US20140273534A1 - Integration of absorption based heating bake methods into a photolithography track system - Google Patents
Integration of absorption based heating bake methods into a photolithography track system Download PDFInfo
- Publication number
- US20140273534A1 US20140273534A1 US14/211,215 US201414211215A US2014273534A1 US 20140273534 A1 US20140273534 A1 US 20140273534A1 US 201414211215 A US201414211215 A US 201414211215A US 2014273534 A1 US2014273534 A1 US 2014273534A1
- Authority
- US
- United States
- Prior art keywords
- block copolymer
- layer
- electromagnetic radiation
- annealing
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 108
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 52
- 238000010438 heat treatment Methods 0.000 title claims abstract description 46
- 238000000206 photolithography Methods 0.000 title description 4
- 230000010354 integration Effects 0.000 title description 2
- 229920001400 block copolymer Polymers 0.000 claims abstract description 116
- 238000000137 annealing Methods 0.000 claims abstract description 90
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 38
- 238000005204 segregation Methods 0.000 claims abstract description 17
- 238000012552 review Methods 0.000 claims abstract description 12
- 238000000059 patterning Methods 0.000 claims abstract description 9
- 229920000642 polymer Polymers 0.000 claims description 55
- 230000007547 defect Effects 0.000 claims description 32
- 239000002904 solvent Substances 0.000 claims description 18
- 238000011282 treatment Methods 0.000 claims description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- 230000000593 degrading effect Effects 0.000 claims 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001569 carbon dioxide Substances 0.000 claims 1
- 238000007689 inspection Methods 0.000 claims 1
- 230000003252 repetitive effect Effects 0.000 claims 1
- -1 silicon Chemical class 0.000 description 25
- 239000000463 material Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 19
- 238000002408 directed self-assembly Methods 0.000 description 15
- 229920001577 copolymer Polymers 0.000 description 14
- 238000001338 self-assembly Methods 0.000 description 10
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 9
- 239000004926 polymethyl methacrylate Substances 0.000 description 9
- 235000012431 wafers Nutrition 0.000 description 9
- 239000004793 Polystyrene Substances 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- 238000010791 quenching Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 229920003062 Poly(ferrocenyldimethylsilane) Polymers 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920000620 organic polymer Polymers 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229920000359 diblock copolymer Polymers 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229920006030 multiblock copolymer Polymers 0.000 description 2
- 229920000075 poly(4-vinylpyridine) Polymers 0.000 description 2
- 229920001713 poly(ethylene-co-vinyl alcohol) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920001289 polyvinyl ether Polymers 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229920000428 triblock copolymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 1
- 229960000448 lactic acid Drugs 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920001603 poly (alkyl acrylates) Polymers 0.000 description 1
- 229920000885 poly(2-vinylpyridine) Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- FIONWRDVKJFHRC-UHFFFAOYSA-N trimethyl(2-phenylethenyl)silane Chemical compound C[Si](C)(C)C=CC1=CC=CC=C1 FIONWRDVKJFHRC-UHFFFAOYSA-N 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/34—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/18, H10D48/04 and H10D48/07, with or without impurities, e.g. doping materials
- H01L21/42—Bombardment with radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02345—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00031—Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02118—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0101—Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
- B81C2201/0147—Film patterning
- B81C2201/0149—Forming nanoscale microstructures using auto-arranging or self-assembling material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28123—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Definitions
- This disclosure is related to methods for integrating absorption based heating bake methods in directed self-assembly applications.
- Directed self-assembly processes use block copolymers to form lithographic structures.
- DSA directed self-assembly
- There are a host of different integrations for DSA e.g., chemo-epitaxy, grapho-epitaxy, hole shrink, etc.
- the technique depends on the rearrangement of the block copolymer from a random, unordered state to a structured, ordered state that is useful for subsequent lithography.
- the morphology of the ordered state is variable and depends on a number of factors, including the nature of the block polymers, relative molecular weight ratio between the block polymers, and the annealing conditions. Common morphologies include line-space and cylindrical, although other structures may also be used.
- other ordered morphologies include spherical, lamellar, bicontinuous gyroid, or miktoarm star microdomains.
- Annealing of the block copolymer layer has traditionally been achieved by various methods known in the art, including, but not limited to: thermal annealing (either in a vacuum or in an inert atmosphere containing nitrogen or argon), solvent vapor-assisted annealing (either at or above room temperature), or supercritical fluid-assisted annealing.
- thermal annealing of the block copolymer can be conducted at an elevated temperature that is above the glass transition temperature (Tg), but below the degradation temperature (Td) of the block copolymer.
- Tg glass transition temperature
- Td degradation temperature
- thermal annealing, solvent vapor-assisted annealing, and supercritical fluid-assisted annealing each have their own inherent limitations.
- thermal annealing of some block copolymers may be accomplished in relatively short processing times. But to achieve reductions in critical dimensions and line edge roughness, the use of block copolymers with larger Flory-Huggins interaction parameter ( ⁇ ) may be required. But the higher ⁇ block copolymers generally have slower self-assembly kinetics, and self-assembled pattern generation may take a few to tens of hours, thus detrimentally affecting throughput. Solvent vapor-assisted annealing can improve the kinetics of the self-assembly of higher ⁇ block copolymers but involves the introduction of another component to the system with its own hardware and process constraints.
- block copolymers e.g., polystyrene-b-polymethacrylate
- the present invention overcomes the foregoing problems and other shortcomings, drawbacks, and challenges of conventional annealing process for directed self-assembly applications. While the invention will be described in connection with certain embodiments, it will be understood that the invention is not limited to these embodiments. To the contrary, this invention includes all alternatives, modifications, and equivalents as may be included within the scope of the present invention.
- a method for patterning a layered substrate comprises a) forming a layer of a block copolymer; and b) annealing the layer of the block copolymer to affect microphase segregation such that self-assembled domains are formed, wherein the annealing is performed by application of an absorption based heating method provided by exposure to electromagnetic radiation to provide an annealing temperature in a range of 250° C. to 500° C.
- a method of patterning a layered substrate comprises a) forming a layer of a block copolymer; b) performing a first annealing treatment of the layer of the block copolymer to affect microphase segregation such that self-assembled domains are formed; and c) exposing at least a portion of the layer of the block copolymer to electromagnetic radiation to heat the exposed portion of the layer of the block copolymer to an annealing temperature in a range of 250° C. to 500° C.
- FIG. 1 is a flow chart illustrating a method of incorporating an absorption based heating method for annealing a layered substrate comprising a layer of a block copolymer, in accordance with an embodiment of the present invention
- FIG. 2 is a flow chart illustrating another method of incorporating an absorption based heating method for annealing a layered substrate comprising a layer of a block copolymer, in accordance with an embodiment of the present invention.
- FIG. 3 is a flow chart illustrating another method of incorporating an absorption based heating method for annealing a layered substrate comprising a layer of a block copolymer, in accordance with an embodiment of the present invention.
- DSA direct self-assembly
- a method 100 for patterning a layered substrate comprises a) forming a layer of a block copolymer ( 110 ) on a substrate; and b) annealing the layer of the block copolymer by applying an absorption based heating method ( 120 ).
- a metrology review of the annealed layered substrate may be performed to identify or quantify areas of non-directed self-assembly, which upon exceeding a predetermined threshold value can initiate one or more additional annealing steps to refine or modify the microphase segregation of the block copolymers.
- the one or more additional annealing steps may include an absorption based annealing step or a traditional annealing step, as further described below.
- polymer block means and includes a grouping of multiple monomer units of a single type (i.e., a homopolymer block) or multiple types (i.e., a copolymer block) of constitutional units into a continuous polymer chain of some length that forms part of a larger polymer of an even greater length and exhibits a ⁇ N value, with other polymer blocks of unlike monomer types, that is sufficient for phase separation to occur.
- ⁇ is the Flory-Huggins interaction parameter, which is temperature dependent
- N is the total degree of polymerization for the block copolymer.
- the ⁇ N value of one polymer block with at least one other polymer block in the larger polymer may be equal to or greater than about 10.5, at the annealing temperature.
- block copolymer means and includes a polymer composed of chains where each chain contains two or more polymer blocks as defined above and at least two of the blocks are of sufficient segregation strength (e.g. ⁇ N>10.5) for those blocks to phase separate.
- block polymers include diblock copolymers (i.e., polymers including two polymer blocks (AB)), triblock copolymers (i.e., polymers including three polymer blocks (ABA or ABC)), multiblock copolymers (i.e., polymers including more than three polymer blocks (ABCD, star copolymers, miktoarm polymers, etc.)), and combinations thereof.
- the directed self-assembly block copolymer is a block copolymer comprising a first polymer block and a second polymer block, where the first polymer block inherently has an etch selectivity greater than 2 over the second block polymer under a first set of etch conditions.
- the first polymer block comprises a first organic polymer
- the second polymer block comprises a second organic polymer.
- the first polymer block is an organic polymer
- the second polymer block is an organometallic-containing polymer.
- the organometallic-containing polymer includes polymers comprising inorganic materials.
- inorganic materials include, but are not limited to, metalloids such as silicon, and/or transition metals such as iron.
- each block copolymer and the ratio of the constituent blocks and monomers may be chosen to facilitate self-organization and to form organized block domains having desired dimensions and periodicity.
- a block copolymer has an intrinsic polymer length scale, the average end-to-end length of the copolymer in film, including any coiling or kinking, which governs the size of the block domains.
- a copolymer solution having longer copolymers may be used to form larger domains and a copolymer solution having shorter copolymers may be used to form smaller domains.
- the types of self-assembled microdomains formed by the block copolymer are readily determined by the volume fraction of the first block component to the second block components.
- the block copolymer when the volume ratio of the first block component to the second block component is greater than about 80:20, or less than about 20:80, the block copolymer will form an ordered array of spheres composed of the second polymeric block component in a matrix composed of the first polymeric block component. Conversely, when the volume ratio of the first block component to the second block component is less than about 20:80, the block copolymer will form an ordered array of spheres composed of the first polymeric block component in a matrix composed of the second polymeric block component.
- the block copolymer When the volume ratio of the first block component to the second block component is less than about 80:20 but greater than about 65:35, the block copolymer will form an ordered array of cylinders composed of the second polymeric block component in a matrix composed of the first polymeric block component. Conversely, when the volume ratio of the first block component to the second block component is less than about 35:65 but greater than about 20:80, the block copolymer will form an ordered array of cylinders composed of the first polymeric block component in a matrix composed of the second polymeric block component.
- the block copolymer When the volume ratio of the first block component to the second block component is less than about 65:35 but is greater than about 35:65, the block copolymer will form alternating lamellae composed of the first and second polymeric block components.
- the volume ratio of the first block component to the second block component can be readily adjusted in the block copolymer in order to form desired self-assembled periodic patterns.
- the volume ratio of the first block component to the second block component is less than about 80:20 but greater than about 65:35 to yield an ordered array of cylinders composed of the second polymeric block component in a matrix composed of the first polymeric block component.
- Block copolymers may be comprised of exemplary organic polymer blocks that include, but are not limited to, poly(9,9-bis( 6 ′-N,N,N-trimethylammonium)-hexyl)-fluorene phenylene) (PFP), poly(4-vinylpyridine) (4PVP), hydroxypropyl methylcellulose (HPMC), polyethylene glycol (PEG), poly(ethylene oxide)-co-poly(propylene oxide) di- or multiblock copolymers, poly(vinyl alcohol) (PVA), poly(ethylene-co-vinyl alcohol) (PEVA), poly(acrylic acid) (PAA), polylactic acid (PLA), poly(ethyloxazoline), a poly(alkylacrylate), polyacrylamide, a poly(N-alkylacrylamide), a poly(N,N-dialkylacrylamide), poly(propylene glycol) (PPG), poly(propylene oxide) (PPO), partially or fully hydrolyzed poly(vin
- Block copolymers may be comprised of exemplary organometallic-containing polymer blocks that include, but are not limited to, silicon-containing polymers such as polydimethylsiloxane (PDMS), polyhedral oligomeric silsesquioxane (POSS), or poly(trimethylsilylstyrene (PTMSS), or silicon- and iron-containing polymers such as poly(ferrocenyldimethylsilane) (PFS).
- silicon-containing polymers such as polydimethylsiloxane (PDMS), polyhedral oligomeric silsesquioxane (POSS), or poly(trimethylsilylstyrene (PTMSS)
- silicon- and iron-containing polymers such as poly(ferrocenyldimethylsilane) (PFS).
- block copolymers include, but are not limited to, diblock copolymers such as polystyrene-b-polydimethylsiloxane (PS-PDMS), poly(2-vinylpyridine)-b-polydimethylsiloxane (P2VP-PDMS), polystyrene-b-poly(ferrocenyldimethylsilane) (PS-PFS), or polystyrene-b-poly-DL-lactic acid (PS-PLA), or triblock copolymers such as polystyrene-b-poly(ferrocenyldimethylsilane)-b-poly(2-vinylpyridine) (PS-PFS-P2VP), polyisoprene-b-polystyrene-b-poly(ferrocenyldimethylsilane) (PI-PS-PFS), or polystyrene-b-poly(trimethylsilylstyrene)-b-
- a PS-PTMSS-PS block copolymer comprises a poly(trimethylsilylstyrene) polymer block that is formed of two chains of PTMSS connected by a linker comprising four styrene units. Modifications of the block copolymers is also envisaged, such as that disclosed in U.S. Patent Application Publication No. 2012/0046415, the entire disclosure of which is incorporated by reference herein.
- Embodiments of the invention may also allow for the formation of features smaller than those that may be formed by block polymers alone or photolithography alone.
- a self-assembly material formed of different chemical species is allowed to organize to form domains composed of like chemical species. Portions of those domains are selectively removed to form temporary placeholders and/or mask features.
- a pitch multiplication process may then be performed using the temporary placeholders and/or mask features formed from the self-assembly material.
- Features with a pitch smaller than a pitch of the temporary placeholders may be derived from the temporary placeholders.
- the block copolymer material is also used as a mask for patterning underlying layers, the copolymer material is selected not only on its self-assembly behavior, but also based on its etch selectivity between the polymer blocks. Accordingly, the self-assembly behavior of the block copolymers allows the reliable formation of very small features, thereby facilitating the formation of a mask with a very small feature size. For example, features having a critical dimension of about 1 nm to about 100 nm, about 3 nm to about 50 nm or about 5 nm to about 30 nm may be formed.
- the term “substrate” means and includes a base material or construction upon which materials are formed. It will be appreciated that the substrate may include a single material, a plurality of layers of different materials, a layer or layers having regions of different materials or different structures in them, etc. These materials may include semiconductors, insulators, conductors, or combinations thereof.
- the substrate may be a semiconductor substrate, a base semiconductor layer on a supporting structure, a metal electrode or a semiconductor substrate having one or more layers, structures or regions formed thereon.
- the substrate may be a conventional silicon substrate or other bulk substrate comprising a layer of semiconductive material.
- the term “bulk substrate” means and includes not only silicon wafers, but also silicon-on-insulator (“SOI”) substrates, such as silicon-on-sapphire (“SOS”) substrates and silicon-on-glass (“SOG”) substrates, epitaxial layers of silicon on a base semiconductor foundation, and other semiconductor or optoelectronic materials, such as silicon-germanium, germanium, gallium arsenide, gallium nitride, and indium phosphide.
- SOI silicon-on-insulator
- SOS silicon-on-sapphire
- SOOG silicon-on-glass
- epitaxial layers of silicon on a base semiconductor foundation and other semiconductor or optoelectronic materials, such as silicon-germanium, germanium, gallium arsenide, gallium nitride, and indium phosphide.
- the substrate may be doped or undoped.
- microphase segregation and “microphase separation,” as used herein mean and include the properties by which homogeneous blocks of a block copolymer aggregate mutually, and heterogeneous blocks separate into distinct domains.
- block copolymers can self assemble into ordered morphologies, having spherical, cylindrical, lamellar, or bicontinuous gyroid microdomains, where the molecular weight of the block copolymer dictates the sizes of the microdomains formed.
- the domain size or pitch period (L 0 ) of the self-assembled block copolymer morphology may be used as a basis for designing critical dimensions of the patterned structure.
- the structure period (L S ) which is the dimension of the feature remaining after selectively etching away one of the polymer blocks of the block copolymer, may be used as a basis for designing critical dimensions of the patterned structure.
- each of the polymer blocks making up the block copolymer may be an intrinsic limit to the sizes of domains formed by the polymer blocks of those block copolymers.
- each of the polymer blocks may be chosen with a length that facilitates self-assembly into a desired pattern of domains, and shorter and/or longer copolymers may not self-assemble as desired.
- annealing means and includes treatment of the block copolymer so as to enable sufficient microphase segregation between the two or more different polymeric block components of the block copolymer to form an ordered pattern defined by repeating structural units formed from the polymer blocks.
- annealing of the block copolymer is performed by only applying an absorption based heating method.
- annealing the layer of the block copolymer may be performed by any traditional or absorption based heating method to affect microphase segregation to form ordered domains, but then is subsequently followed by an absorption based heating method to refine or modify the microphase segregation.
- annealing the layer of the block copolymer layer may be first performed by an absorption based heating method, but is then subsequently followed by a traditional annealing method.
- “Traditional” annealing methods include, but are not limited to, a single wafer bake plate under ambient or low O 2 (e.g., 50 ppm) conditions; a batch wafer bake furnace under ambient or low O 2 conditions; a single wafer solvent bake plate under a variety of solvent conditions; or a batch wafer bake furnace under a variety of solvent bake conditions.
- O 2 e.g., 50 ppm
- absorption based heating or “optical based heating” is based on the absorbance of radiation or electromagnetic energy that is rapidly converted to thermal energy.
- Absorption based heating allows for increased thermal ramp rates and thermal quenches, relative to traditional ovens, furnaces, or heated wafer chucks. These higher ramp rates/thermal quenches allow for a much wider operating range for time and temperature permutations, often allowing for significantly higher temperatures for a given layered material under less than ideal environment.
- Exemplary absorption based annealing temperatures may be in a range from about 100° C. to about 1000° C., for example about 200° C. to about 1000° C., about 500° C. to about 1000° C., about 800° C.
- suitable absorption based annealing temperature may be in a range from about 100° C. to about 500° C., for example from about 250° C. to about 500° C., about 100° C. to about 400° C., about 200° C. to about 300° C., depending on the nature of the block copolymer.
- optical absorption heating sources such as LED, laser, ultraviolet, or broadband visible light may be used to heat the layer of the block copolymer to an elevated temperature that is about 50° C. or more above the intrinsic glass transition temperature (Tg), but below the order-disorder temperature (ODT) above which the block copolymer will no longer phase separate and also below the thermal degradation temperature (Td) of the block copolymer, as described in greater detail hereinafter.
- intrinsic glass transition temperature means the glass transition temperature of the block copolymer without the influence of water or other solvents. As known in the art, the presence of solvents lowers the temperature of the glassy transition of the solvent-containing mixtures.
- thermal degradation temperature means a temperature at which the block copolymer will undergo oxidative degradation under ambient oxygen levels.
- the oxygen content in the surrounding atmospheres for the absorption based annealing process and the thermal quench are at a level equal to or less than about 50 ppm.
- the thermal degradation temperature of a given block copolymer at the desired ambient oxygen level can be ascertained by common methods, which includes but is not limited to, thermogravimetric analysis (TGA).
- Optical based heating methods can also be used to replace traditional processing methods at many potential process steps within a photolithography process.
- Some traditional photolithography bake steps that it could replace are dehydration bake (to remove water on surface for better priming); bottom anti-reflective coating (BARC) bake (typically to crosslink the BARC to make insoluble to further resist process); photoresist bake (to remove majority of residual casting solvent from resist film); post exposure bake (PEB) (to facilitate chemical amplified resists, CAR, acid diffusion and chemical amplification kinetics); hard bake (to remove most residual solvent to improve etch performance); or thermal freeze bake (for lithography-freeze, lithography etch (LFLE) double patterning processes).
- dehydration bake to remove water on surface for better priming
- BARC bottom anti-reflective coating
- PEB post exposure bake
- hard bake to remove most residual solvent to improve etch performance
- thermal freeze bake for lithography-freeze, lithography etch (LFLE) double patterning processes.
- the absorption based heating methods may be applied using a uniform single exposure (e.g., a flood exposure) to electromagnetic radiation for a first duration of time that is sufficient to rapidly heat the layer of the block copolymer above the T g , which is followed by a sufficient time period of non-exposure to allow the layer of the block copolymer to cool below the T g .
- a uniform single exposure e.g., a flood exposure
- the absorption based heating method ( 200 ) may include a) selecting a beam shape of the electromagnetic radiation to distribute power across a predetermined absorption area ( 210 ); b) determining a number of scans for the selected beam shape to irradiate a desired area of the layer of the block copolymer with the electromagnetic radiation ( 220 ); and c) scanning the layer of the block copolymer with the electromagnetic radiation to heat the layer of the block copolymer to the annealing temperature range ( 230 ).
- Absorption based heating methods integrated into DSA processes provide the ability to reach elevated temperatures for shorter periods of times, which can minimize oxidative or thermal degradation of the BCP materials.
- Absorption based heating methods can be performed by many potential optical sources including, but not limited to, exposing the layered substrate to an electromagnetic radiation source selected from the group consisting of a broadband flash lamp, a light emitting diode; a laser, and a deep ultraviolet (DUV) flash lamp.
- an electromagnetic radiation source selected from the group consisting of a broadband flash lamp, a light emitting diode; a laser, and a deep ultraviolet (DUV) flash lamp.
- Exemplary electromagnetic radiation sources include broadband flash lamp sources (e.g., middle ultraviolet (MUV) radiation, visible light radiation, or near infrared radiation (NIR), having a wavelength in a range from about 300 nm to about 1100 nm); light emitting diodes (typically emitting radiation having a wavelength in a range from about 500 nm to about 1100 nm); lasers, such as diode lasers (typically emitting radiation having a wavelength in a range from about 500 nm to about 1100 nm, or from about 800 nm to about 1000 nm), or CO 2 lasers (e.g., about 9.4 um or about 10.6 um, etc.); or deep ultraviolet (DUV) flash lamp sources (typically emitting radiation having a wavelength in a range from about 150 nm to about 200 nm).
- broadband flash lamp sources e.g., middle ultraviolet (MUV) radiation, visible light radiation, or near infrared radiation (NIR), having a wavelength in a range from about 300
- the viability of any one electromagnetic source depends on the ability of a media to absorb the light at the intended wavelength and upon absorbing the light (photon) to convert absorbed light into thermal energy (phonon).
- the absorbing media can be, depending on light source being considered, but is not limited to: the substrate itself, typically Si; a modified substrate, to allow for absorption, such as heavily doped Si; or the use of a uniform absorbance layer, as described in U.S. Patent Application Publication No. 2013/0288487, the entirety of which is incorporated herein by reference in its entirety.
- the fluence, or power density will be very important to ensure the correct time/temperature regime is obtained.
- the power density may be in a range from about 1 W/mm 2 to about 100 W/mm 2 , or about 100 W/mm 2 to about 200 W/mm 2 , or about 200 W/mm 2 to about 300 W/mm 2 , or about 300 W/mm 2 to about 400 W/mm 2 , or about 400 W/mm 2 to about 500 W/mm 2 .
- the power density may be in a range from about 100 W/mm 2 to about 250 W/mm 2 , or about 250 W/mm 2 to about 500 W/mm 2 .
- the absorption based heating provides an annealing temperature in a range of 250° C. to 1000° C.
- the annealing temperature is in the range of 250° C. to 500° C., or 500° C. to 1000° C.
- the BCP materials can withstand lower annealing temperatures without stringent control of oxygen level in the annealing environment, the microphase segregation at these lower temperatures to form ordered domains can take hours, or even longer.
- the annealing time can be substantially shortened by going to higher temperatures. But polymer degradation may also increase, so oxygen levels need to be kept low to minimize polymer oxidation.
- polymer thermal degradation has shown no memory/cumulative effect of previous thermal spike processes, so long as spike temperature is below some thermal degradation threshold associated with the spike dwell time.
- Thermal diffusion effects within any substrate begin to limit intermediate thermal dwell times that can be achieved (ultimately creating a bimodal thermal dwell time distribution).
- absorption based heating thermal profile engineering can be used to give the thermodynamic processes more time and thus provide a higher probability of achieving 100% of desired directed self-assembly while still targeting a desire temperature to drive a given chi and thus a given morphology without leading to thermal decomposition.
- the first duration of exposure may be performed for about 0.1 milliseconds to about 10 seconds.
- the first duration of exposure may be 0.4 milliseconds to about 10 seconds, about 0.1 milliseconds to about 5 seconds, about 0.4 milliseconds to about 5 seconds, about 1 second to about 10 seconds, or about 1 second to about 5 seconds.
- the exposure to electromagnetic radiation is performed at a power density in a range from 1 W/mm 2 to 100 W/mm 2 for a duration of time to provide the annealing temperature in the desired range. In another embodiment, the exposure to electromagnetic radiation is performed at a power density in a range from 250 W/mm 2 to 500 W/mm 2 for a duration of time to provide the annealing temperature.
- the exposing duration may also be performed over a series of short exposures to provide an incrementally facilitated annealing of the layer of the block copolymer.
- rastering an electromagnetic radiation beam over time ranges from about 10 milliseconds to about 50 milliseconds with about 4 to about 200 passes, may provide a cumulative absorption based annealing treatment in a range from about 40 milliseconds to about 10 seconds.
- rastering an electromagnetic radiation beam over time ranges from about 10 milliseconds to about 50 milliseconds with about 4 to about 20 passes, may provide a cumulative absorption based annealing treatment in a range from about 40 milliseconds to about 1 second.
- thermal quenching the annealed layered substrate may be performed in several manners.
- the thermal quenching may comprise at least one of reducing a pressure of the second atmosphere, flowing convective gas around the layered substrate, contacting the layered substrate with a wafer chuck in communication with a chiller unit, and/or contacting the layered substrate with cooling arms.
- the gas may comprise nitrogen, argon, or helium, for example.
- the quenching may also comprise use of a thermoelectric Peltier device.
- the quenching step may occur over a duration of time equal to or less than about 30 seconds to about 5 minutes and/or at a rate greater than or equal to 50° C/minute.
- the layered substrate may be quenched from a temperature of 340° C. to a temperature of 250° C. in 1 minute (i.e., at a rate of 90° C/minute).
- the quenching atmosphere may comprise a cooling chamber 14 , specifically a cooling Front Opening Unified Pod (FOUP), a wafer boat, or a wafer handler, for example.
- FOUP cooling Front Opening Unified Pod
- an optical metrology review of the layered substrate may be performed to identify or quantify regions of non-uniformity or defects.
- the term “defect” or “defects” as used herein refers to any unwanted discontinuity in the translational, orientational, or chemical compositional order of a pattern.
- a defect can be an unwanted notch, crack, bulge, bend or other physical discontinuity in the surface feature of the pre-pattern, or a chemical compositional change in a surface area of a pre-pattern.
- the lamellae in such a block copolymer pattern when the block copolymer pattern is defined by alternating lamellae, it may be desirable that the lamellae in such a block copolymer pattern must be aligned along the same direction in order for the pattern to be considered defect-free.
- Defects in the lamellar patterns can have various forms, including dislocation (i.e., line defects arising from perturbations in the translational order), disclination (i.e., line defects arising from discontinuities in the orientational order), and the like. Although it is generally desirable to minimize defects, no restriction is placed on the number of defects per unit area in the pre-pattern or block copolymer pattern formed thereon.
- Exemplary metrology methods include, but are not limited to, techniques that compare color variation of the inspected layered substrate to a baseline sample of the typical color for a given product or photolayer.
- This baseline sample (hereinafter referred to as the “color baselist” or “baselist”) may be composed of data from a collection of a predetermined number of different layered substrates. Once the baselist is complete, multiple parameters can be calculated that may represent information or characteristics such as average color, flatness, and properties of the die patterns.
- the information derived from the metrology review may include a classification of the defect; and/or an identification of the defect as a systematic defect or a nuisance defect.
- Another aspect of the metrology review relates to a computer-implemented method for binning defects detected on layered substrate.
- the metrology review may also include comparing one or more characteristics of the defects to one or more characteristics of DSA defects and one or more characteristics of non-DSA defects.
- Automated macro defect inspectors also known as ADIs, such as those devices commercially available from Tokyo Electron or KLA-Tencor, may be utilized for defect evaluation.
- absorption based annealing processes may be used to correct DSA-related defects.
- Layered substrates that exceed a predetermined quantity of defects, or having regions of high density of defects, may be subjected to further absorption based annealing treatments, either globally or locally with a targeted beam.
- Using a computer-implemented method for binning defects can permit a localized or isolated exposure of the electromagnetic radiation to the defect area to correct the DSA-related defect.
- the absorption based heating tool receives input and completes one or more programmed, selective scans for a defect absorption based heating anneal step.
- a method of patterning a layered substrate comprising forming a layer of a block copolymer ( 310 ); performing a first annealing treatment of the layer of the block copolymer to affect microphase segregation such that self-assembled domains are formed ( 320 ); and applying an absorption based heating method to at least a portion of the layer of the block copolymer to refine or modify microphase segregation ( 330 ).
- the first annealing step may be an absorbance based heating process, or another annealing method such as any one or more traditional annealing methods.
- Exemplary traditional annealing methods include thermal annealing (either in a vacuum, in a low oxygen atmosphere, or in an inert atmosphere, such as nitrogen or argon), solvent vapor-assisted annealing (either at or above room temperature), or supercritical fluid-assisted annealing
- thermal annealing of the block copolymer may be conducted by exposing the block copolymer in an oven or furnace to an elevated temperature that is above the glass transition temperature (T g ), but below the thermal degradation temperature (T d ) of the block copolymer.
- the oxygen content of the annealing atmosphere may be controlled to be less than about 100 ppm, less than about 50 ppm, less than about 40 ppm, less than about 30 ppm, or less than about 20 ppm, for example.
- Other conventional annealing methods not described herein may also be utilized.
- the second anneal step may also provide: 1) redundancy to ensure near 100% direct self-assembly as described above; 2) allow for shorter annealing process overall cycle time; 3) depending on absorption based heating method, e.g. small laser beam exposure method, for the possibility of mixed morphology within the same exposure die; or 4) tailoring a block co-polymer etch selectivity improvement, if not targeting a goal of complete elimination of breakthrough/clean-up etch step (prior to transfer).
- the desired mixed morphology could be acquired by two complementary approaches.
- a solvent-assisted anneal method is utilized in the first anneal step ( 320 ), wherein the block copolymer is assembled to a first morphology, which is dictated by ambient solvent concentration, partial pressure, and block co-polymer fraction.
- the second anneal step ( 330 ) is performed by exposing a subset of any exposure die's area to a controlled absorption based heating method (e.g. a small rastering laser beam exposure) to induce a transformation from the first morphology to a second morphology only in this subset area.
- a controlled absorption based heating method e.g. a small rastering laser beam exposure
- the Flory-Huggins interaction parameter ( ⁇ ) is temperature dependent ( ⁇ goes down as temperature goes up), along with the fact that many blocked copolymers go through several phase transitions through ⁇ at a given block co-polymer fraction are exploited.
- the first annealing treatment ( 320 ) is performed at a first anneal temperature to affect microphase segregation to a first morphology.
- a non-solvent based annealing step may be used.
- a second annealing treatment ( 330 ) is performed using a controlled absorption based heating method on a subset of any exposure die's area at a second anneal temperature, which is significantly higher than the first anneal temperature.
- the significantly higher second anneal temperature induces a transformation from the first morphology to a second morphology only in this subset area.
- the difference between the first and the second anneal temperatures is equal to or greater than about 50° C., equal to or greater than about 75° C., equal to or greater than about 100° C., or equal to or greater than about 150° C.
- the second annealing treatment ( 330 ) may comprise a rastering laser beam exposure, for example.
- the first annealing treatment ( 320 ) is performed at a first anneal temperature to affect microphase segregation to a first morphology.
- This first annealing treatment may be a traditional anneal process, an absorption base anneal process, or a combination thereof.
- an absorption based heating method is applied to a subset of any exposure die's area under appropriate conditions (e.g., temperature, fluence, duration, etc.) to improve polymer block etch selectivity.
- the appropriate combination of block copolymer and absorption base heating method may completely eliminate having to perform a breakthrough/clean-up etch step.
- a PS:PMMA block copolymer system can be annealed at a first anneal to induce self-assembly. Subjecting the annealed layered substrate to an absorption based heating method comprising a UV light source will induce cross-linking of the PS polymer block. However, using the UV light source at a sufficient fluence and duration heats the exposed region to a temperature greater than the T d of the PMMA polymer, which is less than the T d of PS. Accordingly, the high temperature/short time nature of the UV absorption based heating method would facilitate PMMA decomposition but not significantly decompose the PS.
- UV absorption based heating method of this embodiment is analogous to an isopropanol (IPA) wet development step, which is commonly used for this purpose.
- IPA isopropanol
- PS:PMMA case is described, this embodiment is not limited to this system only.
- a silylated PMMA branch which would provide a higher ⁇ material, would also undergo thermal decomposition of the silylated PMMA polymer block under similar conditions.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Analytical Chemistry (AREA)
- Nanotechnology (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
A method of patterning a layered substrate is provided that includes forming a layer of a block copolymer on a substrate; and annealing the layer of the block copolymer to affect microphase segregation such that self-assembled domains are formed by application of an absorption based heating method. Exemplary absorption based heating methods include electromagnetic radiation sources such as broadband flash lamps, light emitting diodes, lasers, or DUV flash lamps. The method may also include a metrology review and an application of the absorption based heating to at least a portion of the layered substrate to refine or modify the microphase segregation.
Description
- Pursuant to 37 C.F.R. §1.78(a)(4), this application claims the benefit of and priority to prior filed co-pending Provisional Application Ser. No. 61/782,133 filed on Mar. 14, 2013, the disclosure of which is incorporated herein by reference in its entirety.
- This disclosure is related to methods for integrating absorption based heating bake methods in directed self-assembly applications.
- Directed self-assembly (“DSA”) processes use block copolymers to form lithographic structures. There are a host of different integrations for DSA (e.g., chemo-epitaxy, grapho-epitaxy, hole shrink, etc.), but in all cases the technique depends on the rearrangement of the block copolymer from a random, unordered state to a structured, ordered state that is useful for subsequent lithography. The morphology of the ordered state is variable and depends on a number of factors, including the nature of the block polymers, relative molecular weight ratio between the block polymers, and the annealing conditions. Common morphologies include line-space and cylindrical, although other structures may also be used. For example, other ordered morphologies include spherical, lamellar, bicontinuous gyroid, or miktoarm star microdomains.
- Annealing of the block copolymer layer has traditionally been achieved by various methods known in the art, including, but not limited to: thermal annealing (either in a vacuum or in an inert atmosphere containing nitrogen or argon), solvent vapor-assisted annealing (either at or above room temperature), or supercritical fluid-assisted annealing. As a specific example, thermal annealing of the block copolymer can be conducted at an elevated temperature that is above the glass transition temperature (Tg), but below the degradation temperature (Td) of the block copolymer. However, to generate well-registered patterns, thermal annealing, solvent vapor-assisted annealing, and supercritical fluid-assisted annealing each have their own inherent limitations.
- For example, thermal annealing of some block copolymers (e.g., polystyrene-b-polymethacrylate) may be accomplished in relatively short processing times. But to achieve reductions in critical dimensions and line edge roughness, the use of block copolymers with larger Flory-Huggins interaction parameter (χ) may be required. But the higher χ block copolymers generally have slower self-assembly kinetics, and self-assembled pattern generation may take a few to tens of hours, thus detrimentally affecting throughput. Solvent vapor-assisted annealing can improve the kinetics of the self-assembly of higher χ block copolymers but involves the introduction of another component to the system with its own hardware and process constraints.
- Accordingly, there is a need for new apparatus and methods for annealing block copolymers in DSA applications.
- The present invention overcomes the foregoing problems and other shortcomings, drawbacks, and challenges of conventional annealing process for directed self-assembly applications. While the invention will be described in connection with certain embodiments, it will be understood that the invention is not limited to these embodiments. To the contrary, this invention includes all alternatives, modifications, and equivalents as may be included within the scope of the present invention.
- According to an embodiment of the present invention, a method for patterning a layered substrate is provided. The method comprises a) forming a layer of a block copolymer; and b) annealing the layer of the block copolymer to affect microphase segregation such that self-assembled domains are formed, wherein the annealing is performed by application of an absorption based heating method provided by exposure to electromagnetic radiation to provide an annealing temperature in a range of 250° C. to 500° C.
- According to another embodiment, a method of patterning a layered substrate is provided that comprises a) forming a layer of a block copolymer; b) performing a first annealing treatment of the layer of the block copolymer to affect microphase segregation such that self-assembled domains are formed; and c) exposing at least a portion of the layer of the block copolymer to electromagnetic radiation to heat the exposed portion of the layer of the block copolymer to an annealing temperature in a range of 250° C. to 500° C.
- The above and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the descriptions thereof.
- The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present invention and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
-
FIG. 1 is a flow chart illustrating a method of incorporating an absorption based heating method for annealing a layered substrate comprising a layer of a block copolymer, in accordance with an embodiment of the present invention; -
FIG. 2 is a flow chart illustrating another method of incorporating an absorption based heating method for annealing a layered substrate comprising a layer of a block copolymer, in accordance with an embodiment of the present invention; and -
FIG. 3 is a flow chart illustrating another method of incorporating an absorption based heating method for annealing a layered substrate comprising a layer of a block copolymer, in accordance with an embodiment of the present invention. - Apparatus and methods for incorporating an absorption based heating annealing technique within direct self-assembly (“DSA”) applications are disclosed in various embodiments. However, one skilled in the relevant art will recognize that the various embodiments may be practiced without one or more of the specific details or with other replacement and/or additional methods, materials, or components. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of various embodiments of the present invention.
- Similarly, for purposes of explanation, specific numbers, materials, and configurations are set forth in order to provide a thorough understanding. Nevertheless, the embodiments of the present invention may be practiced without specific details. Furthermore, it is understood that the illustrative representations are not necessarily drawn to scale.
- Reference throughout this specification to “one embodiment” or “an embodiment” or variation thereof means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention, but does not denote that they are present in every embodiment. Thus, the appearances of the phrases such as “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments. Various additional layers and/or structures may be included and/or described features may be omitted in other embodiments.
- Additionally, it is to be understood that “a” or “an” may mean “one or more” unless explicitly stated otherwise.
- Various operations will be described as multiple discrete operations in turn, in a manner that is most helpful in understanding the invention. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation. Operations described may be performed in a different order than the described embodiment. Various additional operations may be performed and/or described operations may be omitted in additional embodiments.
- In accordance with an embodiment of the present invention and in reference to the flow chart of
FIG. 1 , amethod 100 for patterning a layered substrate is provided. Themethod 100 comprises a) forming a layer of a block copolymer (110) on a substrate; and b) annealing the layer of the block copolymer by applying an absorption based heating method (120). Optionally, a metrology review of the annealed layered substrate may be performed to identify or quantify areas of non-directed self-assembly, which upon exceeding a predetermined threshold value can initiate one or more additional annealing steps to refine or modify the microphase segregation of the block copolymers. In accordance with embodiments of the present invention, the one or more additional annealing steps may include an absorption based annealing step or a traditional annealing step, as further described below. - As used herein, the term “polymer block” means and includes a grouping of multiple monomer units of a single type (i.e., a homopolymer block) or multiple types (i.e., a copolymer block) of constitutional units into a continuous polymer chain of some length that forms part of a larger polymer of an even greater length and exhibits a χN value, with other polymer blocks of unlike monomer types, that is sufficient for phase separation to occur. χ is the Flory-Huggins interaction parameter, which is temperature dependent, and N is the total degree of polymerization for the block copolymer. According to embodiments of the present invention, the χN value of one polymer block with at least one other polymer block in the larger polymer may be equal to or greater than about 10.5, at the annealing temperature.
- As used herein, the term “block copolymer” means and includes a polymer composed of chains where each chain contains two or more polymer blocks as defined above and at least two of the blocks are of sufficient segregation strength (e.g. χN>10.5) for those blocks to phase separate. A wide variety of block polymers are contemplated herein including diblock copolymers (i.e., polymers including two polymer blocks (AB)), triblock copolymers (i.e., polymers including three polymer blocks (ABA or ABC)), multiblock copolymers (i.e., polymers including more than three polymer blocks (ABCD, star copolymers, miktoarm polymers, etc.)), and combinations thereof.
- According to an embodiment of the present invention, the directed self-assembly block copolymer is a block copolymer comprising a first polymer block and a second polymer block, where the first polymer block inherently has an etch selectivity greater than 2 over the second block polymer under a first set of etch conditions. According to one embodiment, the first polymer block comprises a first organic polymer, and the second polymer block comprises a second organic polymer. In another embodiment, the first polymer block is an organic polymer and the second polymer block is an organometallic-containing polymer. As used herein, the organometallic-containing polymer includes polymers comprising inorganic materials. For example, inorganic materials include, but are not limited to, metalloids such as silicon, and/or transition metals such as iron.
- It will be appreciated that the total size of each block copolymer and the ratio of the constituent blocks and monomers may be chosen to facilitate self-organization and to form organized block domains having desired dimensions and periodicity. For example, it will be appreciated that a block copolymer has an intrinsic polymer length scale, the average end-to-end length of the copolymer in film, including any coiling or kinking, which governs the size of the block domains. A copolymer solution having longer copolymers may be used to form larger domains and a copolymer solution having shorter copolymers may be used to form smaller domains.
- Moreover, the types of self-assembled microdomains formed by the block copolymer are readily determined by the volume fraction of the first block component to the second block components.
- According to one embodiment, when the volume ratio of the first block component to the second block component is greater than about 80:20, or less than about 20:80, the block copolymer will form an ordered array of spheres composed of the second polymeric block component in a matrix composed of the first polymeric block component. Conversely, when the volume ratio of the first block component to the second block component is less than about 20:80, the block copolymer will form an ordered array of spheres composed of the first polymeric block component in a matrix composed of the second polymeric block component.
- When the volume ratio of the first block component to the second block component is less than about 80:20 but greater than about 65:35, the block copolymer will form an ordered array of cylinders composed of the second polymeric block component in a matrix composed of the first polymeric block component. Conversely, when the volume ratio of the first block component to the second block component is less than about 35:65 but greater than about 20:80, the block copolymer will form an ordered array of cylinders composed of the first polymeric block component in a matrix composed of the second polymeric block component.
- When the volume ratio of the first block component to the second block component is less than about 65:35 but is greater than about 35:65, the block copolymer will form alternating lamellae composed of the first and second polymeric block components.
- Therefore, the volume ratio of the first block component to the second block component can be readily adjusted in the block copolymer in order to form desired self-assembled periodic patterns. According to embodiments of the present invention, the volume ratio of the first block component to the second block component is less than about 80:20 but greater than about 65:35 to yield an ordered array of cylinders composed of the second polymeric block component in a matrix composed of the first polymeric block component.
- Block copolymers may be comprised of exemplary organic polymer blocks that include, but are not limited to, poly(9,9-bis(6′-N,N,N-trimethylammonium)-hexyl)-fluorene phenylene) (PFP), poly(4-vinylpyridine) (4PVP), hydroxypropyl methylcellulose (HPMC), polyethylene glycol (PEG), poly(ethylene oxide)-co-poly(propylene oxide) di- or multiblock copolymers, poly(vinyl alcohol) (PVA), poly(ethylene-co-vinyl alcohol) (PEVA), poly(acrylic acid) (PAA), polylactic acid (PLA), poly(ethyloxazoline), a poly(alkylacrylate), polyacrylamide, a poly(N-alkylacrylamide), a poly(N,N-dialkylacrylamide), poly(propylene glycol) (PPG), poly(propylene oxide) (PPO), partially or fully hydrolyzed poly(vinyl alcohol), dextran, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyisoprene (PI), polychloroprene (CR), a polyvinyl ether (PVE), poly(vinyl acetate) (PVAc), poly(vinyl chloride) (PVC), a polyurethane (PU), a polyacrylate, an oligosaccharide, or a polysaccharide.
- Block copolymers may be comprised of exemplary organometallic-containing polymer blocks that include, but are not limited to, silicon-containing polymers such as polydimethylsiloxane (PDMS), polyhedral oligomeric silsesquioxane (POSS), or poly(trimethylsilylstyrene (PTMSS), or silicon- and iron-containing polymers such as poly(ferrocenyldimethylsilane) (PFS).
- Exemplary block copolymers include, but are not limited to, diblock copolymers such as polystyrene-b-polydimethylsiloxane (PS-PDMS), poly(2-vinylpyridine)-b-polydimethylsiloxane (P2VP-PDMS), polystyrene-b-poly(ferrocenyldimethylsilane) (PS-PFS), or polystyrene-b-poly-DL-lactic acid (PS-PLA), or triblock copolymers such as polystyrene-b-poly(ferrocenyldimethylsilane)-b-poly(2-vinylpyridine) (PS-PFS-P2VP), polyisoprene-b-polystyrene-b-poly(ferrocenyldimethylsilane) (PI-PS-PFS), or polystyrene-b-poly(trimethylsilylstyrene)-b-polystyrene (PS-PTMSS-PS). In one embodiment, a PS-PTMSS-PS block copolymer comprises a poly(trimethylsilylstyrene) polymer block that is formed of two chains of PTMSS connected by a linker comprising four styrene units. Modifications of the block copolymers is also envisaged, such as that disclosed in U.S. Patent Application Publication No. 2012/0046415, the entire disclosure of which is incorporated by reference herein.
- Embodiments of the invention may also allow for the formation of features smaller than those that may be formed by block polymers alone or photolithography alone. In embodiments of the invention, a self-assembly material formed of different chemical species is allowed to organize to form domains composed of like chemical species. Portions of those domains are selectively removed to form temporary placeholders and/or mask features. A pitch multiplication process may then be performed using the temporary placeholders and/or mask features formed from the self-assembly material. Features with a pitch smaller than a pitch of the temporary placeholders may be derived from the temporary placeholders.
- Moreover, because the block copolymer material is also used as a mask for patterning underlying layers, the copolymer material is selected not only on its self-assembly behavior, but also based on its etch selectivity between the polymer blocks. Accordingly, the self-assembly behavior of the block copolymers allows the reliable formation of very small features, thereby facilitating the formation of a mask with a very small feature size. For example, features having a critical dimension of about 1 nm to about 100 nm, about 3 nm to about 50 nm or about 5 nm to about 30 nm may be formed.
- As used herein, the term “substrate” means and includes a base material or construction upon which materials are formed. It will be appreciated that the substrate may include a single material, a plurality of layers of different materials, a layer or layers having regions of different materials or different structures in them, etc. These materials may include semiconductors, insulators, conductors, or combinations thereof. For example, the substrate may be a semiconductor substrate, a base semiconductor layer on a supporting structure, a metal electrode or a semiconductor substrate having one or more layers, structures or regions formed thereon. The substrate may be a conventional silicon substrate or other bulk substrate comprising a layer of semiconductive material. As used herein, the term “bulk substrate” means and includes not only silicon wafers, but also silicon-on-insulator (“SOI”) substrates, such as silicon-on-sapphire (“SOS”) substrates and silicon-on-glass (“SOG”) substrates, epitaxial layers of silicon on a base semiconductor foundation, and other semiconductor or optoelectronic materials, such as silicon-germanium, germanium, gallium arsenide, gallium nitride, and indium phosphide. The substrate may be doped or undoped.
- The terms “microphase segregation” and “microphase separation,” as used herein mean and include the properties by which homogeneous blocks of a block copolymer aggregate mutually, and heterogeneous blocks separate into distinct domains. In the bulk, block copolymers can self assemble into ordered morphologies, having spherical, cylindrical, lamellar, or bicontinuous gyroid microdomains, where the molecular weight of the block copolymer dictates the sizes of the microdomains formed. The domain size or pitch period (L0) of the self-assembled block copolymer morphology may be used as a basis for designing critical dimensions of the patterned structure. Similarly, the structure period (LS), which is the dimension of the feature remaining after selectively etching away one of the polymer blocks of the block copolymer, may be used as a basis for designing critical dimensions of the patterned structure.
- The lengths of each of the polymer blocks making up the block copolymer may be an intrinsic limit to the sizes of domains formed by the polymer blocks of those block copolymers. For example, each of the polymer blocks may be chosen with a length that facilitates self-assembly into a desired pattern of domains, and shorter and/or longer copolymers may not self-assemble as desired.
- The term “annealing” or “anneal” as used herein means and includes treatment of the block copolymer so as to enable sufficient microphase segregation between the two or more different polymeric block components of the block copolymer to form an ordered pattern defined by repeating structural units formed from the polymer blocks.
- In accordance with an embodiment, annealing of the block copolymer is performed by only applying an absorption based heating method. In accordance with another embodiment, annealing the layer of the block copolymer may be performed by any traditional or absorption based heating method to affect microphase segregation to form ordered domains, but then is subsequently followed by an absorption based heating method to refine or modify the microphase segregation. In accordance with another embodiment, annealing the layer of the block copolymer layer may be first performed by an absorption based heating method, but is then subsequently followed by a traditional annealing method. “Traditional” annealing methods include, but are not limited to, a single wafer bake plate under ambient or low O2 (e.g., 50 ppm) conditions; a batch wafer bake furnace under ambient or low O2 conditions; a single wafer solvent bake plate under a variety of solvent conditions; or a batch wafer bake furnace under a variety of solvent bake conditions.
- As used herein, “absorption based heating” or “optical based heating” is based on the absorbance of radiation or electromagnetic energy that is rapidly converted to thermal energy. Absorption based heating allows for increased thermal ramp rates and thermal quenches, relative to traditional ovens, furnaces, or heated wafer chucks. These higher ramp rates/thermal quenches allow for a much wider operating range for time and temperature permutations, often allowing for significantly higher temperatures for a given layered material under less than ideal environment. Exemplary absorption based annealing temperatures may be in a range from about 100° C. to about 1000° C., for example about 200° C. to about 1000° C., about 500° C. to about 1000° C., about 800° C. to about 1000° C., about 200° C. to about 800° C., or about 400° C. to about 600° C. Other suitable absorption based annealing temperature may be in a range from about 100° C. to about 500° C., for example from about 250° C. to about 500° C., about 100° C. to about 400° C., about 200° C. to about 300° C., depending on the nature of the block copolymer.
- As specific examples, optical absorption heating sources, such as LED, laser, ultraviolet, or broadband visible light may be used to heat the layer of the block copolymer to an elevated temperature that is about 50° C. or more above the intrinsic glass transition temperature (Tg), but below the order-disorder temperature (ODT) above which the block copolymer will no longer phase separate and also below the thermal degradation temperature (Td) of the block copolymer, as described in greater detail hereinafter.
- As used herein, “intrinsic glass transition temperature” means the glass transition temperature of the block copolymer without the influence of water or other solvents. As known in the art, the presence of solvents lowers the temperature of the glassy transition of the solvent-containing mixtures.
- As used herein, “thermal degradation temperature” means a temperature at which the block copolymer will undergo oxidative degradation under ambient oxygen levels. According to an embodiment of the present invention, the oxygen content in the surrounding atmospheres for the absorption based annealing process and the thermal quench are at a level equal to or less than about 50 ppm. The thermal degradation temperature of a given block copolymer at the desired ambient oxygen level can be ascertained by common methods, which includes but is not limited to, thermogravimetric analysis (TGA).
- Optical based heating methods can also be used to replace traditional processing methods at many potential process steps within a photolithography process. Some traditional photolithography bake steps that it could replace are dehydration bake (to remove water on surface for better priming); bottom anti-reflective coating (BARC) bake (typically to crosslink the BARC to make insoluble to further resist process); photoresist bake (to remove majority of residual casting solvent from resist film); post exposure bake (PEB) (to facilitate chemical amplified resists, CAR, acid diffusion and chemical amplification kinetics); hard bake (to remove most residual solvent to improve etch performance); or thermal freeze bake (for lithography-freeze, lithography etch (LFLE) double patterning processes).
- According to embodiments of the present invention, the absorption based heating methods may be applied using a uniform single exposure (e.g., a flood exposure) to electromagnetic radiation for a first duration of time that is sufficient to rapidly heat the layer of the block copolymer above the Tg, which is followed by a sufficient time period of non-exposure to allow the layer of the block copolymer to cool below the Tg. In another embodiment, as shown in
FIG. 2 , the absorption based heating method (200) may include a) selecting a beam shape of the electromagnetic radiation to distribute power across a predetermined absorption area (210); b) determining a number of scans for the selected beam shape to irradiate a desired area of the layer of the block copolymer with the electromagnetic radiation (220); and c) scanning the layer of the block copolymer with the electromagnetic radiation to heat the layer of the block copolymer to the annealing temperature range (230). - Absorption based heating methods integrated into DSA processes provide the ability to reach elevated temperatures for shorter periods of times, which can minimize oxidative or thermal degradation of the BCP materials. Absorption based heating methods can be performed by many potential optical sources including, but not limited to, exposing the layered substrate to an electromagnetic radiation source selected from the group consisting of a broadband flash lamp, a light emitting diode; a laser, and a deep ultraviolet (DUV) flash lamp. Exemplary electromagnetic radiation sources include broadband flash lamp sources (e.g., middle ultraviolet (MUV) radiation, visible light radiation, or near infrared radiation (NIR), having a wavelength in a range from about 300 nm to about 1100 nm); light emitting diodes (typically emitting radiation having a wavelength in a range from about 500 nm to about 1100 nm); lasers, such as diode lasers (typically emitting radiation having a wavelength in a range from about 500 nm to about 1100 nm, or from about 800 nm to about 1000 nm), or CO2 lasers (e.g., about 9.4 um or about 10.6 um, etc.); or deep ultraviolet (DUV) flash lamp sources (typically emitting radiation having a wavelength in a range from about 150 nm to about 200 nm).
- The viability of any one electromagnetic source depends on the ability of a media to absorb the light at the intended wavelength and upon absorbing the light (photon) to convert absorbed light into thermal energy (phonon). The absorbing media can be, depending on light source being considered, but is not limited to: the substrate itself, typically Si; a modified substrate, to allow for absorption, such as heavily doped Si; or the use of a uniform absorbance layer, as described in U.S. Patent Application Publication No. 2013/0288487, the entirety of which is incorporated herein by reference in its entirety.
- For some applications, the fluence, or power density, will be very important to ensure the correct time/temperature regime is obtained. Depending on the electromagnetic radiation source and its construction, the power density may be in a range from about 1 W/mm2 to about 100 W/mm2, or about 100 W/mm2 to about 200 W/mm2, or about 200 W/mm2 to about 300 W/mm2, or about 300 W/mm2 to about 400 W/mm2, or about 400 W/mm2 to about 500 W/mm2. Accordingly, the power density may be in a range from about 100 W/mm2 to about 250 W/mm2, or about 250 W/mm2 to about 500 W/mm2.
- In accordance with an embodiment of the present invention, the absorption based heating provides an annealing temperature in a range of 250° C. to 1000° C. In accordance with another embodiment, the annealing temperature is in the range of 250° C. to 500° C., or 500° C. to 1000° C. While the BCP materials can withstand lower annealing temperatures without stringent control of oxygen level in the annealing environment, the microphase segregation at these lower temperatures to form ordered domains can take hours, or even longer. For a given polymer, the annealing time can be substantially shortened by going to higher temperatures. But polymer degradation may also increase, so oxygen levels need to be kept low to minimize polymer oxidation. Advantageously, polymer thermal degradation has shown no memory/cumulative effect of previous thermal spike processes, so long as spike temperature is below some thermal degradation threshold associated with the spike dwell time. Thermal diffusion effects within any substrate begin to limit intermediate thermal dwell times that can be achieved (ultimately creating a bimodal thermal dwell time distribution). Accordingly, absorption based heating thermal profile engineering can be used to give the thermodynamic processes more time and thus provide a higher probability of achieving 100% of desired directed self-assembly while still targeting a desire temperature to drive a given chi and thus a given morphology without leading to thermal decomposition.
- Depending on various factors, e.g., flood exposure, repeated scan exposure, or rastering exposure; the power density (fluence) of the source; the absorbance efficiency of the layered substrate; and the desired annealing temperature, the first duration of exposure may be performed for about 0.1 milliseconds to about 10 seconds. For example, the first duration of exposure may be 0.4 milliseconds to about 10 seconds, about 0.1 milliseconds to about 5 seconds, about 0.4 milliseconds to about 5 seconds, about 1 second to about 10 seconds, or about 1 second to about 5 seconds.
- In accordance with an embodiment, the exposure to electromagnetic radiation is performed at a power density in a range from 1 W/mm2 to 100 W/mm2 for a duration of time to provide the annealing temperature in the desired range. In another embodiment, the exposure to electromagnetic radiation is performed at a power density in a range from 250 W/mm2 to 500 W/mm2 for a duration of time to provide the annealing temperature.
- The exposing duration may also be performed over a series of short exposures to provide an incrementally facilitated annealing of the layer of the block copolymer. For example, rastering an electromagnetic radiation beam over time ranges from about 10 milliseconds to about 50 milliseconds with about 4 to about 200 passes, may provide a cumulative absorption based annealing treatment in a range from about 40 milliseconds to about 10 seconds. In another example, rastering an electromagnetic radiation beam over time ranges from about 10 milliseconds to about 50 milliseconds with about 4 to about 20 passes, may provide a cumulative absorption based annealing treatment in a range from about 40 milliseconds to about 1 second.
- The cooling off period or “thermal quench” period between two or more absorption based heating treatments may be a passive process or assisted by utilizing an exterior cooling process. According to an embodiment of the present invention, thermally quenching the annealed layered substrate may be performed in several manners. The thermal quenching may comprise at least one of reducing a pressure of the second atmosphere, flowing convective gas around the layered substrate, contacting the layered substrate with a wafer chuck in communication with a chiller unit, and/or contacting the layered substrate with cooling arms. With respect to the convective gas, the gas may comprise nitrogen, argon, or helium, for example. The quenching may also comprise use of a thermoelectric Peltier device. The quenching step may occur over a duration of time equal to or less than about 30 seconds to about 5 minutes and/or at a rate greater than or equal to 50° C/minute. With the example of PS-PDMS, the layered substrate may be quenched from a temperature of 340° C. to a temperature of 250° C. in 1 minute (i.e., at a rate of 90° C/minute). The quenching atmosphere may comprise a cooling chamber 14, specifically a cooling Front Opening Unified Pod (FOUP), a wafer boat, or a wafer handler, for example.
- Once the layered substrate has cooled to a desired quenching temperature, an optical metrology review of the layered substrate may be performed to identify or quantify regions of non-uniformity or defects. The term “defect” or “defects” as used herein refers to any unwanted discontinuity in the translational, orientational, or chemical compositional order of a pattern. For example, a defect can be an unwanted notch, crack, bulge, bend or other physical discontinuity in the surface feature of the pre-pattern, or a chemical compositional change in a surface area of a pre-pattern. In another example, when the block copolymer pattern is defined by alternating lamellae, it may be desirable that the lamellae in such a block copolymer pattern must be aligned along the same direction in order for the pattern to be considered defect-free. Defects in the lamellar patterns can have various forms, including dislocation (i.e., line defects arising from perturbations in the translational order), disclination (i.e., line defects arising from discontinuities in the orientational order), and the like. Although it is generally desirable to minimize defects, no restriction is placed on the number of defects per unit area in the pre-pattern or block copolymer pattern formed thereon.
- Exemplary metrology methods include, but are not limited to, techniques that compare color variation of the inspected layered substrate to a baseline sample of the typical color for a given product or photolayer. This baseline sample (hereinafter referred to as the “color baselist” or “baselist”) may be composed of data from a collection of a predetermined number of different layered substrates. Once the baselist is complete, multiple parameters can be calculated that may represent information or characteristics such as average color, flatness, and properties of the die patterns. The information derived from the metrology review may include a classification of the defect; and/or an identification of the defect as a systematic defect or a nuisance defect. Another aspect of the metrology review relates to a computer-implemented method for binning defects detected on layered substrate. The metrology review may also include comparing one or more characteristics of the defects to one or more characteristics of DSA defects and one or more characteristics of non-DSA defects. Automated macro defect inspectors (also known as ADIs), such as those devices commercially available from Tokyo Electron or KLA-Tencor, may be utilized for defect evaluation.
- Thus, in accordance with another embodiment of the invention, absorption based annealing processes may be used to correct DSA-related defects. Layered substrates that exceed a predetermined quantity of defects, or having regions of high density of defects, may be subjected to further absorption based annealing treatments, either globally or locally with a targeted beam. Using a computer-implemented method for binning defects can permit a localized or isolated exposure of the electromagnetic radiation to the defect area to correct the DSA-related defect. In an embodiment, the absorption based heating tool receives input and completes one or more programmed, selective scans for a defect absorption based heating anneal step.
- Additionally, as shown in
FIG. 3 , in another embodiment, a method of patterning a layered substrate (300) is provided, the method comprising forming a layer of a block copolymer (310); performing a first annealing treatment of the layer of the block copolymer to affect microphase segregation such that self-assembled domains are formed (320); and applying an absorption based heating method to at least a portion of the layer of the block copolymer to refine or modify microphase segregation (330). In accordance with this embodiment, the first annealing step may be an absorbance based heating process, or another annealing method such as any one or more traditional annealing methods. Exemplary traditional annealing methods include thermal annealing (either in a vacuum, in a low oxygen atmosphere, or in an inert atmosphere, such as nitrogen or argon), solvent vapor-assisted annealing (either at or above room temperature), or supercritical fluid-assisted annealing As a specific example, thermal annealing of the block copolymer may be conducted by exposing the block copolymer in an oven or furnace to an elevated temperature that is above the glass transition temperature (Tg), but below the thermal degradation temperature (Td) of the block copolymer. The oxygen content of the annealing atmosphere may be controlled to be less than about 100 ppm, less than about 50 ppm, less than about 40 ppm, less than about 30 ppm, or less than about 20 ppm, for example. Other conventional annealing methods not described herein may also be utilized. - In a further aspect of the two step anneal process of
method 300, the second anneal step may also provide: 1) redundancy to ensure near 100% direct self-assembly as described above; 2) allow for shorter annealing process overall cycle time; 3) depending on absorption based heating method, e.g. small laser beam exposure method, for the possibility of mixed morphology within the same exposure die; or 4) tailoring a block co-polymer etch selectivity improvement, if not targeting a goal of complete elimination of breakthrough/clean-up etch step (prior to transfer). - Specific to the mixed morphology or order-to-order transition (OOT) two-step anneal aspect, the desired mixed morphology could be acquired by two complementary approaches. In a first mixed morphology embodiment, a solvent-assisted anneal method is utilized in the first anneal step (320), wherein the block copolymer is assembled to a first morphology, which is dictated by ambient solvent concentration, partial pressure, and block co-polymer fraction. The second anneal step (330) is performed by exposing a subset of any exposure die's area to a controlled absorption based heating method (e.g. a small rastering laser beam exposure) to induce a transformation from the first morphology to a second morphology only in this subset area.
- In a second OOT embodiment, the fact that the Flory-Huggins interaction parameter (χ) is temperature dependent (χ goes down as temperature goes up), along with the fact that many blocked copolymers go through several phase transitions through χ at a given block co-polymer fraction are exploited. Accordingly, in this second OOT embodiment, the first annealing treatment (320) is performed at a first anneal temperature to affect microphase segregation to a first morphology. In one embodiment, a non-solvent based annealing step may be used. Subsequent to this first annealing treatment, a second annealing treatment (330) is performed using a controlled absorption based heating method on a subset of any exposure die's area at a second anneal temperature, which is significantly higher than the first anneal temperature. The significantly higher second anneal temperature induces a transformation from the first morphology to a second morphology only in this subset area. In one embodiment, the difference between the first and the second anneal temperatures is equal to or greater than about 50° C., equal to or greater than about 75° C., equal to or greater than about 100° C., or equal to or greater than about 150° C.
- In either OOT embodiment, the second annealing treatment (330) may comprise a rastering laser beam exposure, for example.
- On the other hand, using the two-step heating process can be used to improve etch selectivity between the polymer blocks of the block copolymer. In this embodiment, the first annealing treatment (320) is performed at a first anneal temperature to affect microphase segregation to a first morphology. This first annealing treatment may be a traditional anneal process, an absorption base anneal process, or a combination thereof. After the block copolymer has achieved the desired first morphological state, an absorption based heating method is applied to a subset of any exposure die's area under appropriate conditions (e.g., temperature, fluence, duration, etc.) to improve polymer block etch selectivity. In another aspect, the appropriate combination of block copolymer and absorption base heating method may completely eliminate having to perform a breakthrough/clean-up etch step.
- In a non-limiting example, a PS:PMMA block copolymer system can be annealed at a first anneal to induce self-assembly. Subjecting the annealed layered substrate to an absorption based heating method comprising a UV light source will induce cross-linking of the PS polymer block. However, using the UV light source at a sufficient fluence and duration heats the exposed region to a temperature greater than the Td of the PMMA polymer, which is less than the Td of PS. Accordingly, the high temperature/short time nature of the UV absorption based heating method would facilitate PMMA decomposition but not significantly decompose the PS. In this regard, UV absorption based heating method of this embodiment is analogous to an isopropanol (IPA) wet development step, which is commonly used for this purpose. However, even if complete removal of PMMA is not achieved, partially removing it will result in less PMMA that would need to be removed in a subsequent etch step, and gives a larger/improved PS:PMMA etch selectivity process window. It should be appreciated that while a PS:PMMA case is described, this embodiment is not limited to this system only. For example, a silylated PMMA branch, which would provide a higher χ material, would also undergo thermal decomposition of the silylated PMMA polymer block under similar conditions.
- While the present invention has been illustrated by a description of one or more embodiments thereof and while these embodiments have been described in considerable detail, they are intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope of the general inventive concept.
Claims (23)
1. A method of patterning a layered substrate, comprising:
a) forming a layer of a block copolymer; and
b) annealing the layer of the block copolymer to affect microphase segregation such that self-assembled domains are formed, wherein the annealing is performed by application of an absorption based heating method provided by exposure to electromagnetic radiation to provide an annealing temperature in a range of 250° C. to 500° C.
2. The method of claim 1 , wherein the exposure to electromagnetic radiation is performed at a power density in a range from 1 W/mm2 to 100 W/mm2 for a duration of time in a range from 1 second to 10 seconds.
3. The method of claim 1 , wherein the absorption based heating method is provided by exposure to an electromagnetic radiation source selected from the group consisting of a broadband flash lamp, a light emitting diode; a laser, and a deep ultraviolet (DUV) flash lamp.
4. The method of claim 3 , wherein the electromagnetic radiation source is the laser, which is selected from a diode laser emitting electromagnetic radiation having a wavelength in a range from 500 nm to 1100 nm, or a carbon dioxide laser emitting electromagnetic radiation having a wavelength of 9.4 μm or 10.6 μm.
5. The method of claim 4 , wherein the laser is a diode laser emitting electromagnetic radiation having a wavelength in a range from 800 nm to 1000 nm.
6. The method of claim 1 , wherein annealing the layer of the block copolymer comprises:
a) selecting a beam shape of the electromagnetic radiation to distribute power across a predetermined absorption area;
b) determining a number of scans for the selected beam shape to irradiate a desired area of the layer of the block copolymer with the electromagnetic radiation; and
c) scanning the layer of the block copolymer with the electromagnetic radiation to heat the layer of the block copolymer to the annealing temperature range.
7. The method of claim 6 , wherein the scanning the layer of the block copolymer with the electromagnetic radiation is performed with a single pass.
8. The method of claim 6 , wherein the scanning the layer of the block copolymer with the electromagnetic radiation is performed with a repetitive scan or by offset raster scanning.
9. A method of patterning a layered substrate, comprising:
a) forming a layer of a block copolymer;
b) performing a first annealing treatment of the layer of the block copolymer to affect microphase segregation such that self-assembled domains are formed; and
c) exposing at least a portion of the layer of the block copolymer to electromagnetic radiation to heat the exposed portion of the layer of the block copolymer to an annealing temperature in a range of 250° C. to 500° C.
10. The method of claim 9 , wherein exposing at least a portion of the layer of the block copolymer to electromagnetic radiation is performed at a power density in a range from 1 W/mm2 to 100 W/mm2 for a duration of time in a range from 1 second to 10 seconds.
11. The method of claim 9 , wherein the first annealing treatment comprising a single wafer bake on a heating plate; a batch wafer bake in a furnace; a single wafer solvent bake on a heating plate; a batch wafer solvent bake in a furnace; or an absorption based heating method on a single wafer provided by exposure to electromagnetic radiation.
12. The method of claim 11 , wherein the first annealing treatment of the layer of the block copolymer is a single wafer solvent bake on a heating plate or a batch wafer solvent bake in a furnace at a first annealing temperature, which provides the self-assembled domains having a first morphology; and wherein the exposing at least the portion of the layer of the block copolymer to electromagnetic radiation is performed to a second annealing temperature to provide self-assembled domains having a second morphology, said first annealing temperature being less than the second annealing temperature.
13. The method of claim 9 , wherein performing the first annealing treatment of the layer of the block copolymer is conducted at a first annealing temperature to provide the self-assembled domains having a first morphology; and wherein the exposing at least the portion of the layer of the block copolymer to electromagnetic radiation heats the exposed potion of the layer of the block copolymer to a second annealing temperature to provide self-assembled domains having a second morphology, said first annealing temperature being less than the second annealing temperature.
14. The method of claim 9 , wherein the exposing at least the portion of the layer of the block copolymer to electromagnetic radiation heats the exposed potion of the layer of the block copolymer to a temperature sufficient to degrade a first polymer block of the block copolymer.
15. The method of claim 14 , wherein degrading the first polymer block of the block copolymer increases an etch selectivity of the first polymer block over a second polymer of the block copolymer.
16. The method of claim 14 , wherein degrading the first polymer block of the block copolymer substantially removes the first polymer block.
17. The method of claim 9 , wherein exposing at least a portion of the layer of the block copolymer to electromagnetic radiation comprises:
i) selecting a beam shape of the electromagnetic radiation to distribute power across a predetermined absorption area;
ii) determining a number of scans for the selected beam shape to irradiate a desired area of the layer of the block copolymer with the electromagnetic radiation; and
iii) scanning the layer of the block copolymer with the electromagnetic radiation to heat the layer of the block copolymer to the annealing temperature range.
18. The method of claim 9 , further comprising:
d) performing a metrology review of the layered substrate between steps b) and c).
19. The method of claim 9 , wherein the exposing at least a portion of the layer of the block copolymer to electromagnetic radiation in step c) is performed prior to b), and the method further comprising:
d) performing a metrology review of the layered substrate between steps b) and c).
20. The method of claim 18 , wherein the metrology review is performed with a reflectometer.
21. The method of claim 18 , wherein the metrology review is a pattern defect wafer inspection, and wherein defects are binned.
22. The method of claim 18 , wherein the metrology review identifies a number of defects that is greater than a threshold value, and wherein step c) is performed over the entire layer of the block copolymer.
23. The method of claim 18 , wherein the metrology review identifies a number of defects that is less than a threshold value and identifies a specific defect wafer location; and wherein step c) is performed on the specific defect wafer location.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/211,215 US20140273534A1 (en) | 2013-03-14 | 2014-03-14 | Integration of absorption based heating bake methods into a photolithography track system |
US14/858,568 US9613801B2 (en) | 2013-03-14 | 2015-09-18 | Integration of absorption based heating bake methods into a photolithography track system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361782133P | 2013-03-14 | 2013-03-14 | |
US14/211,215 US20140273534A1 (en) | 2013-03-14 | 2014-03-14 | Integration of absorption based heating bake methods into a photolithography track system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/858,568 Continuation US9613801B2 (en) | 2013-03-14 | 2015-09-18 | Integration of absorption based heating bake methods into a photolithography track system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140273534A1 true US20140273534A1 (en) | 2014-09-18 |
Family
ID=51529029
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/211,215 Abandoned US20140273534A1 (en) | 2013-03-14 | 2014-03-14 | Integration of absorption based heating bake methods into a photolithography track system |
US14/858,568 Active US9613801B2 (en) | 2013-03-14 | 2015-09-18 | Integration of absorption based heating bake methods into a photolithography track system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/858,568 Active US9613801B2 (en) | 2013-03-14 | 2015-09-18 | Integration of absorption based heating bake methods into a photolithography track system |
Country Status (1)
Country | Link |
---|---|
US (2) | US20140273534A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016111115A (en) * | 2014-12-04 | 2016-06-20 | 東京エレクトロン株式会社 | Substrate processing method, program, computer storage medium and substrate processing system |
CN108428625A (en) * | 2017-02-14 | 2018-08-21 | 株式会社斯库林集团 | Substrate processing method using same |
Families Citing this family (341)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
KR102263121B1 (en) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor device and manufacuring method thereof |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
KR102592471B1 (en) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming metal interconnection and method of fabricating semiconductor device using the same |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US10381226B2 (en) | 2016-07-27 | 2019-08-13 | Asm Ip Holding B.V. | Method of processing substrate |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR102762543B1 (en) | 2016-12-14 | 2025-02-05 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
KR102457289B1 (en) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102401446B1 (en) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (en) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
KR102443047B1 (en) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
TWI791689B (en) | 2017-11-27 | 2023-02-11 | 荷蘭商Asm智慧財產控股私人有限公司 | Apparatus including a clean mini environment |
US11127617B2 (en) | 2017-11-27 | 2021-09-21 | Asm Ip Holding B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
WO2019142055A2 (en) | 2018-01-19 | 2019-07-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
JP7124098B2 (en) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102501472B1 (en) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method |
KR102600229B1 (en) | 2018-04-09 | 2023-11-10 | 에이에스엠 아이피 홀딩 비.브이. | Substrate supporting device, substrate processing apparatus including the same and substrate processing method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TWI843623B (en) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
TWI816783B (en) | 2018-05-11 | 2023-10-01 | 荷蘭商Asm 智慧財產控股公司 | Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
TWI871083B (en) | 2018-06-27 | 2025-01-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition processes for forming metal-containing material |
JP7515411B2 (en) | 2018-06-27 | 2024-07-12 | エーエスエム・アイピー・ホールディング・ベー・フェー | Cyclic deposition methods for forming metal-containing materials and films and structures including metal-containing materials - Patents.com |
KR102686758B1 (en) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (en) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | Substrate holding apparatus, system comprising the same and method of using the same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR102748291B1 (en) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (en) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and system for forming device structures using selective deposition of gallium nitride - Patents.com |
TWI866480B (en) | 2019-01-17 | 2024-12-11 | 荷蘭商Asm Ip 私人控股有限公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
KR102727227B1 (en) | 2019-01-22 | 2024-11-07 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
TWI838458B (en) | 2019-02-20 | 2024-04-11 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for plug fill deposition in 3-d nand applications |
JP7603377B2 (en) | 2019-02-20 | 2024-12-20 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and apparatus for filling recesses formed in a substrate surface - Patents.com |
JP7509548B2 (en) | 2019-02-20 | 2024-07-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | Cyclic deposition method and apparatus for filling recesses formed in a substrate surface - Patents.com |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
KR102782593B1 (en) | 2019-03-08 | 2025-03-14 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
KR20200116033A (en) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | Door opener and substrate processing apparatus provided therewith |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
KR20200123380A (en) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP7598201B2 (en) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
JP7612342B2 (en) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141002A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of using a gas-phase reactor system including analyzing exhausted gas |
KR20200141931A (en) | 2019-06-10 | 2020-12-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for cleaning quartz epitaxial chambers |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
TWI851767B (en) | 2019-07-29 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN112323048B (en) | 2019-08-05 | 2024-02-09 | Asm Ip私人控股有限公司 | Liquid level sensor for chemical source container |
KR20210018761A (en) | 2019-08-09 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | heater assembly including cooling apparatus and method of using same |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR102733104B1 (en) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
KR20210043460A (en) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
KR20210065848A (en) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
CN112992667A (en) | 2019-12-17 | 2021-06-18 | Asm Ip私人控股有限公司 | Method of forming vanadium nitride layer and structure including vanadium nitride layer |
KR20210080214A (en) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate and related semiconductor structures |
KR20210089077A (en) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply assembly, components thereof, and reactor system including same |
KR20210089079A (en) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | Channeled lift pin |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (en) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming high aspect ratio features |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
KR102667792B1 (en) | 2020-02-03 | 2024-05-20 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming structures including a vanadium or indium layer |
TW202146882A (en) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
KR20210103956A (en) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
TWI855223B (en) | 2020-02-17 | 2024-09-11 | 荷蘭商Asm Ip私人控股有限公司 | Method for growing phosphorous-doped silicon layer |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
KR102775390B1 (en) | 2020-03-12 | 2025-02-28 | 에이에스엠 아이피 홀딩 비.브이. | Method for Fabricating Layer Structure Having Target Topological Profile |
US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
KR102755229B1 (en) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
TW202143328A (en) | 2020-04-21 | 2021-11-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for adjusting a film stress |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
TW202208671A (en) | 2020-04-24 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods of forming structures including vanadium boride and vanadium phosphide layers |
CN113555279A (en) | 2020-04-24 | 2021-10-26 | Asm Ip私人控股有限公司 | Methods of forming vanadium nitride-containing layers and structures comprising the same |
TW202146831A (en) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Vertical batch furnace assembly, and method for cooling vertical batch furnace |
TW202200505A (en) | 2020-04-24 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods and apparatus for stabilizing vanadium compounds |
KR102783898B1 (en) | 2020-04-29 | 2025-03-18 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
TW202147543A (en) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing system |
KR102788543B1 (en) | 2020-05-13 | 2025-03-27 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
KR20210143653A (en) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
TWI862836B (en) | 2020-05-21 | 2024-11-21 | 荷蘭商Asm Ip私人控股有限公司 | Structures including multiple carbon layers and methods of forming and using same |
KR20210145079A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Flange and apparatus for processing substrates |
KR102702526B1 (en) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus for depositing thin films using hydrogen peroxide |
KR20210148914A (en) | 2020-05-29 | 2021-12-08 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
KR20210156219A (en) | 2020-06-16 | 2021-12-24 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing boron containing silicon germanium layers |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
CN113871296A (en) | 2020-06-30 | 2021-12-31 | Asm Ip私人控股有限公司 | Substrate processing method |
TW202202649A (en) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR20220010438A (en) | 2020-07-17 | 2022-01-25 | 에이에스엠 아이피 홀딩 비.브이. | Structures and methods for use in photolithography |
KR20220011092A (en) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming structures including transition metal layers |
KR20220011093A (en) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for depositing molybdenum layers |
KR20220021863A (en) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
TW202228863A (en) | 2020-08-25 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for cleaning a substrate, method for selectively depositing, and reaction system |
KR20220027026A (en) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming metal silicon oxide and metal silicon oxynitride |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
TW202217045A (en) | 2020-09-10 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing gap filing fluids and related systems and devices |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
KR20220036866A (en) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | Silicon oxide deposition method |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
TW202218049A (en) | 2020-09-25 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing method |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
KR20220050048A (en) | 2020-10-15 | 2022-04-22 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-cat |
TW202217037A (en) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202229620A (en) | 2020-11-12 | 2022-08-01 | 特文特大學 | Deposition system, method for controlling reaction condition, method for depositing |
TW202229795A (en) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | A substrate processing apparatus with an injector |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
KR20220076343A (en) | 2020-11-30 | 2022-06-08 | 에이에스엠 아이피 홀딩 비.브이. | an injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
TW202233884A (en) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures for threshold voltage control |
CN114639631A (en) | 2020-12-16 | 2022-06-17 | Asm Ip私人控股有限公司 | Fixing device for measuring jumping and swinging |
TW202226899A (en) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Plasma treatment device having matching box |
TW202242184A (en) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110089412A1 (en) * | 2008-06-16 | 2011-04-21 | Shigeo Fujimori | Patterning method, production method of device using the patterning method, and device |
US20120273460A1 (en) * | 2011-04-29 | 2012-11-01 | Industry-University Cooperation Foundation Sogang University | Random copolymer for forming neutral surface and methods of manufacturing and using the same |
Family Cites Families (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5650261A (en) | 1989-10-27 | 1997-07-22 | Rohm And Haas Company | Positive acting photoresist comprising a photoacid, a photobase and a film forming acid-hardening resin system |
US5344742A (en) | 1993-04-21 | 1994-09-06 | Shipley Company Inc. | Benzyl-substituted photoactive compounds and photoresist compositions comprising same |
JP2003518405A (en) | 1999-12-24 | 2003-06-10 | イボクラール ビバデント アクチェンゲゼルシャフト | Atraumatic adjacent space dilator |
TW501181B (en) | 2001-04-04 | 2002-09-01 | Chartered Semiconductor Mfg | Removal of organic anti-reflection coatings in integrated circuits |
WO2002082185A1 (en) | 2001-04-05 | 2002-10-17 | Arch Specialty Chemicals, Inc. | Perfluoroalkylsulfonic acid compounds for photoresists |
NZ513637A (en) | 2001-08-20 | 2004-02-27 | Canterprise Ltd | Nanoscale electronic devices & fabrication methods |
JP3892792B2 (en) | 2001-11-02 | 2007-03-14 | 大日本スクリーン製造株式会社 | Substrate processing apparatus and substrate cleaning apparatus |
US6632960B2 (en) | 2002-06-21 | 2003-10-14 | Goldschmidt Ag | Diaryliodonium salt catalysts made from iodotoluene and a method for preparing them |
JP3993048B2 (en) | 2002-08-30 | 2007-10-17 | 大日本スクリーン製造株式会社 | Substrate processing equipment |
CA2511979A1 (en) | 2003-02-19 | 2004-09-02 | Akira Matsumoto | Halogenated oxime derivatives and the use thereof as latent acids |
US20050056219A1 (en) | 2003-09-16 | 2005-03-17 | Tokyo Electron Limited | Formation of a metal-containing film by sequential gas exposure in a batch type processing system |
US20050215713A1 (en) | 2004-03-26 | 2005-09-29 | Hessell Edward T | Method of producing a crosslinked coating in the manufacture of integrated circuits |
US7968278B2 (en) | 2004-04-13 | 2011-06-28 | Tokyo Electron Limited | Rinse treatment method and development process method |
JP4343018B2 (en) | 2004-04-20 | 2009-10-14 | 東京エレクトロン株式会社 | Substrate processing method and substrate processing apparatus |
EP1769286B1 (en) | 2004-07-20 | 2015-09-09 | Basf Se | Oxime derivatives and the use therof as latent acids |
US7354692B2 (en) | 2005-05-09 | 2008-04-08 | International Business Machines Corporation | Photoresists for visible light imaging |
US20070037412A1 (en) | 2005-08-05 | 2007-02-15 | Tokyo Electron Limited | In-situ atomic layer deposition |
US8618221B2 (en) | 2005-10-14 | 2013-12-31 | Wisconsin Alumni Research Foundation | Directed assembly of triblock copolymers |
CN101316713B (en) | 2005-12-02 | 2011-03-30 | 佳能株式会社 | Liquid discharge head producing method |
US7579278B2 (en) | 2006-03-23 | 2009-08-25 | Micron Technology, Inc. | Topography directed patterning |
US20070237697A1 (en) | 2006-03-31 | 2007-10-11 | Tokyo Electron Limited | Method of forming mixed rare earth oxide and aluminate films by atomic layer deposition |
US7723009B2 (en) | 2006-06-02 | 2010-05-25 | Micron Technology, Inc. | Topography based patterning |
US7964107B2 (en) * | 2007-02-08 | 2011-06-21 | Micron Technology, Inc. | Methods using block copolymer self-assembly for sub-lithographic patterning |
US8083953B2 (en) | 2007-03-06 | 2011-12-27 | Micron Technology, Inc. | Registered structure formation via the application of directed thermal energy to diblock copolymer films |
US7923373B2 (en) | 2007-06-04 | 2011-04-12 | Micron Technology, Inc. | Pitch multiplication using self-assembling materials |
US8147914B2 (en) | 2007-06-12 | 2012-04-03 | Massachusetts Institute Of Technology | Orientation-controlled self-assembled nanolithography using a block copolymer |
US8080615B2 (en) | 2007-06-19 | 2011-12-20 | Micron Technology, Inc. | Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide |
KR101291223B1 (en) | 2007-08-09 | 2013-07-31 | 한국과학기술원 | Method of forming fine pattern using block copolymer |
US8030212B2 (en) | 2007-09-26 | 2011-10-04 | Eastman Kodak Company | Process for selective area deposition of inorganic materials |
US7763319B2 (en) | 2008-01-11 | 2010-07-27 | International Business Machines Corporation | Method of controlling orientation of domains in block copolymer films |
US7521094B1 (en) | 2008-01-14 | 2009-04-21 | International Business Machines Corporation | Method of forming polymer features by directed self-assembly of block copolymers |
US8101261B2 (en) | 2008-02-13 | 2012-01-24 | Micron Technology, Inc. | One-dimensional arrays of block copolymer cylinders and applications thereof |
US7754518B2 (en) | 2008-02-15 | 2010-07-13 | Applied Materials, Inc. | Millisecond annealing (DSA) edge protection |
US8426313B2 (en) | 2008-03-21 | 2013-04-23 | Micron Technology, Inc. | Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference |
JP5336283B2 (en) | 2008-09-03 | 2013-11-06 | 信越化学工業株式会社 | Pattern formation method |
US8088551B2 (en) | 2008-10-09 | 2012-01-03 | Micron Technology, Inc. | Methods of utilizing block copolymer to form patterns |
JP5329265B2 (en) | 2009-03-09 | 2013-10-30 | 株式会社日立国際電気 | Semiconductor device manufacturing method and substrate processing apparatus |
JP5448536B2 (en) | 2009-04-08 | 2014-03-19 | 東京エレクトロン株式会社 | Resist coating and developing apparatus, resist coating and developing method, resist film processing apparatus and resist film processing method |
US8349203B2 (en) | 2009-09-04 | 2013-01-08 | International Business Machines Corporation | Method of forming self-assembled patterns using block copolymers, and articles thereof |
US8623458B2 (en) | 2009-12-18 | 2014-01-07 | International Business Machines Corporation | Methods of directed self-assembly, and layered structures formed therefrom |
US8828493B2 (en) | 2009-12-18 | 2014-09-09 | International Business Machines Corporation | Methods of directed self-assembly and layered structures formed therefrom |
US8696918B2 (en) | 2010-05-05 | 2014-04-15 | Micron Technology, Inc. | Methods of utilizing block copolymer to form patterns |
US9487600B2 (en) | 2010-08-17 | 2016-11-08 | Uchicago Argonne, Llc | Ordered nanoscale domains by infiltration of block copolymers |
US8304493B2 (en) | 2010-08-20 | 2012-11-06 | Micron Technology, Inc. | Methods of forming block copolymers |
JP5820676B2 (en) | 2010-10-04 | 2015-11-24 | ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC | Lower layer composition and method for imaging lower layer |
JP2014505119A (en) | 2010-11-24 | 2014-02-27 | ダウ コーニング コーポレーション | Control of block copolymer morphology |
US10538859B2 (en) | 2010-12-23 | 2020-01-21 | Asml Netherlands B.V. | Methods for providing patterned orientation templates for self-assemblable polymers for use in device lithography |
KR101891987B1 (en) | 2011-05-31 | 2018-08-28 | 엘지디스플레이 주식회사 | Organic Light Emitting Device and Method for manufacturing the same |
WO2012175343A1 (en) | 2011-06-23 | 2012-12-27 | Asml Netherlands B.V. | Self-assemblable polymer and methods for use in lithography |
WO2012175342A2 (en) | 2011-06-23 | 2012-12-27 | Asml Netherlands B.V. | Self-assemblable polymer and method for use in lithography |
KR101890425B1 (en) | 2011-07-14 | 2018-08-22 | 삼성디스플레이 주식회사 | Composition for stripping a photoresist and method of manufacturing a display substrate using the same |
WO2013010730A1 (en) | 2011-07-18 | 2013-01-24 | Asml Netherlands B.V. | Method for providing a template for a self-assemblable polymer for use in device lithography |
US9718250B2 (en) | 2011-09-15 | 2017-08-01 | Wisconsin Alumni Research Foundation | Directed assembly of block copolymer films between a chemically patterned surface and a second surface |
DE102012105384A1 (en) | 2012-06-21 | 2012-09-06 | AP&S International GmbH | Lift-off method useful in semiconductors and microsystems comprises providing semiconductor substrate, where structured photoresist layer is applied on semiconductor substrate and metal layer is applied on photoresist layer |
KR102003334B1 (en) | 2012-09-04 | 2019-07-24 | 삼성전자주식회사 | Method of forming patterns |
US8715917B2 (en) | 2012-10-04 | 2014-05-06 | International Business Machines Corporation | Simultaneous photoresist development and neutral polymer layer formation |
US8956808B2 (en) | 2012-12-04 | 2015-02-17 | Globalfoundries Inc. | Asymmetric templates for forming non-periodic patterns using directed self-assembly materials |
-
2014
- 2014-03-14 US US14/211,215 patent/US20140273534A1/en not_active Abandoned
-
2015
- 2015-09-18 US US14/858,568 patent/US9613801B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110089412A1 (en) * | 2008-06-16 | 2011-04-21 | Shigeo Fujimori | Patterning method, production method of device using the patterning method, and device |
US20120273460A1 (en) * | 2011-04-29 | 2012-11-01 | Industry-University Cooperation Foundation Sogang University | Random copolymer for forming neutral surface and methods of manufacturing and using the same |
Non-Patent Citations (1)
Title |
---|
Tang et al., 'Rapid formation of block copolymer thin film based on infrared laser irradiation, 2007, CLEO Pacific Rim 2007. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016111115A (en) * | 2014-12-04 | 2016-06-20 | 東京エレクトロン株式会社 | Substrate processing method, program, computer storage medium and substrate processing system |
CN108428625A (en) * | 2017-02-14 | 2018-08-21 | 株式会社斯库林集团 | Substrate processing method using same |
Also Published As
Publication number | Publication date |
---|---|
US9613801B2 (en) | 2017-04-04 |
US20160013052A1 (en) | 2016-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9613801B2 (en) | Integration of absorption based heating bake methods into a photolithography track system | |
US9209014B2 (en) | Multi-step bake apparatus and method for directed self-assembly lithography control | |
US11538684B2 (en) | UV-assisted stripping of hardened photoresist to create chemical templates for directed self-assembly | |
Jin et al. | Flash light millisecond self‐assembly of high χ block copolymers for wafer‐scale sub‐10 nm nanopatterning | |
US20140273290A1 (en) | Solvent anneal processing for directed-self assembly applications | |
US8945408B2 (en) | Etch process for reducing directed self assembly pattern defectivity | |
JP2015520510A (en) | Pattern formation and articles using block copolymers | |
US9011978B2 (en) | Method and apparatus for treatment of self-assemblable polymer layers for use in lithography | |
WO2014200679A1 (en) | Etch process for reducing directed self assembly pattern defectivity | |
WO2008150443A2 (en) | Method and apparatus for laser oxidation and reduction reactions | |
JP6045746B2 (en) | Track processing to remove organic films in guided self-organized chemoepitaxy applications | |
TWI511866B (en) | Methods for controlling across wafer directed self-assembly | |
KR101005300B1 (en) | Method for manufacturing solar cell using random copolymer for optical crosslinking and thermal crosslinking | |
KR101449850B1 (en) | Method for solvent annealing, method for forming block copolymer pattern using the same and block copolymer pattern formed by the method for forming block copolymer pattern using the same | |
US8889343B2 (en) | Optimizing lithographic processes using laser annealing techniques | |
CN100555085C (en) | Electric equipment manufacturing method | |
Seiad et al. | Dynamic behavior in self-assembly process of cylindrical phase PS-b-PMMA block copolymer | |
KR20180052105A (en) | Pattern having a large grain, and method for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOKYO ELECTRON LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARCASI, MICHAEL A.;SOMERVELL, MARK H.;RATHSACK, BENJAMEN M.;SIGNING DATES FROM 20140313 TO 20140317;REEL/FRAME:032685/0271 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |