calculates a driving plan for an anticipated route of the vehicle by mapping a route to a user-defined destination. This driving plan may change dynamically, for example it may be responsive to changing traffic conditions.
- the driving plan may be highly granular such as taking a specific line or lane along a road. Based on sensed data such as through the vision camera 15 - 304 , this driving plan may dynamically change such as to avoid an emergency-braking vehicle in the vehicle's lane ahead.
- the power converter 15 - 310 may regulate the state of charge of the energy storage 15 - 312 during the route.
- the GPS unit 15 - 316 detects the vehicle's position is approaching a known rough road that is on the driving plan and the vehicle is in an economy mode, where a significant amount of energy might be regenerated by a regenerative suspension system.
- This processing may occur in a controller outside the GPS unit that may have access to the topographical map with road roughness criteria.
- the power converter can be controlled to deliver energy from the electrical bus 15 - 300 to the vehicle's electrical system in order to reduce the state of charge of the energy storage so that it can accommodate at least some of the regenerated energy. Once the road is being traversed, regenerated energy may be provided to both the energy storage apparatus as well as to the vehicle's electrical system through the power converter.
- the GPS unit 15 - 316 detects that the vehicle's position is approaching a winding road that is on the driving plan of the vehicle.
- An algorithm calculates needed energy for the active suspension actuators to provide active roll control and for the electric power steering to provide steering input, and charges the energy storage apparatus such that while the winding road is being traversed, peak power demand from both devices is delivered by both the energy storage apparatus and the power converter from the vehicle's electrical system 15 - 318 such that the power converter does not exceed a vehicle electrical system maximum current threshold.
- the vehicle 15 - 314 is an electric or hybrid car with a high voltage battery pack as an energy storage device.
- the vehicle may be an autonomous electric vehicle with a rear mounted drive motor and a 400-volt battery pack.
- the energy storage may comprise the battery pack, and the electrical bus may comprise the high voltage bus the battery is connected to.
- the vehicle calculates a driving route and estimates energy usage from connected loads (for example, the main drive motor and an active suspension system). Such an estimate may comprise a measure of road roughness and cornering to determine an active suspension system consumption, and a measure of acceleration, stop lights, vehicle speeds, terrain incline and distance to determine a main drive motor consumption and regeneration.
- the vehicle may want to further control the loads such as the active suspension and main drive motor to ensure that the autonomous vehicle may reach its destination with the amount of energy on board the vehicle.
- the active suspension system may run off an intermediate voltage bus on the vehicle such as a 48V bus that communicates with the high voltage system through a DC-DC converter.
- the vehicle determines a driving plan for the vehicle and target speeds. It estimates energy usage that each device on the electrical bus 15 - 300 will use for each location of travel, which may be a function of target speed and other parameters. During execution of the driving plan, the energy storage state of charge may be predictively set in advance of the energy usage event.
- the energy storage apparatus operates most durably when maintained between a lower threshold voltage and an upper threshold voltage. This may be accomplished by executing regulation of the power converter and regulation of at least a portion of the plurality of connected loads. For example, a controller may reduce energy consumption in a load so that the energy storage does not drop below a lower threshold. In other embodiments this may be accomplished by applying switches such as MOSFET or IGBT transistor based switches to the energy storage apparatus.
- FIG. 15-4 demonstrates an active suspension control system for a vehicle that mitigates fore/aft and lateral acceleration and deceleration feel by pitching and tilting the vehicle.
- the vehicle comprises active suspension actuators at each wheel of the vehicle.
- a self-driving controller creates command signals that accelerate/decelerate the vehicle and create steering events that yield a lateral acceleration.
- the vehicle 15 - 400 pitches forward (pitch down attitude wherein the front of the vehicle is below the vehicle centerline) by creating an extension force from the rear actuators 15 - 402 and a compression force from the front actuators 15 - 404 .
- Force is provided in order to set a compensation attitude 15 - 406 in pitch that is greater than zero degrees and related to the acceleration of the vehicle. Acceleration of the vehicle creates a longitudinal force 15 - 408 on the passengers that is equal to their mass multiplied by the vehicle's acceleration.
- the longitudinal force from the vehicle acceleration is multiplied by the cosine of the compensation angle 15 - 406 , and a component of gravitational force 15 - 410 acts to counteract the acceleration force by operating in the opposite direction.
- This longitudinal force component from gravity on the passengers is equal to their mass multiplied by the acceleration of gravity (9.8 m/s/s) multiplied by the sine of the compensation attitude.
- the tangent of the compensation attitude must equal the vehicle acceleration divided by gravity. Therefore, a compensation attitude to create equal forces would be the arctangent of the quotient of the vehicle acceleration and (divided by) the acceleration of gravity.
- the zero net longitudinal force compensation attitude during a 0.3 g vehicle acceleration is approximately 17 degrees pitch forward.
- the compensation angle 15 - 406 may be less than the arctangent of the quotient of vehicle acceleration and the acceleration of gravity.
- the vehicle 15 - 412 pitches backward (pitch up attitude wherein the front of the vehicle is above the vehicle centerline). In this instance, force from the actuators operates in a similar but opposite fashion. Compensation attitudes can be found using similar methodologies as during acceleration, but by referencing a compensation attitude angle from the rear of the vehicle instead of the front.
- this compensation attitude in roll may be greater than zero, but less than or equal to the arctangent of the quotient of lateral acceleration and gravity.
- the roll in attitude comprises of the side of the vehicle on the inside radius of the turn being below the roll centerline as shown in FIG. 15-4 .
- the actuators may become force limited (in saturation), and this performance may not be met.
- a self-driving vehicle may mitigate discomfort associated with autonomous acceleration, deceleration, and steering.
- a feed-forward strategy may be employed by connecting the autonomous controller or driving system with the active suspension such that a compensation attitude is commanded based on an acceleration/steering signal from the controller.
- a compensation attitude can be calculated as a function of the signal.
- entry into the compensation attitude is gradual and occurs over an extended period of time that is a function of the feed-forward signal from the self driving controller. Exit from the compensation attitude may also be gradual and occur over time.
- active suspension actuators have a maximum force limit which may be a physical limit or a software parameter (including a dynamic software parameter that is updatable in real time), and a target compensation attitude is not fully reached during high acceleration, deceleration, and roll events. This is called a force-limited mode. Since compensation attitude performance may be jarring to some passengers, in some embodiments it may be desirable to turn the feature on and off, or into different modes of operation (for example, that set different levels of compensation attitudes) based on a vehicle operator selected operational mode.
- the main control system 15 - 500 comprises controllers for the autonomous driving subsystem, the smart chassis subsystem, and the comfort subsystem. These controllers may be on a single controller or a plurality of controllers distributed about the vehicle.
- the autonomous driving subsystem is responsible for navigation, route planning, obstacle avoidance, and other driving related tasks.
- the smart chassis subsystem is an integrated control system that combines control tasks for a number of chassis and propulsion technologies.
- the comfort subsystem may provide control to a number of comfort systems such as controlling the active suspension system, interior cabin amenities, and may provide settings to the propulsion system to adjust throttle and steering response.
- the self-driving vehicle may have a number of sensor technologies on-board 15 - 502 which may be beneficially coupled with other vehicle systems such as an active suspension.
- These sensors include look ahead sensors (vision, radar, sonar, LIDAR, front wheel movement), mapping (GPS, localized mapping, street maps, topographical maps), vehicle state (speed, transmission state, fuel level, engine status), chassis sensors (ESP status, ABS status, steering/throttle position), and suspension sensors (unsprung and sprung mass acceleration, suspension position, velocity, energy consumed/regenerated).
- the chassis and propulsion systems 15 - 504 such as throttle, steering, active suspension, braking, energy management for the vehicle, and other chassis related technologies may be operatively controlled by the main control system blocks.
- a user interface 15 - 508 may be used to accept vehicle operator inputs such as destination inputs to compute a route or driving plan such as on an LCD touchscreen.
- suspension status may be viewed and algorithm settings may be programmed via the user interface.
- the self-driving vehicle may be connected via a network connection 15 - 506 such as to the internet.
- This network may connect the vehicle with data from other vehicles, with street mapping data, stored topographical data, local weather information, traffic information, and vehicle operator devices such as smartphones, tablets, etc. Vehicle operator devices may be used to further control the vehicle, such as allowing a destination input via a smartphone.
- Many of the above systems may be combined together and operatively communicate with one another in order to improve overall system performance.
- many of the technologies discussed in this specification may be operatively combined with features and modules shown in FIG. 15-5 .
- FIG. 15-6 demonstrates one embodiment of an active suspension actuator that operates in at least three operational quadrants of a force-velocity plot (with respect to the actuator).
- a hydraulic actuator 15 - 600 comprising a piston rod and piston head disposed in a housing, along with a gas filled accumulator (which may be inside the hydraulic actuator housing or in fluid communication externally), is connected via fluid communication channels 15 - 602 to a hydraulic motor/pump 15 - 606 (which may be a pump, a motor, or both).
- the fluid communication may pass through one or more valves 15 - 604 that are configured either in series with the fluid, in parallel with the pump, some combination of the two, or this may be a straight connection without any valving.
- this valving may include a fluid-velocity responsive diverter valve that opens a bypass path around the hydraulic motor at a predetermined fluid velocity, while still allowing some fluid to enter the hydraulic motor during the diverted bypass stage.
- the hydraulic motor/pump is operatively coupled to an electric motor 15 - 608 such that rotation of the electric motor in a first direction causes fluid to pump into a compression volume of the hydraulic actuator, and rotation of the electric motor in a second direction causes fluid to pump into an extension volume of the hydraulic actuator.
- the electric motor is electrically connected via at least one wire 15 - 610 to a controller 15 - 612 that controls the motor.
- Motor control may comprise of torque control, velocity control, or some other parameter.
- the controller is responsive to algorithms operating the active suspension and/or to sensors or commands 15 - 614 .
- commands for actuator force or position may come from a vehicle system.
- An example of a suitable sensor is an accelerometer.
- the system is controlled in an on-demand energy manner such that energy is consumed or regenerated in the motor to rapidly create a force on the actuator.
- FIG. 15-7 is one embodiment of a topographical map that is specific to using data from the front wheels to provide improved response with the rear wheels of an active suspension. This may be beneficially combined with several technologies discussed in conjunction with sections discussing topographical maps, and shows one potential implementation of such a map. This may also be combined with several other elements in this specification, and is not limited to vehicles that are self-driving (i.e. it applies to human-operated vehicles).
- a vehicle state estimator 15 - 700 determines a vehicle's kinematic state based on a number of sensors such as accelerometers, steering angle, vehicle velocity (wheel speed sensors, GPS, etc.). This functional unit calculates how the vehicle is moving across the terrain, and outputs a change in (x, y, z) coordinates for each time step. These coordinate deltas serve as a relative matrix transformation vector that is used to transform a topographical map, and may further comprise a rotation vector if the vehicle is turning.
- the topographical map in this embodiment is a road outlook table 15 - 702 that comprises a two dimensional matrix indexed by x values and y values, and containing z positions (heights) of the road for each relative coordinate.
- the road outlook table 15 - 702 comprises a topographical map relative to the car and encompassing the road underneath the vehicle from front axle to rear axle, left side to right side of the vehicle.
- this road outlook table could be larger. For example, it could extend far in front of the vehicle and be seeded with data using look-ahead sensors, or it could extend past the sides of the vehicle.
- the road outlook table is fed into a system and vehicle dynamics model 15 - 704 that calculates a model-based open loop correction signal based on the upcoming z position of the road to each wheel, and creates an actuator control to mitigate the event.
- sensors such as the front accelerometers or position sensors (or any sensor that indicates road information) are fed into a road height estimator 15 - 706 , which estimates a z position of the road.
- the wheel and body response to a certain bump may be measured using sensors and then an estimate determined of road height that caused the bump.
- this data is inserted at x equals zero, however it would be whatever corresponding position for the topographical map at hand.
- a secondary method may operate to fill blank data slots with estimated road height. A number of methods can be used to accomplish this, but linear or quadratic interpolation between measured data points is one suitable method.
- the vehicle can use information from the front wheels in an accurate manner that accounts for vehicle movement including steering and other effects.
- it can be robustly integrated with multiple predictive sensors including look-ahead sensors, GPS data, and front wheel sensors. All of these may dynamically update the topographical map, and where there is redundant data a best estimate between the multiple values is used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Vehicle Body Suspensions (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
- This application claims priority to PCT application serial number PCT/US2014/029654, entitled “ACTIVE VEHICLE SUSPENSION IMPROVEMENTS”, filed Mar. 14, 2014, which claims the priority under 35 U.S.C. §119(e) of U.S. provisional application Ser. No. 61/913,644, entitled “WIDE BAND HYDRAULIC RIPPLE NOISE BUFFER”, filed Dec. 9, 2013, U.S. provisional application Ser. No. 61/865,970, entitled “MULTI-PATH FLUID DIVERTER VALVE”, filed Aug. 14, 2013, U.S. provisional application Ser. No. 61/815,251, entitled “METHOD AND ACTIVE SUSPENSION”, filed Apr. 23, 2013, and U.S. provisional application Ser. No. 61/789,600, entitled “IMPROVEMENTS IN ACTIVE SUSPENSION” filed Mar. 15, 2013, the disclosures of which are incorporated by reference in their entirety.
- 1. Field
- Disclosed embodiments are related to active suspension systems for autonomous vehicles.
- 2. Discussion of Related Art
- Self-driving or autonomous vehicles enable passengers to spend time on tasks outside of driving. Many of these tasks require ride comfort and isolation from the road that is superior to that of conventional automobiles. Self-driving vehicles typically have a variety of sensors that assist with navigation, including look-ahead sensors such as vision and range-finding technologies.
- Fully active suspension systems may provide superior ride, handling and comfort. This is accomplished by dynamically creating forces to control wheel motion. These are typically self-contained systems that comprise of sensors and actuators controlled by a central controller.
- Self-driving vehicles have a significant need for improved ride comfort, and have a number of sensors not typically available on conventional vehicles. The inventors have appreciated that active suspension technologies may be improved by integrating actuator control with vehicle sensors and networks. Further, self-driving vehicles may be improved by being responsive to road-related comfort characteristics.
- Aspects relate broadly to control methodologies of active suspension systems and self-driving vehicles. More specifically, aspects relate to building topographical maps, route planning based on road roughness, regulating energy storage based on planned routes, and mitigating forward and lateral acceleration feel through adaptive pitch and tilt correction.
- According to one aspect, an active suspension system comprises a number of active suspension actuators, typically one per wheel for the vehicle. Each active suspension actuator may operate in at least three force/velocity operational quadrants such that it may both resist an external motion input and actively push/pull. At least one forward-looking sensor is disposed on the vehicle such that it is capable of detecting a road condition the vehicle may encounter in the future. The vehicle comprises a location sensor such as a GPS receiver. The vehicle may further comprise at least one relative sensor that is capable of detecting relative movement between the vehicle and the ground, or the vehicle and a future road condition. Relative sensors may include sensors such as an IMU, accelerometer, speed sensor, etc. A sensor fusion system such as a Kalman Filter may combine the location data and relative data to obtain an accurate estimate of absolute position. For example, a sensor fusion system may bias the location sensor over the long term, but bias the relative sensor over the short term. Similarly, the sensor fusion system may eliminate extraneous points (for example, ignore a GPS coordinate reading if it has moved significantly farther than the vehicle could have moved given the current speed sensor reading). A memory system may comprise a topographical map. Any suitable memory system will suffice, but in some embodiments it may comprise of a processor-based vehicular electronic control unit (ECU) containing rewriteable memory. The topographical map may comprise three-dimensional terrain information. This may be implemented relative to the vehicle such that the map comprises relative X,Y coordinates from the center of the vehicle and a Z terrain/feature height for the road at each point. In such an embodiment, the topographical map indices may change at each iteration of the control loop. The system may also be implemented as an absolute map, wherein the X,Y coordinates relate to absolute positions such as GPS coordinates, and similarly the Z value indicates a terrain/feature height. An active suspension controller, which may be centralized, distributed among several processor or FPGA-based controllers with one at each actuator, co-located with another vehicle ECU, or any other suitable controller topology, may receive information from the sensor fusion system and the memory system containing the topological map. According to one aspect, the active suspension controller both controls the active suspension actuators in response to the topographical map and updates the topographical map based on a parameter sensed by either the active suspension actuators or the forward-looking sensor. Controlling the active suspension actuators may comprise changing a force, position, or other parameter of the actuators in order to mitigate a detected event in the topographical map. Updating the topographical map may comprise recording sensed future events from the forward-looking sensor, recording data from wheel impacts of the front or rear active suspension actuator sensors, or any other suitable data source wherein road data may be extracted and related to a position.
- According to another aspect, a self-driving or navigation-guided vehicle performs route planning at least partially based on road roughness. A controller on the vehicle receives a driving plan that comprises an anticipated route for the vehicle, such as a GPS-guided route laid onto data from a roadway map database. Along a route of travel, road condition data is collected at a variety of points along the route. The controller determines a road roughness impact on the vehicle for at least a portion of the gathered points of road condition data. This may be a calculation based on the road condition data, or it may comprise the road condition data itself, depending on what data is stored. The self-driving or navigation-guided vehicle then adjusts the driving plan to reduce road roughness impact on the vehicle. For example, it may avoid a road that is particularly rough.
- According to another aspect, an intelligent energy storage system regulates state of charge in a predictive fashion. According to this aspect, a plurality of electrical loads are connected to an electrical bus. Such electrical loads may include active suspension actuators, electric propulsion motors, electric power steering, an electric air compressor, electronically actuated stability control, and the like. The electrical bus may comprise an energy storage apparatus such as a rechargeable battery bank, super capacitors, and/or other suitable means of storing electrical energy. The energy storage apparatus may be characterized by a state of charge, which is a measure of the energy contained in the apparatus. The energy storage apparatus may be disposed to provide energy to at least a portion of the connected electrical loads on the bus. A power converter may be configured to provide power to the energy storage, thus changing its state of charge. Additionally, the loads may be electronically connected such that they also regulate the state of charge. An electronic controller for a self-driving vehicle calculates a driving plan, which is an anticipated route for the vehicle. A computer-based model or algorithm may predict or calculate energy usage by at least a portion of the plurality of loads at a variety of points along the route. According to one aspect, energy usage may be positive or negative (consumption or regeneration). While driving, the algorithm or model may then dynamically and predictively set a state of charge of the energy storage apparatus as a function of calculated energy usage for points along the route. In one example, if the algorithm calculates that a large amount of energy will be needed ahead, the power converter may put additional energy into the energy storage apparatus in order to accommodate the future consumption load.
- According to another aspect, an active suspension system for a self-driving vehicle mitigates fore/aft and lateral acceleration feel through adaptive pitch and tilt corrections. The active suspension system comprises a plurality of active suspension actuators, with an actuator disposed at each wheel of the vehicle. Each actuator is capable of creating an active force between the vehicle chassis and the wheel. A self-driving controller, which may be a single controller or several controllers distributed in the vehicle, commands steering, acceleration, and deceleration of the vehicle during driving. An active suspension controller is in communication with the self-driving controller such that the active suspension controller receives feed-forward command and control information. This feed-forward information may include steering, acceleration, and deceleration signals from the self-driving controller. According to one aspect, this sensor data may be feedback data, such as measured fore/aft and lateral acceleration. An algorithm mitigates passenger disturbance caused by such fore/aft and lateral acceleration by creating a compensation attitude, or a pitch/tilt condition of the vehicle. The compensation attitude may be set using the active suspension actuators in response to the feed-forward steering, acceleration, and deceleration signals. According to one aspect, the compensation attitude is set using feedback data such as measured fore/aft and lateral acceleration. The algorithm commands a pitch-up attitude during deceleration (such as braking), a pitch-down attitude during acceleration, and a roll-in attitude during steering. According to one aspect, a pitch-up attitude comprises lifting the front of the vehicle such that its ride height is higher than the rear, a pitch-down attitude comprises lowering the front of the vehicle such that its ride height is lower than the rear, and a roll-in attitude comprises lowering the side of the vehicle on the inside radius of the turn such that its ride height is lower than the outside radius side of the vehicle. According to one aspect, in a force-limited saturation regime of the actuator, ride height command authority may be limited in comparison to large acceleration events causing large roll or pitch moments, and the control system may not fully achieve such compensation attitude behavior.
- It should be appreciated that the foregoing concepts, and additional concepts discussed below, may be arranged in any suitable combination, as the present disclosure is not limited in this respect. In particular, while several embodiments are disclosed for self-driving vehicles, certain concepts may be used with human-operated vehicles as well. Further, other advantages and novel features of the present disclosure will become apparent from the following detailed description of various non-limiting embodiments when considered in conjunction with the accompanying figures.
- In cases where the present specification and a document incorporated by reference include conflicting and/or inconsistent disclosure, the present specification shall control. If two or more documents incorporated by reference include conflicting and/or inconsistent disclosure with respect to each other, then the document having the later effective date shall control.
- The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures may be represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
-
FIG. 15-1 is a diagram of a topographical road mapping system. -
FIG. 15-2 is a block diagram of a route planning system that is responsive to road conditions. -
FIG. 15-3 is an autonomous vehicle with a predictive energy storage subsystem and an integrated active suspension. -
FIG. 15-4 is an adaptive pitch/roll system that creates a compensation attitude in response to feed-forward drive commands. -
FIG. 15-5 is a block diagram of a self-driving vehicle with integrated adaptive chassis systems. -
FIG. 15-6 is a drawing of an on-demand energy flow active suspension embodiment. -
FIG. 15-7 is an embodiment using a topographical road mapping system that uses front wheels as a predictive sensor for rear wheels to control an active suspension system. - While self-driving vehicles and active suspension systems exist in the prior art, such systems have traditionally been separated stand-alone technologies. Significant ride benefits can be delivered to passengers by combining the sensing and command functions of self-driving vehicles with the command authority to change vehicle dynamics that a fully-active suspension provides.
- Some aspects relate to vehicle systems that utilize topographical maps of the road surface. Such maps include positional information as well as road surface information such as road height. These maps may be highly granular in detail, showing individual road imperfections, bumps, potholes, and the like. These maps may be generated by a variety of means, including vision camera sensors, LIDAR, radar, and other planar or three-dimensional scanning sensors, and the like. The maps may also be generated by sensor information post-encounter, such as the front suspension actuators determining information about the road as they traverse terrain. These topographical maps may also be communicated from vehicle to vehicle over a network, or may be downloaded from servers in communication with the vehicle such as over a cellular network. The topographical maps may be used for a variety of control purposes, such as: adapting driving behavior (changing speed such as slowing down on a rough road; changing vehicle course such as choosing a less bumpy road to reach the destination, etc.); adapting active suspension system behavior (controlling actuator force/position in a predictive manner in response to road perturbations ahead, changing actuator force/position in the rear dampers to anticipate sensed events from the front dampers, etc.). Aspects also relate to plotting a trajectory of the vehicle and its elements (e.g. individual wheels) across the topographical map.
- Other aspects relate to adapting driving behavior and route planning as a function of road roughness and the impact a road might have on the vehicle, and of collecting such data for future planning use.
- Other aspects relate to the use of energy storage onboard a self-driving vehicle, wherein the energy storage is used to power electrical loads such as active suspension actuators, the drive motor of an electric car, EPS, ESP, ABS braking, etc. These aspects relate to predictively charging the energy storage based on an estimate of future energy needs of the vehicle. In some embodiments, this also relates to controlling electrical loads based on an estimate of future energy needs of the vehicle. According to one aspect, another input to such algorithms is energy availability, which may be a vehicle imposed current limit, or an overall energy storage capacity of an electric vehicle for a given trip.
- Other aspects relate to controlling an active suspension to enhance comfort during acceleration and cornering of a self-driving vehicle. By controlling a compensation attitude of the vehicle using active suspension actuators, the vehicle may lean into a turn or acceleration, and lean back from a deceleration event.
-
FIG. 15-1 shows an embodiment of a topographical mapping system for a vehicle. A topographical map 15-100 comprises high-resolution terrain data for the vehicle. In some embodiments high resolution would encompass being able to detect road perturbations large enough to create a human-distinguishable impact on the vehicle if driven over. In other embodiments the resolution may be lower. The map may be represented as a relative map about the vehicle (for example, XY Cartesian distances from the vehicle or a polar coordinate system), as multiple relative maps about parts of the vehicle (for example, relative maps about each wheel), an absolute map comprising absolute positions (for example, GPS coordinates), or any other means of associated terrain height Z information or similar. In addition to or instead of terrain height data, the topological map may contain a generalized roughness metric or a correction metric for an active suspension. It may also be implemented as a pipelined control system, wherein such information is clocked through a control loop based on position changes of the vehicle. Any suitable means of representing topographical information may be used. - In this embodiment, the topographical map 15-100 is indexed by the current position. This map may start as populated, unpopulated, or partially populated. In order to use a high resolution topographical map, the vehicle needs an accurate method of localizing with respect to the map. Location sensors 15-102 are used to determine a location. Such sensors may include coordinates from a GPS receiver, WiFi access point recognition, honing beacon, DGPS triangulation methods, and/or other suitable sensors. In addition, the vehicle has at least one relative position sensor 15-104 such as an IMU, accelerometers, steering angle, vehicle speed, and/or other suitable sensors onboard. A sensor fusion system 15-106 processes the absolute position data using the relative position data to determine an accurate estimate of current location. One such method of sensor fusion is a Kalman Filter to recursively process the stream of noisy data from the location and relative position sensors to yield an accurate estimate of absolute position. Such a filter may contain data representing a physical model of the vehicle and its movement, and compare a prediction of vehicle location to actual measurement. Output from the sensor fusion system is a position metric that serves as either an index to the topographical map 15-100, or serves to transform the topographical map at each time update. For example, if the topographical map is a relative matrix of Z values ahead of the vehicle, the filtered position information may shift the current map XY position.
- In another embodiment, the topographical map 15-100 may be purely relative to the vehicle, and only relative position sensors 15-104 are used in the sensor fusion system. In such an embodiment, the topographical map represents a local measure of terrain about the vehicle, and a method for accurately interpreting and using results from look-ahead sensors 15-108 by the active suspension system 15-110.
- In the embodiment of
FIG. 1 , an active suspension system 15-110 is equipped on the vehicle. The fully active suspension is capable of operating in at least three operational quadrants of a force/velocity plot, which means it is capable of both damping movement and actively pushing or pulling the wheel. In one embodiment, the active suspension system receives data from the topological map and determines an incidence time and correction. In a simple implementation, a path may be calculated that represents a path through a plurality of points in the topographical map 15-100. This path may be a function of current steering angle and speed, or be based on a planned route. The planned route may be a combination of GPS/maps route planning and any obstacle avoidance procedures being employed by the self-driving vehicle to plan vehicle travel. The path may comprise of a single trajectory in a lower resolution map, of two paths, each representing a path of travel of the left and right sides of the vehicle respectively, or four paths, with each representing a path of travel of a wheel of the vehicle (in the case of a two axle vehicle). The active suspension then calculates an incidence time to each point corresponding with each wheel of the vehicle for which an active suspension actuator is disposed. The active suspension then calculates a correction, which comprises a force or position setting of the actuator at each wheel so as to mitigate impact of the event on the trajectory. In a simple embodiment example, if there were a twenty-five millimeter bump 300 milliseconds away from the left front wheel (the incent time could be calculated using current or planned vehicle speed), then the left front wheel might lift twenty-five millimeters just before impact of the event. A system model is used to calculate actuator response time so that it can prepare the actuator a suitable period of time prior to the wheel encountering the event. The active suspension system may employ several algorithms related to wheel damping, body control during turns, saturation handling, and other metrics that may require the active suspension to deviate from this simplified model, however, in many embodiments that use the topographical map, the terrain data is utilized as an input to the active suspension control system. - In addition to reacting in response to the topographical map 15-100, the active suspension system 15-110 may also share information with the topographical mapping system. Such data may comprise accelerometer data representing wheel or body movement, actuator position information, or any other metric that represents road input. In an illustrative embodiment, the front actuators of the vehicle encounter a bump, which moves the actuators a certain distance at a given force. The system then estimates topographical information from this and inserts it into the topographical map so that the rear actuators can use the data to respond to and so that future drive events can benefit from the knowledge. In an embodiment with this later implementation, the vehicle effectively employs a learning algorithm wherein it learns the road terrain as new roads are traversed, and then the next time it is driven the system can respond more effectively. This may be coupled with algorithms that adapt an already populated map as the same terrain is driven over multiple times so that a best estimate map is created. This learning function may be particularly important with topographical information because road surface condition changes frequently with wear/tear, road repairs, snow storms, etc.
- The topographical map may also be used to modify route planning 15-112 and drive system 15-114 commands. For example, if a large obstruction in the road is detected (such as a pothole), the vehicle route planning 15-112 may navigate around the obstruction in order to reduce impact to the vehicle. On a road that exhibits a particularly rough road (which can be determined with various means from the topographical map such as looking at the frequency content and amplitude of perturbations), the route planning system may avoid the road and reroute to another suitable road with a smoother topographical footprint. In another example, the drive system 15-114 may simply reduce speed over a detected rough road.
- In addition to the active suspension system in some embodiments communicating information to build/update the topographical map, the use of one or more look-ahead sensors 15-108 is similarly helpful. These are particularly useful due to their ability to sense road conditions prior to encountering them with the wheels of the vehicle. Several suitable look-ahead systems exist such as mono or stereo vision camera systems, radar, sonar, LIDAR, and other planar or three dimensional scanning systems. In some embodiments multiple look-ahead sensors are used in conjunction through a secondary fusion system in order to obtain a more accurate estimate of road conditions. These sensors may build a topographical map that expands beyond road surface conditions: they may detect curbs, edges of roads, street signs, other vehicles, pedestrians, buildings, etc. In some embodiments the system building the topological map may be the same system that is performing real-time autonomous driving and navigation. This subsystem may identify obstacles that are mobile objects and would be differentiated from in the topological map. For example, the vision sensor may detect a pedestrian in a crosswalk or another vehicle. Several methods are known in the art for differentiating such objects. A couple methods include object recognition systems that can detect human faces, outlines of vehicles, and such, or an algorithm that can detect if an object is moving with respect to an absolute coordinate system (i.e. the ground). In this way, non-permanent obstacles can be removed from or not inserted into the topographical map data.
- In embodiments where the vehicle has a communications interface with external data sources, topographical map information may be shared. In one embodiment the vehicle has a cellular connection to the internet and dynamically uploads and downloads topographical map information from one or more servers. In another embodiment there is vehicle-to-vehicle communication wherein a vehicle ahead may communicate topographical or road surface information to the vehicle which can seed the topographical map 15-100 with a priori estimates. This topographical information can be stored with road map databases, and may even be directly coupled with road map systems such that road maps index terrain information. This can be at the overall road granularity level, or may be a matrix of data representing terrain information across the road at a higher resolution. The amount of topographical information stored can vary. A topographical map containing an entire route or even an entire region can be stored on the vehicle, or only a small window buffered onto local memory.
- While the above embodiments have been described in the context of a self-driving vehicle, several inventions may equivalently or similarly relate to human-driven vehicles as well, including, without limitation, navigation-guided vehicles.
-
FIG. 15-2 shows an embodiment of a route planning system that is responsive to road conditions. Based on a driver input destination, the vehicle retrieves data from a maps database 15-202 and computes a driving plan 15-200. The driving plan may comprise of a specific route and may further include target vehicle speeds.FIG. 15-2 shows the generalized system which can be used in a priori route planning or in real-time a posteriori driving. - For the embodiment with an advanced route planning correction, the a priori driving plan 15-200 is calculated based on a route planning algorithm such as an A* algorithm or any other suitable route planning method. This is then compared to road condition data 15-204 that has been stored from previous driving data, from other vehicles, or from a database. The road condition data is processed or has already been processed and stored to include a road roughness impact 15-206 metric. In some embodiments this metric may comprise a measure of vertical acceleration on the chassis of the vehicle. In one embodiment, vertical acceleration on the vehicle chassis or in the passenger compartment may be band-pass filtered to cut out frequencies significantly below body frequency and frequencies significantly above wheel frequency. For example, a band-pass filter may have a lower cutoff around 0.5 Hz and an upper cutoff around 20 Hz in order to eliminate extraneous noise that does not impact road roughness impact. Based on the measure of road roughness, the driving plan 15-200 is altered to either bias against rough roads by employing a weight factor directly in the route-planning algorithm, or by avoiding roads that have a road roughness above a certain threshold. In another embodiment, it may result in setting target speeds for each section of road. Several implementation methods exist using weight factors, thresholds, biases, and other algorithms. The road condition data 15-204 and road roughness impact calculator 15-206 may represent a single unit 15-208 that simply represents the road roughness. In general, the a priori system determines a driving plan at least partially in response to anticipated road roughness impact to the vehicle over the roads in the route.
- For the a posteriori embodiment, the system operates in real time while executing (i.e. driving) the driving plan 15-200. A driving plan 15-200 is calculated based on a route planning algorithm and using stored maps 15-202. As the vehicle traverses terrain, road condition data 15-204 is acquired such as vertical accelerometer data, road surface information from a forward-looking vision system, data from a stored topographical map, GPS-indexed data, data from other vehicles, and a measure of at least one state variable from an electronic suspension system (such as accelerometer, velocity, and position data from each actuator or semi-active damper). With this road condition data, a road roughness impact calculation 15-206 is performed. This may be a simple root mean squared (RMS) value of acceleration, a comfort heuristic that is a frequency-weighted function of chassis acceleration, or some other means of processing the road condition data to yield a result coupled with road impact to the vehicle and passengers.
- Road roughness impact data 15-206 (either current data of the terrain being traversed, a running average of past data, or future data ahead) is used to correct the driving plan 15-200. Adjusting the driving plan may cause the vehicle to choose an alternative route course in order to avoid the road being traversed. Alternatively, it may cause the driving plan to change the vehicle speed over the rough terrain.
-
FIG. 15-3 shows an autonomous vehicle with a predictive energy storage subsystem and an integrated active suspension. An electrical bus 15-300 delivers power to a plurality of connected electrical loads. In the embodiment ofFIG. 15-3 , the electrical loads comprise of four active suspension actuators 15-308 connected to the bus 15-300. In other embodiments this may comprise of electric power steering systems, electronic stability control actuators, electronic air compressors, ABS braking actuators, rear wheel steering actuators, and other power consumers. An energy storage apparatus 15-312 such as a battery (lead acid, AGM, lithium-ion, lithium-phosphate, etc.), a bank of capacitors (e.g. super capacitors), a flywheel, or any other suitable energy storage device is attached to the electrical bus 15-300. The energy storage device can be characterized by a state of charge. For example in a capacitor, a voltage level would indicate this. For some rechargeable batteries, this could be measured using a coulomb counting battery management system, although with many battery technologies a state of charge can be determined by a voltage reading. In this embodiment, the energy storage system is disposed to provide energy to at least a portion of the electrical loads on the bus. A power converter 15-310, in this embodiment a bi-directional DC-DC converter that transfers power between the vehicle's electrical system and the electrical bus 15-300, is configured to provide power to the energy storage apparatus and the connected electrical loads. By controlling the electrical loads and the power converter, a state of charge of the energy storage apparatus can be set. In some embodiments the power converter 15-310 can set a state of charge of the energy storage apparatus 15-312 without knowing the state of charge. For example, the power converter can provide more energy than the loads are consuming in order to increase a state of charge, and likewise the power converter can provide less energy than the loads are consuming in order to decrease the state of charge. - Disposed on the vehicle of
FIG. 15-3 is a forward-looking stereo vision camera (or LIDAR, radar, side sensor, rear sensor, etc.) 15-304 that is able to detect road obstacles and obstructions. This camera system may connect with the autonomous control system 15-302, which may comprise of one or a plurality of devices such as processor-based controllers. The sensor may also connect directly to the suspension controller, although in this embodiment the autonomous controller uses the stereo vision system for vehicle navigation tasks as well. The autonomous controller 15-302 calculates a driving plan for an anticipated route of the vehicle by mapping a route to a user-defined destination. This driving plan may change dynamically, for example it may be responsive to changing traffic conditions. The driving plan may be highly granular such as taking a specific line or lane along a road. Based on sensed data such as through the vision camera 15-304, this driving plan may dynamically change such as to avoid an emergency-braking vehicle in the vehicle's lane ahead. - The power converter 15-310 may regulate the state of charge of the energy storage 15-312 during the route. Several such exemplary circumstances where the energy storage might be used are given:
- In one circumstance, the GPS unit 15-316 detects the vehicle's position is approaching a known rough road that is on the driving plan and the vehicle is in an economy mode, where a significant amount of energy might be regenerated by a regenerative suspension system. This processing may occur in a controller outside the GPS unit that may have access to the topographical map with road roughness criteria. The power converter can be controlled to deliver energy from the electrical bus 15-300 to the vehicle's electrical system in order to reduce the state of charge of the energy storage so that it can accommodate at least some of the regenerated energy. Once the road is being traversed, regenerated energy may be provided to both the energy storage apparatus as well as to the vehicle's electrical system through the power converter.
- In another circumstance, the GPS unit 15-316 detects that the vehicle's position is approaching a winding road that is on the driving plan of the vehicle. An algorithm calculates needed energy for the active suspension actuators to provide active roll control and for the electric power steering to provide steering input, and charges the energy storage apparatus such that while the winding road is being traversed, peak power demand from both devices is delivered by both the energy storage apparatus and the power converter from the vehicle's electrical system 15-318 such that the power converter does not exceed a vehicle electrical system maximum current threshold.
- In another circumstance, the vehicle 15-314 is an electric or hybrid car with a high voltage battery pack as an energy storage device. For example, the vehicle may be an autonomous electric vehicle with a rear mounted drive motor and a 400-volt battery pack. In this embodiment, the energy storage may comprise the battery pack, and the electrical bus may comprise the high voltage bus the battery is connected to. The vehicle calculates a driving route and estimates energy usage from connected loads (for example, the main drive motor and an active suspension system). Such an estimate may comprise a measure of road roughness and cornering to determine an active suspension system consumption, and a measure of acceleration, stop lights, vehicle speeds, terrain incline and distance to determine a main drive motor consumption and regeneration. In the event of an electric vehicle, for example, the vehicle may want to further control the loads such as the active suspension and main drive motor to ensure that the autonomous vehicle may reach its destination with the amount of energy on board the vehicle. In other electric vehicle embodiments, the active suspension system may run off an intermediate voltage bus on the vehicle such as a 48V bus that communicates with the high voltage system through a DC-DC converter.
- In another circumstance, the vehicle determines a driving plan for the vehicle and target speeds. It estimates energy usage that each device on the electrical bus 15-300 will use for each location of travel, which may be a function of target speed and other parameters. During execution of the driving plan, the energy storage state of charge may be predictively set in advance of the energy usage event.
- The above examples are illustrative, but many such conditions may exist where the energy storage is regulated in order to anticipate upcoming conditions.
- In the event of an active suspension, two major energy consumption factors are the condition of the road and the amount of body roll and heave motion. These factors among others can be used to estimate the energy consumption from an active suspension system.
- In some embodiments, the energy storage apparatus operates most durably when maintained between a lower threshold voltage and an upper threshold voltage. This may be accomplished by executing regulation of the power converter and regulation of at least a portion of the plurality of connected loads. For example, a controller may reduce energy consumption in a load so that the energy storage does not drop below a lower threshold. In other embodiments this may be accomplished by applying switches such as MOSFET or IGBT transistor based switches to the energy storage apparatus.
-
FIG. 15-4 demonstrates an active suspension control system for a vehicle that mitigates fore/aft and lateral acceleration and deceleration feel by pitching and tilting the vehicle. The vehicle comprises active suspension actuators at each wheel of the vehicle. A self-driving controller creates command signals that accelerate/decelerate the vehicle and create steering events that yield a lateral acceleration. - During forward acceleration, the vehicle 15-400 pitches forward (pitch down attitude wherein the front of the vehicle is below the vehicle centerline) by creating an extension force from the rear actuators 15-402 and a compression force from the front actuators 15-404. Force is provided in order to set a compensation attitude 15-406 in pitch that is greater than zero degrees and related to the acceleration of the vehicle. Acceleration of the vehicle creates a longitudinal force 15-408 on the passengers that is equal to their mass multiplied by the vehicle's acceleration. By tilting the vehicle with a compensation attitude 15-406, the longitudinal force from the vehicle acceleration is multiplied by the cosine of the compensation angle 15-406, and a component of gravitational force 15-410 acts to counteract the acceleration force by operating in the opposite direction. This longitudinal force component from gravity on the passengers is equal to their mass multiplied by the acceleration of gravity (9.8 m/s/s) multiplied by the sine of the compensation attitude. To equalize forces so there is no longitudinal net force, the tangent of the compensation attitude must equal the vehicle acceleration divided by gravity. Therefore, a compensation attitude to create equal forces would be the arctangent of the quotient of the vehicle acceleration and (divided by) the acceleration of gravity.
- In an illustrative example, the zero net longitudinal force compensation attitude during a 0.3 g vehicle acceleration is approximately 17 degrees pitch forward. In real world-application, it is desirable for energy savings and for practical suspension design considerations to create a compensation attitude that is oftentimes less than this net force balance. Therefore, the compensation angle 15-406 may be less than the arctangent of the quotient of vehicle acceleration and the acceleration of gravity.
- During deceleration, the vehicle 15-412 pitches backward (pitch up attitude wherein the front of the vehicle is above the vehicle centerline). In this instance, force from the actuators operates in a similar but opposite fashion. Compensation attitudes can be found using similar methodologies as during acceleration, but by referencing a compensation attitude angle from the rear of the vehicle instead of the front.
- During a left turn of the vehicle 15-414, the actuators 15-418 on the inside of the turn radius create a compression force, while the actuators 15-416 on the outside of the turn create an extension force, such that the vehicle leans into the turn. Similarly, this compensation attitude in roll may be greater than zero, but less than or equal to the arctangent of the quotient of lateral acceleration and gravity.
- During a right turn of the vehicle 15-420, force from the actuators operates in a similar but opposite fashion. Compensation attitudes can be found using similar methodologies as during a left turn, but by referencing a compensation attitude angle from the right side of the vehicle instead of the left for roll angle.
- During both turn events the roll in attitude comprises of the side of the vehicle on the inside radius of the turn being below the roll centerline as shown in
FIG. 15-4 . In more aggressive turns, the actuators may become force limited (in saturation), and this performance may not be met. - By employing these compensation attitudes in advance of the vehicle response by employing a feed-forward control strategy, a self-driving vehicle may mitigate discomfort associated with autonomous acceleration, deceleration, and steering. Such a feed-forward strategy may be employed by connecting the autonomous controller or driving system with the active suspension such that a compensation attitude is commanded based on an acceleration/steering signal from the controller. A compensation attitude can be calculated as a function of the signal. In some embodiments entry into the compensation attitude is gradual and occurs over an extended period of time that is a function of the feed-forward signal from the self driving controller. Exit from the compensation attitude may also be gradual and occur over time. In some embodiments that active suspension actuators have a maximum force limit which may be a physical limit or a software parameter (including a dynamic software parameter that is updatable in real time), and a target compensation attitude is not fully reached during high acceleration, deceleration, and roll events. This is called a force-limited mode. Since compensation attitude performance may be jarring to some passengers, in some embodiments it may be desirable to turn the feature on and off, or into different modes of operation (for example, that set different levels of compensation attitudes) based on a vehicle operator selected operational mode.
- In
FIG. 15-5 a self-driving vehicle with an integrated active suspension system is shown. The main control system 15-500 comprises controllers for the autonomous driving subsystem, the smart chassis subsystem, and the comfort subsystem. These controllers may be on a single controller or a plurality of controllers distributed about the vehicle. The autonomous driving subsystem is responsible for navigation, route planning, obstacle avoidance, and other driving related tasks. The smart chassis subsystem is an integrated control system that combines control tasks for a number of chassis and propulsion technologies. The comfort subsystem may provide control to a number of comfort systems such as controlling the active suspension system, interior cabin amenities, and may provide settings to the propulsion system to adjust throttle and steering response. The self-driving vehicle may have a number of sensor technologies on-board 15-502 which may be beneficially coupled with other vehicle systems such as an active suspension. These sensors include look ahead sensors (vision, radar, sonar, LIDAR, front wheel movement), mapping (GPS, localized mapping, street maps, topographical maps), vehicle state (speed, transmission state, fuel level, engine status), chassis sensors (ESP status, ABS status, steering/throttle position), and suspension sensors (unsprung and sprung mass acceleration, suspension position, velocity, energy consumed/regenerated). The chassis and propulsion systems 15-504 such as throttle, steering, active suspension, braking, energy management for the vehicle, and other chassis related technologies may be operatively controlled by the main control system blocks. A user interface 15-508 may be used to accept vehicle operator inputs such as destination inputs to compute a route or driving plan such as on an LCD touchscreen. In addition, suspension status may be viewed and algorithm settings may be programmed via the user interface. Finally, the self-driving vehicle may be connected via a network connection 15-506 such as to the internet. This network may connect the vehicle with data from other vehicles, with street mapping data, stored topographical data, local weather information, traffic information, and vehicle operator devices such as smartphones, tablets, etc. Vehicle operator devices may be used to further control the vehicle, such as allowing a destination input via a smartphone. Many of the above systems may be combined together and operatively communicate with one another in order to improve overall system performance. In addition, many of the technologies discussed in this specification may be operatively combined with features and modules shown inFIG. 15-5 . -
FIG. 15-6 demonstrates one embodiment of an active suspension actuator that operates in at least three operational quadrants of a force-velocity plot (with respect to the actuator). A hydraulic actuator 15-600 comprising a piston rod and piston head disposed in a housing, along with a gas filled accumulator (which may be inside the hydraulic actuator housing or in fluid communication externally), is connected via fluid communication channels 15-602 to a hydraulic motor/pump 15-606 (which may be a pump, a motor, or both). The fluid communication may pass through one or more valves 15-604 that are configured either in series with the fluid, in parallel with the pump, some combination of the two, or this may be a straight connection without any valving. In one embodiment this valving may include a fluid-velocity responsive diverter valve that opens a bypass path around the hydraulic motor at a predetermined fluid velocity, while still allowing some fluid to enter the hydraulic motor during the diverted bypass stage. - The hydraulic motor/pump is operatively coupled to an electric motor 15-608 such that rotation of the electric motor in a first direction causes fluid to pump into a compression volume of the hydraulic actuator, and rotation of the electric motor in a second direction causes fluid to pump into an extension volume of the hydraulic actuator. The electric motor is electrically connected via at least one wire 15-610 to a controller 15-612 that controls the motor. Motor control may comprise of torque control, velocity control, or some other parameter. The controller is responsive to algorithms operating the active suspension and/or to sensors or commands 15-614. For example, commands for actuator force or position may come from a vehicle system. An example of a suitable sensor is an accelerometer. The system is controlled in an on-demand energy manner such that energy is consumed or regenerated in the motor to rapidly create a force on the actuator.
-
FIG. 15-7 is one embodiment of a topographical map that is specific to using data from the front wheels to provide improved response with the rear wheels of an active suspension. This may be beneficially combined with several technologies discussed in conjunction with sections discussing topographical maps, and shows one potential implementation of such a map. This may also be combined with several other elements in this specification, and is not limited to vehicles that are self-driving (i.e. it applies to human-operated vehicles). - In
FIG. 15-7 , a vehicle state estimator 15-700 determines a vehicle's kinematic state based on a number of sensors such as accelerometers, steering angle, vehicle velocity (wheel speed sensors, GPS, etc.). This functional unit calculates how the vehicle is moving across the terrain, and outputs a change in (x, y, z) coordinates for each time step. These coordinate deltas serve as a relative matrix transformation vector that is used to transform a topographical map, and may further comprise a rotation vector if the vehicle is turning. The topographical map in this embodiment is a road outlook table 15-702 that comprises a two dimensional matrix indexed by x values and y values, and containing z positions (heights) of the road for each relative coordinate. At the zero value of x is the terrain direction below the front axle, while the maximum value of x is the rear axle. The center of y is shown as the center of the car, with positive and negative values stretching to the track width of the vehicle. Therefore, the road outlook table 15-702 comprises a topographical map relative to the car and encompassing the road underneath the vehicle from front axle to rear axle, left side to right side of the vehicle. In other embodiments this road outlook table could be larger. For example, it could extend far in front of the vehicle and be seeded with data using look-ahead sensors, or it could extend past the sides of the vehicle. The road outlook table is fed into a system and vehicle dynamics model 15-704 that calculates a model-based open loop correction signal based on the upcoming z position of the road to each wheel, and creates an actuator control to mitigate the event. Meanwhile, sensors such as the front accelerometers or position sensors (or any sensor that indicates road information) are fed into a road height estimator 15-706, which estimates a z position of the road. For example, the wheel and body response to a certain bump may be measured using sensors and then an estimate determined of road height that caused the bump. In this embodiment where the sensors comprise the front wheels, this data is inserted at x equals zero, however it would be whatever corresponding position for the topographical map at hand. Since sensor data is not all encompassing across the x, y plane, a secondary method may operate to fill blank data slots with estimated road height. A number of methods can be used to accomplish this, but linear or quadratic interpolation between measured data points is one suitable method. - Using the methodology of
FIG. 15-7 , the vehicle can use information from the front wheels in an accurate manner that accounts for vehicle movement including steering and other effects. In addition, it can be robustly integrated with multiple predictive sensors including look-ahead sensors, GPS data, and front wheel sensors. All of these may dynamically update the topographical map, and where there is redundant data a best estimate between the multiple values is used. - While the present teachings have been described in conjunction with various embodiments and examples, it is not intended that the present teachings be limited to such embodiments or examples. On the contrary, the present teachings encompass various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art. Accordingly, the foregoing description and drawings are by way of example only.
Claims (52)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/242,691 US20140297116A1 (en) | 2013-03-15 | 2014-04-01 | Self-driving vehicle with integrated active suspension |
US15/832,517 US10828953B2 (en) | 2013-03-15 | 2017-12-05 | Self-driving vehicle with integrated active suspension |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361789600P | 2013-03-15 | 2013-03-15 | |
US201361815251P | 2013-04-23 | 2013-04-23 | |
US201361865970P | 2013-08-14 | 2013-08-14 | |
US201361913644P | 2013-12-09 | 2013-12-09 | |
PCT/US2014/029654 WO2014145018A2 (en) | 2013-03-15 | 2014-03-14 | Active vehicle suspension improvements |
US14/242,691 US20140297116A1 (en) | 2013-03-15 | 2014-04-01 | Self-driving vehicle with integrated active suspension |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/029654 Continuation WO2014145018A2 (en) | 2013-03-15 | 2014-03-14 | Active vehicle suspension improvements |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/832,517 Division US10828953B2 (en) | 2013-03-15 | 2017-12-05 | Self-driving vehicle with integrated active suspension |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140297116A1 true US20140297116A1 (en) | 2014-10-02 |
Family
ID=51538406
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/242,612 Active 2035-11-17 US10160276B2 (en) | 2013-03-15 | 2014-04-01 | Contactless sensing of a fluid-immersed electric motor |
US14/242,636 Abandoned US20140294601A1 (en) | 2013-03-15 | 2014-04-01 | Active adaptive hydraulic ripple cancellation algorithm and system |
US14/242,705 Active 2034-04-26 US9694639B2 (en) | 2013-03-15 | 2014-04-01 | Distributed active suspension control system |
US14/242,658 Active US9707814B2 (en) | 2013-03-15 | 2014-04-01 | Active stabilization system for truck cabins |
US14/242,691 Abandoned US20140297116A1 (en) | 2013-03-15 | 2014-04-01 | Self-driving vehicle with integrated active suspension |
US15/832,517 Active 2034-11-10 US10828953B2 (en) | 2013-03-15 | 2017-12-05 | Self-driving vehicle with integrated active suspension |
US18/491,335 Active US12179539B2 (en) | 2013-03-15 | 2023-10-20 | Active vehicle suspension system |
US18/795,701 Pending US20240391286A1 (en) | 2013-03-15 | 2024-08-06 | Active vehicle suspension system |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/242,612 Active 2035-11-17 US10160276B2 (en) | 2013-03-15 | 2014-04-01 | Contactless sensing of a fluid-immersed electric motor |
US14/242,636 Abandoned US20140294601A1 (en) | 2013-03-15 | 2014-04-01 | Active adaptive hydraulic ripple cancellation algorithm and system |
US14/242,705 Active 2034-04-26 US9694639B2 (en) | 2013-03-15 | 2014-04-01 | Distributed active suspension control system |
US14/242,658 Active US9707814B2 (en) | 2013-03-15 | 2014-04-01 | Active stabilization system for truck cabins |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/832,517 Active 2034-11-10 US10828953B2 (en) | 2013-03-15 | 2017-12-05 | Self-driving vehicle with integrated active suspension |
US18/491,335 Active US12179539B2 (en) | 2013-03-15 | 2023-10-20 | Active vehicle suspension system |
US18/795,701 Pending US20240391286A1 (en) | 2013-03-15 | 2024-08-06 | Active vehicle suspension system |
Country Status (3)
Country | Link |
---|---|
US (8) | US10160276B2 (en) |
EP (3) | EP4450845A3 (en) |
WO (1) | WO2014145018A2 (en) |
Cited By (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140214283A1 (en) * | 2011-10-04 | 2014-07-31 | Parker-Hannifin Corporation | Method and System for Controlling Electric Actuators |
US9035477B2 (en) | 2010-06-16 | 2015-05-19 | Levant Power Corporation | Integrated energy generating damper |
US9174508B2 (en) | 2013-03-15 | 2015-11-03 | Levant Power Corporation | Active vehicle suspension |
US20150339921A1 (en) * | 2012-11-13 | 2015-11-26 | Audi Ag | Method for making available route information by means of at least one motor vehicle |
US20160031285A1 (en) * | 2013-03-15 | 2016-02-04 | Levant Power Corporation | Multi-path fluid diverter valve |
US9260011B2 (en) | 2008-04-17 | 2016-02-16 | Levant Power Corporation | Hydraulic energy transfer |
US20160159360A1 (en) * | 2014-12-09 | 2016-06-09 | Ford Global Technologies, Llc | Autonomous vehicle cornering maneuver |
US9481366B1 (en) | 2015-08-19 | 2016-11-01 | International Business Machines Corporation | Automated control of interactions between self-driving vehicles and animals |
US9481367B1 (en) | 2015-10-14 | 2016-11-01 | International Business Machines Corporation | Automated control of interactions between self-driving vehicles and animals |
US9483948B1 (en) | 2015-08-07 | 2016-11-01 | International Business Machines Corporation | Automated control of interactions between self-driving vehicles and pedestrians |
US20160325595A1 (en) * | 2015-05-08 | 2016-11-10 | Man Truck & Bus Ag | Method For Controlling The Damping Force Of Adjustable Dampers In Motor Vehicles, Particularly In Commercial Vehicles |
US9513632B1 (en) | 2015-09-16 | 2016-12-06 | International Business Machines Corporation | Driving mode alerts from self-driving vehicles |
US9566986B1 (en) | 2015-09-25 | 2017-02-14 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US20170052261A1 (en) * | 2015-08-20 | 2017-02-23 | Trimble Navigation Limited | Cordless inertial vehicle navigation with elevation data input |
US20170061669A1 (en) * | 2015-09-01 | 2017-03-02 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Vehicular information processing apparatus |
US9695900B2 (en) | 2009-10-06 | 2017-07-04 | Tenneco Automotive Operating Company Inc. | Damper with digital valve |
US9694639B2 (en) | 2013-03-15 | 2017-07-04 | ClearMotion, Inc. | Distributed active suspension control system |
US9702424B2 (en) | 2014-10-06 | 2017-07-11 | ClearMotion, Inc. | Hydraulic damper, hydraulic bump-stop and diverter valve |
US9702349B2 (en) | 2013-03-15 | 2017-07-11 | ClearMotion, Inc. | Active vehicle suspension system |
US20170210297A1 (en) * | 2016-01-14 | 2017-07-27 | Faraday&Future Inc. | Modular mirror assembly |
US9723473B2 (en) * | 2015-10-14 | 2017-08-01 | Toyota Jidosha Kabushiki Kaisha | Millimeter wave communication system |
US9721397B2 (en) | 2015-08-11 | 2017-08-01 | International Business Machines Corporation | Automatic toll booth interaction with self-driving vehicles |
US9718471B2 (en) | 2015-08-18 | 2017-08-01 | International Business Machines Corporation | Automated spatial separation of self-driving vehicles from manually operated vehicles |
US9733643B2 (en) | 2013-12-20 | 2017-08-15 | Agjunction Llc | Hydraulic interrupter safety system and method |
US9731726B2 (en) | 2015-09-02 | 2017-08-15 | International Business Machines Corporation | Redirecting self-driving vehicles to a product provider based on physiological states of occupants of the self-driving vehicles |
US9740205B2 (en) | 2015-12-08 | 2017-08-22 | Uber Technologies, Inc. | Autonomous vehicle communication configuration system |
US9751532B2 (en) | 2015-10-27 | 2017-09-05 | International Business Machines Corporation | Controlling spacing of self-driving vehicles based on social network relationships |
US20170259753A1 (en) * | 2016-03-14 | 2017-09-14 | Uber Technologies, Inc. | Sidepod stereo camera system for an autonomous vehicle |
US20170267049A1 (en) * | 2014-08-19 | 2017-09-21 | Kyb Corporation | Suspension Control Apparatus, Suspension Control Method, and Program |
US9785145B2 (en) | 2015-08-07 | 2017-10-10 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US20170294120A1 (en) * | 2014-11-17 | 2017-10-12 | Hitachi Automotive Systems Ltd. | Automatic driving system |
US9791861B2 (en) | 2015-11-12 | 2017-10-17 | International Business Machines Corporation | Autonomously servicing self-driving vehicles |
US9802456B2 (en) | 2013-02-28 | 2017-10-31 | Tenneco Automotive Operating Company Inc. | Damper with integrated electronics |
US9836973B2 (en) | 2016-01-27 | 2017-12-05 | International Business Machines Corporation | Selectively controlling a self-driving vehicle's access to a roadway |
US9834224B2 (en) | 2015-10-15 | 2017-12-05 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US9849883B2 (en) | 2016-05-04 | 2017-12-26 | Ford Global Technologies, Llc | Off-road autonomous driving |
US9855814B2 (en) | 2013-04-23 | 2018-01-02 | ClearMotion, Inc. | Active suspension with structural actuator |
US9869560B2 (en) | 2015-07-31 | 2018-01-16 | International Business Machines Corporation | Self-driving vehicle's response to a proximate emergency vehicle |
US9879746B2 (en) | 2013-03-15 | 2018-01-30 | Tenneco Automotive Operating Company Inc. | Rod guide system and method with multiple solenoid valve cartridges and multiple pressure regulated valve assemblies |
US9879748B2 (en) | 2013-03-15 | 2018-01-30 | Tenneco Automotive Operating Company Inc. | Two position valve with face seal and pressure relief port |
US20180029651A1 (en) * | 2016-07-26 | 2018-02-01 | Man Truck & Bus Ag | Method and device for performing open-loop control of a driver's cab mount |
US9884533B2 (en) | 2013-02-28 | 2018-02-06 | Tenneco Automotive Operating Company Inc. | Autonomous control damper |
US9896100B2 (en) | 2015-08-24 | 2018-02-20 | International Business Machines Corporation | Automated spatial separation of self-driving vehicles from other vehicles based on occupant preferences |
US9902311B2 (en) * | 2016-02-22 | 2018-02-27 | Uber Technologies, Inc. | Lighting device for a vehicle |
DE102016116856A1 (en) | 2016-09-08 | 2018-03-08 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | System and method for adjusting a height of at least a part of a commercial vehicle |
US9925842B2 (en) | 2013-02-28 | 2018-03-27 | Tenneco Automotive Operating Company Inc. | Valve switching controls for adjustable damper |
WO2018057658A1 (en) * | 2016-09-20 | 2018-03-29 | Apple Inc. | Motion minimization systems and methods |
WO2018063426A1 (en) * | 2016-09-27 | 2018-04-05 | Baidu Usa Llc | A vehicle position point forwarding method for autonomous vehicles |
US9937765B2 (en) * | 2015-04-28 | 2018-04-10 | Ram Sivaraman | Method of adapting an automobile suspension in real-time |
US9944291B2 (en) | 2015-10-27 | 2018-04-17 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US9969326B2 (en) | 2016-02-22 | 2018-05-15 | Uber Technologies, Inc. | Intention signaling for an autonomous vehicle |
US20180163647A1 (en) * | 2015-12-08 | 2018-06-14 | Ford Global Technologies, Llc | Fuel vapor flow based on road conditions |
WO2018125848A1 (en) * | 2016-12-30 | 2018-07-05 | DeepMap Inc. | Route generation using high definition maps for autonomous vehicles |
US10021614B2 (en) | 2015-12-08 | 2018-07-10 | Uber Technologies, Inc. | Optimizing communication for autonomous vehicles |
US10036642B2 (en) | 2015-12-08 | 2018-07-31 | Uber Technologies, Inc. | Automated vehicle communications system |
US20180215373A1 (en) * | 2017-01-27 | 2018-08-02 | Ford Global Technologies, Llc | Semi-stationary surface |
US10050760B2 (en) | 2015-12-08 | 2018-08-14 | Uber Technologies, Inc. | Backend communications system for a fleet of autonomous vehicles |
US10061326B2 (en) | 2015-12-09 | 2018-08-28 | International Business Machines Corporation | Mishap amelioration based on second-order sensing by a self-driving vehicle |
US10093322B2 (en) | 2016-09-15 | 2018-10-09 | International Business Machines Corporation | Automatically providing explanations for actions taken by a self-driving vehicle |
US10131446B1 (en) * | 2015-07-16 | 2018-11-20 | Near Earth Autonomy, Inc. | Addressing multiple time around (MTA) ambiguities, particularly for lidar systems, and particularly for autonomous aircraft |
US20180334162A1 (en) * | 2017-05-22 | 2018-11-22 | Ford Global Technologies, Llc | Torque converter control for a variable displacement engine |
US10152060B2 (en) | 2017-03-08 | 2018-12-11 | International Business Machines Corporation | Protecting contents of a smart vault being transported by a self-driving vehicle |
US10176525B2 (en) | 2015-11-09 | 2019-01-08 | International Business Machines Corporation | Dynamically adjusting insurance policy parameters for a self-driving vehicle |
US20190023095A1 (en) * | 2015-12-18 | 2019-01-24 | Jaguar Land Rover Limited | Control unit for an active suspension system |
US20190033876A1 (en) * | 2016-01-29 | 2019-01-31 | Nissan Motor Co., Ltd. | Vehicle Travel Control Method and Vehicle Travel Control Device |
US10202126B2 (en) | 2017-03-07 | 2019-02-12 | Uber Technologies, Inc. | Teleassistance data encoding for self-driving vehicles |
US10235817B2 (en) | 2015-09-01 | 2019-03-19 | Ford Global Technologies, Llc | Motion compensation for on-board vehicle sensors |
US10243604B2 (en) | 2015-12-08 | 2019-03-26 | Uber Technologies, Inc. | Autonomous vehicle mesh networking configuration |
US10239529B2 (en) | 2016-03-01 | 2019-03-26 | Ford Global Technologies, Llc | Autonomous vehicle operation based on interactive model predictive control |
US10259452B2 (en) | 2017-01-04 | 2019-04-16 | International Business Machines Corporation | Self-driving vehicle collision management system |
US10293818B2 (en) | 2017-03-07 | 2019-05-21 | Uber Technologies, Inc. | Teleassistance data prioritization for self-driving vehicles |
US10316492B2 (en) * | 2014-07-31 | 2019-06-11 | Cnh Industrial America Llc | Active force/vibration feedback control method and apparatus for a movable machine |
US10363893B2 (en) | 2017-01-05 | 2019-07-30 | International Business Machines Corporation | Self-driving vehicle contextual lock control system |
US10377371B2 (en) | 2014-04-02 | 2019-08-13 | ClearMotion, Inc. | Active safety suspension system |
US10412368B2 (en) | 2013-03-15 | 2019-09-10 | Uber Technologies, Inc. | Methods, systems, and apparatus for multi-sensory stereo vision for robotics |
WO2019204495A1 (en) * | 2018-04-18 | 2019-10-24 | Rivian Ip Holdings, Llc | Methods, systems, and media for determining characteristics of roads |
US10479160B2 (en) | 2017-06-06 | 2019-11-19 | Tenneco Automotive Operating Company Inc. | Damper with printed circuit board carrier |
US10493622B2 (en) | 2017-07-14 | 2019-12-03 | Uatc, Llc | Systems and methods for communicating future vehicle actions to be performed by an autonomous vehicle |
EP3584097A1 (en) * | 2018-06-20 | 2019-12-25 | Volvo Car Corporation | Chassis-based force nullification systems and methods for seated and standing vehicle occupants |
CN110646226A (en) * | 2018-06-27 | 2020-01-03 | 通用汽车环球科技运作有限责任公司 | Test method and metric for assessing quality of road feedback to driver in steer-by-wire system |
US10529147B2 (en) | 2017-01-05 | 2020-01-07 | International Business Machines Corporation | Self-driving vehicle road safety flare deploying system |
US10535265B2 (en) * | 2016-11-30 | 2020-01-14 | Hyundai Motor Company | Apparatus and method for recognizing position of vehicle |
US20200039316A1 (en) * | 2017-04-05 | 2020-02-06 | ClearMotion, Inc. | Active force cancellation at structural interfaces |
US10588233B2 (en) | 2017-06-06 | 2020-03-10 | Tenneco Automotive Operating Company Inc. | Damper with printed circuit board carrier |
US10607293B2 (en) | 2015-10-30 | 2020-03-31 | International Business Machines Corporation | Automated insurance toggling for self-driving vehicles |
EP3640110A1 (en) * | 2018-10-17 | 2020-04-22 | Aptiv Technologies Limited | Vehicle system and method for steep slope pick-up and drop-off site avoidance |
US10643256B2 (en) | 2016-09-16 | 2020-05-05 | International Business Machines Corporation | Configuring a self-driving vehicle for charitable donations pickup and delivery |
US10685391B2 (en) | 2016-05-24 | 2020-06-16 | International Business Machines Corporation | Directing movement of a self-driving vehicle based on sales activity |
US10692377B1 (en) * | 2017-10-06 | 2020-06-23 | Zoox, Inc. | Enhanced travel modes for vehicles |
US20200200877A1 (en) * | 2018-12-21 | 2020-06-25 | Infineon Technologies Ag | Real time gating and signal routing in laser and detector arrays for lidar application |
US10737544B2 (en) | 2017-07-24 | 2020-08-11 | Ford Global Technologies, Llc | Systems and methods to control a suspension of a vehicle |
US10782701B2 (en) | 2015-07-30 | 2020-09-22 | Samsung Electronics Co., Ltd. | Autonomous vehicle and method of controlling the same |
US10800403B2 (en) * | 2018-05-14 | 2020-10-13 | GM Global Technology Operations LLC | Autonomous ride dynamics comfort controller |
US10867139B2 (en) | 2014-11-12 | 2020-12-15 | Joseph E. Kovarik | Method and system for autonomous vehicles |
US20200408533A1 (en) * | 2019-06-28 | 2020-12-31 | DeepMap Inc. | Deep learning-based detection of ground features using a high definition map |
US10901432B2 (en) * | 2017-09-13 | 2021-01-26 | ClearMotion, Inc. | Road surface-based vehicle control |
US10962378B2 (en) | 2015-07-30 | 2021-03-30 | Samsung Electronics Co., Ltd. | Autonomous vehicle and method of controlling the autonomous vehicle |
US10973041B2 (en) * | 2015-09-15 | 2021-04-06 | Lg Electronics Inc. | Resource selection method for V2X operation of terminal in wireless communication system, and terminal using method |
US10967862B2 (en) | 2017-11-07 | 2021-04-06 | Uatc, Llc | Road anomaly detection for autonomous vehicle |
US10974563B2 (en) * | 2017-12-20 | 2021-04-13 | Audi Ag | Control of a suspension component of a vehicle |
US11001267B2 (en) | 2019-08-01 | 2021-05-11 | Lear Corporation | Method and system for proactively adjusting vehicle occupant biometric monitor in view of upcoming road conditions |
US11001121B2 (en) * | 2017-01-18 | 2021-05-11 | Ntn Corporation | Vehicular suspension device |
US11009875B2 (en) | 2017-03-09 | 2021-05-18 | Waymo Llc | Preparing autonomous vehicles for turns |
US20210197838A1 (en) * | 2017-11-03 | 2021-07-01 | Zf Friedrichshafen Ag | Method for adapting the comfort of a vehicle, regulating device and vehicle |
WO2021138700A1 (en) * | 2020-01-05 | 2021-07-08 | Eva, Llc | Automated steering control mechanism and system for wheeled vehicles |
US20220161624A1 (en) * | 2019-03-27 | 2022-05-26 | Hitachi Astemo, Ltd. | Suspension control apparatus |
US20220242417A1 (en) * | 2019-08-27 | 2022-08-04 | Bayerische Motoren Werke Aktiengesellschaft | Operational Assistance Method for a Vehicle, Control Unit, and Vehicle |
US11428536B2 (en) * | 2018-12-19 | 2022-08-30 | Nvidia Corporation | Navigable boundary generation for autonomous vehicles |
US11505023B2 (en) * | 2019-12-13 | 2022-11-22 | Hyundai Motor Company | Method and apparatus for controlling electronic control suspension |
US11529953B2 (en) | 2020-04-30 | 2022-12-20 | Ford Global Technologies, Llc | Adjust operational parameters based on identified roadway irregularities |
US11535159B2 (en) | 2018-07-18 | 2022-12-27 | Faraday & Future Inc. | System and methods for mounting a peripheral vehicular device |
US11541882B2 (en) * | 2019-09-24 | 2023-01-03 | Volvo Car Corporation | Low-impact collision detection |
US20230043557A1 (en) * | 2006-11-02 | 2023-02-09 | Google Llc | Adaptive and Personalized Navigation System |
US11830302B2 (en) | 2020-03-24 | 2023-11-28 | Uatc, Llc | Computer system for utilizing ultrasonic signals to implement operations for autonomous vehicles |
KR102616457B1 (en) * | 2023-06-16 | 2023-12-21 | 에이디어스 주식회사 | Air Suspension Operation Planning Generation Device for Autonomous Vehicles |
US20230417572A1 (en) * | 2022-06-24 | 2023-12-28 | Gm Cruise Holdings Llc | Mapping Road Conditions in an Environment |
US11859571B2 (en) | 2021-07-21 | 2024-01-02 | Ford Global Technologies, Llc | Methods for a road surface metric |
US20240166194A1 (en) * | 2021-03-22 | 2024-05-23 | Nissan Motor Co., Ltd. | Driving Force Control Method and Driving Force Control Device |
Families Citing this family (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140265559A1 (en) * | 2013-03-15 | 2014-09-18 | Levant Power Corporation | Vehicular high power electrical system |
US10465925B2 (en) * | 2013-12-17 | 2019-11-05 | Belimo Holding Ag | Systems and methods for fault detection using smart valves |
DE102015205369B4 (en) * | 2014-04-04 | 2019-08-22 | Ford Global Technologies, Llc | Method for operating a suspension system |
US11635075B1 (en) | 2014-06-25 | 2023-04-25 | ClearMotion, Inc. | Gerotor pump with bearing |
US10851816B1 (en) | 2014-08-19 | 2020-12-01 | ClearMotion, Inc. | Apparatus and method for active vehicle suspension |
DE102014219977A1 (en) * | 2014-10-01 | 2016-04-07 | Bayerische Motoren Werke Aktiengesellschaft | Method and system for controlling an actuator of an active damper system |
US9440508B2 (en) * | 2014-11-25 | 2016-09-13 | Seth M. LACHICA | Active vehicle suspension system and method for managing drive energy |
US10308352B2 (en) * | 2014-12-12 | 2019-06-04 | Borealis Technical Limited | Monitoring system for aircraft drive wheel system |
EP3247577B1 (en) | 2015-01-23 | 2020-03-04 | Clearmotion, Inc. | Method and apparatus for controlling an actuator |
DE102015201411A1 (en) * | 2015-01-28 | 2016-07-28 | Robert Bosch Gmbh | Motor-pump unit for a brake system |
DE102015101248B4 (en) * | 2015-01-28 | 2024-12-12 | Fraba B.V. | magnet-based angle measuring system |
HUE055736T2 (en) | 2015-02-06 | 2021-12-28 | Bourns Inc | Vehicle chassis level sensor |
WO2016131050A1 (en) | 2015-02-13 | 2016-08-18 | Fluid Handling Llc | No flow detection means for sensorless pumping control applications |
KR20160117894A (en) * | 2015-04-01 | 2016-10-11 | 현대자동차주식회사 | Device and method for controlling air suspension system |
US9505404B2 (en) * | 2015-04-10 | 2016-11-29 | Jaguar Land Rover Limited | Collision avoidance system |
DE102015208787B4 (en) * | 2015-05-12 | 2018-10-04 | Zf Friedrichshafen Ag | Adjustable spring carrier |
KR102373365B1 (en) * | 2015-05-29 | 2022-03-11 | 주식회사 만도 | Electronic control suspension apparatus having multiple stage switch and method for controlling damping force thereof |
KR102380432B1 (en) | 2015-06-03 | 2022-04-01 | 클리어모션, 아이엔씨. | Methods and systems for controlling vehicle body motion and occupant experience |
DE102015011517B3 (en) * | 2015-09-03 | 2016-09-08 | Audi Ag | Method for determining a current level position of a vehicle |
DE202015105246U1 (en) * | 2015-10-05 | 2017-01-09 | Ebm-Papst St. Georgen Gmbh & Co. Kg | Electric motor with control electronics |
US10030961B2 (en) | 2015-11-27 | 2018-07-24 | General Electric Company | Gap measuring device |
US9681568B1 (en) | 2015-12-02 | 2017-06-13 | Ge Energy Power Conversion Technology Ltd | Compact stacked power modules for minimizing commutating inductance and methods for making the same |
DE102015016555B4 (en) | 2015-12-18 | 2020-06-04 | Audi Ag | Method for operating a damper of a motor vehicle |
JP6956722B2 (en) | 2015-12-24 | 2021-11-02 | クリアモーション,インコーポレイテッド | Integrated multi-actuator electro-hydraulic unit |
LU92990B1 (en) * | 2016-03-09 | 2017-09-19 | Ovalo Gmbh | Actuator system for a motor vehicle |
US10389202B2 (en) * | 2016-03-22 | 2019-08-20 | American Precision Industries, Inc. | Contaminant-resistant motors for surgical instruments |
US10987617B2 (en) | 2016-04-05 | 2021-04-27 | Hamilton Sundstrand Corporation | Pressure detection system immune to pressure ripple effects |
WO2017184651A1 (en) | 2016-04-19 | 2017-10-26 | ClearMotion, Inc. | Active hydraulec ripple cancellation methods and systems |
WO2017184950A1 (en) | 2016-04-22 | 2017-10-26 | ClearMotion, Inc. | Method and apparatus for on-center steering and a fast response vehicle |
DE102016207659A1 (en) * | 2016-05-03 | 2017-11-09 | Robert Bosch Gmbh | Actuator device for a vehicle, brake system |
JP7403953B2 (en) | 2016-06-02 | 2023-12-25 | クリアモーション,インコーポレイテッド | hydraulic system |
DE102016225253A1 (en) * | 2016-12-16 | 2018-06-21 | Robert Bosch Gmbh | Method for detecting the rack position in a steering system with electric servomotor |
US10906545B2 (en) * | 2016-12-22 | 2021-02-02 | Blackberry Limited | Adjusting mechanical elements of cargo transportation units |
EP3909796A1 (en) * | 2016-12-23 | 2021-11-17 | Link MFG., Ltd. | Cab suspension system |
WO2018131693A1 (en) * | 2017-01-13 | 2018-07-19 | 日本電産株式会社 | Sensor magnet assembly and motor |
US10480552B2 (en) | 2017-01-27 | 2019-11-19 | ClearMotion, Inc. | Accumulator with secondary gas chamber |
WO2018148689A1 (en) | 2017-02-12 | 2018-08-16 | ClearMotion, Inc. | Hydraulic actuator a frequency dependent relative pressure ratio |
US10465612B2 (en) | 2017-04-03 | 2019-11-05 | Hamilton Sundstrand Corporation | Aircraft fluid control system having a pressure sensor |
WO2018185528A1 (en) | 2017-04-06 | 2018-10-11 | Kongsberg Inc. | Power steering system and a method of operating same |
US11491841B2 (en) | 2017-05-05 | 2022-11-08 | Fox Factory, Inc. | System for minimizing data transmission latency between a sensor and a suspension controller of a vehicle |
EP3630507A4 (en) | 2017-05-31 | 2021-01-27 | ClearMotion, Inc. | Pilot operated blow-off valves for hydraulic actuators |
DE102017210426B4 (en) | 2017-06-21 | 2024-06-27 | Vitesco Technologies Germany Gmbh | Pump, especially transmission oil pump |
EP3645321B1 (en) * | 2017-06-30 | 2024-08-14 | Hyperloop Technologies, Inc. | Active control system |
IT201700101028A1 (en) * | 2017-09-08 | 2019-03-08 | Magneti Marelli Spa | BIDIRECTIONAL ENERGY CONVERSION SYSTEM OF DC-DC TYPE OPERATING BETWEEN A LOW VOLTAGE SYSTEM AND A HIGH VOLTAGE SYSTEM OF A VEHICLE INCLUDING A STAGE OF ENERGY RECOVERY AND ITS PROCEDURE |
IT201700101020A1 (en) * | 2017-09-08 | 2019-03-08 | Magneti Marelli Spa | CONVERSION SYSTEM OF DC-DC TYPE ENERGY OPERATING BETWEEN A LOW VOLTAGE SYSTEM AND A HIGH VOLTAGE SYSTEM OF A VEHICLE INCLUDING AN ENERGY RECOVERY STAGE AND ITS PROCEDURE |
RU175985U1 (en) * | 2017-09-27 | 2017-12-26 | Акционерное общество "Электромашиностроительный завод "ЛЕПСЕ" | CONTACTLESS ELECTRIC MACHINE |
US10933710B2 (en) * | 2017-09-29 | 2021-03-02 | Fox Factory, Inc. | Modular electronic damping control |
DE102017218648A1 (en) * | 2017-10-19 | 2019-04-25 | Robert Bosch Gmbh | Drive unit, in particular hydraulic unit of an electronically slip-controllable vehicle brake system |
US10802932B2 (en) | 2017-12-04 | 2020-10-13 | Nxp Usa, Inc. | Data processing system having lockstep operation |
US10493990B2 (en) * | 2017-12-15 | 2019-12-03 | Tenneco Automotive Operating Company Inc. | Systems and methods for ride control blending in electric vehicles |
GB2571100A (en) | 2018-02-15 | 2019-08-21 | Airbus Operations Ltd | Controller for an aircraft braking system |
EP3759373A4 (en) | 2018-02-27 | 2022-03-16 | ClearMotion, Inc. | Through tube active suspension actuator |
US10757340B2 (en) | 2018-03-09 | 2020-08-25 | Pony Ai Inc. | Adaptive filter system for self-driving vehicle |
GB201803947D0 (en) | 2018-03-12 | 2018-04-25 | Evectek Ltd | Electric vehicle with an electro-hydraulic propulsion system |
US11999214B2 (en) | 2018-06-14 | 2024-06-04 | ClearMotion, Inc. | Accumulators for a distributed active suspension system |
CN108832760B (en) * | 2018-07-09 | 2024-01-23 | 天津市拓达车辆配件有限公司 | Fine-tuning damping equipment for brushless direct-current motor |
US10907631B2 (en) * | 2018-08-01 | 2021-02-02 | Rolls-Royce Corporation | Pump ripple pressure monitoring for incompressible fluid systems |
EP3626490A1 (en) | 2018-09-19 | 2020-03-25 | Thermo King Corporation | Methods and systems for power and load management of a transport climate control system |
EP3626489A1 (en) | 2018-09-19 | 2020-03-25 | Thermo King Corporation | Methods and systems for energy management of a transport climate control system |
US11034213B2 (en) | 2018-09-29 | 2021-06-15 | Thermo King Corporation | Methods and systems for monitoring and displaying energy use and energy cost of a transport vehicle climate control system or a fleet of transport vehicle climate control systems |
US11273684B2 (en) | 2018-09-29 | 2022-03-15 | Thermo King Corporation | Methods and systems for autonomous climate control optimization of a transport vehicle |
US11440366B1 (en) | 2018-10-03 | 2022-09-13 | ClearMotion, Inc. | Frequency dependent pressure and/or flow fluctuation mitigation in hydraulic systems |
US11186273B2 (en) * | 2018-10-30 | 2021-11-30 | Toyota Motor North America, Inc. | Vehicle data processing systems and methods using one or more local processors |
US10875497B2 (en) | 2018-10-31 | 2020-12-29 | Thermo King Corporation | Drive off protection system and method for preventing drive off |
US10926610B2 (en) | 2018-10-31 | 2021-02-23 | Thermo King Corporation | Methods and systems for controlling a mild hybrid system that powers a transport climate control system |
US11059352B2 (en) | 2018-10-31 | 2021-07-13 | Thermo King Corporation | Methods and systems for augmenting a vehicle powered transport climate control system |
US11022451B2 (en) | 2018-11-01 | 2021-06-01 | Thermo King Corporation | Methods and systems for generation and utilization of supplemental stored energy for use in transport climate control |
WO2020095768A1 (en) * | 2018-11-09 | 2020-05-14 | Kyb株式会社 | Electric pump |
US10432127B1 (en) | 2018-11-15 | 2019-10-01 | Goodrich Corporation | Method of dissipating regenerative energy in cargo handling systems |
CA3121467A1 (en) * | 2018-11-29 | 2020-07-16 | Brian LAYFIELD | Fuel efficiency optimization apparatus and method for hybrid tractor trailer vehicles |
US11554638B2 (en) | 2018-12-28 | 2023-01-17 | Thermo King Llc | Methods and systems for preserving autonomous operation of a transport climate control system |
US11072321B2 (en) | 2018-12-31 | 2021-07-27 | Thermo King Corporation | Systems and methods for smart load shedding of a transport vehicle while in transit |
US11993131B2 (en) | 2018-12-31 | 2024-05-28 | Thermo King Llc | Methods and systems for providing feedback for a transport climate control system |
WO2020142061A1 (en) | 2018-12-31 | 2020-07-09 | Thermo King Corporation | Methods and systems for notifying and mitigating a suboptimal event occurring in a transport climate control system |
WO2020142066A1 (en) | 2018-12-31 | 2020-07-09 | Thermo King Corporation | Methods and systems for providing predictive energy consumption feedback for powering a transport climate control system using external data |
EP3906173B1 (en) | 2018-12-31 | 2024-05-22 | Thermo King LLC | Methods and systems for providing predictive energy consumption feedback for powering a transport climate control system |
CN118769786A (en) | 2019-01-03 | 2024-10-15 | 动态清晰公司 | Slip control via active suspension for optimized vehicle braking and acceleration |
US11421656B2 (en) * | 2019-01-03 | 2022-08-23 | Lucomm Technologies, Inc. | Generative system |
WO2020142984A1 (en) * | 2019-01-10 | 2020-07-16 | 大连理工大学 | Active fault tolerant control method of aero-engine based on error interval observer |
FR3092010B1 (en) * | 2019-01-25 | 2021-01-22 | Zodiac Fluid Equipment | Magnetic head for magnetic detector of metal particles and magnetic detector provided with such a head. |
US11285844B2 (en) | 2019-01-31 | 2022-03-29 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vehicle seat with morphing portions |
US11084349B2 (en) | 2019-01-31 | 2021-08-10 | Tenneco Automotive Operating Company Inc. | Leaf spring and actuator control systems and methods |
US11370330B2 (en) * | 2019-03-22 | 2022-06-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vehicle seat with morphing portions |
FI129919B (en) | 2019-03-25 | 2022-10-31 | Eee Innovations Oy | Monitoring of a vehicle's condition |
FI129920B (en) * | 2019-03-25 | 2022-10-31 | Eee Innovations Oy | Vehicle positioning |
FI129942B (en) * | 2019-03-25 | 2022-11-15 | Eee Innovations Oy | Enhancement of map data |
US11752901B2 (en) | 2019-03-28 | 2023-09-12 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vehicle seat with tilting seat portion |
EP3720098B1 (en) * | 2019-04-02 | 2023-10-11 | The Raymond Corporation | Systems and methods for an arbitration controller to arbitrate multiple automation requests on a warehouse material handling vehicle |
US11560185B2 (en) * | 2019-04-12 | 2023-01-24 | Honda Motor Co., Ltd. | System and method for controlling deployment of a vehicle air dam |
US11286925B2 (en) * | 2019-04-23 | 2022-03-29 | Peopleflo Manufacturing, Inc. | Electronic apparatus and method for optimizing the use of motor-driven equipment in a control loop system |
CN110138246B (en) * | 2019-05-30 | 2020-11-13 | 东北电力大学 | Impedance remodeling method based on three-level Dual-Buck circuit |
DE102019116086A1 (en) * | 2019-06-13 | 2020-12-17 | WABCO Global GmbH | Device and method for braking a vehicle with a front load-bearing device |
DE102019118384A1 (en) | 2019-07-08 | 2021-01-14 | Rapa Automotive Gmbh & Co. Kg | MPE AXLE SET WITH A COMMON ECU |
US20210031760A1 (en) * | 2019-07-31 | 2021-02-04 | Nissan North America, Inc. | Contingency Planning and Safety Assurance |
US11458802B2 (en) | 2019-09-09 | 2022-10-04 | Thermo King Corporation | Optimized power management for a transport climate control energy source |
US10985511B2 (en) | 2019-09-09 | 2021-04-20 | Thermo King Corporation | Optimized power cord for transferring power to a transport climate control system |
US11794551B2 (en) | 2019-09-09 | 2023-10-24 | Thermo King Llc | Optimized power distribution to transport climate control systems amongst one or more electric supply equipment stations |
US11214118B2 (en) | 2019-09-09 | 2022-01-04 | Thermo King Corporation | Demand-side power distribution management for a plurality of transport climate control systems |
US11135894B2 (en) | 2019-09-09 | 2021-10-05 | Thermo King Corporation | System and method for managing power and efficiently sourcing a variable voltage for a transport climate control system |
US11420495B2 (en) | 2019-09-09 | 2022-08-23 | Thermo King Corporation | Interface system for connecting a vehicle and a transport climate control system |
US11376922B2 (en) | 2019-09-09 | 2022-07-05 | Thermo King Corporation | Transport climate control system with a self-configuring matrix power converter |
US11203262B2 (en) | 2019-09-09 | 2021-12-21 | Thermo King Corporation | Transport climate control system with an accessory power distribution unit for managing transport climate control loads |
ES2992855T3 (en) | 2019-09-09 | 2024-12-19 | Thermo King Llc | Prioritized power delivery for facilitating transport climate control |
US20210107650A1 (en) * | 2019-10-15 | 2021-04-15 | Mike Elias Bandak | Aerial firefighting system |
US11619560B2 (en) | 2019-10-18 | 2023-04-04 | Hamilton Sundstrand Corporation | Pressure ripple mitigation in pressure sensors |
EP4051525A4 (en) * | 2019-10-31 | 2023-07-26 | Cummins, Inc. | Method and system for controlling a pole switch in an electric motor |
TWI716175B (en) * | 2019-10-31 | 2021-01-11 | 東元電機股份有限公司 | Current response compensating system and method thereof |
US11305602B2 (en) * | 2019-11-04 | 2022-04-19 | GM Global Technology Operations LLC | Vehicle detection and isolation system for detecting spring and stabilizing bar associated degradation and failures |
DE102019130087A1 (en) * | 2019-11-07 | 2021-05-12 | Wabco Europe Bvba | Air spring control system and air spring system and vehicle therewith and method therefor |
US11207937B2 (en) | 2019-11-20 | 2021-12-28 | DRiV Automotive Inc. | Suspension system for a vehicle |
JP2023502273A (en) * | 2019-11-21 | 2023-01-23 | テスラ,インコーポレイテッド | adjustable vehicle suspension |
CN110962519B (en) * | 2019-11-25 | 2022-11-25 | 福建省汽车工业集团云度新能源汽车股份有限公司 | Active suspension control method with intelligent adjusting function for electric automobile |
CN110861462B (en) * | 2019-12-02 | 2022-10-04 | 西安科技大学 | A vehicle intelligent hybrid suspension coordination control system based on image recognition |
EP3842277A1 (en) * | 2019-12-24 | 2021-06-30 | Vito NV | An electric machine with hybrid energy storage devices |
CN111016567A (en) * | 2019-12-30 | 2020-04-17 | 东风小康汽车有限公司重庆分公司 | Automatic switching method and device for automobile driving modes |
US11489431B2 (en) | 2019-12-30 | 2022-11-01 | Thermo King Corporation | Transport climate control system power architecture |
JP7298515B2 (en) * | 2020-03-04 | 2023-06-27 | トヨタ自動車株式会社 | Vehicle preview damping control device and vehicle preview damping control method |
DE102020106642B4 (en) | 2020-03-11 | 2022-12-22 | Ford Global Technologies, Llc | Method for controlling vertical vibration damping of at least one wheel of a vehicle and vehicle with vertical vibration damping of at least one wheel |
DE102021105566A1 (en) | 2020-03-24 | 2021-09-30 | Honeywell International Inc. | ROTARY ENCODER |
US20210309063A1 (en) * | 2020-04-02 | 2021-10-07 | Fox Factory, Inc. | Vehicle suspension management via an in-vehicle infotainment (ivi) system |
JP7247948B2 (en) | 2020-04-28 | 2023-03-29 | トヨタ自動車株式会社 | Vehicle damping control device and damping control method |
JP7354916B2 (en) | 2020-04-28 | 2023-10-03 | トヨタ自動車株式会社 | Vehicle vibration damping control device, vibration damping control system, vibration damping control method, and data providing device. |
JP7188413B2 (en) * | 2020-06-04 | 2022-12-13 | トヨタ自動車株式会社 | Vehicle damping control device and method |
JP7180638B2 (en) | 2020-06-08 | 2022-11-30 | トヨタ自動車株式会社 | VEHICLE RUNNING STATE CONTROL DEVICE AND METHOD |
JP7180640B2 (en) * | 2020-06-10 | 2022-11-30 | トヨタ自動車株式会社 | Vehicle damping control device and damping control method |
KR20210156885A (en) * | 2020-06-17 | 2021-12-28 | 현대자동차주식회사 | Control system when Brake-By-wire device |
JP7314869B2 (en) * | 2020-06-24 | 2023-07-26 | トヨタ自動車株式会社 | Vehicle damping control device and method |
JP7252521B2 (en) | 2020-06-29 | 2023-04-05 | トヨタ自動車株式会社 | Vehicle damping control device and method |
GB2598147B (en) * | 2020-08-21 | 2023-03-22 | Jaguar Land Rover Ltd | Vehicle suspension control system |
US11772496B2 (en) * | 2020-08-26 | 2023-10-03 | Anusheel Nahar | Regenerative braking system of an automobile and a method to operate |
US11605249B2 (en) | 2020-09-14 | 2023-03-14 | Dish Wireless L.L.C. | Using automatic road hazard detection to categorize automobile collision |
JP7307404B2 (en) * | 2020-10-07 | 2023-07-12 | トヨタ自動車株式会社 | Damping control device and data management device |
JP7314897B2 (en) * | 2020-10-07 | 2023-07-26 | トヨタ自動車株式会社 | VEHICLE PREVIEW DAMAGE CONTROL DEVICE AND METHOD |
JP7367652B2 (en) | 2020-10-07 | 2023-10-24 | トヨタ自動車株式会社 | Vehicle preview vibration damping control device and method |
JP7314899B2 (en) * | 2020-10-14 | 2023-07-26 | トヨタ自動車株式会社 | Vibration control device |
JP7251538B2 (en) * | 2020-10-19 | 2023-04-04 | トヨタ自動車株式会社 | VEHICLE CONTROL METHOD AND CONTROL DEVICE |
JP7306362B2 (en) | 2020-10-19 | 2023-07-11 | トヨタ自動車株式会社 | Database creation method for vehicle preview damping control |
JP7322855B2 (en) * | 2020-10-23 | 2023-08-08 | トヨタ自動車株式会社 | Road surface information creation device and vehicle control system |
WO2022093847A1 (en) * | 2020-10-27 | 2022-05-05 | Clearmotion,Inc. | Systems and methods for vehicle control using terrain-based localization |
JP7314902B2 (en) | 2020-10-29 | 2023-07-26 | トヨタ自動車株式会社 | VEHICLE CONTROL METHOD AND CONTROL DEVICE |
JP7314904B2 (en) | 2020-10-30 | 2023-07-26 | トヨタ自動車株式会社 | Vibration control device |
JP7328626B2 (en) | 2020-10-30 | 2023-08-17 | トヨタ自動車株式会社 | Vehicle damping control system |
CN112417619B (en) * | 2020-11-23 | 2021-10-08 | 江苏大学 | A system and method for optimal operation and adjustment of pump unit based on digital twin |
JP7406182B2 (en) | 2020-12-11 | 2023-12-27 | トヨタ自動車株式会社 | Related value information update system and related value information update method |
CN113014462A (en) * | 2021-02-22 | 2021-06-22 | 上海节卡机器人科技有限公司 | Data conversion method, device, controller and circuit thereof |
US11932072B2 (en) * | 2021-03-08 | 2024-03-19 | DRiV Automotive Inc. | Suspension control system and method with event detection based on unsprung mass acceleration data and pre-emptive road data |
DE202021101206U1 (en) | 2021-03-10 | 2022-06-15 | Dana Italia S.R.L. | Hydraulically suspended vehicle axle assembly and vehicle axle assembly incorporating this assembly |
JP2022147002A (en) * | 2021-03-23 | 2022-10-06 | 本田技研工業株式会社 | Damper control device |
US20230291278A1 (en) * | 2021-03-25 | 2023-09-14 | General Electric Company | Gas turbine engine equipped with a control system for management of rotor modes using an electric machine |
CN115520193A (en) * | 2021-06-10 | 2022-12-27 | 罗伯特·博世有限公司 | Method, device and computer program product for operating a vehicle |
DE102021116460A1 (en) * | 2021-06-25 | 2022-12-29 | Bühler Motor GmbH | Bearing arrangement for a pump motor |
FR3124437B1 (en) * | 2021-06-25 | 2023-10-13 | Renault Sas | Method for controlling a vehicle equipped with at least one suspension controlled by learning. |
US12071127B2 (en) | 2021-07-16 | 2024-08-27 | Nissan North America, Inc. | Proactive risk mitigation |
US11712939B2 (en) | 2021-09-03 | 2023-08-01 | Toyota Jidosha Kabushiki Kaisha | Vehicle and method of controlling vehicle suspension |
DE102021123306B3 (en) * | 2021-09-09 | 2023-01-05 | Audi Ag | Vehicle with a curve tilting function |
DE102021210043A1 (en) | 2021-09-10 | 2023-03-16 | Vitesco Technologies Germany Gmbh | Pump, in particular gear oil pump with a modular structure |
JP7544010B2 (en) * | 2021-09-14 | 2024-09-03 | トヨタ自動車株式会社 | Map data, map update method, vehicle control method, and vehicle control system |
JP7544009B2 (en) | 2021-09-14 | 2024-09-03 | トヨタ自動車株式会社 | Map data, map update method, vehicle control method, and vehicle control system |
JP7635692B2 (en) | 2021-10-05 | 2025-02-26 | トヨタ自動車株式会社 | Vehicle suspension control device |
US11897379B2 (en) | 2021-10-20 | 2024-02-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Seat with shape memory material member actuation |
JP7501491B2 (en) * | 2021-10-22 | 2024-06-18 | トヨタ自動車株式会社 | Vehicle suspension control device and vehicle suspension control method |
DE102021211978A1 (en) | 2021-10-25 | 2023-04-27 | Continental Automotive Technologies GmbH | SYSTEM AND METHOD FOR STABILIZING ONE OR MORE SENSORS ON A VEHICLE |
IT202100031739A1 (en) * | 2021-12-20 | 2023-06-20 | Way Assauto S R L | ACTIVE SUSPENSION FOR VEHICLE |
US11959448B2 (en) | 2022-02-04 | 2024-04-16 | Toyota Motor Engineering & Manufacturing North America, Inc. | Trail driving engine start-stop judgment systems and methods |
US12097735B2 (en) * | 2022-05-13 | 2024-09-24 | Ford Global Technologies, Llc | Suspension system with dynamic weight balancing control |
CN117134541A (en) * | 2022-05-25 | 2023-11-28 | 丰田自动车株式会社 | Mechatronic unit |
DE102022206540B3 (en) * | 2022-06-28 | 2023-10-12 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for controlling variable-speed fluid pumps |
US12179538B2 (en) * | 2022-09-01 | 2024-12-31 | Ford Global Technologies, Llc | Methods and apparatus to calibrate a suspension sensor |
WO2024059522A1 (en) * | 2022-09-12 | 2024-03-21 | ClearMotion, Inc. | Dynamic groundhook control in a vehicle using an active suspension system |
KR102726647B1 (en) * | 2022-11-11 | 2024-11-05 | 세메스 주식회사 | Driving apparatus and operation method thereof |
US20240198751A1 (en) * | 2022-12-20 | 2024-06-20 | Guident Ltd. | System, apparatus, and method for a regenerative device |
US12241458B2 (en) | 2023-02-16 | 2025-03-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Actuator with contracting member |
US12163507B2 (en) | 2023-02-22 | 2024-12-10 | Toyota Motor Engineering & Manufacturing North America, Inc. | Contracting member-based actuator with clutch |
US12152570B2 (en) | 2023-02-22 | 2024-11-26 | Toyota Motor Engineering & Manufacturing North America, Inc. | Shape memory material member-based actuator with electrostatic clutch preliminary class |
DE102023108631A1 (en) | 2023-04-04 | 2024-10-10 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Damping arrangement for an axle of a motor vehicle and motor vehicle |
US12234811B1 (en) | 2023-08-21 | 2025-02-25 | Toyota Motor Engineering & Manufacturing North America, Inc. | Monitoring a state of a shape memory material member |
CN119084519B (en) * | 2024-11-08 | 2025-03-11 | 浙江戈尔德智能悬架股份有限公司 | Active hydraulic suspension damper |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6502837B1 (en) * | 1998-11-11 | 2003-01-07 | Kenmar Company Trust | Enhanced computer optimized adaptive suspension system and method |
US20050060069A1 (en) * | 1997-10-22 | 2005-03-17 | Breed David S. | Method and system for controlling a vehicle |
US20140195114A1 (en) * | 2013-01-10 | 2014-07-10 | Ford Global Technologies, Llc | Suspension Control System To Facilitate Wheel Motions During Parking |
US20140195112A1 (en) * | 2013-01-08 | 2014-07-10 | Ford Global Technologies, Llc | Adaptive Active Suspension System With Road Preview |
Family Cites Families (307)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US998128A (en) | 1910-02-03 | 1911-07-18 | Thomas C Neal | Combined air pump and cushion. |
US1116293A (en) | 1914-02-02 | 1914-11-03 | Joseph G Waters | Apparatus for transforming energy. |
US1290293A (en) | 1918-04-15 | 1919-01-07 | American Motor Spring Patents Company | Shock-absorber and suspension for vehicles. |
US2194530A (en) | 1938-01-05 | 1940-03-26 | Servel Inc | Vehicle refrigeration |
GB652732A (en) | 1943-04-16 | 1951-05-02 | British Thomson Houston Co Ltd | Improvements relating to regulators for dynamo electric machines |
FR1089112A (en) | 1952-12-08 | 1955-03-15 | Siegener Eisenbahnbedarf Ag | Vehicle suspension |
US2958292A (en) | 1956-10-22 | 1960-11-01 | Allis Chalmers Mfg Co | Canned motor |
US2942581A (en) | 1958-03-12 | 1960-06-28 | Fisher Governor Co | Hydraulic operator |
GB1070783A (en) | 1963-06-17 | 1967-06-01 | Ass Elect Ind | Improvements relating to power transfer circuit arrangements |
US3507580A (en) | 1967-05-12 | 1970-04-21 | Landon H Howard | Energy generator |
US3515889A (en) | 1967-08-14 | 1970-06-02 | Lamphere Jean K | Power generation apparatus |
US3540482A (en) | 1967-09-25 | 1970-11-17 | Bendix Corp | Accumulator inlet fitting |
US3559027A (en) | 1967-09-27 | 1971-01-26 | Harold B Arsem | Electric shock absorber |
US3610611A (en) * | 1970-03-13 | 1971-10-05 | Gen Motors Corp | Automatic vehicle leveling system with electronic time delay |
US3688859A (en) | 1970-10-08 | 1972-09-05 | Fma Inc | Vehicular air compression system |
US3805833A (en) | 1971-10-20 | 1974-04-23 | G Teed | Back-suction diverter valve |
DE2217536C2 (en) | 1972-04-12 | 1974-05-09 | Carl Schenck Maschinenfabrik Gmbh, 6100 Darmstadt | Arrangement for regulating a dynamic test system, in particular for a hydraulically driven one |
US3800202A (en) | 1972-04-24 | 1974-03-26 | J Oswald | Cemf dependent regenerative braking for dc motor |
FR2152111A6 (en) | 1972-09-05 | 1973-04-20 | Ferrara Guy | |
US3921746A (en) | 1972-12-28 | 1975-11-25 | Alexander J Lewus | Auxiliary power system for automotive vehicle |
US4295538A (en) | 1974-03-21 | 1981-10-20 | Lewus Alexander J | Auxiliary power system for automotive vehicle |
US3947004A (en) | 1974-12-23 | 1976-03-30 | Tayco Developments, Inc. | Liquid spring, vehicle suspension system and method for producing a low variance in natural frequency over a predetermined load range |
US4032829A (en) | 1975-08-22 | 1977-06-28 | Schenavar Harold E | Road shock energy converter for charging vehicle batteries |
FR2346176A1 (en) | 1975-10-31 | 1977-10-28 | Milleret Michel | Vehicle braking energy recovery system - has hydraulic or pneumatic recuperator supplying fluid to motor which drives generator |
US4033580A (en) | 1976-01-15 | 1977-07-05 | Paris Irwin S | Elastic type exercising |
JPS53103114A (en) | 1977-02-11 | 1978-09-08 | Cableform Ltd | Device for and method of controlling pulse |
JPS586364B2 (en) | 1977-08-10 | 1983-02-04 | 株式会社日立製作所 | Braking control system for chopper electric cars |
US5794439A (en) | 1981-11-05 | 1998-08-18 | Lisniansky; Robert Moshe | Regenerative adaptive fluid control |
US4480709A (en) | 1982-05-12 | 1984-11-06 | Commanda Ephrem E | Fluid powered generator |
JPH07100404B2 (en) | 1983-01-21 | 1995-11-01 | グループ ロータス リミテッド | Vehicle suspension system |
JPS59187124A (en) | 1983-04-06 | 1984-10-24 | Chiyoda Chem Eng & Constr Co Ltd | Vibration damping device |
IT1164365B (en) | 1983-08-04 | 1987-04-08 | Alfa Romeo Auto Spa | OSCILLATION SHOCK ABSORBER DEVICE FOR A VEHICLE |
US4770438A (en) | 1984-01-20 | 1988-09-13 | Nissan Motor Co., Ltd. | Automotive suspension control system with road-condition-dependent damping characteristics |
US4500827A (en) | 1984-06-11 | 1985-02-19 | Merritt Thomas D | Linear reciprocating electrical generator |
US4729459A (en) | 1984-10-01 | 1988-03-08 | Nippon Soken, Inc. | Adjustable damping force type shock absorber |
DE3524862A1 (en) | 1985-04-12 | 1986-10-30 | Robert Bosch Gmbh, 7000 Stuttgart | DEVICE FOR DAMPING MOTION PROCESSES |
JPS61287808A (en) | 1985-06-14 | 1986-12-18 | Nissan Motor Co Ltd | Suspension control device for vehicle |
US4740711A (en) | 1985-11-29 | 1988-04-26 | Fuji Electric Co., Ltd. | Pipeline built-in electric power generating set |
US5657840A (en) | 1986-06-05 | 1997-08-19 | Lizell; Magnus B. | Method and apparatus for absorbing mechanical shock |
JP2575379B2 (en) | 1987-03-24 | 1997-01-22 | 日産自動車株式会社 | Active suspension device |
US4868477A (en) * | 1987-06-23 | 1989-09-19 | The Superior Electric Company | Method and apparatus for controlling torque and torque ripple in a variable reluctance motor |
JPS6430816A (en) | 1987-07-24 | 1989-02-01 | Toyota Motor Corp | Active suspension for vehicle |
KR910009242B1 (en) | 1987-08-04 | 1991-11-07 | 가부시기가이샤 히다찌세이사꾸쇼 | Torque Control of Rotary Motor |
JPH0192526A (en) * | 1987-09-30 | 1989-04-11 | Isuzu Motors Ltd | Turbocharger provided with electric rotary machine |
US4815575A (en) | 1988-04-04 | 1989-03-28 | General Motors Corporation | Electric, variable damping vehicle suspension |
US4857755A (en) | 1988-09-27 | 1989-08-15 | Comstock W Kenneth | Constant power system and method |
US5060959A (en) | 1988-10-05 | 1991-10-29 | Ford Motor Company | Electrically powered active suspension for a vehicle |
CA1336616C (en) | 1988-10-05 | 1995-08-08 | I. Davis Roy | Electrically powered active suspension for a vehicle |
US4908553A (en) | 1988-12-20 | 1990-03-13 | Eaton Corporation | Magnetic regenerative braking system |
US4887699A (en) | 1989-02-10 | 1989-12-19 | Lord Corporation | Vibration attenuating method utilizing continuously variable semiactive damper |
US4921080A (en) | 1989-05-08 | 1990-05-01 | Lin Chien H | Hydraulic shock absorber |
US4981309A (en) | 1989-08-31 | 1991-01-01 | Bose Corporation | Electromechanical transducing along a path |
EP0417695B1 (en) | 1989-09-11 | 1997-12-10 | Toyota Jidosha Kabushiki Kaisha | Suspension control system |
US5183127A (en) * | 1989-09-13 | 1993-02-02 | Mazda Motor Corporation | Suspension-traction total control system |
DE3937987A1 (en) | 1989-11-15 | 1991-05-16 | Bosch Gmbh Robert | VEHICLE SUSPENSION I |
US5046309A (en) | 1990-01-22 | 1991-09-10 | Shin Caterpillar Mitsubishi Ltd. | Energy regenerative circuit in a hydraulic apparatus |
JPH03123981U (en) | 1990-03-30 | 1991-12-17 | ||
DE4014466A1 (en) | 1990-05-07 | 1991-11-14 | Bosch Gmbh Robert | VEHICLE SUSPENSION |
KR100201267B1 (en) | 1990-05-16 | 1999-06-15 | 가와모토 노부히코 | Regenerative Braking System for Electric Vehicles |
NL9001394A (en) | 1990-06-19 | 1992-01-16 | P G Van De Veen Consultancy B | CONTROLLED SILENCER. |
US5091679A (en) | 1990-06-20 | 1992-02-25 | General Motors Corporation | Active vehicle suspension with brushless dynamoelectric actuator |
US5203199A (en) | 1990-10-12 | 1993-04-20 | Teledyne Industries, Inc. | Controlled acceleration platform |
US5102161A (en) | 1991-03-07 | 1992-04-07 | Trw Inc. | Semi-active suspension system with energy saving valve |
US5145206A (en) | 1991-03-07 | 1992-09-08 | Trw Inc. | Semi-active suspension system with energy saving actuator |
US5098119A (en) | 1991-03-22 | 1992-03-24 | Trw Inc. | Semi-active suspension system with energy saving |
US5497324A (en) | 1991-05-20 | 1996-03-05 | General Motors Corporation | Vehicle suspension system with gain scheduling |
US5572425A (en) | 1991-06-18 | 1996-11-05 | Ford Motor Company | Powered active suspension system responsive to anticipated power demand |
US5232242A (en) | 1991-06-18 | 1993-08-03 | Ford Motor Company | Power consumption limiting means for an active suspension system |
US5205326A (en) | 1991-08-23 | 1993-04-27 | Hydraulic Power Systems, Inc. | Pressure response type pulsation damper noise attenuator and accumulator |
US5276622A (en) | 1991-10-25 | 1994-01-04 | Lord Corporation | System for reducing suspension end-stop collisions |
US5360445A (en) * | 1991-11-06 | 1994-11-01 | International Business Machines Corporation | Blood pump actuator |
JP3049136B2 (en) | 1991-12-09 | 2000-06-05 | マツダ株式会社 | Vehicle suspension device |
JPH0550195U (en) | 1991-12-09 | 1993-07-02 | 株式会社昭和製作所 | Hydraulic shock absorber with power generation function |
US5337560A (en) | 1992-04-02 | 1994-08-16 | Abdelmalek Fawzy T | Shock absorber and a hermetically sealed scroll gas expander for a vehicular gas compression and expansion power system |
US5425436A (en) | 1992-08-26 | 1995-06-20 | Nippondenso Co., Ltd. | Automotive suspension control system utilizing variable damping force shock absorber |
US5291960A (en) | 1992-11-30 | 1994-03-08 | Ford Motor Company | Hybrid electric vehicle regenerative braking energy recovery system |
US5295563A (en) | 1993-03-01 | 1994-03-22 | General Motors Corporation | Active suspension actuator with control flow through the piston rod |
US5570286A (en) | 1993-12-23 | 1996-10-29 | Lord Corporation | Regenerative system including an energy transformer which requires no external power source to drive same |
JP2833463B2 (en) * | 1994-02-10 | 1998-12-09 | 株式会社デンソー | AC motor rotation torque detector |
US5529152A (en) | 1994-07-08 | 1996-06-25 | Aimrite Systems International, Inc. | Variable constant force hydraulic components and systems |
JP2738819B2 (en) | 1994-08-22 | 1998-04-08 | 本田技研工業株式会社 | Power generation control device for hybrid vehicle |
JPH0865809A (en) | 1994-08-25 | 1996-03-08 | Yamaha Motor Co Ltd | Motor controller for motor driven vehicle |
JP3125603B2 (en) | 1994-10-07 | 2001-01-22 | トヨタ自動車株式会社 | Suspension control device |
EP0706906A3 (en) | 1994-10-12 | 1997-07-02 | Unisia Jecs Corp | Apparatus and method for controlling damping force characteristic of vehicular suspension system |
JP3089958B2 (en) | 1994-12-06 | 2000-09-18 | 三菱自動車工業株式会社 | Electric vehicle braking control device |
JPH08226377A (en) | 1994-12-09 | 1996-09-03 | Fuotsukusu Hetsudo:Kk | Surge generator |
US5590734A (en) | 1994-12-22 | 1997-01-07 | Caires; Richard | Vehicle and method of driving the same |
US5480186A (en) | 1994-12-23 | 1996-01-02 | Ford Motor Company | Dynamic roll control system for a motor vehicle |
JP3387287B2 (en) | 1995-09-19 | 2003-03-17 | 日産自動車株式会社 | Regenerative charging control device |
DE19535752A1 (en) | 1995-09-26 | 1997-03-27 | Peter Dipl Ing Mumm | Control of independent power generation system |
JP3454036B2 (en) | 1995-11-13 | 2003-10-06 | トヨタ自動車株式会社 | Hybrid drive |
US5659205A (en) | 1996-01-11 | 1997-08-19 | Ebara International Corporation | Hydraulic turbine power generator incorporating axial thrust equalization means |
IT1289322B1 (en) | 1996-01-19 | 1998-10-02 | Carlo Alberto Zenobi | DEVICE FOR OBTAINING ELECTRICITY FROM THE DYNAMIC ACTIONS ARISING FROM THE RELATIVE MOTION BETWEEN VEHICLES AND THE GROUND |
US5682980A (en) | 1996-02-06 | 1997-11-04 | Monroe Auto Equipment Company | Active suspension system |
US5999868A (en) | 1996-02-26 | 1999-12-07 | Board Of Regents The University Of Texas System | Constant force suspension, near constant force suspension, and associated control algorithms |
US5717303A (en) | 1996-03-04 | 1998-02-10 | Tenergy, L.L.C. | DC motor drive assembly including integrated charger/controller/regenerator circuit |
DE69605019T2 (en) * | 1996-03-29 | 2000-02-24 | Stmicroelectronics S.R.L., Agrate Brianza | Drive system for a brushless motor that uses predetermined drive currents and is stored in a read-only memory |
JP3118414B2 (en) | 1996-05-22 | 2000-12-18 | 株式会社豊田中央研究所 | Vehicle sprung unsprung relative speed calculation device |
GB9610846D0 (en) | 1996-05-23 | 1996-07-31 | Switched Reluctance Drives Ltd | Output smoothing in a switched reluctance machine |
JP3689829B2 (en) | 1996-10-04 | 2005-08-31 | 株式会社日立製作所 | Suspension control device |
US5892293A (en) | 1997-01-15 | 1999-04-06 | Macrosonix Corporation | RMS energy conversion |
US6025665A (en) * | 1997-02-21 | 2000-02-15 | Emerson Electric Co. | Rotating machine for use in a pressurized fluid system |
DE69817439T2 (en) * | 1997-05-16 | 2004-06-24 | Conception et Dévelopement Michelin | Suspension device with spring correction unit |
EP0895344B1 (en) * | 1997-07-30 | 2003-10-01 | Matsushita Electric Industrial Co., Ltd | A method of controlling a torque ripple of a motor having interior permanent magnets and a controller using the same method |
US6092618A (en) | 1997-10-31 | 2000-07-25 | General Motors Corporation | Electro-hydraulic power steering control with fluid temperature and motor speed compensation of power steering load signal |
US5941328A (en) | 1997-11-21 | 1999-08-24 | Lockheed Martin Corporation | Electric vehicle with variable efficiency regenerative braking depending upon battery charge state |
JPH11166474A (en) | 1997-12-01 | 1999-06-22 | Kotou Unyu Kk | Generator using reciprocating motion |
US6049746A (en) | 1998-04-01 | 2000-04-11 | Lord Corporation | End stop control method |
DE29809485U1 (en) | 1998-05-28 | 1998-09-10 | Tiromat Krämer + Grebe GmbH & Co. KG, 35216 Biedenkopf | Wolf for chopping frozen and fresh meat |
US5925951A (en) * | 1998-06-19 | 1999-07-20 | Sundstrand Fluid Handling Corporation | Electromagnetic shield for an electric motor |
US6349543B1 (en) | 1998-06-30 | 2002-02-26 | Robert Moshe Lisniansky | Regenerative adaptive fluid motor control |
JP3787038B2 (en) | 1998-09-10 | 2006-06-21 | トヨタ自動車株式会社 | Elastic support device, vehicle elastic support device, and control device for vehicle suspension device |
US6282453B1 (en) * | 1998-12-02 | 2001-08-28 | Caterpillar Inc. | Method for controlling a work implement to prevent interference with a work machine |
US6575264B2 (en) * | 1999-01-29 | 2003-06-10 | Dana Corporation | Precision electro-hydraulic actuator positioning system |
JP2002541014A (en) * | 1999-04-12 | 2002-12-03 | キネティック プロプライエタリー リミテッド | Active ride control for vehicle suspension systems |
US6190319B1 (en) * | 1999-06-21 | 2001-02-20 | International Business Machines Corporation | Self calibrating linear position sensor |
CA2279435A1 (en) | 1999-07-30 | 2001-01-30 | Michael Alexander Duff | Linear actuator |
US6227817B1 (en) * | 1999-09-03 | 2001-05-08 | Magnetic Moments, Llc | Magnetically-suspended centrifugal blood pump |
US7195250B2 (en) | 2000-03-27 | 2007-03-27 | Bose Corporation | Surface vehicle vertical trajectory planning |
DE10019532C2 (en) | 2000-04-20 | 2002-06-27 | Zf Sachs Ag | Suspension system for motor vehicles |
JP2001311452A (en) | 2000-04-28 | 2001-11-09 | Tokico Ltd | Electromagnetic suspension control system |
WO2001089066A1 (en) | 2000-05-17 | 2001-11-22 | Kabushiki Kaisha Sankyo Seiki Seisakusho | Small power generating device and water faucet device |
US6394238B1 (en) | 2000-05-25 | 2002-05-28 | Husco International, Inc. | Regenerative suspension for an off-road vehicle |
DE60133606T2 (en) | 2000-05-25 | 2009-06-10 | Husco International Inc., Waukesha | Regenerative suspension for an off-road vehicle |
US6731019B2 (en) | 2000-08-07 | 2004-05-04 | Ocean Power Technologies, Inc. | Apparatus and method for optimizing the power transfer produced by a wave energy converter (WEC) |
US6467748B1 (en) * | 2000-09-05 | 2002-10-22 | Deere & Company | Hydraulic circuit for active suspension system |
CN100341227C (en) | 2000-09-06 | 2007-10-03 | 日本电产三协株式会社 | Small-sized hydroelectric power generating apparatus |
KR100804665B1 (en) | 2000-09-12 | 2008-02-20 | 얀마 가부시키가이샤 | Hydraulic circuit of excavation turning work vehicle |
US6397134B1 (en) | 2000-09-13 | 2002-05-28 | Delphi Technologies, Inc. | Vehicle suspension control with enhanced body control in steering crossover |
US6644590B2 (en) | 2000-09-15 | 2003-11-11 | General Dynamics Advanced Information Systems, Inc. | Active system and method for vibration and noise reduction |
US6834737B2 (en) | 2000-10-02 | 2004-12-28 | Steven R. Bloxham | Hybrid vehicle and energy storage system and method |
JP3582479B2 (en) | 2000-11-21 | 2004-10-27 | 日産自動車株式会社 | Vehicle battery charge control device |
US6441508B1 (en) | 2000-12-12 | 2002-08-27 | Ebara International Corporation | Dual type multiple stage, hydraulic turbine power generator including reaction type turbine with adjustable blades |
US6573675B2 (en) | 2000-12-27 | 2003-06-03 | Transportation Techniques Llc | Method and apparatus for adaptive energy control of hybrid electric vehicle propulsion |
DE10104851A1 (en) * | 2001-02-03 | 2002-08-22 | Zf Lenksysteme Gmbh | Pump system with a hydraulic pump, in particular for a steering system |
US7571683B2 (en) | 2001-03-27 | 2009-08-11 | General Electric Company | Electrical energy capture system with circuitry for blocking flow of undesirable electrical currents therein |
US6973880B2 (en) | 2001-03-27 | 2005-12-13 | General Electric Company | Hybrid energy off highway vehicle electric power storage system and method |
CA2343489C (en) | 2001-04-05 | 2007-05-22 | Electrofuel, Inc. | Energy storage device for loads having variable power rates |
US6952060B2 (en) | 2001-05-07 | 2005-10-04 | Trustees Of Tufts College | Electromagnetic linear generator and shock absorber |
DE10126933B4 (en) | 2001-06-01 | 2004-08-26 | Continental Aktiengesellschaft | Method for regulating or controlling the damper force of adjustable dampers on vehicles |
US6575484B2 (en) | 2001-07-20 | 2003-06-10 | Husco International, Inc. | Dual mode regenerative suspension for an off-road vehicle |
JP2003035254A (en) | 2001-07-24 | 2003-02-07 | Sony Corp | Power source device |
US6752250B2 (en) * | 2001-09-27 | 2004-06-22 | Northrop Grumman Corporation | Shock, vibration and acoustic isolation system |
US6679504B2 (en) | 2001-10-23 | 2004-01-20 | Liquidspring Technologies, Inc. | Seamless control of spring stiffness in a liquid spring system |
FR2831226B1 (en) * | 2001-10-24 | 2005-09-23 | Snecma Moteurs | AUTONOMOUS ELECTROHYDRAULIC ACTUATOR |
US6631960B2 (en) | 2001-11-28 | 2003-10-14 | Ballard Power Systems Corporation | Series regenerative braking torque control systems and methods |
US6650985B2 (en) * | 2001-12-28 | 2003-11-18 | Case, Llc | Skid steer vehicle having anti-rolling system |
US6452535B1 (en) | 2002-01-29 | 2002-09-17 | Ford Global Technologies, Inc. | Method and apparatus for impact crash mitigation |
CN1370926A (en) | 2002-02-01 | 2002-09-25 | 张玉森 | Electrically driven vehicle device to collecting vibration-reducing energy and converting inti electric energy and its method |
KR100947685B1 (en) | 2002-02-05 | 2010-03-16 | 더 텍사스 에이 & 엠 유니버시티 시스템 | Gerotor device for quasi-isothermal Brayton cycle engines |
KR100427364B1 (en) | 2002-03-06 | 2004-04-14 | 현대자동차주식회사 | Battery system current measuring system of electric vehicle |
DE20209120U1 (en) | 2002-06-12 | 2003-10-16 | Hemscheidt Fahrwerktechnik GmbH & Co., 42781 Haan | Suspension device for motor vehicles |
US7156406B2 (en) | 2002-10-25 | 2007-01-02 | Ina- Schaeffler Kg | Anti-roll bar for the chassis of a motor vehicle |
US6886650B2 (en) | 2002-11-13 | 2005-05-03 | Deere & Company | Active seat suspension control system |
GB0226843D0 (en) | 2002-11-16 | 2002-12-24 | Cnh Uk Ltd | cab support system for an agricultural vehicle |
JP2004190845A (en) | 2002-12-13 | 2004-07-08 | Shin Caterpillar Mitsubishi Ltd | Drive device for working machine |
US6841970B2 (en) | 2002-12-20 | 2005-01-11 | Mark Zabramny | Dual-use generator and shock absorber assistant system |
CN100444495C (en) | 2003-01-24 | 2008-12-17 | 三菱电机株式会社 | Battery power circuit |
EP2154028B8 (en) | 2003-02-17 | 2015-12-09 | Denso Corporation | Vehicle power supply system |
JP4131395B2 (en) | 2003-02-21 | 2008-08-13 | 株式会社デンソー | Regenerative braking device for vehicle |
US7087342B2 (en) | 2003-04-15 | 2006-08-08 | Visteon Global Technologies, Inc. | Regenerative passive and semi-active suspension |
US6920951B2 (en) | 2003-04-17 | 2005-07-26 | Visteon Global Technologies, Inc. | Regenerative damping method and apparatus |
US20040211631A1 (en) | 2003-04-24 | 2004-10-28 | Hsu William W. | Hydraulic damper |
US20040212273A1 (en) | 2003-04-24 | 2004-10-28 | Gould Len Charles | Heat engine and generator set incorporating multiple generators for synchronizing and balancing |
US6765389B1 (en) | 2003-06-12 | 2004-07-20 | Delphi Technologies, Inc. | Method of computing AC impedance of an energy system |
US20050017462A1 (en) * | 2003-07-23 | 2005-01-27 | Kroppe William J. | Suspension system |
KR101294248B1 (en) | 2003-08-12 | 2013-08-07 | 그램 케이 로버트슨 | Shock absorber assembly |
DE10337620B4 (en) | 2003-08-16 | 2017-09-28 | Daimler Ag | Motor vehicle with a pre-safe system |
US6964325B2 (en) | 2003-09-15 | 2005-11-15 | Tenneco Automotive Operating Company Inc. | Integrated tagging system for an electronic shock absorber |
US20060090462A1 (en) | 2003-11-14 | 2006-05-04 | Kazunori Yoshino | Energy regeneration system for working machinery |
US7438164B2 (en) | 2003-12-08 | 2008-10-21 | Tenneco Automotive Operating Company Inc. | Solenoid actuated continuously variable servo valve for adjusting damping in shock absorbers and struts |
US7333882B2 (en) | 2004-02-12 | 2008-02-19 | Hitachi, Ltd. | Suspension control apparatus |
JP2005253126A (en) | 2004-03-01 | 2005-09-15 | Nissan Motor Co Ltd | Brake controller of hybrid vehicle and vehicle mounting that controller |
US8380416B2 (en) | 2004-03-18 | 2013-02-19 | Ford Global Technologies | Method and apparatus for controlling brake-steer in an automotive vehicle in reverse |
CN2707546Y (en) | 2004-04-16 | 2005-07-06 | 江苏大学 | Energy feeding back type semi-active suspension |
GB0410355D0 (en) * | 2004-05-10 | 2004-06-09 | Delphi Tech Inc | Vehicle roll control system |
US7335999B2 (en) | 2004-06-15 | 2008-02-26 | Honeywell International, Inc. | Fluid actuated rotating device including a low power generator |
US7202577B2 (en) | 2004-06-17 | 2007-04-10 | Bose Corporation | Self-cooling actuator |
US7427072B2 (en) | 2004-06-18 | 2008-09-23 | Bose Corporation | Active vehicle suspension |
US7421954B2 (en) | 2004-06-18 | 2008-09-09 | Bose Corporation | Active suspension controller |
GB0415511D0 (en) | 2004-07-10 | 2004-08-11 | Trw Ltd | Motor drive voltage-boost control |
JP4134964B2 (en) | 2004-08-02 | 2008-08-20 | 株式会社デンソー | Power generation control device |
US6944544B1 (en) | 2004-09-10 | 2005-09-13 | Ford Global Technologies, Llc | Adaptive vehicle safety system for collision compatibility |
US7051526B2 (en) | 2004-10-01 | 2006-05-30 | Moog Inc. | Closed-system electrohydraulic actuator |
CA2585262C (en) | 2004-10-25 | 2014-01-07 | Davis Family Irrevocable Trust, With A Trustee Of Richard Mccown | Compressible fluid independent active suspension |
US7983813B2 (en) | 2004-10-29 | 2011-07-19 | Bose Corporation | Active suspending |
US20060108860A1 (en) | 2004-11-23 | 2006-05-25 | Delaware Capital Formation | Brake energy recovery system |
AU2005311758B2 (en) | 2004-12-01 | 2011-11-10 | Concentric Rockford Inc. | Hydraulic drive system |
US7702440B2 (en) | 2005-02-08 | 2010-04-20 | Ford Global Technologies | Method and apparatus for detecting rollover of an automotive vehicle based on a lateral kinetic energy rate threshold |
GB2425160B (en) | 2005-04-12 | 2010-11-17 | Perpetuum Ltd | An Electromechanical Generator for, and method of, Converting Mechanical Vibrational Energy into Electrical Energy |
JP4525918B2 (en) | 2005-04-15 | 2010-08-18 | トヨタ自動車株式会社 | Damping force generating system and vehicle suspension system including the same |
JP4114679B2 (en) | 2005-05-24 | 2008-07-09 | トヨタ自動車株式会社 | Vehicle damping force control device |
TWI279970B (en) | 2005-07-20 | 2007-04-21 | Delta Electronics Inc | Configuration and controlling method of boost circuit having pulse-width modulation limiting controller |
JP4852919B2 (en) | 2005-07-25 | 2012-01-11 | アイシン・エィ・ダブリュ株式会社 | Vehicle ride control system and vehicle ride control method |
US7401520B2 (en) | 2005-08-26 | 2008-07-22 | Bose Corporation | Vehicle testing apparatus for applying vertical force to a wheel |
US20070045067A1 (en) * | 2005-08-26 | 2007-03-01 | Husco International, Inc. | Hydraulic circuit with a pilot operated check valve for an active vehicle suspension system |
US7286919B2 (en) | 2005-10-17 | 2007-10-23 | Gm Global Technology Operations, Inc. | Method and apparatus for controlling damping of a vehicle suspension |
US20070089924A1 (en) | 2005-10-24 | 2007-04-26 | Towertech Research Group | Apparatus and method for hydraulically converting movement of a vehicle wheel to electricity for charging a vehicle battery |
US7261171B2 (en) | 2005-10-24 | 2007-08-28 | Towertech Research Group | Apparatus and method for converting movements of a vehicle wheel to electricity for charging a battery of the vehicle |
US7823891B2 (en) | 2005-11-29 | 2010-11-02 | Bose Corporation | Active vehicle suspension system |
DE102006010508A1 (en) | 2005-12-20 | 2007-08-09 | Robert Bosch Gmbh | Vehicle with a drive motor for driving a traction drive and a working hydraulics |
US8269359B2 (en) | 2006-01-17 | 2012-09-18 | Uusi, Llc | Electronic control for a hydraulically driven generator |
US8269360B2 (en) | 2006-01-17 | 2012-09-18 | Uusi, Llc | Electronic control for a hydraulically driven auxiliary power source |
DE102006002983B4 (en) | 2006-01-21 | 2016-09-15 | Bayerische Motoren Werke Aktiengesellschaft | Active chassis system of a vehicle |
JP4380640B2 (en) * | 2006-02-09 | 2009-12-09 | トヨタ自動車株式会社 | Vehicle stabilizer system |
US7883546B2 (en) | 2006-03-09 | 2011-02-08 | The Regents Of The University Of California | Power generating leg |
US8469164B2 (en) * | 2006-04-27 | 2013-06-25 | Kayaba Industry Co., Ltd. | Damper |
TWM299089U (en) | 2006-04-28 | 2006-10-11 | Shui-Chuan Chiao | Wireless adjustment controller for damping of shock absorber on a vehicle |
US7887033B2 (en) | 2006-06-06 | 2011-02-15 | Deere & Company | Suspension system having active compensation for vibration |
EP1870269B1 (en) | 2006-06-23 | 2008-09-17 | Fondazione Torino Wireless | A suspension tilting module for a wheeled vehicle and a wheeled vehicle equipped with said suspension tilting module |
JP4828325B2 (en) | 2006-07-03 | 2011-11-30 | カヤバ工業株式会社 | Shock absorber controller |
EP1878598A1 (en) | 2006-07-13 | 2008-01-16 | Fondazione Torino Wireless | Regenerative suspension for a vehicle |
CN201002520Y (en) | 2006-11-09 | 2008-01-09 | 宋杨 | Hydraulic energy-feeding type vibration damping suspension for vehicle |
US8067863B2 (en) | 2007-01-18 | 2011-11-29 | Bose Corporation | Detent force correcting |
US8448432B2 (en) * | 2007-02-13 | 2013-05-28 | The Board Of Regents Of The University Of Texas System | Actuators |
DE102007008736A1 (en) * | 2007-02-22 | 2008-08-28 | Wabco Gmbh | Method for controlling a compressor and device for carrying out the method |
JP5129493B2 (en) | 2007-03-12 | 2013-01-30 | 日立建機株式会社 | Travel control device for work vehicle |
JP5046690B2 (en) | 2007-03-12 | 2012-10-10 | 日立建機株式会社 | Control device for work vehicle |
US8285447B2 (en) | 2007-03-20 | 2012-10-09 | Enpulz, L.L.C. | Look ahead vehicle suspension system |
EP1974965A1 (en) * | 2007-03-26 | 2008-10-01 | C.R.F. Società Consortile per Azioni | System for controlling damping and roll and pitch body movements of a motor vehicle, having adjustable hydraulic actuators |
US8032281B2 (en) | 2007-03-29 | 2011-10-04 | Ford Global Technologies | Vehicle control system with advanced tire monitoring |
US7948224B2 (en) | 2007-03-30 | 2011-05-24 | Hong Kong Applied Science And Technology Research Institute Co. Ltd. | Feedback controller having multiple feedback paths |
US7656055B2 (en) | 2007-04-12 | 2010-02-02 | Rosalia Torres | Hydro-wind power generating turbine system and retrofitting method |
BRPI0704656A2 (en) | 2007-04-19 | 2008-12-02 | Seahorse Wave Energy | Hybrid plant for the generation of electricity by sea waves |
DE102007026956A1 (en) * | 2007-06-12 | 2008-12-18 | Kuka Innotec Gmbh | Method and system for robot-guided depalletizing of tires |
CN101687455B (en) | 2007-07-02 | 2012-04-25 | 爱考斯研究株式会社 | Camber angle controlling device |
US8022674B2 (en) | 2007-07-10 | 2011-09-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | State of charge control method and systems for vehicles |
KR20100074161A (en) * | 2007-08-30 | 2010-07-01 | 마이크로펌프, 아이엔씨. | Pumps and pump-heads comprising internal pressure-absorbing member |
JP2009115301A (en) | 2007-11-09 | 2009-05-28 | Toyota Motor Corp | Shock absorber control device |
JP4968005B2 (en) * | 2007-11-13 | 2012-07-04 | トヨタ自動車株式会社 | Suspension control device |
EP2065295A1 (en) * | 2007-11-27 | 2009-06-03 | TNO Bedrijven B.V. | Suspension assembly for suspending a cabin of a truck or the like vehicle |
US8589049B2 (en) * | 2007-12-03 | 2013-11-19 | Lockheed Martin Corporation | GPS-based system and method for controlling vehicle characteristics based on terrain |
US20090192674A1 (en) | 2008-01-24 | 2009-07-30 | Gerald Frank Simons | Hydraulically propelled - gryoscopically stabilized motor vehicle |
US7847444B2 (en) | 2008-02-26 | 2010-12-07 | Gm Global Technology Operations, Inc. | Electric motor assembly with stator mounted in vehicle powertrain housing and method |
US7938217B2 (en) | 2008-03-11 | 2011-05-10 | Physics Lab Of Lake Havasu, Llc | Regenerative suspension with accumulator systems and methods |
US8112198B2 (en) | 2008-03-31 | 2012-02-07 | Bose Corporation | Loading and unloading stabilization in an active suspension system |
US8104278B2 (en) * | 2008-03-31 | 2012-01-31 | GM Global Technology Operations LLC | Energy harvesting, storing, and conversion utilizing shape memory activation |
US8392030B2 (en) | 2008-04-17 | 2013-03-05 | Levant Power Corporation | System and method for control for regenerative energy generators |
US8376100B2 (en) | 2008-04-17 | 2013-02-19 | Levant Power Corporation | Regenerative shock absorber |
US8839920B2 (en) * | 2008-04-17 | 2014-09-23 | Levant Power Corporation | Hydraulic energy transfer |
DE102009002849A1 (en) | 2008-07-11 | 2010-01-14 | Deere & Company, Moline | Drive system for a feed conveyor of a harvester |
US8080888B1 (en) | 2008-08-12 | 2011-12-20 | Sauer-Danfoss Inc. | Hydraulic generator drive system |
EP2156970A1 (en) | 2008-08-12 | 2010-02-24 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Multi-point hydraulic suspension system for a land vehicle |
US7963529B2 (en) | 2008-09-08 | 2011-06-21 | Bose Corporation | Counter-rotating motors with linear output |
US8453441B2 (en) | 2008-11-06 | 2013-06-04 | Purdue Research Foundation | System and method for pump-controlled cylinder cushioning |
US8075002B1 (en) * | 2008-11-18 | 2011-12-13 | Am General Llc | Semi-active suspension system |
CN102239334B (en) * | 2008-12-08 | 2015-03-04 | 胸腔科技有限公司 | Centrifugal pump device |
DE102009022328A1 (en) | 2008-12-10 | 2010-06-17 | Daimler Ag | damper device |
DE102009027939A1 (en) | 2009-02-03 | 2010-08-05 | Robert Bosch Gmbh | Method for suspension control of a motor vehicle, and device for implementation |
US8253281B2 (en) | 2009-02-27 | 2012-08-28 | GM Global Technology Operations LLC | Energy harvesting apparatus incorporated into shock absorber |
US7936113B2 (en) | 2009-02-27 | 2011-05-03 | GM Global Technology Operations LLC | Harvesting energy from vehicular vibrations using piezoelectric devices |
US8143766B2 (en) | 2009-02-27 | 2012-03-27 | GM Global Technology Operations LLC | Harvesting energy from vehicular vibrations using piezoelectric devices |
US8063498B2 (en) | 2009-02-27 | 2011-11-22 | GM Global Technology Operations LLC | Harvesting energy from vehicular vibrations |
WO2010111376A1 (en) | 2009-03-25 | 2010-09-30 | Nikhil Bhat | Energy harvesting system |
US8321087B2 (en) | 2009-03-31 | 2012-11-27 | Toyota Jidosha Kabushiki Kaisha | Damping force control apparatus |
CN101980878B (en) | 2009-04-06 | 2012-12-12 | 丰田自动车株式会社 | Stabilizer device for vehicle |
US8453809B2 (en) | 2009-04-16 | 2013-06-04 | Oneiric Systems, Inc. | Shock absorber having unidirectional fluid flow |
US9222538B2 (en) | 2009-04-16 | 2015-12-29 | Oneiric Systems, Inc. | Shock absorber having unidirectional fluid flow |
US20100308589A1 (en) | 2009-05-27 | 2010-12-09 | Rohrer Technologies, Inc. | Heaving ocean wave energy converter |
JP2011062000A (en) * | 2009-09-11 | 2011-03-24 | Denso Corp | Controller of ac motor |
JP5463263B2 (en) | 2009-11-30 | 2014-04-09 | 日立オートモティブシステムズ株式会社 | Suspension control device for vehicle |
JP5306974B2 (en) | 2009-12-02 | 2013-10-02 | 日立オートモティブシステムズ株式会社 | Electric oil pump |
US8466639B2 (en) | 2009-12-23 | 2013-06-18 | Bose Corporation | Motion control system self-calibrating |
US8356861B2 (en) | 2010-01-26 | 2013-01-22 | Bose Corporation | Active suspension seat skirt |
CN101749353B (en) | 2010-01-27 | 2011-10-19 | 武汉理工大学 | Electrohydraulic energy-regenerative type shock absorber |
JP2011174494A (en) | 2010-02-23 | 2011-09-08 | Takeuchi Seisakusho:Kk | Hydraulic control device |
JP5287787B2 (en) * | 2010-04-16 | 2013-09-11 | 株式会社デンソー | Electric device |
WO2011142020A1 (en) * | 2010-05-13 | 2011-11-17 | トヨタ自動車株式会社 | Vehicle control device and vehicle control system |
US20110293450A1 (en) * | 2010-06-01 | 2011-12-01 | Micropump, Inc. | Pump magnet housing with integrated sensor element |
US8844392B2 (en) * | 2010-06-09 | 2014-09-30 | Gm Global Technology Operations, Llc | Electro-hydraulic and electro-mechanical control system for a dual clutch transmission |
JP5723445B2 (en) | 2010-06-16 | 2015-05-27 | レバント パワー コーポレイション | Integrated energy generation damper |
JP5193259B2 (en) * | 2010-09-14 | 2013-05-08 | 株式会社日立カーエンジニアリング | Motor control device and control method for electric oil pump |
JP5571519B2 (en) | 2010-09-27 | 2014-08-13 | 日立オートモティブシステムズ株式会社 | Body posture control device |
JP5692588B2 (en) * | 2010-12-28 | 2015-04-01 | 株式会社デンソー | Drive device |
JP5927766B2 (en) | 2011-03-11 | 2016-06-01 | 株式会社ジェイテクト | Electric pump unit |
US20120233991A1 (en) | 2011-03-16 | 2012-09-20 | Purdue Research Foundtion | Multi-function machines, hydraulic systems therefor, and methods for their operation |
EP2693609B1 (en) * | 2011-03-28 | 2017-05-03 | Thoratec Corporation | Rotation and drive device and centrifugal pump device using same |
US9067501B2 (en) * | 2011-04-01 | 2015-06-30 | Caterpillar Inc. | System and method for adjusting balance of operation of hydraulic and electric actuators |
DE102011100307A1 (en) * | 2011-05-03 | 2012-11-08 | Daimler Ag | Land bound passenger vehicle with a decoupling device and method for decoupling a body of the land-based passenger vehicle |
JP5789131B2 (en) | 2011-05-31 | 2015-10-07 | 日立オートモティブシステムズ株式会社 | Shock absorber and suspension device |
US10008910B2 (en) * | 2011-06-10 | 2018-06-26 | Axiflux Holdings Pty Ltd. | Electric motor/generator |
US8616563B2 (en) | 2011-08-25 | 2013-12-31 | Stealth Innovative Systems, Llc | Device for adjusting the height of a vehicle |
US9662955B2 (en) * | 2011-09-06 | 2017-05-30 | Jaguar Land Rover Limited | Suspension control device |
US20130081382A1 (en) | 2011-09-30 | 2013-04-04 | Bryan E. Nelson | Regeneration configuration for closed-loop hydraulic systems |
US8966889B2 (en) * | 2011-11-01 | 2015-03-03 | Tenneco Automotive Operating Company Inc. | Energy harvesting passive and active suspension |
US8641053B2 (en) | 2012-02-27 | 2014-02-04 | Bose Corporation | Actuator assembly |
US8744694B2 (en) | 2012-04-17 | 2014-06-03 | Bose Corporation | Active suspension seat and vehicle operation interlocks |
US9102209B2 (en) | 2012-06-27 | 2015-08-11 | Bose Corporation | Anti-causal vehicle suspension |
US8938333B2 (en) | 2012-06-27 | 2015-01-20 | Bose Corporation | Active wheel damping |
US20140012468A1 (en) | 2012-07-09 | 2014-01-09 | Ford Global Technologies, Llc | Real-Time Center-of-Gravity Height Estimation |
DE102012013462A1 (en) | 2012-07-09 | 2014-01-09 | Zf Friedrichshafen Ag | Energy recuperating fluid vibration damper |
US20140095022A1 (en) | 2012-10-03 | 2014-04-03 | Thomas J. Cashman | Active Suspension System |
US8820064B2 (en) | 2012-10-25 | 2014-09-02 | Tenneco Automotive Operating Company Inc. | Recuperating passive and active suspension |
EP2933161B1 (en) * | 2012-12-11 | 2019-09-25 | Toyota Jidosha Kabushiki Kaisha | Vehicle state detection device |
US8892304B2 (en) | 2013-01-08 | 2014-11-18 | Ford Global Technologies, Llc | Adaptive crash height adjustment using active suspensions |
US9702349B2 (en) | 2013-03-15 | 2017-07-11 | ClearMotion, Inc. | Active vehicle suspension system |
US9291300B2 (en) | 2013-03-15 | 2016-03-22 | Bose Corporation | Rotary actuator driven vibration isolation |
US9174508B2 (en) | 2013-03-15 | 2015-11-03 | Levant Power Corporation | Active vehicle suspension |
EP4450845A3 (en) | 2013-03-15 | 2025-01-01 | ClearMotion, Inc. | Active vehicle suspension improvements |
EP2969608B1 (en) | 2013-03-15 | 2021-11-17 | ClearMotion, Inc. | Multi-path fluid diverter valve |
US9145905B2 (en) | 2013-03-15 | 2015-09-29 | Oshkosh Corporation | Independent load sensing for a vehicle hydraulic system |
WO2014176371A2 (en) | 2013-04-23 | 2014-10-30 | Levant Power Corporation | Active suspension with structural actuator |
US9199563B2 (en) | 2013-06-04 | 2015-12-01 | Bose Corporation | Active suspension of a motor vehicle passenger seat |
US9108484B2 (en) | 2013-07-25 | 2015-08-18 | Tenneco Automotive Operating Company Inc. | Recuperating passive and active suspension |
US20150059325A1 (en) * | 2013-09-03 | 2015-03-05 | Caterpillar Inc. | Hybrid Apparatus and Method for Hydraulic Systems |
US20150114739A1 (en) | 2013-10-31 | 2015-04-30 | Curtis Arnold Newman | Hydraulic Hybrid Vehicle |
US9702424B2 (en) | 2014-10-06 | 2017-07-11 | ClearMotion, Inc. | Hydraulic damper, hydraulic bump-stop and diverter valve |
-
2014
- 2014-03-14 EP EP24178201.0A patent/EP4450845A3/en active Pending
- 2014-03-14 EP EP19200776.3A patent/EP3626485B1/en active Active
- 2014-03-14 WO PCT/US2014/029654 patent/WO2014145018A2/en active Application Filing
- 2014-03-14 EP EP14763789.6A patent/EP2968709B1/en active Active
- 2014-04-01 US US14/242,612 patent/US10160276B2/en active Active
- 2014-04-01 US US14/242,636 patent/US20140294601A1/en not_active Abandoned
- 2014-04-01 US US14/242,705 patent/US9694639B2/en active Active
- 2014-04-01 US US14/242,658 patent/US9707814B2/en active Active
- 2014-04-01 US US14/242,691 patent/US20140297116A1/en not_active Abandoned
-
2017
- 2017-12-05 US US15/832,517 patent/US10828953B2/en active Active
-
2023
- 2023-10-20 US US18/491,335 patent/US12179539B2/en active Active
-
2024
- 2024-08-06 US US18/795,701 patent/US20240391286A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050060069A1 (en) * | 1997-10-22 | 2005-03-17 | Breed David S. | Method and system for controlling a vehicle |
US6502837B1 (en) * | 1998-11-11 | 2003-01-07 | Kenmar Company Trust | Enhanced computer optimized adaptive suspension system and method |
US20140195112A1 (en) * | 2013-01-08 | 2014-07-10 | Ford Global Technologies, Llc | Adaptive Active Suspension System With Road Preview |
US20140195114A1 (en) * | 2013-01-10 | 2014-07-10 | Ford Global Technologies, Llc | Suspension Control System To Facilitate Wheel Motions During Parking |
Cited By (190)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230043557A1 (en) * | 2006-11-02 | 2023-02-09 | Google Llc | Adaptive and Personalized Navigation System |
US12209877B2 (en) * | 2006-11-02 | 2025-01-28 | Google Llc | Adaptive and personalized navigation system |
US9260011B2 (en) | 2008-04-17 | 2016-02-16 | Levant Power Corporation | Hydraulic energy transfer |
US9597939B2 (en) | 2008-04-17 | 2017-03-21 | ClearMotion, Inc. | Hydraulic energy transfer |
US9810282B2 (en) | 2009-10-06 | 2017-11-07 | Tenneco Automotive Operating Company Inc. | Damper with digital valve |
US9695900B2 (en) | 2009-10-06 | 2017-07-04 | Tenneco Automotive Operating Company Inc. | Damper with digital valve |
US9035477B2 (en) | 2010-06-16 | 2015-05-19 | Levant Power Corporation | Integrated energy generating damper |
US9689382B2 (en) | 2010-06-16 | 2017-06-27 | ClearMotion, Inc. | Integrated energy generating damper |
US20140214283A1 (en) * | 2011-10-04 | 2014-07-31 | Parker-Hannifin Corporation | Method and System for Controlling Electric Actuators |
US9223302B2 (en) * | 2011-10-04 | 2015-12-29 | Parker-Hannifin Corporation | Method and system for controlling electric actuators |
US20150339921A1 (en) * | 2012-11-13 | 2015-11-26 | Audi Ag | Method for making available route information by means of at least one motor vehicle |
US9368030B2 (en) * | 2012-11-13 | 2016-06-14 | Audi Ag | Method for making available route information by means of at least one motor vehicle |
US9925842B2 (en) | 2013-02-28 | 2018-03-27 | Tenneco Automotive Operating Company Inc. | Valve switching controls for adjustable damper |
US9884533B2 (en) | 2013-02-28 | 2018-02-06 | Tenneco Automotive Operating Company Inc. | Autonomous control damper |
US9802456B2 (en) | 2013-02-28 | 2017-10-31 | Tenneco Automotive Operating Company Inc. | Damper with integrated electronics |
US10000104B2 (en) | 2013-02-28 | 2018-06-19 | Tenneco Automotive Operating Company Inc. | Damper with integrated electronics |
US9174508B2 (en) | 2013-03-15 | 2015-11-03 | Levant Power Corporation | Active vehicle suspension |
US9440507B2 (en) | 2013-03-15 | 2016-09-13 | Levant Power Corporation | Context aware active suspension control system |
US9879746B2 (en) | 2013-03-15 | 2018-01-30 | Tenneco Automotive Operating Company Inc. | Rod guide system and method with multiple solenoid valve cartridges and multiple pressure regulated valve assemblies |
US9879748B2 (en) | 2013-03-15 | 2018-01-30 | Tenneco Automotive Operating Company Inc. | Two position valve with face seal and pressure relief port |
US9597940B2 (en) | 2013-03-15 | 2017-03-21 | ClearMotion, Inc. | Active vehicle suspension |
US10412368B2 (en) | 2013-03-15 | 2019-09-10 | Uber Technologies, Inc. | Methods, systems, and apparatus for multi-sensory stereo vision for robotics |
US9676244B2 (en) | 2013-03-15 | 2017-06-13 | ClearMotion, Inc. | Integrated active suspension smart valve |
US9550404B2 (en) | 2013-03-15 | 2017-01-24 | Levant Power Corporation | Active suspension with on-demand energy flow |
US20160031285A1 (en) * | 2013-03-15 | 2016-02-04 | Levant Power Corporation | Multi-path fluid diverter valve |
US9694639B2 (en) | 2013-03-15 | 2017-07-04 | ClearMotion, Inc. | Distributed active suspension control system |
US9809078B2 (en) * | 2013-03-15 | 2017-11-07 | ClearMotion, Inc. | Multi-path fluid diverter valve |
US9702349B2 (en) | 2013-03-15 | 2017-07-11 | ClearMotion, Inc. | Active vehicle suspension system |
US9707814B2 (en) | 2013-03-15 | 2017-07-18 | ClearMotion, Inc. | Active stabilization system for truck cabins |
US10029534B2 (en) | 2013-03-15 | 2018-07-24 | ClearMotion, Inc. | Hydraulic actuator with on-demand energy flow |
US10160276B2 (en) | 2013-03-15 | 2018-12-25 | ClearMotion, Inc. | Contactless sensing of a fluid-immersed electric motor |
US9855814B2 (en) | 2013-04-23 | 2018-01-02 | ClearMotion, Inc. | Active suspension with structural actuator |
US10539958B2 (en) | 2013-12-20 | 2020-01-21 | Agjunction Llc | Hydraulic interrupter safety system and method |
US9733643B2 (en) | 2013-12-20 | 2017-08-15 | Agjunction Llc | Hydraulic interrupter safety system and method |
US10377371B2 (en) | 2014-04-02 | 2019-08-13 | ClearMotion, Inc. | Active safety suspension system |
US10316492B2 (en) * | 2014-07-31 | 2019-06-11 | Cnh Industrial America Llc | Active force/vibration feedback control method and apparatus for a movable machine |
US20170267049A1 (en) * | 2014-08-19 | 2017-09-21 | Kyb Corporation | Suspension Control Apparatus, Suspension Control Method, and Program |
US9702424B2 (en) | 2014-10-06 | 2017-07-11 | ClearMotion, Inc. | Hydraulic damper, hydraulic bump-stop and diverter valve |
US11151339B2 (en) | 2014-11-12 | 2021-10-19 | Joseph E. Kovarik | Method and system for charging electric autonomous vehicles |
US11966808B2 (en) | 2014-11-12 | 2024-04-23 | Joseph E. Kovarik | Method for charging an electric vehicle |
US11568159B2 (en) | 2014-11-12 | 2023-01-31 | Joseph E. Kovarik | Method for charging an electric vehicle |
US10867139B2 (en) | 2014-11-12 | 2020-12-15 | Joseph E. Kovarik | Method and system for autonomous vehicles |
US12248839B2 (en) | 2014-11-12 | 2025-03-11 | Joseph E. Kovarik | Driving assistance method and system |
US20170294120A1 (en) * | 2014-11-17 | 2017-10-12 | Hitachi Automotive Systems Ltd. | Automatic driving system |
US10783781B2 (en) * | 2014-11-17 | 2020-09-22 | Hitachi Automotive Systems, Ltd. | Automatic driving system |
US20160159360A1 (en) * | 2014-12-09 | 2016-06-09 | Ford Global Technologies, Llc | Autonomous vehicle cornering maneuver |
CN105667504A (en) * | 2014-12-09 | 2016-06-15 | 福特全球技术公司 | Autonomous vehicle cornering maneuver |
US10246094B2 (en) * | 2014-12-09 | 2019-04-02 | Ford Global Technologies, Llc | Autonomous vehicle cornering maneuver |
US9937765B2 (en) * | 2015-04-28 | 2018-04-10 | Ram Sivaraman | Method of adapting an automobile suspension in real-time |
US20160325595A1 (en) * | 2015-05-08 | 2016-11-10 | Man Truck & Bus Ag | Method For Controlling The Damping Force Of Adjustable Dampers In Motor Vehicles, Particularly In Commercial Vehicles |
US10131446B1 (en) * | 2015-07-16 | 2018-11-20 | Near Earth Autonomy, Inc. | Addressing multiple time around (MTA) ambiguities, particularly for lidar systems, and particularly for autonomous aircraft |
US10962378B2 (en) | 2015-07-30 | 2021-03-30 | Samsung Electronics Co., Ltd. | Autonomous vehicle and method of controlling the autonomous vehicle |
US10782701B2 (en) | 2015-07-30 | 2020-09-22 | Samsung Electronics Co., Ltd. | Autonomous vehicle and method of controlling the same |
US9869560B2 (en) | 2015-07-31 | 2018-01-16 | International Business Machines Corporation | Self-driving vehicle's response to a proximate emergency vehicle |
US11460308B2 (en) | 2015-07-31 | 2022-10-04 | DoorDash, Inc. | Self-driving vehicle's response to a proximate emergency vehicle |
US9785145B2 (en) | 2015-08-07 | 2017-10-10 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US9483948B1 (en) | 2015-08-07 | 2016-11-01 | International Business Machines Corporation | Automated control of interactions between self-driving vehicles and pedestrians |
US9721397B2 (en) | 2015-08-11 | 2017-08-01 | International Business Machines Corporation | Automatic toll booth interaction with self-driving vehicles |
US9718471B2 (en) | 2015-08-18 | 2017-08-01 | International Business Machines Corporation | Automated spatial separation of self-driving vehicles from manually operated vehicles |
US9481366B1 (en) | 2015-08-19 | 2016-11-01 | International Business Machines Corporation | Automated control of interactions between self-driving vehicles and animals |
US20170052261A1 (en) * | 2015-08-20 | 2017-02-23 | Trimble Navigation Limited | Cordless inertial vehicle navigation with elevation data input |
US10564297B2 (en) * | 2015-08-20 | 2020-02-18 | Trimble Inc. | Cordless inertial vehicle navigation with elevation data input |
US9896100B2 (en) | 2015-08-24 | 2018-02-20 | International Business Machines Corporation | Automated spatial separation of self-driving vehicles from other vehicles based on occupant preferences |
US10173679B2 (en) | 2015-08-24 | 2019-01-08 | International Business Machines Corporation | Automated spatial separation of self-driving vehicles from other vehicles based on occupant preferences |
US10202117B2 (en) | 2015-08-24 | 2019-02-12 | International Business Machines Corporation | Automated spatial separation of self-driving vehicles from other vehicles based on occupant preferences |
US20170061669A1 (en) * | 2015-09-01 | 2017-03-02 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Vehicular information processing apparatus |
US10235817B2 (en) | 2015-09-01 | 2019-03-19 | Ford Global Technologies, Llc | Motion compensation for on-board vehicle sensors |
US9884629B2 (en) | 2015-09-02 | 2018-02-06 | International Business Machines Corporation | Redirecting self-driving vehicles to a product provider based on physiological states of occupants of the self-driving vehicles |
US9731726B2 (en) | 2015-09-02 | 2017-08-15 | International Business Machines Corporation | Redirecting self-driving vehicles to a product provider based on physiological states of occupants of the self-driving vehicles |
US11832239B2 (en) | 2015-09-15 | 2023-11-28 | Lg Electronics Inc. | Resource selection method for V2X operation of terminal in wireless communication system, and terminal using method |
US10973041B2 (en) * | 2015-09-15 | 2021-04-06 | Lg Electronics Inc. | Resource selection method for V2X operation of terminal in wireless communication system, and terminal using method |
US9513632B1 (en) | 2015-09-16 | 2016-12-06 | International Business Machines Corporation | Driving mode alerts from self-driving vehicles |
US11597402B2 (en) | 2015-09-25 | 2023-03-07 | Slingshot Iot Llc | Controlling driving modes of self-driving vehicles |
US12037004B2 (en) | 2015-09-25 | 2024-07-16 | Granite Vehicle Ventures Llc | Controlling driving modes of self-driving vehicles |
US10029701B2 (en) | 2015-09-25 | 2018-07-24 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US9566986B1 (en) | 2015-09-25 | 2017-02-14 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US11738765B2 (en) | 2015-09-25 | 2023-08-29 | Slingshot Iot Llc | Controlling driving modes of self-driving vehicles |
US10717446B2 (en) | 2015-09-25 | 2020-07-21 | Slingshot Iot Llc | Controlling driving modes of self-driving vehicles |
US11091171B2 (en) | 2015-09-25 | 2021-08-17 | Slingshot Iot Llc | Controlling driving modes of self-driving vehicles |
US9481367B1 (en) | 2015-10-14 | 2016-11-01 | International Business Machines Corporation | Automated control of interactions between self-driving vehicles and animals |
US9723473B2 (en) * | 2015-10-14 | 2017-08-01 | Toyota Jidosha Kabushiki Kaisha | Millimeter wave communication system |
US9834224B2 (en) | 2015-10-15 | 2017-12-05 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US9981669B2 (en) | 2015-10-15 | 2018-05-29 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US9751532B2 (en) | 2015-10-27 | 2017-09-05 | International Business Machines Corporation | Controlling spacing of self-driving vehicles based on social network relationships |
US10543844B2 (en) | 2015-10-27 | 2020-01-28 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US9944291B2 (en) | 2015-10-27 | 2018-04-17 | International Business Machines Corporation | Controlling driving modes of self-driving vehicles |
US10607293B2 (en) | 2015-10-30 | 2020-03-31 | International Business Machines Corporation | Automated insurance toggling for self-driving vehicles |
US10176525B2 (en) | 2015-11-09 | 2019-01-08 | International Business Machines Corporation | Dynamically adjusting insurance policy parameters for a self-driving vehicle |
US9791861B2 (en) | 2015-11-12 | 2017-10-17 | International Business Machines Corporation | Autonomously servicing self-driving vehicles |
US10036642B2 (en) | 2015-12-08 | 2018-07-31 | Uber Technologies, Inc. | Automated vehicle communications system |
US10243604B2 (en) | 2015-12-08 | 2019-03-26 | Uber Technologies, Inc. | Autonomous vehicle mesh networking configuration |
US10050760B2 (en) | 2015-12-08 | 2018-08-14 | Uber Technologies, Inc. | Backend communications system for a fleet of autonomous vehicles |
US10113494B2 (en) * | 2015-12-08 | 2018-10-30 | Ford Global Technologies, Llc | Fuel vapor flow based on road conditions |
US20180163647A1 (en) * | 2015-12-08 | 2018-06-14 | Ford Global Technologies, Llc | Fuel vapor flow based on road conditions |
US9740205B2 (en) | 2015-12-08 | 2017-08-22 | Uber Technologies, Inc. | Autonomous vehicle communication configuration system |
US10021614B2 (en) | 2015-12-08 | 2018-07-10 | Uber Technologies, Inc. | Optimizing communication for autonomous vehicles |
US10234863B2 (en) | 2015-12-08 | 2019-03-19 | Uber Technologies, Inc. | Autonomous vehicle communication configuration system |
US10061326B2 (en) | 2015-12-09 | 2018-08-28 | International Business Machines Corporation | Mishap amelioration based on second-order sensing by a self-driving vehicle |
US20190023095A1 (en) * | 2015-12-18 | 2019-01-24 | Jaguar Land Rover Limited | Control unit for an active suspension system |
US20170210297A1 (en) * | 2016-01-14 | 2017-07-27 | Faraday&Future Inc. | Modular mirror assembly |
US10315578B2 (en) * | 2016-01-14 | 2019-06-11 | Faraday&Future Inc. | Modular mirror assembly |
US10109195B2 (en) | 2016-01-27 | 2018-10-23 | International Business Machines Corporation | Selectively controlling a self-driving vehicle's access to a roadway |
US9836973B2 (en) | 2016-01-27 | 2017-12-05 | International Business Machines Corporation | Selectively controlling a self-driving vehicle's access to a roadway |
US10705530B2 (en) * | 2016-01-29 | 2020-07-07 | Nissan Motor Co., Ltd. | Vehicle travel control method and vehicle travel control device |
US20190033876A1 (en) * | 2016-01-29 | 2019-01-31 | Nissan Motor Co., Ltd. | Vehicle Travel Control Method and Vehicle Travel Control Device |
US9969326B2 (en) | 2016-02-22 | 2018-05-15 | Uber Technologies, Inc. | Intention signaling for an autonomous vehicle |
AU2016393890B2 (en) * | 2016-02-22 | 2019-02-21 | Aurora Operations, Inc. | Intention signaling for an autonomous vehicle |
US9902311B2 (en) * | 2016-02-22 | 2018-02-27 | Uber Technologies, Inc. | Lighting device for a vehicle |
US10160378B2 (en) | 2016-02-22 | 2018-12-25 | Uber Technologies, Inc. | Light output system for a self-driving vehicle |
US10239529B2 (en) | 2016-03-01 | 2019-03-26 | Ford Global Technologies, Llc | Autonomous vehicle operation based on interactive model predictive control |
US10077007B2 (en) * | 2016-03-14 | 2018-09-18 | Uber Technologies, Inc. | Sidepod stereo camera system for an autonomous vehicle |
US20170259753A1 (en) * | 2016-03-14 | 2017-09-14 | Uber Technologies, Inc. | Sidepod stereo camera system for an autonomous vehicle |
US9849883B2 (en) | 2016-05-04 | 2017-12-26 | Ford Global Technologies, Llc | Off-road autonomous driving |
GB2551630A (en) * | 2016-05-04 | 2017-12-27 | Ford Global Tech Llc | Off road autonomous driving |
US10486699B2 (en) * | 2016-05-04 | 2019-11-26 | Ford Global Technologies, Llc | Off-road autonomous driving |
US11295372B2 (en) | 2016-05-24 | 2022-04-05 | International Business Machines Corporation | Directing movement of a self-driving vehicle based on sales activity |
US10685391B2 (en) | 2016-05-24 | 2020-06-16 | International Business Machines Corporation | Directing movement of a self-driving vehicle based on sales activity |
US20180029651A1 (en) * | 2016-07-26 | 2018-02-01 | Man Truck & Bus Ag | Method and device for performing open-loop control of a driver's cab mount |
US10442475B2 (en) * | 2016-07-26 | 2019-10-15 | Man Truck & Bus Ag | Method and device for performing open-loop control of a driver's cab mount |
DE102016116856A1 (en) | 2016-09-08 | 2018-03-08 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | System and method for adjusting a height of at least a part of a commercial vehicle |
WO2018046250A1 (en) | 2016-09-08 | 2018-03-15 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | System and method for adjusting a height of at least one part of a utility vehicle |
US10207718B2 (en) | 2016-09-15 | 2019-02-19 | International Business Machines Corporation | Automatically providing explanations for actions taken by a self-driving vehicle |
US10093322B2 (en) | 2016-09-15 | 2018-10-09 | International Business Machines Corporation | Automatically providing explanations for actions taken by a self-driving vehicle |
US10643256B2 (en) | 2016-09-16 | 2020-05-05 | International Business Machines Corporation | Configuring a self-driving vehicle for charitable donations pickup and delivery |
WO2018057658A1 (en) * | 2016-09-20 | 2018-03-29 | Apple Inc. | Motion minimization systems and methods |
WO2018063426A1 (en) * | 2016-09-27 | 2018-04-05 | Baidu Usa Llc | A vehicle position point forwarding method for autonomous vehicles |
US10191493B2 (en) | 2016-09-27 | 2019-01-29 | Baidu Usa Llc | Vehicle position point forwarding method for autonomous vehicles |
US10535265B2 (en) * | 2016-11-30 | 2020-01-14 | Hyundai Motor Company | Apparatus and method for recognizing position of vehicle |
US10474164B2 (en) | 2016-12-30 | 2019-11-12 | DeepMap Inc. | Representing navigable surface boundaries of lanes in high definition maps for autonomous vehicles |
WO2018125848A1 (en) * | 2016-12-30 | 2018-07-05 | DeepMap Inc. | Route generation using high definition maps for autonomous vehicles |
US20180188743A1 (en) * | 2016-12-30 | 2018-07-05 | DeepMap Inc. | Route generation using high definition maps for autonomous vehicles |
US10845820B2 (en) * | 2016-12-30 | 2020-11-24 | DeepMap Inc. | Route generation using high definition maps for autonomous vehicles |
US10259452B2 (en) | 2017-01-04 | 2019-04-16 | International Business Machines Corporation | Self-driving vehicle collision management system |
US10363893B2 (en) | 2017-01-05 | 2019-07-30 | International Business Machines Corporation | Self-driving vehicle contextual lock control system |
US10529147B2 (en) | 2017-01-05 | 2020-01-07 | International Business Machines Corporation | Self-driving vehicle road safety flare deploying system |
US11001121B2 (en) * | 2017-01-18 | 2021-05-11 | Ntn Corporation | Vehicular suspension device |
US10703359B2 (en) * | 2017-01-27 | 2020-07-07 | Ford Global Technologies, Llc | Controlling vehicle orientation |
US20180215373A1 (en) * | 2017-01-27 | 2018-08-02 | Ford Global Technologies, Llc | Semi-stationary surface |
US10293818B2 (en) | 2017-03-07 | 2019-05-21 | Uber Technologies, Inc. | Teleassistance data prioritization for self-driving vehicles |
US10202126B2 (en) | 2017-03-07 | 2019-02-12 | Uber Technologies, Inc. | Teleassistance data encoding for self-driving vehicles |
US10983520B2 (en) | 2017-03-07 | 2021-04-20 | Uber Technologies, Inc. | Teleassistance data prioritization for self-driving vehicles |
US10152060B2 (en) | 2017-03-08 | 2018-12-11 | International Business Machines Corporation | Protecting contents of a smart vault being transported by a self-driving vehicle |
US20210240184A1 (en) * | 2017-03-09 | 2021-08-05 | Waymo Llc | Preparing autonomous vehicles for turns |
US11938967B2 (en) * | 2017-03-09 | 2024-03-26 | Waymo Llc | Preparing autonomous vehicles for turns |
US11009875B2 (en) | 2017-03-09 | 2021-05-18 | Waymo Llc | Preparing autonomous vehicles for turns |
US20200039316A1 (en) * | 2017-04-05 | 2020-02-06 | ClearMotion, Inc. | Active force cancellation at structural interfaces |
US10543836B2 (en) * | 2017-05-22 | 2020-01-28 | Ford Global Technologies, Llc | Torque converter control for a variable displacement engine |
US20180334162A1 (en) * | 2017-05-22 | 2018-11-22 | Ford Global Technologies, Llc | Torque converter control for a variable displacement engine |
US11518367B2 (en) | 2017-05-22 | 2022-12-06 | Ford Global Technologies, Llc | Torque converter control for a variable displacement engine |
US10588233B2 (en) | 2017-06-06 | 2020-03-10 | Tenneco Automotive Operating Company Inc. | Damper with printed circuit board carrier |
US10479160B2 (en) | 2017-06-06 | 2019-11-19 | Tenneco Automotive Operating Company Inc. | Damper with printed circuit board carrier |
US10493622B2 (en) | 2017-07-14 | 2019-12-03 | Uatc, Llc | Systems and methods for communicating future vehicle actions to be performed by an autonomous vehicle |
US10737544B2 (en) | 2017-07-24 | 2020-08-11 | Ford Global Technologies, Llc | Systems and methods to control a suspension of a vehicle |
US10901432B2 (en) * | 2017-09-13 | 2021-01-26 | ClearMotion, Inc. | Road surface-based vehicle control |
US11733707B2 (en) | 2017-09-13 | 2023-08-22 | ClearMotion, Inc. | Road surface-based vehicle control |
US11657714B2 (en) * | 2017-10-06 | 2023-05-23 | Zoox, Inc. | Enhanced travel modes for vehicles |
US10692377B1 (en) * | 2017-10-06 | 2020-06-23 | Zoox, Inc. | Enhanced travel modes for vehicles |
US20200380865A1 (en) * | 2017-10-06 | 2020-12-03 | Zoox, Inc. | Enhanced travel modes for vehicles |
US20210197838A1 (en) * | 2017-11-03 | 2021-07-01 | Zf Friedrichshafen Ag | Method for adapting the comfort of a vehicle, regulating device and vehicle |
US11731627B2 (en) | 2017-11-07 | 2023-08-22 | Uatc, Llc | Road anomaly detection for autonomous vehicle |
US10967862B2 (en) | 2017-11-07 | 2021-04-06 | Uatc, Llc | Road anomaly detection for autonomous vehicle |
US10974563B2 (en) * | 2017-12-20 | 2021-04-13 | Audi Ag | Control of a suspension component of a vehicle |
US11104345B2 (en) | 2018-04-18 | 2021-08-31 | Rivian Ip Holdings, Llc | Methods, systems, and media for determining characteristics of roads |
WO2019204495A1 (en) * | 2018-04-18 | 2019-10-24 | Rivian Ip Holdings, Llc | Methods, systems, and media for determining characteristics of roads |
US11794749B2 (en) | 2018-04-18 | 2023-10-24 | Rivian Ip Holdings, Llc | Methods, systems, and media for determining characteristics of roads |
US10800403B2 (en) * | 2018-05-14 | 2020-10-13 | GM Global Technology Operations LLC | Autonomous ride dynamics comfort controller |
EP3584097A1 (en) * | 2018-06-20 | 2019-12-25 | Volvo Car Corporation | Chassis-based force nullification systems and methods for seated and standing vehicle occupants |
CN110646226A (en) * | 2018-06-27 | 2020-01-03 | 通用汽车环球科技运作有限责任公司 | Test method and metric for assessing quality of road feedback to driver in steer-by-wire system |
US11535159B2 (en) | 2018-07-18 | 2022-12-27 | Faraday & Future Inc. | System and methods for mounting a peripheral vehicular device |
US10843700B2 (en) | 2018-10-17 | 2020-11-24 | Aptiv Technologies Limited | Vehicle system and method for steep slope site avoidance |
EP3640110A1 (en) * | 2018-10-17 | 2020-04-22 | Aptiv Technologies Limited | Vehicle system and method for steep slope pick-up and drop-off site avoidance |
US11428536B2 (en) * | 2018-12-19 | 2022-08-30 | Nvidia Corporation | Navigable boundary generation for autonomous vehicles |
US20200200877A1 (en) * | 2018-12-21 | 2020-06-25 | Infineon Technologies Ag | Real time gating and signal routing in laser and detector arrays for lidar application |
US11709231B2 (en) * | 2018-12-21 | 2023-07-25 | Infineon Technologies Ag | Real time gating and signal routing in laser and detector arrays for LIDAR application |
US12162322B2 (en) * | 2019-03-27 | 2024-12-10 | Hitachi Astemo, Ltd. | Suspension control apparatus |
US20220161624A1 (en) * | 2019-03-27 | 2022-05-26 | Hitachi Astemo, Ltd. | Suspension control apparatus |
US20200408533A1 (en) * | 2019-06-28 | 2020-12-31 | DeepMap Inc. | Deep learning-based detection of ground features using a high definition map |
US11001267B2 (en) | 2019-08-01 | 2021-05-11 | Lear Corporation | Method and system for proactively adjusting vehicle occupant biometric monitor in view of upcoming road conditions |
US20220242417A1 (en) * | 2019-08-27 | 2022-08-04 | Bayerische Motoren Werke Aktiengesellschaft | Operational Assistance Method for a Vehicle, Control Unit, and Vehicle |
US12077168B2 (en) * | 2019-08-27 | 2024-09-03 | Bayerische Motoren Werke Aktiengesellschaft | Operational assistance method for a vehicle, control unit, and vehicle |
US11541882B2 (en) * | 2019-09-24 | 2023-01-03 | Volvo Car Corporation | Low-impact collision detection |
US11505023B2 (en) * | 2019-12-13 | 2022-11-22 | Hyundai Motor Company | Method and apparatus for controlling electronic control suspension |
WO2021138700A1 (en) * | 2020-01-05 | 2021-07-08 | Eva, Llc | Automated steering control mechanism and system for wheeled vehicles |
US11830302B2 (en) | 2020-03-24 | 2023-11-28 | Uatc, Llc | Computer system for utilizing ultrasonic signals to implement operations for autonomous vehicles |
US11529953B2 (en) | 2020-04-30 | 2022-12-20 | Ford Global Technologies, Llc | Adjust operational parameters based on identified roadway irregularities |
US20240166194A1 (en) * | 2021-03-22 | 2024-05-23 | Nissan Motor Co., Ltd. | Driving Force Control Method and Driving Force Control Device |
US12162473B2 (en) * | 2021-03-22 | 2024-12-10 | Nissan Motor Co., Ltd. | Driving force control method and driving force control device |
US11859571B2 (en) | 2021-07-21 | 2024-01-02 | Ford Global Technologies, Llc | Methods for a road surface metric |
US20230417572A1 (en) * | 2022-06-24 | 2023-12-28 | Gm Cruise Holdings Llc | Mapping Road Conditions in an Environment |
KR102616457B1 (en) * | 2023-06-16 | 2023-12-21 | 에이디어스 주식회사 | Air Suspension Operation Planning Generation Device for Autonomous Vehicles |
Also Published As
Publication number | Publication date |
---|---|
US20140297113A1 (en) | 2014-10-02 |
US20180154723A1 (en) | 2018-06-07 |
US20140297117A1 (en) | 2014-10-02 |
EP4450845A2 (en) | 2024-10-23 |
US12179539B2 (en) | 2024-12-31 |
EP2968709B1 (en) | 2019-10-02 |
EP4450845A3 (en) | 2025-01-01 |
WO2014145018A3 (en) | 2015-01-29 |
US20140294601A1 (en) | 2014-10-02 |
US10828953B2 (en) | 2020-11-10 |
EP2968709A2 (en) | 2016-01-20 |
EP3626485B1 (en) | 2024-05-29 |
US9707814B2 (en) | 2017-07-18 |
US20240300275A1 (en) | 2024-09-12 |
US20240391286A1 (en) | 2024-11-28 |
EP2968709A4 (en) | 2017-08-09 |
US9694639B2 (en) | 2017-07-04 |
EP3626485A1 (en) | 2020-03-25 |
US20140294625A1 (en) | 2014-10-02 |
US10160276B2 (en) | 2018-12-25 |
WO2014145018A2 (en) | 2014-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10828953B2 (en) | Self-driving vehicle with integrated active suspension | |
JP7480129B2 (en) | Control of a vehicle suspension system using pressure set points - Patents.com | |
US9405293B2 (en) | Vehicle trajectory optimization for autonomous vehicles | |
EP1885576B1 (en) | Cruise control for a motor vehicle | |
CN110481555A (en) | It is autonomous to take dynamics comfort level controller | |
CN110036353A (en) | For the self-adaptation control method and system in the surface car of trace, especially in automatic Pilot scene | |
CN115257724B (en) | A plug-in hybrid vehicle safety and energy-saving decision control method and system | |
CN113495559B (en) | Learning-based controller for autopilot | |
JP2008143269A (en) | Vehicle control device | |
US20230294473A1 (en) | Vehicle active suspension control system and method | |
US11993122B1 (en) | Updating vehicle models for improved suspension control | |
CN114425934A (en) | Vehicle control method and control device | |
CN114555437A (en) | Model-based predictive tuning of motor vehicles | |
US20240034302A1 (en) | Systems and methods for predictive control at handling limits with an automated vehicle | |
AU2023303034A1 (en) | Autonomous-ready vehicle | |
CN115520193A (en) | Method, device and computer program product for operating a vehicle | |
US11938776B1 (en) | Multiple model active suspension control | |
US12030359B1 (en) | Active suspension system using modal expansion | |
CN115432005A (en) | Virtual driving yard weight rolling optimization decision method in ice and snow environment | |
US11932308B1 (en) | Four wheel steering angle constraints | |
CN117163060A (en) | Open loop and closed loop hybrid path planning system and method | |
CN112729328B (en) | Fuel-saving driving track planning method and device, electronic equipment and storage medium | |
CN117657206A (en) | Traction vehicle driving method and system for autonomous driving | |
WO2023037758A1 (en) | Vehicle control device, vehicle control method, and vehicle control system | |
CN114585977A (en) | Model-based predictive tuning of multiple components of a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LEVANT POWER CORPORATION, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDERSON, ZACKARY MARTIN;GIOVANARDI, MARCO;SIGNING DATES FROM 20140402 TO 20140403;REEL/FRAME:032614/0859 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND, CALIFORNIA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007 Effective date: 20211221 Owner name: FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND, CALIFORNIA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007 Effective date: 20211221 Owner name: FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND, CALIFORNIA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007 Effective date: 20211221 Owner name: WIL FUND I, L.P., CALIFORNIA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007 Effective date: 20211221 Owner name: ACADIA WOODS PARTNERS, LLC, NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007 Effective date: 20211221 Owner name: NEWVIEW CAPITAL FUND I, L.P., CALIFORNIA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:CLEARMOTION, INC.;REEL/FRAME:058644/0007 Effective date: 20211221 |
|
AS | Assignment |
Owner name: ACADIA WOODS PARTNERS, LLC, NEW YORK Free format text: AMENDED & RESTATED PATENT SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:059361/0433 Effective date: 20220310 |
|
AS | Assignment |
Owner name: BRILLIANCE JOURNEY LIMITED, VIRGIN ISLANDS, BRITISH Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: THE PRIVATE SHARES FUND, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: TEW LIMITED PARTNERSHIP, MARYLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: FHW LIMITED PARTNERSHIP, MARYLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: MICROSOFT GLOBAL FINANCE, WASHINGTON Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: BRIDGESTONE AMERICAS, INC., TENNESSEE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: WIL FUND I, L.P., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: NEWVIEW CAPITAL FUND I, LP, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 Owner name: ACADIA WOODS PARTNERS, LLC, NEW YORK Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDING ASSIGNEE PREVIOUSLY RECORDED AT REEL: 059361 FRAME: 0433. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNORS:CLEARMOTION, INC.;CLEARMOTION ACQUISITION I LLC;REEL/FRAME:060130/0001 Effective date: 20220310 |
|
AS | Assignment |
Owner name: CLEARMOTION ACQUISITION I LLC, MASSACHUSETTS Free format text: TERMINATION OF AMENDED & RESTATED PATENT SECURITY AGREEMENT;ASSIGNOR:ACADIA WOODS PARTNERS, LLC;REEL/FRAME:062687/0713 Effective date: 20220906 Owner name: CLEARMOTION, INC., MASSACHUSETTS Free format text: TERMINATION OF AMENDED & RESTATED PATENT SECURITY AGREEMENT;ASSIGNOR:ACADIA WOODS PARTNERS, LLC;REEL/FRAME:062687/0713 Effective date: 20220906 |
|
AS | Assignment |
Owner name: CLEARMOTION ACQUISITION I LLC, MASSACHUSETTS Free format text: TERMINATION OF AMENDED & RESTATED PATENT SECURITY AGREEMENT;ASSIGNORS:FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND ;FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND ;FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND ;AND OTHERS;REEL/FRAME:062705/0684 Effective date: 20220906 Owner name: CLEARMOTION, INC., MASSACHUSETTS Free format text: TERMINATION OF AMENDED & RESTATED PATENT SECURITY AGREEMENT;ASSIGNORS:FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND ;FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND ;FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U.S. OPPORTUNITIES FUND ;AND OTHERS;REEL/FRAME:062705/0684 Effective date: 20220906 |