US20140273404A1 - Advanced Targeted Microwave Degas System - Google Patents
Advanced Targeted Microwave Degas System Download PDFInfo
- Publication number
- US20140273404A1 US20140273404A1 US14/091,854 US201314091854A US2014273404A1 US 20140273404 A1 US20140273404 A1 US 20140273404A1 US 201314091854 A US201314091854 A US 201314091854A US 2014273404 A1 US2014273404 A1 US 2014273404A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- processing
- process chamber
- deposition
- microwave radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76861—Post-treatment or after-treatment not introducing additional chemical elements into the layer
- H01L21/76864—Thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02178—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02181—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02189—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28575—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/14—Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
- H10F39/028—Manufacture or treatment of image sensors covered by group H10F39/12 performed after manufacture of the image sensors, e.g. annealing, gettering of impurities, short-circuit elimination or recrystallisation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/805—Coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/881—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being a two-dimensional material
- H10D62/882—Graphene
Definitions
- the present disclosure relates generally to use of degas processes used in the manufacture of microelectronic devices.
- Degassing is a standard production technology for electronics manufacturing.
- degas systems employing resistive heaters have been used to remove adsorbed moisture and contaminants from wafers during the manufacture of semiconductor devices, typically before subsequent deposition processes.
- High volume manufacturing degas systems have been designed to create uniform temperatures across the substrate surface.
- degas systems have been used to provide uniform temperature for entire substrates using resistive heating.
- the substrates often include temperature sensitive materials or structures (e.g. dopant implants) that constrain the maximum temperature and/or the thermal budget for the device.
- adsorbed species such as water vapor and/or contaminants must be removed from the surface of the substrate before subsequent deposition processes to ensure a clean interface and good device performance. What is needed is a system that allows adsorbed water vapor and/or contaminants to be removed without degrading the performance of temperature sensitive materials or structures formed on the substrate.
- apparatus allow the investigation of process variables used in microwave-based degas systems to remove adsorbed species from the surface of a substrate.
- the apparatus allow process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be investigated.
- methods are described that allow the processing of a substrate using microwave-based degas systems.
- the methods allow process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be investigated.
- FIG. 1 illustrates a schematic diagram for implementing combinatorial processing and evaluation.
- FIG. 2 presents a schematic diagram for illustrating various process sequences using combinatorial processing and evaluation.
- FIG. 3 illustrates a processing system enabling combinatorial processing.
- FIG. 4 presents a flow chart illustrating the steps of methods according to some embodiments.
- FIG. 5 illustrates an apparatus according to some embodiments.
- site-isolated refers to providing distinct processing conditions, such as controlled temperature, flow rates, chamber pressure, processing time, plasma composition, and plasma energies.
- Site isolation may provide complete isolation between regions or relative isolation between regions.
- the relative isolation is sufficient to provide a control over processing conditions within ⁇ 10%, within ⁇ 5%, within ⁇ 2%, within ⁇ 1%, or within ⁇ 0.1% of the target conditions. Where one region is processed at a time, adjacent regions are generally protected from any exposure that would alter the substrate surface in a measurable way.
- site-isolated region is used herein to refer to a localized area on a substrate which is, was, or is intended to be used for processing or formation of a selected material.
- the region can include one region and/or a series of regular or periodic regions predefined on the substrate.
- the region may have any convenient shape, e.g., circular, rectangular, elliptical, wedge-shaped, etc.
- a region may be, for example, a test structure, single die, multiple dies, portion of a die, other defined portion of substrate, or an undefined area of a substrate, e.g., blanket substrate which is defined through the processing.
- substrate may refer to any workpiece on which formation or treatment of material layers is desired.
- Substrates may include, without limitation, silicon, germanium, silicon-germanium alloy, silica, sapphire, zinc oxide, silicon carbide, aluminum nitride, gallium nitride, Spinel, coated silicon, silicon on oxide, silicon carbide on oxide, glass, gallium arsenide, indium phosphide, and combinations (or alloys) thereof.
- substrate or “wafer” may be used interchangeably herein. Semiconductor wafer shapes and sizes can vary and include commonly used round wafers of 2′′, 4′′, 200 mm, or 300 mm in diameter.
- microwave radiation refers to electromagnetic waves with frequencies between 300 MHz and 300 GHz. These frequencies correspond to wavelengths between 1 cm and 1 m.
- remote microwave source refers to a microwave source located at a distance from a deposition or treatment location sufficient to allow some filtering of the microwave components.
- degas refers to a process whereby adsorbed gases (e.g. water vapor, organic vapors, volatile contaminants, etc.) are substantially removed from a surface of a substrate prior to subsequent processing.
- adsorbed gases e.g. water vapor, organic vapors, volatile contaminants, etc.
- HPC processing techniques have been successfully adapted to wet chemical processing such as etching and cleaning. HPC processing techniques have also been successfully adapted to deposition processes such as physical vapor deposition (PVD), atomic layer deposition (ALD), and chemical vapor deposition (CVD).
- PVD physical vapor deposition
- ALD atomic layer deposition
- CVD chemical vapor deposition
- Embodiments of the present invention provide a system for systematic exploration of plasma treatment process variables in a combinatorial manner with the possibility of performing many variations on a single substrate.
- the combinatorial processing permits a single substrate to be systematically explored using different plasma processing conditions, and reduces or eliminates variables that interfere with research quality.
- the apparatuses and methods disclosed herein permit the systematic exploration of plasma treatments on a single substrate using combinatorial methods, and removes the run to run variability and inconsistencies between substrates that hamper research and optimization of process variables.
- FIG. 1 illustrates a schematic diagram, 100 , for implementing combinatorial processing and evaluation using primary, secondary, and tertiary screening.
- the schematic diagram, 100 illustrates that the relative number of combinatorial processes run with a group of substrates decreases as certain materials and/or processes are selected.
- combinatorial processing includes performing a large number of processes during a primary screen, selecting promising candidates from those processes, performing the selected processing during a secondary screen, selecting promising candidates from the secondary screen for a tertiary screen, and so on.
- feedback from later stages to earlier stages can be used to refine the success criteria and provide better screening results.
- Materials discovery stage, 102 is also known as a primary screening stage performed using primary screening techniques.
- Primary screening techniques may include dividing substrates into coupons and depositing materials using varied processes.
- the materials are then evaluated, and promising candidates are advanced to the secondary screen, or materials and process development stage, 104 . Evaluation of the materials is performed using metrology tools such as electronic testers and imaging tools (i.e., microscopes).
- the materials and process development stage, 104 may evaluate hundreds of materials (i.e., a magnitude smaller than the primary stage) and may focus on the processes used to deposit or develop those materials. Promising materials and processes are again selected, and advanced to the tertiary screen or process integration stage, 106 , where tens of materials and/or processes and combinations are evaluated.
- the tertiary screen or process integration stage, 106 may focus on integrating the selected processes and materials with other processes and materials.
- the most promising materials and processes from the tertiary screen are advanced to device qualification, 108 .
- device qualification the materials and processes selected are evaluated for high volume manufacturing, which normally is conducted on full substrates within production tools, but need not be conducted in such a manner. The results are evaluated to determine the efficacy of the selected materials and processes. If successful, the use of the screened materials and processes can proceed to pilot manufacturing, 110 .
- the schematic diagram, 100 is an example of various techniques that may be used to evaluate and select materials and processes for the development of new materials and processes.
- the descriptions of primary, secondary, etc. screening and the various stages, 102 - 110 are arbitrary and the stages may overlap, occur out of sequence, be described and be performed in many other ways.
- the composition or thickness of the layers or structures or the actions is substantially uniform through each discrete region.
- different materials or processes may be used for corresponding layers or steps in the formation of a structure in different regions of the substrate during the combinatorial processing
- the application of each layer or use of a given process is substantially consistent or uniform throughout the different regions in which it is intentionally applied.
- the processing is uniform within a region (inter-region uniformity) and between regions (intra-region uniformity), as desired.
- the process can be varied between regions, for example, where a thickness of a layer is varied or a material may be varied between the regions, etc., as desired by the design of the experiment.
- the result is a series of regions on the substrate that contain structures or unit process sequences that have been uniformly applied within that region and, as applicable, across different regions.
- This process uniformity allows comparison of the properties within and across the different regions such that the variations in test results are due to the varied parameter (e.g., materials, unit processes, unit process parameters, hardware details, or process sequences) and not the lack of process uniformity.
- the positions of the discrete regions on the substrate can be defined as needed, but are preferably systematized for ease of tooling and design of experimentation.
- the number, variants and location of structures within each region are designed to enable valid statistical analysis of the test results within each region and across regions to be performed.
- FIG. 2 is a simplified schematic diagram illustrating a general methodology for combinatorial process sequence integration that includes site-isolated processing and/or conventional processing in accordance with one embodiment of the invention.
- the substrate is initially processed using conventional process N.
- the substrate is then processed using site-isolated process N+1.
- an HPC module may be used, such as the HPC module described in U.S. patent application Ser. No. 11/352,077 filed on Feb. 10, 2006.
- the substrate can then be processed using site-isolated process N+2, and thereafter processed using conventional process N+3. Testing is performed and the results are evaluated.
- the testing can include physical, chemical, acoustic, magnetic, electrical, optical, etc. tests.
- a particular process from the various site-isolated processes may be selected and fixed so that additional combinatorial process sequence integration may be performed using site-isolated processing for either process N or N+3.
- a next process sequence can include processing the substrate using site-isolated process N, conventional processing for processes N+1, N+2, and N+3, with testing performed thereafter.
- the combinatorial process sequence integration can be applied to any desired segments and/or portions of an overall process flow. Characterization, including physical, chemical, acoustic, magnetic, electrical, optical, etc. testing, can be performed after each process operation, and/or series of process operations within the process flow as desired. The feedback provided by the testing is used to select certain materials, processes, process conditions, and process sequences and eliminate others. Furthermore, the above process flows can be applied to entire monolithic substrates, or portions of the monolithic substrates.
- a processing material delivered to a first and second region can be the same or different. If the processing material delivered to the first region is the same as the processing material delivered to the second region, this processing material can be offered to the first and second regions on the substrate at different concentrations. In addition, the material can be deposited under different processing parameters.
- Parameters which can be varied include, but are not limited to, process material amounts, reactant species, processing temperatures, processing times, processing pressures, processing flow rates, processing powers, processing reagent compositions, the rates at which the reactions are quenched, atmospheres in which the processes are conducted, the order in which materials are deposited, hardware details of the gas distribution assembly, etc. It should be appreciated that these process parameters are exemplary and not meant to be an exhaustive list as other process parameters commonly used with plasma exposure systems may be varied.
- the process conditions are substantially uniform, in contrast to gradient processing techniques which rely on the inherent non-uniformity of the material deposition. That is, the embodiments, described herein locally perform the processing in a conventional manner, e.g., substantially consistent and substantially uniform, while globally over the substrate, the materials, processes, and process sequences may vary. Thus, the testing will find optimums without interference from process variation differences between processes that are meant to be the same. It should be appreciated that a region may be adjacent to another region in one embodiment or the regions may be isolated and, therefore, non-overlapping.
- regions When the regions are adjacent, there may be a slight overlap wherein the materials or precise process interactions are not known, however, a portion of the regions, normally at least 50% or more of the area, is uniform and all testing occurs within that region. Further, the potential overlap is only allowed with material of processes that will not adversely affect the result of the tests. Both types of regions are referred to herein as regions or discrete regions.
- Substrates may be a conventional round 200 mm, 300 mm, or any other larger or smaller substrate/wafer size. In other embodiments, substrates may be square, rectangular, or other shape. One skilled in the art will appreciate that substrate may be a blanket substrate, a coupon (e.g., partial wafer), or even a patterned substrate having predefined regions. In some embodiments, a substrate may have regions defined through the processing described herein.
- the process parameters comprise selection of one or more source gases for the plasma generator, plasma filtering parameters, exposure time, substrate temperature, power, frequency, plasma generation method, substrate bias, pressure, gas flow, or combinations thereof.
- FIG. 3 is a simplified schematic diagram illustrating an integrated high productivity combinatorial (HPC) system in accordance with some embodiments of the invention.
- the HPC system includes a frame 300 supporting a plurality of processing modules. It will be appreciated that frame 300 may be a unitary frame in accordance with some embodiments. In some embodiments, the environment within frame 300 is controlled.
- a load lock 302 provides access into the plurality of modules of the HPC system.
- a robot 314 provides for the movement of substrates (and masks) between the modules and for the movement into and out of the load lock 302 .
- Modules 304 - 312 may be any set of modules and preferably include one or more combinatorial modules.
- module 304 may be an orientation/degassing module
- module 306 may be a clean module, either plasma or non-plasma based
- modules 308 and/or 310 may be combinatorial/conventional dual purpose modules.
- Module 312 may provide conventional clean or degas as necessary for the experiment design.
- a centralized controller i.e., computing device 316
- a plurality of methods may be employed to deposit material upon a substrate employing combinatorial processes.
- Degas processes are used in several stages or steps during the manufacture of semiconductor, optoelectronic, and thin film photovoltaic devices.
- the degas process may be used as a thermal treatment, wherein the substrate is heated in an inert atmosphere.
- current degas systems are designed to produce a uniform temperature across the entire surface of the substrate using resistive heating.
- the substrates often include temperature sensitive materials or structures (e.g. dopant implants) that constrain the maximum temperature and/or the thermal budget for the device.
- adsorbed species such as water vapor and/or contaminants must be removed from the surface of the substrate before subsequent deposition processes to ensure a clean interface and good device performance.
- Degas processes are needed for both conventional and high productivity combinatorial processing flows.
- Microwave radiation is generally understood to refer to electromagnetic waves with frequencies between 300 MHz and 300 GHz. Government regulations limit industrial and medical application frequencies to 27.12 MHz, 915 MHz, and 2.45 GHz. Typical heating applications use microwave radiation with frequencies of 2.45 GHz so that they do not interfere with telecommunications and cellular phone frequencies. Microwave radiation with frequencies of 2.45 GHz has energies of about 0.0016 eV. Clearly these energy levels are not high enough to directly break chemical bonds. As an example, Van der Waals bonds have typical energies of about 0.044 eV, hydrogen bonds have typical energies of about 0.2 eV, ionic bonds have typical energies of about 0.17 to 0.3 eV, and single covalent bonds have typical energies of about 2 to 5 eV. Therefore, the microwave radiation cannot directly induce chemical reactions.
- the microwave radiation will interact with dipoles formed by chemical bonding and interactions of adsorbed species with surfaces. As the dipoles are exposed to the microwave radiation, they will attempt to align with the oscillating electric field. In condensed phases (e.g. liquids and solids), steric hindrance prevents the dipoles from efficiently following the oscillating electric field, causing a phase delay between the electric field and the dipole alignment. This phase delay causes energy, in the form of heat, to be lost from the dipole by molecular friction and collisions. The increase in temperature is sufficient to overcome the bonding between the adsorbed species (e.g. water vapor, organic vapors, volatile contaminants, etc.) and the surface.
- the adsorbed species e.g. water vapor, organic vapors, volatile contaminants, etc.
- the adsorbed species can be removed from the surface without degrading the performance of temperature sensitive materials or structures that may be formed on the substrate.
- the substrate and bulk materials formed on the substrate interact only very weakly with the microwave radiation due to the absence of strong dipoles (e.g. the bonding is largely symmetric within the substrate and bulk materials).
- the efficacy of the microwave degas process may be influenced by process parameters such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate.
- FIG. 4 presents a flow chart illustrating the steps of methods according to some embodiments.
- a substrate is provided to a degas module of a cluster system as described previously, or to some other suitably equipped chamber.
- the substrate may be one of silicon, germanium, silicon-germanium alloy, silica, sapphire, zinc oxide, silicon carbide, aluminum nitride, gallium nitride, Spinel, coated silicon, silicon on oxide, silicon carbide on oxide, glass, gallium arsenide, indium phosphide, and combinations (or alloys) thereof.
- the substrate will have gases and/or contaminant species adsorbed on the surface. Typical gases and/or contaminant species include water vapor, organic vapors, volatile contaminants, etc.
- the substrate is exposed to microwave radiation.
- the microwave radiation is generated in a remote source and is delivered to the degas module using a wave guide.
- the frequency of the microwave radiation is varied in a continuous manner during the exposing so that localized hot spots do not form on isolated portions of the substrate.
- the frequency of the microwave electromagnetic radiation can be varied in a range around 2.45 GHz.
- the backside of the substrate may be heated to further enhance the degas process.
- the backside of the substrate may be cooled to further protect temperature sensitive materials and/or structures on the substrate during the degas process.
- the methods allow process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be varied to improve the degas process performance.
- the substrate is transported to another process module if necessary for subsequent processing.
- the transport typically occurs under vacuum within a cluster system (e.g. as discussed previously) or similar controlled environment so that additional water vapor and other contaminants do not adsorb on the degassed surface.
- Typical subsequent processes include surface treatment processes and deposition processes.
- the surface treatment processes may be one or more of plasma surface treatment or thermal surface treatment.
- the deposition processes may be one or more of atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PEALD), physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), pulsed laser deposition (PLD), or molecular beam epitaxy (MBE).
- ALD atomic layer deposition
- PEALD plasma enhanced atomic layer deposition
- PVD physical vapor deposition
- CVD chemical vapor deposition
- PECVD plasma enhanced chemical vapor deposition
- PLD pulsed laser deposition
- MBE molecular beam epitaxy
- FIG. 5 illustrates a first process chamber enabling degas processing using microwave radiation.
- the first process chamber includes a substrate support, 502 , used to support a substrate, 500 .
- the substrate support may include the capability of active heating and/or cooling.
- the substrate support is contained within a processing chamber, 504 .
- the processing chamber is held at a pressure between 1 mTorr and 760 Torr during the degas process.
- An ancillary structure, 506 houses a remote microwave source, 508 .
- the remote microwave source, 508 is operable to generate microwave radiation at a frequency of about 2.45 GHz.
- the frequency of the microwave radiation is varied in a continuous manner (e.g.
- the microwave radiation is delivered to the process chamber using a waveguide, 510 .
- the waveguide includes a section of bellows, thus allowing the distance from the process chamber to the ancillary structure to be adjusted.
- the microwave radiation is delivered to the surface of the substrate through delivery nozzle, 512 .
- the microwave radiation may irradiate the entire substrate or may irradiate a portion of the substrate. In embodiments where the microwave radiation irradiates only portions of the surface of the substrate, the substrate may be moved (e.g.
- the first process chamber allows process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be varied to improve the degas process performance.
- a second process chamber (not shown) is used to apply a subsequent process to the surface of the substrate after the degas process.
- the substrate may be transported to the second process chamber by a robot (not shown in FIG. 5 ).
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Formation Of Insulating Films (AREA)
- Drying Of Semiconductors (AREA)
Abstract
In some embodiments, methods are described that allow the processing of a substrate using microwave-based degas systems. The methods allow process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be investigated. In some embodiments, apparatus are described that allow the investigation of process variables used in microwave-based degas systems to remove adsorbed species from the surface of a substrate. The apparatus allow process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be investigated.
Description
- This application claims priority to U.S. Provisional Patent Application No. 61/779,740, filed on Mar. 13, 2013, which is herein incorporated by reference for all purposes.
- The present disclosure relates generally to use of degas processes used in the manufacture of microelectronic devices.
- Degassing is a standard production technology for electronics manufacturing. In particular, degas systems employing resistive heaters have been used to remove adsorbed moisture and contaminants from wafers during the manufacture of semiconductor devices, typically before subsequent deposition processes. High volume manufacturing degas systems have been designed to create uniform temperatures across the substrate surface.
- Heretofore, degas systems have been used to provide uniform temperature for entire substrates using resistive heating. However, the substrates often include temperature sensitive materials or structures (e.g. dopant implants) that constrain the maximum temperature and/or the thermal budget for the device. Yet, adsorbed species such as water vapor and/or contaminants must be removed from the surface of the substrate before subsequent deposition processes to ensure a clean interface and good device performance. What is needed is a system that allows adsorbed water vapor and/or contaminants to be removed without degrading the performance of temperature sensitive materials or structures formed on the substrate.
- The following summary of the disclosure is included in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention and as such it is not intended to particularly identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.
- In some embodiments, apparatus are described that allow the investigation of process variables used in microwave-based degas systems to remove adsorbed species from the surface of a substrate. The apparatus allow process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be investigated.
- In some embodiments, methods are described that allow the processing of a substrate using microwave-based degas systems. The methods allow process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be investigated.
- To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. The drawings are not to scale and the relative dimensions of various elements in the drawings are depicted schematically and not necessarily to scale.
- The techniques of the present invention can readily be understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
-
FIG. 1 illustrates a schematic diagram for implementing combinatorial processing and evaluation. -
FIG. 2 presents a schematic diagram for illustrating various process sequences using combinatorial processing and evaluation. -
FIG. 3 illustrates a processing system enabling combinatorial processing. -
FIG. 4 presents a flow chart illustrating the steps of methods according to some embodiments. -
FIG. 5 illustrates an apparatus according to some embodiments. - A detailed description of one or more embodiments is provided below along with accompanying figures. The detailed description is provided in connection with such embodiments, but is not limited to any particular example. The scope is limited only by the claims and numerous alternatives, modifications, and equivalents are encompassed. Numerous specific details are set forth in the following description in order to provide a thorough understanding. These details are provided for the purpose of example and the described techniques may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the embodiments has not been described in detail to avoid unnecessarily obscuring the description.
- Before various embodiments are described in detail, it is to be understood that unless otherwise indicated, this invention is not limited to specific layer compositions or surface treatments. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the present invention.
- It must be noted that as used herein and in the claims, the singular forms “a,” “and” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a layer” includes two or more layers, and so forth.
- Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention. The term “about” generally refers to ±10% of a stated value.
- The term “site-isolated” as used herein refers to providing distinct processing conditions, such as controlled temperature, flow rates, chamber pressure, processing time, plasma composition, and plasma energies. Site isolation may provide complete isolation between regions or relative isolation between regions. Preferably, the relative isolation is sufficient to provide a control over processing conditions within ±10%, within ±5%, within ±2%, within ±1%, or within ±0.1% of the target conditions. Where one region is processed at a time, adjacent regions are generally protected from any exposure that would alter the substrate surface in a measurable way.
- The term “site-isolated region” is used herein to refer to a localized area on a substrate which is, was, or is intended to be used for processing or formation of a selected material. The region can include one region and/or a series of regular or periodic regions predefined on the substrate. The region may have any convenient shape, e.g., circular, rectangular, elliptical, wedge-shaped, etc. In the semiconductor field, a region may be, for example, a test structure, single die, multiple dies, portion of a die, other defined portion of substrate, or an undefined area of a substrate, e.g., blanket substrate which is defined through the processing.
- The term “substrate” as used herein may refer to any workpiece on which formation or treatment of material layers is desired. Substrates may include, without limitation, silicon, germanium, silicon-germanium alloy, silica, sapphire, zinc oxide, silicon carbide, aluminum nitride, gallium nitride, Spinel, coated silicon, silicon on oxide, silicon carbide on oxide, glass, gallium arsenide, indium phosphide, and combinations (or alloys) thereof. The term “substrate” or “wafer” may be used interchangeably herein. Semiconductor wafer shapes and sizes can vary and include commonly used round wafers of 2″, 4″, 200 mm, or 300 mm in diameter.
- The term “microwave radiation” as used herein refers to electromagnetic waves with frequencies between 300 MHz and 300 GHz. These frequencies correspond to wavelengths between 1 cm and 1 m.
- The term “remote microwave source” as used herein refers to a microwave source located at a distance from a deposition or treatment location sufficient to allow some filtering of the microwave components.
- The term “degas” as used herein refers to a process whereby adsorbed gases (e.g. water vapor, organic vapors, volatile contaminants, etc.) are substantially removed from a surface of a substrate prior to subsequent processing.
- Systems and methods for High Productivity Combinatorial (HPC) processing are described in U.S. Pat. No. 7,544,574 filed on Feb. 10, 2006, U.S. Pat. No. 7,824,935 filed on Jul. 2, 2008, U.S. Pat. No. 7,871,928 filed on May 4, 2009, U.S. Pat. No. 7,902,063 filed on Feb. 10, 2006, and U.S. Pat. No. 7,947,531 filed on Aug. 28, 2009 which are all herein incorporated by reference. Systems and methods for HPC processing are further described in U.S. patent application Ser. No. 11/352,077 filed on Feb. 10, 2006, claiming priority from Oct. 15, 2005, U.S. patent application Ser. No. 11/419,174 filed on May 18, 2006, claiming priority from Oct. 15, 2005, U.S. patent application Ser. No. 11/674,132 filed on Feb. 12, 2007, claiming priority from Oct. 15, 2005, and U.S. patent application Ser. No. 11/674,137 filed on Feb. 12, 2007, claiming priority from Oct. 15, 2005 which are all herein incorporated by reference.
- HPC processing techniques have been successfully adapted to wet chemical processing such as etching and cleaning. HPC processing techniques have also been successfully adapted to deposition processes such as physical vapor deposition (PVD), atomic layer deposition (ALD), and chemical vapor deposition (CVD).
- The present invention is described in one or more embodiments in the following description with reference to the Figures, in which like numerals represent the same or similar elements. While the invention is described in exemplary terms which include a best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
- Embodiments of the present invention provide a system for systematic exploration of plasma treatment process variables in a combinatorial manner with the possibility of performing many variations on a single substrate. The combinatorial processing permits a single substrate to be systematically explored using different plasma processing conditions, and reduces or eliminates variables that interfere with research quality. The apparatuses and methods disclosed herein permit the systematic exploration of plasma treatments on a single substrate using combinatorial methods, and removes the run to run variability and inconsistencies between substrates that hamper research and optimization of process variables.
-
FIG. 1 illustrates a schematic diagram, 100, for implementing combinatorial processing and evaluation using primary, secondary, and tertiary screening. The schematic diagram, 100, illustrates that the relative number of combinatorial processes run with a group of substrates decreases as certain materials and/or processes are selected. Generally, combinatorial processing includes performing a large number of processes during a primary screen, selecting promising candidates from those processes, performing the selected processing during a secondary screen, selecting promising candidates from the secondary screen for a tertiary screen, and so on. In addition, feedback from later stages to earlier stages can be used to refine the success criteria and provide better screening results. - For example, thousands of materials are evaluated during a materials discovery stage, 102. Materials discovery stage, 102, is also known as a primary screening stage performed using primary screening techniques. Primary screening techniques may include dividing substrates into coupons and depositing materials using varied processes. The materials are then evaluated, and promising candidates are advanced to the secondary screen, or materials and process development stage, 104. Evaluation of the materials is performed using metrology tools such as electronic testers and imaging tools (i.e., microscopes).
- The materials and process development stage, 104, may evaluate hundreds of materials (i.e., a magnitude smaller than the primary stage) and may focus on the processes used to deposit or develop those materials. Promising materials and processes are again selected, and advanced to the tertiary screen or process integration stage, 106, where tens of materials and/or processes and combinations are evaluated. The tertiary screen or process integration stage, 106, may focus on integrating the selected processes and materials with other processes and materials.
- The most promising materials and processes from the tertiary screen are advanced to device qualification, 108. In device qualification, the materials and processes selected are evaluated for high volume manufacturing, which normally is conducted on full substrates within production tools, but need not be conducted in such a manner. The results are evaluated to determine the efficacy of the selected materials and processes. If successful, the use of the screened materials and processes can proceed to pilot manufacturing, 110.
- The schematic diagram, 100, is an example of various techniques that may be used to evaluate and select materials and processes for the development of new materials and processes. The descriptions of primary, secondary, etc. screening and the various stages, 102-110, are arbitrary and the stages may overlap, occur out of sequence, be described and be performed in many other ways.
- This application benefits from High Productivity Combinatorial (HPC) techniques described in U.S. patent application Ser. No. 11/674,137 filed on Feb. 12, 2007 which is hereby incorporated for reference in its entirety. Portions of the '137 application have been reproduced below to enhance the understanding of the present invention.
- While the combinatorial processing varies certain materials, hardware details, or process sequences, the composition or thickness of the layers or structures or the actions, such as cleaning, surface preparation, deposition, surface treatment, etc. is substantially uniform through each discrete region. Furthermore, while different materials or processes may be used for corresponding layers or steps in the formation of a structure in different regions of the substrate during the combinatorial processing, the application of each layer or use of a given process is substantially consistent or uniform throughout the different regions in which it is intentionally applied. Thus, the processing is uniform within a region (inter-region uniformity) and between regions (intra-region uniformity), as desired. It should be noted that the process can be varied between regions, for example, where a thickness of a layer is varied or a material may be varied between the regions, etc., as desired by the design of the experiment.
- The result is a series of regions on the substrate that contain structures or unit process sequences that have been uniformly applied within that region and, as applicable, across different regions. This process uniformity allows comparison of the properties within and across the different regions such that the variations in test results are due to the varied parameter (e.g., materials, unit processes, unit process parameters, hardware details, or process sequences) and not the lack of process uniformity. In the embodiments described herein, the positions of the discrete regions on the substrate can be defined as needed, but are preferably systematized for ease of tooling and design of experimentation. In addition, the number, variants and location of structures within each region are designed to enable valid statistical analysis of the test results within each region and across regions to be performed.
-
FIG. 2 is a simplified schematic diagram illustrating a general methodology for combinatorial process sequence integration that includes site-isolated processing and/or conventional processing in accordance with one embodiment of the invention. In one embodiment, the substrate is initially processed using conventional process N. In one exemplary embodiment, the substrate is then processed using site-isolated process N+1. During site-isolated processing, an HPC module may be used, such as the HPC module described in U.S. patent application Ser. No. 11/352,077 filed on Feb. 10, 2006. The substrate can then be processed using site-isolated process N+2, and thereafter processed using conventional process N+3. Testing is performed and the results are evaluated. The testing can include physical, chemical, acoustic, magnetic, electrical, optical, etc. tests. From this evaluation, a particular process from the various site-isolated processes (e.g. from steps N+1 and N+2) may be selected and fixed so that additional combinatorial process sequence integration may be performed using site-isolated processing for either process N or N+3. For example, a next process sequence can include processing the substrate using site-isolated process N, conventional processing for processes N+1, N+2, and N+3, with testing performed thereafter. - It should be appreciated that various other combinations of conventional and combinatorial processes can be included in the processing sequence with regard to
FIG. 2 . That is, the combinatorial process sequence integration can be applied to any desired segments and/or portions of an overall process flow. Characterization, including physical, chemical, acoustic, magnetic, electrical, optical, etc. testing, can be performed after each process operation, and/or series of process operations within the process flow as desired. The feedback provided by the testing is used to select certain materials, processes, process conditions, and process sequences and eliminate others. Furthermore, the above process flows can be applied to entire monolithic substrates, or portions of the monolithic substrates. - Under combinatorial processing operations the processing conditions at different regions can be controlled independently. Consequently, process material amounts, reactant species, processing temperatures, processing times, processing pressures, processing flow rates, processing powers, processing reagent compositions, the rates at which the reactions are quenched, deposition order of process materials, process sequence steps, hardware details, etc., can be varied from region to region on the substrate. Thus, for example, when exploring materials, a processing material delivered to a first and second region can be the same or different. If the processing material delivered to the first region is the same as the processing material delivered to the second region, this processing material can be offered to the first and second regions on the substrate at different concentrations. In addition, the material can be deposited under different processing parameters. Parameters which can be varied include, but are not limited to, process material amounts, reactant species, processing temperatures, processing times, processing pressures, processing flow rates, processing powers, processing reagent compositions, the rates at which the reactions are quenched, atmospheres in which the processes are conducted, the order in which materials are deposited, hardware details of the gas distribution assembly, etc. It should be appreciated that these process parameters are exemplary and not meant to be an exhaustive list as other process parameters commonly used with plasma exposure systems may be varied.
- As mentioned above, within a region, the process conditions are substantially uniform, in contrast to gradient processing techniques which rely on the inherent non-uniformity of the material deposition. That is, the embodiments, described herein locally perform the processing in a conventional manner, e.g., substantially consistent and substantially uniform, while globally over the substrate, the materials, processes, and process sequences may vary. Thus, the testing will find optimums without interference from process variation differences between processes that are meant to be the same. It should be appreciated that a region may be adjacent to another region in one embodiment or the regions may be isolated and, therefore, non-overlapping. When the regions are adjacent, there may be a slight overlap wherein the materials or precise process interactions are not known, however, a portion of the regions, normally at least 50% or more of the area, is uniform and all testing occurs within that region. Further, the potential overlap is only allowed with material of processes that will not adversely affect the result of the tests. Both types of regions are referred to herein as regions or discrete regions.
- Substrates may be a conventional round 200 mm, 300 mm, or any other larger or smaller substrate/wafer size. In other embodiments, substrates may be square, rectangular, or other shape. One skilled in the art will appreciate that substrate may be a blanket substrate, a coupon (e.g., partial wafer), or even a patterned substrate having predefined regions. In some embodiments, a substrate may have regions defined through the processing described herein.
- Software is provided to control the process parameters for each wafer for the combinatorial processing. The process parameters comprise selection of one or more source gases for the plasma generator, plasma filtering parameters, exposure time, substrate temperature, power, frequency, plasma generation method, substrate bias, pressure, gas flow, or combinations thereof.
-
FIG. 3 is a simplified schematic diagram illustrating an integrated high productivity combinatorial (HPC) system in accordance with some embodiments of the invention. The HPC system includes aframe 300 supporting a plurality of processing modules. It will be appreciated thatframe 300 may be a unitary frame in accordance with some embodiments. In some embodiments, the environment withinframe 300 is controlled. Aload lock 302 provides access into the plurality of modules of the HPC system. Arobot 314 provides for the movement of substrates (and masks) between the modules and for the movement into and out of theload lock 302. Modules 304-312 may be any set of modules and preferably include one or more combinatorial modules. For example,module 304 may be an orientation/degassing module, module 306 may be a clean module, either plasma or non-plasma based,modules 308 and/or 310 may be combinatorial/conventional dual purpose modules.Module 312 may provide conventional clean or degas as necessary for the experiment design. - Any type of chamber or combination of chambers may be implemented and the description herein is merely illustrative of one possible combination and not meant to limit the potential chamber or processes that can be supported to combine combinatorial processing or combinatorial plus conventional processing of a substrate or wafer. In some embodiments, a centralized controller, i.e.,
computing device 316, may control the processes of the HPC system. Further details of one possible HPC system are described in U.S. application Ser. Nos. 11/672,478 and 11/672,473, the entire disclosures of which are herein incorporated by reference. In a HPC system, a plurality of methods may be employed to deposit material upon a substrate employing combinatorial processes. - Degas processes are used in several stages or steps during the manufacture of semiconductor, optoelectronic, and thin film photovoltaic devices. The degas process may be used as a thermal treatment, wherein the substrate is heated in an inert atmosphere. As discussed previously, current degas systems are designed to produce a uniform temperature across the entire surface of the substrate using resistive heating. However, the substrates often include temperature sensitive materials or structures (e.g. dopant implants) that constrain the maximum temperature and/or the thermal budget for the device. Yet, adsorbed species such as water vapor and/or contaminants must be removed from the surface of the substrate before subsequent deposition processes to ensure a clean interface and good device performance. Degas processes are needed for both conventional and high productivity combinatorial processing flows.
- Microwave radiation is generally understood to refer to electromagnetic waves with frequencies between 300 MHz and 300 GHz. Government regulations limit industrial and medical application frequencies to 27.12 MHz, 915 MHz, and 2.45 GHz. Typical heating applications use microwave radiation with frequencies of 2.45 GHz so that they do not interfere with telecommunications and cellular phone frequencies. Microwave radiation with frequencies of 2.45 GHz has energies of about 0.0016 eV. Clearly these energy levels are not high enough to directly break chemical bonds. As an example, Van der Waals bonds have typical energies of about 0.044 eV, hydrogen bonds have typical energies of about 0.2 eV, ionic bonds have typical energies of about 0.17 to 0.3 eV, and single covalent bonds have typical energies of about 2 to 5 eV. Therefore, the microwave radiation cannot directly induce chemical reactions.
- The microwave radiation will interact with dipoles formed by chemical bonding and interactions of adsorbed species with surfaces. As the dipoles are exposed to the microwave radiation, they will attempt to align with the oscillating electric field. In condensed phases (e.g. liquids and solids), steric hindrance prevents the dipoles from efficiently following the oscillating electric field, causing a phase delay between the electric field and the dipole alignment. This phase delay causes energy, in the form of heat, to be lost from the dipole by molecular friction and collisions. The increase in temperature is sufficient to overcome the bonding between the adsorbed species (e.g. water vapor, organic vapors, volatile contaminants, etc.) and the surface. In this manner, the adsorbed species can be removed from the surface without degrading the performance of temperature sensitive materials or structures that may be formed on the substrate. Those skilled in the art will understand that the substrate and bulk materials formed on the substrate interact only very weakly with the microwave radiation due to the absence of strong dipoles (e.g. the bonding is largely symmetric within the substrate and bulk materials). The efficacy of the microwave degas process may be influenced by process parameters such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate.
-
FIG. 4 presents a flow chart illustrating the steps of methods according to some embodiments. Instep 400, a substrate is provided to a degas module of a cluster system as described previously, or to some other suitably equipped chamber. The substrate may be one of silicon, germanium, silicon-germanium alloy, silica, sapphire, zinc oxide, silicon carbide, aluminum nitride, gallium nitride, Spinel, coated silicon, silicon on oxide, silicon carbide on oxide, glass, gallium arsenide, indium phosphide, and combinations (or alloys) thereof. Typically, the substrate will have gases and/or contaminant species adsorbed on the surface. Typical gases and/or contaminant species include water vapor, organic vapors, volatile contaminants, etc. - In
step 402, the substrate is exposed to microwave radiation. Typically, the microwave radiation is generated in a remote source and is delivered to the degas module using a wave guide. In some embodiments, the frequency of the microwave radiation is varied in a continuous manner during the exposing so that localized hot spots do not form on isolated portions of the substrate. The frequency of the microwave electromagnetic radiation can be varied in a range around 2.45 GHz. In some embodiments, the backside of the substrate may be heated to further enhance the degas process. In some embodiments, the backside of the substrate may be cooled to further protect temperature sensitive materials and/or structures on the substrate during the degas process. The methods allow process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be varied to improve the degas process performance. - In
step 404, the substrate is transported to another process module if necessary for subsequent processing. The transport typically occurs under vacuum within a cluster system (e.g. as discussed previously) or similar controlled environment so that additional water vapor and other contaminants do not adsorb on the degassed surface. Typical subsequent processes include surface treatment processes and deposition processes. The surface treatment processes may be one or more of plasma surface treatment or thermal surface treatment. The deposition processes may be one or more of atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PEALD), physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), pulsed laser deposition (PLD), or molecular beam epitaxy (MBE). -
FIG. 5 illustrates a first process chamber enabling degas processing using microwave radiation. The first process chamber includes a substrate support, 502, used to support a substrate, 500. The substrate support may include the capability of active heating and/or cooling. The substrate support is contained within a processing chamber, 504. Typically, the processing chamber is held at a pressure between 1 mTorr and 760 Torr during the degas process. An ancillary structure, 506, houses a remote microwave source, 508. The remote microwave source, 508, is operable to generate microwave radiation at a frequency of about 2.45 GHz. In some embodiments, the frequency of the microwave radiation is varied in a continuous manner (e.g. in a frequency range centered around 2.45 GHz) during the exposing so that localized hot spots do not form on isolated portions of the substrate. The microwave radiation is delivered to the process chamber using a waveguide, 510. In some embodiments, the waveguide includes a section of bellows, thus allowing the distance from the process chamber to the ancillary structure to be adjusted. The microwave radiation is delivered to the surface of the substrate through delivery nozzle, 512. The microwave radiation may irradiate the entire substrate or may irradiate a portion of the substrate. In embodiments where the microwave radiation irradiates only portions of the surface of the substrate, the substrate may be moved (e.g. rotated and/or translated) so that the entire surface may be exposed to the microwave radiation at some time during the degas process. The first process chamber allows process variables such as power, dwell time, frequency, backside cooling gas usage, backside cooling gas flow rate, and the like to be varied to improve the degas process performance. - In some embodiments, a second process chamber (not shown) is used to apply a subsequent process to the surface of the substrate after the degas process. As discussed previously with reference to
FIG. 3 , the substrate may be transported to the second process chamber by a robot (not shown inFIG. 5 ). - Although the foregoing examples have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed examples are illustrative and not restrictive.
Claims (20)
1. A method for processing a substrate, the method comprising
transferring a substrate into a first process chamber;
exposing a surface of the substrate to microwave radiation, wherein the microwave radiation has a frequency of about 2.45 GHz;
after the exposing, transferring the substrate to a second process chamber; and
after the transferring, processing the substrate.
2. The method of claim 1 , wherein the frequency of the microwave radiation is varied in a continuous manner around 2.45 GHz during the exposing.
3. The method of claim 1 , wherein the substrate comprises one of silicon, germanium, silicon-germanium alloy, silica, sapphire, zinc oxide, silicon carbide, aluminum nitride, gallium nitride, Spinel, coated silicon, silicon on oxide, silicon carbide on oxide, glass, gallium arsenide, indium phosphide, and combinations (or alloys) thereof.
4. The method of claim 1 , further comprising heating a backside of the substrate during the exposing.
5. The method of claim 1 , further comprising cooling a backside of the substrate during the exposing.
6. The method of claim 1 , wherein a pressure within the first process chamber during the exposing is between 1 mTorr and 760 Torr.
7. The method of claim 1 , wherein processing the substrate comprises a surface treatment process.
8. The method of claim 7 , wherein processing the substrate comprises a plasma treatment process.
9. The method of claim 7 , wherein processing the substrate comprises a thermal treatment process.
10. The method of claim 1 , wherein processing the substrate comprises a deposition process.
11. The method of claim 10 , wherein the processing the substrate comprises one of atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PEALD), physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), pulsed laser deposition (PLD), or molecular beam epitaxy (MBE).
12. The method of claim 1 , wherein processing the substrate comprises one of a conventional process or a high productivity combinatorial process.
13. An apparatus comprising:
a first process chamber;
a remote microwave source;
a waveguide, wherein the waveguide is operable to deliver microwave radiation from the remote microwave source to the first process chamber;
a substrate support; and
a delivery nozzle, wherein the delivery nozzle is operable to deliver microwave radiation from the waveguide to a surface of a substrate disposed upon the substrate support.
14. The apparatus of claim 13 , wherein the remote microwave source generates microwave radiation having a frequency of about 2.45 GHz.
15. The apparatus of claim 13 , further comprising a second process chamber.
16. The apparatus of claim 15 , further comprising a robot, wherein the robot is operable to transport the substrate from the first process chamber to the second process chamber.
17. The apparatus of claim 15 , wherein the second process chamber is operable to apply a plasma surface treatment to the substrate.
18. The apparatus of claim 15 , wherein the second process chamber is operable to apply a thermal surface treatment to the substrate.
19. The apparatus of claim 15 , wherein the second process chamber is operable to apply a deposition process to the substrate.
20. The apparatus of claim 19 , wherein the deposition process comprises one of atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PEALD), physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), pulsed laser deposition (PLD), or molecular beam epitaxy (MBE).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/091,854 US20140273404A1 (en) | 2013-03-13 | 2013-11-27 | Advanced Targeted Microwave Degas System |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361779740P | 2013-03-13 | 2013-03-13 | |
US14/091,854 US20140273404A1 (en) | 2013-03-13 | 2013-11-27 | Advanced Targeted Microwave Degas System |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140273404A1 true US20140273404A1 (en) | 2014-09-18 |
Family
ID=51523560
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/019,961 Abandoned US20140273525A1 (en) | 2013-03-13 | 2013-09-06 | Atomic Layer Deposition of Reduced-Leakage Post-Transition Metal Oxide Films |
US14/031,975 Expired - Fee Related US8987143B2 (en) | 2013-03-13 | 2013-09-19 | Hydrogen plasma cleaning of germanium oxide surfaces |
US14/091,854 Abandoned US20140273404A1 (en) | 2013-03-13 | 2013-11-27 | Advanced Targeted Microwave Degas System |
US14/135,431 Expired - Fee Related US9076641B2 (en) | 2013-03-13 | 2013-12-19 | Ultra-low resistivity contacts |
US14/137,183 Abandoned US20140264281A1 (en) | 2013-03-13 | 2013-12-20 | Channel-Last Methods for Making FETS |
US14/137,866 Abandoned US20140264507A1 (en) | 2013-03-13 | 2013-12-20 | Fluorine Passivation in CMOS Image Sensors |
US14/721,248 Abandoned US20150255332A1 (en) | 2013-03-13 | 2015-05-26 | Ultra-Low Resistivity Contacts |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/019,961 Abandoned US20140273525A1 (en) | 2013-03-13 | 2013-09-06 | Atomic Layer Deposition of Reduced-Leakage Post-Transition Metal Oxide Films |
US14/031,975 Expired - Fee Related US8987143B2 (en) | 2013-03-13 | 2013-09-19 | Hydrogen plasma cleaning of germanium oxide surfaces |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/135,431 Expired - Fee Related US9076641B2 (en) | 2013-03-13 | 2013-12-19 | Ultra-low resistivity contacts |
US14/137,183 Abandoned US20140264281A1 (en) | 2013-03-13 | 2013-12-20 | Channel-Last Methods for Making FETS |
US14/137,866 Abandoned US20140264507A1 (en) | 2013-03-13 | 2013-12-20 | Fluorine Passivation in CMOS Image Sensors |
US14/721,248 Abandoned US20150255332A1 (en) | 2013-03-13 | 2015-05-26 | Ultra-Low Resistivity Contacts |
Country Status (2)
Country | Link |
---|---|
US (7) | US20140273525A1 (en) |
WO (2) | WO2014160467A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI667721B (en) * | 2014-12-11 | 2019-08-01 | 瑞士商艾維太克股份有限公司 | Thermal treatment chamber, apparatus comprising such a chamber and method of manufacturing thermally treated workpieces |
US11776825B2 (en) | 2016-03-08 | 2023-10-03 | Evatec Ag | Chamber for degassing substrates |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140034632A1 (en) * | 2012-08-01 | 2014-02-06 | Heng Pan | Apparatus and method for selective oxidation at lower temperature using remote plasma source |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US20150024152A1 (en) | 2013-07-19 | 2015-01-22 | Agilent Technologies, Inc. | Metal components with inert vapor phase coating on internal surfaces |
US10767259B2 (en) | 2013-07-19 | 2020-09-08 | Agilent Technologies, Inc. | Components with an atomic layer deposition coating and methods of producing the same |
US20150093887A1 (en) * | 2013-10-02 | 2015-04-02 | GlobalFoundries, Inc. | Methods for removing a native oxide layer from germanium susbtrates in the fabrication of integrated circuitsi |
US20150093889A1 (en) * | 2013-10-02 | 2015-04-02 | Intermolecular | Methods for removing a native oxide layer from germanium susbtrates in the fabrication of integrated circuits |
US9224594B2 (en) * | 2013-11-18 | 2015-12-29 | Intermolecular, Inc. | Surface preparation with remote plasma |
US9299557B2 (en) | 2014-03-19 | 2016-03-29 | Asm Ip Holding B.V. | Plasma pre-clean module and process |
US20150270134A1 (en) * | 2014-03-19 | 2015-09-24 | Qualcomm Incorporated | Methods of forming a metal-insulator-semiconductor (mis) structure and a dual contact device |
US9324804B2 (en) * | 2014-03-21 | 2016-04-26 | Wisconsin Alumni Research Foundation | Graphene-on-semiconductor substrates for analog electronics |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9287359B1 (en) | 2014-09-15 | 2016-03-15 | Wisconsin Alumni Research Foundation | Oriented bottom-up growth of armchair graphene nanoribbons on germanium |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US9474163B2 (en) * | 2014-12-30 | 2016-10-18 | Asm Ip Holding B.V. | Germanium oxide pre-clean module and process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
CN112575313A (en) * | 2015-01-14 | 2021-03-30 | 安捷伦科技有限公司 | Component with atomic layer deposition coating and method of making the same |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US10373850B2 (en) | 2015-03-11 | 2019-08-06 | Asm Ip Holding B.V. | Pre-clean chamber and process with substrate tray for changing substrate temperature |
EP3326203B1 (en) | 2015-07-24 | 2024-03-06 | Artilux, Inc. | Multi-wafer based light absorption apparatus and applications thereof |
US10644187B2 (en) * | 2015-07-24 | 2020-05-05 | Artilux, Inc. | Multi-wafer based light absorption apparatus and applications thereof |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US9484255B1 (en) | 2015-11-03 | 2016-11-01 | International Business Machines Corporation | Hybrid source and drain contact formation using metal liner and metal insulator semiconductor contacts |
US9595449B1 (en) * | 2015-12-21 | 2017-03-14 | International Business Machines Corporation | Silicon-germanium semiconductor devices and method of making |
US9627615B1 (en) * | 2016-01-26 | 2017-04-18 | Arm Ltd. | Fabrication of correlated electron material devices |
JP6827633B2 (en) * | 2016-03-02 | 2021-02-10 | 東京エレクトロン株式会社 | Etching with adjustable selectivity of isotropic silicon and silicon germanium |
CA3023259A1 (en) * | 2016-05-05 | 2017-11-09 | Veloce Biopharma, Llc | Compositions and methods for treatment of inflammation or infection of the eye |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US11222959B1 (en) * | 2016-05-20 | 2022-01-11 | Hrl Laboratories, Llc | Metal oxide semiconductor field effect transistor and method of manufacturing same |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9761669B1 (en) | 2016-07-18 | 2017-09-12 | Wisconsin Alumni Research Foundation | Seed-mediated growth of patterned graphene nanoribbon arrays |
US10269714B2 (en) | 2016-09-06 | 2019-04-23 | International Business Machines Corporation | Low resistance contacts including intermetallic alloy of nickel, platinum, titanium, aluminum and type IV semiconductor elements |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
KR102398688B1 (en) | 2017-05-26 | 2022-05-16 | 주식회사 디비하이텍 | Image sensor and method of manufacturing the same |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
CN107248496B (en) * | 2017-06-07 | 2019-11-15 | 西安电子科技大学 | Correction method of sheet resistance in ohmic contact area |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10283324B1 (en) * | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10424487B2 (en) | 2017-10-24 | 2019-09-24 | Applied Materials, Inc. | Atomic layer etching processes |
KR102018075B1 (en) * | 2017-11-30 | 2019-09-04 | 무진전자 주식회사 | Dry clean apparatus and method for removing polysilicon seletively |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10290719B1 (en) | 2017-12-27 | 2019-05-14 | International Business Machines Corporation | Indium gallium arsenide metal oxide semiconductor field effect transistor having a low contact resistance to metal electrode |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
TWI716818B (en) | 2018-02-28 | 2021-01-21 | 美商應用材料股份有限公司 | Systems and methods to form airgaps |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11088028B2 (en) * | 2018-11-30 | 2021-08-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin field-effect transistor device and method of forming the same |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
CN112986357A (en) * | 2019-12-13 | 2021-06-18 | 成都今是科技有限公司 | Microelectrode of gene sequencing chip, preparation method thereof and gene sequencing chip |
WO2022098517A1 (en) * | 2020-11-03 | 2022-05-12 | Tokyo Electron Limited | Method for filling recessed features in semiconductor devices with a low-resistivity metal |
US11618681B2 (en) | 2021-06-28 | 2023-04-04 | Wisconsin Alumni Research Foundation | Graphene nanoribbons grown from aromatic molecular seeds |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030232501A1 (en) * | 2002-06-14 | 2003-12-18 | Kher Shreyas S. | Surface pre-treatment for enhancement of nucleation of high dielectric constant materials |
US6714300B1 (en) * | 1998-09-28 | 2004-03-30 | Therma-Wave, Inc. | Optical inspection equipment for semiconductor wafers with precleaning |
US7892985B1 (en) * | 2005-11-15 | 2011-02-22 | Novellus Systems, Inc. | Method for porogen removal and mechanical strength enhancement of low-k carbon doped silicon oxide using low thermal budget microwave curing |
Family Cites Families (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3676756A (en) * | 1969-09-18 | 1972-07-11 | Innotech Corp | Insulated gate field effect device having glass gate insulator |
GB1417085A (en) * | 1973-05-17 | 1975-12-10 | Standard Telephones Cables Ltd | Plasma etching |
US4361461A (en) | 1981-03-13 | 1982-11-30 | Bell Telephone Laboratories, Incorporated | Hydrogen etching of semiconductors and oxides |
US4675073A (en) * | 1986-03-07 | 1987-06-23 | Texas Instruments Incorporated | Tin etch process |
US5116679A (en) * | 1988-07-29 | 1992-05-26 | Alcan International Limited | Process for producing fibres composed of or coated with carbides or nitrides |
KR0144932B1 (en) * | 1995-01-26 | 1998-07-01 | 김광호 | Capacitor of semiconductor device and manufacturing method thereof |
US6020243A (en) * | 1997-07-24 | 2000-02-01 | Texas Instruments Incorporated | Zirconium and/or hafnium silicon-oxynitride gate dielectric |
US7012292B1 (en) * | 1998-11-25 | 2006-03-14 | Advanced Technology Materials, Inc | Oxidative top electrode deposition process, and microelectronic device structure |
US7053002B2 (en) * | 1998-12-04 | 2006-05-30 | Applied Materials, Inc | Plasma preclean with argon, helium, and hydrogen gases |
JP2002016248A (en) * | 2000-06-30 | 2002-01-18 | Mitsubishi Electric Corp | Method for manufacturing semiconductor device |
US6613695B2 (en) * | 2000-11-24 | 2003-09-02 | Asm America, Inc. | Surface preparation prior to deposition |
US6900498B2 (en) * | 2001-05-08 | 2005-05-31 | Advanced Technology Materials, Inc. | Barrier structures for integration of high K oxides with Cu and Al electrodes |
CN100468638C (en) * | 2001-12-18 | 2009-03-11 | 松下电器产业株式会社 | Manufacturing method of semiconductor element |
DE10221503A1 (en) * | 2002-05-14 | 2003-11-27 | Infineon Technologies Ag | Metal object intended for at least partial coating with a substance |
US6804136B2 (en) * | 2002-06-21 | 2004-10-12 | Micron Technology, Inc. | Write once read only memory employing charge trapping in insulators |
JP2004186567A (en) * | 2002-12-05 | 2004-07-02 | Toshiba Corp | Semiconductor device and method of manufacturing semiconductor device |
US6756291B1 (en) * | 2003-01-24 | 2004-06-29 | Taiwan Semiconductor Manufacturing Co., Ltd | Method for hardening gate oxides using gate etch process |
CN1841675A (en) * | 2003-02-12 | 2006-10-04 | 松下电器产业株式会社 | Manufacturing method of semiconductor device |
CN101457338B (en) | 2003-02-14 | 2011-04-27 | 应用材料股份有限公司 | Cleaning of native oxide with hydrogen-containing radicals |
JP4315701B2 (en) * | 2003-02-25 | 2009-08-19 | シャープ株式会社 | Nitride III-V compound semiconductor electrode and method for producing the same |
KR100541678B1 (en) * | 2003-06-30 | 2006-01-11 | 주식회사 하이닉스반도체 | How to Form Metal Wiring |
US6811448B1 (en) | 2003-07-15 | 2004-11-02 | Advanced Micro Devices, Inc. | Pre-cleaning for silicidation in an SMOS process |
US20050056219A1 (en) * | 2003-09-16 | 2005-03-17 | Tokyo Electron Limited | Formation of a metal-containing film by sequential gas exposure in a batch type processing system |
JP3729826B2 (en) * | 2004-01-09 | 2005-12-21 | 松下電器産業株式会社 | Method for manufacturing solid-state imaging device |
CN1960860B (en) * | 2004-02-25 | 2012-06-27 | 旭硝子北美平板玻璃公司 | Heat stabilized sub-stoichiometric dielectrics |
JP2005268312A (en) | 2004-03-16 | 2005-09-29 | Semiconductor Leading Edge Technologies Inc | Resist removing method and semiconductor device manufactured using same |
US6946368B1 (en) * | 2004-03-23 | 2005-09-20 | Applied Materials, Inc. | Reduction of native oxide at germanium interface using hydrogen-based plasma |
US7279413B2 (en) * | 2004-06-16 | 2007-10-09 | International Business Machines Corporation | High-temperature stable gate structure with metallic electrode |
US8084400B2 (en) * | 2005-10-11 | 2011-12-27 | Intermolecular, Inc. | Methods for discretized processing and process sequence integration of regions of a substrate |
US7465674B2 (en) * | 2005-05-31 | 2008-12-16 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
JP5067158B2 (en) * | 2005-07-08 | 2012-11-07 | 日本電気株式会社 | Electrode structure, semiconductor element, and manufacturing method thereof |
US7402534B2 (en) * | 2005-08-26 | 2008-07-22 | Applied Materials, Inc. | Pretreatment processes within a batch ALD reactor |
US20070107750A1 (en) | 2005-11-14 | 2007-05-17 | Sawin Herbert H | Method of using NF3 for removing surface deposits from the interior of chemical vapor deposition chambers |
US8772772B2 (en) * | 2006-05-18 | 2014-07-08 | Intermolecular, Inc. | System and method for increasing productivity of combinatorial screening |
EP1994550A4 (en) * | 2006-02-10 | 2012-01-11 | Intermolecular Inc | Method and apparatus for combinatorially varying materials, unit process and process sequence |
US20080087890A1 (en) * | 2006-10-16 | 2008-04-17 | Micron Technology, Inc. | Methods to form dielectric structures in semiconductor devices and resulting devices |
US8169078B2 (en) * | 2006-12-28 | 2012-05-01 | Renesas Electronics Corporation | Electrode structure, semiconductor element, and methods of manufacturing the same |
FR2913146B1 (en) * | 2007-02-23 | 2009-05-01 | Saint Gobain | DISCONTINUOUS ELECTRODE, ORGANIC ELECTROLUMINESCENCE DEVICE INCORPORATING THE SAME, AND THEIR MANUFACTURING |
US8344375B2 (en) * | 2007-03-05 | 2013-01-01 | Intermolecular, Inc. | Nonvolatile memory elements with metal deficient resistive switching metal oxides |
CN101711431B (en) * | 2007-05-09 | 2015-11-25 | 分子间公司 | Resistive-switching nonvolatile memory elements |
KR100864932B1 (en) | 2007-07-23 | 2008-10-22 | 주식회사 동부하이텍 | Cleaning Method of Semiconductor Substrate |
TW200929526A (en) * | 2007-12-24 | 2009-07-01 | Powerchip Semiconductor Corp | Non-volatile memory and fabricating method thereof |
FR2925981B1 (en) * | 2007-12-27 | 2010-02-19 | Saint Gobain | CARRIER SUBSTRATE OF AN ELECTRODE, ORGANIC ELECTROLUMINESCENT DEVICE INCORPORATING IT. |
US8343813B2 (en) * | 2009-04-10 | 2013-01-01 | Intermolecular, Inc. | Resistive-switching memory elements having improved switching characteristics |
TWI450399B (en) * | 2008-07-31 | 2014-08-21 | Semiconductor Energy Lab | Semiconductor device and method of manufacturing same |
US8124992B2 (en) * | 2008-08-27 | 2012-02-28 | Showa Denko K.K. | Light-emitting device, manufacturing method thereof, and lamp |
US8441060B2 (en) * | 2008-10-01 | 2013-05-14 | Panasonic Corporation | Nonvolatile memory element and nonvolatile memory device incorporating nonvolatile memory element |
KR20100101450A (en) * | 2009-03-09 | 2010-09-17 | 삼성전자주식회사 | Semiconductor device and associated methods of manufacture |
EP2259267B1 (en) * | 2009-06-02 | 2013-08-21 | Imec | Method for manufacturing a resistive switching memory cell comprising a nickel oxide layer operable at low-power and memory cells obtained thereof |
US8394669B2 (en) * | 2009-07-13 | 2013-03-12 | Panasonic Corporation | Resistance variable element and resistance variable memory device |
CN102630341A (en) * | 2009-09-17 | 2012-08-08 | 西奥尼克斯股份有限公司 | Photosensitive imaging device and related method |
US8476681B2 (en) * | 2009-09-17 | 2013-07-02 | Sionyx, Inc. | Photosensitive imaging devices and associated methods |
US8106469B2 (en) * | 2010-01-14 | 2012-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods and apparatus of fluorine passivation |
EP2348531B1 (en) * | 2010-01-26 | 2021-05-26 | Samsung Electronics Co., Ltd. | Thin film transistor and method of manufacturing the same |
US8435902B2 (en) | 2010-03-17 | 2013-05-07 | Applied Materials, Inc. | Invertable pattern loading with dry etch |
KR101312906B1 (en) * | 2010-03-19 | 2013-09-30 | 파나소닉 주식회사 | Non-volatile storage element, method of manufacturing the same, method of supporting design thereof and non-volatile storage device |
US8629523B2 (en) * | 2010-04-16 | 2014-01-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Inserted reflective shield to improve quantum efficiency of image sensors |
JP5320601B2 (en) * | 2010-04-23 | 2013-10-23 | シャープ株式会社 | Nonvolatile variable resistance element and nonvolatile semiconductor memory device |
JP5186634B2 (en) * | 2010-06-29 | 2013-04-17 | シャープ株式会社 | Nonvolatile semiconductor memory device |
JP4948688B2 (en) * | 2010-07-02 | 2012-06-06 | パナソニック株式会社 | Resistance variable nonvolatile memory element, variable resistance nonvolatile memory device, and method of manufacturing variable resistance nonvolatile memory element |
US8374018B2 (en) * | 2010-07-09 | 2013-02-12 | Crossbar, Inc. | Resistive memory using SiGe material |
JP5148025B2 (en) * | 2010-11-19 | 2013-02-20 | パナソニック株式会社 | Method for manufacturing nonvolatile semiconductor memory element |
WO2012070238A1 (en) * | 2010-11-24 | 2012-05-31 | パナソニック株式会社 | Nonvolatile memory element, production method therefor, nonvolatile memory unit, and design assistance method for nonvolatile memory element |
JP5000027B1 (en) * | 2010-12-15 | 2012-08-15 | パナソニック株式会社 | Nonvolatile memory device |
US8349731B2 (en) * | 2011-03-25 | 2013-01-08 | GlobalFoundries, Inc. | Methods for forming copper diffusion barriers for semiconductor interconnect structures |
US8546781B2 (en) * | 2011-05-31 | 2013-10-01 | The Board Of Trustees Of The Leland Stanford Junior University | Nitrogen doped aluminum oxide resistive random access memory |
US20120313205A1 (en) * | 2011-06-10 | 2012-12-13 | Homayoon Haddad | Photosensitive Imagers Having Defined Textures for Light Trapping and Associated Methods |
US8846443B2 (en) * | 2011-08-05 | 2014-09-30 | Intermolecular, Inc. | Atomic layer deposition of metal oxides for memory applications |
US8659001B2 (en) * | 2011-09-01 | 2014-02-25 | Sandisk 3D Llc | Defect gradient to boost nonvolatile memory performance |
US8288297B1 (en) * | 2011-09-01 | 2012-10-16 | Intermolecular, Inc. | Atomic layer deposition of metal oxide materials for memory applications |
WO2013035327A1 (en) * | 2011-09-09 | 2013-03-14 | パナソニック株式会社 | Cross-point variable resistance non-volatile storage device and writing method for same |
WO2013046603A1 (en) * | 2011-09-27 | 2013-04-04 | パナソニック株式会社 | Non-volatile memory element, non-volatile memory device, and method for manufacturing same |
US8822265B2 (en) * | 2011-10-06 | 2014-09-02 | Intermolecular, Inc. | Method for reducing forming voltage in resistive random access memory |
US9082968B2 (en) * | 2011-11-17 | 2015-07-14 | Panasonic Intellectual Property Management Co., Ltd. | Variable resistance non-volatile memory device and manufacturing method thereof |
JP5845866B2 (en) * | 2011-12-07 | 2016-01-20 | 富士通セミコンダクター株式会社 | Manufacturing method of semiconductor device |
US8920618B2 (en) * | 2011-12-29 | 2014-12-30 | Intermolecular, Inc. | Combinatorial processing using high deposition rate sputtering |
WO2013111548A1 (en) * | 2012-01-23 | 2013-08-01 | パナソニック株式会社 | Nonvolatile storage element and method of manufacturing thereof |
JP2013157469A (en) * | 2012-01-30 | 2013-08-15 | Sharp Corp | Variable resistive element, and nonvolatile semiconductor storage device |
US8569104B2 (en) * | 2012-02-07 | 2013-10-29 | Intermolecular, Inc. | Transition metal oxide bilayers |
US20140011339A1 (en) | 2012-07-06 | 2014-01-09 | Applied Materials, Inc. | Method for removing native oxide and residue from a germanium or iii-v group containing surface |
US20140124817A1 (en) * | 2012-11-05 | 2014-05-08 | Intermolecular, Inc. | Contact Layers |
US9331293B2 (en) * | 2013-03-14 | 2016-05-03 | Nutech Ventures | Floating-gate transistor photodetector with light absorbing layer |
-
2013
- 2013-09-06 US US14/019,961 patent/US20140273525A1/en not_active Abandoned
- 2013-09-19 US US14/031,975 patent/US8987143B2/en not_active Expired - Fee Related
- 2013-11-27 US US14/091,854 patent/US20140273404A1/en not_active Abandoned
- 2013-12-19 US US14/135,431 patent/US9076641B2/en not_active Expired - Fee Related
- 2013-12-20 US US14/137,183 patent/US20140264281A1/en not_active Abandoned
- 2013-12-20 US US14/137,866 patent/US20140264507A1/en not_active Abandoned
-
2014
- 2014-03-13 WO PCT/US2014/026732 patent/WO2014160467A1/en active Application Filing
- 2014-03-13 WO PCT/US2014/026690 patent/WO2014160460A1/en active Application Filing
-
2015
- 2015-05-26 US US14/721,248 patent/US20150255332A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6714300B1 (en) * | 1998-09-28 | 2004-03-30 | Therma-Wave, Inc. | Optical inspection equipment for semiconductor wafers with precleaning |
US6930771B2 (en) * | 1998-09-28 | 2005-08-16 | Therma-Wave, Inc. | Optical inspection equipment for semiconductor wafers with precleaning |
US7068370B2 (en) * | 1998-09-28 | 2006-06-27 | Therma-Wave, Inc. | Optical inspection equipment for semiconductor wafers with precleaning |
US20030232501A1 (en) * | 2002-06-14 | 2003-12-18 | Kher Shreyas S. | Surface pre-treatment for enhancement of nucleation of high dielectric constant materials |
US7892985B1 (en) * | 2005-11-15 | 2011-02-22 | Novellus Systems, Inc. | Method for porogen removal and mechanical strength enhancement of low-k carbon doped silicon oxide using low thermal budget microwave curing |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI667721B (en) * | 2014-12-11 | 2019-08-01 | 瑞士商艾維太克股份有限公司 | Thermal treatment chamber, apparatus comprising such a chamber and method of manufacturing thermally treated workpieces |
US10403522B2 (en) | 2014-12-11 | 2019-09-03 | Evatec Ag | Chamber for degassing substrates |
US10580671B2 (en) | 2014-12-11 | 2020-03-03 | Evatec Ag | Chamber for degassing substrates |
US11776825B2 (en) | 2016-03-08 | 2023-10-03 | Evatec Ag | Chamber for degassing substrates |
Also Published As
Publication number | Publication date |
---|---|
WO2014160467A1 (en) | 2014-10-02 |
US9076641B2 (en) | 2015-07-07 |
US8987143B2 (en) | 2015-03-24 |
US20140264507A1 (en) | 2014-09-18 |
US20140273525A1 (en) | 2014-09-18 |
WO2014160460A1 (en) | 2014-10-02 |
US20140264281A1 (en) | 2014-09-18 |
US20140273493A1 (en) | 2014-09-18 |
US20150255332A1 (en) | 2015-09-10 |
US20140264825A1 (en) | 2014-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140273404A1 (en) | Advanced Targeted Microwave Degas System | |
US9023438B2 (en) | Methods and apparatus for combinatorial PECVD or PEALD | |
US8821987B2 (en) | Combinatorial processing using a remote plasma source | |
KR102436174B1 (en) | How to process the object | |
US20140127422A1 (en) | Method and Apparatus for High-K Gate Performance Improvement and Combinatorial Processing | |
KR20200019983A (en) | Etching Method and Etching Apparatus | |
KR102654243B1 (en) | Eliminating first wafer metal contamination effect in high density plasma chemical vapor deposition systems | |
US8822313B2 (en) | Surface treatment methods and systems for substrate processing | |
US20140069459A1 (en) | Methods and apparatus for cleaning deposition chambers | |
US9082729B2 (en) | Combinatorial method for solid source doping process development | |
US20200290095A1 (en) | Method of forming process film | |
US20120315396A1 (en) | Apparatus and method for combinatorial plasma distribution through a multi-zoned showerhead | |
US9087864B2 (en) | Multipurpose combinatorial vapor phase deposition chamber | |
US20130153536A1 (en) | Combinatorial processing using a remote plasma source | |
US8815012B2 (en) | Emissivity profile control for thermal uniformity | |
US8974649B2 (en) | Combinatorial RF bias method for PVD | |
US9023739B2 (en) | Site-isolated rapid thermal processing methods and apparatus | |
US20130136862A1 (en) | Multi-cell mocvd apparatus | |
KR20160030364A (en) | Plasma processing apparatus and cleaning method | |
US9721766B2 (en) | Method for processing target object | |
US20130153054A1 (en) | Combinatorial Processing Tool | |
US20160189931A1 (en) | Plasma processing apparatus and method for determining replacement of member of plasma processing apparatus | |
US20140147593A1 (en) | Liquid Cooled Sputter Apertured Shields | |
US20140183161A1 (en) | Methods and Systems for Site-Isolated Combinatorial Substrate Processing Using a Mask | |
US20140179095A1 (en) | Methods and Systems for Controlling Gate Dielectric Interfaces of MOSFETs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERMOLECULAR, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHILD, KENT RILEY;LE, MINH HUU;SIGNING DATES FROM 20131122 TO 20131127;REEL/FRAME:031685/0892 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |