US20140249315A1 - Processes for preparing tubulysins - Google Patents
Processes for preparing tubulysins Download PDFInfo
- Publication number
- US20140249315A1 US20140249315A1 US13/841,078 US201313841078A US2014249315A1 US 20140249315 A1 US20140249315 A1 US 20140249315A1 US 201313841078 A US201313841078 A US 201313841078A US 2014249315 A1 US2014249315 A1 US 2014249315A1
- Authority
- US
- United States
- Prior art keywords
- compound
- formula
- optionally substituted
- alkyl
- cycloalkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 144
- 230000008569 process Effects 0.000 title claims abstract description 132
- 229930184737 tubulysin Natural products 0.000 title abstract description 35
- 150000001875 compounds Chemical class 0.000 claims description 211
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 70
- 125000000217 alkyl group Chemical group 0.000 claims description 62
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 40
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims description 40
- 125000003118 aryl group Chemical group 0.000 claims description 37
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 37
- 150000002148 esters Chemical class 0.000 claims description 35
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 30
- 125000003342 alkenyl group Chemical group 0.000 claims description 29
- 125000000304 alkynyl group Chemical group 0.000 claims description 29
- 239000003054 catalyst Substances 0.000 claims description 25
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 25
- 229940002612 prodrug Drugs 0.000 claims description 25
- 239000000651 prodrug Chemical group 0.000 claims description 25
- 125000004446 heteroarylalkyl group Chemical group 0.000 claims description 23
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 22
- 238000005809 transesterification reaction Methods 0.000 claims description 21
- DCFKHNIGBAHNSS-UHFFFAOYSA-N chloro(triethyl)silane Chemical compound CC[Si](Cl)(CC)CC DCFKHNIGBAHNSS-UHFFFAOYSA-N 0.000 claims description 20
- 125000001072 heteroaryl group Chemical group 0.000 claims description 18
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 18
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 17
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 claims description 13
- 239000000010 aprotic solvent Substances 0.000 claims description 13
- 125000003107 substituted aryl group Chemical group 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 11
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 10
- 150000004692 metal hydroxides Chemical class 0.000 claims description 10
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 10
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 8
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical group [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 8
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 8
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 7
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 7
- RMRFFCXPLWYOOY-UHFFFAOYSA-N allyl radical Chemical group [CH2]C=C RMRFFCXPLWYOOY-UHFFFAOYSA-N 0.000 claims description 7
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 6
- 125000000654 isopropylidene group Chemical group C(C)(C)=* 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 125000004464 hydroxyphenyl group Chemical group 0.000 claims description 3
- 0 CCC(C)[C@@](C(N(COCC=C)C(C[C@](c1nc(C(N[C@](C[C@](C)C(*)=O)Cc2ccccc2)=O)c[s]1)OC(C)=O)C(C)C)=O)NC([C@@]1N(C)CCCC1)=O Chemical compound CCC(C)[C@@](C(N(COCC=C)C(C[C@](c1nc(C(N[C@](C[C@](C)C(*)=O)Cc2ccccc2)=O)c[s]1)OC(C)=O)C(C)C)=O)NC([C@@]1N(C)CCCC1)=O 0.000 description 103
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 63
- -1 n-octyl Chemical group 0.000 description 56
- 239000000243 solution Substances 0.000 description 54
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 47
- 238000006243 chemical reaction Methods 0.000 description 46
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 44
- 239000011541 reaction mixture Substances 0.000 description 41
- 239000000203 mixture Substances 0.000 description 40
- 239000000047 product Substances 0.000 description 40
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 33
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 32
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 30
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 29
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 28
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical group OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 28
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 26
- 239000000543 intermediate Substances 0.000 description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 22
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 22
- 229910052786 argon Inorganic materials 0.000 description 22
- 235000019439 ethyl acetate Nutrition 0.000 description 22
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 238000005160 1H NMR spectroscopy Methods 0.000 description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 18
- 239000007858 starting material Substances 0.000 description 18
- 125000001424 substituent group Chemical group 0.000 description 18
- 239000002904 solvent Substances 0.000 description 17
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 16
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 15
- 239000007832 Na2SO4 Substances 0.000 description 15
- 229910052938 sodium sulfate Inorganic materials 0.000 description 15
- 108010016626 Dipeptides Proteins 0.000 description 14
- 239000012043 crude product Substances 0.000 description 14
- 238000003786 synthesis reaction Methods 0.000 description 14
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 13
- 239000003153 chemical reaction reagent Substances 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 239000012267 brine Substances 0.000 description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 12
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachloro-phenol Natural products OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 12
- 239000003208 petroleum Substances 0.000 description 12
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 12
- XBNGYFFABRKICK-UHFFFAOYSA-N 2,3,4,5,6-pentafluorophenol Chemical compound OC1=C(F)C(F)=C(F)C(F)=C1F XBNGYFFABRKICK-UHFFFAOYSA-N 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- DLKUYSQUHXBYPB-NSSHGSRYSA-N (2s,4r)-4-[[2-[(1r,3r)-1-acetyloxy-4-methyl-3-[3-methylbutanoyloxymethyl-[(2s,3s)-3-methyl-2-[[(2r)-1-methylpiperidine-2-carbonyl]amino]pentanoyl]amino]pentyl]-1,3-thiazole-4-carbonyl]amino]-2-methyl-5-(4-methylphenyl)pentanoic acid Chemical compound N([C@@H]([C@@H](C)CC)C(=O)N(COC(=O)CC(C)C)[C@H](C[C@@H](OC(C)=O)C=1SC=C(N=1)C(=O)N[C@H](C[C@H](C)C(O)=O)CC=1C=CC(C)=CC=1)C(C)C)C(=O)[C@H]1CCCCN1C DLKUYSQUHXBYPB-NSSHGSRYSA-N 0.000 description 10
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 10
- 125000005843 halogen group Chemical group 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 8
- 239000012074 organic phase Substances 0.000 description 8
- 238000002953 preparative HPLC Methods 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 125000003396 thiol group Chemical group [H]S* 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 7
- 125000000392 cycloalkenyl group Chemical group 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 125000005842 heteroatom Chemical group 0.000 description 7
- IUBQJLUDMLPAGT-UHFFFAOYSA-N potassium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([K])[Si](C)(C)C IUBQJLUDMLPAGT-UHFFFAOYSA-N 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 6
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 6
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 6
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 125000001188 haloalkyl group Chemical group 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- 239000012044 organic layer Substances 0.000 description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 6
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- 150000008064 anhydrides Chemical class 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 125000001589 carboacyl group Chemical group 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- HPKJGHVHQWJOOT-ZJOUEHCJSA-N N-[(2S)-3-cyclohexyl-1-oxo-1-({(2S)-1-oxo-3-[(3S)-2-oxopyrrolidin-3-yl]propan-2-yl}amino)propan-2-yl]-1H-indole-2-carboxamide Chemical compound C1C(CCCC1)C[C@H](NC(=O)C=1NC2=CC=CC=C2C=1)C(=O)N[C@@H](C[C@H]1C(=O)NCC1)C=O HPKJGHVHQWJOOT-ZJOUEHCJSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 125000004103 aminoalkyl group Chemical group 0.000 description 4
- BDPZFQLKFUONAG-UHFFFAOYSA-N chloromethyl butanoate Chemical compound CCCC(=O)OCCl BDPZFQLKFUONAG-UHFFFAOYSA-N 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- 239000012453 solvate Substances 0.000 description 4
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 3
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 3
- 125000006274 (C1-C3)alkoxy group Chemical group 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 125000004442 acylamino group Chemical group 0.000 description 3
- 125000004423 acyloxy group Chemical group 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 125000003435 aroyl group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 150000001718 carbodiimides Chemical class 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000011097 chromatography purification Methods 0.000 description 3
- 229940125773 compound 10 Drugs 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 125000000000 cycloalkoxy group Chemical group 0.000 description 3
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 3
- 238000006345 epimerization reaction Methods 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 3
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 3
- 230000000877 morphologic effect Effects 0.000 description 3
- IQZPDFORWZTSKT-UHFFFAOYSA-N nitrosulphonic acid Chemical class OS(=O)(=O)[N+]([O-])=O IQZPDFORWZTSKT-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 230000008707 rearrangement Effects 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 2
- PCLMSUBZTGCHQT-WCBMZHEXSA-N (2s,4r)-4-amino-5-(4-hydroxyphenyl)-2-methylpentanoic acid Chemical compound OC(=O)[C@@H](C)C[C@@H](N)CC1=CC=C(O)C=C1 PCLMSUBZTGCHQT-WCBMZHEXSA-N 0.000 description 2
- JDIIGWSSTNUWGK-UHFFFAOYSA-N 1h-imidazol-3-ium;chloride Chemical class [Cl-].[NH2+]1C=CN=C1 JDIIGWSSTNUWGK-UHFFFAOYSA-N 0.000 description 2
- OXMIDRBAFOEOQT-UHFFFAOYSA-N 2,5-dimethyloxolane Chemical compound CC1CCC(C)O1 OXMIDRBAFOEOQT-UHFFFAOYSA-N 0.000 description 2
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 2
- MITGKKFYIJJQGL-UHFFFAOYSA-N 9-(4-chlorobenzoyl)-6-methylsulfonyl-2,3-dihydro-1H-carbazol-4-one Chemical compound ClC1=CC=C(C(=O)N2C3=CC=C(C=C3C=3C(CCCC2=3)=O)S(=O)(=O)C)C=C1 MITGKKFYIJJQGL-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- JVLGAISMQSTRPR-XEXNZUFDSA-N C=CCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)O)=CS1)C(C)C Chemical compound C=CCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)O)=CS1)C(C)C JVLGAISMQSTRPR-XEXNZUFDSA-N 0.000 description 2
- ZJYQLMMBAHQEHS-FVKOZYGLSA-N CCCC(=O)OCN(C(=O)[C@@H](CC(=O)C1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C Chemical compound CCCC(=O)OCN(C(=O)[C@@H](CC(=O)C1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C ZJYQLMMBAHQEHS-FVKOZYGLSA-N 0.000 description 2
- LOZKJEHKKVQWGR-JBDIRNMKSA-N CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)N[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)N[C@H](C[C@@H](O)C1=NC(C(=O)OC)=CS1)C(C)C Chemical compound CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)N[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)N[C@H](C[C@@H](O)C1=NC(C(=O)OC)=CS1)C(C)C LOZKJEHKKVQWGR-JBDIRNMKSA-N 0.000 description 2
- WNYQBWLWKGZPKW-CEISPFGFSA-N CCCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)O)=CS1)C(C)C Chemical compound CCCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)O)=CS1)C(C)C WNYQBWLWKGZPKW-CEISPFGFSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000005041 acyloxyalkyl group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000005205 alkoxycarbonyloxyalkyl group Chemical group 0.000 description 2
- 125000000278 alkyl amino alkyl group Chemical group 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- 125000005094 alkyl carbonyl amino alkyl group Chemical group 0.000 description 2
- 125000003806 alkyl carbonyl amino group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- IYYIVELXUANFED-UHFFFAOYSA-N bromo(trimethyl)silane Chemical compound C[Si](C)(C)Br IYYIVELXUANFED-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229940125797 compound 12 Drugs 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000006769 halocycloalkoxy group Chemical group 0.000 description 2
- 125000005347 halocycloalkyl group Chemical group 0.000 description 2
- 150000002374 hemiaminals Chemical class 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- PBMIETCUUSQZCG-UHFFFAOYSA-N n'-cyclohexylmethanediimine Chemical compound N=C=NC1CCCCC1 PBMIETCUUSQZCG-UHFFFAOYSA-N 0.000 description 2
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000012070 reactive reagent Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- BPSLZWSRHTULGU-ZCFIWIBFSA-N (2r)-1-methylpiperidin-1-ium-2-carboxylate Chemical compound CN1CCCC[C@@H]1C(O)=O BPSLZWSRHTULGU-ZCFIWIBFSA-N 0.000 description 1
- TVHNWAKCVXFPNB-HCCKASOXSA-N (4r)-4-amino-2-methyl-5-phenylpentanoic acid Chemical group OC(=O)C(C)C[C@@H](N)CC1=CC=CC=C1 TVHNWAKCVXFPNB-HCCKASOXSA-N 0.000 description 1
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 1
- 125000004890 (C1-C6) alkylamino group Chemical group 0.000 description 1
- 125000004737 (C1-C6) haloalkoxy group Chemical group 0.000 description 1
- 125000000171 (C1-C6) haloalkyl group Chemical group 0.000 description 1
- PGOBMGIPBNSHKV-UHFFFAOYSA-N 1-(bromomethoxy)pentane Chemical compound CCCCCOCBr PGOBMGIPBNSHKV-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical class C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 1
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical class C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 1
- MQLACMBJVPINKE-UHFFFAOYSA-N 10-[(3-hydroxy-4-methoxyphenyl)methylidene]anthracen-9-one Chemical compound C1=C(O)C(OC)=CC=C1C=C1C2=CC=CC=C2C(=O)C2=CC=CC=C21 MQLACMBJVPINKE-UHFFFAOYSA-N 0.000 description 1
- JOWLUSOHLVWCFW-FUHWJXTLSA-N 2-[(3-nitropyridin-2-yl)disulfanyl]ethyl n-[[(2s,4r)-5-(4-hydroxyphenyl)-2-methyl-4-[(2-methylpropan-2-yl)oxycarbonylamino]pentanoyl]amino]carbamate Chemical compound C([C@@H](C[C@H](C)C(=O)NNC(=O)OCCSSC=1C(=CC=CN=1)[N+]([O-])=O)NC(=O)OC(C)(C)C)C1=CC=C(O)C=C1 JOWLUSOHLVWCFW-FUHWJXTLSA-N 0.000 description 1
- CFMZSMGAMPBRBE-UHFFFAOYSA-N 2-hydroxyisoindole-1,3-dione Chemical group C1=CC=C2C(=O)N(O)C(=O)C2=C1 CFMZSMGAMPBRBE-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- TZKBVRDEOITLRB-UHFFFAOYSA-N 4-methyl-n-[4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl]-3-[2-(1h-pyrazolo[3,4-b]pyridin-5-yl)ethynyl]benzamide Chemical compound C1CN(C)CCN1CC(C(=C1)C(F)(F)F)=CC=C1NC(=O)C1=CC=C(C)C(C#CC=2C=C3C=NNC3=NC=2)=C1 TZKBVRDEOITLRB-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 108090000531 Amidohydrolases Proteins 0.000 description 1
- 102000004092 Amidohydrolases Human genes 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical group CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- ROVMZCRBNQOWKE-FLXTZLRNSA-N C.C.C.CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C.CCCC(=O)OCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C.CCCC[Sn](=O)CCCC.CC[C@H](C)C(N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C.CN1CCCC[C@@H]1C(=O)O.OCC1=CC=CC=C1 Chemical compound C.C.C.CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C.CCCC(=O)OCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C.CCCC[Sn](=O)CCCC.CC[C@H](C)C(N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C.CN1CCCC[C@@H]1C(=O)O.OCC1=CC=CC=C1 ROVMZCRBNQOWKE-FLXTZLRNSA-N 0.000 description 1
- FFVYZJSXVIKQIZ-GKMJSXJISA-N C.C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)N[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)N[C@H](C[C@@H](O)C1=NC(C(=O)OC)=CS1)C(C)C Chemical compound C.C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)N[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)N[C@H](C[C@@H](O)C1=NC(C(=O)OC)=CS1)C(C)C FFVYZJSXVIKQIZ-GKMJSXJISA-N 0.000 description 1
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 1
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 1
- QEOUDMAGPBQLPS-VSKZOTEESA-N C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CN)=CS1)C(C)C.C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)O)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CN)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)CN)=CS1)C(C)C Chemical compound C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CN)=CS1)C(C)C.C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)O)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CN)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)CN)=CS1)C(C)C QEOUDMAGPBQLPS-VSKZOTEESA-N 0.000 description 1
- RNQGXHQZZKAKKH-YIGKSDGMSA-N C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CNC(=O)OCCSSC)=CS1)C(C)C.C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)CN)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CNC(=O)OCCSSC)=CS1)C(C)C Chemical compound C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CNC(=O)OCCSSC)=CS1)C(C)C.C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)CN)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CNC(=O)OCCSSC)=CS1)C(C)C RNQGXHQZZKAKKH-YIGKSDGMSA-N 0.000 description 1
- AGAMVBIKFROOAZ-OOHMUPBDSA-N C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)O)=CS1)C(C)C.C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)O)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)O)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)O)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)O)=CS1)C(C)C Chemical compound C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)O)=CS1)C(C)C.C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)O)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)O)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)O)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)O)=CS1)C(C)C AGAMVBIKFROOAZ-OOHMUPBDSA-N 0.000 description 1
- QXNJUEFPJRZQTK-UZJOFIEQSA-N C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)CNC(=O)OCCSSC)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)CNC(=O)OCCSSC)=CS1)C(C)C Chemical compound C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)CNC(=O)OCCSSC)=CS1)C(C)C.CCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)C(C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=CC=C2)C[C@H](C)C(=O)CNC(=O)OCCSSC)=CS1)C(C)C QXNJUEFPJRZQTK-UZJOFIEQSA-N 0.000 description 1
- JMBYRHFUYPQHBZ-IHWCIXIPSA-N C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC=C)=CS1)C(C)C Chemical compound C=CCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC=C)=CS1)C(C)C JMBYRHFUYPQHBZ-IHWCIXIPSA-N 0.000 description 1
- VQSWBLBGEIRZAM-VFMKGFAKSA-N C=CCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O)C1=NC(C(=O)O)=CS1)C(C)C Chemical compound C=CCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O)C1=NC(C(=O)O)=CS1)C(C)C VQSWBLBGEIRZAM-VFMKGFAKSA-N 0.000 description 1
- BHXXLNDZHCUYPU-MYMVVCDRSA-N C=CCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)NNC(=O)OCCSSC2=NC=CC=C2[N+](=O)[O-])=CS1)C(C)C Chemical compound C=CCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)NNC(=O)OCCSSC2=NC=CC=C2[N+](=O)[O-])=CS1)C(C)C BHXXLNDZHCUYPU-MYMVVCDRSA-N 0.000 description 1
- RCGWSJRDRDOHGD-VFDWWEJVSA-N C=CCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)O)=CS1)C(C)C Chemical compound C=CCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)O)=CS1)C(C)C RCGWSJRDRDOHGD-VFDWWEJVSA-N 0.000 description 1
- BKNBSLNISXTJPB-GTDCBVCOSA-M CC(=O)OC(C)=O.CCCCCOCN(C(=O)[C@@H](NC(=O)C1CCCCN1C)C(C)CC)[C@H](C[C@@H](O)C1=NC(C(=O)O)=CS1)C(C)C.CCCCCOCN(C(=O)[C@@H](NC(=O)C1CCCCN1C)C(C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)O)=CS1)C(C)C.CCCCCOCN(C(=O)[C@@H](NC(=O)C1CCCCN1C)C(C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OC)=CS1)C(C)C.[Li]O Chemical compound CC(=O)OC(C)=O.CCCCCOCN(C(=O)[C@@H](NC(=O)C1CCCCN1C)C(C)CC)[C@H](C[C@@H](O)C1=NC(C(=O)O)=CS1)C(C)C.CCCCCOCN(C(=O)[C@@H](NC(=O)C1CCCCN1C)C(C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)O)=CS1)C(C)C.CCCCCOCN(C(=O)[C@@H](NC(=O)C1CCCCN1C)C(C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OC)=CS1)C(C)C.[Li]O BKNBSLNISXTJPB-GTDCBVCOSA-M 0.000 description 1
- NKCIHAKAWLMTAH-VXNVDRBHSA-N CC(C)[C@@H](C[C@H](c1nc(C(OC)=O)c[s]1)O)N Chemical compound CC(C)[C@@H](C[C@H](c1nc(C(OC)=O)c[s]1)O)N NKCIHAKAWLMTAH-VXNVDRBHSA-N 0.000 description 1
- JJFAXQMDKIUTID-MRVPVSSYSA-N CC([C@@H]1N(C)CCCC1)=O Chemical compound CC([C@@H]1N(C)CCCC1)=O JJFAXQMDKIUTID-MRVPVSSYSA-N 0.000 description 1
- GHXRQJJQVLMIBL-UZDOXKPFSA-N CCC(C)[C@H](N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OC)=CS1)C(C)C.CCCCCO.CCCCCOCBr.CCCCCOCN(C(=O)[C@@H](N=[N+]=[N-])C(C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OC)=CS1)C(C)C.CN1CCCC[C@@H]1C(=O)OC1=C(F)C(F)=C(F)C(F)=C1F.C[Si](C)(C)Br Chemical compound CCC(C)[C@H](N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OC)=CS1)C(C)C.CCCCCO.CCCCCOCBr.CCCCCOCN(C(=O)[C@@H](N=[N+]=[N-])C(C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OC)=CS1)C(C)C.CN1CCCC[C@@H]1C(=O)OC1=C(F)C(F)=C(F)C(F)=C1F.C[Si](C)(C)Br GHXRQJJQVLMIBL-UZDOXKPFSA-N 0.000 description 1
- QEBOBEKPEDIQAH-UTVFNELKSA-N CCCC(=O)C[C@H](C(=O)N(CO)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C)[C@@H](C)CC.CCCC(=O)OCN(C(=O)[C@@H](CC(=O)[C@@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CCCC(=O)OCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CN1CCCCC1C(=O)O.CN1CCCCC1C(=O)OC1=C(F)C(F)=C(F)C(F)=C1F Chemical compound CCCC(=O)C[C@H](C(=O)N(CO)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C)[C@@H](C)CC.CCCC(=O)OCN(C(=O)[C@@H](CC(=O)[C@@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CCCC(=O)OCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CN1CCCCC1C(=O)O.CN1CCCCC1C(=O)OC1=C(F)C(F)=C(F)C(F)=C1F QEBOBEKPEDIQAH-UTVFNELKSA-N 0.000 description 1
- YFHJCUCUVOUMCQ-DZISMOHWSA-N CCCC(=O)OCN(C(=O)[C@@H](CC(=O)C1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)O)=CS1)C(C)C.CCCC(=O)O[C@H](C[C@H](C(C)C)N(COC(C)=O)C(=O)[C@@H](CC(=O)C1CCCCN1C)[C@@H](C)CC)C1=NC(C(=O)O)=CS1 Chemical compound CCCC(=O)OCN(C(=O)[C@@H](CC(=O)C1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)O)=CS1)C(C)C.CCCC(=O)O[C@H](C[C@H](C(C)C)N(COC(C)=O)C(=O)[C@@H](CC(=O)C1CCCCN1C)[C@@H](C)CC)C1=NC(C(=O)O)=CS1 YFHJCUCUVOUMCQ-DZISMOHWSA-N 0.000 description 1
- HHCDQALQRQXCLC-CBZKJZCESA-N CCCC(=O)OCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CCCC(=O)OCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](CC(=O)[C@H]1CCCCN1C)C(=O)N1CO[C@@H](C2=NC(C(=O)OC)=CS2)C[C@@H]1C(C)C Chemical compound CCCC(=O)OCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CCCC(=O)OCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](CC(=O)[C@H]1CCCCN1C)C(=O)N1CO[C@@H](C2=NC(C(=O)OC)=CS2)C[C@@H]1C(C)C HHCDQALQRQXCLC-CBZKJZCESA-N 0.000 description 1
- BGONVQFKUBZMSQ-QFNZCONUSA-N CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)N[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C Chemical compound CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C.CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)N[C@H](C[C@@H](C)C1=NC(C(=O)OC)=CS1)C(C)C BGONVQFKUBZMSQ-QFNZCONUSA-N 0.000 description 1
- HFGXHRRSNXGJCB-YKHAVDHNSA-N CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C Chemical compound CCCC(=O)OCN(C(=O)[C@@H](N=[N+]=[N-])[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C HFGXHRRSNXGJCB-YKHAVDHNSA-N 0.000 description 1
- UFIFSLLBWFXHLL-ISCUMLGMSA-N CCCC(=O)OCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(N)=O)=CS1)C(C)C.CCCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(N)=O)=CS1)C(C)C.NC(=O)OCCSSC1=NC=CC=C1[N+](=O)[O-].NC(=O)OCCSSC1=NC=CC=C1[N+](=O)[O-] Chemical compound CCCC(=O)OCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(N)=O)=CS1)C(C)C.CCCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(N)=O)=CS1)C(C)C.NC(=O)OCCSSC1=NC=CC=C1[N+](=O)[O-].NC(=O)OCCSSC1=NC=CC=C1[N+](=O)[O-] UFIFSLLBWFXHLL-ISCUMLGMSA-N 0.000 description 1
- WCEPEPXTPNUZFH-ORELOFIESA-N CCCC(=O)OCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(N)=O)=CS1)C(C)C.CCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(N)=O)=CS1)C(C)C.NC(=O)OCCSSC1=NC=CC=C1[N+](=O)[O-].NC(=O)OCCSSC1=NC=CC=C1[N+](=O)[O-] Chemical compound CCCC(=O)OCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(N)=O)=CS1)C(C)C.CCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(N)=O)=CS1)C(C)C.NC(=O)OCCSSC1=NC=CC=C1[N+](=O)[O-].NC(=O)OCCSSC1=NC=CC=C1[N+](=O)[O-] WCEPEPXTPNUZFH-ORELOFIESA-N 0.000 description 1
- GBOYCSSTYBXAGG-QYWJBBIVSA-N CCCC(=O)OCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C Chemical compound CCCC(=O)OCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C GBOYCSSTYBXAGG-QYWJBBIVSA-N 0.000 description 1
- MMGOWUNLKWOTRV-OGKWWZDYSA-N CCCCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCCCCC)=CS1)C(C)C Chemical compound CCCCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCCCCC)=CS1)C(C)C MMGOWUNLKWOTRV-OGKWWZDYSA-N 0.000 description 1
- BPAWAFPMTGORBA-BBZLHXJPSA-N CCCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)O)=CS1)C(C)C Chemical compound CCCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)O)=CS1)C(C)C BPAWAFPMTGORBA-BBZLHXJPSA-N 0.000 description 1
- LFIWCYUHEROXCD-ZSKBCMRASA-N CCCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CNC(=O)OCCSSC[C@@H](NC(=O)[C@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)CC(=O)[C@@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)CC(=O)[C@@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)CC(=O)CC[C@@H](NC(=O)C2=CC=C(NCC3=N/C4=C(N=C(N)NC4=O)/N=C\3)C=C2)C(=O)O)C(=O)O)=CS1)C(C)C.N/C1=N/C2=C(N=C(CNC3=CC=C(C(=O)N[C@H](CCC(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CS)C(=O)O)C(=O)O)C=C3)C=N2)C(=O)N1 Chemical compound CCCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)C(C)CC)[C@H](C[C@@H](C)C1=NC(C(=O)N[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)CNC(=O)OCCSSC[C@@H](NC(=O)[C@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)CC(=O)[C@@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)CC(=O)[C@@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)CC(=O)CC[C@@H](NC(=O)C2=CC=C(NCC3=N/C4=C(N=C(N)NC4=O)/N=C\3)C=C2)C(=O)O)C(=O)O)=CS1)C(C)C.N/C1=N/C2=C(N=C(CNC3=CC=C(C(=O)N[C@H](CCC(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CS)C(=O)O)C(=O)O)C=C3)C=N2)C(=O)N1 LFIWCYUHEROXCD-ZSKBCMRASA-N 0.000 description 1
- GXECTUBYYASLCV-GIFTUVKOSA-N CCCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCCCC)=CS1)C(C)C Chemical compound CCCCOCN(C(=O)[C@@H](CC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCCCC)=CS1)C(C)C GXECTUBYYASLCV-GIFTUVKOSA-N 0.000 description 1
- QBKDGXAXHPYGQZ-ISQZKQDNSA-N CCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O)C1=NC(C(=O)O)=CS1)C(C)C Chemical compound CCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](O)C1=NC(C(=O)O)=CS1)C(C)C QBKDGXAXHPYGQZ-ISQZKQDNSA-N 0.000 description 1
- OZUQVRWLHWNWBA-NATMNVMQSA-N CCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)C[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)O)=CS1)C(C)C Chemical compound CCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)C[C@@H](CC2=CC=C(O)C=C2)C[C@H](C)C(=O)O)=CS1)C(C)C OZUQVRWLHWNWBA-NATMNVMQSA-N 0.000 description 1
- YAXBGWXDAYRPCP-CZKMGZLKSA-N CCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)O)=CS1)C(C)C Chemical compound CCCCOCN(C(=O)[C@@H](NC(=O)[C@H]1CCCCN1C)[C@@H](C)CC)[C@H](C[C@@H](OC(C)=O)C1=NC(C(=O)O)=CS1)C(C)C YAXBGWXDAYRPCP-CZKMGZLKSA-N 0.000 description 1
- ZWJVMBHQSFZDBZ-UNJBNNCHSA-N CC[C@H](C)[C@@H](C(N[C@H](C[C@H](c1nc(C(OC)=O)c[s]1)O)C(C)C)=O)N Chemical compound CC[C@H](C)[C@@H](C(N[C@H](C[C@H](c1nc(C(OC)=O)c[s]1)O)C(C)C)=O)N ZWJVMBHQSFZDBZ-UNJBNNCHSA-N 0.000 description 1
- IAATXUKLCCGHNU-QJGCUMMJSA-N CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C Chemical compound CC[C@H](C)[C@H](N=[N+]=[N-])C(=O)C[C@H](C[C@@H](O[Si](CC)(CC)CC)C1=NC(C(=O)OCC2=CC=CC=C2)=CS1)C(C)C IAATXUKLCCGHNU-QJGCUMMJSA-N 0.000 description 1
- DTXSEOXRRNDPRX-FPNQZHMSSA-N COC(=O)C1=CSC([C@H](O)C[C@@H](N)C(C)C)=N1.C[C@@H](C[C@@H](N)CC1=CC=C(O)C=C1)C(=O)O.C[C@@H](C[C@@H](N)CC1=CC=CC=C1)C(=O)O Chemical compound COC(=O)C1=CSC([C@H](O)C[C@@H](N)C(C)C)=N1.C[C@@H](C[C@@H](N)CC1=CC=C(O)C=C1)C(=O)O.C[C@@H](C[C@@H](N)CC1=CC=CC=C1)C(=O)O DTXSEOXRRNDPRX-FPNQZHMSSA-N 0.000 description 1
- TVHNWAKCVXFPNB-GXSJLCMTSA-N C[C@@H](C[C@H](Cc1ccccc1)N)C(O)=O Chemical compound C[C@@H](C[C@H](Cc1ccccc1)N)C(O)=O TVHNWAKCVXFPNB-GXSJLCMTSA-N 0.000 description 1
- BZZHSYDPASJERV-ZANVPECISA-N C[C@H](C[C@H]1C(C)=O)Cc2c1cccc2 Chemical compound C[C@H](C[C@H]1C(C)=O)Cc2c1cccc2 BZZHSYDPASJERV-ZANVPECISA-N 0.000 description 1
- 206010013911 Dysgeusia Diseases 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- HXEACLLIILLPRG-YFKPBYRVSA-N L-pipecolic acid Chemical compound [O-]C(=O)[C@@H]1CCCC[NH2+]1 HXEACLLIILLPRG-YFKPBYRVSA-N 0.000 description 1
- BPSLZWSRHTULGU-UHFFFAOYSA-N Methylpipecolic acid Chemical compound CN1CCCCC1C(O)=O BPSLZWSRHTULGU-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical group ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- IJEVWHDPLPRRPV-XHXHYKGESA-N NC1=NC2=C(N=C(CNC3=CC=C(C(=O)N[C@@H](CCC(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CS)C(=O)O)C(=O)O)C=C3)C=N2)C(=O)N1.NC1=NC2=C(N=C(CNC3=CC=C(C(=O)N[C@H](CCC(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CS)C(=O)O)C(=O)O)C=C3)C=N2)C(=O)N1 Chemical compound NC1=NC2=C(N=C(CNC3=CC=C(C(=O)N[C@@H](CCC(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CS)C(=O)O)C(=O)O)C=C3)C=N2)C(=O)N1.NC1=NC2=C(N=C(CNC3=CC=C(C(=O)N[C@H](CCC(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CCC(=O)O)C(=O)C[C@@H](CCC(=O)NC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C(=O)N[C@H](CS)C(=O)O)C(=O)O)C=C3)C=N2)C(=O)N1 IJEVWHDPLPRRPV-XHXHYKGESA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 description 1
- HWCIETDQUHYHGQ-YHVCZDCZSA-N Tubulysin B Chemical compound C([C@@H](C[C@H](C)C(O)=O)NC(=O)C=1N=C(SC=1)[C@H](OC(C)=O)C[C@@H](N(COC(=O)CCC)C(=O)[C@@H](NC(=O)[C@@H]1N(CCCC1)C)[C@@H](C)CC)C(C)C)C1=CC=C(O)C=C1 HWCIETDQUHYHGQ-YHVCZDCZSA-N 0.000 description 1
- SAJNCFZAPSBQTQ-HZZFHOQESA-N Tubulysin D Chemical compound N([C@@H]([C@@H](C)CC)C(=O)N(COC(=O)CC(C)C)[C@H](C[C@@H](OC(C)=O)C=1SC=C(N=1)C(=O)N[C@H](C[C@H](C)C(O)=O)CC=1C=CC=CC=1)C(C)C)C(=O)[C@H]1CCCCN1C SAJNCFZAPSBQTQ-HZZFHOQESA-N 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 1
- FYJKEHKQUPSJDH-UHFFFAOYSA-N [dimethyl-(trimethylsilylamino)silyl]methane;potassium Chemical compound [K].C[Si](C)(C)N[Si](C)(C)C FYJKEHKQUPSJDH-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000005035 acylthio group Chemical group 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000006323 alkenyl amino group Chemical group 0.000 description 1
- 125000005090 alkenylcarbonyl group Chemical group 0.000 description 1
- 125000003302 alkenyloxy group Chemical group 0.000 description 1
- 125000005108 alkenylthio group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000006319 alkynyl amino group Chemical group 0.000 description 1
- 125000005087 alkynylcarbonyl group Chemical group 0.000 description 1
- 125000005133 alkynyloxy group Chemical group 0.000 description 1
- 125000005109 alkynylthio group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 125000005333 aroyloxy group Chemical group 0.000 description 1
- 125000001691 aryl alkyl amino group Chemical group 0.000 description 1
- 125000005099 aryl alkyl carbonyl group Chemical group 0.000 description 1
- 125000004659 aryl alkyl thio group Chemical group 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000005129 aryl carbonyl group Chemical group 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000004604 benzisothiazolyl group Chemical group S1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000004603 benzisoxazolyl group Chemical group O1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000025084 cell cycle arrest Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 238000011210 chromatographic step Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229940121657 clinical drug Drugs 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 125000004465 cycloalkenyloxy group Chemical group 0.000 description 1
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 1
- 125000006310 cycloalkyl amino group Chemical group 0.000 description 1
- 125000006254 cycloalkyl carbonyl group Chemical group 0.000 description 1
- 125000005356 cycloalkylalkenyl group Chemical group 0.000 description 1
- 125000005366 cycloalkylthio group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 1
- 125000006264 diethylaminomethyl group Chemical group [H]C([H])([H])C([H])([H])N(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000006222 dimethylaminomethyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])* 0.000 description 1
- HPYNZHMRTTWQTB-UHFFFAOYSA-N dimethylpyridine Natural products CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- HESCAJZNRMSMJG-KKQRBIROSA-N epothilone A Chemical class C/C([C@@H]1C[C@@H]2O[C@@H]2CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 HESCAJZNRMSMJG-KKQRBIROSA-N 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LTYRAPJYLUPLCI-UHFFFAOYSA-N glycolonitrile Chemical compound OCC#N LTYRAPJYLUPLCI-UHFFFAOYSA-N 0.000 description 1
- 125000004438 haloalkoxy group Chemical group 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005114 heteroarylalkoxy group Chemical group 0.000 description 1
- 125000005367 heteroarylalkylthio group Chemical group 0.000 description 1
- 125000005241 heteroarylamino group Chemical group 0.000 description 1
- 125000005223 heteroarylcarbonyl group Chemical group 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 125000005368 heteroarylthio group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 125000004129 indan-1-yl group Chemical group [H]C1=C([H])C([H])=C2C(=C1[H])C([H])([H])C([H])([H])C2([H])* 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 150000002542 isoureas Chemical class 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- HXEACLLIILLPRG-RXMQYKEDSA-N l-pipecolic acid Natural products OC(=O)[C@H]1CCCCN1 HXEACLLIILLPRG-RXMQYKEDSA-N 0.000 description 1
- 125000000686 lactone group Chemical group 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229940126701 oral medication Drugs 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002743 phosphorus functional group Chemical group 0.000 description 1
- 125000005633 phthalidyl group Chemical group 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical class OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006462 rearrangement reaction Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000005247 tetrazinyl group Chemical group N1=NN=NC(=C1)* 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- STMPXDBGVJZCEX-UHFFFAOYSA-N triethylsilyl trifluoromethanesulfonate Chemical compound CC[Si](CC)(CC)OS(=O)(=O)C(F)(F)F STMPXDBGVJZCEX-UHFFFAOYSA-N 0.000 description 1
- HWCIETDQUHYHGQ-UHFFFAOYSA-N tubulysin B Natural products C1CCCN(C)C1C(=O)NC(C(C)CC)C(=O)N(COC(=O)CCC)C(C(C)C)CC(OC(C)=O)C(SC=1)=NC=1C(=O)NC(CC(C)C(O)=O)CC1=CC=C(O)C=C1 HWCIETDQUHYHGQ-UHFFFAOYSA-N 0.000 description 1
- 108010061146 tubulysin B Proteins 0.000 description 1
- 108010061212 tubulysin D Proteins 0.000 description 1
- SAJNCFZAPSBQTQ-UHFFFAOYSA-N tubulysin D Natural products N=1C(C(=O)NC(CC(C)C(O)=O)CC=2C=CC=CC=2)=CSC=1C(OC(C)=O)CC(C(C)C)N(COC(=O)CC(C)C)C(=O)C(C(C)CC)NC(=O)C1CCCCN1C SAJNCFZAPSBQTQ-UHFFFAOYSA-N 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06008—Dipeptides with the first amino acid being neutral
- C07K5/06017—Dipeptides with the first amino acid being neutral and aliphatic
- C07K5/0606—Dipeptides with the first amino acid being neutral and aliphatic the side chain containing heteroatoms not provided for by C07K5/06086 - C07K5/06139, e.g. Ser, Met, Cys, Thr
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0821—Tripeptides with the first amino acid being heterocyclic, e.g. His, Pro, Trp
Definitions
- the invention described herein pertains to processes for preparing tubulysins and derivatives thereof.
- the processes pertain to the preparation of unnatural tubulysins.
- the tubulysins are members of a new class of natural products isolated from myxobacterial species (F. Sasse, et al., J. Antibiot. 2000, 53, 879-885). As cytoskeleton interacting agents, the tubulysins are mitotic poisons that inhibit tubulin polymerization and lead to cell cycle arrest and apoptosis (H. Steinmetz, et al., Chem. Int. Ed. 2004, 43, 4888-4892; M. Khalil, et al., ChemBioChem. 2006, 7, 678-683; G. Kaur, et al., Biochem. J. 2006, 396, 235-242).
- Tubulysins are extremely potent cytotoxic molecules, exceeding the cell growth inhibition of any clinically relevant traditional chemotherapeutic e.g. epothilones, paclitaxel, and vinblastine. Furthermore, they are potent against multidrug resistant cell lines (A. Domling, et al., Mol. Diversity. 2005, 9, 141-147). These compounds show high cytotoxicity tested against a panel of cancer cell lines with IC 50 values in the low picomolar range; thus, they are of interest as potential anticancer therapeutics. Accordingly, processes for preparing tubulysins, including non-naturally occurring tubulysins are needed.
- tubulysins are described herein. Structurally, tubulysins often include linear tetrapeptoid backbones, including illustrative compounds having formula T or AT
- Ar 1 is optionally substituted aryl
- R 1 is hydrogen, alkyl, arylalkyl or a pro-drug forming group
- R 2 is selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl;
- R 12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted;
- R 4 is optionally substituted alkyl or optionally substituted cycloalkyl
- R 3 is optionally substituted alkyl
- R 5 and R 6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl;
- R 7 is optionally substituted alkyl
- n 1, 2, 3, or 4.
- tubulysins described herein are more particularly comprised of one or more non-naturally occurring or hydrophobic amino acid segments, such as N-methyl pipecolic acid (Mep), isoleucine (Ile),
- a common feature in the molecular architecture of the more potent natural occurring tubulysins is the acid and/or base sensitive N-acyloxymethyl substituent (or a N,O-acetal of formaldehyde) represented by R2-C(O) in the formula (T).
- tubulysins described herein are those having formula 1.
- tubulysins for anticancer therapeutics
- AT compounds of formula
- the processes include one or more steps described herein.
- a process is described for preparing a compound of formula B, wherein R 5 and R 6 are as described in the various embodiments herein, such as each being independently selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R 8 is C1-C6 n-alkyl; wherein the process comprises the step of treating a compound of formula A with a silylating agent, such as triethylsilyl chloride, and a base, such as imidazole in an aprotic solvent.
- a silylating agent such as triethylsilyl chloride
- R 5 and R 6 may each include conventional protection groups on the optional substituents.
- a process for preparing a compound of formula C, wherein R 5 and R 6 are as described in the various embodiments herein, such as each being independently selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 8 is C1-C6 n-alkyl; and R 2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; wherein the process comprises the step of treating a compound of formula B with a base and a compound of the formula ClCH 2 OC(O)R 2 in an aprotic solvent at a temperature below ambient temperature, such as in the range from about ⁇ 78° C. to about 0° C.; wherein the molar ratio of the compound of the formula ClCH 2 OC(O)R 2 to the compound of formula B from about 1 to about 1.5.
- R 2 , R 5 and R 6 may each include conventional protection groups on the optional substituents.
- a process for preparing a compound of formula D, wherein R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 8 is C1-C6 n-alkyl; R 2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R 7 is optionally substituted alkyl; wherein the process comprises the steps of
- R 2 , R 5 , R 6 , and R 7 may each include conventional protection groups on the optional substituents.
- a process for preparing a compound of formula AF, wherein R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R 7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound D with an alcohol, R 12 OH, where R 12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst.
- the transesterification catalyst is selected from the group consisting of (R 13 ) 8 Sn 4 O 2 (NCS) 4 , (R 13 ) 2 Sn(OAc) 2 , (R 13 ) 2 SnO, (R 13 ) 2 SnCl 2 , (R 13 ) 2 SnS, (R 13 ) 3 SnOH, and (R 13 ) 3 SnOSn(R 13 ) 3 , where R 13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted.
- the transesterification catalyst is (R 13 ) 2 SnO.
- Illustrative examples of R 13 are methyl, n-butyl. n-octyl, phenyl, o-MeO-phenyl, p-MeO phenyl, phenethyl, and benzyl.
- R 5 , R 6 , R 12 , and R 7 may each include conventional protection groups on the optional substituents.
- a process for preparing a compound of formula AG, wherein R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R 7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound F with an alcohol, R 12 OH, where R 12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst.
- the transesterification catalyst is selected from the group consisting of (R 13 ) 8 Sn 4 O 2 (NCS) 4 , (R 13 ) 2 Sn(OAc) 2 , (R 13 ) 2 SnO, (R 13 ) 2 SnCl 2 , (R 13 ) 2 SnS, (R 13 ) 3 SnOH, and (R 13 ) 3 SnOSn(R 13 ) 3 , where R 13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted.
- the transesterification catalyst is (R 13 ) 2 SnO.
- Illustrative examples of R 13 are methyl, n-butyl. n-octyl, phenyl, o-MeO-phenyl, p-MeO phenyl, phenethyl, and benzyl.
- R 2 , R 5 , R 6 , R 7 , and R 12 may each include conventional protection groups on the optional substituents.
- a process for preparing a compound of formula BG, wherein R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 12 is as described in the various embodiments herein, such as being selected from alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and R 7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound AF with a metal hydroxide or carbonate.
- Illustrative examples of a metal hydroxide or carbonate include LiOH, Li 2 CO 3 , NaOH, Na 2 CO 3 , KOH, K 2 CO 3 , Ca(OH) 2 , CaCO 3 , Mg(OH) 2 , MgCO 3 , and the like.
- R 5 , R 6 , R 7 , and R 12 may each include conventional protection groups on the optional substituents.
- a process for preparing a compound of formula AH, wherein R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 2 and R 4 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 12 is as described in the various embodiments herein, such as being selected from alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and R 7 is optionally substituted alkyl; wherein the process comprises the step of treating a compound of formula BG with an acylating agent of formula R 4 C(O)X 2 , where X 2 is a leaving group.
- R 4 , R 5 , R 6 , and R 7 may each include conventional protection groups on the optional substituents.
- a process for preparing a tubulysin of formula (AT), wherein Ar 1 is aryl or heteroaryl each of which is optionally substituted; R 1 is hydrogen, optionally substituted alkyl, optionally substituted arylalkyl or a pro-drug forming group; R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 3 is optionally substituted alkyl; R 2 and R 4 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 12 is as described in the various embodiments herein, such as being selected from alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and R 7 is optionally
- Ar 1 , R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , and R 12 may each include conventional protection groups on the optional substituents.
- a process for preparing a tubulysin linker derivative of formula (TL-2), wherein Ar 1 is optionally substituted aryl or optionally substituted heteroaryl; Ar 2 is optionally substituted aryl or optionally substituted heteroaryl; L is selected from the group consisting of
- R a , R b , and R are each independently selected in each instance from the group consisting of hydrogen and alkyl; or at least two of R a , R b , or R are taken together with the attached carbon atoms to form a carbocyclic ring;
- R Ar represents 0 to 4 substituents selected from the group consisting of amino, or derivatives thereof, hydroxy or derivatives thereof, halo, thio or derivatives thereof, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof;
- R 1 is hydrogen, optionally substituted alkyl, optionally substituted arylalkyl or a pro-drug forming group;
- R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl;
- R 3 is optionally substituted alkyl;
- R 2 and R 4 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloal
- the transesterification catalyst is TFA.
- the transesterification catalyst is selected from the group consisting of (R 13 ) 8 Sn 4 O 2 (NCS) 4 , (R 13 ) 2 Sn(OAc) 2 , (R 13 ) 2 SnO, (R 13 ) 2 SnCl 2 , (R 13 ) 2 SnS, (R 13 ) 3 SnOH, and (R 13 ) 3 SnOSn(R 13 ) 3 , where R 13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted.
- the transesterification catalyst is (R 13 ) 2 SnO.
- R 13 are methyl, n-butyl. n-octyl, phenyl, o-MeO-phenyl, p-MeO phenyl, phenethyl, and benzyl. It is to be understood that Ar 1 , Ar 2 , R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , and R 12 may each include conventional protection groups on the optional substituents.
- a process for preparing a tubulysin linker derivative of formula (TL-2), wherein Ar 1 is optionally substituted aryl or optionally substituted heteroaryl; Ar e is optionally substituted aryl or optionally substituted heteroaryl; L is selected from the group consisting of
- p is an integer from about 1 to about 3
- m is an integer from about 1 to about 4, and * indicates the points of attachment;
- R a , R b , and R are each independently selected in each instance from the group consisting of hydrogen and alkyl; or at least two of R a , R b , or R are taken together with the attached carbon atoms to form a carbocyclic ring;
- R Ar represents 0 to 4 substituents selected from the group consisting of amino, or derivatives thereof, hydroxy or derivatives thereof, halo, thio or derivatives thereof, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof;
- R 1 is hydrogen, optionally substituted alkyl, optionally substituted arylalkyl or a pro-drug forming group;
- R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl;
- R 3 is optionally substituted alkyl;
- R 2 and R 4 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and
- R 7 is optionally substituted alkyl;
- the process comprises the step of forming an active ester intermediate from a compound of formula AH; and reacting the active ester intermediate with a compound of the formula IL to give a compound of the formula TL-2.
- Ar 1 , Ar 2 , R 1 , R 12 , R 3 , R 4 , R 5 , R 6 , and R 7 may each include conventional protection groups on the optional substituents in any of the embodiments described herein.
- a process for preparing a compound of formula B, wherein R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R 8 is C1-C6 n-alkyl; wherein the process comprises the step of treating a compound of formula A with triethylsilyl chloride and imidazole in an aprotic solvent.
- the use of the less reactive TESCl may also be advantageous when the process is performed on larger scales, where higher reactivity reagents may represent a safety issue. It has also been discovered that the use of TESCl in nearly stoichiometric amounts renders the chromatographic purification step unnecessary.
- the process is performed without subsequent purification.
- R 5 is isopropyl.
- R 6 is sec-butyl.
- R 8 is methyl.
- the silyl ether is TES.
- the compound 2 is not purified by chromatography.
- a process for preparing a compound of formula C, wherein R 5 and R 6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; R 8 is C1-C6 n-alkyl; and R 2 is selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; wherein the process comprises the step of treating a compound of formula B with from about 1 equivalent to about 1.5 equivalent of base and from about 1 equivalent to about 1.5 equivalent of a compound of the formula ClCH 2 OC(O)R 2 in an aprotic solvent at a temperature from about ⁇ 78° C. to about 0° C.
- the process of any one of the preceding embodiments is described wherein about 1 equivalent to about 1.3 equivalent of a compound of the formula ClCH 2 OC(O)R 2 is used. In another illustrative example, the process of any one of the preceding embodiments is described, wherein about 1.2 equivalent of a compound of the formula ClCH 2 OC(O)R 2 is used. In another illustrative example, the process of any one of the preceding embodiments is described wherein R 2 is n-propyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, R 2 is CH 2 CH(CH 3 ) 2 , CH 2 CH 2 CH 3 , CH 2 CH 3 , CH ⁇ C(CH 3 ) 2 , or CH 3 .
- N,O-acetal 3 a process for preparing the N,O-acetal 3 is described.
- compound 2 is treated with 1.1 equivalent of potassium hexamethyldisilazane (KHMDS) and 1.2 equivalent of chloromethyl butanoate in a nonprotic solvent at about ⁇ 45° C.
- KHMDS potassium hexamethyldisilazane
- chloromethyl butanoate in a nonprotic solvent at about ⁇ 45° C.
- the product formed by any of the preceding examples may be used without chromatographic purification.
- a process for preparing a compound of formula D, wherein R 5 and R 6 are each independently selected from the group consisting of optionally substituted alkyl and cycloalkyl; R 8 is C1-C6 n-alkyl; R 2 is selected from the group consisting of optionally substituted alkyl and cycloalkyl; and R 7 is optionally substituted alkyl; wherein the process comprises the steps of
- a mixture of compound 3 and the pentafluorophenyl ester of D-N-methyl-pipecolic acid is reduced using H 2 and a palladium-on-charcoal catalyst (Pd/C) to yield compound 4.
- Pd/C palladium-on-charcoal catalyst
- n is 3.
- R 7 is methyl.
- iso-7 results from rearrangement of the butyrate group from the N-hydroxymethyl group to the secondary hydroxyl group, as shown below.
- a process for preparing a compound of formula AF, wherein R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R 7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound D with an alcohol, R 12 OH, where R 12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst.
- the transesterification catalyst is trifluoroacetic acid (TFA).
- the transesterification catalyst is selected from the group consisting of (R 13 ) 8 Sn 4 O 2 (NCS) 4 , (R 13 ) 2 Sn(OAc) 2 , (R 13 ) 2 SnO, (R 13 ) 2 SnCl 2 , (R 13 ) 2 SnS, (R 13 ) 3 SnOH, and (R 13 ) 3 SnOSn(R 13 ) 3 , where R 13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted.
- the transesterification catalyst is (R 13 ) 2 SnO.
- R 13 is methyl, n-butyl. n-octyl, phenyl, o-MeO-phenyl, p-MeO phenyl, phenethyl, and benzyl.
- R 5 , R 6 , R 12 , and R 7 may each include conventional protection groups on the optional substituents.
- compound 4 is heated with an alcohol and di-n-butyltin oxide at about 100° C. to yield ether 10. It is appreciated that a co-solvent may be present.
- the molar ratio (tin oxide)/(compound 10) is about 0.01 to about 0.30, or about 0.02 to about 0.20, or about 0.05 to about 0.15, or about 0.05 to about 0.10
- a process for preparing a compound of formula BG, wherein R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 12 is as described in the various embodiments herein, such as being selected from alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and R 7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound AF with a metal hydroxide or carbonate.
- Illustrative examples of a metal hydroxide or carbonate include LiOH, Li 2 CO 3 , NaOH, Na 2 CO 3 , KOH, K 2 CO 3 , Ca(OH) 2 , CaCO 3 , Mg(OH) 2 , MgCO 3 , and the like.
- R 5 , R 6 , R 7 , and R 12 may each include conventional protection groups on the optional substituents.
- compound 10 is treated with LiOH.H 2 O in a mixture of THF and water at about room temperature to yield compound 11. It is appreciated that the THF may be replaced with other solvents.
- a process for preparing a compound of formula AH, wherein R 5 and R 6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; R 2 and R 4 are independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; and R 7 is optionally substituted alkyl; wherein the process comprises the step of treating a compound of formula BG with an acylating agent of formula R 4 C(O)X 2 , where X 2 is a leaving group. It is appreciated that the resulting product may contain varying amounts of the mixed anhydride of compound AH and R 4 CO 2 H.
- the process described in the preceding embodiment further comprises the step of treating the reaction product with water to prepare AH, free of or substantially free of anhydride.
- the process of the preceding embodiments wherein X 2 is R 4 CO 2 is described.
- the process of any one of the preceding embodiments wherein R 4 is C1-C4 alkyl is described.
- R 4 is methyl.
- the process of any one of the preceding embodiments wherein R 6 is sec-butyl is described.
- the process of any one of the preceding embodiments wherein R 7 is methyl is described.
- the process of any one of the preceding embodiments wherein R 5 is iso-propyl is described.
- compound 11 is treated with acetic anhydride in pyridine. It is appreciated that the resulting product may contain varying amounts of the mixed anhydride of 12 and acetic acid.
- treatment of the reaction product resulting from the preceding step with water in dioxane yields compound 12, free of or substantially free of anhydride. It is to be understood that other solvents can be substituted for dioxane in the hydrolysis of the intermediate mixed anhydride. Alternatively, the step may be performed without solvent.
- a process for preparing a tubulysin of formula (AT), wherein Ar 1 is optionally substituted aryl; R 1 is hydrogen, optionally substituted alkyl, optionally substituted arylalkyl or a pro-drug forming group; R 5 and R 6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 3 is optionally substituted alkyl; R 2 and R 4 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R 12 is as described in the various embodiments herein, such as being selected from alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and R 7 is optionally substituted alkyl; wherein
- Ar 1 , R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , and R 12 may each include conventional protection groups on the optional substituents.
- compound AH is treated with an excess amount of active ester forming agent and pentafluorophenol to form the pentafluorophenol ester of compound AH, followed by removal of the excess active ester forming agent prior to the addition of compound I.
- Ar 1 is phenyl.
- Ar 1 is substituted phenyl.
- Ar 1 is 4-substituted phenyl.
- Ar 1 is R A -substituted phenyl.
- Ar 1 is 4-hydroxyphenyl, or a hydroxyl protected form thereof.
- R 3 is methyl.
- R 1 is hydrogen.
- compound 12 is treated with an excess amount of a polymeric version of a carbodiimide and pentafluorophenol to form the pentafluorophenyl ester of 12, the polymeric carbodiimide is removed by filtration; and amino acid (S)-tubutyrosine is added to the solution to yield the tubulysin, compound 13.
- the process of any one of the preceding embodiments wherein the polymeric carbodiimide is polystyrene-CH 2 —N ⁇ C ⁇ N-cyclohexane (PS-DCC) is described.
- a compound AF is described wherein R 12 , R 5 , R 6 , and R 7 are as described in the any of the embodiments described herein.
- a compound BG is described, wherein R 12 , R 5 , R 6 , and R 7 are as described in any of the embodiments described herein.
- a compound AH is described wherein R 4 is Me and R 12 , R 5 , R 6 , and R 7 are as described in any of the embodiments described herein; and the compound H is free of or substantially free of the compound H wherein R 4 and R 2 are both Me.
- R 5 is isopropyl
- R 6 is sec-butyl
- R 8 is methyl
- R 2 is CH 2 CH(CH 3 ) 2 , CH 2 CH 2 CH 3 , CH 2 CH 3 , CH ⁇ C(CH 3 ) 2 , or CH 3 .
- R 12 is CH 2 CH ⁇ CH 2 , or CH 2 (CH 2 )nCH 3 , where n is 1, 2, 3, 4, 5, or 6.
- R 12 is CH 2 CH ⁇ CH 2 , CH 2 CH 2 CH 2 CH 3 , or CH 2 CH 2 CH 2 CH 2 CH 3 .
- n 3.
- R 7 is methyl
- R 4 is methyl
- Ar 1 is phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar 1 is substituted phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar 1 is 4-substituted phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar 1 is R A -substituted phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar 1 is 4-hydroxyphenyl, or a hydroxyl protected form thereof.
- R 3 is methyl
- R 1 is hydrogen
- Ar 1 is optionally substituted aryl or optionally substituted heteroaryl
- R 1 is hydrogen, alkyl, arylalkyl or a pro-drug forming group
- R 2 is selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl;
- R 12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted;
- R 3 is optionally substituted alkyl
- R 4 is optionally substituted alkyl or optionally substituted cycloalkyl
- R 5 and R 6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; R 7 is optionally substituted alkyl; and n is 1, 2, 3, or 4;
- process comprises the step of treating a compound of formula A with triethylsilyl chloride and imidazole in an aprotic solvent, where R 8 is C1-C6 unbranched alkyl
- R 12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst selected from TFA or the group consisting of (R 13 ) 8 Sn 4 O 2 (NCS) 4 , (R 13 ) 2 Sn(OAc) 2 , (R 13 ) 2 SnO, (R 13 ) 2 SnCl 2 , (R 13 ) 2 SnS, (R 13 ) 3 SnOH, and (R 13 ) 3 SnOSn(R 13 ) 3 , where R 13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted;
- L is selected from the group consisting of
- p is an integer from about 1 to about 3
- m is an integer from about 1 to about 4, and * indicates the points of attachment;
- R a , R b , and R are each independently selected in each instance from the group consisting of hydrogen and alkyl; or at least two of R a , R b , or R are taken together with the attached carbon atoms to form a carbocyclic ring;
- R Ar represents 0 to 4 substituents selected from the group consisting of amino, or derivatives thereof, hydroxy or derivatives thereof, halo, thio or derivatives thereof, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof;
- R 12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst selected from TFA or the group consisting of (R 13 ) 8 Sn 4 O 2 (NCS) 4 , (R 13 ) 2 Sn(OAc) 2 , (R 13 ) 2 SnO, (R 13 ) 2 SnCl 2 , (R 13 ) 2 SnS, (R 13 ) 3 SnOH, and (R 13 ) 3 SnOSn(R 13 ) 3 , where R 13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted.
- R 2 , R 5 , R 6 , R 8 , and R 12 are as described in any of the embodiments described herein.
- transesterification catalyst selected from the group consisting of (R 13 ) 8 Sn 4 O 2 (NCS) 4 , (R 13 ) 2 Sn(OAc) 2 , (R 13 ) 2 SnO, (R 13 ) 2 SnCl 2 , (R 13 ) 2 SnS, (R 13 ) 3 SnOH, and (R 13 ) 3 SnOSn(R 13 ) 3 , where R 13 and R 12 OH, wherein R 2 , R 5 , R 6 , R 8 , R 12 , and R 13 are as described in any of the embodiments described herein.
- R 12 OCH 2 X is n-C 5 H 11 OCH 2 Br.
- R 14 is Et 3 Si or R 4 C(O)
- R 2 , R 4 , R 5 , R 6 , R 8 , and R 12 are as described in any of the embodiments described herein.
- transesterification catalyst selected from the group consisting of (R 13 ) 8 Sn 4 O 2 (NCS) 4 , (R 13 ) 2 Sn(OAc) 2 , (R 13 ) 2 SnO, (R 13 ) 2 SnCl 2 , (R 13 ) 2 SnS, (R 13 ) 3 SnOH, and (R 13 ) 3 SnOSn(R 13 ) 3 , where R 13 ; and R 12 OH, wherein R 2 , R 5 , R 6 , R 8 , R 12 , and R 13 are as described in any of the embodiments described herein.
- R 2 is CH 2 CH(CH 3 ) 2 , CH 2 CH 2 CH 3 , CH 2 CH 3 , CH ⁇ C(CH 3 ) 2 , or CH 3 .
- R 12 is CH 2 CH ⁇ CH 2 , CH 2 CH 2 CH 2 CH 3 , or CH 2 CH 2 CH 2 CH 2 CH 3 .
- Ar 1 is optionally substituted aryl
- R 1 is hydrogen, alkyl, arylalkyl or a pro-drug forming group
- R 2 is selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl;
- R 12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted;
- R 3 is optionally substituted alkyl
- R 4 is optionally substituted alkyl or optionally substituted cycloalkyl
- R 5 and R 6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; R 7 is optionally substituted alkyl; and n is 1, 2, 3, or 4.
- R 2 is CH 2 CH(CH 3 ) 2 , CH 2 CH 2 CH 3 , CH 2 CH 3 , CH ⁇ C(CH 3 ) 2 , or CH 3 .
- R 4 is C1-C8 alkyl or C3-C8 cycloalkyl.
- R 12 is CH 2 CH ⁇ CH 2 , CH 2 CH 2 CH 2 CH 3 , or CH 2 CH 2 CH 2 CH 2 CH 3 .
- n 1, 2, 3, 4, 5, or 6.
- the acid selected for the conversion of the NCH 2 OC(O)R 2 moiety to the NCH 2 OR 12 moiety is TFA.
- the catalyst selected for the conversion of the NCH 2 OC(O)R 2 moiety to the NCH 2 OR 12 moiety is (n-Bu) 2 SnO.
- tubulysin refers both collectively and individually to the naturally occurring tubulysins, and the analogs and derivatives of tubulysins. Illustrative examples of a tubulysin are shown in Table 1.
- tubulysin generally refers to the compounds described herein and analogs and derivatives thereof. It is also to be understood that in each of the foregoing, any corresponding pharmaceutically acceptable salt is also included in the illustrative embodiments described herein.
- derivatives may include prodrugs of the compounds described herein, compounds described herein that include one or more protection or protecting groups, including compounds that are used in the preparation of other compounds described herein.
- tubulysin also refers to prodrug derivatives of the compounds described herein, and including prodrugs of the various analogs and derivatives thereof.
- tubulysin refers to both the amorphous as well as any and all morphological forms of each of the compounds described herein.
- tubulysin refers to any and all hydrates, or other solvates, of the compounds described herein.
- the compounds described herein may contain one or more chiral centers, or may otherwise be capable of existing as multiple stereoisomers. It is to be understood that in one embodiment, the invention described herein is not limited to any particular stereochemical requirement, and that the compounds, and compositions, methods, uses, and medicaments that include them may be optically pure, or may be any of a variety of stereoisomeric mixtures, including racemic and other mixtures of enantiomers, other mixtures of diastereomers, and the like. It is also to be understood that such mixtures of stereoisomers may include a single stereochemical configuration at one or more chiral centers, while including mixtures of stereochemical configuration at one or more other chiral centers.
- the compounds described herein may include geometric centers, such as cis, trans, (E)-, and (Z)-double bonds. It is to be understood that in another embodiment, the invention described herein is not limited to any particular geometric isomer requirement, and that the compounds, and compositions, methods, uses, and medicaments that include them may be pure, or may be any of a variety of geometric isomer mixtures. It is also to be understood that such mixtures of geometric isomers may include a single configuration at one or more double bonds, while including mixtures of geometry at one or more other double bonds.
- aprotic solvent refers to a solvent which does not yield a proton to the solute(s) under reaction conditions.
- nonprotic solvents are tetrahydrofuran (THF), 2,5-dimethyl-tetrahydrofuran, 2-methyl-tetrahydrofuran, tetrahydropyran, diethyl ether, t-butyl methyl ether, dimethyl formamide, N-methylpyrrolidinone (NMP), and the like. It is appreciated that mixtures of these solvents may also be used in the processes described herein.
- an equivalent amount of a reagent refers to the theoretical amount of the reagent necessary to transform a starting material into a desired product, i.e. if 1 mole of reagent is theoretically required to transform 1 mole of the starting material into 1 mole of product, then 1 equivalent of the reagent represents 1 mole of the reagent; if X moles of reagent are theoretically required to convert 1 mole of the starting material into 1 mole of product, then 1 equivalent of reagent represents X moles of reagent.
- active ester forming agent generally refers to any reagent or combinations of reagents that may be used to convert a carboxylic acid into an active ester.
- active ester generally refers to a carboxylic acid ester compound wherein the divalent oxygen portion of the ester is a leaving group resulting in an ester that is activated for reacting with compounds containing functional groups, such as amines, alcohols or sulfhydryl groups.
- active ester-forming compounds are N-hydroxysuccinimide, N-hydroxyphthalimide, phenols substituted with electron withdrawing groups, such as but not limited to 4-nitrophenol, pentafluorophenol, N,N′-disubstituted isoureas, substituted hydroxyheteroaryls, such as but not limited to 2-pyridinols, 1-hydroxybenzotriazoles, 1-hydroxy-7-aza-benzotriazoles, cyanomethanol, and the like.
- the reaction conditions for displacing the active ester with a compound having an amino, hydroxy or thiol group are mild.
- reaction conditions for displacing the active ester with a compound having an amino, hydroxy or thiol group are performed at ambient or below ambient temperatures.
- the reaction conditions for displacing the active ester with a compound having an amino, hydroxy or thiol group are performed without the addition of a strong base.
- the reaction conditions for displacing the active ester with a compound having an amino, hydroxy or thiol group are performed with the addition of a tertiary amine base, such as a tertiary amine base having a conjugate acid pKa of about 11 or less, about 10.5 or less, and the like.
- alkyl includes a chain of carbon atoms, which is optionally branched.
- alkenyl and alkynyl includes a chain of carbon atoms, which is optionally branched, and includes at least one double bond or triple bond, respectively. It is to be understood that alkynyl may also include one or more double bonds. It is to be further understood that in certain embodiments, alkyl is advantageously of limited length, including C 1 -C 24 , C 1 -C 12 , C 1 -C 8 , C 1 -C 6 , and C 1 -C 4 .
- alkenyl and/or alkynyl may each be advantageously of limited length, including C 2 -C 24 , C 2 -C 12 , C 2 -C 8 , C 2 -C 6 , and C 2 -C 4 .
- alkenyl and/or alkynyl groups including C 2 -C 8 , C 2 -C 6 , and C 2 -C 4 may be referred to as lower alkenyl and/or alkynyl.
- alkyl refers to alkyl as defined herein, and optionally lower alkyl.
- alkenyl refers to alkenyl as defined herein, and optionally lower alkenyl.
- alkynyl refers to alkynyl as defined herein, and optionally lower alkynyl.
- Illustrative alkyl, alkenyl, and alkynyl groups are, but not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, 2-pentyl, 3-pentyl, neopentyl, hexyl, heptyl, octyl, and the like, and the corresponding groups containing one or more double and/or triple bonds, or a combination thereof.
- cycloalkyl includes a chain of carbon atoms, which is optionally branched, where at least a portion of the chain in cyclic. It is to be understood that cycloalkylalkyl is a subset of cycloalkyl. It is to be understood that cycloalkyl may be polycyclic. Illustrative cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, 2-methylcyclopropyl, cyclopentyleth-2-yl, adamantyl, and the like.
- cycloalkenyl includes a chain of carbon atoms, which is optionally branched, and includes at least one double bond, where at least a portion of the chain in cyclic. It is to be understood that the one or more double bonds may be in the cyclic portion of cycloalkenyl and/or the non-cyclic portion of cycloalkenyl. It is to be understood that cycloalkenylalkyl and cycloalkylalkenyl are each subsets of cycloalkenyl. It is to be understood that cycloalkyl may be polycyclic.
- Illustrative cycloalkenyl include, but are not limited to, cyclopentenyl, cyclohexylethen-2-yl, cycloheptenylpropenyl, and the like. It is to be further understood that chain forming cycloalkyl and/or cycloalkenyl is advantageously of limited length, including C 3 -C 24 , C 3 -C 12 , C 3 -C 8 , C 3 -C 6 , and C 5 -C 6 . It is appreciated herein that shorter alkyl and/or alkenyl chains forming cycloalkyl and/or cycloalkenyl, respectively, may add less lipophilicity to the compound and accordingly will have different pharmacokinetic behavior.
- heteroalkyl includes a chain of atoms that includes both carbon and at least one heteroatom, and is optionally branched.
- Illustrative heteroatoms include nitrogen, oxygen, and sulfur. In certain variations, illustrative heteroatoms also include phosphorus, and selenium.
- cycloheteroalkyl including heterocyclyl and heterocycle, includes a chain of atoms that includes both carbon and at least one heteroatom, such as heteroalkyl, and is optionally branched, where at least a portion of the chain is cyclic.
- Illustrative heteroatoms include nitrogen, oxygen, and sulfur. In certain variations, illustrative heteroatoms also include phosphorus, and selenium.
- Illustrative cycloheteroalkyl include, but are not limited to, tetrahydrofuryl, pyrrolidinyl, tetrahydropyranyl, piperidinyl, morpholinyl, piperazinyl, homopiperazinyl, quinuclidinyl, and the like.
- aryl includes monocyclic and polycyclic aromatic carbocyclic groups, each of which may be optionally substituted.
- Illustrative aromatic carbocyclic groups described herein include, but are not limited to, phenyl, naphthyl, and the like.
- heteroaryl includes aromatic heterocyclic groups, each of which may be optionally substituted.
- Illustrative aromatic heterocyclic groups include, but are not limited to, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, tetrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, thienyl, pyrazolyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, triazolyl, benzimidazolyl, benzoxazolyl, benzthiazolyl, benzisoxazolyl, benzisothiazolyl, and the like.
- amino includes the group NH 2 , alkylamino, and dialkylamino, where the two alkyl groups in dialkylamino may be the same or different, i.e. alkylalkylamino.
- amino includes methylamino, ethylamino, dimethylamino, methylethylamino, and the like.
- amino modifies or is modified by another term, such as aminoalkyl, or acylamino the above variations of the term amino are included therein.
- aminoalkyl includes H 2 N-alkyl, methylaminoalkyl, ethylaminoalkyl, dimethylaminoalkyl, methylethylaminoalkyl, and the like.
- acylamino includes acylmethylamino, acylethylamino, and the like.
- amino and derivatives thereof includes amino as described herein, and alkylamino, alkenylamino, alkynylamino, heteroalkylamino, heteroalkenylamino, heteroalkynylamino, cycloalkylamino, cycloalkenylamino, cycloheteroalkylamino, cycloheteroalkenylamino, arylamino, arylalkylamino, arylalkenylamino, arylalkynylamino, heteroarylamino, heteroarylalkylamino, heteroarylalkenylamino, heteroarylalkynylamino, acylamino, and the like, each of which is optionally substituted.
- amino derivative also includes urea, carbamate, and the like.
- hydroxy and derivatives thereof includes OH, and alkyloxy, alkenyloxy, alkynyloxy, heteroalkyloxy, heteroalkenyloxy, heteroalkynyloxy, cycloalkyloxy, cycloalkenyloxy, cycloheteroalkyloxy, cycloheteroalkenyloxy, aryloxy, arylalkyloxy, arylalkenyloxy, arylalkynyloxy, heteroaryloxy, heteroarylalkyloxy, heteroarylalkenyloxy, heteroarylalkynyloxy, acyloxy, and the like, each of which is optionally substituted.
- hydroxy derivative also includes carbamate, and the like.
- thio and derivatives thereof includes SH, and alkylthio, alkenylthio, alkynylthio, heteroalkylthio, heteroalkenylthio, heteroalkynylthio, cycloalkylthio, cycloalkenylthio, cycloheteroalkylthio, cycloheteroalkenylthio, arylthio, arylalkylthio, arylalkenylthio, arylalkynylthio, heteroarylthio, heteroarylalkylthio, heteroarylalkenylthio, heteroarylalkynylthio, acylthio, and the like, each of which is optionally substituted.
- thio derivative also includes thiocarbamate, and the like.
- acyl includes formyl, and alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, heteroalkylcarbonyl, heteroalkenylcarbonyl, heteroalkynylcarbonyl, cycloalkylcarbonyl, cycloalkenylcarbonyl, cycloheteroalkylcarbonyl, cycloheteroalkenylcarbonyl, arylcarbonyl, arylalkylcarbonyl, arylalkenylcarbonyl, arylalkynylcarbonyl, heteroarylcarbonyl, heteroarylalkylcarbonyl, heteroarylalkenylcarbonyl, heteroarylalkynylcarbonyl, acylcarbonyl, and the like, each of which is optionally substituted.
- carboxylic acid and derivatives thereof includes the group CO 2 H and salts thereof, and esters and amides thereof, and CN.
- optionally substituted includes the replacement of hydrogen atoms with other functional groups on the radical that is optionally substituted.
- Such other functional groups illustratively include, but are not limited to, amino, hydroxyl, halo, thiol, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof, and the like.
- any of amino, hydroxyl, thiol, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, and/or sulfonic acid is optionally substituted.
- the terms “optionally substituted aryl” and “optionally substituted heteroaryl” include the replacement of hydrogen atoms with other functional groups on the aryl or heteroaryl that is optionally substituted.
- Such other functional groups illustratively include, but are not limited to, amino, hydroxy, halo, thio, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof, and the like.
- any of amino, hydroxy, thio, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, and/or sulfonic acid is optionally substituted.
- Illustrative substituents include, but are not limited to, a radical —(CH 2 ) x Z x , where x is an integer from 0-6 and Z x is selected from halogen, hydroxy, alkanoyloxy, including C 1 -C 6 alkanoyloxy, optionally substituted aroyloxy, alkyl, including C 1 -C 6 alkyl, alkoxy, including C 1 -C 6 alkoxy, cycloalkyl, including C 3 -C 8 cycloalkyl, cycloalkoxy, including C 3 -C 8 cycloalkoxy, alkenyl, including C 2 -C 6 alkenyl, alkynyl, including C 2 -C 6 alkynyl, haloalkyl, including C 1 -C 6 haloalkyl, haloalkoxy, including C 1 -C 6 haloalkoxy, halocycloalkyl, including C 3 -C 8
- prodrug generally refers to any compound that when administered to a biological system generates a biologically active compound as a result of one or more spontaneous chemical reaction(s), enzyme-catalyzed chemical reaction(s), and/or metabolic chemical reaction(s), or a combination thereof.
- the prodrug is typically acted upon by an enzyme (such as esterases, amidases, phosphatases, and the like), simple biological chemistry, or other process in vivo to liberate or regenerate the more pharmacologically active drug. This activation may occur through the action of an endogenous host enzyme or a non-endogenous enzyme that is administered to the host preceding, following, or during administration of the prodrug.
- prodrug use is described in U.S. Pat. No. 5,627,165; and Pathalk et al., Enzymic protecting group techniques in organic synthesis, Stereosel. Biocatal. 775-797 (2000). It is appreciated that the prodrug is advantageously converted to the original drug as soon as the goal, such as targeted delivery, safety, stability, and the like is achieved, followed by the subsequent rapid elimination of the released remains of the group forming the prodrug.
- Prodrugs may be prepared from the compounds described herein by attaching groups that ultimately cleave in vivo to one or more functional groups present on the compound, such as —OH—, —SH, —CO 2 H, —NR 2 .
- Illustrative prodrugs include but are not limited to carboxylate esters where the group is alkyl, aryl, aralkyl, acyloxyalkyl, alkoxycarbonyloxyalkyl as well as esters of hydroxyl, thiol and amines where the group attached is an acyl group, an alkoxycarbonyl, aminocarbonyl, phosphate or sulfate.
- esters also referred to as active esters, include but are not limited to 1-indanyl, N-oxysuccinimide; acyloxyalkyl groups such as acetoxymethyl, pivaloyloxymethyl, ⁇ -acetoxyethyl, ⁇ -pivaloyloxyethyl, 1-(cyclohexylcarbonyloxy)prop-1-yl, (1-aminoethyl)carbonyloxymethyl, and the like; alkoxycarbonyloxyalkyl groups, such as ethoxycarbonyloxymethyl, ⁇ -ethoxycarbonyloxyethyl, ⁇ -ethoxycarbonyloxyethyl, and the like; dialkylaminoalkyl groups, including di-lower alkylamino alkyl groups, such as dimethylaminomethyl, dimethylaminoethyl, diethylaminomethyl, diethylaminoethyl, and the like; 2-(alk
- Further illustrative prodrugs contain a chemical moiety, such as an amide or phosphorus group functioning to increase solubility and/or stability of the compounds described herein.
- Further illustrative prodrugs for amino groups include, but are not limited to, (C 3 -C 20 )alkanoyl; halo-(C 3 -C 20 )alkanoyl; (C 3 -C 20 )alkenoyl; (C 4 -C 7 )cycloalkanoyl; (C 3 -C 6 )-cycloalkyl(C 2 -C 16 )alkanoyl; optionally substituted aroyl, such as unsubstituted aroyl or aroyl substituted by 1 to 3 substituents selected from the group consisting of halogen, cyano, trifluoromethanesulphonyloxy, (C 1 -C 3 )alkyl and (C 1 -C 3 )alkoxy, each of which is
- prodrugs themselves may not possess significant biological activity, but instead undergo one or more spontaneous chemical reaction(s), enzyme-catalyzed chemical reaction(s), and/or metabolic chemical reaction(s), or a combination thereof after administration in vivo to produce the compound described herein that is biologically active or is a precursor of the biologically active compound.
- the prodrug is biologically active.
- prodrugs may often serves to improve drug efficacy or safety through improved oral bioavailability, pharmacodynamic half-life, and the like.
- Prodrugs also refer to derivatives of the compounds described herein that include groups that simply mask undesirable drug properties or improve drug delivery.
- one or more compounds described herein may exhibit an undesirable property that is advantageously blocked or minimized may become pharmacological, pharmaceutical, or pharmacokinetic barriers in clinical drug application, such as low oral drug absorption, lack of site specificity, chemical instability, toxicity, and poor patient acceptance (bad taste, odor, pain at injection site, and the like), and others. It is appreciated herein that a prodrug, or other strategy using reversible derivatives, can be useful in the optimization of the clinical application of a drug.
- the term “treating”, “contacting” or “reacting” when referring to a chemical reaction means to add or mix two or more reagents under appropriate conditions to produce the indicated and/or the desired product. It should be appreciated that the reaction which produces the indicated and/or the desired product may not necessarily result directly from the combination of two reagents which were initially added, i.e., there may be one or more intermediates which are produced in the mixture which ultimately leads to the formation of the indicated and/or the desired product.
- composition generally refers to any product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combinations of the specified ingredients in the specified amounts. It is to be understood that the compositions described herein may be prepared from isolated compounds described herein or from salts, solutions, hydrates, solvates, and other forms of the compounds described herein. It is also to be understood that the compositions may be prepared from various amorphous, non-amorphous, partially crystalline, crystalline, and/or other morphological forms of the compounds described herein. It is also to be understood that the compositions may be prepared from various hydrates and/or solvates of the compounds described herein.
- compositions that recite compounds described herein are to be understood to include each of, or any combination of, the various morphological forms and/or solvate or hydrate forms of the compounds described herein.
- compositions may include one or more carriers, diluents, and/or excipients.
- the compounds described herein, or compositions containing them, may be formulated in a therapeutically effective amount in any conventional dosage forms appropriate for the methods described herein.
- compositions containing them may be administered by a wide variety of conventional routes for the methods described herein, and in a wide variety of dosage formats, utilizing known procedures (see generally, Remington: The Science and Practice of Pharmacy, (21 st ed., 2005)).
- reaction was filtered to remove the imidazole HCl salt, extracted with de-ionized water, and the aqueous phase was back-washed with dichloromethane, the combined organic phase was washed with brine, dried over Na 2 SO 4 , filtered to remove the Na 2 SO 4 , concentrated under reduced pressure, co-evaporated with toluene and dried under high-vacuum overnight to give 6.4 g of crude product 2 (vs 5.9 g of theoretical yield).
- TES protected dipeptide was dissolved in 38 mL THF (anhydrous, inhibitor-free) and cooled to ⁇ 45° C. and stirred for 15 minutes before adding KHMDS (0.5 M in toluene, 25.5 mL, 12.8 mmol, 1.1 equiv) drop-wise. After the addition of KHMDS was complete, the reaction mixture was stirred at ⁇ 45° C. for 15 minutes, and chloromethyl butyrate (1.8 mL, 1.2 equiv, 14 mmol) was added. The reaction mixture changed from light yellow to a blueish color.
- the flask was shaken under hydrogen (30-35 psi) for 5 hours.
- the reaction mixture was analyzed by HPLC. The starting material was found to be less than 3%.
- the mixture was filtered through diatomaceous earth.
- the diatomaceous earth was extracted with 200 mL ethyl acetate.
- the filtrate and the ethyl acetate extract were combined and transferred to a separatory funnel and washed with 1% NaHCO 3 /10% NaCl solution (200 mL ⁇ 4).
- the organic layer was isolated and evaporated on a rotary evaporator under reduced pressure.
- the crude product was dissolved in 40 mL of MeOH/H 2 O (3:1).
- the crude product solution was loaded onto a Biotage C18 column (Flash 65i, 350 g, 450 mL, 65 ⁇ 200 mm) and eluted with buffer A [10 mM NH 4 OAc/ACN (1:1)] and B (ACN, acetonitrile). The fractions were collected and organic solvent was removed by evaporating on a rotary evaporator. 100 mL of 10% NaCl solution and 100 mL of methyl tert-butyl ether (MTBE) were added to the flask and the mixture was transferred to a separatory funnel. The organic layer was isolated and dried over anhydrous Na 2 SO 4 , filtered and evaporated on a rotary evaporator to dryness. 2.5 g of tripeptide intermediate 4 was obtained (yield 50%).
- buffer A 10 mM NH 4 OAc/ACN (1:1)
- B ACN, acetonitrile
- reaction was filtered to remove the imidazole HCl salt, extracted with de-ionized water, and the aqueous phase was back-washed with dichloromethane, the combined organic phase was washed with brine, dried over Na 2 SO 4 , filtered to remove the Na 2 SO 4 , concentrated under reduced pressure, co-evaporated with toluene and dried under high-vacuum overnight to give 12.2 g of product 2.
- TES protected dipeptide was dissolved in 80 mL THF (anhydrous, inhibitor-free) and cooled to ⁇ 45° C. and stirred for 15 minutes before adding KHMDS (0.5 M in toluene, 50 mL, 25.0 mmol, 1.05 equiv) drop-wise. After the addition of KHMDS was complete, the reaction mixture was stirred at ⁇ 45° C. for 15 minutes, and chloromethyl butyrate (3.6 mL, 1.2 equiv, 28.3 mmol) was added. The reaction mixture changed from light yellow to a blueish color.
- the flask was shaken under hydrogen (30-35 psi) for 5 hours.
- the reaction mixture was analyzed by HPLC.
- the reaction was complete.
- the mixture was filtered through celite.
- the celite was washed with 500 mL ethyl acetate.
- the solutions were combined and transferred to a separatory funnel and washed with 1% NaHCO 3 /10% NaCl solution (250 mL ⁇ 4).
- the organic layer was isolated and evaporated on a rotary evaporator under reduced pressure.
- the crude product was dissolved in dichloromethane and the urea was filtered.
- R is allyl, or CH 2 (CH 2 )nCH 3 , where n is 1, 2, 3, 4, 5, or 6.
- reaction mixture was filtered and concentrated under reduced pressure, and the residue was dissolved in a solution of N,N-dimethylformamide (2 mL) and N,N-diisopropylethylamine (8 ⁇ L, 0.046 mmol).
- PFP ester intermediate (6.0 mg, 0.023 mmol) was added and the reaction mixture was stirred at room temperature for 2 h under argon.
- LCMS (10-100% ACN, 50 mM NH 4 HCO 3 pH7) indicated all of the activated intermediate had been consumed and product had been formed.
- the reaction mixture was purified by preparative HPLC (10-100% ACN, 50 mM NH 4 HCO 3 pH7) to yield 13b (4.7 mg, 37%).
- reaction mixture was filtered and concentrated under reduced pressure, and the residue was dissolved in a solution of N,N-dimethylformamide (2 mL) and N,N-diisopropylethylamine (4 ⁇ L, 0.023 mmol).
- PFP ester intermediate (3.0 mg, 0.012 mmol) was added and the reaction mixture was stirred at room temperature for 2 h under Argon.
- LC-MS (10-100% ACN, 50 mM NH 4 HCO 3 pH7) indicated all of the activated intermediate had been consumed and product had been formed.
- the reaction mixture was purified by preparative HPLC (10-100% ACN, 50 mM NH 4 HCO 3 pH7) to yield 13c (1.1 mg, 17%).
- DCM anhydrous dichloromethane
- TFA trifluoroacetic acid
- the resulting white suspension was stirred at ambient temperature for 3 minutes and let stand to settle.
- the top clear solution was loaded onto a Biotage SNAP 12 g KP-C18-HS column on a Biotage system.
- the white solid left in the reaction flask was dissolved in water (5.0 mL) and the solution was also loaded onto the Biotage column.
- the remaining solid stuck on the glass wall of the reaction flask was dissolved in ACN (2.0 mL).
- To this solution was added water (6.0 mL) and the resulting cloudy solution was loaded onto the same Biotage column.
- the reaction mixture was eluted following these parameters: Flow rate: 15 mL/min.
- Step 2 EC1426 (114 mg) was dissolved in anhydrous DCM (1.5 mL) and to which was added TFA (0.50 mL). The resulting solution was stirred at ambient temperature under argon for 70 minutes and concentrated under reduced pressure to give a residue, which was co-evaporated with anhydrous DCM (2.0 mL ⁇ 3) and vacuumed at ambient temperature for 9 hours prior to use in Step 3.
- Step 3 The residue from Step 1 was dissolved in anhydrous DCM (1.5 mL) and to this solution was added DIPEA (0.50 mL) followed by a solution of the residue from Step 2 dissolved in anhydrous dimethylformamide (DMF, 1.5 mL). The resulting solution was stirred at ambient temperature under argon for 1 hour, diluted with ethyl acetate (EtOAc, 60 mL), and washed with brine (20 mL ⁇ 3).
- EtOAc ethyl acetate
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Processes for preparing tubulysins and derivatives thereof are described. In addition, processes for preparing unnatural tubulysins are described.
Description
- The present application claims the benefit, under 35 U.S.C. §119(e), of U.S. Provisional Application No. 61/771,429, filed Mar. 1, 2013, and U.S. Provisional Application 61/793,082, filed Mar. 15, 2013, the entirety of each of the disclosures of which are hereby incorporated herein by reference.
- The invention described herein pertains to processes for preparing tubulysins and derivatives thereof. In particular, the processes pertain to the preparation of unnatural tubulysins.
- The tubulysins are members of a new class of natural products isolated from myxobacterial species (F. Sasse, et al., J. Antibiot. 2000, 53, 879-885). As cytoskeleton interacting agents, the tubulysins are mitotic poisons that inhibit tubulin polymerization and lead to cell cycle arrest and apoptosis (H. Steinmetz, et al., Chem. Int. Ed. 2004, 43, 4888-4892; M. Khalil, et al., ChemBioChem. 2006, 7, 678-683; G. Kaur, et al., Biochem. J. 2006, 396, 235-242). Tubulysins are extremely potent cytotoxic molecules, exceeding the cell growth inhibition of any clinically relevant traditional chemotherapeutic e.g. epothilones, paclitaxel, and vinblastine. Furthermore, they are potent against multidrug resistant cell lines (A. Domling, et al., Mol. Diversity. 2005, 9, 141-147). These compounds show high cytotoxicity tested against a panel of cancer cell lines with IC50 values in the low picomolar range; thus, they are of interest as potential anticancer therapeutics. Accordingly, processes for preparing tubulysins, including non-naturally occurring tubulysins are needed.
- Tubulysins are described herein. Structurally, tubulysins often include linear tetrapeptoid backbones, including illustrative compounds having formula T or AT
- and pharmaceutically acceptable salts thereof; wherein
- Ar1 is optionally substituted aryl;
- R1 is hydrogen, alkyl, arylalkyl or a pro-drug forming group;
- R2 is selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl;
- R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted;
- R4 is optionally substituted alkyl or optionally substituted cycloalkyl;
- R3 is optionally substituted alkyl;
- R5 and R6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl;
- R7 is optionally substituted alkyl; and
- n is 1, 2, 3, or 4.
- Another illustrative group of tubulysins described herein are more particularly comprised of one or more non-naturally occurring or hydrophobic amino acid segments, such as N-methyl pipecolic acid (Mep), isoleucine (Ile),
- and analogs and derivatives of each of the foregoing. A common feature in the molecular architecture of the more potent natural occurring tubulysins is the acid and/or base sensitive N-acyloxymethyl substituent (or a N,O-acetal of formaldehyde) represented by R2-C(O) in the formula (T).
- Another illustrative group of tubulysins described herein are those having formula 1.
- Structures of Several Natural Tubulysins
-
Tubulysin RA R2 A OH CH2CH(CH3)2 B OH CH2CH2CH3 C OH CH2CH3 D H CH2CH(CH3)2 E H CH2CH2CH3 F H CH2CH3 G OH CH═C(CH3)2 H H CH3 I OH CH3 - A total synthesis of tubulysin D possessing C-terminal tubuphenylalanine (RA=H) (H. Peltier, et al., J. Am. Chem. Soc. 2006, 128, 16018-16019) has been reported. Recently, a modified synthetic protocol toward the synthesis of tubulysin B (RA=OH) (O. Pando, et at., Org. Lett. 2009, 11, 5567-5569) has been reported. However, attempts to follow the published procedures to provide larger quantities of tubulysins were unsuccessful, being hampered in part by low yields, difficult to remove impurities, the need for expensive chromatographic steps, and/or the lack of reproducibility of several steps. The interest in using tubulysins for anticancer therapeutics accents the need for reliable and efficient processes for preparing tubulysins, and analogs and derivatives thereof. Described herein are improved processes for making tubulysins, or analogs or derivatives thereof, including compounds of formula (AT).
- In one illustrative embodiment of the invention, processes for preparing tubulysins, or analogs or derivatives thereof, including compounds of formula (AT). The processes include one or more steps described herein. In another embodiment, a process is described for preparing a compound of formula B, wherein R5 and R6 are as described in the various embodiments herein, such as each being independently selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R8 is C1-C6 n-alkyl; wherein the process comprises the step of treating a compound of formula A with a silylating agent, such as triethylsilyl chloride, and a base, such as imidazole in an aprotic solvent.
- It is to be understood that R5 and R6 may each include conventional protection groups on the optional substituents.
- In another embodiment, a process is described for preparing a compound of formula C, wherein R5 and R6 are as described in the various embodiments herein, such as each being independently selected from optionally substituted alkyl or optionally substituted cycloalkyl; R8 is C1-C6 n-alkyl; and R2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; wherein the process comprises the step of treating a compound of formula B with a base and a compound of the formula ClCH2OC(O)R2 in an aprotic solvent at a temperature below ambient temperature, such as in the range from about −78° C. to about 0° C.; wherein the molar ratio of the compound of the formula ClCH2OC(O)R2 to the compound of formula B from about 1 to about 1.5.
- It is to be understood that R2, R5 and R6 may each include conventional protection groups on the optional substituents.
- In another embodiment, a process is described for preparing a compound of formula D, wherein R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R8 is C1-C6 n-alkyl; R2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R7 is optionally substituted alkyl; wherein the process comprises the steps of
- a) preparing a compound of formula (E1) where X1 is a leaving group from a compound of formula E; and
- b) treating a compound of formula C under reducing conditions in the presence of the compound of formula E1.
- It is to be understood that R2, R5, R6, and R7 may each include conventional protection groups on the optional substituents.
- In another embodiment, a process is described for preparing a compound of formula AF, wherein R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound D with an alcohol, R12OH, where R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst. In another embodiment, the transesterification catalyst is selected from the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted. In another embodiment, the transesterification catalyst is (R13)2SnO. Illustrative examples of R13 are methyl, n-butyl. n-octyl, phenyl, o-MeO-phenyl, p-MeO phenyl, phenethyl, and benzyl.
- It is to be understood that R5, R6, R12, and R7 may each include conventional protection groups on the optional substituents.
- In another embodiment, a process is described for preparing a compound of formula AG, wherein R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound F with an alcohol, R12OH, where R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst. In another embodiment, the transesterification catalyst is selected from the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted. In another embodiment, the transesterification catalyst is (R13)2SnO. Illustrative examples of R13 are methyl, n-butyl. n-octyl, phenyl, o-MeO-phenyl, p-MeO phenyl, phenethyl, and benzyl.
- It is to be understood that R2, R5, R6, R7, and R12 may each include conventional protection groups on the optional substituents.
- In another embodiment, a process is described for preparing a compound of formula BG, wherein R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R12 is as described in the various embodiments herein, such as being selected from alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and R7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound AF with a metal hydroxide or carbonate. Illustrative examples of a metal hydroxide or carbonate include LiOH, Li2CO3, NaOH, Na2CO3, KOH, K2CO3, Ca(OH)2, CaCO3, Mg(OH)2, MgCO3, and the like.
- It is to be understood that R5, R6, R7, and R12 may each include conventional protection groups on the optional substituents.
- In another embodiment, a process is described for preparing a compound of formula AH, wherein R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R2 and R4 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R12 is as described in the various embodiments herein, such as being selected from alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and R7 is optionally substituted alkyl; wherein the process comprises the step of treating a compound of formula BG with an acylating agent of formula R4C(O)X2, where X2 is a leaving group.
- It is to be understood that R4, R5, R6, and R7 may each include conventional protection groups on the optional substituents.
- In another embodiment, a process is described for preparing a tubulysin of formula (AT), wherein Ar1 is aryl or heteroaryl each of which is optionally substituted; R1 is hydrogen, optionally substituted alkyl, optionally substituted arylalkyl or a pro-drug forming group; R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R3 is optionally substituted alkyl; R2 and R4 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R12 is as described in the various embodiments herein, such as being selected from alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and R7 is optionally substituted alkyl; wherein the process comprises the step of forming an active ester intermediate from a compound of formula AH; and reacting the active ester intermediate with a compound of the formula I to give a compound of the formula AT.
- It is to be understood that Ar1, R1, R2, R4, R5, R6, R7, and R12 may each include conventional protection groups on the optional substituents.
- In another embodiment, a process is described for preparing a tubulysin linker derivative of formula (TL-2), wherein Ar1 is optionally substituted aryl or optionally substituted heteroaryl; Ar2 is optionally substituted aryl or optionally substituted heteroaryl; L is selected from the group consisting of
- where p is an integer from about 1 to about 3, m is an integer from about 1 to about 4, and * indicates the points of attachment;
Ra, Rb, and R are each independently selected in each instance from the group consisting of hydrogen and alkyl; or at least two of Ra, Rb, or R are taken together with the attached carbon atoms to form a carbocyclic ring; - RAr represents 0 to 4 substituents selected from the group consisting of amino, or derivatives thereof, hydroxy or derivatives thereof, halo, thio or derivatives thereof, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof; R1 is hydrogen, optionally substituted alkyl, optionally substituted arylalkyl or a pro-drug forming group; R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R3 is optionally substituted alkyl; R2 and R4 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound TL, with an alcohol, R12OH, where R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst. In one embodiment the transesterification catalyst is TFA. In another embodiment, the transesterification catalyst is selected from the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted. In another embodiment, the transesterification catalyst is (R13)2SnO. Illustrative examples of R13 are methyl, n-butyl. n-octyl, phenyl, o-MeO-phenyl, p-MeO phenyl, phenethyl, and benzyl. It is to be understood that Ar1, Ar2, R1, R2, R4, R5, R6, R7, and R12 may each include conventional protection groups on the optional substituents.
- In another embodiment, a process is described for preparing a tubulysin linker derivative of formula (TL-2), wherein Ar1 is optionally substituted aryl or optionally substituted heteroaryl; Are is optionally substituted aryl or optionally substituted heteroaryl; L is selected from the group consisting of
- wherein
- p is an integer from about 1 to about 3, m is an integer from about 1 to about 4, and * indicates the points of attachment;
- Ra, Rb, and R are each independently selected in each instance from the group consisting of hydrogen and alkyl; or at least two of Ra, Rb, or R are taken together with the attached carbon atoms to form a carbocyclic ring;
- RAr represents 0 to 4 substituents selected from the group consisting of amino, or derivatives thereof, hydroxy or derivatives thereof, halo, thio or derivatives thereof, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof;
- R1 is hydrogen, optionally substituted alkyl, optionally substituted arylalkyl or a pro-drug forming group; R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R3 is optionally substituted alkyl; R2 and R4 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R7 is optionally substituted alkyl;
- wherein the process comprises the step of forming an active ester intermediate from a compound of formula AH; and reacting the active ester intermediate with a compound of the formula IL to give a compound of the formula TL-2.
- In another embodiment, the process described in any of the embodiments described herein wherein Ar1 is optionally substituted aryl is described.
- In another embodiment, the process described in any of the embodiments described herein wherein Ar1 is optionally substituted heteroaryl is described.
- It is to be understood that Ar1, Ar2, R1, R12, R3, R4, R5, R6, and R7 may each include conventional protection groups on the optional substituents in any of the embodiments described herein.
- In one embodiment, a process is described for preparing a compound of formula B, wherein R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R8 is C1-C6 n-alkyl; wherein the process comprises the step of treating a compound of formula A with triethylsilyl chloride and imidazole in an aprotic solvent.
- In the previously reported preparations of the intermediate silyl ether of formula 2, use of a large excess of triethylsilyl trifluoromethylsulfonate (TESOTf) and lutidine is described (see, for example, Peltier, et al., 2006). It was found that the reported process makes it necessary to submit the product of the reaction to a chromatographic purification step. Contrary to that reported, it has been surprisingly discovered herein that the less reactive reagent TESCl may be used. It has also been surprisingly discovered herein that although TESCl is a less reactive reagent, it may nonetheless be used in nearly stoichiometric amounts in the processes described herein. It is appreciated herein that the use of the less reactive TESCl may also be advantageous when the process is performed on larger scales, where higher reactivity reagents may represent a safety issue. It has also been discovered that the use of TESCl in nearly stoichiometric amounts renders the chromatographic purification step unnecessary. In an alternative of the embodiment, the process is performed without subsequent purification. In another alternative of the foregoing embodiments, and each additional embodiment described herein, R5 is isopropyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, R6 is sec-butyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, R8 is methyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, the silyl ether is TES.
- In an illustrative example of the processes described herein, a process for preparing the silyl ether 2 in high yield is described wherein compound 1 is treated with 1.05 equivalent of TESCl and 1.1 equivalent of imidazole.
- In one alternative of the foregoing example, the compound 2 is not purified by chromatography.
- In another embodiment, a process is described for preparing a compound of formula C, wherein R5 and R6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; R8 is C1-C6 n-alkyl; and R2 is selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; wherein the process comprises the step of treating a compound of formula B with from about 1 equivalent to about 1.5 equivalent of base and from about 1 equivalent to about 1.5 equivalent of a compound of the formula ClCH2OC(O)R2 in an aprotic solvent at a temperature from about −78° C. to about 0° C.
- In another embodiment, the process of the preceding embodiment is described wherein the compounds of formulae B and C have the stereochemistry shown in the following scheme for B′ and C′.
- In another illustrative embodiment, the process of any one of the preceding embodiments is described wherein about 1 equivalent to about 1.3 equivalent of a compound of the formula ClCH2OC(O)R2 is used. In another illustrative example, the process of any one of the preceding embodiments is described, wherein about 1.2 equivalent of a compound of the formula ClCH2OC(O)R2 is used. In another illustrative example, the process of any one of the preceding embodiments is described wherein R2 is n-propyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, R2 is CH2CH(CH3)2, CH2CH2CH3, CH2CH3, CH═C(CH3)2, or CH3.
- In an illustrative example of the processes described herein, a process for preparing the N,O-acetal 3 is described. In another illustrative example, compound 2 is treated with 1.1 equivalent of potassium hexamethyldisilazane (KHMDS) and 1.2 equivalent of chloromethyl butanoate in a nonprotic solvent at about −45° C. In another illustrative example, the product formed by any of the preceding examples may be used without chromatographic purification.
- In another embodiment, a process is described for preparing a compound of formula D, wherein R5 and R6 are each independently selected from the group consisting of optionally substituted alkyl and cycloalkyl; R8 is C1-C6 n-alkyl; R2 is selected from the group consisting of optionally substituted alkyl and cycloalkyl; and R7 is optionally substituted alkyl; wherein the process comprises the steps of
- a) preparing a compound of formula (E1) where X1 is a leaving group from a compound of formula E; and
- b) treating a compound of formula C under reducing conditions with the compound of formula E1.
- In one illustrative example, a mixture of compound 3 and the pentafluorophenyl ester of D-N-methyl-pipecolic acid is reduced using H2 and a palladium-on-charcoal catalyst (Pd/C) to yield compound 4. It has been discovered herein that epimerization of the active ester of pipecolic acid can occur during reaction or during its preparation or during the reduction under the previously reported reaction conditions. For example, contrary to prior reports indicating that epimerization does not occur (see, for example, Peltier, 2006), upon repeating those reported processes on a larger scale it was found here that substantial amounts of epimerized compounds were formed. In addition, it was discovered herein that substantial amounts of rearrangement products formed by the rearrangement of the butyryl group to compound 8 were formed using the reported processes. Finally, it was discovered herein that the typical yields of the desired products using the previously reported processes were only about half of that reported. It has been discovered herein that using diisopropylcarbodiimide (DIC) and short reaction times lessens that amount of both the unwanted by-product resulting from the epimerization reaction and the by-product resulting from the rearrangement reaction. In another alternative of the foregoing embodiments, and each additional embodiment described herein, n is 3. In another alternative of the foregoing embodiments, and each additional embodiment described herein, R7 is methyl.
- In one illustrative example, it was found that limiting the reaction time for the preparation of pentafluorophenyl D-N-methyl-pipecolate to about 1 hour lessened the formation of the diastereomeric tripeptide 9. It has also been discovered that using dry 10% Pd/C as catalyst, rather than a more typically used wet or moist catalyst, lessens the amount of epimer 9 formed during the reduction. It has also been discovered that using dry 10% P/C and/or shorter reaction times also lessens the formation of rearranged amide 8.
- It has been previously reported that removal of the protecting group from the secondary hydroxyl group leads to an inseparable mixture of the desired product 5 and a cyclic O,N-acetal side-product as shown in the following scheme.
- Further, upon repeating the reported process, it has been discovered herein that removal of the methyl ester using basic conditions, followed by acetylation of the hydroxyl group leads to an additional previously unreported side-product, iso-7. That additional side-product is difficult to detect and difficult to separate from the desired compound 7. Without being bound by theory, it is believed herein that iso-7 results from rearrangement of the butyrate group from the N-hydroxymethyl group to the secondary hydroxyl group, as shown below.
- In another embodiment, a process is described for preparing a compound of formula AF, wherein R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; and R7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound D with an alcohol, R12OH, where R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst. In another embodiment the transesterification catalyst is trifluoroacetic acid (TFA). In another embodiment, the transesterification catalyst is selected from the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted. In another embodiment, the transesterification catalyst is (R13)2SnO. Illustrative examples of R13 are methyl, n-butyl. n-octyl, phenyl, o-MeO-phenyl, p-MeO phenyl, phenethyl, and benzyl.
- It is to be understood that R5, R6, R12, and R7 may each include conventional protection groups on the optional substituents.
- In an illustrative example, compound 4 is heated with an alcohol and di-n-butyltin oxide at about 100° C. to yield ether 10. It is appreciated that a co-solvent may be present. In one embodiment, the molar ratio (tin oxide)/(compound 10) is about 0.01 to about 0.30, or about 0.02 to about 0.20, or about 0.05 to about 0.15, or about 0.05 to about 0.10
- In another embodiment, a process is described for preparing a compound of formula BG, wherein R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R2 is as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R12 is as described in the various embodiments herein, such as being selected from alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and R7 is optionally substituted alkyl; wherein the process comprises the step of contacting compound AF with a metal hydroxide or carbonate. Illustrative examples of a metal hydroxide or carbonate include LiOH, Li2CO3, NaOH, Na2CO3, KOH, K2CO3, Ca(OH)2, CaCO3, Mg(OH)2, MgCO3, and the like.
- It is to be understood that R5, R6, R7, and R12 may each include conventional protection groups on the optional substituents.
- In an illustrative example, compound 10 is treated with LiOH.H2O in a mixture of THF and water at about room temperature to yield compound 11. It is appreciated that the THF may be replaced with other solvents.
- In another embodiment, a process is described for preparing a compound of formula AH, wherein R5 and R6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; R2 and R4 are independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; and R7 is optionally substituted alkyl; wherein the process comprises the step of treating a compound of formula BG with an acylating agent of formula R4C(O)X2, where X2 is a leaving group. It is appreciated that the resulting product may contain varying amounts of the mixed anhydride of compound AH and R4CO2H. In another embodiment, the process described in the preceding embodiment further comprises the step of treating the reaction product with water to prepare AH, free of or substantially free of anhydride. In another embodiment, the process of the preceding embodiments wherein X2 is R4CO2, is described. In another embodiment, the process of any one of the preceding embodiments wherein R4 is C1-C4 alkyl is described. In another alternative of the foregoing embodiments, and each additional embodiment described herein, R4 is methyl. In another embodiment, the process of any one of the preceding embodiments wherein R6 is sec-butyl is described. In another embodiment, the process of any one of the preceding embodiments wherein R7 is methyl is described. In another embodiment, the process of any one of the preceding embodiments wherein R5 is iso-propyl is described.
- In an illustrative example, compound 11 is treated with acetic anhydride in pyridine. It is appreciated that the resulting product may contain varying amounts of the mixed anhydride of 12 and acetic acid. In another embodiment, treatment of the reaction product resulting from the preceding step with water in dioxane yields compound 12, free of or substantially free of anhydride. It is to be understood that other solvents can be substituted for dioxane in the hydrolysis of the intermediate mixed anhydride. Alternatively, the step may be performed without solvent.
- In another embodiment, a process is described for preparing a tubulysin of formula (AT), wherein Ar1 is optionally substituted aryl; R1 is hydrogen, optionally substituted alkyl, optionally substituted arylalkyl or a pro-drug forming group; R5 and R6 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R3 is optionally substituted alkyl; R2 and R4 are as described in the various embodiments herein, such as being selected from optionally substituted alkyl or optionally substituted cycloalkyl; R12 is as described in the various embodiments herein, such as being selected from alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and R7 is optionally substituted alkyl; wherein the process comprises the step of forming an active ester intermediate from a compound of formula AH; and reacting the active ester intermediate with a compound of the formula I to give a compound of the formula AT.
- It is to be understood that Ar1, R1, R2, R4, R5, R6, R7, and R12 may each include conventional protection groups on the optional substituents.
- In one embodiment, compound AH is treated with an excess amount of active ester forming agent and pentafluorophenol to form the pentafluorophenol ester of compound AH, followed by removal of the excess active ester forming agent prior to the addition of compound I. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar1 is phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar1 is substituted phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar1 is 4-substituted phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar1 is RA-substituted phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar1 is 4-hydroxyphenyl, or a hydroxyl protected form thereof. In another alternative of the foregoing embodiments, and each additional embodiment described herein, R3 is methyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, R1 is hydrogen.
- In an illustrative example, compound 12 is treated with an excess amount of a polymeric version of a carbodiimide and pentafluorophenol to form the pentafluorophenyl ester of 12, the polymeric carbodiimide is removed by filtration; and amino acid (S)-tubutyrosine is added to the solution to yield the tubulysin, compound 13. In another embodiment, the process of any one of the preceding embodiments wherein the polymeric carbodiimide is polystyrene-CH2—N═C═N-cyclohexane (PS-DCC) is described.
- In another embodiment, a compound AF is described wherein R12, R5, R6, and R7 are as described in the any of the embodiments described herein.
- In another embodiment, the following compound is described wherein R12, R5, R6, R7 and R8 are as described in the any of the embodiments described herein.
- In another embodiment, the compound having formula 10 is described.
- In another embodiment a compound BG, is described, wherein R12, R5, R6, and R7 are as described in any of the embodiments described herein.
- In another embodiment, compound 11 is described.
- In another embodiment, compound 7 is described.
- In another embodiment, a compound AH is described wherein R4 is Me and R12, R5, R6, and R7 are as described in any of the embodiments described herein; and the compound H is free of or substantially free of the compound H wherein R4 and R2 are both Me.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, R5 is isopropyl.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, R6 is sec-butyl.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, R8 is methyl.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, R2 is CH2CH(CH3)2, CH2CH2CH3, CH2CH3, CH═C(CH3)2, or CH3.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, R12 is CH2CH═CH2, or CH2(CH2)nCH3, where n is 1, 2, 3, 4, 5, or 6.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, R12 is CH2CH═CH2, CH2CH2CH2CH3, or CH2CH2CH2CH2CH3.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, n is 3.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, R7 is methyl.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, R4 is methyl.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar1 is phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar1 is substituted phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar1 is 4-substituted phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar1 is RA-substituted phenyl. In another alternative of the foregoing embodiments, and each additional embodiment described herein, Ar1 is 4-hydroxyphenyl, or a hydroxyl protected form thereof.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, R3 is methyl.
- In another alternative of the foregoing embodiments, and each additional embodiment described herein, R1 is hydrogen.
- Illustrative embodiments of the invention are further described by the following enumerated clauses:
- 1. A process for preparing a compound of the formula
- or a pharmaceutically acceptable salt thereof; wherein Ar1 is optionally substituted aryl or optionally substituted heteroaryl;
- R1 is hydrogen, alkyl, arylalkyl or a pro-drug forming group;
- R2 is selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl;
- R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted;
- R3 is optionally substituted alkyl;
- R4 is optionally substituted alkyl or optionally substituted cycloalkyl;
- R5 and R6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; R7 is optionally substituted alkyl; and n is 1, 2, 3, or 4;
- wherein the process comprises the step of treating a compound of formula A with triethylsilyl chloride and imidazole in an aprotic solvent, where R8 is C1-C6 unbranched alkyl
- or
- the step of treating a compound of formula B with a base and a compound of the formula ClCH2OC(O)R2 in an aprotic solvent at a temperature from about −78° C. to about 0° C.; wherein the molar ratio of the compound of the formula ClCH2OC(O)R2 to the compound of formula B from about 1 to about 1.5, where R8 is C1-C6 unbranched alkyl
- or
- the steps of a) preparing a compound of formula (E1), where X1 is a leaving group, from a compound of formula E
- and
b) treating a compound of formula C under reducing conditions in the presence of the compound of formula E1, where R8 is C1-C6 unbranched alkyl - or
- the step of contacting compound D with an alcohol, R12OH, where R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst selected from TFA or the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted;
- or
- the step of treating the compound AF with a metal hydroxide or a metal carbonate;
- or
- the step of treating a compound of formula BG with an acylating agent of formula R4C(O)X2, where X2 is a leaving group
- or
- the steps of c) forming an active ester intermediate from a compound of formula AH
- and
d) reacting the active ester intermediate with a compound of the formula I - or
- one or more combinations thereof.
- 2. The process of clause 1 wherein Ar1 is optionally substituted aryl.
- 3. The process of clause 1 wherein Ar1 is optionally substituted heteroaryl.
- 4. A process for preparing a compound having formula (TL-2)
- wherein
- L is selected from the group consisting of
- where p is an integer from about 1 to about 3, m is an integer from about 1 to about 4, and * indicates the points of attachment;
- Ra, Rb, and R are each independently selected in each instance from the group consisting of hydrogen and alkyl; or at least two of Ra, Rb, or R are taken together with the attached carbon atoms to form a carbocyclic ring;
- RAr represents 0 to 4 substituents selected from the group consisting of amino, or derivatives thereof, hydroxy or derivatives thereof, halo, thio or derivatives thereof, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof;
- wherein the process comprises the step of contacting a compound having formula (TL)
- with R12OH, where R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst selected from TFA or the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted.
- 5. The process of any one of the preceding clauses wherein R4 is optionally substituted alkyl.
- 6. The process of any one of the preceding clauses comprising the step of treating a compound of formula A with triethylsilyl chloride and imidazole in an aprotic solvent, where R8 is C1-C6 unbranched alkyl
- 7. The process of any one of the preceding clauses comprising the step of treating a compound of formula B with a base and a compound of the formula ClCH2OC(O)R2 in an aprotic solvent at a temperature from about −78° C. to about 0° C.; wherein the molar ratio of the compound of the formula ClCH2OC(O)R2 to the compound of formula B from about 1 to about 1.5, where R8 is C1-C6 unbranched alkyl
- 8. The process of any one of the preceding clauses comprising the steps of
- a) preparing a compound of formula (E1), where X1 is a leaving group, from a compound of formula E
- and
b) treating a compound of formula C under reducing conditions in the presence of the compound of formula E1, where R8 is C1-C6 unbranched alkyl - 9. The process of any one of the preceding clauses comprising the step of treating compound D with an alcohol, R12OH, where R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst selected from TFA or the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted;
- 10. The process of any one of the preceding clauses comprising the step of treating the compound AF with a metal hydroxide or a metal carbonate;
- 11. The process of any one of the preceding clauses comprising the step of treating a compound of formula BG with an acylating agent of formula R4C(O)X2, where X2 is a leaving group
- 12. The process of any one of the preceding clauses comprising the steps of
- c) forming an active ester intermediate from a compound of formula AH
- and
d) reacting the active ester intermediate with a compound of the formula I - 13. A process for preparing a compound of the following formula
- the process comprising the step of contacting a compound of the formula
- with an acid and R12OH, wherein R2, R5, R6, R8, and R12 are as described in any of the embodiments described herein.
- 14. A process for preparing a compound of the following formula
- the process comprising the step of contacting a compound of the formula
- with a transesterification catalyst selected from the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13 and R12OH, wherein R2, R5, R6, R8, R12, and R13 are as described in any of the embodiments described herein.
- 15. A process for preparing a compound of the following formula
- the process comprising the step of contacting a compound of the formula
- with a base and R12OCH2X, where X is Cl or Br; and wherein R2, R5, R6, R8, R12, and R13 are as described in any of the embodiments described herein. In another embodiment, R12OCH2X is n-C5H11OCH2Br.
- 16. A process for preparing a compound of the following formula
- the process comprising the step of contacting a compound of the formula
- with an acid and R12OH, wherein R14 is Et3Si or R4C(O), and R2, R4, R5, R6, R8, and R12 are as described in any of the embodiments described herein.
- 17. A process for preparing a compound of the following formula
- the process comprising the step of contacting a compound of the formula
- with a transesterification catalyst selected from the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13; and R12OH, wherein R2, R5, R6, R8, R12, and R13 are as described in any of the embodiments described herein.
- 18. A process for preparing a compound of the following formula
- the process comprising the step of contacting a compound of the formula
- with an acid and R12OH, wherein n, R2, R3, R4, R5, R6, R7, R8, Ar1, Ar2, L and R12 are as described in any of the embodiments described herein.
- 19. The process of any one of the preceding clauses wherein R1 is hydrogen, benzyl, or C1-C4 alkyl.
- 19A. The process of any one of the preceding clauses wherein R1 is hydrogen.
- 20. The process of any one of the preceding clauses wherein R2 is C1-C8 alkyl or C3-C8 cycloalkyl.
- 20A. The process of any one of the preceding clauses wherein R2 is n-butyl.
- 20B. The process of any one of the preceding clauses wherein R2 is CH2CH(CH3)2, CH2CH2CH3, CH2CH3, CH═C(CH3)2, or CH3.
- 21. The process of any one of the preceding clauses wherein R3 is C1-C4 alkyl.
- 21A. The process of any one of the preceding clauses wherein R3 is methyl.
- 22. The process of any one of the preceding clauses wherein Ar1 is phenyl or hydroxyphenyl.
- 22A. The process of any one of the preceding clauses wherein Ar1 is 4-hydroxyphenyl.
- 23. The process of any one of the preceding clauses wherein R4 is C1-C8 alkyl or C3-C8 cycloalkyl.
- 23A. The process of any one of the preceding clauses wherein R4 is methyl.
- 24. The process of any one of the preceding clauses wherein R5 is branched C3-C6 or C3-C8 cycloalkyl.
- 24A. The process of any one of the preceding clauses wherein R5 is iso-propyl.
- 25B. The process of any one of the preceding clauses wherein R5 is sec-butyl.
- 26. The process of any one of the preceding clauses wherein R6 is branched C3-C6 or C3-C8 cycloalkyl.
- 27. The process of any one of the preceding clauses wherein R7 is C1-C6 alkyl.
- 27A. The process of any one of the preceding clauses wherein R7 is methyl.
- 28. The process of any one of the preceding clauses wherein R12 is CH2CH═CH2, or CH2(CH2)nCH3, where n=1, 2, 3, 4, 5, or 6.
- 28A. The process of any one of the preceding clauses wherein R12 is CH2CH═CH2, CH2CH2CH2CH3, or CH2CH2CH2CH2CH3.
- 29. The process of any one of the preceding clauses wherein Ar1 is substituted phenyl.
- 29A. The process of any one of the preceding clauses wherein Ar1 is 4-substituted phenyl.
- 29B. The process of any one of the preceding clauses wherein Ar1 is RA-substituted phenyl.
- 29C. The process of any one of the preceding clauses wherein Ar1 is 4-hydroxyphenyl, or a hydroxyl protected form thereof.
- 30. The process of any one of the preceding clauses wherein R13 is CH2CH2CH2CH3.
- 31. The process of any one of the preceding clauses wherein the metal hydroxide is LiOH.
- 32. A compound of the formula
- or a pharmaceutically acceptable salt thereof; wherein Ar1 is optionally substituted aryl;
- R1 is hydrogen, alkyl, arylalkyl or a pro-drug forming group;
- R2 is selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl;
- R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted;
- R3 is optionally substituted alkyl;
- R4 is optionally substituted alkyl or optionally substituted cycloalkyl;
- R5 and R6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; R7 is optionally substituted alkyl; and n is 1, 2, 3, or 4.
- 33. A compound of formula
- 35. A compound of formula
- 35. A compound of formula
- 36. A compound of formula
- 37. The compound of any one of the preceding clauses wherein R1 is hydrogen, benzyl, or C1-C4 alkyl.
- 37A. The compound of any one of the preceding clauses wherein R1 is hydrogen.
- 38. The compound of any one of the preceding clauses wherein R2 is C1-C8 alkyl or C3-C8 cycloalkyl.
- 38A. The compound of any one of the preceding clauses wherein R2 is n-butyl.
- 38B. The compound of any one of the preceding clauses wherein R2 is CH2CH(CH3)2, CH2CH2CH3, CH2CH3, CH═C(CH3)2, or CH3.
- 39. The compound of any one of the preceding clauses wherein R3 is C1-C4 alkyl.
- 39A. The compound of any one of the preceding clauses wherein R3 is methyl.
- 40. The compound of any one of the preceding clauses wherein Ar1 is phenyl or hydroxyphenyl.
- 40A. The compound of any one of the preceding clauses wherein Ar1 is 4-hydroxyphenyl.
- 40B. The compound of any one of the preceding clauses wherein Ar1 is substituted phenyl.
- 40C. The compound of any one of the preceding clauses wherein Ar1 is 4-substituted phenyl.
- 40D. The compound of any one of the preceding clauses wherein Ar1 is RA-substituted phenyl.
- 40E. The compound of any one of the preceding clauses wherein Ar1 is 4-hydroxyphenyl, or a hydroxyl protected form thereof.
- 41. The compound of any one of the preceding clauses wherein R4 is C1-C8 alkyl or C3-C8 cycloalkyl.
- 41A. The compound of any one of the preceding clauses wherein R4 is methyl.
- 42. The compound of any one of the preceding clauses wherein R5 is branched C3-C6 or C3-C8 cycloalkyl.
- 42A. The compound of any one of the preceding clauses wherein R5 is iso-propyl.
- 42B. The compound of any one of the preceding clauses wherein R5 is sec-butyl.
- 43. The compound of any one of the preceding clauses wherein R6 is branched C3-C6 or C3-C8 cycloalkyl.
- 44. The compound of any one of the preceding clauses wherein R7 is C1-C6 alkyl.
- 44A. The compound of any one of the preceding clauses wherein R7 is methyl.
- 45. The compound of any one of the preceding clauses wherein R12 is CH2CH═CH2, or CH2(CH2)nCH3, where n=1, 2, 3, 4, 5, or 6.
- 45A. The compound of any one of the preceding clauses wherein R12 is CH2CH═CH2, CH2CH2CH2CH3, or CH2CH2CH2CH2CH3.
- 46. The compound selected from the group consisting of
- where n=1, 2, 3, 4, 5, or 6.
- In any of the embodiments described herein, the acid selected for the conversion of the NCH2OC(O)R2 moiety to the NCH2OR12 moiety is TFA.
- In any of the embodiments described herein, the catalyst selected for the conversion of the NCH2OC(O)R2 moiety to the NCH2OR12 moiety is (n-Bu)2SnO.
- It is to be understood that as used herein, the term tubulysin refers both collectively and individually to the naturally occurring tubulysins, and the analogs and derivatives of tubulysins. Illustrative examples of a tubulysin are shown in Table 1.
- As used herein, the term tubulysin generally refers to the compounds described herein and analogs and derivatives thereof. It is also to be understood that in each of the foregoing, any corresponding pharmaceutically acceptable salt is also included in the illustrative embodiments described herein.
- It is to be understood that such derivatives may include prodrugs of the compounds described herein, compounds described herein that include one or more protection or protecting groups, including compounds that are used in the preparation of other compounds described herein.
- In addition, as used herein the term tubulysin also refers to prodrug derivatives of the compounds described herein, and including prodrugs of the various analogs and derivatives thereof. In addition, as used herein, the term tubulysin refers to both the amorphous as well as any and all morphological forms of each of the compounds described herein. In addition, as used herein, the term tubulysin refers to any and all hydrates, or other solvates, of the compounds described herein.
- It is to be understood that each of the foregoing embodiments may be combined in chemically relevant ways to generate subsets of the embodiments described herein. Accordingly, it is to be further understood that all such subsets are also illustrative embodiments of the invention described herein.
- The compounds described herein may contain one or more chiral centers, or may otherwise be capable of existing as multiple stereoisomers. It is to be understood that in one embodiment, the invention described herein is not limited to any particular stereochemical requirement, and that the compounds, and compositions, methods, uses, and medicaments that include them may be optically pure, or may be any of a variety of stereoisomeric mixtures, including racemic and other mixtures of enantiomers, other mixtures of diastereomers, and the like. It is also to be understood that such mixtures of stereoisomers may include a single stereochemical configuration at one or more chiral centers, while including mixtures of stereochemical configuration at one or more other chiral centers.
- Similarly, the compounds described herein may include geometric centers, such as cis, trans, (E)-, and (Z)-double bonds. It is to be understood that in another embodiment, the invention described herein is not limited to any particular geometric isomer requirement, and that the compounds, and compositions, methods, uses, and medicaments that include them may be pure, or may be any of a variety of geometric isomer mixtures. It is also to be understood that such mixtures of geometric isomers may include a single configuration at one or more double bonds, while including mixtures of geometry at one or more other double bonds.
- As used herein, the term aprotic solvent refers to a solvent which does not yield a proton to the solute(s) under reaction conditions. Illustrative examples of nonprotic solvents are tetrahydrofuran (THF), 2,5-dimethyl-tetrahydrofuran, 2-methyl-tetrahydrofuran, tetrahydropyran, diethyl ether, t-butyl methyl ether, dimethyl formamide, N-methylpyrrolidinone (NMP), and the like. It is appreciated that mixtures of these solvents may also be used in the processes described herein.
- As used herein, an equivalent amount of a reagent refers to the theoretical amount of the reagent necessary to transform a starting material into a desired product, i.e. if 1 mole of reagent is theoretically required to transform 1 mole of the starting material into 1 mole of product, then 1 equivalent of the reagent represents 1 mole of the reagent; if X moles of reagent are theoretically required to convert 1 mole of the starting material into 1 mole of product, then 1 equivalent of reagent represents X moles of reagent.
- As used herein, the term active ester forming agent generally refers to any reagent or combinations of reagents that may be used to convert a carboxylic acid into an active ester.
- As used herein, the term active ester generally refers to a carboxylic acid ester compound wherein the divalent oxygen portion of the ester is a leaving group resulting in an ester that is activated for reacting with compounds containing functional groups, such as amines, alcohols or sulfhydryl groups. Illustrative examples of active ester-forming compounds are N-hydroxysuccinimide, N-hydroxyphthalimide, phenols substituted with electron withdrawing groups, such as but not limited to 4-nitrophenol, pentafluorophenol, N,N′-disubstituted isoureas, substituted hydroxyheteroaryls, such as but not limited to 2-pyridinols, 1-hydroxybenzotriazoles, 1-hydroxy-7-aza-benzotriazoles, cyanomethanol, and the like. Illustratively, the reaction conditions for displacing the active ester with a compound having an amino, hydroxy or thiol group are mild. Illustratively, the reaction conditions for displacing the active ester with a compound having an amino, hydroxy or thiol group are performed at ambient or below ambient temperatures. Illustratively, the reaction conditions for displacing the active ester with a compound having an amino, hydroxy or thiol group are performed without the addition of a strong base. Illustratively, the reaction conditions for displacing the active ester with a compound having an amino, hydroxy or thiol group are performed with the addition of a tertiary amine base, such as a tertiary amine base having a conjugate acid pKa of about 11 or less, about 10.5 or less, and the like.
- As used herein, the term “alkyl” includes a chain of carbon atoms, which is optionally branched. As used herein, the term “alkenyl” and “alkynyl” includes a chain of carbon atoms, which is optionally branched, and includes at least one double bond or triple bond, respectively. It is to be understood that alkynyl may also include one or more double bonds. It is to be further understood that in certain embodiments, alkyl is advantageously of limited length, including C1-C24, C1-C12, C1-C8, C1-C6, and C1-C4. Illustratively, such particularly limited length alkyl groups, including C1-C8, C1-C6, and C1-C4 may be referred to as lower alkyl. It is to be further understood that in certain embodiments alkenyl and/or alkynyl may each be advantageously of limited length, including C2-C24, C2-C12, C2-C8, C2-C6, and C2-C4. Illustratively, such particularly limited length alkenyl and/or alkynyl groups, including C2-C8, C2-C6, and C2-C4 may be referred to as lower alkenyl and/or alkynyl. It is appreciated herein that shorter alkyl, alkenyl, and/or alkynyl groups may add less lipophilicity to the compound and accordingly will have different pharmacokinetic behavior. In embodiments of the invention described herein, it is to be understood, in each case, that the recitation of alkyl refers to alkyl as defined herein, and optionally lower alkyl. In embodiments of the invention described herein, it is to be understood, in each case, that the recitation of alkenyl refers to alkenyl as defined herein, and optionally lower alkenyl. In embodiments of the invention described herein, it is to be understood, in each case, that the recitation of alkynyl refers to alkynyl as defined herein, and optionally lower alkynyl. Illustrative alkyl, alkenyl, and alkynyl groups are, but not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, 2-pentyl, 3-pentyl, neopentyl, hexyl, heptyl, octyl, and the like, and the corresponding groups containing one or more double and/or triple bonds, or a combination thereof.
- As used herein, the term “cycloalkyl” includes a chain of carbon atoms, which is optionally branched, where at least a portion of the chain in cyclic. It is to be understood that cycloalkylalkyl is a subset of cycloalkyl. It is to be understood that cycloalkyl may be polycyclic. Illustrative cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, 2-methylcyclopropyl, cyclopentyleth-2-yl, adamantyl, and the like. As used herein, the term “cycloalkenyl” includes a chain of carbon atoms, which is optionally branched, and includes at least one double bond, where at least a portion of the chain in cyclic. It is to be understood that the one or more double bonds may be in the cyclic portion of cycloalkenyl and/or the non-cyclic portion of cycloalkenyl. It is to be understood that cycloalkenylalkyl and cycloalkylalkenyl are each subsets of cycloalkenyl. It is to be understood that cycloalkyl may be polycyclic. Illustrative cycloalkenyl include, but are not limited to, cyclopentenyl, cyclohexylethen-2-yl, cycloheptenylpropenyl, and the like. It is to be further understood that chain forming cycloalkyl and/or cycloalkenyl is advantageously of limited length, including C3-C24, C3-C12, C3-C8, C3-C6, and C5-C6. It is appreciated herein that shorter alkyl and/or alkenyl chains forming cycloalkyl and/or cycloalkenyl, respectively, may add less lipophilicity to the compound and accordingly will have different pharmacokinetic behavior.
- As used herein, the term “heteroalkyl” includes a chain of atoms that includes both carbon and at least one heteroatom, and is optionally branched. Illustrative heteroatoms include nitrogen, oxygen, and sulfur. In certain variations, illustrative heteroatoms also include phosphorus, and selenium. As used herein, the term “cycloheteroalkyl” including heterocyclyl and heterocycle, includes a chain of atoms that includes both carbon and at least one heteroatom, such as heteroalkyl, and is optionally branched, where at least a portion of the chain is cyclic. Illustrative heteroatoms include nitrogen, oxygen, and sulfur. In certain variations, illustrative heteroatoms also include phosphorus, and selenium. Illustrative cycloheteroalkyl include, but are not limited to, tetrahydrofuryl, pyrrolidinyl, tetrahydropyranyl, piperidinyl, morpholinyl, piperazinyl, homopiperazinyl, quinuclidinyl, and the like.
- As used herein, the term “aryl” includes monocyclic and polycyclic aromatic carbocyclic groups, each of which may be optionally substituted. Illustrative aromatic carbocyclic groups described herein include, but are not limited to, phenyl, naphthyl, and the like. As used herein, the term “heteroaryl” includes aromatic heterocyclic groups, each of which may be optionally substituted. Illustrative aromatic heterocyclic groups include, but are not limited to, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, tetrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, thienyl, pyrazolyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, triazolyl, benzimidazolyl, benzoxazolyl, benzthiazolyl, benzisoxazolyl, benzisothiazolyl, and the like.
- As used herein, the term “amino” includes the group NH2, alkylamino, and dialkylamino, where the two alkyl groups in dialkylamino may be the same or different, i.e. alkylalkylamino. Illustratively, amino includes methylamino, ethylamino, dimethylamino, methylethylamino, and the like. In addition, it is to be understood that when amino modifies or is modified by another term, such as aminoalkyl, or acylamino, the above variations of the term amino are included therein. Illustratively, aminoalkyl includes H2N-alkyl, methylaminoalkyl, ethylaminoalkyl, dimethylaminoalkyl, methylethylaminoalkyl, and the like. Illustratively, acylamino includes acylmethylamino, acylethylamino, and the like.
- As used herein, the term “amino and derivatives thereof” includes amino as described herein, and alkylamino, alkenylamino, alkynylamino, heteroalkylamino, heteroalkenylamino, heteroalkynylamino, cycloalkylamino, cycloalkenylamino, cycloheteroalkylamino, cycloheteroalkenylamino, arylamino, arylalkylamino, arylalkenylamino, arylalkynylamino, heteroarylamino, heteroarylalkylamino, heteroarylalkenylamino, heteroarylalkynylamino, acylamino, and the like, each of which is optionally substituted. The term “amino derivative” also includes urea, carbamate, and the like.
- As used herein, the term “hydroxy and derivatives thereof” includes OH, and alkyloxy, alkenyloxy, alkynyloxy, heteroalkyloxy, heteroalkenyloxy, heteroalkynyloxy, cycloalkyloxy, cycloalkenyloxy, cycloheteroalkyloxy, cycloheteroalkenyloxy, aryloxy, arylalkyloxy, arylalkenyloxy, arylalkynyloxy, heteroaryloxy, heteroarylalkyloxy, heteroarylalkenyloxy, heteroarylalkynyloxy, acyloxy, and the like, each of which is optionally substituted. The term “hydroxy derivative” also includes carbamate, and the like.
- As used herein, the term “thio and derivatives thereof” includes SH, and alkylthio, alkenylthio, alkynylthio, heteroalkylthio, heteroalkenylthio, heteroalkynylthio, cycloalkylthio, cycloalkenylthio, cycloheteroalkylthio, cycloheteroalkenylthio, arylthio, arylalkylthio, arylalkenylthio, arylalkynylthio, heteroarylthio, heteroarylalkylthio, heteroarylalkenylthio, heteroarylalkynylthio, acylthio, and the like, each of which is optionally substituted. The term “thio derivative” also includes thiocarbamate, and the like.
- As used herein, the term “acyl” includes formyl, and alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, heteroalkylcarbonyl, heteroalkenylcarbonyl, heteroalkynylcarbonyl, cycloalkylcarbonyl, cycloalkenylcarbonyl, cycloheteroalkylcarbonyl, cycloheteroalkenylcarbonyl, arylcarbonyl, arylalkylcarbonyl, arylalkenylcarbonyl, arylalkynylcarbonyl, heteroarylcarbonyl, heteroarylalkylcarbonyl, heteroarylalkenylcarbonyl, heteroarylalkynylcarbonyl, acylcarbonyl, and the like, each of which is optionally substituted.
- As used herein, the term “carboxylic acid and derivatives thereof” includes the group CO2H and salts thereof, and esters and amides thereof, and CN.
- The term “optionally substituted” as used herein includes the replacement of hydrogen atoms with other functional groups on the radical that is optionally substituted. Such other functional groups illustratively include, but are not limited to, amino, hydroxyl, halo, thiol, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof, and the like. Illustratively, any of amino, hydroxyl, thiol, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, and/or sulfonic acid is optionally substituted.
- As used herein, the terms “optionally substituted aryl” and “optionally substituted heteroaryl” include the replacement of hydrogen atoms with other functional groups on the aryl or heteroaryl that is optionally substituted. Such other functional groups illustratively include, but are not limited to, amino, hydroxy, halo, thio, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof, and the like. Illustratively, any of amino, hydroxy, thio, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, heteroaryl, heteroarylalkyl, heteroarylheteroalkyl, and/or sulfonic acid is optionally substituted.
- Illustrative substituents include, but are not limited to, a radical —(CH2)xZx, where x is an integer from 0-6 and Zx is selected from halogen, hydroxy, alkanoyloxy, including C1-C6 alkanoyloxy, optionally substituted aroyloxy, alkyl, including C1-C6 alkyl, alkoxy, including C1-C6 alkoxy, cycloalkyl, including C3-C8 cycloalkyl, cycloalkoxy, including C3-C8 cycloalkoxy, alkenyl, including C2-C6 alkenyl, alkynyl, including C2-C6 alkynyl, haloalkyl, including C1-C6 haloalkyl, haloalkoxy, including C1-C6 haloalkoxy, halocycloalkyl, including C3-C8 halocycloalkyl, halocycloalkoxy, including C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C1-C6 alkyl)(C1-C6 alkyl)amino, alkylcarbonylamino, N—(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N—(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, and nitro; or Zx is selected from —CO2R4 and —CONR5R6, where R4, R5, and R6 are each independently selected in each occurrence from hydrogen, C1-C6 alkyl, aryl-C1-C6 alkyl, and heteroaryl-C1-C6 alkyl.
- The term “prodrug” as used herein generally refers to any compound that when administered to a biological system generates a biologically active compound as a result of one or more spontaneous chemical reaction(s), enzyme-catalyzed chemical reaction(s), and/or metabolic chemical reaction(s), or a combination thereof. In vivo, the prodrug is typically acted upon by an enzyme (such as esterases, amidases, phosphatases, and the like), simple biological chemistry, or other process in vivo to liberate or regenerate the more pharmacologically active drug. This activation may occur through the action of an endogenous host enzyme or a non-endogenous enzyme that is administered to the host preceding, following, or during administration of the prodrug. Additional details of prodrug use are described in U.S. Pat. No. 5,627,165; and Pathalk et al., Enzymic protecting group techniques in organic synthesis, Stereosel. Biocatal. 775-797 (2000). It is appreciated that the prodrug is advantageously converted to the original drug as soon as the goal, such as targeted delivery, safety, stability, and the like is achieved, followed by the subsequent rapid elimination of the released remains of the group forming the prodrug.
- Prodrugs may be prepared from the compounds described herein by attaching groups that ultimately cleave in vivo to one or more functional groups present on the compound, such as —OH—, —SH, —CO2H, —NR2. Illustrative prodrugs include but are not limited to carboxylate esters where the group is alkyl, aryl, aralkyl, acyloxyalkyl, alkoxycarbonyloxyalkyl as well as esters of hydroxyl, thiol and amines where the group attached is an acyl group, an alkoxycarbonyl, aminocarbonyl, phosphate or sulfate. Illustrative esters, also referred to as active esters, include but are not limited to 1-indanyl, N-oxysuccinimide; acyloxyalkyl groups such as acetoxymethyl, pivaloyloxymethyl, β-acetoxyethyl, β-pivaloyloxyethyl, 1-(cyclohexylcarbonyloxy)prop-1-yl, (1-aminoethyl)carbonyloxymethyl, and the like; alkoxycarbonyloxyalkyl groups, such as ethoxycarbonyloxymethyl, α-ethoxycarbonyloxyethyl, β-ethoxycarbonyloxyethyl, and the like; dialkylaminoalkyl groups, including di-lower alkylamino alkyl groups, such as dimethylaminomethyl, dimethylaminoethyl, diethylaminomethyl, diethylaminoethyl, and the like; 2-(alkoxycarbonyl)-2-alkenyl groups such as 2-(isobutoxycarbonyl)pent-2-enyl, 2-(ethoxycarbonyl)but-2-enyl, and the like; and lactone groups such as phthalidyl, dimethoxyphthalidyl, and the like.
- Further illustrative prodrugs contain a chemical moiety, such as an amide or phosphorus group functioning to increase solubility and/or stability of the compounds described herein. Further illustrative prodrugs for amino groups include, but are not limited to, (C3-C20)alkanoyl; halo-(C3-C20)alkanoyl; (C3-C20)alkenoyl; (C4-C7)cycloalkanoyl; (C3-C6)-cycloalkyl(C2-C16)alkanoyl; optionally substituted aroyl, such as unsubstituted aroyl or aroyl substituted by 1 to 3 substituents selected from the group consisting of halogen, cyano, trifluoromethanesulphonyloxy, (C1-C3)alkyl and (C1-C3)alkoxy, each of which is optionally further substituted with one or more of 1 to 3 halogen atoms; optionally substituted aryl(C2-C16)alkanoyl, such as the aryl radical being unsubstituted or substituted by 1 to 3 substituents selected from the group consisting of halogen, (C1-C3)alkyl and (C1-C3)alkoxy, each of which is optionally further substituted with 1 to 3 halogen atoms; and optionally substituted heteroarylalkanoyl having one to three heteroatoms selected from O, S and N in the heteroaryl moiety and 2 to 10 carbon atoms in the alkanoyl moiety, such as the heteroaryl radical being unsubstituted or substituted by 1 to 3 substituents selected from the group consisting of halogen, cyano, trifluoromethanesulphonyloxy, (C1-C3)alkyl, and (C1-C3)alkoxy, each of which is optionally further substituted with 1 to 3 halogen atoms. The groups illustrated are exemplary, not exhaustive, and may be prepared by conventional processes.
- It is understood that the prodrugs themselves may not possess significant biological activity, but instead undergo one or more spontaneous chemical reaction(s), enzyme-catalyzed chemical reaction(s), and/or metabolic chemical reaction(s), or a combination thereof after administration in vivo to produce the compound described herein that is biologically active or is a precursor of the biologically active compound. However, it is appreciated that in some cases, the prodrug is biologically active. It is also appreciated that prodrugs may often serves to improve drug efficacy or safety through improved oral bioavailability, pharmacodynamic half-life, and the like. Prodrugs also refer to derivatives of the compounds described herein that include groups that simply mask undesirable drug properties or improve drug delivery. For example, one or more compounds described herein may exhibit an undesirable property that is advantageously blocked or minimized may become pharmacological, pharmaceutical, or pharmacokinetic barriers in clinical drug application, such as low oral drug absorption, lack of site specificity, chemical instability, toxicity, and poor patient acceptance (bad taste, odor, pain at injection site, and the like), and others. It is appreciated herein that a prodrug, or other strategy using reversible derivatives, can be useful in the optimization of the clinical application of a drug.
- As used herein, the term “treating”, “contacting” or “reacting” when referring to a chemical reaction means to add or mix two or more reagents under appropriate conditions to produce the indicated and/or the desired product. It should be appreciated that the reaction which produces the indicated and/or the desired product may not necessarily result directly from the combination of two reagents which were initially added, i.e., there may be one or more intermediates which are produced in the mixture which ultimately leads to the formation of the indicated and/or the desired product.
- As used herein, the term “composition” generally refers to any product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combinations of the specified ingredients in the specified amounts. It is to be understood that the compositions described herein may be prepared from isolated compounds described herein or from salts, solutions, hydrates, solvates, and other forms of the compounds described herein. It is also to be understood that the compositions may be prepared from various amorphous, non-amorphous, partially crystalline, crystalline, and/or other morphological forms of the compounds described herein. It is also to be understood that the compositions may be prepared from various hydrates and/or solvates of the compounds described herein. Accordingly, such pharmaceutical compositions that recite compounds described herein are to be understood to include each of, or any combination of, the various morphological forms and/or solvate or hydrate forms of the compounds described herein. Illustratively, compositions may include one or more carriers, diluents, and/or excipients. The compounds described herein, or compositions containing them, may be formulated in a therapeutically effective amount in any conventional dosage forms appropriate for the methods described herein. The compounds described herein, or compositions containing them, including such formulations, may be administered by a wide variety of conventional routes for the methods described herein, and in a wide variety of dosage formats, utilizing known procedures (see generally, Remington: The Science and Practice of Pharmacy, (21st ed., 2005)).
-
- 4.9 g of dipeptide 1 (11.6 mmol) was dissolved in 60 mL dichloromethane, imidazole (0.87 g, 12.7 mmol) was added to the resulting solution at 0° C. The reaction mixture was warmed slightly to dissolve all solids and re-cooled to 0° C. TESCl (2.02 mL, 12.1 mmol) was added drop-wise at 0° C., the reaction mixture was stirred under argon and warmed to room temperature over 2 h. TLC (3:1 hexanes/EtOAc) showed complete conversion. The reaction was filtered to remove the imidazole HCl salt, extracted with de-ionized water, and the aqueous phase was back-washed with dichloromethane, the combined organic phase was washed with brine, dried over Na2SO4, filtered to remove the Na2SO4, concentrated under reduced pressure, co-evaporated with toluene and dried under high-vacuum overnight to give 6.4 g of crude product 2 (vs 5.9 g of theoretical yield).
- The crude product 2 was co-evaporated with toluene again and used without further purification. TES protected dipeptide was dissolved in 38 mL THF (anhydrous, inhibitor-free) and cooled to −45° C. and stirred for 15 minutes before adding KHMDS (0.5 M in toluene, 25.5 mL, 12.8 mmol, 1.1 equiv) drop-wise. After the addition of KHMDS was complete, the reaction mixture was stirred at −45° C. for 15 minutes, and chloromethyl butyrate (1.8 mL, 1.2 equiv, 14 mmol) was added. The reaction mixture changed from light yellow to a blueish color. TLC (20% EtOAc/petroleum ether) showed the majority of starting material was converted. LC-MS showed about 7% starting material left. The reaction was quenched by adding 3 mL MeOH, the mixture was warmed to room temperature and concentrated under reduced pressure to an oily residue. The residue was dissolved in petroleum ether and passed through short silica plug to remove the potassium salt. The plug was washed with 13% EtOAc/petroleum ether, and the collected eluates were combined and concentrated under reduced pressure. The crude alkylated product was passed through an additional silica plug (product/silica=1:50) and eluted with 13% EtOAc/petroleum ether to remove residual starting material to give 5.7 g of product 3 (two steps, yield 76%)
- Alkylated dipeptide 3 (4.3 g, 7.0 mmol), N-methyl pipecolinate (MEP) (4.0 g, 28.0 mmol, 4 equiv) and pentafluorophenol (5.7 g, 30.8 mmol. 4.4 equiv) were added to a flask. N-methylpyrrolidone (NMP, 86 mL) was added to the mixture. To the mixture was added diisopropylcarbodiimide (DIC, 4.77 mL, 30.8 mmol, 4.4 equiv) was added to the mixture. The mixture was stirred at room temperature for 1 h. Pd/C (10%, dry, 1.7 g) was added. The flask was shaken under hydrogen (30-35 psi) for 5 hours. The reaction mixture was analyzed by HPLC. The starting material was found to be less than 3%. The mixture was filtered through diatomaceous earth. The diatomaceous earth was extracted with 200 mL ethyl acetate. The filtrate and the ethyl acetate extract were combined and transferred to a separatory funnel and washed with 1% NaHCO3/10% NaCl solution (200 mL×4). The organic layer was isolated and evaporated on a rotary evaporator under reduced pressure. The crude product was dissolved in 40 mL of MeOH/H2O (3:1). The crude product solution was loaded onto a Biotage C18 column (Flash 65i, 350 g, 450 mL, 65×200 mm) and eluted with buffer A [10 mM NH4OAc/ACN (1:1)] and B (ACN, acetonitrile). The fractions were collected and organic solvent was removed by evaporating on a rotary evaporator. 100 mL of 10% NaCl solution and 100 mL of methyl tert-butyl ether (MTBE) were added to the flask and the mixture was transferred to a separatory funnel. The organic layer was isolated and dried over anhydrous Na2SO4, filtered and evaporated on a rotary evaporator to dryness. 2.5 g of tripeptide intermediate 4 was obtained (yield 50%).
- 10.2 g of dipeptide 1 (25.6 mmol) was dissolved in 130 mL dichloromethane, imidazole (1.9 g, 28.1 mmol) was added to the resulting solution at 0° C. The reaction mixture was warmed slightly to dissolve all solids and re-cooled to 0° C. TESCl (4.5 mL, 26.8 mmol) was added drop-wise at 0° C., the reaction mixture was stirred under argon and warmed to room temperature over 2 h. TLC (3:1 hexanes/EtOAc) showed complete conversion. The reaction was filtered to remove the imidazole HCl salt, extracted with de-ionized water, and the aqueous phase was back-washed with dichloromethane, the combined organic phase was washed with brine, dried over Na2SO4, filtered to remove the Na2SO4, concentrated under reduced pressure, co-evaporated with toluene and dried under high-vacuum overnight to give 12.2 g of product 2.
- The crude product 2 was co-evaporated with toluene again and used without further purification. TES protected dipeptide was dissolved in 80 mL THF (anhydrous, inhibitor-free) and cooled to −45° C. and stirred for 15 minutes before adding KHMDS (0.5 M in toluene, 50 mL, 25.0 mmol, 1.05 equiv) drop-wise. After the addition of KHMDS was complete, the reaction mixture was stirred at −45° C. for 15 minutes, and chloromethyl butyrate (3.6 mL, 1.2 equiv, 28.3 mmol) was added. The reaction mixture changed from light yellow to a blueish color. TLC (20% EtOAc/petroleum ether) showed the reaction was complete. The reaction was quenched by adding 20 mL MeOH, the mixture was warmed to room temperature and concentrated under reduced pressure to an oily residue. The residue was dissolved in petroleum ether and passed through short silica plug to remove the potassium salt. The plug was washed with 13% EtOAc/petroleum ether, and the collected eluents were combined and concentrated under reduced pressure to give 12.1 g of product 3 (two steps, yield 76%)
- Alkylated dipeptide 3 (7.6 g, 12.4 mmol), N-methyl pipecolinate (MEP) (7.0 g, 48.9 mmol, 4 equiv) and pentafluorophenol (10.0 g, 54.3 mmol. 4.4 equiv) were added to a flask. N-methylpyrrolidone (NMP, 152 mL) was added to the mixture. To the mixture was added diisopropylcarbodiimide (DIC, 8.43 mL, 54.4 mmol, 4.4 equiv) was added to the mixture. The mixture was stirred at room temperature for 1 h. Pd/C (10%, dry, 3.0 g) was added. The flask was shaken under hydrogen (30-35 psi) for 5 hours. The reaction mixture was analyzed by HPLC. The reaction was complete. The mixture was filtered through celite. The celite was washed with 500 mL ethyl acetate. The solutions were combined and transferred to a separatory funnel and washed with 1% NaHCO3/10% NaCl solution (250 mL×4). The organic layer was isolated and evaporated on a rotary evaporator under reduced pressure. The crude product was dissolved in dichloromethane and the urea was filtered. The crude product solution was loaded onto a Teledyne Redisep Silica Column (330 g) and purified with EtOAc/petroleum ether on CombiFlash flash chromatography system. The fractions were collected and organic solvent was removed by evaporating to give 5.0 g of the tripeptide (61%). NMR and mass spectral data were consistent with those measured for the Example
- Also described herein, is the conversion of 4 to 10 (R remains Me) by contacting 4 with TFA and an alcohol. In some illustrative examples of compound 10, R is allyl, or CH2(CH2)nCH3, where n is 1, 2, 3, 4, 5, or 6.
- Compound 4 (50 mg, 0.07 mmol) in allyl alcohol (5 mL) was treated with di-n-butyltin oxide (1.75 mg, 0.007 mmol, 10% mol). The reaction mixture was heated to reflux for 22 hrs till the reaction was complete. The reaction was concentrated and purified with HPLC in 10-100% ACN/NH3HCO3 buffer (pH7.0) to give the title compound (32.4 mg, yield 65%). LCMS: [M+H]+ m/z=707.73. 1H NMR (CD3OD, δ in ppm): 8.35 (s, 1H), 6.01 (m, 2H); 5.2-5.5 (m, 3H), 5.14 (d, J=10.26 Hz, 1H), 5.04 (d, J=5.87 Hz, 1H), 4.88 (s, 3H), 4.82 (d, J=5.5 Hz, 2H), 4.70 (d, J=8.79 Hz, 1H), 4.50 (d, J=10.26 Hz, 1H), 4.42 (b, 1H), 4.06 (s, 2H), 2.92 (d, J=11.36 Hz, 1H), 2.55 (d, J=9.17 Hz, 1H), 1.95-2.20 (m, 7H), 1.45-1.82 (m, 7H), 1.22 (m, 2H), 0.82-1.00 (m, 17H), 0.77 (d, J=6.23 Hz, 3H), 0.59-0.70 (m, 6H); 13C NMR (CD3OD, δ in ppm): 176.97, 175.08, 174.09, 160.95, 146.02, 134.13, 132.05, 127.94, 117.38, 116.37, 73.85, 70.32, 69.14, 68.40, 65.34, 56.89, 55.20, 53.55, 43.35, 40.37, 36.38, 31.59, 30.15, 24.80, 24.27, 22.93, 19.09, 18.71, 15.31, 9.52, 5.77, 4.41.
- Compound 10a (15.3 mg, 0.02 mmol) was subjected to hydrolysis with LiOH.H2O (0.99 mg, 0.024 mmol) in 4:1 THF/H2O (2.5 mL) for 19 hrs at room temperature (rt). The reaction was purified with HPLC in 10-100% ACN/NH3HCO3 buffer (pH7.0) to provide compound 11a (9.2 mkg, yield 83%). LCMS: [M+H]+ m/z=553.55. 1H NMR (CD3OD, δ in ppm): 7.94 (s, 1H), 6.00 (m, 1H), 5.1-5.4 (m, 3H), 4.68 (d, J=9.09 Hz, 2H), 4.10 (d, J=3.81 Hz, 2H), 2.80 (b, 1H), 2.56 (s, 2H), 1.4-2.2 (m, 11H), 1.20 (m, 1H), 0.80-0.99 (m, 13H); 13C NMR (CD3OD, δ in ppm): 17.90, 167.53, 153.18, 134.05, 123.09, 116.53, 68.63, 67.25, 54.85, 54.44, 42.10, 37.75, 36.53, 30.60, 29.13, 24.26, 23.25, 21.37, 20.32, 19.53, 14.72, 9.51.
- To compound 11a (9.2 mg, 0.017 mmol) in pyridine (1 mL) was added acetic anhydride (15.7 μL, 0.165 mmol) and a catalytic amount of 4-dimethylamino pyridine (0.053 M in pyridine, 5 μL) at rt under argon. The reaction was stirred for 24 hrs. To the reaction mixture was added 0.4 mL of dioxane/water (1:1) and stirred for 10 min, and then the solvent was removed in vacuo. The residue was purified with HPLC in 10-100% ACN/NH3HCO3 buffer (pH7.0) to provide the product 12a 10.4 mg (quantitative yield). LCMS: [M+H]+ m/z=595.59. 1H NMR (CD3OD, δ in ppm): 7.96 (s, 1H), 5.8-6.0 (m, 2H), 5.33 (d, J=17.59 Hz, 1H), 5.19 (d, J=10.56 Hz, 1H), 4.71 (d, J=9.23 Hz, 2H), 4.05 (d, J=5.71 Hz, 2H), 3.30 (m, 6H), 2.50 (b, 4H), 2.10 (s, 3H), 1.40-2.00 (m, 7H), 1.20 (m, 1H), 0.80-1.02 (m, 11H); 13C NMR (CD3OD, δ in ppm): 175.11, 170.44, 167.29, 153.45, 133.92, 123.40, 116.79, 116.55, 68.62, 67.82, 67.11, 54.75, 54.16, 42.39, 36.31, 36.12, 34.91, 30.55, 29.26, 24.09, 23.26, 21.25, 20.24, 19.48, 19.20, 14.78, 9.56.
- Compound 12a (10.4 mg, 0.017 mmol) was dissolved in anhydrous methylene chloride (4 mL) and to this solution was added DCC-resin (2.3 mmol/g, 0.038 g, 0.087 mmol) and followed by pentafluorophenol (PFP, 6.26 mg, 0.034 mmol) at rt under argon. The reaction was stirred for 19 hrs at rt. The reaction mixture was filtered and the solution was concentrated. The residue was redissolved in dry DMF (4 mL). Then, (2S,4R)-4-amino-5-(4-hydroxyphenyl)-2-methylpentanoic acid (Tut acid) was added into the solution, followed by DIPEA (8.9 μL, 0.051 mmol). When completed, the reaction was concentrated in vacuo and the residue was purified with HPLC. Product 13a was obtained (13.1 mg, 96% yield). LCMS: [M+H]+ m/z=800.88. 1H NMR (CD3OD, δ in ppm): 8.08 (s, 1H), 7.02 (d, J=8.43 Hz, 2H), 6.68 (d, J=8.06 Hz, 2H), 5.99 (d, J=10.99 Hz, 1H), 5.80 (m, 1H), 5.38 (d, J=9.53 Hz, 1H), 5.31 (d, J=17.23 Hz, 1H), 5.13 (d, J=10.63 Hz, 1H), 4.66 (d, J=8.79 Hz, 1H), 4.55 (d, J=10.28 Hz, 1H), 4.30 (b, 2H), 4.00 (b, 2H), 3.16 (b, 2H), 2.80 (d, J=5.86 Hz, 2H), 2.40 (b, 4H), 2.10-2.30 (b, 2H), 1.40-1.90 (b, 6H), 1.23 (s, 3H), 1.17 (d, J=6.96 Hz, 3H), 1.05 (d, J=6.23 Hz, 2H), 0.94 (d, J=6.97 Hz, 2H), 0.90 (d, J=7.70 Hz, 2H), 0.79 (d, J=6.6 Hz, 3H); 13C NMR (CD3OD, δ in ppm): 179.24, 174.88, 170.97, 170.43, 170.20, 161.29, 155.62, 149.30, 133.70, 130.23, 128.44, 123.54, 116.41, 114.72, 69.92, 68.15, 67.87, 54.96, 53.92, 49.27, 42.40, 39.62, 37.72, 36.91, 36.08, 35.29, 31.01, 29.51, 29.33, 24.08, 23.72, 21.93, 19.40, 19.34, 18.89, 17.24, 15.00, 9.34.
- Compound 12a (26.4 mg, 0.044 mmol) was dissolved in anhydrous methylene chloride (5 mL) and to this solution was added DCC-resin (2.3 mmol/g, 0.096 g, 0.22 mmol), followed by pentafluorophenol (PFP, 16.4 mg, 0.089 mmol) at rt under argon. The reaction was stirred for 19 hrs at rt. The reaction was filtered and concentrated and the residue was redissolved in dry DMF (5 mL). 2-((3-nitropyridin-2-yl)disulfanyl)ethyl 2-((2S,4R)-4-((tert-butoxycarbonyl)amino)-5-(4-hydroxyphenyl)-2-methylpentanoyl)hydrazinecarboxylate (40.0 mg, 0.067 mmol) was deprotected with TFA/DCM (1:1, 5 mL, 1 drop of TIPS as scavenger) at rt for 1 hr. The solvent was removed under reduced pressure, 5 mL more of DCM was added, and then the solvent was co-evaporated to dryness. The residue was dissolved in dry DMF (2 mL) and was added to the solution of PFP ester intermediate in DMF made above after the addition of DIPEA (23.2 μL, 0.13 mmol) at rt under argon. The reaction was stirred for 19 hrs and diluted with EtOAc (20 mL). The organic phase was washed with water (5 mL×3) and brine. The organic layer was dried over anhydrous Na2SO4 and concentrated after filtration to give the crude product 15a (52.8 mg), which could be used for conjugation with folate. LCMS: [M+H]+ m/z=1072.92.
- Compound 4 (75.9 mg, 0.11 mmol) in n-butanol (4 mL) was treated with n-Bu2SnO (2.12 mg, 0.0085 mmol, 8.0 mol %) at rt and the reaction was heated to 100° C. for 2 days. The solvent was reduced to a minimum and the product was purified with CombiFlash (Teledyne Redisep Silica column, eluted with 0 to 15% of MeOH/DCM) to give 44.0 mg (56%) of intermediate 10b. LCMS: [M+H]+ m/z=739.61. 1H NMR (CDCl3, δ in ppm): 8.07 (s, 1H), 7.02 (d, J=9.68 Hz, 1H), 5.27 (d, J=9.67 Hz, 1H), 5.02 (dd, J=8.36, 2.64 Hz, 1H), 4.69 (t, J=9.23 Hz, 4.20-4.40 (m, 4H), 3.47 (td, J=6.6, 1.76 Hz, 2H), 2.88 (d, J=11.44 Hz, 1H), 2.46 (dd, J=10.55, 3.08 Hz, 2H), 1.90-2.24 (m, 8H), 1.10-1.79 (m, 18H), 0.80-1.00 (m, 19H), 0.58-0.78 (m, 6H).
- The same procedure as compound 11a was followed. 11b (11.7 mg, 35%) was obtained from intermediate 10b (44.0 mg). LCMS: [M+H]+ m/z=569.51. 1H NMR (CDCl3 drops of CD3OD, δ in ppm) 8.00 (s, 1H), 5.23 (b, 1H), 4.80 (b, 1H), 4.58 (d, J=8.80 Hz, 1H), 4.42 (b, 1H), 3.45 (t, J=6.38 Hz, 1H), 3.33 (b, 3H), 2.15-2.40 (m, 3H), 1.80-2.10 (m, 2H), 1.40-1.79 (m, 4H), 1.04-1.38 (m, 3H), 0.60-1.02 (m, 9H).
- In a 10 mL round bottom flask, 11b (11.7 mg, 0.021 mmol) and acetic anhydride (20 μL, 0.212 mmol) were dissolved in pyridine (1 mL). To this solution was added a catalytic amount of dimethylaminopyridine (1 mg, 0.008 mmol). This solution was stirred at room temperature for 16 h under Argon. LCMS (10-100% ACN, 50 mM NH4HCO3 pH7) indicated all of the starting material had been consumed and product had been formed. To the flask was added a 1:1 mixture of 1,4-dioxane and water (0.4 mL) and the solution was stirred for 10 min to hydrolyze any potential diacetate side product. The reaction mixture was concentrated under reduced pressure, then purified by preparative HPLC (10-100% ACN, 50 mM NH4HCO3 pH7) to yield 12b (9.6 mg, 76%). LCMS: [M+H]+=611.53. 1H NMR (CDCl3 w/2 drops CD3OD): 7.97 (s, 1H) 5.83 (d, J=9.9 Hz, 1H) 5.28 (s, 1H) 4.58 (d, J=9.0 Hz, 1H) 4.24 (d, J=9.3 Hz, 2H) 3.42 (m, 3H) 2.60-2.95 (br, 7H) 2.20-2.58 (br, 6H) 1.76-2.20 (br, 1H) 1.40-1.56 (br, 12H) 1.02-1.20 (br, 12H) 0.40-1.10 (br, 27H) 0.04 (s, 8H). 13C NMR: 175.04, 170.53, 67.78, 53.74, 44.33, 36.79, 35.64, 31.69, 29.89, 24.86, 20.96, 20.49, 19.52, 15.95, 13.99, 10.65, 1.21
- In a 25 mL round bottom flask, 12b (9.6 mg, 0.016 mmol) and pentafluorophenol (28.2 mg, 0.153 mmol) were dissolved in dry dichloromethane (5 mL). N-cyclohexylcarbodiimide, N′-methyl polystyrene (33.4 mg, 2.3 mmol/g, 0.077 mmol) was added and the reaction mixture was stirred at room temperature for 16 h under Argon. LCMS (10-100% ACN, 50 mM NH4HCO3 pH7) indicated all of the starting material had been consumed and activated intermediate had been formed. The reaction mixture was filtered and concentrated under reduced pressure, and the residue was dissolved in a solution of N,N-dimethylformamide (2 mL) and N,N-diisopropylethylamine (8 μL, 0.046 mmol). PFP ester intermediate (6.0 mg, 0.023 mmol) was added and the reaction mixture was stirred at room temperature for 2 h under argon. LCMS (10-100% ACN, 50 mM NH4HCO3 pH7) indicated all of the activated intermediate had been consumed and product had been formed. The reaction mixture was purified by preparative HPLC (10-100% ACN, 50 mM NH4HCO3 pH7) to yield 13b (4.7 mg, 37%). LCMS: [M+H]+ m/z=816.71. 1H NMR (CDCl3, δ in ppm): 8.04 (s, 1H) 7.05 (d, J=8.4 Hz, 2H) 6.80 (d, J=8.4 Hz, 2H) 5.90 (m, 1H) 5.38 (d, J=10.2 Hz, 1H) 4.63 (t, J=9.3 Hz, 1H) 4.38 (br, 1H) 4.27 (d, J=9.9 Hz, 1H) 3.48 (m, 1H) 3.34 (m, 2H) 2.86 (m, 6H) 2.56 (m, 3H) 2.23 (s, 3H) 2.16 (s, 3H) 1.22-2.10 (br, 16H) 1.12 (d, J=6.9 Hz, 3H) 1.03 (d, J=6.6 Hz, 3H) 0.88 (m, 14H). 13C NMR: 174.90, 170.44, 161.73, 155.52, 149.37, 130.77, 128.56, 124.33, 115.91, 70.40, 69.69, 67.62, 55.45, 53.70, 49.25, 44.61, 40.40, 36.94, 36.69, 35.93, 31.77, 31.16, 30.06, 24.94, 23.14, 21.08, 20.74, 20.20, 19.55, 17.78, 16.08, 14.05, 10.70
- Compound 4 (73.9 mg, 0.10 mmol) in n-pentanol (4 mL) was treated with n-Bu2SnO (2.10 mg, 0.0083 mmol, 8.0 mol %) at rt and the reaction was heated to 100° C. for 2 days. The solvent was reduced to a minimum and the product was purified with CombiFlash (Teledyne Redisep Silica column, eluted with 0 to 15% of MeOH/DCM) to give 51.2 mg (64%) of intermediate 10b. LCMS: [M+H]+ m/z=767.64. 1H NMR (CDCl3, δ in ppm): 8.07 (m, 1H), 7.06 (t, J=9.23 Hz, 1H), 5.95 (d, J=12.3 Hz, 1H), 5.43 (d, J=12.32 Hz, 1H), 5.26 (d, J=9.68 Hz, 1H), 5.03 (dd, J=8.36, 2.64 Hz, 1H), 4.93 (dd, J=8.36, 6.24 Hz, 1H), 4.71 (dd, J=15.83, 8.80 Hz, 1H), 4.20-4.33 (m, 3H), 3.46 (m, 1H), 2.88 (d, J=11.43 Hz, 1H), 2.30-2.60 (m, 2H), 2.20 (s, 2H), 1.95-2.18 (m, 3H), 1.50-1.80 (m, 6H), 1.10-1.44 (m, 6H), 0.80-1.04 (m, 13H), 0.50-0.77 (m, 6H).
- The same procedure as for compound 11a was followed, intermediate 11c (14.9 mg, 38%) was obtained from 10c (51.2 mg). LCMS: [M+H]+ m/z=583.56. 1H NMR (CD3OD, δ in ppm): 7.97 (s, 1H), 5.27 (d, J=9.67 Hz, 1H), 4.67 (d, J=9.23 Hz, 1H), 4.58 (d, J=9.68 Hz, 1H), 3.53 (m, 3H), 2.80 (b, 1H), 2.58 (b, 4H), 1.48-2.18 (m, 13H), 1.10-1.42 (m, 6H), 0.70-1.08 (m, 18H).
- In a 10 mL round bottom flask, 11c (14.9 mg, 0.026 mmol) and acetic anhydride (20 μL, 0.212 mmol) were dissolved in pyridine (1 mL). This solution was added a catalytic amount of dimethylaminopyridine (1 mg, 0.008 mmol). This solution was stirred at room temperature for 16 h under argon. LCMS (10-100% ACN, 50 mM NH4HCO3 pH7) indicated all of the starting material had been consumed and product had been formed. To the flask was added a 1:1 mixture of 1,4-dioxane and water (0.4 mL) and the solution was stirred for 10 min to hydrolyze any potential diacetate side product. The reaction mixture was concentrated under reduced pressure, then purified by preparative HPLC (10-100% ACN, 50 mM NH4HCO3 pH7) to yield 12c (4.8 mg, 30%). LCMS: [M+H]+ m/z=625.58. 1H NMR (CDCl3 w/2 drops CD3OD) 7.98 (s, 1H) 5.82 (d, J=10.8 Hz, 1H) 5.26 (s, 1H) 4.57 (d, J=8.4 Hz, 1H) 4.23 (d, J=8.4 Hz, 2H) 3.42 (m, 3H) 2.60-2.92 (br, 8H) 2.15-2.40 (br, 4H) 1.90-2.12 (m, 7H) 1.38-1.90 (br, 14H) 1.00-1.38 (br, 13H) 0.50-1.00 (br, 22H), 0.03 (s, 13H). 13C NMR: 175.15, 150.56, 125.47, 69.55, 68.09, 55.33, 53.71, 44.59, 36.77, 35.74, 31.34, 30.19, 29.86, 29.32, 28.51, 24.84, 22.85, 22.55, 20.86, 20.40, 19.91, 15.94, 14.10, 10.63, 1.17
- In a 25 mL round bottom flask, 12c (4.8 mg, 0.008 mmol) and pentafluorophenol (14.1 mg, 0.077 mmol) were dissolved in dry dichloromethane (5 mL). N-cyclohexylcarbodiimide, N-methyl polystyrene (16.7 mg, 2.3 mmol/g, 0.038 mmol) was added and the reaction mixture was stirred at room temperature for 16 h under Argon. LC-MS (10-100% ACN, 50 mM NH4HCO3 pH7) indicated all of the starting material had been consumed and activated intermediate had been formed. The reaction mixture was filtered and concentrated under reduced pressure, and the residue was dissolved in a solution of N,N-dimethylformamide (2 mL) and N,N-diisopropylethylamine (4 μL, 0.023 mmol). PFP ester intermediate (3.0 mg, 0.012 mmol) was added and the reaction mixture was stirred at room temperature for 2 h under Argon. LC-MS (10-100% ACN, 50 mM NH4HCO3 pH7) indicated all of the activated intermediate had been consumed and product had been formed. The reaction mixture was purified by preparative HPLC (10-100% ACN, 50 mM NH4HCO3 pH7) to yield 13c (1.1 mg, 17%). LCMS: [M+H]+ m/z=830.76. 1H NMR (CDCl3 w/2 drops CD3OD): 8.00 (s, 1H) 7.01 (d, J=8.7 Hz, 2H) 6.74 (d, J=8.4 Hz, 2H) 5.89 (d, J=12.6 Hz, 1H) 5.25 (d, J=9.0 Hz, 1H) 4.55 (d, J=8.7 Hz, 1H) 4.30 (m, 3H) 3.39 (m, 3H) 3.21 (m, 2H) 2.81 (m, 3H) 2.04-2.60 (br, 45H) 1.76-2.04 (m, 5H) 1.34-1.76 (br, 9H) 1.20 (m, 6H) 1.12 (d, J=7.2 Hz, 4H) 1.01 (d, J=6.3 Hz, 3H) 0.89 (t, J=7.1 Hz, 6H) 0.78 (m, 6H)
- In a 5 mL round bottom flask, 14 (10.0 mg, 0.009 mmol) was dissolved in a solution of trifluoroacetic acid (125 μL, 1.632 mmol) and dichloromethane (0.5 mL) and stirred at room temperature for 1 hr under argon, then 1-butanol (200 μL, 2.186 mmol) added and reaction mixture stirred at room temperature for 30 min under argon. LCMS (10-100% ACN, 50 mM NH4HCO3 pH7) indicated all of the starting material had been consumed and product had been formed. The reaction mixture was purified by preparative HPLC (10-100% ACN, 50 mM NH4HCO3 pH7) to yield 15b (3.2 mg, 32%). LCMS: [M+H]+ m/z=1088.79. 1H NMR (CDCl3 w/2 drops CD3OD): 8.86 (s, 1H) 8.47 (d, J=8.0 Hz, 1H) 7.99 (s, 1H) 7.31 (d, J=9.5 Hz, 2H) 7.01 (d, J=7.5 Hz, 2H) 6.73 (d, J=8.5 Hz, 2H) 5.94 (d, J=10.5 Hz, 1H) 5.34 (d, J=10.0 Hz, 1H) 4.58 (m, 3H) 4.38 (t, J=6.0 Hz, 4H), 4.27 (d, J=10.0 Hz, 2H) 3.37 (m, 2H) 3.18 (m, 2H) 3.09 (t, J=6.3 Hz, 3H) 2.70-2.90 (br, 6H) 2.43 (dd, J=11.0 Hz, 3.0 Hz, 2H) 2.26-2.36 (br, 4H) 2.12-2.22 (br, 10H) 2.02-2.12 (br, 2H) 1.86-2.02 (br, 11H) 1.69-1.80 (br, 6H) 1.54-1.69 (br, 10H) 1.34-1.52 (br, 12H) 1.09-1.34 (br, 16H) 1.047 (dd, J=15.0 Hz, 6.5 Hz, 19H) 0.88 (m, 19H) 0.75 (m, 17H). 13C NMR: 174.95, 174.59, 170.64, 170.23, 161.92, 156.91, 156.06, 153.88, 149.00, 133.77, 130.79, 123.92, 120.98, 115.53, 69.95, 69.61, 67.03, 63.82, 55.32, 53.21, 44.78, 41.42, 40.40, 36.84, 36.38, 35.62, 35.22, 31.54, 31.40, 30.37, 24.99, 24.66, 23.20, 20.68, 20.24, 19.56, 19.27, 17.69, 15.71, 13.72, 10.35
- In a 5 mL round bottom flask, 14 (10.0 mg, 0.009 mmol) was dissolved in a solution of trifluoroacetic acid (125 μL, 1.632 mmol) and dichloromethane (0.5 mL) and stirred at room temperature for 1 hr under argon, then 1-pentanol (200 μL, 1.840 mmol) added and reaction mixture stirred at room temperature for 30 min under argon. LC-MS (10-100% ACN, 50 mM NH4HCO3 pH7) indicated all of the starting material had been consumed and product had been formed. The reaction mixture was purified by preparative HPLC (10-100% ACN, 50 mM NH4HCO3 pH7) to yield 15c (3.6 mg, 36%). LCMS: [M+H]+ m/z=1102.77.
- In a 25 mL round bottom flask, 15b (3.2 mg, 0.003 mmol) was dissolved in dimethylsulfoxide (2 mL). A solution of 16 (4.9 mg, 0.003 mmol) in 20 mM, pH7, sodium phosphate buffer (2 mL) was added dropwise, stirring at room temperature with argon bubbling for 30 min. LCMS (10-100% ACN, 50 mM NH4HCO3 pH7) indicated all of the starting material had been consumed and product had been formed. The reaction mixture was purified by preparative HPLC (10-100% ACN, 50 mM NH4HCO3 pH7) to yield 17b (4.3 mg, 56%). LCMS: [M+H]+ m/z=1306.82. 1H NMR (9:1 DMSO-d6:D2O): 8.60 (s, 1H) 8.14 (s, 1H) 7.59 (d, J=8.5 Hz, 2H) 6.94 (d, J=7.5 Hz, 2H) 6.60 (dd, J=13.3 Hz, 8.8 Hz, 3H) 5.77 (d, J=11.5 Hz, 1H) 5.20 (d, J=9.5 Hz, 1H) 4.46 (m, 3H) 4.00-4.40 (br, 12H) 3.48-3.62 (br, 11H) 3.28-3.48 (br, 12H) 3.10-3.28 (br, 4H) 2.80-3.08 (br, 7H) 2.60-3.80 (br, 3H) 2.48 (s, 1H) 2.26-2.40 (br, 2H) 2.00-2.26 (br, 19H) 1.58-2.00 (br, 20H) 1.28-1.58 (br, 8H) 1.18 (q, J=7.5 Hz, 3H) 0.84-1.10 (br, 8H) 0.75 (m, 9H) 0.60 (d, J=6.5 Hz, 3H). 13C NMR: 175.25, 174.93, 174.36, 173.59, 173.22, 172.76, 172.70, 172.02, 171.85, 171.67, 170.85, 170.34, 169.68, 166.48, 161.94, 160.67, 156.42, 155.80, 154.22, 150.98, 149.56, 149.21, 149.08, 130.64, 129.17, 128.69, 128.08, 124.89, 122.00, 115.31, 111.84, 72.31, 72.23, 71.82, 71.69, 69.84, 69.74, 68.21, 66.59, 63.52, 63.09, 55.04, 53.74, 53.56, 53.23, 52.96, 52.48, 46.11, 43.63, 42.39, 37.43, 35.69, 35.41, 35.19, 32.17,
- 1.1 g of dipeptide 1 (2.77 mmole), was mixed with 53 mg (0.21 mmole, 0.08 eq) of n-Bu2SnO in 15 mL of benzyl alcohol and heated to 130° C. for 2½ hours, then 100° C. overnight. LC/MS showed no starting material left. The reaction mixture was loaded onto a 330 g of Combiflash column, purified with petroleum ether/EtOAc to give some clean fractions. Mixed fractions were repurified to give a combined yield of 0.67 g (51%) of pure benzyl ester 18. LCMS: [M+H]+ m/z=474.46. 1H NMR (CDCl3, 6 in ppm): 8.12 (s, 1H), 7.46-7.43 (m, 2H), 7.40-7.32 (m, 3H), 6.68 (d, J=9.6 Hz, 1H), 5.41 (d, J=12.3 Hz, 1H), 5.36 (d, J=12.3 Hz, 1H), 5.24 (d, J=4.5 Hz, 1H), 4.87 (m, 1H), 4.02-3.90 (m, 2H), 2.24-2.13 (m, 2H), 1.88-1.78 (m, 2H), 1.42-1.30 (m, 2H), 1.07 (d, J=6.9 Hz, 3H), 0.97-0.90 (m, 9H). 13C NMR (CDCl3, 6 in ppm): 176.1, 170.2, 161.3, 146.5, 135.7, 128.6, 128.5, 128.4, 127.8, 69.6, 68.8, 66.9, 51.6, 41.1, 38.6, 31.8, 24.1, 19.7, 18.3, 16.0, 11.7.
- 0.67 g (1.42 mmole) of dipeptide benzyl ester 18 was dissolved in 5 mL dichloromethane. To this solution was added 263 μL of TESCl (236 mg, 1.56 mmole, 1.1 eq), and 117 mg (1.72 mmole, 1.2 eq) of imidazole. The reaction was stirred at 0° C. and solid formed. After 2 hours, the solid was filtered away and the filtrate was concentrated. The residue was on the Combiflash (24 g of silica column) with petroleum ether/EtOAC. After concentration, 763 mg (92%) of the desired product 19 was recovered. 1H NMR (CDCl3, δ in ppm): 8.12 (s, 1H), 7.46-7.43 (m, 2H), 7.40-7.32 (m, 3H), 6.68 (d, J=8.4 Hz, 1H), 5.41 (d, J=12.3 Hz, 1H), 5.36 (d, J=12.3 Hz, 1H), 5.13 (t, J=5.7 Hz, 1H), 4.03-3.95 (m, 1H), 3.83 (d, 1H), 2.20-2.05 (m, 1H), 1.95-1.86 (m, 2H), 1.48-1.38 (m, 1H), 1.30-1.20 (m, 2H), 1.03 (d, 3H), 0.96-0.82 (m, 18H), 0.65 (t, 6H). 13C NMR (CDCl3, δ in ppm): 178.2, 168.4, 161.1, 146.5, 135.7, 128.6, 128.5, 128.4, 127.7, 70.7, 70.1, 66.9, 51.3, 39.9, 38.3, 31.6, 24.2, 18.3, 17.6, 16.0, 11.5, 6.8, 4.6.
- 746 mg (1.27 mmole) of TES protected dipeptide benzyl ester 19 was dissolved in 8 mL of THF (anhydrous, inhibitor-free) and cooled to −45° C. After 15 minutes of cooling, 2.8 mL of 0.5 M KHMDS (1.1 eq., 1.4 mmole) in toluene solution was added dropwise. After an additional 15 mins, 175 μL of chloromethyl butyrate (1.1 eq., 1.4 mmole) was added dropwise. After 30 mins, TLC showed only a trace amount of starting material left. After 2 hours, the reaction mixture was quenched 1 mL MeOH, and allowed to warm to room temperature. The reaction was extracted with EtOAc/brine. The organic layer was washed with brine and then concentrated to give 759 mg (87%) of crude product 20. LCMS: [M+Na]+ m/z=710.57. 1H NMR (CDCl3, δ in ppm) 8.10 (s, 1H), 7.44-7.40 (m, 2H), 7.39-7.30 (m, 3H), 5.43 (d, J=12.3 Hz, 1H), 5.37 (d, J=12.3 Hz, 1H), 5.35 (s, 2H), 4.98 (t, J=5.1 Hz, 1H), 4.40-4.20 (br, 1H), 3.52 (d, J=16.0 Hz, 1H), 2.42-2.38 (t, J=6.7 Hz, 2H), 2.25-2.05 (m, 2H), 1.78-1.72 (m, 2H), 1.68-1.55 (m, 3H), 1.30-1.20 (m, 1H), 1.00-0.85 (m, 24H), 0.65 (t, 6H). 13C NMR (CDCl3, δ in ppm) 177.6, 173.0, 171.0, 161.1, 146.6, 135.7, 128.6, 128.42, 128.36, 127.6, 77.2, 70.8, 66.8, 63.5, 40.9, 35.9, 34.9, 31.1, 25.0, 20.1, 19.5, 18.1, 15.7, 13.6, 10.5, 6.8, 4.7.
- 239 mg of MEP (1.67 mmole, 1.5 eq), 316 mg of EDC (1.65 mmole, 1.5 eq), and 300 mg of pentafluorophenol (1.63 mmole, 1.5 eq) were dissolved in 8 mL of N-methyl-2-pyrrolidone. The reaction was stirred overnight. 759 mg (1.1 mmole) of the alkylated dipeptide 20 in 1 mL NMP was then added. An additional 0.8 mL of NMP was used to rinse the flask/syringe to transfer residue to the hydrogenation flask. 60 mg (0.05 eq) of 10% Pd/C was then added and the reaction mixture was hydrogenated at 35 PSI, overnight. LC/MS showed the major product is the benzyl ester, along with 10% free acid. The reaction was filtered through celite, and the filter cake was washed with EtOAc. The filtrate was extracted with brine, washed with brine, and concentrated. Combiflash purification with petroleum ether/EtOAc resulted in the recovery of 215 mg (25%) of benzyl ester 21. LCMS: [M+H]+ m/z=787.66. 1H NMR (CDCl3, δ in ppm): 8.09 (s, 1H), 7.44-7.40 (m, 2H), 7.39-7.30 (m, 3H), 7.07 (d, J=15.5 Hz, 1H), 5.93 (d, J=12.3 Hz, 1H), 5.42 (d, J=12.3 Hz, 1H), 5.34 (s, 2H), 4.93 (dd, J=8.4, 2.7 Hz, 1H), 4.70-4.60 (m, 1H), 4.50-4.30 (br, 1H), 2.88 (m, 1H), 2.60-2.28 (m, 4H), 2.21 (s, 3H), 2.08-1.89 (m, 4H), 1.80-1.40 (m, 8H), 1.36-1.1.07 (m, 3H), 1.00-0.80 (m, 21H), 0.77 (d, 3H), 0.65 (t, 6H). 13C NMR (CDCl3, 6 in ppm): 177.5, 175.1, 174.1, 173.0, 161.1, 146.5, 135.8, 128.6, 128.4, 128.3, 127.6, 77.2, 70.7, 69.5, 69.2, 66.7, 57.3, 55.4, 53.5, 53.4, 44.8, 41.3, 36.8, 35.9, 31.4, 30.3, 25.0, 24.7, 23.2, 20.2, 19.4, 18.1, 16.2, 13.6, 10.6, 6.8, 5.1, 4.7.
- Paraformaldehyde (1.5 g, 1.25 eq) was added to 16 mL of TMSBr. The resulted suspension was cooled to 0° C., and 1-pentanol (4.36 mL, 40 mmole, 1 equiv.) was added dropwise. The reaction was stirred at 0° C. and warmed up to room temperature. After overnight, TMSBr was evaporated under reduced pressure. Vacuum distillation of the residue was carried out at 7 mm Hg pressure, the fraction came out at 56° C. was the desired product EC1759 (4.3 g, 59%).
- 1.58 g (3.09 mmole) TES-dipeptide EC0997 was dissolved in 12 mL THF (anhydrous, inhibitor-free). The resulted solution was cooled to −45° C. To the solution, 6.5 mL of 0.5 M KHMDS in toulene (3.25 mmole, 1.05 equiv.) was added dropwise. After finishing the addition, the reaction mixture was stirred at −45° C. for 15 minutes. 600 μL of bromomethyl pentyl ether EC1759 (4.1 mmole, 1.33 equiv.) was added dropwise. The reaction mixture was warmed from −45° C. to −10° C. in 90 minutes, then quenched with 10% NaCl/1% NaHCO3 aqueous solution, extracted with EtOAc. The organic phase was washed with 10% NaCl/1% NaHCO3 aqueous solution three times, then brine. The separated organic phase was dried over Na2SO4. Na2SO4 was filtered off and the solvent was evaporated under vacuum to give 2.4 g of crude product. The crude product was purified with EtOAc/petroleum ether to give 1.47 g of product EC1760 (78%)
- 0.38 g of MEP (2.65 mmole, 1.4 equiv.) was suspended in 1.2 mL NMP, 0.53 g of PFP (2.88 mmole, 1.5 equiv.) and 0.55 g of EDC (2.87 mmole, 1.5 equiv.) were added. The reaction mixture was stirred overnight in a hydrogenation vessel. 1.17 g (1.91 mmole) of alkylated dipeptide EC1760 was dissolved in 0.3 mL NMP and transferred to the above hydrogenation vessel, and the residue of the dipeptide was rinsed with 0.3 mL NMP and transferred to the hydrogenation vessel. 154 mg of 10% Pd/C (dry, 0.05 equiv.) was added to the solution. The hydrogenation was carried out at 35 PSI. After 5 hrs, LC/MS showed there was no starting material. The reaction mixture was filtered through celite pad and the reaction vessel was washed with EtOAc and filtered through celite pad. The combined solution was washed with 10% NaCl/1% Na2CO3 solution to remove PFP, then with brine. The organic phase was dried over Na2SO4. Na2SO4 was filtered off and the solvent was evaporated under vacuum to give 1.20 g (88%) of crude product EC1761.
- 1.17 g (1.65 mmole) of tripeptide ester EC1761 was dissolved in 15 mL MeOH, the solution was cooled to 0° C. 300 mg of LiOH hydrate (7.15 mmole, 4.3 equiv.) dissolved in 5 mL H2O was added to the ester solution, the resulted reaction mixture was stirred and warmed up to room temperature in 2 hours. LC/MS showed no starting material left. MeOH was removed using rotary evaporator, and the residual was worked up by extraction between EtOAc/brine. The organic phase was dried over Na2SO4. Na2SO4 was filtered off and the solvent was evaporated under vacuum to give 0.80 g (83%) of crude product EC1602.
- 0.80 g (1.37 mmole) of tripeptide acid EC1602 was dissolved in 6.4 mL of pyridine, the solution was cooled to 0° C. 6.0 mg (0.049 mmole, 0.035 equiv) DMAP was added and then 2 mL of acetic anhydride (21.2 mmole, 15.5 equiv) was added, the reaction mixture was warmed up to room temperature in 5 hours and stored in −20 0° C. for 2 days. 20 mL dioxane/20 mL H2O was added to the reaction mixture at 0° C. and stirred for 1 hour. The solvent was evaporated under reduced pressure. 20 mL of phosphate buffer (20 mM) and 5 mL acetonitrile were added to the residue, the pH of the resulted solution was adjusted to 5.4 using saturated NaHCO3 solution. The solution was loaded on Biotage 120 g C18 column. The flask containing the crude product was rinsed with 1 mL acetonitrile/5 mL phosphate buffer and loaded on the column. The purification was done using a gradient from 20% ACN/80% water to 70% ACN/30%. The fractions containing the desired product were combined and ACN was evaporated under reduced pressure. There were white precipitate coming out from solution, brine was added to the suspension and EtOAc was used to extract the desired product. The organic phase was dried over Na2SO4. Na2SO4 was filtered off and the solvent was evaporated under vacuum to give 0.49 g (57%) of product EC1633.
- EC1008 (I: R1=n-propyl. 103 mg) was dissolved in anhydrous dichloromethane (DCM, 2.0 mL) and to this solution was added trifluoroacetic acid (TFA, 0.50 mL). The resulting solution was stirred at ambient temperature under argon for 20 minutes, and to which was added 1-pentanol (0.72 mL). The reaction mixture was stirred at ambient temperature for 3 minutes, concentrated on a Buchi Rotavapor at 30° C. for 10 minutes, residue stirred at ambient temperature under high vacuum for 75 minutes, and to which was added saturated NaHCO3 solution (10 mL) with vigorous stirring, followed by addition of acetonitrile (ACN, 3.0 mL). The resulting white suspension was stirred at ambient temperature for 3 minutes and let stand to settle. The top clear solution was loaded onto a Biotage SNAP 12 g KP-C18-HS column on a Biotage system. The white solid left in the reaction flask was dissolved in water (5.0 mL) and the solution was also loaded onto the Biotage column. The remaining solid stuck on the glass wall of the reaction flask was dissolved in ACN (2.0 mL). To this solution was added water (6.0 mL) and the resulting cloudy solution was loaded onto the same Biotage column. The reaction mixture was eluted following these parameters: Flow rate: 15 mL/min. A: water; B: CAN. Method: 25% B 2 CV (column volume), 25-50% B 3 CV, and 50% B 5 CV (1 CV=15 mL). Fractions containing the desired product was collected and freeze-dried to afford EC1623 (II: R=n-pentyl. 95.9 mg) as a white powder.
- Step 1: Anhydrous DCM (5.0 mL) was added to a mixture of EC1623 (II: R=n-pentyl. 114 mg), pentafluorophenol (PFP, 67.3 mg), and DCC-resin (2.3 mmol/g, 396 mg) and the suspension was stirred at ambient temperature under argon for 23 hours. The resin was filtered off and washed with anhydrous DCM (3.0 mL) and the combined filtrates were concentrated under reduced pressure to give a residue, which was vacuumed at ambient temperature for 1 hour prior to use in Step 3.
- Step 2: EC1426 (114 mg) was dissolved in anhydrous DCM (1.5 mL) and to which was added TFA (0.50 mL). The resulting solution was stirred at ambient temperature under argon for 70 minutes and concentrated under reduced pressure to give a residue, which was co-evaporated with anhydrous DCM (2.0 mL×3) and vacuumed at ambient temperature for 9 hours prior to use in Step 3.
- Step 3: The residue from Step 1 was dissolved in anhydrous DCM (1.5 mL) and to this solution was added DIPEA (0.50 mL) followed by a solution of the residue from Step 2 dissolved in anhydrous dimethylformamide (DMF, 1.5 mL). The resulting solution was stirred at ambient temperature under argon for 1 hour, diluted with ethyl acetate (EtOAc, 60 mL), and washed with brine (20 mL×3). The organic layer was separated, dried (Na2SO4), and concentrated under reduced pressure to give a residue, which was vacuumed at ambient temperature for 2 hours, dissolved in DCM (3.5 mL), and loaded onto a 24 g silica gel column on a CombiFlash system for purification. The materials were eluted with 0-5% MeOH in DCM to afford EC1662 (III: R=n-pentyl. 171 mg) as a white solid.
- A solution of EC1454 (SPACER-SH; See FIG. 1 for structure. 44.1 mg.) in 20 mM phosphate buffer (pH 7.0, 4.0 mL) was added to a solution of EC1662 (24.1 mg) in MeOH (4.8 mL), followed by addition of saturated Na2SO4 (0.30 mL). The reaction mixture was stirred at ambient temperature under argon for 30 minutes and the solution was injected onto a preparative HPLC (A: 50 M NH4HCO3 buffer, pH 7.0; B: CAN. Method: 10-80% B in 20 minutes.) for purification. Fractions containing the desired product were collected and freeze-dried to afford EC1664 (IV: R=n-pentyl. 42.8 mg) as a fluffy yellow solid.
Claims (20)
1. A process for preparing a compound of the formula
or a pharmaceutically acceptable salt thereof; wherein
Ar1 is optionally substituted aryl or optionally substituted heteroaryl;
R1 is hydrogen, alkyl, arylalkyl or a pro-drug forming group;
R2 is selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl;
R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted;
R3 is optionally substituted alkyl;
R4 is optionally substituted alkyl or optionally substituted cycloalkyl;
R5 and R6 are each independently selected from the group consisting of optionally substituted alkyl and optionally substituted cycloalkyl; R7 is optionally substituted alkyl; and n is 1, 2, 3, or 4;
wherein the process comprises the step of treating a compound of formula A with triethylsilyl chloride and imidazole in an aprotic solvent, where R8 is C1-C6 unbranched alkyl
or
the step of treating a compound of formula B with a base and a compound of the formula ClCH2OC(O)R2 in an aprotic solvent at a temperature from about −78° C. to about 0° C.; wherein the molar ratio of the compound of the formula ClCH2OC(O)R2 to the compound of formula B from about 1 to about 1.5, where R8 is C1-C6 unbranched alkyl
or
the steps of a) preparing a compound of formula (E1), where X1 is a leaving group, from a compound of formula E
and b) treating a compound of formula C under reducing conditions in the presence of the compound of formula E1, where R8 is C1-C6 unbranched alkyl
or
the step of contacting compound D with an alcohol, R12OH, where R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst selected from the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted;
or
the step of treating the compound AF with a metal hydroxide or a metal carbonate;
or
the step of treating a compound of formula BG with an acylating agent of formula R4C(O)X2, where X2 is a leaving group
or
the steps of c) forming an active ester intermediate from a compound of formula AH
and d) reacting the active ester intermediate with a compound of the formula I;
or
one or more combinations thereof.
2. The process of claim 1 wherein R4 is optionally substituted alkyl.
4. The process of claim 1 comprising the step of treating a compound of formula B with a base and a compound of the formula ClCH2OC(O)R2 in an aprotic solvent at a temperature from about −78° C. to about 0° C.; wherein the molar ratio of the compound of the formula ClCH2OC(O)R2 to the compound of formula B from about 1 to about 1.5, where R8 is C1-C6 unbranched alkyl
6. The process of claim 1 comprising the step of treating compound D with an alcohol, R12OH, where R12 is alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl or heteroarylalkyl, each of which is optionally substituted; and a transesterification catalyst selected from the group consisting of (R13)8Sn4O2(NCS)4, (R13)2Sn(OAc)2, (R13)2SnO, (R13)2SnCl2, (R13)2SnS, (R13)3SnOH, and (R13)3SnOSn(R13)3, where R13 is independently selected from alkyl, arylalkyl, aryl, or cycloalkyl, each of which is optionally substituted;
10. The process of claim 1 wherein R1 is hydrogen, benzyl, or C1-C4 alkyl.
11. The process of claim 1 wherein R2 is C1-C8 alkyl or C3-C8 cycloalkyl.
12. The process of claim 1 wherein R2 is CH2CH(CH3)2, CH2CH2CH3, CH2CH3, CH═C(CH3)2, or CH3.
13. The process of claim 1 wherein R3 is C1-C4 alkyl.
14. The process of claim 1 wherein Ar1 is phenyl or hydroxyphenyl.
15. The process of claim 1 wherein R4 is C1-C8 alkyl or C3-C8 cycloalkyl.
16. The process of claim 1 wherein R5 is branched C3-C6 or C3-C8 cycloalkyl.
17. The process of claim 1 wherein R6 is branched C3-C6 or C3-C8 cycloalkyl.
18. The process of claim 1 wherein R7 is C1-C6 alkyl.
19. The process of claim 1 wherein R12 is CH2CH═CH2, or CH2(CH2)nCH3, where n=1, 2, 3, 4, 5, or 6.
20. The process of claim 1 wherein the metal hydroxide is LiOH.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/841,078 US20140249315A1 (en) | 2013-03-01 | 2013-03-15 | Processes for preparing tubulysins |
US14/771,532 US9771391B2 (en) | 2013-03-01 | 2014-02-28 | Process for preparing tubulysins |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361771429P | 2013-03-01 | 2013-03-01 | |
US201361793082P | 2013-03-15 | 2013-03-15 | |
US13/841,078 US20140249315A1 (en) | 2013-03-01 | 2013-03-15 | Processes for preparing tubulysins |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140249315A1 true US20140249315A1 (en) | 2014-09-04 |
Family
ID=51421261
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/841,078 Abandoned US20140249315A1 (en) | 2013-03-01 | 2013-03-15 | Processes for preparing tubulysins |
US14/771,532 Expired - Fee Related US9771391B2 (en) | 2013-03-01 | 2014-02-28 | Process for preparing tubulysins |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/771,532 Expired - Fee Related US9771391B2 (en) | 2013-03-01 | 2014-02-28 | Process for preparing tubulysins |
Country Status (4)
Country | Link |
---|---|
US (2) | US20140249315A1 (en) |
EP (1) | EP2961764A4 (en) |
CA (1) | CA2901337A1 (en) |
WO (1) | WO2014134543A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9090563B2 (en) | 2004-07-23 | 2015-07-28 | Endocyte, Inc. | Bivalent linkers and conjugates thereof |
US9505747B2 (en) | 2012-03-29 | 2016-11-29 | Endocyte, Inc. | Processes for preparing tubulysin derivatives and conjugates thereof |
US9555139B2 (en) | 2007-03-14 | 2017-01-31 | Endocyte, Inc. | Binding ligand linked drug delivery conjugates of tubulysins |
WO2017031209A1 (en) * | 2015-08-18 | 2017-02-23 | Endocyte, Inc. | Tubulysin analogs and methods |
US9662402B2 (en) | 2012-10-16 | 2017-05-30 | Endocyte, Inc. | Drug delivery conjugates containing unnatural amino acids and methods for using |
US9877965B2 (en) | 2007-06-25 | 2018-01-30 | Endocyte, Inc. | Vitamin receptor drug delivery conjugates for treating inflammation |
US10080805B2 (en) | 2012-02-24 | 2018-09-25 | Purdue Research Foundation | Cholecystokinin B receptor targeting for imaging and therapy |
US10738086B2 (en) | 2007-06-25 | 2020-08-11 | Endocyte Inc. | Conjugates containing hydrophilic spacer linkers |
US11229708B2 (en) | 2015-12-04 | 2022-01-25 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
US11793880B2 (en) | 2015-12-04 | 2023-10-24 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3838298B1 (en) | 2007-08-17 | 2025-02-26 | Purdue Research Foundation | Psma binding ligand-linker conjugates and methods for using |
US9951324B2 (en) | 2010-02-25 | 2018-04-24 | Purdue Research Foundation | PSMA binding ligand-linker conjugates and methods for using |
CN104797247A (en) | 2012-11-15 | 2015-07-22 | 恩多塞特公司 | Conjugates for treating diseases caused by psma expressing cells |
GEP20237496B (en) | 2013-10-18 | 2023-04-10 | Deutsches Krebsforsch | Labeled inhibitors of prostate specific membrane antigen (psma), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer |
CN105849568B (en) | 2013-11-14 | 2018-05-04 | 恩多塞特公司 | Compounds for Positron Emission Tomography |
US20170266303A1 (en) * | 2014-11-25 | 2017-09-21 | Endocyte, Inc. | Methods of treating cancer by targeting tumor-associated macrophages |
US10188759B2 (en) | 2015-01-07 | 2019-01-29 | Endocyte, Inc. | Conjugates for imaging |
CA3017211A1 (en) * | 2016-03-16 | 2017-09-21 | Endocyte, Inc. | Carbonic anhydrase ix inhibitor conjugates and uses thereof |
CA3017214A1 (en) | 2016-03-16 | 2017-09-21 | Purdue Research Foundation | Carbonic anhydrase ix targeting agents and methods |
CA3097381A1 (en) | 2018-04-17 | 2019-10-24 | Endocyte, Inc. | Methods of treating cancer |
EA202191769A1 (en) | 2018-12-21 | 2021-12-08 | Регенерон Фармасьютикалз, Инк. | TUBULYSINS AND PROTEIN-TUBULYSIN CONJUGATES |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5627165A (en) | 1990-06-13 | 1997-05-06 | Drug Innovation & Design, Inc. | Phosphorous prodrugs and therapeutic delivery systems using same |
EP1523493B1 (en) | 2002-07-09 | 2013-09-04 | Dömling, Alexander | Novel tubulysin analogues |
WO2004005326A2 (en) | 2002-07-09 | 2004-01-15 | Morphochem Aktiengellschaft Fu | Tubulysin conjugates |
DE10254439A1 (en) | 2002-11-21 | 2004-06-03 | GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) | Tubulysins, manufacturing processes and tubulysin agents |
JP5576007B2 (en) | 2003-01-27 | 2014-08-20 | エンドサイト・インコーポレイテッド | Vitamin receptor binding drug delivery conjugates |
CA2680535C (en) | 2007-03-14 | 2016-09-20 | Endocyte, Inc. | Binding ligand linked drug delivery conjugates of tubulysins |
EP2181101A2 (en) | 2007-07-20 | 2010-05-05 | Helmholtz-Zentrum für Infektionsforschung GmbH | Tubulysin d analogues |
EP2209374B1 (en) | 2007-10-25 | 2014-12-03 | Endocyte, Inc. | Tubulysins and processes for preparing |
DE102009032972A1 (en) | 2009-07-14 | 2011-01-20 | Erbe Elektromedizin Gmbh | Device for producing anastomoses |
US8394922B2 (en) * | 2009-08-03 | 2013-03-12 | Medarex, Inc. | Antiproliferative compounds, conjugates thereof, methods therefor, and uses thereof |
WO2011069116A1 (en) | 2009-12-04 | 2011-06-09 | Endocyte, Inc. | Binding ligand linked drug delivery conjugates of tubulysins |
JP2013535220A (en) | 2010-08-06 | 2013-09-12 | エンドサイト,インコーポレイテッド | Process for preparing tubulin |
US20140080175A1 (en) * | 2012-03-29 | 2014-03-20 | Endocyte, Inc. | Processes for preparing tubulysin derivatives and conjugates thereof |
-
2013
- 2013-03-15 US US13/841,078 patent/US20140249315A1/en not_active Abandoned
-
2014
- 2014-02-28 EP EP14756463.7A patent/EP2961764A4/en not_active Withdrawn
- 2014-02-28 WO PCT/US2014/019605 patent/WO2014134543A1/en active Application Filing
- 2014-02-28 CA CA2901337A patent/CA2901337A1/en not_active Abandoned
- 2014-02-28 US US14/771,532 patent/US9771391B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9090563B2 (en) | 2004-07-23 | 2015-07-28 | Endocyte, Inc. | Bivalent linkers and conjugates thereof |
US10647676B2 (en) | 2004-07-23 | 2020-05-12 | Endocyte, Inc. | Bivalent linkers and conjugates thereof |
US9550734B2 (en) | 2004-07-23 | 2017-01-24 | Endocyte, Inc. | Bivalent linkers and conjugates thereof |
US9555139B2 (en) | 2007-03-14 | 2017-01-31 | Endocyte, Inc. | Binding ligand linked drug delivery conjugates of tubulysins |
US9877965B2 (en) | 2007-06-25 | 2018-01-30 | Endocyte, Inc. | Vitamin receptor drug delivery conjugates for treating inflammation |
US10500204B2 (en) | 2007-06-25 | 2019-12-10 | Endocyte, Inc. | Vitamin receptor drug delivery conjugates for treating inflammation |
US10738086B2 (en) | 2007-06-25 | 2020-08-11 | Endocyte Inc. | Conjugates containing hydrophilic spacer linkers |
US10080805B2 (en) | 2012-02-24 | 2018-09-25 | Purdue Research Foundation | Cholecystokinin B receptor targeting for imaging and therapy |
US10765756B2 (en) | 2012-02-24 | 2020-09-08 | Purdue Research Foundation | Cholecystokinin B receptor targeting for imaging and therapy |
US11344623B2 (en) | 2012-02-24 | 2022-05-31 | Purdue Research Foundation | Cholecystokinin B receptor targeting for imaging and therapy |
US9505747B2 (en) | 2012-03-29 | 2016-11-29 | Endocyte, Inc. | Processes for preparing tubulysin derivatives and conjugates thereof |
US9662402B2 (en) | 2012-10-16 | 2017-05-30 | Endocyte, Inc. | Drug delivery conjugates containing unnatural amino acids and methods for using |
WO2017031209A1 (en) * | 2015-08-18 | 2017-02-23 | Endocyte, Inc. | Tubulysin analogs and methods |
US11229708B2 (en) | 2015-12-04 | 2022-01-25 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
US11793880B2 (en) | 2015-12-04 | 2023-10-24 | Seagen Inc. | Conjugates of quaternized tubulysin compounds |
Also Published As
Publication number | Publication date |
---|---|
EP2961764A1 (en) | 2016-01-06 |
EP2961764A4 (en) | 2016-11-23 |
CA2901337A1 (en) | 2014-09-04 |
US9771391B2 (en) | 2017-09-26 |
US20160016993A1 (en) | 2016-01-21 |
WO2014134543A1 (en) | 2014-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9499849B2 (en) | Processes for preparing tubulysins | |
US9771391B2 (en) | Process for preparing tubulysins | |
US9505747B2 (en) | Processes for preparing tubulysin derivatives and conjugates thereof | |
JP6038021B2 (en) | Process for preparing pleuromutilin | |
CA2874279A1 (en) | Diazabicyclooctane derivatives useful as .beta.-lactamase inhibitor and process for preparing the same | |
DE69610145T2 (en) | Benzo-condensed azepinone and piperidinone compounds, useful as ACE and NEP inhibitors | |
EP1165601A2 (en) | Prodrugs of thrombin inhibitors | |
CA2212437A1 (en) | Basic oxazoline-amide derivatives of ge 2270 and ge 2270-like antibiotics | |
US20180282331A1 (en) | 7-Oxo -6-(sulfooxy)- 1,6-diazabicyclo [3.2.1] octane containing compounds and their use in treatment of bacterial infections (changed by PCT to: 7-OXO -6-(SULFOOXY)- 1,6-DIAZABICYCLO [3.2.1] OCTANE CONTAINING COMPOUNDS AND THEIR USE IN TREATMENT OF BACTERIAL INFECTIONS | |
CN1305484A (en) | 3-(2-oxo[1,3']bihyrrolidinyl-3-ylidenemethyl)-cephems | |
US4812478A (en) | Derivatives of L-amino acyl L-carnitine, process for their preparation and pharmaceutical compositions having hepatoprotecting activity containing same | |
KR970004044B1 (en) | Aromatic acid intermediates | |
AU2013203491A1 (en) | Processes for preparing tubulysins | |
JPS6228154B2 (en) | ||
DE68909451T2 (en) | Peptides with an inhibitory effect on enzymatic systems, processes for their preparation and pharmaceutical compositions containing them. | |
HK1185558B (en) | Processes for preparing tubulysins | |
WO2015031595A1 (en) | A process for preparation of saxagliptin and its hydrochloride salt | |
MXPA00012391A (en) | Derivatives of 3-(2-oxo-[1,3']bipyrrolidinyl-3-ylidenemethyl)-cephems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ENDOCYTE, INC., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VLAHOV, IONTCHO R.;LEAMON, CHRISTOPHER P.;REEL/FRAME:030234/0179 Effective date: 20130403 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |